
ar
X

iv
:1

91
0.

12
17

2v
2 

 [
cs

.D
S]

  2
9 

O
ct

 2
01

9

Near-Optimal Bounds for Online Caching with Machine Learned

Advice

Dhruv Rohatgi

MIT

drohatgi@mit.edu

October 31, 2019

Abstract

In the model of online caching with machine learned advice, introduced by Lykouris and
Vassilvitskii, the goal is to solve the caching problem with an online algorithm that has access
to next-arrival predictions: when each input element arrives, the algorithm is given a prediction
of the next time when the element will reappear. The traditional model for online caching
suffers from an Ωplog kq competitive ratio lower bound (on a cache of size k). In contrast, the
augmented model admits algorithms which beat this lower bound when the predictions have low
error, and asymptotically match the lower bound when the predictions have high error, even if
the algorithms are oblivious to the prediction error. In particular, Lykouris and Vassilvitskii
showed that there is a prediction-augmented caching algorithm with a competitive ratio of
Op1`minp

a

η{opt, log kqq when the overall ℓ1 prediction error is bounded by η, and opt is the
cost of the optimal offline algorithm.

The dependence on k in the competitive ratio is optimal, but the dependence on η{opt may
be far from optimal. In this work, we make progress towards closing this gap. Our contribu-
tions are twofold. First, we provide an improved algorithm with a competitive ratio of Op1 `
minppη{optq{k, 1q log kq. Second, we provide a lower bound of Ωplogminppη{optq{pk log kq, kqq.

1 Introduction

In the online caching problem (also known as paging), we are given a sequence of elements which
arrive one at a time, and we must maintain a cache of some fixed size k. The cost of a caching
algorithm on some input is the number of cache misses. The standard goal is to design an online
algorithm with minimal competitive ratio, relative to the optimal offline algorithm.

As a fundamental problem in the study of online algorithms, caching has been extensively stud-
ied [14, 9, 3, 1]; it is well-known that the optimal competitive ratio of any deterministic algorithm
is k, and the optimal competitive ratio of any randomized algorithm is 2Hpkq´1 “ Θplog kq, where
Hpkq is the k-th harmonic number [1].

However, the traditional framework for analyzing online algorithms—namely, worst-case com-
petitive ratios—is overly pessimistic, by virtue of requiring worst-case analyses. Real-world data of-
ten satisfies nice properties—it may be predictable, or simply random, or even just not adversarial—
and for this reason, theoretically unsound algorithms can perform very well in practice. Numerous
attempts have been made to theoretically ground this observation; some of the more prominent are
average-case analyses [6, 2, 10] and smoothed analyses [15, 16], both within online algorithms and
beyond.

1

http://arxiv.org/abs/1910.12172v2


One such attempt which has recently garnered significant attention is the framework of online
algorithms with machine learned advice. In this model, the online algorithm is augmented with
an oracle that makes certain predictions about future data. In practice, this oracle is likely to be
a machine learned predictor. Since machine learning is imperfect (and can sometimes be wildly
wrong), the algorithm must incorporate the oracle’s advice judiciously, without being given any
bound on the oracle’s error. The goal is to develop an algorithm which is both consistent, in that it
nearly matches the best offline algorithm when the predictor is nearly perfect, as well as robust, in
that its worst-case performance is good even when the oracle is arbitrarily bad. The performance
of the algorithm should be bounded as a function of some measure of the oracle error, even though
the algorithm is oblivious to this error.

The ML advice model has in the past been applied to the ski rental problem [13, 4], job
scheduling [13, 12] and online revenue maximization [11]; it has also been used to achieve theoretical
and practical gains in streaming frequency estimation [5] and data structures [7]. Most relevant to
this paper is prior work by [8] in which it was shown how the model can be applied to the online
caching problem. In particular, they considered augmenting caching algorithms with an oracle
that predicts the next arrival of each element. The oracle’s ℓ1 error is defined as the sum over all
elements of the absolute difference between the element’s true and predicted next arrival. In this
model, they developed a “predictive marker algorithm” with the following guarantee:

Theorem 1. [8] The predictive marker algorithm achieves a competitive ratio of minp2`4
a

η{opt, 4Hpkqq
when the oracle has ℓ1 error of at most η, and the cost of the optimal offline algorithm is opt.

Note that the competitive ratio achieved is Opminp
a

η{opt, log kqq. This ratio is of course
(asymptotically) optimal as a function of k. However, it is an open question how far the depen-
dence on η{opt (a measure of relative error, in some sense) can be improved. In particular, it would
be interesting to understand how accurate the predictions need to be in order to provide an improve-
ment in the competitive ratio. From the previous work, it is only shown that η{opt “ oplog2 kq
suffices.

In this paper, we work with the same model, and make progress on this question. Building
upon the techniques used in [8], we provide an algorithm with an improved competitive ratio:

Theorem 2. There is an algorithm for caching with predictions that achieves a competitive ratio
of

O

ˆ

1 ` min

ˆ

1,
η{opt

k

˙

log k

˙

when the oracle has ℓ1 error of at most η.

Our bound matches the prior work when η{opt ě k (in that neither algorithm improves upon
the classical Oplog kq competitive ratio) and is strictly better when η{opt ă k. For example, if
η{opt “ k{ log k, then the prior algorithm had a competitive ratio of Oplog kq, whereas we show
that Op1q is possible.

Furthermore, we provide a lower bound, stated informally as follows:

Theorem 3. Any randomized algorithm for caching with predictions must have a competitive ratio
which is

Ω

ˆ

logmin

ˆ

η{opt

k log k
, k

˙˙

as a function of η{opt and k.
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To our knowledge, this is the only known lower bound. The upper bound and lower bound are
asymptotically tight when η{opt ď k{ log k or η{opt ě k1`ǫ. There is a still a significant gap;
the two bounds are non-trivial on disjoint regimes, and in the regime k ď η{opt ď k log k, neither
bound is non-trivial.

Nonetheless, these results make progress towards determining the largest possible error bound
that still admits a non-trivial competitive ratio. Where prior work only showed that η{opt “
oplog2 kq suffices to obtain a competitive ratio of oplog kq, the above results imply that η{opt “ opkq
suffices and η{opt ď k1`op1q is necessary.

1.1 Roadmap

In Section 2, we formally describe the online caching model with machine learned advice, and
define the predictor. We also review some facts from traditional caching algorithms (specifically,
facts about marker-based algorithms) that we will rely on later in the paper.

Having defined the necessary terminology, we then outline in Section 3 the techniques used to
achieve our results.

In Section 4, we provide the first of these results, a warm-up algorithm for caching with predic-
tions. This algorithm improves upon the prior work, and is simpler than our final algorithm (and
thus may have some practical advantages). Furthermore, as a marker-based algorithm, this first
algorithm is somewhat simpler to analyze.

In Section 5, we describe our second and final algorithm, departing from the marker-based
framework to achieve an improvement in the competitive ratio.

Finally, in Section 6, we prove the lower bound.

2 Preliminaries

2.1 Traditional caching

In the traditional online caching problem, the input is a sequence σ “ pz1, z2, . . . , znq of elements
which become available one by one. The cache has fixed size k and is initially empty. As elements
arrive, if an element is not present in the cache, then it counts as a “cache miss”, and the algorithm
must add it to the cache, and choose which cache element to evict. Otherwise nothing happens.
The cost costApσq of the algorithm A on the input σ is the number of cache misses. If the algorithm
is randomized, this cost is the expected number of cache misses.

We define optpσq to be the minimum number of caches misses achievable by an “offline”
algorithm—an algorithm which is given σ in advance. Our online algorithm A is α-competitive if
there is some constant c such that for every input σ,

costApσq ď α ¨ optpσq ` c.

It is known that there is a k-competitive deterministic algorithm and an Oplog kq-competitive
randomized algorithm. Furthermore, these ratios are optimal.

2.2 ML advice

In this paper we consider not the traditional model but rather an extension of it, in which our
algorithm is also given some advice [8]. In particular, when input element zi arrives, an oracle
gives the algorithm hipziq, which is an estimate of yi “ minjąitj : zj “ ziu, the next time when
element zi will appear (if zi never appears again, and the input sequence has length n, then we set
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yi “ n ` 1). These estimates may not be correct, and we want to bound the performance of our
algorithm as a function of the error. We define the error as the ℓ1 distance between the real and
predicted next arrivals: for each input element zi we define Erripziq “ |hipziq ´ yi|, and then define

η “
n

ÿ

i“1

Erripziq.

For any time i and input element w, we also define Lpw, iq to be the last time j ă i such that
zj “ w.

When analyzing an algorithm A in this model, the goal is to bound its competitive ratio as
a function of η{opt: more precisely, to show for a desired function α and a constant c, that
costApσq ď αpη{optq ¨ optpσq ` c for every input σ. This is the approach taken in prior work (see
Theorem 1), and we will see how η{opt arises naturally in our algorithms’ analyses. It would not
make sense for the competitive ratio to be a function of the absolute error η, since duplicating the
input sequence would double η but leave the ratio pcostApσq{optpσqq approximately unchanged.

2.3 Marker-based algorithms

Our first predictive caching algorithm will be a marker-based algorithm which judiciously incor-
porates the oracle’s advice; our second algorithm will depart from but still rely heavily on the
marker-based framework. Marker-based caching algorithms have the following structure. The exe-
cution of the algorithm comes in phases, and at the beginning of each phase, every cache element is
said to be unmarked. When a cache hit occurs, the corresponding element is marked. When a cache
miss occurs, some unmarked element is evicted from the cache, and the new element is inserted in
its place, and immediately marked. If all elements of the cache are marked and another cache miss
occurs, then the whole cache is unmarked and a new phase begins.

The decision that a marker-based algorithm has to make is which unmarked element to evict
in the event of a cache miss. In the traditional online model, the randomized marker algorithm
achieves an Oplog kq-competitive ratio by evicting a random unmarked element. Additionally, any
marker-based algorithm is k-competitive.

For any marker-based algorithm, we can make the following definition.

Definition 4. An input element is called clean for some phase r of the algorithm execution if it
appeared in phase r but did not appear in phase r ´ 1. If it appeared in both phase r and phase
r ´ 1, it is called stale.

The following lemma is known, relating the number of clean elements to the optimal offline
cost.

Lemma 5. [3] Let L be the number of clean elements in an execution of a marker-based algorithm
on some input σ. Then L{2 ď optpσq ď L.

The phases (and consequently, the clean/stale elements) are in fact independent of the exact
algorithm.

Definition 6. An arrival in phase r is an element zi which has not previously appeared in the same
phase.

Then the following fact can be readily derived for any marker-based algorithm:

Claim 7. Every phase contains exactly k arrivals.

More specifically, each phase continues as long as possible without containing k ` 1 distinct
elements.
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2.4 Eviction chains

To design and analyze marker-based algorithms, it is useful to decompose the set of cache misses
into eviction chains, a concept perhaps first explicitly utilized in [8].

For any marker-based algorithm and any phase, each clean arrival in the phase causes a cache
miss. This yields a chain of evictions in that phase which can be blamed on that clean arrival: the
clean element’s arrival evicts some element, whose next appearance evicts another element, and so
forth until an element is evicted which never reappears in the phase. Each element in the chain
must be an arrival, since elements which have previously appeared were marked and are therefore
immune to eviction for the remainder of the phase. Thus, each element in the chain after the first
clean element must be stale, since to be evicted it must have been present in the cache.

These clean-element chains account for all cache misses in the phase, since every stale element
was in the cache at the start of the phase, so for it to cause a cache miss it must have been evicted
by a previous element. So the total number of cache misses in a phase is simply the total length of
the eviction chains.

3 Our techniques and related work

Given next-arrival predictions, an algorithmically naive approach is to trust the predictions com-
pletely. The optimal offline algorithm evicts, at each cache miss, the cache element with the latest
next-arrival time. Thus, if the predictions are perfect then this approach will have a competitive
ratio of 1. However, even small errors in the predictions can lead to an unbounded prediction. So
it is necessary to balance trusting the predictions with making provably competitive decisions.

Our work builds on [8], which proposed a marker-based algorithm for caching with predictions.
Their algorithm utilizes eviction chains. Since eviction chains partition the set of cache misses,
and the number of eviction chains is equal to the number of clean arrivals, which is asymptotically
equal to opt, bounding the average chain length bounds the competitive ratio of the algorithm.
Thus, algorithms which work with each chain independently can often be cleanly analyzed. In [8],
this approach is carried out: for each eviction chain, the predictions are trusted (to choose which
element to evict next) until the chain reaches length Ωplog kq, after which evictions are random.
Each chain’s length can be bounded by the prediction error of elements in that chain. Since the
chains are disjoint, this implies a bound on the total cost of the algorithm by the total prediction
error (see Theorem 1).

As a warm-up, we first show that a small modification to the algorithm from [8] improves the
competitive ratio from Op1`minp

a

η{opt, log kqq to Op1`minplogpη{optq, log kqq. The modifica-
tion is simple—trust the predictions only once in each chain—but the analysis requires more care.
Unlike before, the length of each chain now depends on the next-arrival prediction errors of ele-
ments which may or may not appear in the chain. Thus, adding up the errors could double-count.
To avoid this issue, we do not directly bound each chain’s length by prediction error. Instead, we
charge the length of each chain against a set of inversions in the order of element arrivals relative to
the predictions. These sets of inversions are disjoint for different chains, so summing across chains
does not double count. A combinatorial lemma then relates the total number of inversions to the
total error.

To improve the competitive ratio further and achieve the bound stated in Theorem 2, we depart
from the marker-based framework. In our previous algorithm, trusting the prediction once meant
evicting the unmarked element e with latest predicted next arrival. Intuitively, if the prediction
error “per chain” is Opη{optq, then if e reappears in the same phase, it should on average be at
most Opη{optq elements away from the end of the phase. Our first algorithm would then proceed
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by random eviction of unmarked elements, so e’s eviction chain would have length Oplogpη{optqq
in expectation (for the same reason that the traditional marker algorithm has competitive ratio
Oplog kq).

However, if η{opt ! k, then a uniformly random cache element (potentially marked) will
probably not appear after e, so evicting it might terminate the eviction chain at length Op1q
instead of Oplogpη{optqq. This is the motivation for our final algorithm. However, it relies on
evicting marked cache elements, which significantly complicates the analysis, since facts about
marker-based algorithms no longer directly apply.

In particular, the number of eviction chains may no longer be Θpoptq; evicting a marked
element may cause an “extra” eviction chain in the next phase. To deal with this issue, our key
tool is a bijection from eviction chains to special elements that began the phase in the cache but
never appeared. With this bijection, we show that every extra chain can be charged against either
prediction error or a chain which does not exist but could have. An added complication is showing
that these prediction errors are disjoint.

For the lower bound, the idea is to choose an input distribution and predictions such that the
predictions give no information about the future input, but have reasonably small error. Gen-
eralizing the traditional lower bound against randomized caching algorithms—where each input
element is uniformly distributed over k ` 1 pages, so each phase has one clean element—our input
distribution consists of phases each with t clean elements, where t is a variable parameter of the
distribution. Increasing the parameter t allows smaller prediction error, at the cost of a smaller
bound on the competitive ratio.

4 Marker-based predictive algorithm

Our first algorithm lmarker is a modification of the algorithm proposed in [8], which is itself a
balance between two paradigms: trust the oracle, or ignore the oracle. A marker-based algorithm
which trusts the oracle would always evict the cache element with highest predicted next arrival;
if the oracle had zero error, this algorithm would match the optimal offline algorithm. A marker-
based algorithm which ignores the oracle is the random marker algorithm. To combine the gains
of the former algorithm when the oracle has low error with the robustness of the latter algorithm
when the oracle has high error, the algorithm from [8] uses the following strategy: for each eviction
chain, trust the oracle until the chain becomes long, and subsequently ignore the oracle.

The modification we make is simple: trust the oracle less—only once at the beginning of each
eviction chain. Intuitively, a total prediction error of η translates to an error of Θpη{optq in each of
the Θpoptq chains. Evicting the unmarked element with highest predicted next arrival means that
its true next arrival should be only Opη{optq from the end of the phase, resulting in Oplog η{optq
more cache misses for that eviction chain.

We now describe lmarker in more detail, and formalize the analysis. The chains cannot quite
be analyzed independently (unlike in [8]), so care is needed.

Algorithm description lmarker is a marker-based algorithm with the following eviction strat-
egy upon a cache miss: if the incoming element is clean, then evict the unmarked element with
the highest predicted arrival time. If the incoming element is stale, then evict a random unmarked
element.

Algorithm analysis Fix a phase. Exactly k distinct elements arrive during the phase; let
i1, . . . , ik be the times of the first arrivals for the phase. These are the only times when cache
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misses may occur, and the only times when an unmarked element becomes marked.
Consider a single clean element with arrival time it. It evicts the unmarked element with the

highest predicted arrival time, which must be either (1) a stale element with arrival time in the set
tit`1, . . . , iku or (2) an element which does not appear in this phase. Case (2) results in no more
cache misses along this chain, so we analyze case (1): some stale element is evicted. Let ieptq be
the time at which it arrives.

For any 1 ď a ď b ď k, define Napbq to be the number of stale elements which are unmarked and
in the cache at time ia, and have arrival times after ib. Let Et be the distribution over executions
of the algorithm up to time t.

Claim 8. If the clean element arriving at time it evicts the stale element arriving at time ieptq,
then the expected length of the eviction chain begun at it is at most OpEr1 ` logpNtpeptqqqsq.

Proof. Conditioning on Et, the random variable Ntpeptqq is determined. In the worst case, each
stale element evicts another stale element until this is no longer possible. There are at most
Ntpeptqq unmarked stale cache elements at time ieptq. Say that there are m such elements, and
order them 1, . . . ,m by arrival time. If zieptq

evicts the j-th such element then there will be at most
m ´ j unmarked cache elements when that element arrives. But j is uniformly distributed over
t1, 2, . . . ,mu. Thus, the expected length of the chain, conditioned on Et, is bounded by RNtpeptqq

defined by the recurrence

Rm “ 1 `
1

m

m
ÿ

j“1

Rm´j ,

which solves to Rm “ Oplogmq. By the law of total expectation, the unconditional expected length
of the chain is bounded by OpEr1 ` logpNtpeptqqqsq.

Next, fix any execution of the algorithm on the entire input. We relate Ntpeptqq to prediction
error; more specifically, we relate it to the number of inversions in the predicted arrival order of
stale elements in phase r. For each stale arrival time is, let js be the most recent appearance of zis
in phase r ´ 1. Let J “ tjs|zis is stale in phase ru be the set of most recent appearances.

If zieptq
is evicted by zit , then at time it, all unmarked stale elements w in the cache with

arrivals in the set tieptq`1, . . . , iku had earlier predicted next arrivals than zieptq
. Thus, the number

of u ą eptq for which ziu is stale and hjeptq
pzjeptq

q ě hjupzjuq is at least Ntpeptqq.
Define N “

ř

Ntpeptqq, summing over all clean arrival times it. Then the sequence of predicted
stale arrivals phjpzjqqjPJ has at least N inversions with respect to the strictly increasing integer
sequence of actual stale arrivals. It follows from Lemma 11, which we state and prove in the next
section, that

ÿ

jsPJ

|hjspzjsq ´ is| ě N{2.

Let ηr´1 be the sum of prediction errors over all predictions made in phase r ´ 1. Since J is a
set of times in phase r ´ 1, we get from the above inequality that ηr´1 ě N{2. On the other hand,
by Claim 8, the expected number of cache misses in phase r is at most E r

ř

tOp1 ` logNtpeptqqqs,
summing over all t such that it is a clean arrival time.

To simplify notation a bit, for each clean arrival time c “ it, define Nc “ Ntpeptqq. Then we
have shown that 2ηr´1 ě

ř

cPr Nc, where the sum is over clean arrivals c in phase r. Furthermore,
we have shown that

Er# of cache misses in phase rs ď
ÿ

cPr

OpEr1 ` logpNcqsq ď
ÿ

cPr

Op1 ` logpErNcsqq

7



by Jensen’s inequality.
Now sum over all phases. The number of cache misses is OpL `

ř

c logpErNcsqq, where the sum
is over the L clean arrivals in all phases. And we know that 2η ě

ř

cNc for all executions, implying
that 2η ě

ř

c ErNcs. By another application of Jensen’s inequality, the expected number of cache
misses can be bounded by OpL ` L logp2η{Lqq.

Since we also know that Nc ď k for any clean arrival c, we can alternately bound the number
of cache misses by OpL ` L log kq.

Combining the two bounds and using the fact that L “ Θpoptq, we have proven the following
theorem.

Theorem 9. The algorithm lmarker has competitive ratio Op1 ` minplogpη{optq, log kqq, where
η is the unknown ℓ1 prediction error.

Let Hpmq be the m-th harmonic number. We can keep track of the exact constants in the
proof, rather than using asymptotic notation:

Theorem 10. The algorithm lmarker has competitive ratio 4 ` 2Hpminp2η{opt, kqq, where η is
the unknown ℓ1 prediction error.

4.1 Proof of combinatorial lemma

Let M “ pm1, . . . ,mnq be a strictly increasing integer sequence. For any integer sequence A “
pa1, . . . , anq let invpAq be the number of pairs of indices i ă j such that ai ě aj. Let costpAq “
řn

i“1 |ai ´ mi|, and define ∆pAq “ 2 costpAq ´ invpAq.

Lemma 11. Let A “ pa1, . . . , anq be an arbitrary integer sequence. Then invpAq ď 2 costpAq, with
invpAq and costpAq as defined above.

Proof. Without loss of generality we can assume that all elements of A are bounded between m1

and mn, since outliers can be thresholded without decreasing invpAq or increasing costpAq. So the
set of sequences is finite. Let B “ pb1, . . . , bnq be a sequence which minimizes ∆, and assume that
B has the maximum possible sum of elements out of all sequences minimizing ∆.

Suppose that B were to have a strict inversion. Then there is some 1 ď i ă n such that bi ą bi`1.
Define two sequences Bl and Bh so that bli “ bi`1 and bhi`1 “ bi, and in all other locations Bl and
Bh agree with B. Then by construction,

invpBq ´ invpBlq “ invpBhq ´ invpBq.

Furthermore,

costpBq ´ costpBlq “ |bi ´ mi| ´ |bi`1 ´ mi|

ě |bi ´ mi`1| ´ |bi`1 ´ mi`1|

“ costpBhq ´ costpBq

since mi ă mi`1, and the function |bi ´ x| ´ |bi`1 ´ x| is non-increasing. It follows from the above
inequalities and the optimality of B that

∆pBhq ´ ∆pBq ď ∆pBq ´ ∆pBlq ď 0.

Therefore Bh minimizes ∆ as well. But it has a larger sum of elements than B. Contradiction.
So we know that B is non-decreasing, and thus invpBq is exactly the number of pairs of equal

elements. But a constant sequence of length l has cost at least
`

l
2

˘

{2, and contributes only
`

l
2

˘

pairs
of equal elements. Partitioning B into constant sequences, we get invpBq ď 2 costpBq.
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5 Improved algorithm

In the previous section, we saw that using the predictions once at the beginning of each eviction
chain takes the chain most of the way through the phase; random evictions of unmarked elements
are then used until the chain ends. Suppose that the second element of an eviction chain does
not reappear until Opη{optq steps away from the end of the phase. Then evicting a uniformly
random element of the cache—marked or unmarked—would terminate the chain immediately with
probability 1 ´ Oppη{optq{kq.

In this section we present an improved algorithm lnonmarker motivated by the above obser-
vation. As the name may suggest, it is not quite a marker-based algorithm, and we need to give
some new names to familiar concepts:

Definition 12. For any input sequence z and cache size k, the phases of the input sequence are
defined recursively as follows: phase r begins right after the end of phase r´ 1, and extends as long
as possible without containing k ` 1 distinct elements.

Definition 13. Fix an algorithm. An input element is called initial for some phase r if it appeared
in phase r, and was present in the cache at the beginning of phase r. If it appeared in phase r but
was not present in the cache at the beginning of the phase, it is called non-initial.

Note that the definition of phases given here coincides with the phases of any marker-based
algorithm. This definition is algorithm-independent, and thus is also useful for non-marker-based
algorithms. For any marker-based algorithm, the definitions of clean and non-initial coincide, as do
the definitions of stale and initial. However, it can be seen that these may diverge in the execution
of a non-marker-based algorithm. Some facts about clean and stale elements which we used in the
previous section are now facts about initial and non-initial elements:

Claim 14. Every phase contains exactly k arrivals. Every non-initial arrival causes a cache miss.
Every other cache miss in the phase was caused by some previous cache miss in the same phase.

Thus, in analogy with clean arrivals, every non-initial arrival heads an eviction chain, and the
eviction chains partition the set of cache misses. However, unlike before, not all cache misses are
necessarily upon arrivals: an element might arrive, be evicted, and reappear all in one phase.

Algorithm description The new algorithm lnonmarker still maintains markings on cache
elements. At the beginning of each phase, all cache elements are unmarked. Whenever a cache hit
occurs, the element is marked. Whenever a cache miss occurs, the algorithm evicts some element
and marks the new element. In particular, the algorithm has the following eviction strategy upon
a cache miss: if the incoming element was non-initial, then evict the unmarked element with the
highest predicted arrival time. If the incoming element was evicted by a non-initial element, then
evict a uniformly random element of the cache (not necessarily unmarked). In all other cases, evict
a uniformly random unmarked element.

Before analyzing the algorithm, we must show that it is in fact well-defined.

Claim 15. At any cache miss, there is at least one unmarked element. Thus, the algorithm is
well-defined.

Proof. Each marked element of the cache must have appeared in the current phase. The element
which caused the cache miss is, of course, distinct from all elements of the cache. Since the phase
contains at most k distinct elements, the cache contains at most k ´ 1 marked elements.
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Algorithm analysis Fix a phase r in which the set of elements is A. Fix a single execution of
the algorithm. Let S be the cache at the beginning of phase r. Then AzS is the set of non-initial
elements, and SzA is the set of cache elements which do not arrive in phase r. Two facts relate
these sets:

• For each non-initial element c, the corresponding eviction chain evicts at most one element
of SzA.

• Every x P SzA is evicted at most once in the phase: x does not appear in the phase, so after
it is evicted it will not return to the cache.

Together with the observation that |A| “ |S| “ k, these facts imply that there is a bijection
f : AzS Ñ SzA such that if c’s chain evicts x P SzA then fpcq “ x. For any c P AzS such that c’s
chain does not evict any element of SzA, we set fpcq arbitrarily, subject to the condition that f is
a bijection.

By Claim 14, the number of cache misses in phase r is the total length of the eviction chains
headed by the non-initial elements of phase r. Let c be one such non-initial element, with eviction
chain of length lengthpcq, which arrives at time tc and evicts some unmarked element e. Suppose
e reappears in the phase. Let Npcq be the number of first arrivals after e in the same phase, and
let N˚pcq be the number of distinct elements after e (not necessarily first arrivals).

The above definitions were made for a single execution, but the algorithm defines a distribution
E over executions. Let Er be the distribution of executions of the first r ´ 1 phases, and let Etc be
the distribution of executions through time tc.

Conditioned on Er, the non-initial elements c are determined, but N˚pcq and Npcq are random
variables (over the randomness of the algorithm). Defining lengthpcq “ 0 and N˚pcq “ 0 if c is not
a non-initial element or if e does not reappear in the phase, we get the following result.

Claim 16. For any element c in phase r,

EE rlengthpcq|Ers ď α ¨ EE

„

1 `
N˚pcq

k
logNpcq

ˇ

ˇ

ˇ

ˇ

Er



for an absolute constant α.

Proof. Condition on Etc . Then e is determined, and N˚pcq and Npcq are determined. If e does
not reappear in the phase, then Erlengthpcq|Etc s “ 0. Suppose otherwise. Since e evicts a random
element g from the cache, the probability that g subsequently appears during the same phase is at
most p “ N˚pcq{k. If g does appear, the eviction chain continues by random eviction of unmarked
elements, until an evicted element is not in A. The number of unmarked elements at the time of
g’s cache miss which are present in A is at most Npcq, since any element which arrived earlier in
the phase is either marked or no longer in the cache. Thus, by the same argument as in Claim 8,
the expected length of the chain is OplogNpcqq, conditioned on g’s cache miss. Since the length is
Op1q if g does not appear, it follows that Erlengthpcq|Etc s is at most O p1 ` p logNpcqq. Taking the
expectation over Etc |Er yields the claimed result.

Now we want to bound N˚pcq in terms of the predictor error. We condition on the entire
execution of the algorithm: that is, the following lemmas hold deterministically for all executions.

Lemma 17. For any chain pc, e, . . . q in which e reappears after eviction, let t be c’s arrival time.
Let r1 be the next phase in which fpcq arrives. Then

ErrLpfpcq,tqpfpcqq ` ErrLpe,tqpeq ě N˚pcq ` kpr1 ´ r ´ 1q.

10



Proof. Note that fpcq is an unmarked element of the cache at time t. It does not appear in phase r,
so if phase r`1 begins at time tr`1 then fpcq does not appear until at least time tr`1`kpr1 ´r´1q,
but its predicted next appearance hLpfpcq,tqpfpcqq satisfies hLpfpcq,tqpfpcqq ď hLpe,tqpeq, since e was
the unmarked cache element which maximized predicted arrival at time t. The next appearance of
e is no later than time tr`1 ´ N˚pcq, since at least N˚pcq elements lie between e’s appearance and
the end of the phase. So ErrLpfpcq,tqpfpcqq ` ErrLpe,tqpeq ě N˚pcq ` kpr1 ´ r ´ 1q.

Remark 1. There is an edge case in Lemma 17 if fpcq never appears after phase r and the last
phase has less than k elements. In this case the inequality in Lemma 17 can be off by as much
as k. However, when the lemma is applied in Lemmas 19 and 20, the applications almost always
implicitly weaken the inequality by at least k anyway. Each application where the inequality is not
weakened corresponds to a chain in one of the last two phases. There are only Opkq such chains,
each causing a discrepancy of at most k. To make the lemmas hold, it therefore suffices to replace
η by η ` Opk2q. However, Opk2q is bounded as the input length and opt grow, so the competitive
ratio is unaffected.

Next we would like to sum the inequality given by Lemma 17 across all chains in all phases,
to bound

ř

N˚pcq in terms of the total prediction error. Within a single phase, fpcq and e each
uniquely determine c, so the error of each prediction is counted at most once. However, the error of
a single prediction may be counted in multiple chains in successive phases. The following lemmas
do a more careful summation, taking into consideration the double-counting.

Lemma 18. For distinct times t1, t2 suppose c1 “ zt1 and c2 “ zt2 are non-initial elements of
phases r1 and r2, which evict e1 and e2 respectively. Suppose that e1 and e2 reappear after eviction.
Then Lpe1, t1q ‰ Lpe2, t2q.

Proof. If equality were to hold, then e1 “ e2 “ w for some w. Note that w is evicted at c1’s
arrival, and w is evicted at c2’s arrival, but w is unmarked both times. So the evictions occurred
in different phases. Without loss of generality suppose that r1 ă r2. Then w appeared in phase r1
after eviction by c1, so Lpw, t1q ă Lpw, t2q.

Lemma 19. Summing over all chains pc, e, . . . q in which e reappears after eviction,

ÿ

c

N˚pciq ď 3η

where η is the total prediction error.

Proof. Fix a time t and consider the set of chains pci, ei, . . . q such that Lpfpciq, tiq “ t, where ti is
the arrival time of ci: that is, fpciq “ zt and the most recent appearance of fpciq prior to time ti
was at time t. Each chain is in a different phase, since f is injective for any one phase. If there are
mt such chains in phases r1 ă ¨ ¨ ¨ ă rmt

, then zt does not appear after time t until phase rmt
` 1

or later. Applying Lemma 17 to each of the mt chains and summing, we get

mt Errtpztq `
mt
ÿ

i“1

ErrLpei,tiqpeiq ě k
mtpmt ´ 1q

2
`

mt
ÿ

i“1

N˚pciq ě
mt
ÿ

i“1

mt ` 1

2
N˚pciq.

Dividing both sides by pmt ` 1q{2, we get that

2Errtpztq `
m
ÿ

i“1

ErrLpei,tiqpeiq ě
mt
ÿ

i“1

N˚pciq.

11



Now sum over all times t. By Lemma 18, all Lpei, tiq are distinct, so the corresponding errors sum
to at most η. Thus, we have

3η ě
ÿ

c

N˚pciq

summing over all chains pc, e, . . . q in which e reappears after eviction.

Finally, we must bound the number of eviction chains C across all phases. In a marker-based
algorithm we would have C “ L, with one chain per clean element. But here there is one chain per
non-initial element, and not all non-initial elements are clean (and vice versa). Nonetheless, we can
still bound the discrepancy C ´L against the prediction error. The intuition for the following proof
is that any “extra” non-initial element must have been caused by eviction of a marked element in
the previous phase. But for each chain which ends by evicting a marked element, one less unmarked
element is evicted. So whereas in a marker-based algorithm, every cache element which did not
appear in a given phase would be evicted by the end of the phase, in this algorithm some absent
elements might remain in the cache. These elements have the potential to be clean in the next
phase and yet not start eviction chains. Hence, in one case an extra chain can be charged against a
non-existent chain. In the other case—when the absent element does not appear in the next phase
either—the extra chain can be charged against prediction error.

Lemma 20. If C is the number of non-initial elements across all phases, L is the number of clean
elements, and η is the total prediction error, then η ě kpC ´ Lq{2.

Proof. Suppose some non-initial element g in phase r ` 1 is not clean. Then it appeared in phase
r, but was not in the cache at the end of phase r. In the last eviction of g during phase r, g was
already marked. So by the algorithm design, that eviction must be third in some eviction chain
pc, e, gq, where c is some non-initial element in phase r. Then fpcq does not appear in phase r.
Nonetheless, fpcq is not in c’s eviction chain, since g is the unique element in c’s eviction chain
which does not reappear in phase r. Furthermore, by definition of f , no other chain in phase r

evicts fpcq, so it is in the cache at the end of phase r. There are two cases:

1. fpcq appears in phase r ` 1. Then fpcq is clean and initial in phase r ` 1.

2. fpcq does not appear in phase r ` 1. Let r1 be the next phase in which fpcq does appear.
Then if t is the arrival time of c, by Lemma 17

ErrLpfpcq,tqpfpcqq ` ErrLpe,tqpeq ě kpr1 ´ r ´ 1q.

The composed map g ÞÑ c ÞÑ fpcq is injective for fixed phase r, since g is determined by the
eviction chain of c, and f is injective for a fixed phase. If case (2) never occurred, then every non-
initial, non-clean element in phase r ` 1 would be injectively mapped to an initial, clean element
in phase r ` 1, so we would have C ď L. More generally, case (2) occurs for at least C ´ L chains.
Each case (2) chain provides an inequality bounding two prediction errors by at least k, and ideally
we would simply add up the inequalities to bound η. However, some predictions may be counted
in several of the inequalities.

By Lemma 18, all terms ErrLpe,tqpeq in the inequalities are contributed by different predictions—
i.e. adding up those error terms does not double-count.

Consider a fixed time t. Consider the set of case-(2) chains pci, ei, giq such Lpfpciq, tiq “ t,
where ti is the time of ci’s arrival. Each chain is in a different phase, since f is injective for any one

12



phase. If there are mt such chains in phases r1 ă ¨ ¨ ¨ ă rmt
, then zt does not appear after time t

until phase rmt
` 2 or later. So the case-(2) inequality applied to the earliest chain pc1, e1, g1q gives

Errtpztq ` ErrLpe1,t1qpe1q ě kprmt
` 1 ´ r1q ě kmt.

Summing the above inequality over all times t, each prediction error is counted at most twice—
once as the first term and once as the second—whereas

ř

tmt ě C ´L as previously shown. Hence,
2η ě kpC ´ Lq, as desired.

With the above error/performance bounds in hand, we can prove a bound on the competitive
ratio of the algorithm.

Theorem 21. The algorithm lnonmarker achieves a competitive ratio of

O

ˆ

1 `
η{opt

k
log k

˙

when the prediction error is no more than η.

Proof. Fix any phase r. Then for any execution Er of the first r ´ 1 phases,

Er# cache misses in phase r|Er “ Ers “
ÿ

pc,e,... qPr

Erlengthpcq|Er “ Ers,

summing over chains in phase r.
By Claim 16, the right hand side is bounded by

αCr ` α
log k

k
E

»

–

ÿ

pc,e,... qPr

N˚pcq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Er “ Er

fi

fl ,

where Cr is the number of chains in phase r, and α is a constant. Applying law of total expectation
and then summing over all phases,

Er# cache missess ď αErCs ` α
log k

k
E

»

–

ÿ

pc,e,... q

N˚pcq

fi

fl .

From Lemma 20, the inequality C ď 2η{k ` L holds for all executions, and therefore in expec-
tation. From Lemma 19, the inequality

ř

cN
˚pcq ď 3η holds for all executions, where c ranges

over chains pc, e, . . . q where e reappears after eviction. Recall that N˚pcq was defined to be 0 for
all other chains. So we get that

Er# cache missess ď 2α
η

k
` αL ` 3α

η

k
log k.

Recalling from Lemma 5 that L{2 ď opt, the competitive ratio follows.

The above algorithm has one flaw: it does not satisfy any robustness guarantee (at least, that
has been proven), since as η{opt Ñ 8 the bound on the number of chains disappears, and the
competitive ratio becomes potentially unbounded. This can be resolved (albeit in a somewhat
unsatisfactory manner) by appealing to a black-box simulation theorem. For concreteness, we
recall the following theorem:

13



Theorem 22. [8] Let A,B be algorithms for the caching problem with competitive ratios of α and
β respectively. Then there is a black box algorithm ALG with a competitive ratio of 9minpα, βq.

The black box algorithm in the above theorem proceeds by simulating A and B and switching
between them whenever one starts to heavily outperform the other. The proof generalizes without
change to the learned caching problem. Since there is an Oplog kq-competitive algorithm for learned
caching which simply ignores the predictions, Theorem 22 implies that we can obtain an Oplog kq
worst-case guarantee for our predictive caching algorithm with only an extra constant factor loss:

Corollary 23. There is an algorithm for caching with predictions that achieves a competitive ratio
of

O

ˆ

1 ` min

ˆ

1,
η{opt

k

˙

log k

˙

.

Tracing through the proof, it turns out that the exact bound is as follows:

Corollary 24. There is an algorithm for caching with predictions that achieves a competitive ratio
of

9min

ˆ

4 ` 7
η{opt

k
` 3

η{opt

k
Hpkq, 2Hpkq

˙

.

For example, as η{opt Ñ 0, the competitive ratio of lnonmarker approaches 4, and so the
competitive ratio of this black box algorithm approaches 36.

6 Lower bound

In this section we provide a lower bound against predictive caching algorithms. The basic strategy is
to construct a distribution of inputs and predictions such that the relative prediction error η{opt
is not too high, but any deterministic algorithm which has access to those predictions suffers a
large number of cache misses in expectation, relative to opt. Yao’s minimax principle then implies
a lower bound against the competitive ratios of randomized algorithms at that level of relative
prediction error.

More specifically, the input distribution and predictions will be chosen such that any prefix of
the input completely determines the state of the algorithm. Furthermore, each prefix is sufficiently
independent of future inputs that the algorithm can essentially do no better than (a) keeping
previously-seen elements in the cache (for the duration of the phase), and (b) guessing arbitrarily
for the remaining unseen elements.

Fix k and n. Let 1 ď t ď k be picked later; it is a free parameter which will determine
the relative prediction error η{opt. Let Ω be the set of sequences that can be constructed in
the following manner. Let C1 “ t1, . . . , tu and let S1 “ tt ` 1, . . . , ku. For all 2 ď r ď n, let
Cr “ rk` tszpCr´1 YSr´1q and let Sr be an arbitrary subset of Cr´1 YSr´1 of size k´ t. Then each
sequence of Ω is constructed as the concatenation of n phases, where phase r consists of 3k log k
elements of Cr YSr (possibly with some omissions and necessarily with some repetitions), followed
by a single copy of Cr Y Sr in increasing order, without repetitions.

That is, each phase has length m “ 3k log k ` k. Each phase r has t clean elements Cr (which
did not appear in the previous phase) and k´ t stale elements Sr (which did appear). For any fixed
r ą 1, a uniformly random sequence of Ω, conditioned on Cr, has a uniformly random set of stale
elements Sr. Furthermore, conditioned on Cr and Sr, each of the first 3k log k elements of phase r

is independent and uniformly distributed over Cr Y Sr.
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We must also define the predictions for a fixed sequence. For the first 3k log k elements of phase
r, each prediction is the subsequent timestep (i.e. hpziq “ i ` 1). For the final copy of Cr Y Sr,
each prediction is the end of phase r ` 1.

Claim 25. The overall prediction error is Opnk2 log kq, where n is the number of phases in Ω.

Proof. Fix a phase r. Among the first 3k log k elements of the phase, there are at most k distinct
elements. For each, the prediction error telescopes to at most 3k log k ` k. For each of the k

elements in the final copy of Cr Y Sr, the true next arrival is either in phase r ` 1 or phase r ` 2,
so the error is at most Opk log kq. Thus, the error in phase r is Opk2 log kq.

Now we would like to lower bound the average cache misses of any algorithm on Ω. We must
first give some simplifying notation and a probabilistic lemma:

For any time T in phase r, let „T be the equivalence relation on Ω where sequences z and z1

are equivalent if zj “ z1
j for j ď T . Observe that z „T z1 implies that hpzjq “ hpz1

jq for all j ď T

by how the predictions were constructed. Thus, for any equivalence class rzsT of „T , the algorithm
has identical executions on sequences in rzsT up to time T .

For z P Ω and time T , let Cz,T be the cache at time T on input rzsT .

Lemma 26. Fix k, l with 2 ď l ď k. Let X1, . . . ,X3k log k be independent random variables
uniformly distributed over rks. Let Yi be the number of distinct elements in tX1, . . . ,Xiu X rls and
for 0 ď j ă l let Tj be the number of i such that Yi “ j. Then ErTjs ě k{pl ´ jq ´ 1{k.

Proof. Extend the sequence X to an infinite sequence. Extend Y accordingly, and define T̂j as the
number of steps in the infinite sequence at which Yi “ j. For 0 ď j ă l, let Sj “ T0 ` ¨ ¨ ¨ ` Tj and
Ŝj “ T̂0 ` ¨ ¨ ¨ ` T̂j . Then Sj “ minpŜj, 3k log kq, so

ErTjs ě ErminpŜj , 3k log kqs ´ ErŜj´1s

“ ErT̂js ´ ErpŜj ´ 3k log kq1
Ŝjě3k log k

s.

For the first term, T̂j is a geometric random variable and ErT̂js “ k{pl ´ jq. For the second,

ErpŜj ´ 3k log kq1
Ŝjě3k log k

s ď
8
ÿ

c“3k log k

PrrŜj ě cs.

Observe that for any c, if Ŝj ě c then Yc ď j ă l, which occurs with probability at most
l p1 ´ 1{kqc . It follows that

ErpŜj ´ 3k log kq1
Ŝjě3k log k

s ď
8
ÿ

c“3k log k

l

ˆ

1 ´
1

k

˙c

ď
1

k
.

We conclude that ErTjs ě k{pl ´ jq ´ 1{k.

Theorem 27. For any deterministic algorithm with access to the predictions h, the expected number
of cache misses achieved on an input sampled uniformly at random from Ω is at least

O

ˆ

nt log
k

t

˙

.
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Proof. There are n phases in Ω. Fix a phase r. We claim that the expected number of cache misses
in phase r is at least Opt log k{tq.

Recall that each phase has length m “ 3k log k ` k. Let T “ pr ´ 1qm: the final index of phase
r ´ 1. Fix z P Ω. Fix 1 ď i ď k log k and consider any class rwsT`i Ď rzsT . Picking a sequence
W P rwsT`i uniformly at random, the clean elements Cr and the cache CW,T`i are determined, but
Sr is a random variable. Let Sseen be the set of elements which have already been seen in phase
r by time T ` i, excluding Cr. Then Sr must contain Sseen, but SrzSseen is a uniformly random
subset of rk ` tszpCr Y Sseenq of size k ´ t ´ |Sseen|. Hence,

Pr
W

rcache hit on WT`is “
ÿ

Ŝ

Pr
W

rSr “ ŜsPr
W

rcache hit on WT`i|Sr “ Ŝs

“
ÿ

Ŝ

Pr
W

rSr “ Ŝs
|CW,T`i X pCr Y Ŝq|

k

“
|CW,T`i X pCr Y Sseenq| ` EW |CW,T`i X pSrzSseenq|

k

If |CW,T`i X pCr Y Sseenq| “ a, then CW,T`i contains k ´ a elements in rk ` tszpCr Y Sseenq, each of
which is contained in SrzSseen with probability pk´t´|Sseen|q{pk´|Sseen|q. So the above expression
is maximized when a “ |Cr Y Sseen| “ k ` t. Thus,

Pr
W

rcache hit on WT`is ď
t ` |Sseen| ` pk ´ t ´ |Sseen|q ¨ k´t´|Sseen|

k´|Sseen|

k
.

Simplifying, it follows that

Pr
W

rcache miss on WT`is ě
t

k

k ´ t ´ |Sseen|

k ´ |Sseen|
.

If Z P rzsT is chosen uniformly at random, then for any 0 ď N ă k ´ t, the expected number
of times at which |Sseen| “ N is at least k{pk ´ t ´ Nq ´ 1{k ě k{p2pk ´ t ´ Nqq by Lemma 26.
Summing over N , the expected number of cache misses in phase r on input Z is at least

k´t´1
ÿ

N“0

t

k

k ´ t ´ N

k ´ N

k

2pk ´ t ´ Nq
“

k´t´1
ÿ

N“0

t

2pk ´ Nq
ě

t

2

ˆ

1

t ` 1
` ¨ ¨ ¨ `

1

k

˙

“ Ωpt log k{tq.

Since the equivalence classes of „T partition Ω, and the above bound holds for each class, it holds
for Ω as desired.

Now for any fixed “relative prediction error” ǫ with k log k ď ǫ ď k2 log k, we can pick t “
pk2 log kq{ǫ. Then every sequence in Ω has nt clean elements, and thus opt “ Θpntq. Furthermore,
by Claim 25, we have η ď nk2 log k. Thus, η{opt ď ǫ.

But by Theorem 27, any deterministic algorithm requires nt log k{t cache misses in expectation
on Ω. By Yao’s minimax principle, for any randomized algorithm there is some input z P Ω for
which the algorithm incurs nt log k{t cache misses in expectation. Hence, we have the following
result:

Theorem 28. Let A be a randomized online algorithm for caching, which has access to next-arrival
predictions. For any ǫ, the algorithm achieves competitive ratio no better than

Ω

ˆ

logmin

ˆ

ǫ

k log k
, k

˙˙

when restricted to inputs with η{opt ď ǫ.
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