
ar
X

iv
:2

10
5.

08
21

5v
1

 [
cs

.D
S]

 1
8

M
ay

 2
02

1

Vertex Ordering Problems in Directed Graph Streams

Amit Chakrabarti Prantar Ghosh Andrew McGregor Sofya Vorotnikova

We consider directed graph algorithms in a streaming setting, focusing on problems concerning orderings

of the vertices. This includes such fundamental problems as topological sorting and acyclicity testing. We

also study the related problems of finding a minimum feedback arc set (edges whose removal yields an

acyclic graph), and finding a sink vertex. We are interested in both adversarially-ordered and randomly-

ordered streams. For arbitrary input graphs with edges ordered adversarially, we show that most of these

problems have high space complexity, precluding sublinear-space solutions. Some lower bounds also apply

when the stream is randomly ordered: e.g., in our most technical result we show that testing acyclicity in the

p-pass random-order model requires roughly n1+1/p space. For other problems, random ordering can make

a dramatic difference: e.g., it is possible to find a sink in an acyclic tournament in the one-pass random-

order model using polylog(n) space whereas under adversarial ordering roughly n1/p space is necessary

and sufficient given Θ(p) passes. We also design sublinear algorithms for the feedback arc set problem in

tournament graphs; for random graphs; and for randomly ordered streams. In some cases, we give lower

bounds establishing that our algorithms are essentially space-optimal. Together, our results complement the

much maturer body of work on algorithms for undirected graph streams.

http://arxiv.org/abs/2105.08215v1

1 Introduction

While there has been a large body of work on undirected graphs in the data stream model [20], the complexity

of processing directed graphs (digraphs) in this model is relatively unexplored. The handful of exceptions

include multipass algorithms emulating random walks in directed graphs [15, 22], establishing prohibitive

space lower bounds on finding sinks [13] and answering reachability queries [11], and ruling out semi-

streaming constant-pass algorithms for directed reachability [12]. This is rather unfortunate given that many

of the massive graphs often mentioned in the context of motivating work on graph streaming are directed,

e.g., hyperlinks, citations, and Twitter “follows” all correspond to directed edges.

In this paper we consider the complexity of a variety of fundamental problems related to vertex ordering

in directed graphs. For example, one basic problem that motivated1 much of this work is as follows: given a

stream consisting of edges of an acyclic graph in an arbitrary order, how much memory is required to return

a topological ordering of the graph? In the offline setting, this can be computed in O(m+ n) time using

Kahn’s algorithm [16] or via depth-first trees [23] but nothing was known in the data stream setting.

We also consider the related minimum feedback arc set problem, i.e., estimating the minimum number of

edges (arcs) that need to be removed such that the resulting graph is acyclic. This problem is NP-hard and the

best known approximation factor is O(log n log log n) for arbitrary graphs [10], although a PTAS is known in

the case of tournaments [18]. Again, nothing was known in the data stream model. In contrast, the analogous

problem for undirected graphs is well understood in the data stream model. The number of edges required to

make an undirected graph acyclic is m−n+ c where c is the number of connected components. The number

of connected components can be computed in O(n logn) space by constructing a spanning forest [2, 11].

Previous Work. Some versions of the problems we study in this work have been considered previously

in the query complexity model. For example, Huang et al. [14] consider the “generalized sorting problem”

where G is an acyclic graph with a unique topological order. The algorithm is presented with an undirected

version of this graph and may query any edge to reveal its direction. The goal is to learn the topological

ordering with the minimum number of queries. Huang et al. [14] and Angelov et al. [5] also studied the

average case complexity of various problems where the input graph is chosen from some known distribution.

Ailon [3] studied the equivalent problem for feedback arc set in tournaments. Note that all these query

complexity results are adaptive and do not immediately give rise to small-space data stream algorithms.

Perhaps the relative lack of progress on streaming algorithms for directed graph problems stems from

their being considered “implicitly hard” in the literature, a point made in the recent work of Khan and

Mehta [19]. Indeed, that work and the also-recent work of Elkin [9] provide the first nontrivial streaming

algorithms for computing a depth-first search tree and a shortest-paths tree (respectively) in semi-streaming

space, using O(n/polylog n) passes. Notably, fairly non-trivial work was needed to barely beat the trivial

bound of O(n) passes.

Some of our work here applies and extends the work of Guruswami and Onak [12], who gave the first

super-linear (in n) space lower bounds in the streaming model for decision problems on graphs. In particular,

they showed that solving reachability in n-vertex digraphs using p passes requires n1+Ω(1/p)/pO(1) space. Via

simple reductions, they then showed similar lower bounds for deciding whether a given (undirected) graph

has a short s–t path or a perfect matching.

1.1 Results

Arbitrary Graphs. To set the stage, in Section 2 we present a number of negative results for the case when

1The problem was explicitly raised in an open problems session at the Shonan Workshop “Processing Big Data Streams” (June

5-8, 2017) and generated considerable discussion.

1

Problem Passes Input Order Space Bound Notes

ACYC 1 Θ(n2)

ACYC p n1+Ω(1/p)/pO(1)

mult. approx. FAS-SIZE 1 Θ(n2)

mult. approx. FAS-SIZE p n1+Ω(1/p)/pO(1)

TOPO-SORT 1 Θ(n2)

TOPO-SORT p n1+Ω(1/p)/(p+1)O(1)

mult. approx. FAS 1 Θ(n2)

mult. approx. FAS p n1+Ω(1/p)/(p+1)O(1)

STCONN-DAG p random n1+Ω(1/p)/pO(1) error probability 1/pΩ(p)

ACYC p random n1+Ω(1/p)/pO(1) error probability 1/pΩ(p)

mult. approx. FAS-SIZE p random n1+Ω(1/p)/pO(1) error probability 1/pΩ(p)

TOPO-SORT p random n1+Ω(1/p)/(p+1)O(1) error probability 1/pΩ(p)

mult. approx. FAS p random n1+Ω(1/p)/(p+1)O(1) error probability 1/pΩ(p)

(1+ ε)-approx. FAS-T 1 Õ(ε−2n) exp. time post-processing

3-approx. FAS-T p Õ(n1+1/p)

ACYC-T 1 Õ(n)

ACYC-T p Ω(n/p)

SINK-FIND-T 2p−1 Õ(n1/p)

SINK-FIND-T p Ω(n1/p/p2)

SINK-FIND-T 1 random Õ(1)

TOPO-SORT 1 random Õ(n3/2) random DAG + planted path

TOPO-SORT O(logn) Õ(n4/3) random DAG + planted path

(1+ ε)-apx. RANK-AGGR 1 Õ(ε−2n) exp. time post-processing

Table 1: Summary of our algorithmic and space lower bound results. These problems are defined in Sec-

tion 1.2. The input stream is adversarially ordered unless marked as “random” above. Besides the above

results, we also give an oracle (query complexity) lower bound in Section 3.4.

the input digraph can be arbitrary. In particular, we show that there is no one-pass sublinear-space algorithm

for such fundamental digraph problems as testing whether an input digraph is acyclic, topologically sorting

it if it is, or finding its feedback arc set if it is not. These results set the stage for our later focus on specific

families of graphs, where we can do much more, algorithmically.

For our lower bounds, we consider both arbitrary and random stream orderings. In Section 2.1, we con-

centrate on the arbitrary ordering and show that checking whether the graph is acyclic, finding a topological

ordering of a directed acyclic graph (DAG), or any multiplicative approximation of feedback arc set requires

Ω(n2) space in one pass. The lower bound extends to n1+Ω(1/p)/pO(1) when the number of passes is p> 1. In

Section 2.2, we show that essentially the same bound holds even when the stream is randomly ordered. This

strengthening is one of our more technically involved results and it is based on generalizing a fundamental

result by Guruswami and Onak [12] on s–t connectivity in the multi-pass data stream model.

As a by-product of our generalization, we also obtain the first random-order super-linear (in n) lower

bounds for the undirected graph problems of deciding (i) whether there exists a short s–t path (ii) whether

2

there exists a perfect matching.

Tournaments. A tournament is a digraph that has exactly one directed edge between each pair of distinct

vertices. If we assume that the input graph is a tournament, it is trivial to find a topological ordering, given

that one exists, by considering the in-degrees of the vertices. Furthermore, it is known that ordering the

vertices by in-degree yields a 5-approximation to feedback arc set [8].

In Section 3, we present an algorithm which computes a (1+ ε)-approximation to feedback arc set in

one pass using Õ(ε−2n) space2. However, in the post-processing step, it estimates the number of back edges

for every permutation of vertices in the graph, thus resulting in exponential post-processing time. Despite

its “brute force” feel, our algorithm is essentially optimal, both in its space usage (unconditionally) and its

post-processing time (in a sense we shall make precise later). We address these issues in Section 3.4. On

the other hand, in Section 3.2, we show that with O(logn) additional passes it is possible to compute a

3-approximation to feedback arc set while using only polynomial time and Õ(n) space.

Lastly, in Section 4, we consider the problem of finding a sink in a tournament which is guaranteed

to be acyclic. Obviously, this problem can be solved in a single pass using O(n) space by maintaining an

“is-sink” flag for each vertex. Our results show that for arbitrary order streams this is tight. We prove that

finding a sink in p passes requires Ω(n1/p/p2) space. We also provide an O(n1/p log(3p))-space sink-finding

algorithm that uses O(p) passes, for any 1 6 p 6 logn. In contrast, we show that if the stream is randomly

ordered, then using polylog n space and a single pass is sufficient. This is a significant separation between

the arbitrary-order and random-order data stream models.

Random Graphs. In Section 5, we consider a natural family of random acyclic graphs (see Definition 1.2

below) and present two algorithms for finding a topological ordering of vertices. We show that, for this

family, Õ(n4/3) space is sufficient to find the best ordering given O(logn) passes. Alternatively, Õ(n3/2)
space is sufficient given only a single pass, on the assumption that the edges in the stream are randomly

ordered.

Rank Aggregation. In Section 6, we consider the problem of rank aggregation (formally defined in the

next section), which is closely related to the feedback arc set problem. We present a one-pass, Õ(ε−2n)
space algorithm that returns (1+ ε)-approximation to the rank aggregation problem. The algorithm is very

similar to our (1+ ε)-approximation of feedback arc set in tournaments and has the same drawback of using

exponential post-processing time.

A summary of these results is given in Table 1.

1.2 Models and Preliminaries

Vertex Ordering Problems in Digraphs. An ordering of an n-vertex digraph G = (V,E) is a list consisting

of its vertices. We shall view each ordering σ as a function σ : V → [n], with σ(v) being the position of v

in the list. To each ordering σ , there corresponds a set of back edges BG(σ) = {(v,u) ∈ E : σ(u) < σ(v)}.
We say that σ is a topological ordering if BG(σ) = ∅; such σ exists iff G is acyclic. We define βG =
min{|BG(σ)| : σ is an ordering of G}, i.e., the size of a minimum feedback arc set for G.

We now define the many interrelated digraph problems studied in this work. In each of these problems,

the input is a digraph G, presented as a stream of its edges. The ordering of the edges is adversarial unless

specified otherwise.

ACYC: Decide whether or not G is acyclic.

2Throughout the paper, Õ(f (n)) = O(f (n)polylog n).

3

TOPO-SORT: Under the promise that G is acyclic, output a topological ordering of its vertices.

STCONN-DAG: Under the promise that G is acyclic, decide whether it has an s-to-t path, these being two

prespecified vertices.

SINK-FIND: Under the promise that G is acyclic, output a sink of G.

FAS-SIZE (α-approximation): Output an integer β̂ ∈ [βG,αβG].

FAS (α-approximation): Output an ordering σ such that |BG(σ)|6 αβG.

FAS-T: Solve FAS under the promise that G is a tournament. In a similar vein, we define the promise

problems ACYC-T, TOPO-SORT-T, SINK-FIND-T, FAS-SIZE-T.

For randomized solutions to these problems we shall require that the error probability be at most 1/3.

We remark that the most common definition of the minimum feedback arc set problem in the literature

on optimization is to identify a small set of edges whose removal makes the graph acyclic, so FAS-SIZE is

closer in spirit to this problem than FAS. As we shall see, our algorithms will apply to both variants of the

problem. On the other hand, lower bounds sometimes require different proofs for the two variants. Since

βG = 0 iff G is acyclic, we have the following basic observation.

Observation 1.1. Producing a multiplicative approximation for any of FAS, FAS-T, FAS-SIZE, and FAS-

SIZE-T entails solving (respectively) TOPO-SORT, TOPO-SORT-T, ACYC, and ACYC-T.

For an ordering π of a vertex set V , define Eπ = {(u,v) ∈V 2 : π(u) < π(v)}. Define Tou(π) = (V,Eπ)
to be the unique acyclic tournament on V consistent with π .

As mentioned above, we will also consider vertex ordering problems on random graphs from a natural

distribution. This distribution, which we shall call a “planted path distribution,” was considered by Huang et

al. [14] for average case analysis in their work on generalized sorting.

Definition 1.2 (Planted Path Distribution). Let PlantDAGn,q be the distribution on digraphs on [n] defined as

follows. Pick a permutation π of [n] uniformly at random. Retain each edge (u,v) in Tou(π) with probability

1 if π(v) = π(u)+1, and with probability q, independently, otherwise.

Rank Aggregation. The feedback arc set problem in tournaments is closely related to the problem of rank

aggregation (RANK-AGGR). Given k total orderings σ1, . . . ,σk of n objects we want to find an ordering that

best describes the “preferences” expressed in the input. Formally, we want to find an ordering that minimizes

cost(π) := ∑k
i=1 d(π,σi), where the distance d(π,σ) between two orderings is the number of pairs of objects

ranked differently by them. That is,

d(π,σ) := ∑
a,b∈[n]

1{π(a)< π(b), σ(b)< σ(a)} ,

where the notation 1{φ} denotes a 0/1-valued indicator for the condition φ .

In the streaming model, the input to RANK-AGGR can be given either as a concatenation of k orderings,

leading to a stream of length kn, or as a sequence of triples (a,b, i) conveying that σi(a)< σi(b), leading to

a stream of length k
(

n
2

)
. Since we want the length of the stream to be polynomial in n, we assume k = nO(1).

Lower Bounds through Communication Complexity. Space lower bounds for data streaming algorithms

are most often proven via reductions from standard problems in communication complexity. We recall two

such problems, each involving two players, Alice and Bob. In the INDEXN problem, Alice holds a vector

x ∈ {0,1}N and Bob holds an index k ∈ [N]: the goal is for Alice to send Bob a message allowing him

to output xk. In the DISJN problem, Alice holds x ∈ {0,1}N and Bob holds y ∈ {0,1}N : the goal is for

them to communicate interactively, following which they must decide whether x and y are disjoint, when

4

considered as subsets of [N], i.e., they must output ¬∨N
i=1 xi ∧ yi. In the special case DISJN,s, it is promised

that the cardinalities |x|= |y|= s. In each case, the communication protocol may be randomized, erring with

probability at most δ . We shall use the following well-known lower bounds.

Fact 1.3 (See, e.g., [1,21]). For error probability δ = 1
3
, the one-way randomized complexity R→1/3(INDEXN)=

Ω(N) and the general randomized complexity R1/3(DISJN,N/3) = Ω(N).

Other Notation and Terminology. We call an edge critical if it lies on a directed Hamiltonian path of length

n−1 in a directed acyclic graph. We say an event holds with high probability (w.h.p.) if the probability is at

least 1−1/poly(n). Given a graph with a unique total ordering, we say a vertex u has rank r if it occurs in

the rth position in this total ordering.

2 General Digraphs and the Hardness of some Basic Problems

In this section, our focus is bad news. In particular, we show that there is no one-pass sublinear-space

algorithm for the rather basic problem of testing whether an input digraph is acyclic, nor for topologically

sorting it if it is. These results set the stage for our later focus on tournament graphs, where we can do much

more, algorithmically.

2.1 Arbitrary Order Lower Bounds

To begin, note that the complexity of TOPO-SORT-T is easily understood: maintaining in-degrees of all

vertices and then sorting by in-degree provides a one-pass O(n logn)-space solution. However, the problem

becomes maximally hard without the promise of a tournament.

Theorem 2.1. Solving TOPO-SORT in one pass requires Ω(n2) space.

Proof. We reduce from INDEXN , where N = p2 for a positive integer p. Using a canonical bijection from

[p]2 to [N], we rewrite Alice’s input vector as a matrix x = (xi j)i, j∈[p] and Bob’s input index as (y,z) ∈ [p]2.

Our reduction creates a graph G = (V,E) on n = 4p vertices: the vertex set V = L0⊎R0⊎L1⊎R1, where each

|Lb|= |Rb|= p. These vertices are labeled, with ℓ0
i being the ith vertex in L0 (and similarly for r0

i , ℓ
1
i ,r

1
i).

Based on their inputs, Alice and Bob create streams of edges by listing the following sets:

Ex = {(ℓb
i ,r

b
j) : b ∈ {0,1}, i, j ∈ [p], xi j = b} , Eyz = {(r0

z , ℓ
1
y), (r

1
z , ℓ

0
y)} .

The combined stream defines the graph G, where E = Ex∪Eyz.

We claim that G is acyclic. In the digraph (V,Ex), every vertex is either a source or a sink. So the only

vertices that could lie on a cycle in G are ℓ0
y ,r

0
z , ℓ

1
y , and r1

z . Either (ℓ0
y,r

0
z) /∈ E or (ℓ1

y ,r
1
z) /∈ E , so there is in

fact no cycle even among these four vertices.

Let σ be a topological ordering of G. If xyz = 0, then we must, in particular, have σ(ℓ0
y)< σ(ℓ1

y), else we

must have σ(ℓ1
y)< σ(ℓ0

y). Thus, by simulating a one-pass algorithm A on Alice’s stream followed by Bob’s

stream, consulting the ordering σ produced by A and outputting 0 iff σ(ℓ0
y) < σ(ℓ1

y), the players can solve

INDEXN . It follows that the space used by A must be at least R→1/3(INDEXN) = Ω(N) = Ω(p2) = Ω(n2).

For our next two results, we use reductions from STCONN-DAG. It is a simple exercise to show that a

one-pass streaming algorithm for STCONN-DAG requires Ω(n2) space. Guruswami and Onak [12] showed

that a p-pass algorithm requires n1+Ω(1/p)/pO(1) space.3

3Although their paper states the lower bound for s-t connectivity in general digraphs, their proof in fact shows the stronger result

that the bound holds even when restricted to DAGs.

5

Proposition 2.2. Solving ACYC requires Ω(n2) space in one pass and n1+Ω(1/p)/pO(1) space in p passes.

Proof. Given a DAG G and specific vertices s, t, let G′ be obtained by adding edge (t,s) to G. Then G′ is

acyclic iff G has no s-to-t path. By the discussion above, the lower bounds on ACYC follow.

Corollary 2.3. Solving TOPO-SORT in p passes requires n1+Ω(1/p)/(p+1)O(1) space.

Proof. Given a p-pass S-space algorithm A for TOPO-SORT, we can obtain a (p+ 1)-pass (S+O(n log n))-
space algorithm for ACYC as follows. Run algorithm A, store the ordering it outputs, and in another pass,

check if the ordering induces any back-edge. If it does, we output NO, and otherwise, we output YES. In case

of any runtime error, we return NO. For correctness, observe that if the input graph G is acyclic, then A returns

a valid topological ordering w.h.p.. Hence, the final pass doesn’t detect any back-edge, and we correctly

output YES. In case G is not acyclic, the promise that the input graph for TOPO-SORT would be a DAG is

violated, and hence, A either raises an error or returns some ordering that must induce a back-edge since

G doesn’t have a topological ordering. Thus, we correctly return NO in this case. Finally, Proposition 2.2

implies that S+O(n log n)> n1+Ω(1/p)/(p+1)O(1), i.e., S > n1+Ω(1/p)/(p+1)O(1).

Corollary 2.4. A multiplicative approximation algorithm for either FAS-SIZE or FAS requires Ω(n2) space in

one pass. In p passes, such approximations require n1+Ω(1/p)/pO(1) space and n1+Ω(1/p)/(p+1)O(1) space

respectively.

Proof. This is immediate from Observation 1.1, Theorem 2.1, Proposition 2.2, and Corollary 2.3.

2.2 Random Order Lower Bounds

We consider the STCONN-DAG, ACYC, and FAS problems in a uniformly randomly ordered digraph stream.

Recall that for adversarially ordered streams, these problems require about n1+Ω(1/p) space in p passes.

The hardness ultimately stems from a similar lower bound for the SHORTPATH-DAG problem. In this latter

problem, the input is an n-vertex DAG with two designated vertices vs and vt , such that either (a) there exists

a path of length at most 2p+2 from vs to vt or (b) vt is unreachable from vs. The goal is to determine which

of these is the case.

Our goal in this section is to show that the same lower bound continues to hold under random ordering,

provided we insist on a sufficiently small error probability, about 1/pΩ(p). We prove this for SHORTPATH-

DAG. As this is a special case of STCONN-DAG, a lower bound for SHORTPATH-DAG carries over to STCONN-

DAG. Further, by the reductions in Proposition 2.2 and Corollaries 2.3 and 2.4, the lower bounds also carry

over to ACYC, TOPO-SORT, and FAS. We also show a barrier result arguing that this restriction to low error

is necessary: for the SHORTPATH-DAG problem, if an error probability of at least 2/p! is allowed, then Õ(n)
space is achievable in p passes.

Our proof uses the machinery of the Guruswami–Onak lower bound for SHORTPATH-DAG under an

adversarial stream ordering [12]. As in their work, we derive our space lower bound from a communication

lower bound for set chasing intersection (henceforth, SCI). However, unlike them, we need to prove a

“robust” lower bound for SCI, in the sense of Chakrabarti, Cormode, and McGregor [7], as explained below.

To define SCI, we first set up a special family of multilayer pointer jumping problems, described next.

Picture a layered digraph G∗ with 2k+ 1 layers of vertices, each layer having m vertices, laid out in a

rectangular grid with each column being one layer. From left to right, the layers are numbered −k,−k+
1, . . . ,k. Layer 0 is called the mid-layer. The only possible edges of G∗ are from layer ℓ to layer ℓ− 1, or

from layer −ℓ to layer −ℓ+ 1, for ℓ ∈ [k] (i.e., edges travel from the left and right ends of the rectangular

grid towards the mid-layer). We designate the first vertex in layer −k as vs and the first vertex in layer k as

vt .

6

Each vertex not in the mid-layer has exactly t outgoing edges, numbered 1st through tth, possibly with

repetition (i.e., G∗ is a multigraph). Think of these edges as pointers. An input to one of our communication

problems (to be defined soon) specifies the destinations of these pointers. Thus, an input consists of 2mkt

tokens, where each token is an integer in [m] specifying which of the m possibilities a certain pointer takes.

The pointers emanating from layer ℓ of vertices constitute the ℓth layer of pointers. Our communication

games will involve 2k players named P−k, . . . ,P−1,P1, . . . ,Pk. We say that Pℓ is the natural owner of the

portion of the input specifying the ℓth layer of pointers.

In the SCIm,k,t problem, the goal is to determine whether or not there exists a mid-layer vertex reachable

from vs as well as vt . Consider the communication game where each pointer is known to its natural owner

and the players must communicate in k−1 rounds, where in each round they broadcast messages in the fixed

order P−1, . . . ,P−k,P1, . . . ,Pk. Guruswami and Onak showed that this problem requires total communication

Ω(m1+1/(2k)/k16 log3/2 m) in the parameter regime t2k≪m. This almost immediately implies a similar lower

bound for SHORTPATH-DAG—simply reverse the directions of the pointers in positive-numbered layers—

which then translates into a data streaming lower bound along standard lines.

The key twist in our version of the SCI problem is that each pointer is allocated to one of the 2k players

uniformly at random: thus, most pointers are not allocated to their natural owners. The players have to deter-

mine the output to SCI communicating exactly in the same pattern as before, up to a small error probability

taken over the protocol’s internal randomness as well as the random allocation. This setup potentially makes

the problem easier because there is a good chance that the players will be able to “jump two pointers” within

a single round. Our main technical result is to show that a lower bound of the form m1+Ω(1/k) holds despite

this. In the terminology of Chakrabarti et al. [7], who lower-bounded a number of communication problems

under such random-allocation setups, this is a robust communication lower bound.

Theorem 2.5. Suppose that t2k = o(m/polylog(m)) and that protocol Π solves SCIm,k,t with error ε <
(2k)−2k−2 when the input is randomly allocated amongst the 2k players, as described above. Then, Π

communicates Ω(m1+1/(2k)/k16 log3/2 m) bits.

To prove this result, we consider a problem we call MPJ-MEETm,k,t , defined next (Guruswami and Onak

called this problem OR ◦ LPCE). Consider an input G∗ to SCIm,k,t and fix an i ∈ [t]. If we retain only the ith

pointer emanating from each vertex, for each layer ℓ, the ℓth layer of pointers defines a function fℓ,i : [n]→ [n].
Let xi (respectively, yi) denote the index of the unique mid-layered vertex reached from vs (respectively, vt)

by following the retained pointers. Formally,

xi = f−1,i(f−2,i(· · · f−k,i(1) · · ·)) , yi = f1,i(f2,i(· · · fk,i(1) · · ·)) .

Define a function to be r-thin if every element in its range has at most r distinct pre-images. The instance G∗

is said to meet at i if xi = yi and is said to be r-thin at i if each function fℓ,i is r-thin. The desired output of

MPJ-MEET is

MPJ-MEET(G∗) =
t∨

i=1

1{G∗ meets at i}∨1{G∗ is not (C log m)-thin at i} ,

for an appropriate universal constant C. The corresponding communication game allocates each pointer to

its natural owner and asks them to determine the output using the same communication pattern as for SCI.

Here is the key result about this problem.

Lemma 2.6 (Lemma 7 of Guruswami–Onak [12]). The (k− 1)-round constant-error communication com-

plexity Rk−1(MPJ-MEETm,k,t) = Ω(tm/(k16 log m))−O(kt2).

Using this, we prove our main technical result.

7

Proof of Theorem 2.5. Based on the ε-error protocol Π for SCIm,k,t , we design a protocolQ for MPJ-MEETm,k,t

as follows. Let G∗ be an instance of MPJ-MEET allocated to players as described above. The players first

check whether, for some i, G∗ fails to be r-thin at i, for r :=C log m: this check can be performed in the first

round of communication with each player communicating a single bit. If the check passes, the protocol ends

with output 1. From now on, we assume that G∗ is indeed r-thin at each i ∈ [t].
Using public randomness, the players randomly renumber the vertices in each layer of G∗, creating an

instance G′ of SCI.4 The players then choose ρ , a random allocation of pointers as in the SCI problem.

They would like to simulate Π on G′, as allocated by ρ , but of course they can’t do so without additional

communication. Instead, using further public randomness, for each pointer that ρ allocates to someone

besides its natural owner, the players reset that pointer to a uniformly random (and independent) value in [m].
We refer to such a pointer as damaged. Since there are 2k players, each pointer is damaged with probability

1− 1/(2k). Let G′′ denote the resulting random instance of SCI. The players then simulate Π on G′′ as

allocated by ρ .

It remains to analyze the correctness properties of Q. Suppose that G∗ is a 1-instance of MPJ-MEET.

Then there exists i ∈ [t] such that G∗ meets at i. By considering the unique maximal paths out of vs and vt

following only the ith pointers at each vertex, we see that G∗ is also a 1-instance of SCI. Since the vertex

renumbering preserves connectivity, G′ is also a 1-instance of SCI. With probability (2k)−2k, none of the

2k pointers on these renumbered paths is damaged; when this event occurs, G′′ is also a 1-instance of SCI.

Therefore, Q outputs 1 with probability at least (2k)−2k(1− err(Π))> (2k)−2k(1− ε).
Next, suppose that G∗ is a 0-instance of MPJ-MEET. It could be that G∗ is a 1-instance of SCI. However,

as Guruswami and Onak show,5 the random vertex renumbering ensures that Pr[SCI(G′) = 1] < o(1). For

the rest of the argument, assume that SCI(G′) = 0. In order to have SCI(G′′) = 1, there must exist a mid-layer

vertex x such that

f1,i1(f2,i2(· · · fk,ik (1) · · ·)) = x = f−1, j1(f−2, j2(· · · f−k, jk (1) · · ·)) (1)

for some choice of pointer numbers i1, . . . , ik, j1, . . . , jk ∈ [t]. We consider three cases.

• Case 1: None of the pointers in the above list is damaged. In this case, eq. (1) cannot hold, because

SCI(G′) = 0.

• Case 2: The layer-1 pointer in the above list is damaged. Condition on a particular realization

of pointers in negative-numbered layers and let x denote the mid-layered vertex reached from vs by

following pointers numbered jk, . . . , j1, as in eq. (1). The probability that the damaged pointer at

layer 1 points to x is 1/m. Since this holds for each conditioning, the probability that SCI(G′′) = 1 is

also 1/m.

• Case 3: The layer-ℓ pointer is damaged, but pointers in layers 1, . . . , ℓ−1 are not, where ℓ> 2. Again,

condition on a particular realization of pointers in negative-numbered layers and let x be as above.

Since the functions f in eq. (1) are all r-thin, the number of vertices in layer ℓ− 1 that can reach x

using only undamaged pointers is at most rℓ−1 6 rk−1. The probability that the damaged pointer at

layer ℓ points to one of these vertices is at most rk−1/m.

Combining the cases, the probability that eq. (1) holds for a particular choice of pointer numbers i1, . . . , ik, j1, . . . , jk ∈
[t] is at most rk−1/m. Taking a union bound over the t2k choices, the overall probability Pr[SCI(G′′) = 1] <
t2krk−1/m = o(1), for the parameter regime t2k = o(m/polylog(m)) and r = O(logm). Therefore, Q outputs

1 with probability at most err(Π)+o(1)6 ε +o(1).

4This step is exactly as in Guruswami-Onak [12]. Formally, each function fℓ,i is replaced by a corresponding function of form

πℓ,i ◦ fℓ,i ◦π−1
ℓ+1,i (for ℓ > 0), for random permutations πℓ,i : [m]→ [m]. To keep things concise, we omit the full details here.

5See the final paragraph of the proof of Lemma 11 in [12].

8

Thus far, we have a protocol Q that outputs 1 with probability α when MPJ-MEET(G∗) = 0 and with

probability β when MPJ-MEET(G∗) = 1, where α 6 ε + o(1) and β > (2k)−2k(1− ε). Recall that ε =
(2k)−2k−2, so β is bounded away from α . Let Q′ be a protocol where we first toss an unbiased coin: if it

lands heads, we output 0 with probability δ := (α +β)/2 and 1 with probability 1− δ ; if it lands tails, we

simulate Q. Then Q′ is a protocol for MPJ-MEET with error probability 1
2
− (β −α)/4. By Lemma 2.6, this

protocol must communicate Ω(m1+1/(2k)/k16 log3/2 m) bits and so must Π.

By a standard reduction from random-allocation communication protocols to random-order streaming

algorithms, we obtain the following lower bound: the main result of this section.

Theorem 2.7. For each constant p, a p-pass algorithm that solves SHORTPATH-DAG on n-vertex digraphs

whose edges presented in a uniform random order, erring with probability at most 1/pΩ(p) must use Ω(n1+1/(2p+2)/ log3/2 n)
bits of space.

Consequently, similar lower bounds hold for the problems STCONN-DAG, ACYC, TOPO-SORT, FAS, and

FAS-SIZE.

This paper is focused on directed graph problems. However, it is worth noting that a by-product of our

generalization of the Guruswami–Onak bound to randomly ordered streams is that we also obtain the first

random-order super-linear (in n) lower bounds for two important undirected graph problems.

Corollary 2.8. For each constant p, n1+Ω(1/p) space is required to solve either of the following problems

in p passes, erring with probability at most 1/pΩ(p), over a randomly ordered edge stream of an n-vertex

undirected graph G:

• decide whether G contains a perfect matching;

• decide whether the distance between prespecified vertices vs and vt is at most 2p+2.

A Barrier Result. Notably, Theorem 2.7 applies only to algorithms with a rather small error probabil-

ity. This is inherent: allowing just a slightly larger error probability renders the problem solvable in semi-

streaming space. This is shown in the result below, which should be read as a barrier result rather than a

compelling algorithm.

Proposition 2.9. Given a randomly ordered edge stream of a digraph G, the SHORTPATH-DAG problem on

G can be solved using Õ(n) space and p passes, with error probability at most 2/p! .

Proof. Recall that we’re trying to decide whether or not G has a path of length at most (2p+ 2) from vs to

vt . The high-level idea is that thanks to the random ordering, a “Bellman–Ford” style algorithm that grows

a forward path out of vs and a backward path out of vt is very likely to make more than one step of progress

during some pass.

To be precise, we maintain arrays ds and dt , each indexed by V . Initialize the arrays to ∞, except that

ds[vs] = dt [vt] = 0. During each pass, we use the following logic.

for each edge (x,y) in the stream:

if ds[x]+ dt [y]6 2p+ 1: output TRUE and halt

ds[y]←min(ds[y],1+ ds[x])

dt [x]←min(dt [x],1+ dt [y])

If we complete p passes without any output, then we output FALSE.

If G has no short enough path from vs to vt , this algorithm will always output FALSE. So let’s consider the

other case, when there is a vs–vt path π of length at most 2p+2. Let vertex z be the midpoint of π , breaking

ties arbitrarily if needed. The subpaths [vs,z]π and [z,vt]π have lengths q and r, respectively, with q 6 p+1

9

and r 6 p+ 1. Notice that if our algorithm is allowed to run for q (resp. r) passes, then ds[z] (resp. dt [z])
will settle to its correct value. If both of them settle, then the algorithm correctly outputs TRUE. So, the only

nontrivial case is when q,r ∈ {p, p+1}.
Let Es be the event that the random ordering of the edges in the stream places the edges of [vs,z]π in the

exact reverse order of π . Let Et be the event that the random ordering places the edges of [z,vt]π in the exact

same order as π . If Es does not occur, then for some two consecutive edges (w,x),(x,y) on [vs,z]π , the stream

puts (w,x) before (x,y). Therefore, once ds[w] settles to its correct value, the following pass will settle not

just ds[x], but also ds[y]; therefore, after q−1 6 p passes, ds[z] is settled. Similarly, if Et does not occur, then

after r−1 6 p passes, dt [z] is settled. As noted above, if both of them settle, the algorithm correctly outputs

TRUE.

Thus, the error probability 6 Pr[Es∨Et]6 Pr[Es]+Pr[Et] = 1/q!+1/r! 6 2/p! , as required.

3 Feedback Arc Set in Tournaments

3.1 Accurate, One Pass, but Slow Algorithm for FAS-T

We shall now design an algorithm for FAS-T (that also solves FAS-SIZE-T) based on linear sketches for ℓ1-

norm estimation. Recall that the ℓ1-norm of a vector x ∈RN is ‖x‖1 = ∑i∈[N] |xi|. A d-dimensional ℓ1-sketch

with accuracy parameter ε and error parameter δ is a distribution S over d×N matrices, together with an

estimation procedure Est : Rd → R such that

Pr
S←S

[
(1− ε)‖x‖1 6 Est(Sx)6 (1+ ε)‖x1‖

]
> 1−δ .

Such a sketch is “stream friendly” if there is an efficient procedure to generate a given column of S and

further, Est is efficient. Obviously, a stream friendly sketch leads to a space and time efficient algorithm

for estimating ‖x‖1 given a stream of entrywise updates to x. We shall use the following specialization of a

result of Kane et al. [17].

Fact 3.1 (Kane et al. [17]). There is a stream friendly d-dimensional ℓ1-sketch with accuracy ε and error

δ that can handle NO(1) many ±1-updates to x ∈ R
N , with each update taking O(ε−2 logε−1 log δ−1 logN)

time, with d = O(ε−2 logδ−1), and with entries of the sketched vector fitting in O(log N) bits.

Theorem 3.2. There is a one-pass algorithm for FAS-T that uses O(ε−2n log2 n) space and returns a (1+ε)-
approximation with probability at least 2

3
, but requires exponential post-processing time.

Proof. Identify the vertex set of the input graph G = (V,E) with [n] and put N =
(

n
2

)
. We index vectors z in

R
N as zuv, where 1 6 u < v 6 n. Define a vector x ∈ {0,1}N based on G and vectors yπ ∈ {0,1}N for each

permutation π : [n]→ [n] using indicator variables as follows.

xuv = 1{(u,v) ∈ E} , yπ
uv = 1{π(u) < π(v)} .

A key observation is that the uv-entry of x−yπ is nonzero iff the edge between u and v is a back edge of G

according to the ordering π . Thus, |BG(π)|= ‖x−yπ‖1.

Our algorithm processes the graph stream by maintaining an ℓ1-sketch Sx with accuracy ε/3 and error

δ = 1/(3 ·n!). By Fact 3.1, this takes O(ε−2n log2 n) space and O(ε−2 logε−1n log2 n) time per edge.

In post-processing, the algorithm considers all n! permutations π and, for each of them, computes

S(x− yπ) = Sx− Syπ . It thereby recovers an estimate for ‖x− yπ‖1 and finally outputs the ordering π

that minimizes this estimate. By a union bound, the probability that every estimate is (1± ε/3)-accurate is

at least 1−n! ·δ = 2/3. When this happens, the output ordering provides a (1+ ε)-approximation to FAS-T

by our key observation above.

10

Despite its “brute force” feel, the above algorithm is essentially optimal, both in its space usage (uncon-

ditionally) and its post-processing time (in a sense we shall make precise later). We address these issues in

Section 3.4.

3.2 Multiple Passes: FAS-T in Polynomial Time

For a more time-efficient streaming algorithm, we design one based on the KWIKSORT algorithm of Ailon

et al. [4]. This (non-streaming) algorithm operates as follows on a tournament G = (V,E).

• Choose a random ordering of the vertices: v1,v2, . . . ,vn.

• Vertex v1 partitions V into two sub-problems {u : (u,v1) ∈ E} and {w : (v1,w) ∈ E}. At this point we

know the exact place of v1 in the ordering.

• Vertex v2 further partitions one of the these sub-problems. Proceeding in this manner, after v1,v2, . . . ,vi

are considered, there are i+1 sub-problems.

• Continue until all n vertices are ordered.

When vi is being used to divide a sub-problem we refer to it as a pivot.

Emulating KWIKSORT in the Data Stream Model. We will emulate KWIKSORT in p passes over the

data stream. In each pass, we will consider the action of multiple pivots. Partition v1, . . . ,vn into p groups

V1, . . . ,Vp, where V1 = {v1, . . . ,vcn1/p log n}, V2 consists of the next cn2/p logn vertices in the sequence, and Vj

contains cn j/p logn vertices coming after Vj−1. Here c is a sufficiently large constant. At the end of pass

j+1, we want to emulate the effect of pivots in Vj+1 on the sub-problems resulting from considering pivots

in V1 through Vj. In order to do that, in pass j+1 for each vertex v ∈Vj+1 we store all edges between v and

vertices in the same sub-problem as v, where the sub-problems are defined at the end of pass j.

The following combinatorial lemma plays a key role in analyzing this algorithm’s space usage.

Lemma 3.3 (Mediocrity Lemma). In an n-vertex tournament, if we pick a vertex v uniformly at random, then

Pr[εn < din(v)< (1− ε)n]> 1−4ε . Similarly, Pr[εn < dout(v)< (1− ε)n]> 1−4ε . In particular, with

probability at least 1/3, v has in/out-degree between n/6 and 5n/6.6

Proof. Let H be a set of vertices of in-degree at least (1− ε)n. Let h = |H|. On the one hand, ∑v∈H din(v)>
(1−ε)nh. On the other hand, the edges that contribute to the in-degrees of vertices in H have both endpoints

in H or one endpoint in H and one in V \H . The number of such edges is

∑
v∈H

din(v)6

(
h

2

)
+h(n−h) =

1

2
(2nh−h2−h) .

Therefore, (2nh−h2−h)/2 > (1− ε)nh. This implies h < 2εn.

Thus, the number of vertices with in-degree at least (1− ε)n (and out-degree at most εn) is h < 2εn. By

symmetry, the number of vertices with out-degree at least (1− ε)n (and in-degree at most εn) is also less

than 2εn. Thus, the probability a random vertex has in/out-degree between εn and (1− ε)n is (n−2h)/n >
(n−2 ·2εn)/n = 1−4ε .

6The Mediocrity Lemma is tight: consider sets of vertices A,B,C where |A|= |C| = 2εn and |B| = (1− 4ε)n. Edges on B do

not form any directed cycles. Subgraphs induced by A and C are balanced, i.e., the in-degree equals the out-degree of every vertex

(where degrees here are considered within the subgraph). All other edges are directed from A to B, from B to C, or from A to C.

Then vertices with in/out-degrees between εn and (1−ε)n are exactly the vertices in B, and a random vertex belongs to this set with

probability 1−4ε .

11

Space Analysis. Let M j be the maximum size of a sub-problem after pass j. The number of edges collected

in pass j + 1 is then at most M j|Vj+1|. By Lemma 3.4 (below), this is at most cn1+1/p logn. Once the

post-processing of pass j+1 is done, the edges collected in that pass can be discarded.

Lemma 3.4. With high probability, M j 6 n1− j/p for all j.

Proof. Let Mv
j denote the size of the sub-problem that contains v, after the jth pass. We shall prove that, for

each v, Pr[Mv
j > n1− j/p]6 1/n10. The lemma will then follow by a union bound.

Take a particular vertex v. If, before the jth pass, we already have Mv
j−1 6 n1− j/p, there is nothing

to prove. So assume that Mv
j−1 > n1− j/p. Call a pivot “good” if it reduces the size of the sub-problem

containing v by a factor of at least 5/6. A random pivot falls in the same sub-problem as v with probability

at least n1− j/p/n; when this happens, by the Mediocrity Lemma, the probability that the pivot is good is at

least 1/3. Overall, the probability that the pivot is good is at least n− j/p/3.

In the jth pass, we use cn j/p logn pivots. If at least log6/5 n of them are good, we definitely have Mv
j 6

n1− j/p. Thus, by a Chernoff bound, for a sufficiently large c, we have

Pr
[
Mv

j > n1− j/p
]
6 Pr

[
Bin
(

cn j/p logn, n− j/p/3
)
< log6/5 n

]
6 1/n10 .

Theorem 3.5. There exists a polynomial time p-pass data stream algorithm using Õ(n1+1/p) space that

returns a 3-approximation (in expectation) for FAS-T.

Proof. The pass/space tradeoff follows from Lemma 3.4 and the discussion above it; the approximation

factor follows directly from the analysis of Ailon et al. [4].

3.3 A Space Lower Bound

Both our one-pass algorithm and the O(logn)-pass instantiation of our multi-pass algorithm use at least Ω(n)
space. For FAS-SIZE-T, where the desired output is a just a number, it is reasonable to ask whether o(n)-space

solutions exist. We now prove that they do not.

Proposition 3.6. Solving ACYC-T is possible in one pass and O(n log n) space. Meanwhile, any p-pass

solution requires Ω(n/p) space.

Proof. For the upper bound, we maintain the in-degrees of all vertices in the input graph G. Since G is a

tournament, the set of in-degrees is exactly {0,1, . . . ,n−1} iff the input graph is acyclic.

For the lower bound, we reduce from DISJN,N/3. Alice and Bob construct a tournament T on n = 7N/3

vertices, where the vertices are labeled {v1, . . . ,v2N ,w1, . . . ,wN/3}. Alice, based on her input x, adds edges

(v2i,v2i−1) for each i ∈ x. For each remaining pair (i, j) ∈ [2N]× [2N] with i < j, she adds the edge (vi,v j).
Let a1 < · · · < aN/3 be the sorted order of the elements in Bob’s set y. For each k = aℓ ∈ y, Bob defines the

alias v2N+k = wℓ and then adds the edges

Ek = {(vi,v2N+k) : 1 6 i 6 2k−1}∪{(v2N+k,v j) : 2k 6 j 6 2N} .

Finally, he adds the edges {(wi,w j) : 1 6 i < j 6 N/3}. This completes the construction of T .

We claim that the tournament T is acyclic iff x∩ y = ∅. The “only if” part is direct from construction,

since if x and y intersect at some index k ∈ [N], we have the directed cycle (v2k,v2k−1,v2N+k,v2k). For

the “if” part, let σ be the ordering (v1, . . . ,v2N) and let T ′ = Tou(σ), as defined in Section 1.2. We show

how to modify σ into a topological ordering of T , proving that T is acyclic. Observe that, by construction,

the tournament T \ {w1, . . . ,wN/3} can be obtained from T ′ by flipping only the edges (v2i−1,v2i) for each

i ∈ x. Each time we perform such an edge flip, we modify the topological ordering of T ′ by swapping

12

the associated vertices of the edge. The resultant ordering would still be topological as the vertices were

consecutive in the ordering before the flip. Thus, after performing these swaps, we get a topological ordering

of T \{w1, . . . ,wN/3}. Now, consider some k ∈ y. Since x∩y = ∅, k /∈ x and so, v2k succeeds v2k−1 in this

ordering, just as in σ , since we never touched these two vertices while performing the swaps. Thus, for each

such k, we can now insert v2N+k between v2k−1 and v2k in the ordering and obtain a topological ordering of

T . This proves the claim.

Thus, given a p-pass solution to ACYC-T using s bits of space, we obtain a protocol for DISJN,N/3 that

communicates at most (2p−1)s bits. By Fact 1.3, (2p−1)s = Ω(N) = Ω(n), i.e., s = Ω(n/p).

Theorem 3.7. A p-pass multiplicative approximation for FAS-SIZE-T requires Ω(n/p) space.

Proof. This is immediate from Observation 1.1 and proposition 3.6.

3.4 An Oracle Lower Bound

Let us now consider the nature of the post-processing performed by our one-pass FAS-T algorithm in Sec-

tion 3.1. During its streaming pass, that algorithm builds an oracle based on G that, when queried on an

ordering σ , returns a fairly accurate estimate of |BG(σ)|. It proceeds to query this oracle n! times to find a

good ordering. This raises the question: is there a more efficient way to exploit the oracle that the algorithm

has built? A similar question was asked in Bateni et al. [6] in the context of using sketches for the maximum

coverage problem.

Were the oracle exact—i.e., on input σ it returned |BG(σ)| exactly—then two queries to the oracle would

determine which of (i, j) and (j, i) was an edge in G. It follows that O(n log n) queries to such an exact oracle

suffice to solve FAS-T and FAS-SIZE-T. However, what we actually have is an ε-oracle, defined as one that,

on query σ , returns β̂ ∈ R such that (1− ε)|BG(σ)|6 β̂ 6 (1+ ε)|BG(σ)|. We shall show that an ε-oracle

cannot be exploited efficiently: a randomized algorithm will, with high probability, need exponentially many

queries to such an oracle to solve either FAS-T or FAS-SIZE-T.

To prove this formally, we consider two distributions on n-vertex tournaments, defined next.

Definition 3.8. Let Dyes,Dno be distributions on tournaments on [n] produced as follows. To produce a

sample from Dyes, pick a permutation π of [n] uniformly at random; output Tou(π). To produce a sample

from Dno, for each i, j with 1 6 i < j 6 n, independently at random, include edge (i, j) with probability 1
2
;

otherwise include edge (j, i).

Let σ be an ordering of [n]. By linearity of expectation, if T is sampled from either Dyes or Dno,

E|BT (σ)|= m :=
1

2

(
n

2

)
.

In fact, we can say much more.

Lemma 3.9. There is a constant c such that, for all ε > 0, sufficiently large n, a fixed ordering σ on [n], and

random T drawn from either Dyes or Dno,

Pr [(1− ε)m < |BT (σ)|< (1+ ε)m]> 1−2−cε2n .

Proof. When T ←Dno, the random variable |BT (σ)| has binomial distribution Bin(2m, 1
2
), so the claimed

bound is immediate.

Let T ← Dyes. Partition the edges of the tournament into perfect matchings M1, . . . ,Mn−1. For each

i ∈ [n−1], let Xi be the number of back edges of T involving Mi, i.e.,

Xi = |{(u,v) ∈Mi : either (u,v) ∈ BT (σ) or (v,u) ∈ BT (σ)}| .

13

Notice that Xi ∼ Bin(n/2, 1
2
), whence

Pr
[
(1− ε)n/4 < Xi <

1
2
(1+ ε)n/4

]
> 1−2bε2n ,

for a certain constant b. By a union bound, the probability that all of the Xis are between these bounds

is at least 1− (n− 1)2−bε2n > 1− 2−cε2n, for suitable c. When this latter event happens, we also have

(1− ε)m < |BT (σ)|= 1
2 ∑n−1

i=1 Xi < (1+ ε)m.

We define a (q,ε)-query algorithm for a problem P to be one that access an input digraph G solely

through queries to an ε-oracle and, after at most q such queries, outputs its answer to P(G). We require this

answer to be correct with probability at least 2
3
.

Now consider the particular oracle OT,ε , describing an n-vertex tournament T , that behaves as follows

when queried on an ordering σ .

• If (1− ε/2)m < |BT (σ)|< (1+ ε/2)m, then return m.

• Otherwise, return |BT (σ)|.
Clearly, OT,ε is an ε-oracle. The intuition in the next two proofs is that this oracle makes life difficult by

seldom providing useful information.

Proposition 3.10. Every (q,ε)-query algorithm for TOPO-SORT-T makes exp(Ω(ε2n)) queries.

Proof. WLOG, consider a (q,ε)-query algorithm, A, that makes exactly q queries, the last of which is

its output. Using Yao’s minimax principle, fix A’s random coins, obtaining a deterministic (q,ε)-query

algorithm A′ that succeeds with probability >
2
3

on a random tournament T ←Dyes. Let σ1, . . . ,σq be the

sequence of queries that A′ makes when the answer it receives from the oracle to each of σ1, . . . ,σq−1 is m.

Suppose that the oracle supplied to A′ is OT,ε . Let E be the event that A′’s query sequence is σ1, . . . ,σq

and it receives the response m to each of these queries. For a particular σi,

Pr[OT,ε(σi) = m] = Pr[(1− ε/2)m < |BT (σi)|< (1+ ε/2)m]> 1−2−bε2n

for a suitable constant b, by Lemma 3.9. Thus, by a union bound, Pr[E]> 1−q2−bε2n.

When E occurs, A′ must output σq, but E itself implies that |BT (σq)| 6= 0, so A′ errs. Thus, the success

probability of A′ is at most 1− Pr[E] 6 q2−bε2n. Since this probability must be at least 2
3
, we need q >

2
3
·2bε2n = exp(Ω(ε2n)).

Proposition 3.11. Every (q,ε)-query algorithm for ACYC-T makes exp(Ω(ε2n)) queries.

Proof. We proceed similarly to Proposition 3.10, except that we require the deterministic (q,ε)-query algo-

rithm A′ to succeed with probability at least 2
3

on a random T ← 1
2
(Dyes +Dno). We view T as being chosen

in two stages: first, we pick Z ∈R {yes,no} uniformly at random, then we pick T ←DZ .

Define σ1, . . . ,σq and E as before. So Pr[E] > 1− q2−bε2n. When E occurs, A′ must output some fixed

answer, either “yes” or “no.” We consider these cases separately.

Suppose that A′ outputs “no,” declaring that T is not acyclic. Then A′ errs whenever Z = yes and E
occurs. The probability of this is at least 1

2
−q2−bε2n, but it must be at most 1

3
, requiring q = exp(Ω(ε2n)).

Suppose that A′ outputs “yes” instead. Then it errs when Z = no, T is cyclic, and E occurs. Since

Pr[T acyclic | Z = no] = n!/2(
n
2) = exp(−Ω(n2)) ,

we have 1
3
> Pr[A′ errs] > 1

2
− exp(−Ω(n2))−q2−bε2n, requiring q = exp(Ω(ε2n)).

Theorem 3.12. A (q,ε)-query algorithm that gives a multiplicative approximation for either FAS-T or FAS-

SIZE-T must make q = exp(Ω(ε2n)) queries.

Proof. This is immediate from Observation 1.1 and propositions 3.10 and 3.11.

14

4 Sink Finding in Tournaments

A classical offline algorithm for TOPO-SORT is to repeatedly find a sink v in the input graph (which must

exist in a DAG), prepend v to a growing list, and recurse on G\ v. Thus, SINK-FIND itself is a fundamental

digraph problem. Obviously, SINK-FIND can be solved in a single pass using O(n) space by maintaining an

“is-sink” flag for each vertex. Our results below show that for arbitrary order streams this is tight, even for

tournament graphs.

In fact, we say much more. In p passes, on the one hand, the space bound can be improved to roughly

O(n2/p). On the other hand, any p-pass algorithm requires about Ω(n1/p) space. While these bounds don’t

quite match, they reveal the correct asymptotics for the number of passes required to achieve polylogarithmic

space usage: namely, Θ(log n/ log logn).
In contrast, we show that if the stream is randomly ordered, then using polylog(n) space and a single

pass is sufficient. This is a significant separation between the adversarial and random order data streams.

4.1 Arbitrary Order Sink Finding

Theorem 4.1 (Multi-pass algorithm). For all p with 1 6 p 6 logn, there is a (2p− 1)-pass algorithm for

SINK-FIND-T that uses O(n1/p log(3p)) space and has failure probability at most 1/3.

Proof. Let the input digraph be G = (V,E). For a set S ⊆ V , let maxS denote the vertex in S that has

maximum in-degree. This can also be seen as the maximum vertex within S according to the total ordering

defined by the edge directions.

Our algorithm proceeds as follows.

• Initialization: Set s = ⌈n1/p ln(3p)⌉. Let S1 be a set of s vertices chosen randomly from V .

• For i = 1 to p−1:

– During pass 2i−1: Find vi = maxSi by computing the in-degree of each vertex in Si.

– During pass 2i: Let Si+1 be a set of s vertices chosen randomly from {u : (vi,u) ∈ E}.
• During pass 2p−1: Find vp = maxSp by computing the in-degree of each vertex in Sp.

For the sake of analysis, consider the quantity ℓi = |{u : (vi,u) ∈ E}|. Note that, for each i ∈ [p],

Pr
[
ℓi > ℓi−1/n1/p

]
= (1−1/n1/p)s

6
1

3p
.

Thus, by the union bound, ℓp = 0 with probability at least 1− p/(3p) = 2/3. Note that ℓp = 0 implies that

vp is a sink.

We turn to establishing a multi-pass lower bound. Our starting point for this is the tree pointer jumping

problem TPJk,t , which is a communication game involving k players. To set up the problem, consider a

complete ordered k-level t-ary tree T ; we consider its root z to be at level 0, the children of z to be at level 1,

and so on. We denote the i-th child of y ∈V (T) by yi, the j-th child of yi by yi, j , and so on. Thus, each leaf

of T is of the form zi1,...,ik−1
for some integers i1, . . . , ik−1 ∈ [t].

An instance of TPJk,t is given by a function φ : V (T)→ [t] such that φ(y) ∈ {0,1} for each leaf y. The

desired one-bit output is

TPJk,t(φ) := g(k)(z) = g(g(· · ·g(z) · · ·)) ,where

g(y) :=

{
φ(y) , if y is a leaf,

yφ(y) , otherwise.
(2)

15

For each j ∈ {0, . . . ,k−1}, Player j receives the input values φ(y) for each vertex y at level j. The players

then communicate using at most k− 1 rounds, where a single round consists of one message from each

player, speaking in the order Player k− 1, . . . , Player 0. All messages are broadcast publicly (equivalently,

written on a shared blackboard) and may depend on public random coins. The cost of a round is the total

number of bits communicated in that round and the cost of a protocol is the maximum, over all rounds, of

the cost of a round. The randomized complexity Rk−1(TPJk,t) is the minimum cost of a (k−1)-round 1
3
-error

protocol for TPJk,t .

Combining the lower bound approach of Chakrabarti et al. [7] with the improved round elimination anal-

ysis of Yehudayoff [24], we obtain the following lower bound on the randomized communication complexity

of the problem.

Theorem 4.2. Rk−1(TPJk,t) = Ω(t/k).

Based on this, we prove the following lower bound.

Theorem 4.3 (Multi-pass lower bound). Any streaming algorithm that solves SINK-FIND-T in p passes must

use Ω(n1/p/p2) space.

Proof. We reduce from TPJk,t , where k = p+ 1. We continue using the notations defined above. At a high

level, we encode an instance of TPJ in the directions of edges in a tournament digraph G, where V (G) can be

viewed as two copies of the set of leaves of T . Formally,

V (G) = {〈i1, . . . , ik−1,a〉 : each i j ∈ [t] and a ∈ {0,1}} .

We assign each pair of distinct vertices u,v ∈ V (G) to a level in {0, . . . ,k− 1} as follows. Suppose that

u = 〈i1, . . . , ik〉 and v = 〈i′1, . . . , i′k〉. We assign {u,v} to level j− 1, where j is the smallest index such that

i j 6= i′j. Given an instance of TPJk,t , the players jointly create an instance of SINK-FIND-T as follows. For

each j from k−1 to 0, in that order, Player j assigns directions for all pairs of vertices at level j, obtaining a

set E j of directed edges, and then appends E j to a stream. The combined stream Ek−1 ◦ · · · ◦E1 ◦E0 defines

the tournament G. It remains to define each set E j precisely.

The set Ek−1 encodes the bits φ(y) at the leaves y of T as follows.

Ek−1 = {(〈i1, . . . , ik−1,1−a〉,〈i1, . . . , ik−1,a〉) ∈V (G)2 : φ(zi1 ,...,ik−1
) = a} , (3)

Notice that if we ignore edge directions, Ek−1 is a perfect matching on V (G).
Now consider an arbitrary level j ∈ {0, . . . ,k−2}. Corresponding to each vertex zi1,...,i j−1

at level j of T ,

we define the permutation πi1,...,i j−1
: [t]→ [t] thus:

(πi1,...,i j−1
(1), . . . ,πi1,...,i j−1

(t)) = (1, . . . , ℓ−1, ℓ+1, . . . , t, ℓ) ,

where ℓ= φ(zi1 ,...,i j−1
) . (4)

Using this, we define E j so as to encode the pointers at level j as follows.

E j = {(〈i1, . . . , i j−1, i j, . . . , ik〉,〈i1, . . . , i j−1, i
′
j, . . . , i

′
k〉) ∈V (G)2 : π−1

i1,...,i j−1
(i j)< π−1

i1,...,i j−1
(i′j)} . (5)

It should be clear that the digraph (V (G),E0∪E1∪·· ·∪Ek−1) is a tournament. We argue that it is acyclic.

Suppose, to the contrary, that G has a cycle σ . Let j ∈ {0, . . . ,k− 2} be the smallest-numbered level of an

edge on σ . Then there exist h1, . . . ,h j−1 such that every vertex on σ is of the form 〈h1, . . . ,h j−1, i j, . . . , ik〉.
Let v(1), . . . ,v(r) be the vertices on σ whose outgoing edges belong to level j. For each q ∈ [r], let v(q) =

〈h1, . . . ,h j−1, i
(q)
j , . . . , i

(q)
k 〉. Let π̂ = πh1,...,h j−1

. According to eq. (5),

π̂−1
(
i
(1)
j

)
< π̂−1

(
i
(2)
j

)
< · · ·< π̂−1

(
i
(r)
j

)
< π̂−1

(
i
(1)
j

)
,

16

a contradiction.

It follows that G has a unique sink. Let v = 〈h1, . . . ,hk−1,a〉 ∈V (G) be this sink. In particular, for each

level j ∈ {0, . . . ,k−2}, all edges in E j involving v must be directed towards v. According to eq. (5), we must

have π−1
h1,...,h j−1

(h j) = t, i.e., πh1,...,h j−1
(t) = h j. By eq. (4), this gives φ(zh1,...,h j−1

) = h j. Next, by eq. (2), this

gives g(zh1,...,h j−1
) = zh1,...,h j

. Instantiating this observation for j = 0, . . . ,k−2, we have

zh1
= g(z), zh1,h2

= g(zh1
), . . . , zh1,...,hk−1

= g(zh1,...,hk−2
) ,

i.e., zh1,...,hk−1
= g(k−1)(z).

At this point h1, . . . ,hk−1 have been determined, leaving only two possibilities for v. We now use the fact

that the sole edge in Ek−1 involving v must be directed towards v. According to eq. (3), φ(zh1 ,...,hk−1
) = a.

Invoking eq. (2) again, a = φ(g(k−1)(z)) = g(k)(z) = TPJk,t(φ).
Thus, the players can read off the desired output TPJk,t(φ) from the identity of the unique sink of the

constructed digraph G. Notice that n := |V (G)| = 2tk−1. It follows that a (k− 1)-pass streaming algorithm

for SINK-FIND-T that uses S bits of space solves TPJk,t in k− 1 rounds at a communication cost of kS. By

Theorem 4.2, we have S = Ω(t/k2) = Ω(n1/(k−1)/k2).

4.2 Random Order Sink Finding

In this section we show that it is possible to find the sink of an acyclic tournament in one pass over a randomly

order stream while using only polylog(n) space. The algorithm we consider is as follows:

• Initialization: Let S be a random set of s = 200log n nodes.

• For i = 1 to k := log2

(
m

200000n log n

)
:

– Ingest the next ci := 100 ·2i(n−1) log n elements of the stream: For each v ∈ S, collect the set of

edges Sv consisting of all outgoing edges; throw away Sv if it exceeds size 220log n

– Pick any v ∈ S, such that |Sv| = (200± 20) log n and let S be the endpoints (other than v) of the

edges in Sv

• Ingest the next m/1000 elements: find P the set of vertices w such that there exists an edge uw for

some u ∈ S

• Ingest the remaining 499m/500 elements: Output any vertex in P with no outgoing edges.

Theorem 4.4. There is a single pass algorithm for SINK-FIND-T that uses O(polylog n) space and has failure

probability at most 1/3 under the assumption that the data stream is randomly ordered.

Proof. We refer to the ci elements used in the iteration i as the ith segment of the stream. For a node u, let

Xu,i be the number of outgoing edges from u amongst the ith segment. The following claim follows from the

Chernoff bound:

Claim 4.5. With high probability, for all u with |rk(u)−n/2i|> 0.2 ·n/2i then

|Xu,i−200log n|> 0.1 ·200log n .

With high probability, for all u with |rk(u)−n/2i|6 0.05 ·n/2i, then

|Xu,i−200log n|< 0.1 ·200log n .

If follows from the claim that if after processing the ith segment of the stream there exists a v such that

|Sv| = (200± 20) log n then with high probability rk(u) = (1± 0.2) · n/2i. We next need to argue that there

exists such a v.

17

Claim 4.6. With high probability, for every node u with rk(u) = (1±0.2) ·n/2i−1, there exists an edge uv in

the ith segment such that |rk(v)−n/2i|6 0.05 ·n/2i.

Proof. There are at least 0.01 ·n/2i such edges. The probability that none of them exists in the ith segment

is at most (1− ci/m)0.01·n/2i

6 1/poly(n).

The above two claims allow us to argue by induction that we will have an element u with rk(u) =
(1±0.2) ·n/2i after the ith segment. At the end of the kth segment we have identified at least (200−20) log n

vertices where every rank is at most (1+0.2) ·n/2k = O(log n). With probability at least 1−1/poly(n) one

of these vertices includes an edge to the sink amongst the (k+ 1) segment and hence the sink is in P with

high probability. There may be other vertices in P but the following claim shows that we will identify any

false positives while processing the final 499m/500 elements of the stream.

Claim 4.7. With probability at least 1− 1/499, there exists at least once outgoing edge from every node

except the sink amongst the last 499m/500 elements of the stream

Proof of Claim. The probability no outgoing edge from the an element of rank r > 0 appears in the suffix of

the stream is at most (1−499/500)r . Hence, by the union bound the probability that there exists an element

of rank r > 0 without an outgoing edge is at most ∑r>1(1−499/500)r = 1/499.

This concludes the proof of Theorem 4.4.

5 Topological Ordering in Random Graphs

We present results for computing a topological ordering of G ∼ PlantDAGn,q (see Definition 1.2). We first

present an O(logn)-pass algorithm using Õ(n4/3) space. We then present a one-pass algorithm that uses

Õ(n3/2) space and requires the assumption that the stream is in random order.

5.1 Arbitrary Order Algorithm

In this section, we present two different algorithms. The first is appropriate when q is large whereas the

second is appropriate when q is small. Combining these algorithms and considering the worst case value of

q yields the algorithm using Õ(n4/3) space.

Algorithm for large q. The basic approach is to emulate QuickSort. We claim that we can find the re-

lationship between any vertex u among n vertices and a predetermined vertex v using three passes and

O(n+ q−3 log n) space. Assuming this claim, we can sort in O(log(q2n)) passes and Õ(n/q) space: we re-

cursively partition the vertices and suppose at the end of a phase we have sub-problems of sizes n1,n2,n3,
Any sub-problem with at least 1/q2 vertices is then sub-divided by picking Θ(log n) random pivots (with

replacement) within the sub-problems using the aforementioned three pass algorithm. There are at most q2n

such sub-problems. Hence, the total space required partition all the sub-problems in this way is at most

O

(
logn

q2n

∑
i=1

(ni +q−3 logn)

)
= O(nq−1 log2 n) .

Note that the size of every sub-problem decreases by a factor at least 2 at each step with high probability and

hence after log(q2n) iterations, all sub-problems have at most 1/q2 vertices. Furthermore, each vertex degree

is O(1/q · logn) in each sub-problem. Hence, the entire remaining instance can be stored using O(n/q · log n)
space.

18

It remains to prove our three-pass claim. For this, we define the following families of sets:

Li = {u : ∃ u-to-v path of length 6 i} , Ri = {u : ∃ v-to-u path of length 6 i} .

Using two passes and O(n log n) space we can identify L2 and R2 using O(n logn) space. Let U be the

set of vertices not contained in L2∪R2. The following lemma (which can be proved via Chernoff bounds)

establishes that L2∪R2 includes most of the vertices of the graph with high probability.

Lemma 5.1. With high probability, |U |= O(q−2 logn).

In a third pass, we store every edge between vertices in U and also compute L3 and R3. Computing L3

and R3 requires only O(n log n) space. There is an edge between each pair of vertices in U with probability

q and hence, the expected number of edges between vertices in U is at most q|U |2 = O(q−3 log2 n). By an

application of the Chernoff Bound, this bound also holds w.h.p. Note that L3,R3, and the edges within U

suffice to determine whether u ∈ L∞ or u ∈ R∞ for all u. To see this first suppose u ∈ L∞ and that (u,w) is the

critical edge on the directed path from u to v. Either w ∈ L2 and therefore we deduce u ∈ L3; or u ∈ L2; or

u 6∈ L2 and w 6∈ L2 and we therefore store the edge (u,w).
This establishes the following lemma.

Lemma 5.2. There is a O(logn)-pass, Õ(n/q)-space algorithm for TOPO-SORT on a random input graph

G∼ PlantDAGn,q.

Algorithm for small q. We use only two passes. In the first pass, we compute the in-degree of every vertex.

In the second, we store all edges between vertices where the in-degrees differ by at most 3
√

cnq · ln n where

c > 0 is a sufficiently large constant.

Lemma 5.3. There is a two-pass, Õ(n3/2√q)-space algorithm for TOPO-SORT on a random input graph

G∼ PlantDAGn,q.

Proof. We show that, with high probability, the above algorithm collects all critical edges and furthermore

only collects Õ(n3/2√q) edges in total. Let u be the element of rank ru. Note that din(u) has distribution

1+Bin(ru−2,q). Let Xu = din(u)−1. By an application of the Chernoff Bound,

Pr
[
|Xu− (ru−2)q|>

√
c(ru−2)q lnn

]
6 1/poly(n) .

Hence, w.h.p., ru = 2+Xu/q±
√

cn/q · ln n for all vertices u. Therefore, if (u,v) is critical, then

|Xu−Xv|6 |Xu− (ru−2)q|+ |(ru−2)q− (rv−2)q|+ |Xv− (rv−2)q|6 3
√

cnq · ln n .

This ensures that the algorithm collects all critical edges. For the space bound, we first observe that for an

arbitrary pair of vertices u and v, if |Xu−Xv|6 3
√

cnq · ln n then

|ru− rv|6 |Xu−Xv|/q+2
√

cn/q · ln n 6 8
√

cn/q · ln n .

Hence, we only store an edge between vertex u and vertices whose rank differs by at most 8
√

cn/q · ln n.

Since edges between such vertices are present with probability q, the expected number of edges stored

incident to u is 8
√

cnq · lnn and is O(
√

nq · lnn) by an application of the Chernoff bounds. Across all vertices

this means the number of edges stored is O(n3/2
√

q · lnn) as claimed.

Combining Lemma 5.2 and Lemma 5.3 yields the main theorem of this section.

Theorem 5.4. There is an O(logn)-pass algorithm for TOPO-SORT on a random input G ∼ PlantDAGn,q

that uses Õ(min(n/q,n3/2√q) space. For the worst-case over q, this is Õ(n4/3).

19

5.2 Random Order Algorithm

The transitive reduction of a DAG G = (V,E) is the minimal subgraph Gred = (V,E ′) such that, for all

u,v ∈V , if G has a u-to-v path, then so does Gred. So if G has a Hamiltonian path, Gred is this path.

The one-pass algorithm assuming a random ordering of the edges is simply to maintain Gred as G is

streamed in, as follows. Let S be initially empty. For each edge (u,v) in the stream, we add (u,v) to S and

then remove all edges (u′,v′) where there is a u′-to-v′ path among the stored edges.

Theorem 5.5. There is a one-pass Õ(maxq̂6q min{n/q̂,n2q̂})-space algorithm for TOPO-SORT on inputs

G∼ PlantDAGn,q presented in random order. In the worst case this space bound is Õ(n3/2).

Proof. Consider the length-T prefix of the stream where the edges of G are presented in random order. It

will be convenient to write T = n2q̂. We will argue that the number of edges in the transitive reduction of this

prefix is O(min{n/q̂, n2q̂}) with high probability; note the bound n2q̂ follows trivially because the transitive

reduction has at most T edges. The result then follows by taking the maximum over all prefixes.

We say an edge (u,v) of G is short if the difference between the ranks is rv− ru 6 τ := cq̂−2 logn where

c is some sufficiently large constant. An edge that is not short is defined to be long. Let S be the number

of short edges in G and let M be the total number of edges in G. Note that E[S] 6 (n− 1) + qτn and

E[M] = (n− 1)+ q
(

n−1
2

)
. By the Chernoff bound, S 6 2qτn and n2q/4 6 M 6 n2q with high probability.

Furthermore, the number of short edges in the prefix is expected to be T ·S/M and, with high probability, is

at most

2T ·S/M 6
4T qτn

n2q/4
= 16cn/q̂ · logn .

Now consider how many long edges are in the transitive reduction of the prefix. For any long edge (u,v), let

Xw denote the event that (u,w),(w,v) are both in the prefix. Note that the variables {Xw}w:ru+16rw6rv−1 are

negatively correlated and that

Pr [Xw = 1]> (qT/M)2/2 > q̂2/2 .

Hence, if X = ∑w:ru+16rw6rv−1 Xw then

E[X]> cq̂−2 log n · q̂2/2 = c/2 · log n

and so, by the Chernoff bound, X > 0 with high probability and if this is the case, even if (u,v) is in the prefix,

it will not be in the transitive reduction of the prefix. Hence, by the union bound, with high probability no

long edges exist in the transitive closure of the prefix.

6 Rank Aggregation

Recall the RANK-AGGR problem and the distance d between permutations, defined in Section 1.2. To recap,

the distance between two orderings is the number of pairs of objects which are ranked differently by them,

i.e.,

d(π,σ) := ∑
a,b∈[n]

1{π(a)< π(b), σ(b)< σ(a)} .

Note that RANK-AGGR is equivalent to finding the median of a set of k points under this distance function,

which can be shown to be metric. It follows that picking a random ordering from the k input orderings

provides a 2-approximation for RANK-AGGR.

A different approach is to reduce RANK-AGGR to the weighted feedback arc set problem on a tournament.

This idea leads to a (1 + ε)-approximation via ℓ1-norm estimation in a way similar to the algorithm in

20

Section 3.1. Define a vector x of length
(

n
2

)
indexed by pairs of vertices {a,b} where

xa,b =
k

∑
i=1

1{σi(a)< σi(b)} ,

i.e., the number of input orderings that have a < b. Then for any ordering π define a vector yπ , where for

each pair of vertices {a,b},
yπ

a,b = k ·1{π(a) < π(b)} .
It is easy to see that ‖x−yπ‖1 = cost(π).

As in Section 3.1, our algorithm maintains an ℓ1-sketch Sx with accuracy ε/3 and error δ = 1/(3 · n!).
By Fact 3.1, this requires at most O(ε−2n log2 n) space. In post-processing, the algorithm considers all n!

permutations π and, for each of them, computes S(x− yπ) = Sx− Syπ . It thereby recovers an estimate for

‖x−yπ‖1 and finally outputs the ordering π that minimizes this estimate.

The analysis of this algorithm is essentially the same as in Theorem 3.2. Overall, we obtain the following

result.

Theorem 6.1. There is a one-pass algorithm for rank aggregation that uses O(ε−2n log2 n) space, returns a

(1+ ε)-approximation with probability at least 2
3
, but requires exponential post-processing time.

Acknowledgements

We thank Riko Jacob for a helpful discussion about the sink finding problem. We thank the anonymous

SODA 2020 reviewers for several helpful comments that improved the presentation of the paper.

References

[1] F. Ablayev. Lower bounds for one-way probabilistic communication complexity and their application

to space complexity. Theoretical Computer Science, 175(2):139–159, 1996.

[2] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear measurements. In Proc.

23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 459–467, 2012.

[3] N. Ailon. Active learning ranking from pairwise preferences with almost optimal query complexity.

In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in

Neural Information Processing Systems 24, pages 810–818. Curran Associates, Inc., 2011.

[4] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: Ranking and clustering.

J. ACM, 55(5):23:1–23:27, 2008.

[5] S. Angelov, K. Kunal, and A. McGregor. Sorting and selection with random costs. In LATIN 2008:

Theoretical Informatics, 8th Latin American Symposium, Búzios, Brazil, April 7-11, 2008, Proceedings,

pages 48–59, 2008.

[6] M. Bateni, H. Esfandiari, and V. S. Mirrokni. Almost optimal streaming algorithms for coverage

problems. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures,

SPAA 2017, Washington DC, USA, July 24-26, 2017, pages 13–23, 2017.

[7] A. Chakrabarti, G. Cormode, and A. McGregor. Robust lower bounds for communication and stream

computation. Theor. Comput., 12(1):1–35, 2016. Preliminary version in Proc. 40th Annual ACM

Symposium on the Theory of Computing, pages 641–649, 2008.

21

[8] D. Coppersmith, L. Fleischer, and A. Rudra. Ordering by weighted number of wins gives a good

ranking for weighted tournaments. ACM Trans. Algorithms, 6(3):55:1–55:13, 2010.

[9] M. Elkin. Distributed exact shortest paths in sublinear time. In Proc. 49th Annual ACM Symposium on

the Theory of Computing, pages 757–770, 2017.

[10] G. Even, J. (Seffi) Naor, B. Schieber, and M. Sudan. Approximating minimum feedback sets and

multicuts in directed graphs. Algorithmica, 20(2):151–174, Feb 1998.

[11] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming

model. Theoretical Computer Science, 348(2-3):207–216, 2005.

[12] V. Guruswami and K. Onak. Superlinear lower bounds for multipass graph processing. Algorithmica,

76(3):654–683, Nov. 2016.

[13] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. External memory

algorithms, pages 107–118, 1999.

[14] Z. Huang, S. Kannan, and S. Khanna. Algorithms for the generalized sorting problem. In IEEE 52nd

Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October

22-25, 2011, pages 738–747, 2011.

[15] C. Jin. Simulating random walks on graphs in the streaming model. In 10th Innovations in Theoretical

Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages

46:1–46:15, 2019.

[16] A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, Nov. 1962.

[17] D. M. Kane, J. Nelson, and D. P. Woodruff. On the exact space complexity of sketching and streaming

small norms. In Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1161–1178,

2010.

[18] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors: A PTAS for weighted feedback arc

set on tournaments. Electronic Colloquium on Computational Complexity (ECCC), 13(144), 2006.

[19] S. Khan and S. K. Mehta. Depth first search in the semi-streaming model. In Proc. 36th International

Colloquium on Automata, Languages and Programming, pages 42:1–42:16, 2019.

[20] A. McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20, 2014.

[21] A. Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci., 106(2):385–390,

1992. Preliminary version in Proc. 17th International Colloquium on Automata, Languages and Pro-

gramming, pages 249–253, 1990.

[22] A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating pagerank on graph streams. J. ACM, 58(3):13,

2011.

[23] R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica, 6(2):171–185, Jun

1976.

[24] A. Yehudayoff. Pointer chasing via triangular discrimination. Technical Report TR16-151, ECCC,

2016.

22

	1 Introduction
	1.1 Results
	1.2 Models and Preliminaries

	2 General Digraphs and the Hardness of some Basic Problems
	2.1 Arbitrary Order Lower Bounds
	2.2 Random Order Lower Bounds

	3 Feedback Arc Set in Tournaments
	3.1 Accurate, One Pass, but Slow Algorithm for FAS-T
	3.2 Multiple Passes: FAS-T in Polynomial Time
	3.3 A Space Lower Bound
	3.4 An Oracle Lower Bound

	4 Sink Finding in Tournaments
	4.1 Arbitrary Order Sink Finding
	4.2 Random Order Sink Finding

	5 Topological Ordering in Random Graphs
	5.1 Arbitrary Order Algorithm
	5.2 Random Order Algorithm

	6 Rank Aggregation

