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Abstract

In the list-decodable learning setup, an overwhelming majority (say a 1 − β-fraction) of
the input data consists of outliers and the goal of an algorithm is to output a small list L
of hypotheses such that one of them agrees with inliers. We develop a framework for list-
decodable learning via the Sum-of-Squares SDP hierarchy and demonstrate it on two basic
statistical estimation problems

• Linear regression: Suppose we are given labelled examples {(Xi , yi)}i∈[N] containing a
subset S of βN inliers {Xi}i∈S that are drawn i.i.d. from standard Gaussian distribution
N(0, I) in�d , where the corresponding labels yi are well-approximated by a linear function
ℓ. We devise an algorithm that outputs a list L of linear functions such that there exists
some ℓ̂ ∈ L that is close to ℓ.
This yields the first algorithm for linear regression in a list-decodable setting. Our results
hold for any distribution of examples whose concentration and anticoncentration can be
certified by Sum-of-Squares proofs.

• Mean Estimation: Given data points {Xi}i∈[N] containing a subset S of βN inliers {Xi}i∈S

that are drawn i.i.d. from a Gaussian distribution N(µ, I) in �d , we devise an algorithm
that generates a list L of means such that there exists µ̂ ∈ L close to µ.
The recovery guarantees of the algorithm are analogous to the existing algorithms for the
problem by Diakonikolas et al. [DKS18] and Kothari et al. [KS17a].

In an independent and concurrent work, Karmalkar et al. [KKK19] also obtain an algorithm
for list-decodable linear regression using the Sum-of-Squares SDP hierarchy.
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1 Introduction

The presence of outliers in data poses a fundamental challenge to algorithms for high-dimensional
statistical estimation. While robust statistics have been explored extensively for several decades
now [Hub11], a flurry of recent work starting with [KLS09, ABL14, LRV16, DKK+16] have led to
new robust algorithms for high-dimensional statistical tasks such as mean estimation, covariance
estimation, linear regression and learning linear separators.

More recently, a promising line of work [HL18, KS17b, KS17a, KKM18] has brought to bear
the sum-of-squares SDP hierarchy on problems from robust statistics, resulting in new algorithms
under fairly minimal assumptions. Continuing this line of inquiry, we further develop the SoS SDP
based approach to robust statistics. Specifically, we develop a framework for list-decodable learning
via the SoS SDP hierarchy. We demonstrate the framework by devising the first polynomial-time
algorithm for linear regression that can extract an underlying linear function even in the presence
of an overwhelming majority of outliers.

Linear regression is a corner-stone problem statistics and the underlying optimization problem
is perhaps the central example of convex optimization. In the classical setup for linear regression,
the input data consists of labelled examples {(Xi , yi)}i∈[N] where {Xi}i∈[N] are drawn i.i.d. from
a distribution D over �d , and the labels {yi}i∈[N] are noisy evaluations of a linear function.
Specifically, the labels yi are given by yi � 〈ℓ̂ ,Xi〉 + γi where γi denotes the noise. The goal is to
recover an estimate ℓ to the linear function ˆe ll.

In its simplest form, the distribution D � N(0, Id) is the standard Gaussian measure, the noise
γi is mean zero and independent of the example Xi . The linear function ˆe ll can be recovered (up
to statistical deviations) by minimizing the squared loss namely,

ℓ � argmin �
(X,y)∼D

[(〈ℓ,X〉 − y)2] .

From an algorithmic standpoint, the realizable setting of linear regression is fairly well understood.
The focus of this work is on algorithms for linear regression that are robust to the presence

of outliers. While there is an extensive literature on robust linear regression (see [RL05, BJK15,
BJKK17] and the references therein), there are no algorithms that are robust to an overwhelming
majority of outliers. Concretely, consider the following problem setup: we are given labelled
examples {(Xi , yi)}i∈[N] such that a β-fraction of these examples are drawn from the underlying
distribution, while the remaining (1 − β)-fraction of examples are adversarially chosen. Formally,
let us suppose βN examples are drawn from the distribution with X ∼ N(0, Id) and y � ℓ̂(X) + γ,
while the rest of the examples are arbitrary.

For β < 1
2 , it is information theoretically impossible to estimate the linear function ℓ̂, since the

input data can potentially be consistent with 1
β -different linear functions ℓ. It is natural to ask if

an efficient algorithm can recover a small list of candidate linear functions L � {ℓ1 , . . . , ℓt} such
that one of them is close to ℓ. The learning model such as the one above where the goal of the
algorithm is to find a small list of candidate hypotheses is referred to as list-decodable learning.

This model was introduced by Balcan et al. [BBV08] in the context of clustering, and has been
the subject of a line of work [CSV17, DKS18, SVC16, SKL17, KS17b] in the recent past. The problem
of linear regression in the setup of list-decodable learning had remained open.

Our Results. In this work, we use the sum-of-squares SDP hierarchy to devise an efficient algo-
rithm for the list-decodable linear regression problem. Formally, we show the following result.

Theorem 1.1. There is an algorithm A such that the following holds for every β > 0.

Suppose for a sequence of labelled examples {(Xi , yi)}i∈[N], there exists a linear function ℓ̂(X) � 〈ℓ̂,X〉
and a subset S ⊂ [N] of βN examples such that,
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1. For any ε > 0, the kth emprical moments of {Xi}i∈S are close to that of the underlying distribution of
examples for each k � 1 . . . K i.e., �i∈S

X⊗k
i − �

X∼D
X⊗k


2
≤ ε

for some K � O(1/β4).

2. The injective tensor norm of the covariates is bounded. That is to say for all degree D ≥ 4 pseudoex-

pectations �̃ over indeterminate v1, ..., vd the fourth injective tensor norm

4 �X∼D
〈X, v〉4 ≤ B‖v‖4

is certifiably upper bounded by a constant B. For standard gaussians B � 3. More generally, any
distribution satisfying a poincare inequality has certifiably upper bounded injective tensor norms, see
[KS17a].

3. The empirical loss of ℓ̂ is (2, 4)-hypercontractive, i.e.,

�
i∈S

(yi − 〈ℓ̂,Xi〉)4 ≤ 1 ·
(
�
i∈S

(yi − 〈ℓ̂ ,Xi〉)2
)2

for some constant 1

Then the algorithm A running on the set of examples {(Xi , yi)}i∈[N] outputs a list of O

((
‖ ℓ̂‖
σ

) log 1/β)
candidate linear functions L such that there exists ℓ ∈ L satisfying

‖ℓ − ℓ̂‖2 ≤ O

(
σ

β3/2

)

where σ2 def
� �i∈S(yi − 〈ℓ̂,Xi〉)2. The runtime of the algorithm A is

(
‖ ℓ̂‖
σ

) log 1/β
· NO(1/β4) for N � d

O( 1
β4 ).

Even in the absence of outliers, the information theoretic limit on the accuracy ‖ℓ − ℓ̂‖ � Ω(σ).
To interpret the list size and runtime bounds, consider the setting β � 1/4, ‖ ℓ̂‖ � 1 and noise rate
σ � 10−7. In this case, the linear function ℓ̂ is specified by an arbitrary point in the unit ball, and the
algorithm finds a constant-sized list such that one of the points ℓ in the ball satisfies ‖ℓ− ℓ̂‖ < 0.01.

More generally,
(
‖ ℓ̂‖
σ

)d

would be the size of a σ-net for the ball of radius ‖ ℓ̂‖, but the list size is a

fixed polynomial in ‖ ℓ̂‖
σ .

Our results on linear regression apply to a broader class of probability distributions on exam-
ples we term "SoS certifiably anti-concentrated" (see Definition 8.2). Informally, these are probability
distributions D that admit an sum-of-squares proof of their anti-concentration along every direc-
tion.

Sum-of-Squares SDPs yield a unified framework for statistical estimation tasks [HL18, KS17b,
KS17a, KKM18] through the notion of identifiability proofs. Roughly speaking, if there exists a
sum-of-squares proof that the statistical parameter of interest is identifiable from the data, then
the sum-of-squares SDP can be utilized to estimate the statistic. In the setting of list decodable
learning, the parameter of interest say, the underlying linear function is not uniquely determined
by the data, thus breaking the paradigm of SoS proof of identifiability. Alternately, the SoS SDP
solution is potentially a convex combination of the different hypotheses on the list. Therefore, a
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list-decodable learning algorithm via SoS SDP will have to involve some randomized rounding to
isolate one hypotheses from the mixture.

We use the technique of conditioning [BRS11, RT12] to randomly isolate one hypothesis from
the SoS SDP solution. More precisely, our algorithm iteratively conditions the SoS SDP solution
on specific data points being inliers. The analysis of the algorithm argues that after conditioning
on a small number of appropriately chosen data points being inliers, the SoS SDP solution is more
or less supported on a unique hypothesis, that we can output.

The framework of rounding by iterative conditioning can also be applied to list-decodable
mean estimation problem. In the mean-estimation problem, a β-fraction of inliers in a set of N
data points {X1, . . . ,XN} are sampled from a distribution D. The goal is to recover a list of points
{µ̂1, . . . , µ̂t} such that one of them is close to mean of the inliers. Diakonikolas et al. [DKS18]
devise an algorithm for the problem when D is a spherical Gaussian, while Kothari and Steinhardt
[KS17b] solve it on a broader class of distributions referred to as SoS-certifiable distributions.

A probability distribution D is (2k , B)-SoS certifiable if the polynomial inequality�X∼D [〈v ,X−
�[X]〉2k] ≤ B2k ‖v‖2k admits a sum-of-squares proof. Similarly, an empirical distribution {Xi}i∈S

is said to be (2k , B)-SoS certifiable if �i∈S[〈v ,Xi − �[Xi]〉2k] ≤ B2k ‖v‖2k admits a sum-of-squares
proof. By applying our framework, we recover an algorithm for list-decodable mean estimation for
SoS-certifiable distributions analogous to the work of [KS17b]. Formally, we show the following.

Theorem 1.2. There is an algorithm A such that the following holds for every β > 0. Suppose for
a sequence of labelled examples {Xi}i∈[N], there exists a subset S ⊂ [N] of βN examples such that the
empirical distribution {Xi}i∈S is a (2k , B)-SoS certifiable then the algorithm A returns a list of L points of

length poly( 1
β ) such that there exists a point µ ∈ L with ‖µ − �i∈S Xi ‖ ≤ O( B

β1/k ). The runtime of the

algorithm is d
poly( 1

β )

Related Work.

List Decodable Learning. Balcan et al. [BBV08] introduced the notion of list-decodable learning,
specifically, the notion of list-clustering. Charikar et al. [CSV17] formally defined the notions of
list-decodable learning and semi-verified learning, and showed that learning problems in the two
models reduce to one another. Charikar et al. [CSV17] obtained algorithms for list-decodable
learning in the general setting of stochastic convex optimization, and applied the algorithm to a
variety of settings including mean estimation, density estimation and planted partition problems
(also see [SVC16, SKL17]). The same model of list-decodable learning has been studied for the case
of mean estimation [KS17b] and Gaussian mixture learning [KS17a, DKS18].

Linear Regression. Several heuristics have been developed for modifying the ordinary least
squares objective with the intent of minimizing the effect of outliers (see [RL05]).

Often, the terminology of âĂĲrobust regressionâĂİ is used to refer to a more restricted noise
model where only the labels are allowed to be corrupted adversarially (see [NT13a, NT13b, BJK15,
BJKK17]). The work of Bhatia et al. [BJKK17] yields an algorithm for regression when the noise
introduced is oblivious to the examples, but with a desirable property called consistency, in that
the error rate approaches zero with increasing sample size.

There are several works on regression in the more stringent noise models. Balakrishnan et
al. [BDLS17] devise algorithms for sparse linear regression in Huber’s contamination model.
Diakonikolas et al. [DKS19] and Klivans et al. [KKM18] yield algorithms in the most stringent
noise models where both the examples and the labels can be arbitrarily corrupted. The latter
appeals to SoS SDP relaxations and is applicable to a broad class of distributions under very
minimal assumptions. All of the work described above apply at small noise rates, where the total
fraction of corruptions are bounded by a small constant.
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In a setting where the outliers are an overwhelming majority of the samples, linear regression
algorithms have been studied for recovering a sparse vector x [WM10, NT13a, NT13b].

Finally, Hardt and Moitra [HM13] consider a related problem of robust subspace recovery
where a fraction of the samples lie within a d-dimensional subspace of �n . They devise an
algorithm when there are at least d/n-fraction of inliers (which corresponds to (1−1/n)-fraction of
inliers for linear regression). Furthermore, they show that if we make no additional distributional
assumptions on the points, then it is computationally intractable to solve robust subspaec recovery
with less than d/n-fraction of inliers under the Small-Set Expansion Hypothesis.

In an independent and concurrent work, Karmalkar et al. [KKK19] also devise algorithms
for list-decodable linear regression using the sum-of-squares SDP hierarchy. The runtime and
recovery guarantees of the algorithm are very similar to this work.

2 Preliminaries

2.1 Proofs to Algorithms: Identifiability and Why it Fails

At a high level, The proofs to algorithms method sets up a system of polynomial equalities and
inequalities P � { f1(x) � 0, f2(x) � 0, ..., fm(x) � 0, 11(x) ≥ 0, 12(x) ≥ 0, ..., 1n(x) ≥ 0} and aims
to output a solution θ to P. Here we think of θ as a statistical parameter which in our case is
either a mean estimate or a hyperplane. In general, this is too much to ask for as the solution
set of P may be nonconvex and admit no discernible structure. The SoS hierarchy is a powerful
tool in convex optimization, designed to approximately solve polynomial systems. The hierarchy
is parameterized by its ’degree’ k. The degree corresponds to the size of a Semidefinite Program
(SDP) used to solve for solutions to P. The hope is that with higher degree, larger SDP’s can obtain
sharper approximations to θ. Thus, an immediate hurdle in designing efficient algorithms is to
control ’k’ with respect to the desired approximation guarantee.

In general, outputting a solution θ even approximately is still too much to ask for. Instead
the SoS algorithm aims to output a fake distribution or ’pseudodistribution’ over solutions to
P. Furthermore the SoS algorithm returns only the degree up to k moments of the pseudodis-
tribution ζ. That the pseudodistribution is not a true distribution lies at the heart of obtaining
computationally efficient algorithms from SoS. Thus, it can be said that pseudodistributions are
relaxations of actual probability distributions over the solution set of P. We will defer discussion
of pseudodistributions and their dual objects pseudoexpectations to section 2.2.

In the context of unsupervised learning the goal is to estimate a parameter θ′ from samples
x1, ..., xn. Identifiability refers to the property that any solution θ to P is close to the true parameter
θ′, i.e ‖θ − θ′‖ << small. Furthermore, if this proof of identifiability is captured by a sufficiently
simple proof (a low degree SoS) then up to rounding issues θ can be found efficiently. This
paradigm has been immensely successful in designing SoS algorithms in machine learning settings.

A key challenge for the list decoding problem is that even if it were possible to output a true
distribution υ over solutions to P, another β fraction of the dataset can imitate a solution to P.
Thus, direct identifiability fails. A natural fix would be to sample from the distribution υ in the
hopes of finding a region of substantial probability mass around θ′. The analogue of sampling on
pseudodistributions is ’rounding’. The core technical contribution of this work is developing new
techniques for rounding pseudodistributions for high dimensional parameter estimation tasks.
Our method ’concentration rounding’ has its roots in conditioning SoS SDP’s, see [BRS11, RT12].
Next we present some standard tools when working with SoS and some properties of conditional
pseudoexpectation.

2.2 Sum-of-Squares Toolkit

Sum-of-Squares Proofs. Fix a set of polynomial inequalities A � {pi(x) ≥ 0}i∈[m] in variables
x1, . . . , xn . Starting with these “axioms A, a sum-of-squares proof of q(x) ≥ 0 is given by an
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identity of the form,

©«
1 +

∑
k∈[m′]

b2
k(x)

ª®¬
· q(x) �

∑
j∈[m′′]

s2
j (x) +

∑
i∈[m]

a2
i (x) · pi(x) ,

where {s j(x)} j∈[m′′], {ai(x)}i∈[m] , {bk(x)}i∈[m′] are real polynomials. It is clear that any identity of
the above form manifestly certifies that the polynomial q(x) ≥ 0, whenever each pi(x) ≥ 0 for
real x. The degree of the sum-of-squares proof is the maximum degree of all the summands, i.e.,
max{deg(s2

j
), deg(a2

i
pi)}i, j .

Sum-of-squares proofs extend naturally to polynomial systems that involve a set of equalities
{ri(x) � 0} along with a set of inequalities {pi(x) ≥ 0}. We can extend the definition syntactically
by replacing each equality ri(x) � 0 by a pair of inequalities ri(x) ≥ 0 and −ri(x) ≥ 0.

We will the use the notation A
d

x {q(x) ≥ 0} to denote that the assertion that, there exists a
degree-d sum-of-squares proof of q(x) ≥ 0 from the set of axioms A. The superscript x in the
notation A

d

x {q(x) ≥ 0} indicates that the sum-of-squares proof is an identity of polynomials
where x is the formal variable.

A useful quality of SoS proofs is that they can be composed in the following sense.

Fact 2.1. For polynomial systems A and B, if A
d

{
p(x) ≥ 0} and B

d′
{

q(x) ≥ 0} then A ∪B max(d ,d′)
{

p(x) + q(x) ≥ 0}. Also A ∪ B
dd′
{

p(x)q(x) ≥ 0}
We now turn to pseudoexpectations, the dual object to SoS proofs.

Pseudoexpectations.

Definition 2.2. Fix a polynomial system P in n variables x ∈ �n consisting of inequalities {pi(x) ≥
0}i∈[m] . A degree-d pseudoexpectation �̃ : �[x]≤d → � satisfying P is a linear functional over
polynomials of degree at most d with the properties that �̃[1] � 1, �̃[p(x)a2(x)] ≥ 0 for all p ∈ P
and polynomials a such that deg(a2 · p) ≤ d, and �̃[q(x)2] ≥ 0 whenever deg(q2) ≤ d.

The properties above imply that when A
d

x {q(x) ≥ 0}, then if �̃ is a degree-d pseudoex-
pectation operator for the polynomial system defined by A, �̃[q(x)] ≥ 0 as well. This implies
that �̃ satisfies several useful inequalities; for example, the Cauchy-Schwarz inequality. (See e.g.
[BBH+12] for details.)

SoS Algorithm. The degree D moment tensor of a pseudoexpectation �̃ζ is the tensor
�̃ζ(1, x1, x2, ..., xn)⊗D . Each entry corresponds to the pseudo-expectation of all monomials of
degree at most D in x. The set of all degree-D moment tensors of degree D pseudoexpectations is
convex, and there’s a separation oracle that runs in time nO(D).

Fact 2.3. ([Nes00], [Par00], [Las01], [Sho87]). For any n, D ∈ �+, let �̃ζ be degree D pseudoexpectation

satisfying a polynomial system P. Then the following set has a nO(D)-time weak separation oracle (in the
sense of [GLS81]):

{�̃
ζ
(1, x1 , x2, ..., xn)⊗D | degree D pseudoexpectations �̃

ζ
satisfying P}

Armed with a separation oracle, the ellipsoid algorithm finds a degree D pseudoexpectation in time

nO(D), which we call the degree D sum-of-squares algorithm.

Next we present some useful inequalities for working with SoS proofs and pseudoexpectations.
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Useful Inequalities.

Fact 2.4. (Cauchy Schwarz) Let x1, .., xn , y1, ..., yn be indeterminates, than

4

(∑
i≤n

xi yi

)2 ≤
(∑

i≤n

x2
i

) (∑
i≤n

y2
i

)

Fact 2.5. (Triangle Inequality) Let x , y be n-length vectors of indeterminates, then

2 ‖x + y‖2 ≤ 2‖x‖2
+ 2‖y‖2

Fact 2.6. (Moment Bounds) Let u � (u1, ..., uk) be a vector of indeterminants. Let D be Gaussian with
variance proxy 1. Let t ≥ 0 be an integer. Then we have

2t �x∼D
〈X, u〉2t ≤ (2t)!‖u‖2t

Fact 2.7. (Pseudoexpectation Cauchy Schwarz). Let f (x) and 1(x) be degree at most ℓ ≤ D
2 polynomial in

indeterminate x, then
�̃[ f (x)1(x)]2 ≤ �̃[ f (x)2] �̃[1(x)2]

Fact 2.8. (Pseudoexpectation Holder’s) Let p be a degree ℓ sum of squares polynomial, t ∈ �, and �̃ a degree
O(tℓ) pseudoexpectation. Then

�̃ p(x)t−2 ≤
(
�̃ p(x)t

) t−2
t

Fact 2.9. (SoS Holder) Let X1, ..,Xn and w1, ..., wn be indeterminates. Let q ∈ � be a power of 2, then

{w2
i � wi∀i ∈ [n]}

O(q)
(∑

i≤n

wiXi

) q (∑
i≤n

X
q

i

)

and
{w2

i � wi∀i ∈ [n]}
O(q)

(∑
i≤n

wiXi

)q (∑
i≤n

wiX
q

i

)

Fact 2.10. (Spectral Bounds) Let A ∈ �d×d be a positive semidefinite matrix with λmax and λmin being the

largest and smallest eigenvalues of A respectively. Let �̃ be a pseudoexpectation with degree greater than or
equal to 2 over indeterminates v � (v1 , ..., vd). Then we have

2 〈A, vvT〉 ≤ λmax ‖v‖2

and

2 〈A, vvT〉 ≥ λmin ‖v‖2

Remark 2.11. We will make use of the following notation for ‖·‖op and ‖·‖nuc for operator and
nuclear norm.

Next we will discuss some useful properties of conditional pseudoexpectation.
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Conditional Pseudoexpectation.

Definition 2.12. (Conditioning) Given a degree D pseudoexpectation operator
�̃ : �[x1 , . . . , xn]≤D → � and a polynomial e(x) of degree d < D/2, the conditioned pseudo-
expectation operator �̃

��
e

is given by,

�̃[s(x)|e(x)] � �̃[s(x)e
2(x)]

�̃[e2(x)]
.

�̃

��
e

is a degree D −2d pseudoexpectation functional that satisfies the same polynomial constraints
as �̃.

For a indeterminate w satisfying the boolean constraint w2
� w, we will use �̃[·|w] to denote

the conditioned functional �̃|w2 . Given a degree D pseudo-expectation operator �̃ satisfies a
polynomial system P all of whose polynomials are of degree at most d, for every polynomial e of
degree ≤ D−d

2 , the conditioned pseudoexpectation functional �̃[·|e] also satisfies the system P,
For any two polynomials p , q we define the pseudovariance as

�̃[p] def
� �̃[p2] − �̃[p]2

and pseudo-covariance as

C̃ov[p , q] def
� �̃[p , q] − �̃[p] �̃[q]

We will also be making extensive use of the conditional pseudoexpectation toolkit.

Fact 2.13. (Conditional Pseudoexpectation Toolkit)
Let w satisfy the boolean constraint w2

� w. For a random variable b taking values in {0, 1} such that

�[b � 1] � �̃[w] and �[b � 0] � �̃[1 − w] we have the following useful facts

1. (Law of Total Pseudoexpectation) �b �̃[p(x , w)|w � b] � �̃[p(x , w)]

2. (Law of Total Pseudovariance) �̃[p(x , w)] −�b �̃[p(x , w)|w � b] � �b[�̃[p(x , w)|w � b]]

3. (Correlation Identity) �̃[p(x , w)|w � b] � C̃ov[p(x,w),w]
�̃[w] b +

(
�̃[p(x , w)] − C̃ov[p(x,w),w]

�̃[w] �̃[w]
)

Remark 2.14. (Numerical accuracy). To make our error guarantees precise, we have to discuss
issues of bit complexity. The SoS algorithm obtains a degree D pseudoexpectation �̃ζ satisfying
polynomial system P approximately. That is to say, for every 1 a sum of squares and p1, ..., pℓ ∈ P
with deg[1∏ pi ≤ D], one has �̃ 1

∏
i∈P pi ≥ −2−Ω(n)‖1‖, where ‖1‖ is ℓ2 norm of the coefficients

of 1. So long as all of the polynomials involved in our SoS proofs have coefficients bounded by nB

for some large constant B, then for any polynomial system Q such that P Q, we have Q satisfied
up to error 2−Ω(n).

2.3 Organization

In Section 3 we go over the main ideas of list decoding robust regression for the covariate distri-
bution N(0, I). Then in section Section 4 we wrap our algorithms in an iterative framework for
sharp error guarantees. In Section 5 we prove the lemmas relevant to conditioning SoS SDP’s.
In Section 7 we present the exhibit the proof of concentration rounding. In Section 8 we define
anticoncentration and prove that the Gaussian is certifiably anticoncentrated. Subsequently in
Section 9 we prove that certifiable anticoncentration is closed under linear transformation, and
that spherically symmetric strongly log concave distributions are certifiably anticoncentrated. We
defer remaining regression lemmas to the appendix. In particular, we present our proof of list
decoding mean estimation to Section C.
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3 Technique Overview: Robust Regression

In this section we introduce many of the ideas involved in designing our rounding algorithm. We
leave sharper error/runtime guarantees and general distributional assumptions to later sections.

Let N be the size of the data set. Let β < 1
2 , and let M � βN . We receive a data set

D � {(Xi , yi)}N
i�1 where the Xi ∈ �d are the covariates and the yi ∈ � are the labels. Of the

covariates, M points are drawn Xi ∼ N(0, I). We will refer to these points as "inliers". Furthermore,
we introduce boolean variables w′

1, ..., w
′
N
∈ {0, 1} indicating if a data point is an inlier, equal to 1;

outlier, equal to 0. Let ℓ′ ∈ �d be the ℓ2 minimizer of the error over the inliers i.e

ℓ′
def
� argmin

ℓ∈�d

1
M

N∑
i�1

w′
i(yi − 〈ℓ,Xi〉)2

Let σ2 be a constant upper bounding the ℓ2 error

argmin
ℓ∈�d

1
M

N∑
i�1

w′
i(yi − 〈ℓ′,Xi〉)2 ≤ σ2

Likewise, let 1 be a constant such that the ℓ4 error of ℓ′ is

argmin
ℓ∈�d

1
M

N∑
i�1

w′
i(yi − 〈ℓ′,Xi〉)4 ≤ 1σ4

In the special case of Gaussian noise N(0, σ2) we have 1 � 3. Then for any d ∈ �+ sufficiently large,

our algorithm recovers a list of estimates L � {ℓ1 , ..., ℓA} for |L | � O
(
( ρσ )

log( 1
β )) such that for some

ℓi ∈ L we have

‖ℓi − ℓ′‖2 ≤ O

(
σ

β3/2

)

with high probability over the data. If we regard ρ
σ as a fixed constant then the list is of length

poly( 1
β ). Furthermore, our algorithm is efficient, running in polynomial time poly(d ,N) where we

take N � d
O( 1

β4 ). Here we take N to be large enough to certify arbitrary closeness of the K’th
empirical moments to the distributional moments of the covariates in ℓ2 norm for K � O( 1

β4 ). That

is to say, for any constant ε > 0, and for X1, ...,XN ∼ N(0, Id) we have with high probability 1
N

N∑
i�1

X
⊗ K

2
i

(X⊗ K
2

i
)T − MK


2

F

≤ ε

where MK is the empirical K’th moment tensor of the spherical Gaussian. For our analyses we
take d > ρ and ε � O(σd−K). For these settings of N and d, and fixing ρ, σ, β to be constants, we
often write od(1) without ambiguity.

Our approach is to run an SoS SDP, and then round out the list. We begin by describing the
Robust Regression SoS SDP.
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Algorithm 1: RobustRegressionSDP

Result: A degree D pseudoexpectation functional �̃ζ
1 Inputs: (D � {Xi , yi}N

i�1 , ρ) data set, and upper bound on ‖ℓ′‖
2

minimize
degree D pseudoexpectations �̃

N∑
i�1

�̃[wi]2

such that �̃
satisfies the polynomial system

(w2
i − wi) � 0, i ∈ [N],

N∑
i�1

wi − M � 0, i ∈ [N],

 1
M

N∑
i�1

wiX
⊗ t

2
i

(X⊗ t
2

i
)T − Mt


2

F

− ε ≤ 0, t ∈ [K]

1
M

N∑
i�1

wi(〈ℓ,Xi〉 − yi)4 − 1σ4) ≤ 0,

1
M

N∑
i�1

wi(〈ℓ,Xi〉 − yi)2 − σ2 ≤ 0,

 1
M

N∑
i�1

wi(yi − 〈ℓ,Xi〉)Xi


2

2

� 0,

‖ℓ‖2 − ρ2 ≤ 0

(3.1)

3 return: �̃ζ

Let P be the set of polynomial constraints of Robust Regression SDP. We elaborate on the
meaning of each constraint below, and we will often refer to them in our analyses according to the
numbering below.

1. The first constraint {w2
i
� wi} enforces wi ∈ {0, 1} and we refer to it as the booleaness

constraint.

2. The next constraint {∑N
i�1 wi − M} ensures we select a β fraction of the data set.

3. The third constraint ensures that the pseudodistribution is over subsets with moments that
match the distribution of the covariates. We refer to them as the moment constraints.

4. The next constraints ensures the error incurred by ℓ is small, and we refer to them as the ℓ2
noise constraint.

5. Similarly, we have a ℓ4 noise constraint.

6. We have the ℓ2 minimization constraint, which sets ℓ equal to the ℓ2 minimizer of the selected
wi.

7. Finally, the scaling constraint restricts the length of ℓ, ‖ℓ‖ ≤ ρ2.

The RobustRegression SDP minimizes a convex objective which we refer to as Frobenius Minimiza-
tion. This technique first used in the work of Hopkins and Steurer [HS17], ensures that the SDP
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solution is a convex combination over every possible solution to the system. This turns out to be
crucial. To see why, consider an actual solution Wfake consisting of variables w1, ..., wN ∈ {0, 1}
and ℓ ∈ �d satisfying P. The distribution that places mass 1 on Wfake and no mass on the clean
data is a valid distribution over the solutions to P and therefore also a valid pseudodistribution.
Since we only have assumptions on less than half the data, a malicious W f ake can be planted any-
where confounding our efforts to recover ℓ′. What we need is a way to produce a distribution over
solutions to P that is a convex combination over all the possible solutions. The objective function∑N

i�1 �̃[wi]2 is a strictly convex function, minimizing which ensures that SDP solution is spread
over all solutions to P. More precisely, we have the following guarantee.

Lemma 3.1. (Frobenius minimization �⇒ Correlation) LetP be a polynomial system in variables {wi}i∈[N]
and a set of indeterminates {ℓi}i∈�, that contains the set of inequalities:

w2
i � wi∀i ∈ [N]

∑
i

wi � βN

Let �̃ζ : �[{wi}i∈[N] , {ℓ}]≤D → � denote a degree D pseudoexpectation that satisfies P and minimizes

the norm ‖�̃ζ[w]‖. If w′
i
∈ {0, 1} and ℓ′ is a satisfying assignment to P then there is correlation with the

inliers,

�̃
ζ

[
1
M

N∑
i�1

wiw
′
i

]
≥ β (3.2)

We defer the proof of this statement to Section 6.1
Remark: The lemma does not guarantee that �̃ζ[(〈w , w′〉 − βM)p(w , ℓ)] ≥ 0 for all SoS polyno-
mials p(w , ℓ) of deg(p(w , ℓ)) ≤ D − 1 . That is to say, the guarantees of Lemma 3.1 are only in
pseudoexpectation.

At this point we have found a pseudodistribution ζ satisfying P that in pseudoexpectation is
correlated with the inliers. Pursuing a line of wishful thinking, we would like to sample from this
pseudodistribution armed with access to its degree D moments. This is the algorithmic task of
rounding the SDP solution, and it is chief intellectual thrust of this work.

For the sake of exposition, let us say that �̃ corresponds an actual distribution over solutions
to the polynomial system. Recall that the goal of the rounding algorithm is to recover the linear
function ℓ′. Suppose the variance of ℓ′ as a random variable is sufficiently small, then its expectation
�̃[ℓ] is a good approximation to an actual solution. Formally,

Lemma 3.2. Let η ∈ [0, 1
2 ] be a small constant. Let �̃ζ be a degree O( 1

η4 ) pseudoexpectation satisfying the

constraints of RobustRegressionSDP(D , ρ). Then if the pseudovariance of the estimator �̃ζ[ℓ] is small in
every direction

max
u
�̃ζ[〈ℓ, u〉] ≤ ηρ2 (3.3)

and there is correlation with the inliers

�̃
ζ

[
1
M

∑
i

wiw
′
i

]
≥ β (3.4)

then our estimator satisfies,

‖�̃[ℓ] − ℓ′‖ ≤

√√
ηρ2

+ O( σ2

η2 )
β

(3.5)
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In particular, for η �
β
8 and ρ2 > Ω( σ2

β3 ) the degree O( 1
β4 ) pseudoexpectation satisfies

‖�̃
ζ
[ℓ] − ℓ′‖ ≤

ρ

2

Provided we can take the pseudovariance down in every direction, the error guarantee ’con-
tracts’ from the trivial ρ to ρ

2 . It is then possible to iterate such a contraction procedure to achieve
optimal error guarantees which is the subject of Section 4. Without going into details, the proof
of Lemma 3.2 critically relies on both the concentration and anticoncentration of the covariates.
For instance, if the covariates were drawn from a degenerate point distribution at the origin, then
nothing can be inferred about ℓ′. In this sense, concentration is insufficient to recover ℓ′ meaning-
fully. To overcome this hurdle, we formalize what it means for a distribution to be SoS certifiably
anticoncentrated.

Certifiable Anticoncentration As will become clear in Section 8, the smaller η is, the harder
it is for SoS to certify the bounds in the above lemma. For purposes of anticoncentration, η is a
parameter representing an interval about the origin. For any distribution D, we think of D as
being anticoncentrated if the mass of D falling within the η interval is small. For example, in the
case of D � N(0, 1), the mass within the η interval is upper bounded by η√

2π
. Characterizing

this "anticoncentration" of D about the origin becomes increasingly difficult (higher degree) as η
falls, intuitively, because it requires a finer grained picture of the distribution D. It turns out the
N(0, Id) is O( 1

η4 ) SoS certifiably anticoncentrated the proof of which is detailed in Section ??. That
this proof is independent of the dimension d, along with the rounding algorithm, is what enables
the list decoding to run in polynomial time.

Now we move on to the actual statement of Lemma 3.2. In general, the variance of the SDP
solution will not be small. Thus, we will iteratively reduce the variance by conditioning on the wi

variables. Intuitively, we are conditioning on specific data points (Xi , yi) being part of the inliers
(wi � 1) or being part of the outliers (wi � 0).

Towards these ends, let �̃1 , �̃2 , ..., �̃R be a sequence of pseudoexpectations where �̃1 is the
output of RobustRegressionSDP(D , ρ). We want to define an algorithm to update �̃t to �̃t+1

where maxu �̃t+1[〈ℓ, u〉] < maxu �̃t[〈ℓ, u〉] so that eventually �̃R < ηρ
2.

let Qt be the pseudocovariance matrix defined

Qt � �̃
t
[(ℓ − �̃

t
[ℓ])(ℓ − �̃

t
[ℓ])T]

We have ‖Qt ‖op � maxu �̃t[〈ℓ, u〉]. Let’s say we have a strategy S for selecting a w j ∈ w1, ..., wN,
and then apply the following update

�̃
t+1

�

{
�̃t |w j�1 with probability �̃t[w j]
�̃t |w j�0 with probability �̃t[1 − w j]

Let b j be a {0, 1} random variable satisfying �[b j � 1] � �̃t[w j]. We wish to argue that there is a
large expected decrease in the direction of largest variance.

‖Qt ‖op −�
S
�
b j

‖Qt

��
w j�b j

‖op > large

Unfortunately, controlling ‖Q‖op is difficult. We will instead control ‖Q‖nuc, i.e trace norm,
and prove
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‖Q‖nuc −�
S
�
b j

‖Q
��
w j�b j

‖nuc ≥ Ω(β3ρ2)

For the strategy S defined below

Lemma 3.3. (Variance Decrease Strategy) Let �̃ζ satisfy the pseudoexpectation constraints of
RobustRegressionSDP(D , ρ). Let Q be the associated pseudocovariance matrix. Let v be any direction

in the unit ball Sd−1. Let Sv be a probability distribution over [N] where for any j ∈ N we have

Sv( j) def
�

�̃ζ[w j(y j − �̃ζ[〈ℓ,Xi〉])〈X j , v〉]∑N
i�1 �̃ζ[w j(y j − �̃ζ[〈ℓ,Xi〉])〈X j , v〉]

Then for M4 being the fourth moment matrix of the Gaussian defined in RobustRegressionSDP, and for
‖Q‖nuc > σ

2√1 we have

�̃ζ[〈ℓ, v〉] − �
j∼Sv

�
b j

�̃ζ[〈ℓ, v〉 |w j � b j] ≥ Ω
( β�̃ζ[〈ℓ, v〉]2

‖Q‖nuc

)

The above lemma allows the rounding algorithm to decrease the variance along a single direc-
tion, thereby decreasing the nuclear norm as follows.

Corollary 3.4. (Connecting variance decrease strategy to nuclear norm rounding) For (λ, v) being the
largest eigenvalue/vector pair of Q, and Sv defined in Lemma 3.3. Let γ > 0 be a constant. If ‖Q‖op ≥ γ

and ‖Q‖nuc > σ
2√1, then

‖Q‖nuc − �
j∼Sv

�
b j

‖Q
��
w j�b j

‖nuc ≥ Ω
(
βγ2

ρ2

)

In particular, for γ � ηρ2, we have

‖Q‖nuc − �
j∼Sv

�
b j

‖Q
��
w j�b j

‖nuc ≥ Ω(βη2ρ2)

The corollary establishes a win-win. Either ‖Q‖op < γ in which case the variance of our
estimator is small in every direction, or we can round and decrease an upper bound on ‖Q‖op . We
defer the proof of Lemma 3.3 to Section 7 and the proof of Corollary 3.4 to section Section 5.

Taken together, the conditioning strategy iteratively chases the variance down by selecting the
direction of largest variance in the pseudocovariance of our estimator, and conditions on the w j

exhibiting the largest scaled variance.
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We are now ready to state our main algorithm and prove the main result of this section

Algorithm 2: Regression Rounding Algorithm
Result: a d dimensional hyperplane

1 Inputs: (�̃1, ρ) The output of RobustRegressionSDP and the scaling parameter
2 for t � 1 : O( 1

η2β2 ) do

3 Let Qt � �̃t[(ℓ − �̃t[ℓ])(ℓ − �̃t[ℓ])T] be the pseudocovariance matrix of the estimator ℓ
4 Let (λ, v) be top eigenvalue/vector of Qt

5 if λ > ηρ2 then
6 Let Sv be a probability distribution over [N];
7 Where for any j ∈ N we have Sv( j) def

�
�̃t [w j (y j−�̃t [〈ℓ,Xi〉])〈X j ,v〉]∑N

i�1 �̃t [w j (y j−�̃h[〈ℓ,Xi 〉])〈X j ,v〉]
8 Sample j ∼ Sv

9 Sample b j ∈ Bern(�̃t[w j])
10 Let �̃t+1 � �̃t

��
w j�b j

11 else
12 return: �̃t[ℓ]
13 end
14 end

Theorem 3.5. Let ℓ′ be a solution to the constraints of RobustRegressionSDP. Let η be a constant greater

than 0. Let �̃ζ be the output of RobustRegressionSDP(D , ρ) for degree D � O
(
max( 1

β2η2 ,
1
η4 )

)
. Then after

R � O( 1
β2η2 ) rounds of updates according to the strategy S in Lemma 3.3, the resulting pseudoexpectation,

which we denote �̃R, satisfies

‖�̃
R
[ℓ] − ℓ′‖ ≤

√√
ηρ2

+ O
(
σ2

η2 )
β

with probability greater than Ω(β) over the randomness in the algorithm. In particular for η � Ω(β) and

for ρ2 ≥ Ω
(
σ2

β3

)
, the degree D � O( 1

β4 ) pseudoexpectation satisfies

‖�̃
R
[ℓ] − ℓ′‖ ≤

ρ

2

Remark:
As stated, Theorem 3.5 takes down the error guarantee to ρ

2 and is not yet an iterative algorithm
that obtains the optimal error guarantees, yet it contains most of the elements of the full algorithm.
Issues concerning iteration are the subject of the next section on algorithms.

Proof. We now have all the tools to prove Theorem 3.5. By frobenius minimization Lemma 3.1 we
have,

�̃
ζ
[ 1
M

N∑
i�1

wiw
′
i] ≥ β

Now we show that after R rounds of conditioning,

max
u∈Sd−1

�̃ζ,R[〈ℓ, u〉] ≤ ηρ2

To apply Lemma 3.2 we iteratively round according to Sv in Lemma 3.3 to decrease ‖Q‖nuc .
For ‖Q‖op > ηρ

2, Corollary 3.4 gives us
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‖Q‖nuc − �
j∼Sv

�
b j

‖Q
��
w j�b j

‖nuc ≥ Ω(βη2ρ2)

We aim to show that after R � O( 1
β2η2 ) iterations, the algorithm outputs ‖QR‖nuc ≤ ηρ2 with

probability greater than 1− β
4 over the randomness in the selection strategy and 0, 1 conditionings.

We denote the probability and expectation over the randomness in the algorithm �A[·] and �A[·]
respectively. Thus, to prove the following

�
A
[‖QR ‖op ≤ ηρ2] ≥ 1 − β

4

we proceed by contradiction. Suppose that at each iteration of t � 1, 2, ..., R, that ‖Qt ‖op > ηρ
2 with

probability greater than β
4 . Then in expectation over S we have that each round of conditioning

decreases ‖Q‖nuc by β
4 (the probability that the assumption in 3.6 holds) times Ω(βη2ρ2) (the

expected decrease in 3.6). Thus,

�
A
[‖Qt ‖nuc] −�A[‖Qt+1‖nuc] ≥ �A[‖Qt ‖op ≥ ηρ2] ·Ω(βη2ρ2) ≥ Ω(β2η2ρ2) (3.6)

We also know that the initial pseudocovariance is upper bounded in nuclear norm i.e

‖Qζ‖nuc � �̃
ζ
[‖ℓ − �̃

ζ
[ℓ]‖2] � �̃

ζ
[‖ℓ‖2] − �̃

ζ
[‖ℓ‖]2 ≤ �̃

ζ
[‖ℓ‖2] ≤ ρ2 (3.7)

Where the last inequality is an application of the scaling constraint (7). Thus, putting together

3.6 and 3.7 after R � O( ρ2

β2η2ρ2 ) � O( 1
β2η2 ) iterations, �A[‖QR‖nuc] ≤ 0 which is impossible because

‖QR ‖nuc � �̃R[‖ℓ − �̃R[ℓ]‖2] ≥ 0. Thus our assumption is false, and �A[‖QR ‖op ≤ ηρ2] ≥ 1 − β
4 as

desired.
We also know by the law of total pseudoexpectation that in expectation over the selection

strategy and 0, 1 conditionings,

�
A

[
�̃
R

[
1
M

N∑
i�1

wiw
′
i

] ]
� �̃

ζ

[
1
M

N∑
i�1

wiw
′
i

]
≥ β

Note that this is a generic fact that is true regardless of which conditioning strategy we choose.
Thus by Markov for random variables taking values in [0, 1] we have

�
A

[
�̃
R

[
1
M

N∑
i�1

wiw
′
i

]
≥
β

2

]
≥
β

2

Now that we know �A[‖QR‖op ≤ ηρ2] ≥ 1 − β
4 and �A

[
�̃R

[
1
M

N∑
i�1

wiw
′
i

]
≥ β

2

]
≥ β

2 , we conclude

via union bound that the failure probability of both events is upper bounded by β
4 + 1− β

2 � 1− β
4 .

Thus the conditions of Lemma 3.2 are satisfied with probability greater than β
4 in which case

‖�̃
R
[ℓ] − ℓ′‖ ≤

√√
ηρ2

+ O
(
σ2

η2 )
β
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In particular for η � Ω(β) and for ρ2 ≥ Ω
(
σ2

β3

)
we have

‖�̃
R
[ℓ] − ℓ′‖ ≤

ρ

2

�

Lemma 3.6. Running Algorithm Algorithm 2 a total of O( 1
β ) times produces a list L � {ℓ1 , ..., ℓO( 1

β )} such

that with probability 1 - c, there exists a list element ℓi ∈ L satisfying ‖ℓi − ℓ′‖ ≤ ρ
2 where c is a small

constant. Minor modifications enable the algorithm to succeed with high probability.

We defer the modifications required to succeed with high probability to the appendix. We
proceed under the assumption that Algorithm 2 outputs a list L satisfying the guarantees in
Lemma 3.6 with high probability. For variety, we present the mean estimation algorithms with
these modifications in place.

4 Iterative Contraction for Sharp Rates

The Regression Rounding Algorithm 2 generates a list L which contracts the error guarantee from
ρ to ρ

2 with high probability. In this section we wrap the algorithm in an iterative framework to
obtain sharp error guarantees.

Our iterative framework, ListDecodeRegression Algorithm 3, iterates over the list L generated
by RoundingRobustRegression Algorithm 2, and uses the list elements to shift the data so as to
obtain sharper estimates. This will involve rerunning both RobustRegressionSDP Algorithm 4
and RoundingRobustRegression Algorithm 2. Formally, for each ℓi ∈ L create a new dataset
{(X j , y′

j
)}N

j�1 with the same covariates with shifted labels y′
1, ..., y′

N. The labels are shifted according
to the hyperplane ℓi as follows, y′

j
:� y j − 〈ℓi ,X j〉 for all j ∈ [N]. Then the scaling constraint

{‖ℓ‖2 ≤ ρ2

2 } is added to the RobustRegressionSDP, and we resolve the SDP and rerun the rounding.
Iterating this procedure, the error guarantee contracts each iteration from ρ

2 ,
ρ
4 , ... so on and so forth,

whilst the list length increases multiplicatively by factors of O( 1
β ) until the ubiquitous assumption

ρ2 ≥ Ω( σ2

β3 ) no longer holds and we are left with the sharp error guarantee ‖ℓi − ℓ′‖ ≤ O( σ
β3/2 ) for
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some list element ℓi ∈ L. The following theorem formalizes the discussion above.

Algorithm 3: ListDecodeRegression

Result: A list of hyperplanes L � {ℓ1, ..., ℓA}
1 inputs: (D , ρ)
2 L � {0}
3 for t ∈ log2(

ρβ3/2

σ ) do

4 ρt �
ρ

2t

5 % Let Y to be a list of pseudoexpectations
6 Y � ∅
7 for ℓi ∈ L do
8 (X ,Y) � D
9 for y j ∈ Y do

10 y j � y j − 〈ℓi ,Xi〉
11 end
12 Let Y � Y ∪ RobustRegressionSDP(D , ρt)
13 end
14 L � ∅
15 for �̃ζ ∈ Y do
16 L′

� RegressionRounding(�̃ζ , pt)
17 L � L ∪ L′

18 end
19 end
20 return: L

Theorem 4.1. ListDecodeRegression(D , ρ) outputs a list of hyperplanes L � {ℓ1 , ..., ℓA} where A �

O
(
( 1
β )log( β

3/2ρ
σ )) such that for some ℓi ∈ L

‖ℓi − ℓ′‖ ≤ O
( σ

β3/2

)

with high probability in time
( ρ
σ

) log(1/β)
N

O( 1
β4 ) for N � d

O( 1
β4 ). Here we are running solving RobustRegres-

sionSDP Algorithm 4 for degree D � O( 1
β4 ), and running R � O( 1

β4 ) rounds of the RegressionRounding

Algorithm 2

Proof. For any call to RegressionRounding Algorithm 2, we have by Corollary ?? a list L and a
list element ℓi ∈ L satisfying ‖ℓi − ℓ′‖ ≤ ρ

2 . After each iteration we construct a new data set
{(X j , y′

j
)}N

j�1 by shifting the labels according to the rule y′
j

:� y j − 〈ℓi ,X j〉 and enforce the scaling

constraint {‖ℓ‖2 ≤ ρ2

4 }. The key point is that this new constraint is feasible for at least one iterate
ℓi ∈ L. This is all we need to iterate RobustRegressionSDP Algorithm 4 and subsequently the
RegressionRounding Algorithm Algorithm 2.

The list length grows by a factor of O( 1
β ) per iteration for O(log( β

3/2ρ
σ )) iterations. Thus, we run

RobustRegressionSDP Algorithm 4 no more than O
(
( 1
β )log( β

3/2ρ
σ )) times. From Lemma 3.6 we solve

RobustRegressionSDP for degree D � O( 1
β4 ). This concludes our treatment of list decoding robust

regression. �

Thus far we have assumed the covariates are distributed N(0, I) with a fourth injective tensor
norm of B � 3. In addition, we regarded the fourth moment of the noise model upper bounded
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by 1σ4 for a constant 1. We conclude this section by stating a general theorem relevant for large
values of B and 1.

Theorem 4.2. Let a β fraction of X1, ...,XN ∈ �d be drawn from a distribution D with identity covariance
and a fourth injective tensor norm upper bounded by a constant B. Let N, d , ℓ′, 1 , σ, ρ be defined as they
were previously. Then ListDecodeRegression(D , ρ) outputs a list of hyperplanes L � {ℓ1, ..., ℓA} where

A � O
(
( 1
β )log( β

3/2ρ
σ )) such that for some ℓi ∈ L

‖ℓi − ℓ′‖ ≤ O
(
max

( σ

β3/2
, σ2√1

))

with high probability in time
( ρ
σ

) log(1/β)
N

O( B

β4 ) for N � d
O( 1

β4 ). Here we are running solving RobustRegres-

sionSDP Algorithm 4 for degree D � O( B
β4 ), and running R � O( B

β4 ) rounds of the RegressionRounding

Algorithm 2

The proof follows by direct inspection of the proof of Theorem 4.1.

5 On Conditioning SoS SDP Solutions

In this section we prove facts about concentration rounding.

5.1 Concentration Rounding: One Dimensional Case

Fact 5.1. (Conditional Pseudoexpectation Toolkit)

For any two polynomials p , q we define �̃[p] def
� �̃[p2] − �̃[p]2, C̃ov[p , q] def

� �̃[p , q] − �̃[p] �̃[q].
Let w satisfy the boolean constraint w2

� w. For a random variable b taking values in {0, 1} such that

�[b � 1] � �̃[w] and �[b � 0] � �̃[1 − w] we have the following useful facts

1. (Law of Total Pseudoexpectation) �b �̃[p(x , w)|w � b] � �̃[p(x , w)]

2. (Law of Total Pseudovariance) �̃[p(x)] −�b �̃[p(x , w)|w � b] � �b[�̃[p(x , w)|w � b]]

3. (Correlation Identity) �̃[p(x , w)|w � b] � C̃ov[p(x,w),w]
�̃[w] b + (�̃[p(x , w)] − C̃ov[p(x,w),w]

�̃[w] �̃[w])

Proof. (facts) It is easy to check that �[b] � �̃[w] and�[b] � �̃[w] and Cov[b] � C̃ov[w]. The law
of total pseudoexpectation is an application of definitions. The law of total pseudovariance is an
application of the law of total pseudoexpectation. The proof is as follows.

�̃[p(x , w)] −�
b
�̃[p(x , w)|w � b] � �̃[p(x , w)2] − �̃[p(x , w)]2 − (�

b
�̃[p(x , w)2] −�

b
�̃[p(x , w)]2)

� �
b
[�̃[p(x , w)]2] − �̃[p(x , w)]2 � �

b
[�̃[p(x , w)]2] −�

b
[�̃[p(x , w)|b]]2 � �

b
[�̃[p(x , w)|w � b]]

Lastly, we prove the correlation identity. We know �̃[p(x , w)|w � b] is a function of b. Therefore
there exists constants c and d such that �̃[p(x , w)|w � b] � cb + d. First we determine c. We know

c�̃[w] � c�[b] � Cov(cb + d , b) � Cov(�̃[p(x , w)|w � b], b)

� �[b �̃[p(x , w)|w � b]] −�[�̃[p(x , w)|w � b]]�[b]
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� �[b � 1] �̃[p(x , w)|w � 1] − �̃[p(x , w)]�[b]

� �̃[w]�̃[p(x , w)w]
�̃[w]

− �̃[p(x , w)] �̃[w]

� C̃ov[p(x , w), w]

Thus

c �

C̃ov[p(x , w), w]
�̃[w]

Then to obtain d we apply expectation on both sides of �̃[p(x , w)|w � b] � cb + d. �

Let w1, . . . , wN be variables that satisfy the boolean constraint for all i ∈ [N]. Let Z1, . . . , ZN ∈ �

be numbers and let µ̂
def
�

1
N

N∑
i�1

wiZi. We show that pseudo-variance �̃[µ̂] decreases in expectation

when we condition on the variables wi according to a carefully chosen strategy.

Theorem 5.2. Let w1, . . . , wN denote variables satisfying {w2
i
� wi |i ∈ [N]} and let µ̂ �

1
N

∑
i∈[N] wiZi

for some sequence of real numbers {Zi}i∈[N]. Define a probability distribution S : [N] → �+ as

S( j) def
�

�̃[w jZ j]∑N
i�1 �̃[w jZ j]

If we condition on the value of w j where j is drawn from S, then the pseudovariance decreases by

�̃[µ̂] − �
j∼S
�
b j

�̃[µ̂|w j � b j] ≥
(
�̃(µ̂)

)2

1
N

N∑
i�1
�̃(zi)

Where b j is [0, 1] random variable with �[b j � 1] � �̃[w j] and �[b j � 0] � �̃[1 − w j]

This also immediately yields for µ̂ �
1
M

N∑
i�1

wiZi

�̃[µ̂] − �
j∼S
�
b j

�̃[µ̂|w j � b j] ≥ β

(
�̃(µ̂)

)2

1
M

N∑
i�1
�̃(zi)

Proof. Let zi � wiZi for all i ∈ [N]. Since zi is a constant multiple of wi, conditioning on zi is
equivalent to conditioning on wi. We begin with the law of total variance

�̃(µ̂) −�
b j

�̃(µ̂ |w j � b j) � �
b j

(�̃[µ̂|w j � b j])

Then we apply the expectation over the strategy S to both sides to obtain

�̃[µ̂] −�
S
�
b j

�̃[µ̂|w j � b j] � �
S
�
b j

[�̃[µ̂|w j � b j]]
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� �̃
S
�̃b j

[ C̃ov[µ̂, w j]
�̃[w j]

b j

]
� �̃

S

C̃ov[µ̂, w j]2

�̃[w j]2
�[b j] � �̃

S

C̃ov[µ̂, z j]2

�̃[z j]

Writing out the distribution of S we obtain

�

N∑
j�1

�̃[z j]∑N
i�1 �̃[z j]

C̃ov[µ̂, z j]2

�̃[z j]
�

∑N
i�1 C̃ov[µ̂, z j]2∑N

i�1 �̃[z j]
�

1
N

∑N
i�1 C̃ov[µ̂, z j]2

1
N

∑N
i�1 �̃[z j]

by Jensen’s inequality

≥
( 1

N

∑N
i�1 C̃ov[µ̂, z j])2

1
N

∑N
i�1 �̃[z j]

�

�̃[µ̂]2
1
N

∑N
i�1 �̃[zi]

�

Corollary 5.3. (Connecting variance decrease strategy to nuclear norm rounding) For Sv and Q defined in
Lemma 3.3. Let γ > 0 be a constant. If ‖Q‖op ≥ γ and ‖Q‖nuc > σ

2√1, then

‖Q‖nuc − �
j∼Sv

�
b j

‖Q
��
w j�b j

‖nuc ≥ Ω(
βγ2

ρ2
)

In particular for γ � ηρ2, we have

‖Q‖nuc − �
j∼Sv

�
b j

‖Q
��
w j�b j

‖nuc ≥ Ω(βη2ρ2)

Proof. Let v , e1, ..., ed−1 ∈ Rd be an orthonormal basis. First we write the nuclear norm as a
decomposition along an orthonormal basis i.e

‖Q‖nuc � �̃[〈ℓ, v〉]+
d−1∑
j�1

�̃[〈ℓ, e j〉]

Now we write down the expected decrease in ‖Q‖nuc for a single conditioning to obtain

‖Q‖nuc − �
j∼Sv

�
b j

‖Q
��
wi�zi

‖nuc �
(
�̃[〈ℓ, v〉] − �

j∼Sv

�
b j

�̃[〈ℓ, v〉 |w j � b j]
)

+

( d−1∑
j�1

�̃[〈ℓ, e j〉] − �
j∼Sv

�
b j

�̃[〈ℓ, e j〉 |w j � b j]
)

Then we apply Lemma 3.3 to the first term, and we apply the fact that pseudovariance is mono-
tonically decreasing after conditioning (law of total pseudovariance) to the second term to obtain.

≥ Ω(β�̃ζ(〈ℓ, v〉)
2

‖Q‖nuc
) − od(1)
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Using the fact that �̃ζ(〈ℓ, v〉) � ‖Q‖op ≥ γ and ‖Q‖nuc � �̃ζ[‖ℓ − �̃ζ[ℓ]‖2] ≤ �̃ζ[‖ℓ‖2] ≤ ρ2 we
further lower bound by

≥ Ω(
βγ2

ρ2
) − od(1) ≥ Ω(

βγ2

ρ2
) − od(1)

for γ � ηρ2, we conclude

‖Q‖nuc − �
j∼Sv

�
b j

‖Q
��
wi�zi

‖nuc ≥ Ω(βη2ρ2)

as desired. �

6 Frobenius Minimization

6.1 Frobenius Norm Minimization

Lemma (Restatement of Lemma 3.1). (Frobenius minimization �⇒ Correlation) Let P be a polynomial
system in variables {wi}i∈[N] and a set of indeterminates {ℓi}i∈� , that contains the set of inequalities:

w2
i � wi∀i ∈ [N]

∑
i

wi � βN

Let �̃ζ : �[{wi}i∈[N] , {ℓ}]≤D → � denote a degree D pseudoexpectation that satisfies P and minimizes

the norm ‖�̃ζ[w]‖. If w′
i
∈ {0, 1} and ℓ′ is a satisfying assignment to P then there is correlation with the

inliers,

�̃
ζ

[
1
M

N∑
i�1

wiw
′
i

]
≥ β (6.1)

Proof. Let �̃P denote the pseudo-expectation operator corresponding to the actual assignment
{w′

i
}i∈[N] and {ℓ′}. Note that �̃P is an actual expectation over an assignment satisfying the

polynomial constraints. For a constant κ ∈ [0, 1], let us consider the pseudoexpectation operator
�̃R defined as follows for a polynomial p(w),

�̃
R

def
� κ �̃

P
+(1 − κ) �̃

D

Since �̃D is the pseudoexpecation operator that minimizes ‖�̃D[w]‖, we get that

〈�̃
R
[w], �̃

R
[w]〉 ≥ 〈�̃

D
[w], �̃

D
[w]〉 (6.2)

Expanding the LHS with the definition of R we have

(1 − κ)2 · 〈�̃
D
[w], �̃

D
[w]〉 + 2κ(1 − κ)〈�̃

D
[w], �̃

P
[w]〉 + κ2〈�̃

P
[w], �̃

P
[w]〉 ≥ 〈�̃

D
[w], �̃

D
[w]〉

Rearranging the terms we get

〈�̃
D
[w], �̃

P
[w]〉 ≥ 1

2κ(1 − κ)

(
(2κ − κ2)〈�̃

D
[w], �̃

D
[w]〉 − κ2〈�̃

P
[w], �̃

P
[w]〉

)
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By definition, we have that 〈�̃P[w], �̃P[w]〉 �

∑
i w

′2
i

� βN . By Cauchy-Schwartz inequality,

〈�̃D[w], �̃D[w]〉 ≥ 1
N

(∑
i �̃D[wi]

)2
�

1
N (βN)2 � β2N . Substituting these bounds back we get that,

〈�̃
D
[w], �̃

P
[w]〉 ≥

(
(2κ − κ2)β2 − κ2β

)
2κ(1 − κ) · N

Taking limits as κ → 0, we get the desired result.
�

7 Regression Rounding

In this section we prove that concentration rounding decreases ‖Q‖nuc . First we closely approxi-

mate �̃[〈ℓ, u〉] by �̃[ 1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉] for any unit vector u ∈ Sd−1. Then we apply

Theorem 5.2 with the strategySv to analyze a single iteration of concentration rounding. We begin
with the following useful lemma for working with pseudovariance.

Lemma 7.1 (Pseudovariance Triangle Inequality). Let f (x) and 1(x) be polynomials. Then for any
ψ > 0 there is a degree 2 SoS proof of the following.

�̃[ f (x) + 1(x)] ≤ (1 + ψ)�̃[ f (x)] + (1 + ψ

ψ
)�̃[1(x)]

Proof.

�̃[ f (x)+1(x)] � �̃[( f (x)+1(x)−�̃[ f (x+1(x))])2] � �̃[(( f (x)−�̃[ f (x)])+ (1(x)−�̃[1(x)]))2] (7.1)

Then we observe that there is a degree 2 SoS proof of the fact

( f (x) + 1(x))2 � f (x)2 + 1(x)2 + 2ψ f (x)1(x)
ψ

≤ (1 + ψ2) f (x)2 + (
1 + ψ2

ψ2
)1(x)2

Plugging this into 7.1

≤ (1 + ψ2) �̃[( f (x) − �̃[ f (x)])2] + (
1 + ψ2

ψ2
) �̃[(1(x) − �̃[1(x)])2] � (1 + ψ2)�̃[ f (x)] +

1 + ψ2

ψ2
�̃[1(x)]

Substituting any variable ψ′
� ψ2 > 0 we obtain the desired result. �

Lemma (Restatement of Lemma 3.3). Let �̃ζ satisfy the pseudoexpectation constraints of
RobustRegressionSDP(D , ρ). Let Q be the associated pseudocovariance matrix. Let v be any direction

in the unit ball Sd−1. Let Sv be a probability distribution over [N] where for any j ∈ N we have

Sv( j) def
�

�̃ζ[w j(y j − �̃ζ[〈ℓ,Xi〉])〈X j , v〉]∑N
i�1 �̃ζ[w j(y j − �̃ζ[〈ℓ,Xi〉])〈X j , v〉]

Then for M4 being the fourth moment matrix of the Gaussian defined in RobustRegressionSDP, and for
‖Q‖nuc > σ

2√1 we have

�̃ζ[〈ℓ, v〉] − �
j∼Sv

�
b j

�̃ζ[〈ℓ, v〉 |w j � b j] ≥ Ω
( β�̃ζ[〈ℓ, v〉]2

‖Q‖nuc

)
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To prove Lemma 3.3 we will need the following lemma

Lemma 7.2. Let �̃ be a pseudodistribution satisfying P. The following holds.

�̃[〈ℓ, u〉] ≤ (1 + od(1))�̃[
1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉]+ od(1) (7.2)

�̃[ 1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉] ≤ (1 + od(1))�̃[〈ℓ, u〉]+ od(1) (7.3)

Informally, 7.2 gives us an arbitrarily good approximation (up to a negligible additive error
term) to �̃[〈ℓ, u〉] by the variance of an estimator that is amenable to rounding via Theorem 5.2.
We defer the proof to the end of the section. Now we’re ready to prove Lemma 3.3

Proof. (Proof of Lemma 3.3) First we apply Lemma 7.2 to obtain an arbitrarily good constant factor
approximation of the variance decrease.

�̃ζ[〈ℓ, v〉] − �
j∼Sv

�
b j

�̃ζ[〈ℓ, v〉 |w j � b j] ≥ (1 − od(1))�̃
[

1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉
]

−(1 + od(1)) �
j∼Sv

�
b j

�̃

[
1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉 |w j � b j

]
− od(1)

Using the setting d > ρ2 we have ρ2od(1) � od(1) and we simplify the above expression to obtain

�

(
�̃

[
1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉
]
− �

j∼Sv

�
b j

�̃

[
1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉 |w j � b j

] )
− od(1)

(7.4)

To lower bound the first term above, we apply Theorem 5.2 with Zi � wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉.
This immediately gives us,

�̃

[
1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉
]
− �

j∼Su

�
b j

�̃

[
1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉 |w j � b j

]

≥
β�̃[ 1

M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉]2

1
M

N∑
i�1
�̃[wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉]

Applying Lemma 7.2 to the numerator we obtain

≥
(1 − od(1))β�̃[〈ℓ, u〉]2 − od(1)

1
M

N∑
i�1
�̃[wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉]
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Now we upper bound the denominator by

1
M

N∑
i�1

�̃[wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉] ≤ 2(1σ4B) 1
2 + 2B‖Q‖nuc

The proof is as follows. First we use �̃(X) ≤ �̃[X2] to obtain

1
M

N∑
i�1

�̃(wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉) ≤
1
M

N∑
i�1

�̃[wi(yi − 〈�̃[ℓ],Xi〉)2〈Xi , u〉2)]

�
1
M

N∑
i�1

�̃[wi(yi − 〈ℓ,Xi〉 + 〈ℓ,Xi〉 − 〈�̃[ℓ],Xi〉)2〈Xi , u〉2)]

Then we use degree 2 SoS triangle inequality to obtain

≤ 2 �̃[ 1
M

N∑
i�1

wi(yi − 〈ℓ,Xi〉)2〈Xi , u〉2] + 2 �̃[ 1
M

N∑
i�1

wi 〈ℓ − �̃[ℓ],Xi〉2〈Xi , u〉2)] (7.5)

The first term is upper bounded by pseudoexpectation Cauchy-Schwarz

�̃

[
1
M

N∑
i�1

wi(yi − 〈ℓ,Xi〉)2〈Xi , u〉2

]
� �̃

[
1
M

N∑
i�1

w2
i (yi − 〈ℓ,Xi〉)2〈Xi , u〉2

]

�

(
�̃

[
1
M

N∑
i�1

w2
i (yi − 〈ℓ,Xi〉)4

]) 1
2
(
�̃

[
1
M

N∑
i�1

w2
i 〈Xi , u〉4

]) 1
2

Then by degree 2 SoS Cauchy-Schwarz, followed by applying the fourth moment constraints
on noise (4) we obtain

≤ (1σ4)1/2
�̃[〈 1

M

N∑
i�1

wiX
⊗2
i (X⊗2

i )T , u⊗2(u⊗2)T〉] 1
2

� (1σ4) 1
2 �̃[〈 1

M

N∑
i�1

wiX
⊗2
i
(X⊗2

i
)T − M4, u

⊗2(u⊗2)T〉 + 〈M4, u
⊗2(u⊗2)T〉] 1

2

Then applying Cauchy-Schwarz, followed by applying the fourth moment constraints on the
covariates (3) we obtain

≤ (1σ4) 1
2 �̃[‖ 1

M

N∑
i�1

wiX
⊗2
i (X⊗2

i )T − M4‖2
F + B] 1

2 ≤ (21σ4B) 1
2

Next we upper bound the second term in 7.5 by SoS Cauchy Schwarz

�̃[ 1
M

N∑
i�1

wi 〈ℓ − �̃[ℓ],Xi〉2〈Xi , u〉2)] � �̃[〈(ℓ − �̃[ℓ])⊗2(u⊗2)T , 1
M

N∑
i�1

wiX
⊗2
i (X⊗2

i )T〉]
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� �̃[〈(ℓ − �̃[ℓ])⊗2(u⊗2)T , 1
M

N∑
i�1

wiX
⊗2
i (X⊗2

i )T − M4〉] + �̃[〈(ℓ − �̃[ℓ])⊗2(u⊗2)T ,M4〉]

Applying SoS Cauchy-Schwarz to the first term we obtain

� �̃[‖ℓ − �̃[ℓ]‖2‖ 1
M

N∑
i�1

wiX
⊗2
i (X⊗2

i )T − M4‖2
F] + �̃[〈(ℓ − �̃[ℓ])⊗2(u⊗2)T ,M4〉]

Then applying the fourth moment constraints on the covariates (3) and applying the definition of
‖Q‖nuc we obtain

� ε‖Q‖nuc + �̃[〈(ℓ − �̃[ℓ])⊗2(u⊗2)T ,M4〉]

We upper bound the second term above using the assumption upper bounding the fourth injective
norm of the covariates.

�̃[〈(ℓ − �̃[ℓ])⊗2(u⊗2)T ,M4〉] ≤ B‖Q‖nuc

For N(0, I), we have B � 3. Plugging both terms back into 7.5, we obtain

�̃ζ[〈ℓ, v〉] − �
j∼Sv

�
b j

�̃ζ[〈ℓ, v〉 |w j � b j]

≥
(1 − od(1))β�̃ζ[〈ℓ, v〉]2 − od(1)

2σ2(1B) 1
2 + 2B‖Q‖nuc

− od(1) �
β�̃ζ[〈ℓ, v〉]2

2σ2(1B) 1
2 + 2B‖Q‖nuc

− od(1)

Using the assumption ‖Q‖nuc > σ
2√1 and setting B � 3 we have

�̃ζ[〈ℓ, v〉] − �
j∼Sv

�
b j

�̃ζ[〈ℓ, v〉 |w j � b j] ≥ Ω
( β�̃ζ[〈ℓ, v〉]2

‖Q‖nuc

)

�

7.1 Snapping for Regression

Lemma (Restatement of Lemma 3.2). Let η ∈ [0, 1
2 ] be a small constant. Let �̃ζ be a degree O( 1

η4 )
pseudoexpectation satisfying the constraints of RobustRegressionSDP(D , ρ). Then if the pseudovariance of

the estimator �̃ζ[ℓ] is small in every direction

max
u
�̃ζ[〈ℓ, u〉] ≤ ηρ2 (7.6)

and there is correlation with the inliers

�̃
ζ

[
1
M

∑
i

wiw
′
i

]
≥ β (7.7)
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then our estimator satisfies,

‖�̃[ℓ] − ℓ′‖ ≤

√√
ηρ2

+ O( σ2

η2 )
β

(7.8)

In particular, for η �
β
8 and ρ2 > Ω( σ2

β3 ) the degree O( 1
β4 ) pseudoexpectation satisfies

Proof. Let u ∈ Sd−1, we have by linearity

�̃

[
1
M

N∑
i�1

wiw
′
i

]
〈�̃[ℓ] − ℓ′, u〉2

� �̃

[
1
M

N∑
i�1

wiw
′
i 〈�̃[ℓ] − ℓ

′, u〉2

]

And by degree 2 SoS triangle inequality

� �̃[ 1
M

N∑
i�1

wiw
′
i 〈�̃[ℓ] − ℓ + ℓ − ℓ

′, u〉2] ≤ 2 �̃[ 1
M

N∑
i�1

wiw
′
i 〈�̃[ℓ] − ℓ, u〉

2] + 2 �̃[ 1
M

N∑
i�1

wiw
′
i 〈ℓ − ℓ

′, u〉2]

The following expression is a sum of squares R 2

{
1
M

N∑
i�1

(1− wi)w′
i
〈�̃[ℓ] − ℓ, u〉2 ≥ 0

}
so we add it

to the right hand side to obtain

≤ 2 �̃[〈�̃[ℓ] − ℓ, u〉2] + 2 �̃[ 1
M

N∑
i�1

wiw
′
i 〈ℓ − ℓ′, u〉2]

applying degree 2 SoS Cauchy-Schwarz to the second term we obtain,

≤ 2 �̃[〈�̃[ℓ] − ℓ, u〉2] + 2 �̃[ 1
M

N∑
i�1

wiw
′
i | |ℓ − ℓ′ | |2]

Consider the second term above. By the properties of (c ,D(η))-SoS-anticoncentration (see
Definition 8.2) we upper bound by,

≤ 2 �̃[〈�̃[ℓ] − ℓ, u〉2] + 2

(
cρη +

1
η2
�̃

[
1
M

N∑
i�1

wiw
′
i 〈ℓ − ℓ′,Xi〉2

])

≤ 2 �̃[〈�̃[ℓ] − ℓ, u〉2] + 2

(
ρ2η + η2

�̃

[
1
M

N∑
i�1

wiw
′
i(〈ℓ,Xi〉 − yi)2 + (〈ℓ′,Xi〉 − yi)2

])

By SoS triangle inequality

≤ 2 �̃[〈�̃[ℓ] − ℓ, u〉2] + 2(ρ2η + η22(�̃[ 1
M

N∑
i�1

wiw
′
i(〈ℓ,Xi〉 − yi)2] + 2 �̃[ 1

M

N∑
i�1

wiw
′
i(〈ℓ′,Xi〉 − yi)2]))
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Using the fact that P 2

{
1
M

N∑
i�1

(1 − wi)w′
i
(〈ℓ,Xi〉 − yi)2 ≥ 0, 1

M

N∑
i�1

(1 − w′
i
)wi(〈ℓ,Xi〉 − yi)2 ≥ 0

}
we

add in both polynomials to obtain

≤ 2 �̃[〈�̃[ℓ] − ℓ, u〉2] + 2(ρ2η + η22(�̃[ 1
M

N∑
i�1

wi(〈ℓ,Xi〉 − yi)2] + 2 �̃[ 1
M

N∑
i�1

w′
i(〈ℓ′,Xi〉 − yi)2]))

Applying the SDP noise constraint (4) we obtain

≤ 2 �̃[〈�̃[ℓ] − ℓ, u〉2] + (2cρ2η +
8σ2

η2
)

Thus far we’ve shown in degree D(η) the following inequality

�̃[ 1
M

N∑
i�1

wiw
′
i]〈�̃[ℓ] − ℓ′, u〉2 ≤ 2 �̃[〈�̃[ℓ] − ℓ, u〉2] + (2cρ2η +

8σ2

η2
)

This inequality holds for all u ∈ Sd−1, in particular for the unit vector u along �̃[ℓ] − ℓ′ we have

�̃[ 1
M

N∑
i�1

wiw
′
i]‖�̃[ℓ] − ℓ′‖2 ≤ 2 max

u∈Sd−1
�̃[〈�̃[ℓ] − ℓ, u〉2] + (2cρ2η +

8σ2

η2
)

Dividing both sides by �̃[ 1
M

N∑
i�1

wiw
′
i
] and taking a square root we obtain

‖�̃[ℓ] − ℓ′‖ ≤

√√√√√√√2 maxu∈Sd−1 �̃[〈�̃[ℓ] − ℓ, u〉2] + (2cρ2η + 8σ2

η2 )

�̃[ 1
M

N∑
i�1

wiw
′
i
]

Plugging in the assumptions on frobenius minimization 7.7 and variance reduction 7.6 we obtain

‖�̃[ℓ] − ℓ′‖ ≤

√√
4cρ2η + 8σ2

η2

β

Since η is any constant in [0, 1
2 ] we conclude by writing

‖�̃[ℓ] − ℓ′‖ ≤

√√
ρ2η + O( σ2

η2 )
β

�

8 Certifying Anticoncentration

Anticoncentration is a measure of the "spread" of a distribution. For any distribution D, let η be a
parameter 0 < η < 1

2 . If the probability mass of D contained in the η interval around the origin
is small, than D is anticoncentrated. For example, in the case of D � N(0, 1), the mass of D in
any η interval about the origin is upper bounded by 2√

2π
η. This property of the probability mass

decaying linearly with η as η goes to zero is what motivates the following definition.
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Definition 8.1. A probability distribution D over �d is said to be c-anticoncentrated if for any
0 < η < 1

2 there exists τ ≤ cη such that for any measurable subset E ∈ �n , and for all v ∈ �d with
‖v‖ ≤ 1, we have that

�[〈X, v〉2 · �[E]] ≥ η2 · �[E] · ‖v‖2 − η2τ

We now state the SoS version of anticoncentration

Definition 8.2. Let D : [0, 1/2] → �. A probability distribution D over�d is said to (c ,D(η))-SoS-
anticoncentrated, If for any 0 < η < 1

2 there exists τ ≤ cη and there exists a constant k ∈ � such
that for all N > dk , with probability 1−d−k , over samples x1 , . . . , xN ∼ D the following polynomial
system

P �




w2
i
� wi i ∈ [N]

‖v‖2 ≤ ρ2

‖ 1
N

∑N
i�1 X

⊗ t
2

i
(X⊗ t

2
i

)T − Mt ‖ < ε t ∈ [k]
yields a degree D(η) SoS proof of the following inequality

P
D(η)

{ 1
N

N∑
i�1

wi 〈Xi , v〉2 ≥ η2( 1
N

∑
i

wi)‖v‖2 − η2τρ2
}

Theorem 8.3. (Sufficient conditions for SoS anti-concentration) If the degree D(η) empirical moments of
D converge to the corresponding true moments Mt of D, that is for all t ≤ D(η)

lim
N→∞

 1
N

N∑
i�1

X
⊗ t

2
i

(X⊗ t
2

i
)T − Mt

 � 0

And if there exists a uni-variate polynomial Iη(z) ∈ �[z] of degree at most D(η) such that

1. Iη(z) ≥ 1 − z2

η2ρ2 for all z ∈ �.

2. P
D(η)

{
‖v‖2 · �x∈D [Iη(〈v , x〉)] ≤ cηρ2

}
.

Then D is (c ,D(η)) certifiably anticoncentrated.

Lemma 8.4. For every d ∈ �, the standard Gaussian distribution N(0, Id) is (c ,O( 1
η4 ))-SoS-

anticoncentrated. In particular there exists a construction for c ≤ 2
√

e

First we will prove Theorem 8.3

Proof. (Theorem 8.3) First, it is a standard fact that every uni-variate polynomial inequality has a
sum of squares proof. More precisely, for any p(x) ∈ �[x] satisfying p(x) ≥ 0, then it is true that
p(x) �deg(p(x)) 0. Furthermore, this is also true over any interval [a , b]
Fact 8.5. Let a < b. Then, a degree 2d polynomial p(x) is non-negative on [a , b], if and only if it can be
written as {

p(x) � s(x) + (x − a)(b − x)t(x), if deg(p) is even

p(x) � (x − a)s(x) + (b − x)t(x), if deg(p) is odd

where s(x), t(x) are SoS. In the first case, we have de1(p) � 2d, and de1(s) ≤ 2d, de1(t) ≤ 2d − 2. In the
second, de1(p) � 2d + 1, and de1(s) ≤ 2d, de1(t) ≤ 2d.
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In light of this fact, we use Theorem 8.3 condition 1 to lower bound 〈Xi , v〉2 by

P
D(η) 〈X, v〉2 ≥ η2ρ2(1 − Iη(〈Xi , v〉))

Therefore,

P
D(η)

1
M

N∑
i�1

wiw
′
i 〈X, v〉2 ≥ 1

M

N∑
i�1

wiw
′
iη

2ρ2(1 − Iδ(〈Xi , v〉))

Then using the certificate that {‖v‖2 < ρ2} we obtain

P
D(η)

1
M

N∑
i�1

wiw
′
iη

2ρ2(1 − Iη(〈Xi , v〉)) ≥
1
M

N∑
i�1

wiw
′
iη

2‖v‖2(1 − Iη(〈Xi , v〉))

�
1
M

N∑
i�1

wiw
′
iη

2‖v‖2 − 1
M

N∑
i�1

wiw
′
iη

2‖v‖2Iη(〈Xi , v〉)

Then using the fact that Iη(〈Xi , v〉) is SoS and {w2
i
� wi} (1 − wi) �2 0, we subtract 1

M

N∑
i�1

w′
i
(1 −

wi)Iη(〈Xi , v〉) to obtain

≥ 1
M

N∑
i�1

wiw
′
iη

2‖v‖2 − η2‖v‖2 1
M

N∑
i�1

w′
iIη(〈Xi , v〉)

Expanding out Iδ(〈Xi , v〉) as a degree D(η) polynomial with coefficients α1, ..., αD(η) we have

Iη(〈Xi , v〉) �
T∑

t�1

αt 〈Xi , v〉t

We want replace the empirical average 1
M

N∑
i�1

w′
i
Iη(〈Xi , v〉) with the expectation�X∼N(0,I) Iη(〈X, v〉)

and bound the error term. Indeed, we know that

1
M

N∑
i�1

w′
iIη(〈Xi , v〉) �

T∑
t�1

αt
1
M

N∑
i�1

w′
i 〈Xi , v〉t

�

D(η)∑
t�1

αt

〈 1
M

N∑
i�1

w′
iX

⊗ t
2

i
(X⊗ t

2
i

)T , v⊗ t
2 (v⊗ t

2 )T
〉

�

T∑
t�1

αt

〈 1
M

N∑
i�1

w′
iX

⊗ t
2

i
(X⊗ t

2
i

)T − �
X∼N(0,I)

X⊗ t
2 (X⊗ t

2 )T , v⊗ t
2 (v⊗ t

2 )T
〉
+

D(η)∑
t�1

αt

〈
�

X∼N(0,I)
X⊗ t

2 (X⊗ t
2 )T , v⊗ t

2 (v⊗ t
2 )T

〉

Then by degree D(η) SoS Cauchy Schwarz we obtain

�
D(η)∑
t�1

αt ‖
1
M

N∑
i�1

w′
iX

⊗ t
2

i
(X⊗ t

2
i

)T − Mt ‖2
F ‖v‖ t

+

D(η)∑
t�1

αt �
X∼N(0,I)

〈X, v〉t
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Thus for our setting of N and d we obtain,

� �
X∼N(0,I)

Iη(〈Xi , v〉) + od(1) (8.1)

Note that it is important that the coefficients of Iη(z) are chosen independently of d or at the very
least don’t grow too fast with respect to d. Our final bound is,

P
D(η)

1
M

N∑
i�1

wiw
′
i 〈X, v〉2 ≥ 1

M

N∑
i�1

wiw
′
iη

2‖v‖2 − η2‖v‖2
�

z∼N(0,‖v‖2)
Iη(z) + od(1)

Applying sufficient condition 2 we obtain

P
D(η)

{ 1
N

N∑
i�1

wi 〈Xi , v〉2 ≥ η2( 1
N

∑
i

wi)‖v‖2 − η2τρ2
}

as desired. �

9 Certifiably Anticoncentrated Distributions

Lemma (Restatement of Lemma 8.4). For every d ∈ �, the standard Gaussian distribution N(0, Id) is

(c ,O( 1
η4 ))-SoS-anticoncentrated. In particular there exists a construction for c ≤ 2

√
e

Proof. By Theorem 8.3 it suffices to exhibit a polynomial Iη(x) satisfying

1. Iη(x) ≥ 1 − x2

η2ρ2

2. P
O( 1

η4 )

{
‖v‖2

�x∼N(0,I) Iη(〈X, v〉) ≤ cηρ2
}

Firstly, without loss of generality the scaling ρ can be set to 1 so that ρ � 1 and ‖v‖ ≤ 1.
This is because any polynomial Iη(x) satisfying conditions 1 and 2 for ρ � 1 and ‖v‖ ≤ 1 can be
reparameterized as I(x′) � Iη( x′

ρ ) and satisfy conditions 1 and 2 for ‖v‖ ≤ ρ for general ρ.
Next we observe that owing to the spherical symmetry of the standard Gaussian we have

‖v‖2
�x∼N(0,I) Iη(〈X, v〉) is a spherically symmetric polynomial in X which implies it is a polynomial

in ‖v‖. Thus define

H(‖v‖) :� ‖v‖2
�

x∼N(0,I)
Iη(〈X, v〉) � ‖v‖2

�
x∼N(0,‖v‖2)

Iη(x)

Furthermore we have {‖v‖2 ≤ 1} ∈ P and ‖v‖ ≥ 0 is SoS. Therefore, it suffices to prove the
inequality H(‖v‖) ≤ η and Fact 8.5 implies condition 2. Now we construct Iη(x), which we refer
to as the anticoncentration polynomial. Note that the indicator function of the [−η, η] interval
satisfies both anticoncentration conditions. The idea is to approximate the indicator function
with a polynomial. It is difficult to directly approximate the indicator function as it is not
continuous. Thus we dominate the indicator by a scaled Gaussian denoted f (x) which satisfies the
anticoncentration conditions. We then interpolate an explicit sum of squares polynomial through
f (x) denoted Iη(x). The key here is that any uni variate positive polynomial blows up at its tails.
Thus, we must prove the approximation error of | f (x) − Iη(x)| is small for some interval around
the origin, and far away from the origin that the decay of the Gaussian tail dominates the growth
of the approximation error.
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We note that there are many different strategies to construct polynomials satisfying the above
criterion, and we will satisfy ourselves with proving the Gaussian is (2

√
e ,O( 1

η4 ))-certifiably anti-
concentrated.

First let f (x) �
√

e exp(− x2

2η2 ). For simplicity we will design f (x) such that f (±η) � 1 to satisfy
the first anticoncentration condition. Checking the second condition we find that

‖v‖2
�

x∼N(0,‖v‖2)
f (x) � ‖v‖2

∫ √
e

√
2π‖v‖

exp(− x2

2η2
− x2

2‖v‖2
)dx

� ‖v‖2
√

e
√

2π‖v‖

∫
exp

(
− x2

2( η
2‖v‖2

η+‖v‖2 )

)
dx � ‖v‖2 η

√
e√

η2
+ ‖v‖2

≤ ‖v‖2 η
√

e

‖v‖ ≤ η
√

e

Where in the last inequality we used 0 ≤ ‖v‖2 ≤ 1.
Intuitively, if we interpolate a sum of squares polynomial Iη(x) that closely approximates f (x)

in an interval around the origin, then �x∼N(0,‖v‖2) Iη(x) ≈ �x∼N(0,‖v‖2) f (x). Let (x0, x1, ..., xn) be

evenly spaced points at intervals of length νηr ranging from [− νnηr

2 ,
νnηr

2 ] where we eventually set
ν to be a constant and r � 4. Let (y0, ..., yn) be the set of evaluations yi � f (xi). Let Iη(x) be the
following degree 2n polynomial.

Iη(x) �
(x − x1)2(x − x2)2...(x − xn)2

(x0 − x1)2(x0 − x2)2...(x0 − xn)2
y0 +

(x − x0)2(x − x1)2...(x − xn)2
(x1 − x0)2(x1 − x2)2...(x1 − xn)2

y1 + ...

+
(x − x0)2(x − x1)2...(x − xn−1)2

(xn − x0)2(xn − x1)2...(xn − xn−1)2
yn

�

n∑
i�1

( ∏
0≤ j≤n

i, j

(x − xi)2
(xi − x j)2

)
y j

Iη(x) is the standard interpolation polynomial where each term is squared so as to be a sum of
squares. Let R2n(y) be the error term over the interval [−y , y]be R2n(y) � maxx∈[−y ,y] | f (x)− Iη(x)|.
It is easy to show the interpolation error is

R2n(y) �
1

(2n + 1)! max
x∈[−y ,y]

| f 2n+1(x)|
n∏

i�0

(x − xi)2

One way to prove the above equality is to think of the construction of Iη(x) as follows. Let Ĩ(x)
be the unique degree 2n interpolation of points {(xi , f (xi))}i∈[n] and {(x′

i
, f (x′

i
))}i∈[n] , which is not

necessarily a sum of squares. . It is a standard fact in polynomial approximation theory, [Sau97],
that the error Ĩ2n(y) � maxx∈[−y ,y] | f (x) − Ĩ(x)| has the form.

R̃2n(y) �
1

(2n + 1)! max
x∈[−y ,y]

| f 2n+1(x)|
n∏

i�0

(x − xi)
n∏

i�0

(x − x′
i)
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It is easy to check that Iη(x) � lim(x′0 ,...,x′n)→(x0 ,...,xn) Ĩ(x). Thus

R2n(y) � lim
(x′0 ,...,x′n)→(x0 ,...,xn)

R̃(y) � 1
(2n + 1)! max

x∈[−y ,y]
| f 2n+1(x)|

n∏
i�0

(x − xi)2

as desired.
Now we verify anticoncentration condition 2

‖v‖2
�

x∼N(0,‖v‖2)
Iη(x) ≤ ‖v‖2

�
x∼N(0,‖v‖2)

| f (x) − Iη(x)| + ‖v‖2
�

x∼N(0,‖v‖2)
f (x)

≤ ‖v‖2
�

x∼N(0,‖v‖2)
| f (x) − Iη(x)| +

√
eη (9.1)

� ‖v‖2 ( ∫ − νηr n
2

−∞
R2n(y)

1√
2π‖v‖

exp(− y2

2‖v‖2
)dy +

∫ νηr n
2

− νηr n
2

R2n(y)
1√

2π‖v‖
exp(− y2

2‖v‖2
)dy

+

∫ ∞

νηr n
2

R2n(y)
1

√
2π‖v‖

exp(− y2

2‖v‖2
)dy

)
+

√
eη

Since we defined R2n(y) to be the maximum error in the [−y , y] interval, it is monotonic, and

we upper bound it by its evaluation at its rightmost endpoint R2n( νη
r n

2 ).

≤ ‖v‖2 ( ∫ − νηr n
2

−∞
R2n(y)

1
√

2π‖v‖
exp(− y2

2‖v‖2
)dy + R2n(

νηr n

2
)
∫ νηrn

2

− νηr n
2

1
√

2π‖v‖
exp(− y2

2‖v‖2
)dy

+

∫ ∞

νηr n
2

R2n(y)
1

√
2π‖v‖

exp(− y2

2‖v‖2
)dy

)
+

√
eη

� ‖v‖2 (R2n(
νηr n

2
) + 2

∫ ∞

νηr n
2

R2n(y) exp(− y2

2
)dy

)
+

√
eη

Thus it suffices to show

R2n(
νηr n

2
) + 2

∫ ∞

νηrn
2

R2n(y) exp(− y2

2
)dy ≤

√
eη

Without loss of generality let ρ � 1. Let’s start with R2n( νη
r n

2 )

R2n(
νηr n

2
) ≤ 1

(2n + 1)! max
x∈[−y ,y]

| f 2n+1(x)|
n∏

i�0

(x − xi)2 (9.2)

Since f (x) is a scaled Gaussian, we have directly from its Taylor expansion

max
x∈�

| f 2n+1(x)| < max
x∈�

| f 2n+2(x)| � | f 2n+2(0)| � (2n + 2)!
(n + 1)! (

1
2η2

)2n+2
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.
Plugging the above bound into 9.2 we obtain

R2n(
νηr n

2
) < ν2η2r(22ν2η2r)...(n2ν2η2r)

(2n + 1)! | f 2n+2(0)| � ν2nη2rn(n!)2
(2n + 1)! | f 2n+2(0)| � ν2nη2rn(n!)2

(2n + 1)!
(2n + 2)!
(n + 1)! (

1
2η2

)2n+2

� 2ν2nη2rn(n!)
( 1
2η2

)2n+2
� 2( 1

4η4
)
( νηr−2

2

)2n
n! � 2( 1

4η4
)
√

2πn
( n

e

)n ( νηr−2

2

)2n
� 2( 1

4η4
)
√

2πn

22n en
(νηr−2√n)2n

Where the factorial approximation is Stirling’s. Thus a sufficient condition for error decay is
νηr−2√n ≤ 1. Then for the benefit of tail error decay, we will set n to saturate the center interval
error n :� 1√

eν2η2(r−2) where the
√

e will be to accommodate for some discrepancy in error in the tail

bound. Intuitively, the larger the value of n the further our the interpolation points, and the better
the Gaussian tail dominates the polynomial growth in error.

Next we show the tail error is small.

∫ ∞

νηrn
2

R2n(y) exp(− y2

2
)dy ≤

∫ ∞

νηr n
2

(y +
νηr n

2 )2n

(2n + 1)! | f 2n+1(0)| exp(− y2

2
)dy

≤
∫ ∞

νηrn
2

(y +
νηr n

2 )2n

(2n + 1)!
(2n + 2)!
(n + 1)!

( 1
2η2

)2n+2 exp(−
y2

2
)dy

≤ 2
∫ ∞

νηr n
2

(y +
νηr n

2 )2n

n!

( 1
2η2

)2n+2 exp(−
y2

2
)dy

The integrand evaluated at y �
νηr n

2 is

≤ 1
√

2πn

( 1
4η4

) ( νηr−2√en

2

)2n exp(−
(νηr n)2

8
)

By our choice of n we have both the exponential and the error term falling to zero rapidly. For
r � 4 and ν � 1/100 we have n � O( 1

η4 ) for a degree 2n � O( 1
η4 ) polynomial. �

The following lemma establishes that the sufficient conditions of Theorem 8.3 are naturally
extended under linear transformations of the data set.

Lemma 9.1. (Anticoncentration under Linear Transformation) Let D be a (c ,D(η)) certifiably anticoncen-
trated distribution. Let Iη(z) ∈ �[z] be a uni-variate polynomial satifying the conditions of Theorem 8.3.

Let x ∼ D be a random variable drawn from D. Then for any invertible linear transformation A ∈ �d×d ,
we denote the distribution of Ax as A(D). Let Σ � AAT be the covariance of A(D) with eigenvalues

λ1, λ2, ..., λd. Then A(D) is (c λ
3/2
1

λ
3/2
d

,D(η)) certifiably anticoncentrated.
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Proof. In light of this fact, we use Theorem 8.3 condition 1 to lower bound 〈Xi , v〉2 by

P
D(η) 〈X, v〉2 ≥ η2(1 − Iη(〈Xi , v〉))

Therefore,

P
D(η)

1
M

N∑
i�1

wiw
′
i 〈X, v〉2 ≥ 1

M

N∑
i�1

wiw
′
iη

2(1 − Iδ(〈Xi , v〉))

Then using the certificate that {‖v‖2 < 1} we obtain

P
D(η)

1
M

N∑
i�1

wiw
′
iη

2(1 − Iη(〈Xi , v〉)) ≥
1
M

N∑
i�1

wiw
′
iη

2 ‖Σ1/2v‖2

‖Σ1/2‖2
op

(1 − Iη(〈Xi , v〉))

�
1
M

N∑
i�1

wiw
′
iη

2 ‖Σ1/2v‖2

‖Σ1/2‖2
op

− 1
M

N∑
i�1

wiw
′
iη

2 ‖Σ1/2v‖2

‖Σ1/2‖2
op

Iη(〈Xi , v〉)

Then using the fact that Iη(〈Xi , v〉) is SoS and {w2
i
� wi} (1 − wi) �2 0, we subtract

η2 ‖Σ1/2v‖2

‖Σ1/2 ‖2
op

1
M

N∑
i�1

w′
i
(1 − wi)Iη(〈Xi , v〉) to obtain

≥ 1
M

N∑
i�1

wiw
′
iη

2 ‖Σ1/2v‖2

‖Σ1/2‖2
op

− η2 ‖Σ1/2v‖2

‖Σ1/2‖2
op

1
M

N∑
i�1

w′
iIη(〈Xi , v〉)

We know from the moment certificates, 9.2, that

1
M

N∑
i�1

w′
iIη(〈Xi , v〉) � �

X∼N(0,Σ)
Iη(〈Xi , v〉) + O(ε) � �

X∼N(0,I)
Iη(〈X,Σ1/2v〉) + O(ε)

so thus far we have shown,

P
D(η)

N∑
i�1

wiw
′
i 〈X, v〉2 ≥ 1

M

N∑
i�1

wiw
′
iη

2 ‖Σ1/2v‖2

‖Σ1/2‖2
op

− η2 ‖Σ1/2v‖2

‖Σ1/2‖2
op

�
x∼N(0,I)

Iη(〈X,Σ1/2v〉) + O(ε)

For the first term on the right hand side, lower bound ‖Σ1/2v‖ ≥ λ2
d
‖v‖2. This follows by the

PSD’ness of Σ1/2 via degree 2 SoS. Then change the variable ω � Σ1/2v to obtain

≥ 1
M

N∑
i�1

wiw
′
iη

2λd ‖v‖2

λ1
− η2 ‖w‖2

λ1
�

x∼N(0,I)
Iη(〈X, w〉)+ O(ε)

Consider the second term. Observing that 0 ≤ ‖w‖2 ≤ λ1 and scaling Theorem 8.3 condition 2
by λ1 we obtain

≥ 1
M

N∑
i�1

wiw
′
iη

2 λd ‖v‖2

λ1
− η2(cη) + O(ε)
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Let η′ � η
√
λd

λ1
, then we conclude

≥ 1
M

N∑
i�1

wiw
′
iη

′2‖v‖2 − η′2(c
λ

3/2
1

λ
3/2
d

η′) + O(ε)

as desired. �

Corollary 9.2. (Anticoncentration of Spherically Symmetric Strongly Log Concave Distributions) Let
p(x1, ..., xd) be a distribution of the form

p(x1, ..., xd) ∝ exp(−h(‖x‖))

For h(x) m-strongly convex. Then p(x) is (
√

2em ,O( 1
η4 ))-certifiably anticoncentrated.

Proof. The proof follows exactly as that of the Gaussian. We begin with

H(‖v‖) :� ‖v‖2
�

x∼p(x)
Iη(〈X, v〉) � ‖v‖2

�
x∼p( x

‖v‖ )
1
‖v‖

Iη(x)

Applying m-strong concavity we obtain

‖v‖2
�

x∼p( x
‖v‖ )

1
‖v‖

f (x) ≤ ‖v‖2
∫ √

em/2
√

2π‖v‖
exp(− x2

2η2
− mx2

‖v‖2
)dx ≤ ‖v‖2 ηρ

√
em/2

‖v‖ ≤ η
√

em/2

With the polynomial approximation calculations following the exact same template. �
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A Regression Missing Proofs

Lemma (Restatement of Lemma 3.6). Running Algorithm Algorithm 2 a total of O( 1
β ) times produces

a list L � {ℓ1, ..., ℓO( 1
β )} such that with probability 1 - c, there exists a list element ℓi ∈ L satisfying

‖ℓi − ℓ′‖ ≤ ρ
2 where c is a small constant. Minor modifications enable the algorithm to succeed with high

probability.

Proof. There are a variety of techniques for boosting the success probability to 1− 1
poly(d) . One such

technique is to make the rounding algorithm deterministic. Instead of using selection strategy
j ∈ Sv , simply condition on a variable j ∈ [N] satisfying

‖Q‖nuc −�
b j

‖Q
��
w j�b j

‖nuc ≥ Ω(βη2ρ2)

Such a variable necessarily exists, because we found a distribution over j where the above inequality
holds in expectation. Furthermore, enumerate every {0, 1} conditioning up to a depth of R � O( 1

β4 ).
This implicitly defines a tree of pseudoexpectations. We can compute the probability of reaching
each leaf via its {0, 1} conditioning sequence. In effect, we can compute a probability distribution
over a list L of 2R estimates to ℓ′. Then applying the same analysis in Theorem 3.5 the probability
over this distribution that ℓi ∈ L is close to ℓ′ is greater than β

4 . A simple clustering algorithm
which groups vectors endowed with high probability mass generates a list of length O( 1

β ). This
procedure is deterministic, and can be run changing neither the runtime nor error gaurantees. �
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Lemma (Restatement of Lemma 7.2). Let �̃ be a pseudodistribution satisfying P. The following holds.

�̃[〈ℓ, u〉] ≤ (1 + od(1))�̃[
1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉]+ od(1) (A.1)

�̃[ 1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉] ≤ (1 + od(1))�̃[〈ℓ, u〉]+ od(1) (A.2)

The proofs of A.9 and A.10 are nearly identical. We include both below.

Proof. (Proof of A.9)
Let u be a unit direction u ∈ Sd−1. We know

�̃ [〈ℓ, u〉] � �̃
[
ℓT

(
I − 1

M

N∑
i�1

wiXiX
T
i

)
+

1
M

N∑
i�1

wi 〈ℓ,Xi〉XT
i u

]

Using pseudovariance triangle inequality

≤ (1 + ψ)�̃
[

1
M

N∑
i�1

wi 〈ℓ,Xi〉〈Xi , u〉
]
+

(1 + ψ

ψ

)
�̃

[
〈ℓuT , I − 1

M

N∑
i�1

wiXiX
T
i )〉

]
(A.3)

Applying ℓ2 minimization constraint 6 to the first term we obtain

� (1 + ψ)�̃
[

1
M

N∑
i�1

wi yi 〈Xi , u〉
]
+

(1 + ψ

ψ

)
�̃

[
〈ℓuT , I − 1

M

N∑
i�1

wiXiX
T
i )〉

]
(A.4)

Consider the second term on the right hand side, which we upper bound as follows.

�̃

[
〈ℓuT , I − 1

M

N∑
i�1

wiXiX
T
i )〉

]
≤ �̃

[
〈ℓuT , I − 1

M

N∑
i�1

wiXiX
T
i )〉2

]

First using deg 2 SOS Cauchy-Schwarz, and then both the scaling constraint and the moment
bound constraint we obtain,

≤ 2 �̃

[
‖ℓ‖2‖I − 1

M

N∑
i�1

wiXiX
T
i ‖

2

]
≤ ρ2ε (A.5)

Plugging back into equation A.4 we obtain

�̃ [〈ℓ, u〉] ≤ (1 + ψ)�̃
[

1
M

N∑
i�1

wi yi 〈Xi , u〉
]
+

(1 + ψ

ψ

)
ρ2ε (A.6)

� (1 + ψ)�̃
[

1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉 +
1
M

N∑
i�1

wi 〈�̃[ℓ],Xi〉〈Xi , u〉
]
+

1 + ψ

ψ
ρ2ε
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Using the pseudovariance triangle inequality we obtain

≤ (1 + ψ)2�̃
[

1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉
]
+

(1 + ψ)2
ψ

�̃

[
1
M

N∑
i�1

wi 〈�̃[ℓ],Xi〉〈Xi , u〉
]

+

1 + ψ

ψ
ρ2ε

(A.7)

Consider the second term. Subtracting the identity and adding it back we obtain

�̃

[
1
M

N∑
i�1

wi 〈�̃[ℓ],Xi〉〈Xi , u〉
]
≤ �̃

[
〈�̃[ℓ]uT ,

1
M

N∑
i�1

wiXiX
T
i − I〉 + 〈�̃[ℓ], u〉

]

Noting that pseudovariance is invariant under constant shifts we obtain.

≤ �̃
[
〈�̃[ℓ]uT ,

1
M

N∑
i�1

wiXiX
T
i − I〉

]
≤ �̃

[
〈�̃[ℓ]uT ,

1
M

N∑
i�1

wiXiX
T
i − I〉2

]

Applying Cauchy-Schwarz, then the moment constraints, then pseudoexpectation Cauchy-
Schwarz, then the scaling constraints we obtain

≤ �̃
[
‖�̃[ℓ]‖2‖ 1

M

N∑
i�1

wiXiX
T
i − I‖2

F

]
≤ ‖�̃[ℓ]‖2ε ≤ �̃[‖ℓ‖2]ε ≤ ρ2ε (A.8)

Plugging this bound back into A.7 we obtain

�̃ [〈ℓ, u〉] ≤ (1 + ψ)2�̃
[

1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉
]
+

(1 + ψ)2
ψ

ρ2ε +
1 + ψ

ψ
ρ2ε

For ψ �

√
ε we obtain

�̃[〈ℓ, u〉] ≤ (1 + od(1))�̃[
1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉]+ od(1) (A.9)

�

Proof. (Proof of A.10)

�̃

[
1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉
]
� �̃

[
1
M

N∑
i�1

wi yi 〈Xi , u〉 −
1
M

N∑
i�1

wi 〈�̃[ℓ],Xi〉〈Xi , u〉
]

by pseudovariance triangle inequality

≤ (1 + ψ)�̃
[

1
M

N∑
i�1

wi yi 〈Xi , u〉
]
+

1 + ψ

ψ
�̃

[
1
M

N∑
i�1

wi 〈�̃[ℓ],Xi〉〈Xi , u〉
]
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applying the bound in A.8

≤ (1 + ψ)�̃
[

1
M

N∑
i�1

wi yi 〈Xi , u〉
]
+

1 + ψ

ψ
ρ2ε

Applying the ℓ2 minimization constraint we obtain

� (1 + ψ)�̃
[

1
M

N∑
i�1

wi 〈ℓ,Xi〉〈Xi , u〉
]
+

1 + ψ

ψ
ρ2ε

� (1 + ψ)�̃
[
〈ℓuT ,

1
M

N∑
i�1

wiXiX
T
i − I〉 + 〈ℓ, u〉

]
+

1 + ψ

ψ
ρ2ε

then by pseudovariance triangle inequality

≤ (1 + ψ)2�̃ [〈ℓ, u〉]+
(1 + ψ)2
ψ

�̃

[
〈ℓuT ,

1
M

N∑
i�1

wiXiX
T
i − I〉

]
+

1 + ψ

ψ
ρ2ε

Applying the bound in A.5 to the second term we conclude

�̃

[
1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉
]
≤ (1 + ψ)2�̃[〈ℓ, u〉]+

(1 + ψ)2
ψ

ρ2ε +
1 + ψ

ψ
ρ2ε

For ψ �

√
ε we conclude

�̃[ 1
M

N∑
i�1

wi(yi − 〈�̃[ℓ],Xi〉)〈Xi , u〉] ≤ (1 + od(1))�̃[〈ℓ, u〉]+ od(1) (A.10)

as desired.
�
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B Mean Algorithms

SDP for Robust Mean Estimation

Here we write down the list decoding algorithm for mean estimation. Let RobustMeanSDP(D , ρ)
take as input the dataset D, and the parameter ρ.

Algorithm 4: RobustMeanSDP

Result: A degree D pseudoexpectation functional �̃ζ
1 Inputs: (D , ρ) Dataset, and upper bound on ‖µ‖
2

minimize
degree D pseudoexpectations �̃

N∑
i�1

�̃[wi]2

such that for all �̃[(w2
i − wi)] � 0, i ∈ [N],

�̃[(
N∑

i�1

wi − M)] � 0,

�̃[| |( 1
M

N∑
i�1

wi(Xi − µ̂)⊗
k
2 ((Xi − µ̂)⊗

k
2 )T − Mk | |2F − εk)] ≤ 0,

�̃[(‖µ̂‖2 − ρ2)] ≤ 0

3 return: �̃ζ
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Algorithms for Robust Mean Estimation

The algorithms are identical to those of robust regression up to parameter choices and the choice
of rounding strategy S.

Algorithm 5: Mean Preprocessing Algorithm

Result: A list L of means of length O( 1
β )

1 inputs: �̃ζ
2 L � ∅
3 for j � 1 to N do

4 L � L ∪ (�̃[µ̂|w j � 1], �̃[w j])
5 end
6 return: ExtractList(L)

Algorithm 6: Extract List
Result: A list of vectors L � {µ1, ..., µA}

1 Inputs: A list L′ :� {(µi , pi)}
2 L � ∅
3 while L′

, ∅ do
4 Let µ0 be any leaf in L′

5 for (µ, p) ∈ L′ do
6 M � 0
7 if ‖µ − µ0‖ ≤ ρ

4 then
8 M � M + p
9 end

10 end

11 if M ≥ β
4 then

12 L � L ∪ µ0
13 else
14 L � L′\µ0
15 end
16 end
17 return: L
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Algorithm 7: Mean RoundTree Algorithm

Result: A set of leaves L � {Th} indexed by their position h. Each leaf is a tuple
Th � (�[h], �̃ζ,h) consisting of the probability assigned to Th, and the corresponding
pseudoexpectation at Th

1 inputs: (�̃ζ,h ,�[h], ρ)
2 Let Q � �̃ζ,h[(µ̂ − �̃ζ,h[µ̂])(µ̂ − �̃ζ,h[µ̂])T] be the pseudocovariance matrix of the estimator µ̂
3 Let (λ, v) be top eigenvalue/vector of Q
4 if λ >

βρ2

16 then
5 Let Sv be a probability distribution over [N];
6 Where for any j ∈ N we have Sv( j) def

�
�̃ζ,h[w j 〈X j−�̃ζ,h[µ̂],v〉]∑N

i�1 �̃ζ,h[w j 〈X j−�̃ζ,h[µ̂],v〉]
7 Sample j ∼ µ
8 Let �[h ◦ 1] � �[h] �̃ζ,h[w j]
9 Let �[h ◦ 0] � �[h] �̃ζ,h[1 − w j]

10 Let �̃ζ,h◦0 � �̃ζ,h

��
w j�0

11 Let �̃ζ,h◦1 � �̃ζ,h

��
w j�1

12 return: {RoundTree(�̃ζ,h◦0,�[h ◦ 0], ρ)} ∪ {RoundTree(�̃ζ,h◦1,�[h ◦ 1], ρ)} ;
13 else
14 return: {(�̃ζ,h[µ̂],�[h], ρ)}
15 end

Algorithm 8: ListDecodeMean Algorithm

Result: A list of mean L � {µ1, ..., µA}
1 inputs: (�̃ζ , ρ)
2 L � MeanPreprocessing(�̃ζ)
3 for t ∈ log( m2

β1−1/k ) do

4 ρt �
ρ

2t

5 % Let Y to be a list of pseudoexpectations
6 Y � ∅
7 for µi ∈ L do
8 for X j ∈ D do
9 X j � X j − µi

10 end
11 Let Y � Y ∪ RobustMeanSDP(D , µi)
12 end
13 L � ∅
14 for �̃ζ ∈ Y do

15 L′
� RoundTree(�̃ζ , 1, ρ2 )

16 L � L ∪ ExtractList(L′)
17 end
18 end
19 return: L
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C Mean Estimation Overview

A convenient feature of our list decoding framework is that any setting for which we can prove
"variance reduction" and "snapping" gives us a list decoding algorithm. We prove the analogues
Lemma 3.3 and Lemma 3.2 for the setting of mean estimation.

C.1 Mean Estimation

In this section, we will lay out the broad overview of the proof of our algorithm for mean estimation.
Specifically, we will show the following.

Theorem C.1. ListDecodeMean(D , ρ) outputs a list L � {µ1, ..., µA} of length |L | � O
( 1
β

log( m2
β1−1/k )) such

that for some µ̂ ∈ L we have

‖µ′ − µ̂‖ ≤ O
( 1
β1/k

)

with high probability. The algorithm runs in time ( 1
β )

log( m2
β1−1/k )d

O(max(k , 1
β4 ))

Theorem C.1 gives us recovery guarantees that are information theoretically optimal. A
straightforward post-processing step takes the list length down to O( 1

β ). See [DKS18] Appendix B
proposition B.1.

To prove Theorem C.1 we will need the following lemmas.

Lemma C.2. (Snapping) Suppose �̃ζ is a degree k-pseudoexpectation operator that satisfies the constraints
of RobustMean SOS SDP. If the variance is small

max
u
�̃[〈µ̂, u〉] ≤

βρ2

16

and there is correlation with the plant

�̃[ 1
M

N∑
i�1

wiw
′
i] ≥ β

then,

‖�̃
ζ
[µ̂] − µ‖ ≤ O( 1

β1/k
)

Lemma C.3. Let �̃ζ satisfy the pseudoexpectation constraints of RobustMeanSDP(D , ρ). Q be the
pseudocovariance matrix. Let (λ, v) be the largest eigenpair of Q. Let Sv be a probability distribution over
[N] Where for any j ∈ N we have

Sv( j) def
�

�̃[w j〈x j − �̃[µ̂], v〉]∑N
i�1 �̃[w j〈x j − �̃[µ̂], v〉]

Then

�̃[〈µ̂, v〉] − �
j∼S
�
b j

�̃[〈µ̂, v〉 |w j � b j] ≥
β

2
�̃[〈µ̂, v〉]2

2(�̃[ 1
N

N∑
i�1

wi 〈Xi − µ̂, v〉2] + �̃[〈µ̂, v〉])

Now we can prove Theorem C.1
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Proof. For ‖Q‖op ≥ Ω(βρ2), we have by Corollary 3.4 a nuclear norm decrease φ � Ω(β3ρ2).
Then by Lemma ?? we have an algorithm that runs in time d

O(max(k , 1
β4 )). Iterating the RoundTree

algorithm as we do for regression gives us the final error gaurantee and list length. �

D Mean Lemmas

Proof. Lemma C.3
We invoke Theorem 5.2 for zi :� wi 〈Xi − �̃[µ̂], v〉 for i ∈ [N]. Now it suffices to upper bound

1
βN

N∑
i�1
�̃(zi).

1
M

N∑
i�1

�̃(zi) ≤
1
M

N∑
i�1

�̃[z2
i ] � �̃

[
1
M

N∑
i�1

wi 〈Xi −�[µ̂], v〉2

]

We add and subtract µ̂ and expand the expression with triangle inequality to obtain

� �̃

[
1
M

N∑
i�1

wi 〈Xi − µ̂ + µ̂ −� µ̂, v〉2

]
� �̃

[
1
M

N∑
i�1

wi 〈Xi − µ̂ + µ̂ −� µ̂, v〉2

]

≤ 2
(
�̃

[
1
N

1
M

N∑
i�1

wi 〈Xi − µ̂, v〉2

]
+ �̃

[
〈µ̂ − �̃ µ̂, v〉2

] )
� 2

(
�̃

[
1
M

N∑
i�1

wi 〈Xi − µ̂, v〉2

]
+ �̃[〈µ̂, v〉]

)

as desired. �

Proof. Lemma C.2
First, we will make the following claim which we will prove later

Claim D.1.

�̃

[
1
M

N∑
i�1

wiw
′
i

]
(〈�̃[µ̂] − µ, u〉)2 ≤ �̃

[
〈µ̂ − �̃ µ̂, u〉2

]
+ �̃

[
1
M

N∑
i�1

wiw
′
i ‖µ̂ − µ‖2

]

Which implies

〈�̃[µ̂] − µ, u〉2 ≤ �̃[〈µ̂ −�[µ̂], u〉2]

�̃

[
1
M

N∑
i�1

wiw
′
i

] + �̃



1
M

N∑
i�1

wiw
′
i

�̃

[
1
M

N∑
i�1

wiw
′
i

] ‖µ̂ − µ‖2


Now we bound the second term on the right hand side. Let G(w) be the space of polynomials

over w1, ..., wN. Consider the functional �̃
′

: G(w) → �which takes a polynomial f (w) and maps

it to �̃
′

f (w) � �̃


1
M

N∑
i�1

wi w
′
i

�̃

[
1
M

N∑
i�1

wi w
′
i

] f (w)

. We observe that �̃

′
is a valid pseudoexpectation. Therefore,

applying cauchy-schwarz we obtain
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�̃



1
M

N∑
i�1

wiw
′
i

�̃

[
1
M

N∑
i�1

wiw
′
i

] ‖µ̂ − µ‖2


�

′
�̃

[
‖µ̂ − µ‖2

]
≤

′
�̃

[
‖µ̂ − µ‖k

] 2
k
� �̃[

1
M

N∑
i�1

wiw
′
i

�̃[ 1
M

N∑
i�1

wiw
′
i
]
| |µ̂ − µ | |k]2/k

Rearranging we have

�̃

[
1
M

N∑
i�1

wiw
′
i ‖µ̂ − µ‖2

]
≤ �̃

[
1
M

N∑
i�1

wiw
′
i ‖µ̂ − µ‖k

] 2
k

�̃

[
1
M

N∑
i�1

wiw
′
i

]1− 2
k

Then by SOS Cauchy-Schwarz and then the SOS inequality [HL18] lemma 5.5 we have

�̃

[
1
M

N∑
i�1

wiw
′
i ‖µ̂ − µ‖k

]
≤ �̃

[
( 1
M

N∑
i�1

wiw
′
i)2‖µ̂ − µ‖2k

] 1
2

≤ �̃
[

1
M

N∑
i�1

w , wi‖µ̂ − µ‖k

] 1
2

Any number that is smaller than its square root is less than one i.e

�̃

[
1
M

N∑
i�1

wiw
′
i ‖µ̂ − µ‖k

]
≤ 1

So we conclude that

�̃

[
1
M

N∑
i�1

wiw
′
i ‖µ̂ − µ‖2

]
≤ �̃

[
1
M

N∑
i�1

wiw
′
i

]1− 2
k

Plugging back into the second term above we obtain

≤
�̃

[
1
M

N∑
i�1

wiw
′
i

]1− 2
k

�̃

[
1
M

N∑
i�1

wiw
′
i

] �
1

�̃

[
1
M

N∑
i�1

wiw
′
i

] 2
k

≤ 1

β
2
k

Where in the last line we used the result of frobenius norm minimization �̃

[
1
M

N∑
i�1

wiw
′
i

]
≥ β. Then

by taking square root on both sides we obtain

‖�[µ̂] − µ‖ ≤ 1 +
1

β
1
k

� O( 1

β
1
k

)

�

Now we prove the claim.
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Proof. D.1

�̃

[
1
M

N∑
i�1

wiw
′
i

]
〈�̃[µ̂] − µ, u〉2

� �̃

[
1
M

N∑
i�1

wiw
′
i 〈�̃[µ̂] − µ, u〉2

]

Applying triangle inequality

� �̃

[
1
M

N∑
i�1

wiw
′
i 〈�̃[µ̂] − µ̂ + µ̂ − µ, u〉2

]
≤ 2 �̃

[
1
M

N∑
i�1

wiw
′
i 〈�̃[µ̂] − µ̂, u〉2

]
+ 2 �̃

[
1
M

N∑
i�1

wiw
′
i 〈µ̂ − µ, u〉2

]

Using wiw
′
i
≤ 1 in the first term, we have

≤ 2 �̃
[
〈�̃[µ̂] − µ̂, u〉2

]
+ 2 �̃

[
1
M

N∑
i�1

wiw
′
i 〈µ̂ − µ, u〉2

]

by SOS Cauchy-Schwarz on the second term we obtain

�̃

[
1
M

N∑
i�1

wiw
′
i

]
〈�̃[µ̂] − µ, u〉2 ≤ 2 �̃

[
〈�̃[µ̂] − µ̂, u〉2

]
+ 2 �̃

[
1
M

N∑
i�1

wiw
′
i ‖µ̂ − µ‖2

]

�

D.1 Preprocessing via Conditioning

Theorem D.2. Consider the strategy S of conditioning on w j � 1 where j is selected with probability

S( j) � �̃[w j]
M . Then in expectation over the selection of j, we have that ‖Q‖op is small in expectation.

�
j∼S
�̃(〈µ̂, u〉 |w j � 1) < 4m2

and there is correlation with the plant.

�
j∼S
�̃[ 1

M

N∑
i�1

wiw
′
i |w j � 1] ≥ β

Proof. The correlation with the plant follows by the definition of S. We now upper bound ‖Q‖op

explicitly.

�
j∼S
�̃(〈µ̂, u〉 |w j � 1) � �

j∼S
�̃[〈µ̂ − �̃[µ̂|w j � 1], u〉2 |w j � 1]

by triangle inequality

≤ 2 �
j∼S
�̃[〈µ̂ − X j , u〉2 |w j � 1] + 2 �̃

j∼S
〈X j − �̃[µ̂|w j � 1], u〉2

Applying the definition of S to the first term we obtain
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� 2 �̃[ 1
M

N∑
j�1

w j 〈X j − µ̂, u〉2] + 2 �
j∼S

〈X j − �̃[µ̂|w j � 1], u〉2

Then using pseudoexpectation cauchy-schwarz on the second term we obtain

≤ 2 �̃[ 1
M

N∑
j�1

w j 〈X j − µ̂, u〉2] + 2 �
j∼S
�̃[〈X j − µ̂, u〉2 |w j � 1]

Applying the definition of S to the second term we obtain

≤ 2 �̃[ 1
M

N∑
j�1

w j 〈X j − µ̂, u〉2] + 2 �̃[ 1
M

N∑
j�1

w j 〈X j − µ̂, u〉2] ≤ 4m2

as desired. �
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