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Abstract

We design a nonadaptive algorithm that, given oracle access to a function f : {0, 1}n → {0, 1}
which is α-far from monotone, makes poly(n, 1/α) queries and returns an estimate that, with

high probability, is an Õ(
√
n)-approximation to the distance of f to monotonicity. The analysis

of our algorithm relies on an improvement to the directed isoperimetric inequality of Khot,
Minzer, and Safra (SIAM J. Comput., 2018). Furthermore, we rule out a poly(n, 1/α)-query
nonadaptive algorithm that approximates the distance to monotonicity significantly better by
showing that, for all constant κ > 0, every nonadaptive n1/2−κ-approximation algorithm for
this problem requires 2n

κ

queries. This answers a question of Seshadhri (Property Testing
Review, 2014) for the case of nonadaptive algorithms. We obtain our lower bound by proving
an analogous bound for erasure-resilient (and tolerant) testers. Our method also yields the same
lower bounds for unateness and being a k-junta.

Keywords – sublinear algorithms, analysis of Boolean functions, property testing, tolerant and
erasure-resilient testing.

1 Introduction

Property testing [59, 42] was introduced to provide a formal model for studying algorithms for
massive datasets. For such algorithms to achieve their full potential, they have to be robust to
adversarial corruptions in the input. Tolerant property testing [55] and, equivalently1, distance
approximation, generalize the standard property testing model to allow for errors in the input.

In this work, we study the problem of approximating the distance to several properties of
Boolean functions, with the focus on monotonicity. A function f : {0, 1}n → {0, 1} is monotone
if f(x) ≤ f(y) whenever x � y, i.e., xi ≤ yi for all i ∈ [n]. The (relative) distance between two
functions over {0, 1}n is the fraction of the domain points on which they differ. Given a function f
and a set P (of functions with the desired property), the distance from f to P, denoted dist(f,P),
is the distance from f to the closest function in P. Given α ∈ (0, 1/2), a function is α-far from P
if dist(f,P) ≥ α; otherwise, it is α-close. The distance of a function f to monotonicity is denoted

∗This work was done in part while the authors were visiting the Simons Institute for the Theory of Computing.
A preliminary version of this work appeared in the proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2020 [54].
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1A distance approximation algorithm can be easily converted to a tolerant tester and vice versa, with at most a
logarithmic increase in the query complexity. See [55] and Section 1.1.5 for a discussion of the relationship.
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εf . We study randomized algorithms which, given oracle access to a Boolean function, output
an approximation to εfby making only a small number of queries. Specifically, given an input
function f : {0, 1}n → {0, 1} which is promised to be at least α-far from monotone, an algorithm
that achieves a c-approximation for c > 1 should output a real number ε̂ ∈ (0, 1) that satisfies, with
probability at least 2/3,

εf ≤ ε̂ ≤ c · εf .

Our goal is to understand the best approximation ratio c that can be achieved2 in time polynomial
in the dimension n and 1/α.

Definition 1.1 (Hypercube, edge, i-edge, decreasing edge). The points of the domain {0, 1}n can
be viewed as vertices of an n-dimensional hypercube. Two vertices x, y ∈ {0, 1}n form an edge
{x, y} of the hypercube if they differ in exactly one coordinate. An edge {x, y} is an i-edge (or an
edge along dimension i) if x and y differ only in their ith coordinates, that is, xi 6= yi, but xj = yj
for all j ∈ [n] \ {i}. An i-edge is decreasing with respect to a function f if xi < yi but f(x) > f(y).

Fattal and Ron [35] investigated a more general problem of approximating the distance to
monotonicity of functions on the hypergrid [t]n. They gave several algorithms which achieve an
approximation ratio O(n) in time polynomial in n and 1/α; for better approximations, they designed
an algorithm with the approximation ratio n/k, for every k, but with running time exponential
in k. It follows from early works on monotonicity testing that for the special case of the hypercube
domain, an O(n)-approximation can be obtained by simply estimating the fraction νf of edges
that are decreasing with respect to f . For a Boolean function f : {0, 1}n → {0, 1}, as shown
in [33, 56, 41, 39], εf/n ≤ νf ≤ 2εf . Thus, by obtaining a constant-factor approximation to the
fraction of decreasing edges, one gets an O(n)-approximation to εf .

Prior to our work, no nontrivial hardness results were known for approximating the distance to
monotonicity, other than the corresponding lower bounds on (standard) property testing.

1.1 Our Contributions

All our results are on nonadaptive algorithms. An algorithm is nonadaptive if it makes all of its
queries in advance, before receiving any answers; otherwise, it is adaptive. Nonadaptive algorithms
are especially straightforward to implement and achieve maximal parallelism. Additionally, every
nonadaptive algorithm that approximates the distance to monotonicity of Boolean functions can be
easily converted to an algorithm for approximating the Lp-distance to monotonicity of real-valued
functions [7].

1.1.1 Approximating the Distance to Monotonicity

We design a nonadaptive Õ(
√
n)-approximation algorithm for the distance to monotonicity that

runs in time polynomial in the number of dimensions, n, and 1/α. Our algorithm improves on the
O(n)-approximation obtained by Fattal and Ron [35].

2An equivalent way of stating this type of results is to express the approximation guarantee in terms of both
multiplicative and additive error, but with no lower bound on the distance. Purely multiplicative approximation
would require correctly identifying inputs with the property, which generally cannot be achieved in time sublinear in
the size of the input.
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Theorem 1.2 (Approximation Algorithm). There is a nonadaptive (randomized) algorithm that,
given a parameter α ∈ (0, 1/2) and oracle access to a Boolean function f : {0, 1}n → {0, 1} which
is α-far from monotone, makes poly(n, 1/α) queries and returns an estimate that, with probability
at least 2/3, is an Õ(

√
n)-approximation to εf .

Our algorithm works by estimating (in addition to the fraction νf of decreasing edges) the size of
a particular matching from a class of matchings parameterized by subsets S ⊆ [n] and consisting of
decreasing edges along the dimensions in S. For every S, the size of a matching of decreasing edges,
divided by 2n, is a lower bound for εf . This is because any monotone function g : {0, 1}n → {0, 1}
must disagree with f on at least one endpoint of each decreasing edge. The important feature of
this class of matchings is that the membership of a given edge in a specified matching can be verified
locally by querying f on the endpoints of the edge and their neighbors. To analyze our algorithm,
we use a slightly improved version of the (robust) directed isoperimetric inequality by Khot et
al. [45]. Our improvements to isoperimetric inequalities of [45] are discussed in Section 1.1.2 and
stated in Theorems 2.9 and 1.3. Intuitively, if the input function f is Õ(ε/

√
n)-close to monotone,

then both the fraction of violated edges and the normalized sizes of all matchings considered by
our algorithm are below some threshold Θ̃(ε/

√
n). We use Theorem 2.9 to show (in Lemma 2.8)

that if f is ε-far from monotone, then either νf is above the threshold or our algorithm is likely

to sample some set S ⊆ [n] where the corresponding matching has normalized size Ω̃(ε/
√
n). This

allows us to get an Õ(
√
n)-approximation to the distance to monotonicity.

1.1.2 Improvements in the Isoperimetric Inequalities from [45]

In Section 3, we give a sketch of the proof of slightly improved versions of the isoperimetric in-
equalities of Khot et al. [45, Theorems 1.6 and 1.9]. The improved version of [45, Theorem 1.6] is
stated next.

For all x ∈ {0, 1}n, define the negative influence I−f (x) to be equal to 0 if f(x) = 0 and equal to
the number of decreasing edges incident on x if f(x) = 1. Note that each decreasing edge “counts”
towards the endpoint with the function value 1.

Theorem 1.3 (Improvement of Theorem 1.6 from [45]). For every function f : {0, 1}n → {0, 1},

E
x∼{0,1}n

[√
I−f (x)

]
= Ω(εf ). (1)

The improved version of [45, Theorem 1.9] is Theorem 2.9 that appears later. It is a robust
version of Theorem 1.3. Specifically, it holds for every 2-coloring of the edges of f . The color of
each decreasing edge indicates whether it should be “counted” towards the endpoint with value 1
or the endpoint with value 0, and the negative influence is generalized accordingly to the robust
version.

Theorems 1.6 and 1.9 in [45] state that the left-hand side of (1) (and similarly its counterpart
(4) in Theorem 2.9) is Ω(

εf
logn+log(1/εf )). We slightly modify the proof of [45] to get a stronger lower

bound of Ω(εf ). Using the original, weaker inequality for our algorithm would result in an approx-
imation to the distance to monotonicity within a multiplicative factor of

√
n ·poly(log n, log(1/α)).

This would mean that our algorithm is an Õ(
√
n)-approximation only if εf ≥ 1/2poly(log(n)).
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1.1.3 Lower Bounds for Monotonicity, Unateness, and Being a k-Junta

We show that a slightly better approximation for the distance to monotonicity, specifically, with a
ratio of n1/2−κ for an arbitrarily small constant κ > 0, requires exponentially many queries in nκ

for every nonadaptive algorithm.

Theorem 1.4 (Approximation Lower Bound). For all constant κ ∈ (0, 1/2), there exist α =
O(1/n1−κ) and ε = Ω(1/

√
n) (that is, with ε

α = Ω(n1/2−κ)), for which every nonadaptive algorithm
requires more than 2n

κ
queries to f : {0, 1}n → {0, 1} to distinguish functions f that are α-close to

monotone from those that are ε-far from monotone with probability at least 2/3.

This result, in combination with Theorem 1.2, answers an open question on the problem of ap-
proximating the distance to monotonicity by Seshadhri [62] for the case of nonadaptive algorithms.
It is the first lower bound for this problem, and it rules out nonadaptive algorithms that achieve
approximations substantially better than

√
n with poly(n, 1/α) queries, demonstrating that Theo-

rem 1.2 is essentially tight. This bound is exponentially larger than the corresponding lower bound
in the standard property testing model and, in fact, than the running time of known algorithms
for testing monotonicity. We elaborate on this point in the discussion below on separation.

To obtain Theorem 1.4, we investigate a variant of the property testing model, called erasure-
resilient testing. This variant, proposed by Dixit et al. [32], is intended to study property testing
in the presence of adversarial erasures. An erased function value is denoted by ⊥. An α-erasure-
resilient ε-tester for a desired property gets oracle access to a function f : {0, 1}n → {0, 1,⊥} that
has at most an α fraction of values erased. The tester has to accept (with probability at least 2/3)
if the erasures can be filled in to ensure that the resulting function has the property and to reject
(with probability at least 2/3) if every completion of erasures results in a function that is ε-far
from having the property. As observed in [32], the query complexity of problems in this model lies
between their complexity in the standard property testing model and the tolerant testing model.
Specifically, a (standard) ε-tester that, given a parameter ε, accepts functions with the property
and rejects functions that are ε-far from the property (with probability at least 2/3), is a special
case of an α-erasure-resilient ε-tester with α set to 0. Importantly for us, a tolerant tester that,
given α, ε ∈ (0, 1/2) with α < ε, accepts functions that are α-close and rejects functions that are
ε-far (with probability at least 2/3) can be used to get an α-erasure-resilient ε-tester. The erasure-
resilient tester can be obtained by simply filling in erasures with arbitrary values and running the
tolerant tester. We prove a lower bound for erasure-resilient monotonicity testing.

Our method yields lower bounds for two other properties of Boolean functions: unateness, a
natural generalization of monotonicity, and being a k-junta. A Boolean function f : {0, 1}n → {0, 1}
is unate if, for every variable i ∈ [n], the function is nonincreasing or nondecreasing in that variable.
A function f : {0, 1}n → {0, 1} is a k-junta if it depends on at most k (out of n) variables.

We prove the following result on erasure-resilient testing which implies Theorem 1.4.

Theorem 1.5 (Erasure-Resilient Lower Bound). For all constant κ ∈ (0, 1/2), there exist α =
O(1/n1−κ) and ε = Ω(1/

√
n) (that is, with ε

α = Ω(n1/2−κ)), for which every nonadaptive α-erasure-
resilient ε-tester requires more than 2n

κ
queries to test monotonicity of functions f : {0, 1}n →

{0, 1}. The same bound holds for testing unateness and the n/2-junta property.

Theorem 1.5 directly implies lower bounds analogous to the one stated in Theorem 1.4 for
unateness and being an n/2-junta. Lower bounds for approximating the distance to unateness and
to being a k-junta have been investigated by Levi and Waingarten [50]. They showed that every
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algorithm approximating the distance to unateness within a constant factor requires Ω̃(n) queries
and strengthened their lower bound to Ω̃(n3/2) queries for nonadaptive algorithms. They also
showed that every nonadaptive algorithm that provides a constant approximation to the distance
to being a k-junta must make Ω̃(k2) queries. Our lower bounds are exponentially larger than those
obtained by Levi and Waingarten [50] and hold for larger approximation factors.

1.1.4 Separation

Our lower bounds provide natural properties for which erasure-resilient property testing (and hence,
distance approximation) is exponentially harder than standard property testing with nonadaptive
algorithms. Previously, such strong separation was only known for artificially constructed properties
based on PCPs of proximity [37, 32]. For testing monotonicity of Boolean function, the celebrated
nonadaptive algorithm of Khot, Minzer and Safra [45] makes Õ(

√
n/ε2) queries. Unateness can be

tested nonadaptively with O(nε log n
ε ) queries [3] whereas the property of being a k-junta can be

tested nonadaptively with Õ(k3/2/ε) queries [11]. Our lower bound shows that, for all three prop-
erties, nonadaptive testers requires exponentially many queries when the ratio ε/α is substantially
smaller than

√
n. This stands in contrast to examples of many properties provided in [32], for which

erasure-resilient testers have essentially the same query complexity as standard testers.

1.1.5 Connection Between Tolerant Testing and Distance Approximation

Our main algorithm presented in Section 2 distinguishes functions that are Õ(ε/
√
n)-close to mono-

tone from functions that are ε-far from monotone. In property testing terminology, such an algo-
rithm is an example of a tolerant tester. Transforming a tolerant tester to a distance approximation
algorithm can be done using standard techniques; see, for example [55, Claim 2] and [2, Section 3.3].
Note that the distance from any Boolean function to monotonicity is at most 1/2, since the constant-
0 and constant-1 functions are monotone. Therefore, to obtain an algorithm that approximates
the distance to monotonicity for an input function f under the assumption εf ≥ α, we can run
the tolerant tester with ε set to 1

2 ,
1
4 ,

1
8 , . . . , α an appropriate number of times. The guarantees of

the resulting conversion from tolerant testing to distance approximation are stated in Theorem 5.1,
which is a straightforward generalization of [55, Claim 2], with a small improvement in query com-
plexity (by a factor of log(1/α)). This improvement applies to every tolerant tester with query
complexity at least linear in 1/ε. The details appear in Section 5.

1.2 Comparison to Potential Alternative Approaches to Approximating εf

Chakrabarty and Seshadhri, in a personal communication, notified us of an alternative approach
towards an O(

√
n)-approximation of εf via estimating the size of a maximal matching of decreasing

edges. Results in [45, 22] imply that the size of a maximal matching is an O(
√
n)-approximation

to the distance to monotonicity, and there are sublinear-time algorithms for approximating this
quantity [65, 52]. However, these algorithms are adaptive. It is a compelling open problem to
understand whether adaptivity can help with approximating the distance to monotonicity.

Given Theorem 1.3, a natural approach to design an algorithm for approximating the distance
to monotonicity is to estimate the left-hand side of (1) by sampling points from {0, 1}n uniformly at
random. When the underlying function f : {0, 1}n → {0, 1} is ε-far from monotone, the estimator
would be Ω(ε). The problem is that this estimator could be just as high for functions that are close
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to monotone. For example, consider the random function f : {0, 1}n → {0, 1} which is defined as
follows:

f(x) =

{
1−Maj(x) with probability ε/n;

Maj(x) with probability 1− ε/n,

where Maj(·) denotes the majority function. Then, εf = Θ(ε/n) with high probability, yet the
left-hand side of (1) is Ω(ε) with high probability.

Finally, as thoroughly explained in [55, Section 3.2], every q(n, ε)-query algorithm for (standard)
property testing whose queries are individually (almost) uniform exhibits some degree of tolerance.
The algorithm of Khot et al. [45] for testing monotonicity of Boolean functions makes Õ(

√
n/ε2)

queries which are roughly uniformly distributed (this is implicit in Lemma 9.3 of [45]), and hence
can be used to obtain an Õ(

√
n/α)-approximation. However, notice that the approximation factor

degrades as a function of α.

1.3 Previous Work

Testing monotonicity and unateness (first studied in [41]), as well as k-juntas (first studied in [38]),
are among the most widely investigated problems in property testing ([34, 33, 56, 48, 39, 1, 36, 44,
4, 55, 2, 8, 16, 13, 20, 21, 22, 15, 19, 25, 24, 45, 5, 28, 53, 9, 23, 10] study monotonicity testing,
[46, 3, 28, 29, 27] study unateness testing, and [30, 11, 12, 17, 61, 26, 60] study k-junta testing).
Nearly all the previous work on these properties is in the standard testing model. The best bounds
on the query complexity of these problems are an Õ(

√
n)-query nonadaptive algorithm of [45] and

lower bounds of Ω̃(
√
n) (nonadaptive) and Ω̃(n1/3) (adaptive) [28] for monotonicity, and tight upper

and lower bounds of Θ̃(n2/3) for unateness testing [27, 28], as well as Θ(k log k) for k-junta testing
[11, 60].

Beyond the (standard) property testing, the questions of erasure-resilient and tolerant testing
have also received some attention ([32, 57, 49] study the erasure-resilient model, and [43, 55, 37, 40,
2, 47, 51, 35, 18, 7, 6, 63, 14, 50, 31] study the tolerant testing model). Specifically for monotonicity,
in [32], an erasure-resilient tester for functions on hypergrids is designed. For the special case of
the hypercube domain, it runs in time O(n/ε) and works when ε/α = Ω(n). Using the connection
between distance approximation and erasure-resilient testing, our approximation algorithm implies
an erasure-resilient tester that has a less stringent restriction on ε/α, specifically, Ω(

√
n). For

approximating the distance to k-juntas [14, 31], the best algorithm with additive error of ε makes
2k · poly(k, 1/ε) queries [31], and the best lower bound was Ω(k2) for nonadaptive algorithms [50].

2 An Approximation Algorithm for the Distance to Monotonicity

This section is devoted to proving Theorem 1.2. We provide a nonadaptive algorithm that gets a
parameter α > 0 and oracle access to a function f : {0, 1}n → {0, 1} promised to be α-far from
monotone, makes poly(n, 1/α) queries, and returns an estimate ε̂ > 0 that satisfies, with probability
at least 2/3,

εf ≤ ε̂ ≤ Õ(
√
n) · εf .

Our main algorithm, ApproxMono, whose performance is summarized in Lemma 2.1, distin-
guishes functions that are close to monotone from those that are far. Theorem 1.2 follows directly
from Lemma 2.1 and Theorem 5.1.
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Lemma 2.1. There exist a universal constant c0 ∈ (0, 1) and a nonadaptive algorithm, ApproxMono,
that gets a parameter ε ∈ (0, 1/2) and oracle access to a function f : {0, 1}n → {0, 1}, makes
poly(n, 1/ε) queries and outputs close or far as follows:

1. If εf ≤ c0 · ε/
√
n log n, it outputs close with probability at least 2/3.

2. If εf ≥ ε, it outputs far with probability at least 2/3.

The algorithm ApproxMono is described in Algorithm 1. In the algorithm and its analy-
sis, we use γ(n, ε) to denote ε/

√
n log n. The algorithm uses subroutines Edge-Violations and

Matching-Estimation, which are described in Algorithms 2 and 3, respectively. The subroutine
Edge-Violations(δ, f) gets a parameter δ > 0 and oracle access to a function f : {0, 1}n → {0, 1},
and returns an estimate of the fraction of decreasing edges of f with an additive error less than δ.
The second subroutine, Matching-Estimation(S, δ, f), gets a parameter δ > 0, a subset S ⊆ [n]
and oracle access to a function f : {0, 1}n → {0, 1}. The goal of Matching-Estimation(S, δ, f) is
to estimate the probability3, over x ∼ {0, 1}n, of an event (which we denote Capture and describe
in Definition 2.5) defined with respect to x, S and f up with an additive error less than δ. The
high level intuition is that, as long as the estimates returned by Matching-Estimation(S, δ, f) and
Edge-Violations(δ, f) are accurate, we can certify a lower bound on the distance to monotonicity
of f . We prove that if f is ε-far from monotone, either the number of decreasing edges of f is
large (and Step 2 of Algorithm 1 declares far) or the Matching-Estimation subroutine can verify
a lower bound on the distance to monotonicity.

Algorithm 1: ApproxMono(ε, f)

input : A parameter ε ∈ (0, 1/2); oracle access to f : {0, 1}n → {0, 1}.
output: Either close or far.

1 Set ν̂ ← Edge-Violations(γ(n, ε)/4, f). // ν̂ is an estimate of the fraction of

decreasing edges with an additive error less than γ(n, ε)/4.
2 if ν̂ ≥ 3γ(n, ε)/4 then return far.
3 Set t← 2/m, where m = c1 · γ(n, ε)/2 with the constant c1 dictated by Lemma 2.8.

4 foreach d ∈ {1, 2, 4, . . . , 2blog2 nc} do
5 repeat t times
6 Sample S ⊆ [n] by including each i ∈ [n] independently with probability 1/d.
7 Set µ̂← Matching-Estimation(S,m/4, f). // µ̂ is an estimate of

µf (S) = Prx∼{0,1}n [Capture(x,S, f)] with an additive error less than

m/4.
8 if µ̂ ≥ 3m/4 then return far.

9 return close.

Recall the definition of an edge and a decreasing edge of the hypercube (see Definition 1.1).

Definition 2.2. For a function f : {0, 1}n → {0, 1}, let νf denote the probability that a uniformly
random edge is decreasing. We also refer to νf as the fraction of decreasing edges.

3We use the convention that random variables are boldface whereas fixed quantities use standard typeface. For
example, x and S are random variables whereas x and S are the corresponding fixed quantities. The notation ∼
stands for “sampled from”.
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For a dimension i ∈ [n], a point x ∈ {0, 1}n, and a bit b ∈ {0, 1}, we use x(i→b) to denote the
point in {0, 1}n whose ith coordinate is b and the remaining coordinates are the same as in x. We
use x(i) to denote the point x(i→(1−xi)), where xi is the ith coordinate in x.

We summarize the properties of the subroutine Edge-Violations(δ, f), which estimates νf , in
Fact 2.3.

Algorithm 2: Edge-Violations(δ, f)

input : A parameter δ > 0; oracle access to f : {0, 1}n → {0, 1}.
output: A real number ν̂ ∈ [0, 1] that approximates νf .

1 Initialize counter ← 0 and set t←
⌈

2
δ2

⌉
.

2 repeat t times

3 Sample x ∼ {0, 1}n and i ∼ [n], and query f(x(i→0)) and f(x(i→1)).

4 if f(x(i→0)) > f(x(i→1)) then counter ← counter + 1.

5 return ν̂ = counter/t.

Algorithm 3: Matching-Estimation(S, δ, f)

input : A set S ⊆ [n]; a parameter δ > 0; oracle access to f : {0, 1}n → {0, 1}.
output: A real number µ̂ ∈ [0, 1] that approximates µf (S).

1 Initialize counter ← 0 and set t←
⌈

2 ln(n/ε)
δ2

⌉
.

2 repeat t times
3 Sample x ∼ {0, 1}n and query f(x).
4 foreach i ∈ S do

5 Set yi ← x(i) and query f(yi).

6 foreach j ∈ S \ {i} do query f(y
(j)
i ).

7 if for some i ∈ S, the edge {x,yi} is decreasing and, for all j ∈ S \ {i}, the edge

{yi,y
(j)
i } is nondecreasing, then counter ← counter + 1. // Capture(x, S, f)

occurred.

8 return µ̂ = counter/t.

Fact 2.3. The algorithm Edge-Violations is nonadaptive. It gets a parameter δ > 0 and oracle
access to a function f : {0, 1}n → {0, 1}, makes O(1/δ2) queries, and outputs ν̂ ∈ [0, 1] which, with
probability at least 24/25, satisfies

|νf − ν̂| < δ. (2)

Proof. By Hoeffding bound, Pr[|νf − ν̂| ≥ δ] ≤ 2e−2tδ2 ≤ 2e−4 ≤ 1/25.

Observation 2.4. For all functions f : {0, 1}n → {0, 1}, we have νf ≤ 2εf .

Proof. By definition, νf · 2n−1n edges in f are decreasing. To convert f to a monotone function,
at least one endpoint of every decreasing edge has to be changed. Since each point in {0, 1}n
is incident on n edges of the hypercube, at least νf · 2n−1 points have to be changed. Thus,
εf ≥ νf · 2n−1/2n = νf/2.

8



Definition 2.5. For a function f : {0, 1}n → {0, 1}, a subset S ⊆ [n], and a point x ∈ {0, 1}n, let
Capture(x, S, f) be the following event (see Figure 1):

1. There exists an index i ∈ S such that {x, y} is a decreasing edge in f , where y = x(i).

2. For all j ∈ S \ {i}, the edge {y, y(j)} is a nondecreasing edge in f .

We denote Prx∼{0,1}n [Capture(x, S, f)] by µf (S).

𝑓 𝑥 = 1 0 0 0 0 0

𝑓 𝑦 = 0

𝑆
𝑖

𝑓 𝑥 = 0 1 1 1 1 1

𝑓 𝑦 = 1

𝑆
𝑖

Figure 1: An illustration to Definition 2.5. Two cases are depicted, corresponding to the two
possible values of f(x).

We summarize the properties of subroutine Matching-Estimation(S, δ, f), which estimates
µf (S), in Fact 2.6. Like Fact 2.3, it can be easily proved by an application of Hoeffding bound.

Fact 2.6. The algorithm Matching-Estimation is nonadaptive. It gets a set S ⊆ [n], a parameter
δ > 0 and oracle access to a function f : {0, 1}n → {0, 1}, makes O(|S|2 log(n/ε)/δ2) queries, and
outputs µ̂ ∈ [0, 1] which, with probability at least 1− (ε/n)3, satisfies

|µf (S)− µ̂| < δ. (3)

Lemma 2.1 follows from Lemmas 2.7 and 2.8.

Lemma 2.7. For all functions f : {0, 1}n → {0, 1} and sets S ⊆ [n],

µf (S) ≤ 2 · εf .

Proof. Let X = {x ∈ {0, 1}n : the event Capture(x, S, f) occurs}. For each x ∈ X, let yx = x(i) for

a dimension i ∈ S be a point for which {x, yx} is decreasing and, for all j ∈ S\{i}, the edge {yx, y(j)
x }

is nondecreasing. Consider the set of decreasing edges of f given by EX = {{x, yx} : x ∈ X}.
If x1, x2 from X are distinct, then yx1 6= yx2 , because otherwise yx1 would violate Item 2 in
Definition 2.5. Thus, EX is a matching. Each edge is added to EX at most twice (once for each
endpoint), so |EX | ≥ |X|/2. Since we have a matching of at least |X|/2 decreasing edges, we must
change f on at least |X|/2 = µf · 2n/2 points to make it monotone.

Lemma 2.8 (Key Lemma). There exists a constant c1 ∈ (0, 1) such that the following holds. Let
f : {0, 1}n → {0, 1} be ε-far from monotone, with νf < γ(n, ε). Let mf be the maximum over
d ∈ {1, 2, 4, . . . , 2blog2 nc} of

E
S⊆[n]

i∈S w.p. 1/d

[µf (S)] .

Then mf > c1 · γ(n, ε).
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The proof of Lemma 2.8 appears in Section 2.1. We use Observation 2.4 and Lemmas 2.7
and 2.8 to complete the proof of Lemma 2.1.

Proof of Lemma 2.1. We set the constant c0 = c1/8 in Lemma 2.1, where the constant c1 ∈ (0, 1)
is from Lemma 2.8.

Let CorrectEstimates be the event that all invocations of the subroutines in Algorithm 1
produce outputs within the error bounds specified in (2) and (3). By Facts 2.3 and 2.6 and
by a union bound over the invocation of Edge-Violations and at most t(log2 n + 1) = O(n/ε)
invocations of Matching-Estimation, this event occurs with probability at least 5/6.

First, we prove part 1 of Lemma 2.1. Suppose εf ≤ c0 · γ(n, ε). Then, by Observation 2.4,
νf ≤ 2c0 · γ(n, ε) < γ(n, ε)/2, since c0 ≤ 1/8. By Lemma 2.7 and our choice of c0, for all sets
S ⊆ [n], we have µf (S) ≤ 2c0 · γ(n, ε) = c1 · γ(n, ε)/4 = m/2, where m is the parameter from
Step 3 of Algorithm 1. When event CorrectEstimates occurs, the estimate ν̂ in Step 2 is less than
3γ(n, ε)/4 and all the estimates µ̂ in Step 8 are less than 3m/4. In this case, Algorithm 1 outputs
close. This happens with probability at least 3/4, so the proof of part 1 is complete.

Next, we prove part 2 of Lemma 2.1. Suppose that f : {0, 1}n → {0, 1} is ε-far from monotone.
If νf ≥ γ(n, ε) then, whenever CorrectEstimates occurs, Step 2 outputs far. Now, assume νf <
γ(n, ε). By Lemma 2.8, there exists some d ∈ {1, 2, 4, . . . , 2blog2 nc} for which ES⊆[n][µf (S)] = mf ≥
2m, where S ⊆ [n] is sampled by including each i ∈ [n] independently with probability 1/d. By
the reverse Markov’s inequality, since µf (S) ≤ 1 always holds, we get

Pr
S

[µf (S) ≥ m] ≥
mf −m
1−m

≥ m.

Step 6 of ApproxMono(ε, f) fails to sample some S ⊂ [n] such that µf (S) ≥ m with probability at
most (1−m)t ≤ e−mt ≤ e−2 ≤ 1/6. Since CorrectEstimates occurs with probability at least 5/6,
Step 8 outputs far with probability at least 5/6− 1/6 = 2/3.

2.1 Proof of Lemma 2.8

We start by outlining some of the ideas from our proof of Lemma 2.8 at a high level. In the
proof, we attribute each decreasing edge to its endpoint adjacent to a larger number of decreasing
edges. We partition all the hypercube vertices into log2 n buckets Bd,s, where the bucket Bd,s
contains each vertex with d to 2d adjacent decreasing edges and s to 2s adjacent decreasing edges
attributed to it. Importantly, we show that, for each vertex x ∈ Bd,s, when each coordinate of [n]
is included in S independently with probability 1/d, the probability of the event Capture(x,S, f)
is Ω(s/d). Then we apply (a variant of) the Cauchy-Schwartz inequality, the directed (robust)
isoperimetric inequality, and the upper bound on the fraction νf of decreasing edges (from the
premise of Lemma 2.8) to get a lower bound on∑

d∈{1,2,4,...,2blog2 nc}

E
S⊆[n]

i∈S w.p. 1/d

[µf (S)].

We conclude that, by averaging, there exists a setting of d for which one of the terms in the sum
is large.

A crucial tool in our proof of Lemma 2.8 is the main (robust) directed isoperimetric inequality
of Khot et al. [45]. We use notation consistent with [45]. For a function f : {0, 1}n → {0, 1}, let

10



S−f denote the set of decreasing edges of f . Let the function U−f : {0, 1}n → {0, 1, . . . , n} map each

point x ∈ {0, 1}n to the number of decreasing edges4 of f incident on x. For an arbitrary coloring of
S−f into red and blue edges, col : S−f → {red,blue}, let I−f,col : {0, 1}

n → {0, . . . , n} be the function
given by:

I−f,col(x) =

{
|{{x, y} ∈ S−f : col({x, y}) = red}| if f(x) = 1;

|{{x, y} ∈ S−f : col({x, y}) = blue}| if f(x) = 0.

That is, each decreasing edge is counted towards the lower endpoint if it is red and towards the
higher endpoint if it is blue.

We crucially rely on the main theorem of [45], which is stated next, with a minor improvement
in the bound. We obtain the improvement in Section 3.

Theorem 2.9 (Improvement of Theorem 1.9 from [45]). Let f : {0, 1}n → {0, 1} be ε-far from
monotone. Then, for every coloring col of S−f into red and blue,

E
x∼{0,1}n

[√
I−f,col(x)

]
= Ω (ε) . (4)

To prove Lemma 2.8, consider a function f : {0, 1}n → {0, 1} which is ε-far from monotone with
νf < γ(n, ε). Consider the coloring of S−f that colors each edge {x, y} with x ≺ y as follows:

col({x, y}) =

{
red if U−f (x) ≥ U−f (y);

blue if U−f (x) < U−f (y).

In this coloring, each decreasing edge in f is counted in (4) towards its endpoint incident on a
higher number of decreasing edges. (If there is a tie, it is counted towards the lower endpoint.)

Without loss of generality, suppose that the red edges contribute at least as much as the blue
edges to the Talagrand objective (the case where the blue edges contribute more is symmetric). In
other words, we break up the left-hand side of (4) into two terms and assume one is greater than
or equal to the other: ∑

x:f(x)=1

[√
I−f,col(x)

]
≥

∑
x:f(x)=0

[√
I−f,col(x)

]
.

Then, by (4),
1

2n

∑
x:f(x)=1

[√
I−f,col(x)

]
≥ 1

2
E

x∼{0,1}n

[√
I−f,col(x)

]
= Ω (ε) .

We partition the points x ∈ {0, 1}n with f(x) = 1 and I−f,col(x) > 0 into buckets Bd,s indexed by

d, s ∈ {1, 2, 4, . . . , 2blog2 nc}, where d ≥ s. The bucket Bd,s is defined by:

Bd,s = {x ∈ {0, 1}n : d ≤ U−f (x) < 2d and s ≤ I−f,col(x) < 2s and f(x) = 1}.

4Note that U−f is the “undirected” version of I−f . Specifically,

I−f (x) =

{
U−f (x) if f(x) = 1,

0 if f(x) = 0.
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That is, vertices in Bd,s are incident on between d and 2d decreasing edges and between s and 2s
red edges. By the definition of the buckets, I−f,col(x) ≤ 2s for every x ∈ Bd,s, implying∑

d,s:d≥s
|Bd,s| ·

√
s =

∑
d,s:d≥s

∑
x∈Bd,s

√
s ≥ 1√

2

∑
x:f(x)=1

√
I−f,col(x) = Ω(ε · 2n). (5)

Each x ∈ Bd,s is an endpoint of at least d decreasing edges of f . Moreover, the sets of decreasing
edges incident on different points x with f(x) = 1 are disjoint. Consequently, by the bound on the
fraction of decreasing edges in the statement of Lemma 2.8,∑

d,s:d≥s
|Bd,s| · d < γ(n, ε) · 2n−1n = ε

√
n/ log n · 2n−1. (6)

Next, we show that for each bucket Bd,s and each x ∈ Bd,s, the probability that the event
Capture(x,S, f) occurs is sufficiently large when S is chosen appropriately.

Claim 2.10. For all d, s ∈ {1, 2, 4, . . . , 2blog2 nc}, where d ≥ s, and all x ∈ Bd,s,

Pr
S⊆[n]

i∈S w.p. 1/d

[Capture(x,S, f)] ≥ 1

e4
· s
d
.

Proof. Fix d ≥ s and an arbitrary x ∈ Bd,s .
First, consider the case when d = 1. Then s = 1 and, consequently,

U−f (x) = I−f,col(x) = 1,

that is, the only decreasing edge incident on x is colored red. Call this edge {x, y}. Since col(x, y) =
red, by definition of the coloring, U−f (y) ≤ U−f (x) = 1. Therefore, x and y are not endpoints of
any decreasing edges other than the edge {x, y}. Note that S = [n], since each i ∈ [n] is in S with
probability 1/d = 1. By Definition 2.5, Capture(x,S, f) occurs since {x, y} is a decreasing edge
along a dimension in S, and all other edges incident on y are nondecreasing. Hence,

Pr
S=[n]

[Capture(x,S, f)] = 1,

concluding the proof for the case d = 1.
Now, consider the case when d ≥ 2. For x ∈ {0, 1}n, let D−f (x) = {i ∈ [n] : {x, x(i)} ∈ S−f }

denote the set of dimensions along which the edges incident on x are decreasing in f , and let
E−f (x) = {i ∈ D−f (x) : U−f (x) ≥ U−f (x(i))} be the set of dimensions along which the other endpoint

is adjacent to no more decreasing edges than x. By the definition of the buckets, |D−f (x)| ≤ 2d− 1

and s ≤ |E−f (x)| ≤ 2s − 1. If we sample S ⊆ [n] by including each index i ∈ [n] independently
with probability 1/d, then the probability of Capture(x,S, f) is at least the probability that there
exists a unique i ∈ S such that y = x(i) satisfies {x, y} ∈ S−f with U−f (x) ≥ U−f (y), and all other
decreasing edges of f incident on y are along dimensions in [n] \ S. This probability, in turn, is at
least the probability of the union over i ∈ E−f (x) of the following events: for each i ∈ E−f (x), the

corresponding event is that i ∈ S, but all other dimensions in E−f (x)∪D−f (x(i)) are not in S. Since
these events are disjoint,

Pr
S⊆[n]

[Capture(x,S, f)] ≥
∑

i∈E−f (x)

(
Pr[i ∈ S] ·

∏
j∈(E−f (x)∪D−f (x(i)))\{i}

Pr[j /∈ S]
)
,
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≥ s · 1

d
·
(

1− 1

d

)(2s−2)+(2d−2)

≥ s · 1

d
·
(

1− 1

d

)4(d−1)

≥ s

e4d
,

where we used s ≤ |E−f (x)| ≤ 2s− 1 and

|D−f (x(i))| ≤ U−f (x) = |D−f (x)| ≤ 2d− 1

to get the second inequality, d ≥ s to get the third inequality, and (1− 1/d)d−1 ≥ 1/e for all d ≥ 2
to get the final inequality. This concludes the proof of Claim 2.10.

By Claim 2.10, for all d ∈ {1, 2, 4, . . . , 2blog2 nc},

E
S⊆[n]

i∈S w.p. 1/d

[µf (S)] = E
S⊆[n]

i∈S w.p. 1/d

[
Pr

x∼{0,1}n
[Capture(x,S, f)]

]
≥ 1

2n

∑
x∈

⋃
sBd,s

Pr
S⊆[n]

i∈S w.p. 1/d

[Capture(x,S, f)]

=
1

2n

∑
s∈{1,2,4,...,d}

|Bd,s| ·
s

e4d
. (7)

To conclude the proof of Lemma 2.8, we apply Titu’s Lemma, which states that for all positive real
numbers a1, . . . , ak and b1, . . . , bk ,

(
∑k

i=1 ai)
2∑k

i=1 bi
≤

k∑
i=1

a2
i

bi
.

Titu’s lemma follows directly from the Cauchy-Schwartz inequality:(
k∑
i=1

ai

)2

=

(
k∑
i=1

ai√
bi
·
√
bi

)2

≤

(
k∑
i=1

a2
i

bi

)(
k∑
i=1

bi

)
.

By (7) and Titu’s Lemma,∑
d∈{1,2,4,...,2blog2 nc}

E
S⊆[n]

i∈S w.p. 1/d

[µf (S)] ≥ 1

2n

∑
d,s:d≥s

|Bd,s| ·
s

e4d

=
1

e4
· 1

2n

∑
d,s:d≥s
|Bd,s|6=0

(|Bd,s|
√
s)2

|Bd,s|d
≥ 1

e4
· 1

2n
(
∑

d,s:d≥s |Bd,s|
√
s)2∑

d,s:d≥s |Bd,s|d

=
1

2n
· Ω((ε · 2n)2)

ε
√
n/ log n · 2n−1

= Ω

(
ε
√

log n√
n

)
,

where we used (5) and (6) to get the final line. By an averaging argument, since the summation on
the left-hand side above has O(log n) terms, at least one of the terms is Ω(ε/(

√
n log n)), completing

the proof of Lemma 2.8.
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3 Improvements to the Isoperimetric Inequalities from [45]

In this section, we prove Theorems 2.9 and 1.3.
First, we set up some notation. For a function f : {0, 1}n → {0, 1}, a set S ⊆ [n], and a string

z ∈ {0, 1}S , let f(·, z) : {0, 1}S → {0, 1} denote the function f restricted to the subcube {0, 1}S and

obtained from f by setting the input bits in {0, 1}S to z.
In Proposition 3.1 used in the proof of [45, Theorem 1.6] and stated below, we fix a subset S ⊆ [n]

and sample a uniformly random z ∼ {0, 1}S . Then we consider f(·, z), a random restriction of f .

Proposition 3.1. For a function f : {0, 1}n → {0, 1} and a set S ⊆ [n],

E
x∼{0,1}n

[√
I−f (x)

]
≥ E
z∼{0,1}S

[
E

w∼{0,1}S

[√
I−f(·,z)(w)

]]
.

Intuitively, for the restricted function f(·, z), we count the decreasing edges only along di-
mensions in S. To strengthen Proposition 3.1, instead of fixing S, we sample S according to
the following distribution: For a real number p ∈ [0, 1], let S(p) denote the distribution on sub-
sets S ⊆ [n], where each i ∈ [n] is included in S independently with probability p. We improve
Proposition 3.1 to the following.

Proposition 3.2. For a function f : {0, 1}n → {0, 1} and a parameter p ∈ [0, 1],

√
p · E

x∼{0,1}n

[√
I−f (x)

]
≥ E

S∼S(p)

z∼{0,1}S

[
E

w∼{0,1}S

[√
I−f(·,z)(w)

]]
.

Proof. Recall that for x ∈ {0, 1}n, the set D−f (x) denotes the subset of dimensions along which the
edges incident on x are decreasing in f . Let

A−f (x) =

{
D−f (x) if f(x) = 1,

0 if f(x) = 0.

Note that |A−f (x)| = I−f (x) for all x ∈ {0, 1}n. Hence,

E
S∼S(p)

z∼{0,1}S

[
E

w∼{0,1}S

[√
I−f(·,z)(w)

]]
= E

S∼S(p)
x∼{0,1}n

[√
|A−f (x) ∩ S|

]

≤ E
x∼{0,1}n

[√
E

S∼S(p)

[
|A−f (x) ∩ S|

]]
= E
x∼{0,1}n

[√
I−f (x) · p

]
=
√
p · E

x∼{0,1}n

[√
I−f (x)

]
,

where we used Jensen’s inequality and the fact that the function φ(t) =
√
t is concave to derive the

inequality.

Similarly, we have the analogous proposition for the proof of the robust version of the Talagrand
objective (Theorem 1.9 of [45]).

14



Proposition 3.3. For a function f : {0, 1}n → {0, 1}, a coloring col : S−f → {red, blue}, and a
parameter p ∈ [0, 1],

√
p · E

x∼{0,1}n

[√
I−f,col(x)

]
≥ E

S∼S(p)

z∼{0,1}S

[
E

w∼{0,1}S

[√
I−f(·,z),col(w)

]]
.

Khot et al. [45] established a connection between the Talagrand objective and the function
obtained after applying the switch operator, which was defined in [33, 41] (see also [56, Definition 4]).

Definition 3.4 (Switch operator). The switch operator with a parameter i ∈ [n] applied to a
function f : {0, 1}n → {0, 1} returns a function Si[f ] : {0, 1}n → {0, 1} defined as follows:

Si[f ](x) =

{
min(f(x(i→0)), f(x(i→1))) if x = x(i→0);

max(f(x(i→0)), f(x(i→1))) if x = x(i→1).

The definition of the switch operator S can be extended to an ordered set T = (i1, . . . , i`), where
i1, . . . , i` ∈ [n], by applying the switch operator along the dimensions in T in order:

ST [f ] = Si` [Si`−1
[· · · Si2 [Si1 [f ]] · · · ]].

Recall from Definition 1.1 that, for i ∈ [n], an i-edge is a hypercube edge whose endpoints differ
in the ith coordinate. Intuitively, the switch operator “repairs” each decreasing i-edge by switching
the function values on its endpoints. Note that the switch operator has no effect on all nondecreasing
i-edges. Dodis et al. [33] proved that, for every permutation ρ of [n], the function Sρ[f ] is monotone.
Consequently, dist(f,Sρ[f ]) ≥ εf . Fattal and Ron [35] observed that dist(f, Sρ[f ]) ≤ 2 · εf . (See
[45, Section 3.1] for a discussion of this.)

For an ordered set T and a vector π ∈ {Y,N}|T |, let T ? π denote the ordered set consisting of
only the elements in T whose corresponding position in π is Y . For example, if T = (5, 1, 7, 4, 2, 9)
and π = (Y, Y,N, Y,N,N), then T ? π = (5, 1, 4). For any finite set S, let P(S) denote the uniform
distribution supported on the set of all permutations of S.

The following theorem is implicit in [45, Section 4].

Theorem 3.5. For a function f : {0, 1}n → {0, 1}, there exists a constant C > 0 such that

C · E
x∼{0,1}n

[√
I−f (x)

]
≥ E
λ∼P([n])

[dist(f, Sλ[f ])]− E
ρ∼P([n])
π∼{Y,N}n

[dist(f, Sρ?π[f ])] .

Consider the quantity Ew∼{0,1}S
[√

I−f(·,z)(w)
]

in the statement of Proposition 3.2. From The-

orem 3.5, we get

C · E
w∼{0,1}S

[√
I−f(·,z)(w)

]
≥ E
λ∼P(S)

[dist(f(·, z), Sλ[f(·, z)])] − E
ρ∼P(S)

π∼{Y,N}|S|

[dist(f(·, z), Sρ?π[f(·, z)])] .

Taking the expectation over S ∼ S(p), we get
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C · E
S∼S(p)

z∼{0,1}S

[
E

w∼{0,1}S

[√
I−f(·,z)(w)

]]
≥ E

S∼S(p)

z∼{0,1}S

[
E

λ∼P(S)
[dist(f(·, z),Sλ[f(·, z)])]

]

− E
S∼S(p)

z∼{0,1}S

[
E

ρ∼P(S)

π∼{Y,N}|S|

[dist(f(·, z), Sρ?π[f(·, z)])]

]
. (8)

For ease of notation, let Ψf (p) denote the first term on the right-hand side of (8):

Ψf (p) = E
S∼S(p)

z∼{0,1}S

[
E

λ∼P(S)
[dist(f(·, z), Sλ[f(·, z)])]

]
.

We can also express the second term on the right-hand side of (8) using this notation:

E
S∼S(p)

z∼{0,1}S

[
E

ρ∼P(S)

π∼{Y,N}|S|

[dist(f(·, z),Sρ?π[f(·, z)])]

]
= Ψf (p/2),

since the probability that an arbitrary i ∈ [n] appears in ρ ? π is equal to the product of the
probability that i ∈ S and the probability that the position where i appears in π has Y . By (8)
and Proposition 3.2, for every p ∈ [0, 1], we get

Ψf (p)−Ψf (p/2) ≤ C · E
S∼S(p)

z∼{0,1}S

[
E

w∼{0,1}S

[√
I−f(·,z)(w)

]]

≤ C · √p · E
x∼{0,1}n

[√
I−f (x)

]
. (9)

It follows from the analysis of Dodis et al. [33] that Ψf (1) ≥ εf . Also note that Ψf (0) = 0. We
apply (9) for p = 1, 1

2 ,
1
4 . . . and consider the resulting telescoping sum:

εf ≤ Ψf (1)−Ψf (0) =

∞∑
i=0

(
Ψf (2−i)−Ψf (2−i−1)

)
≤ C ·

∞∑
i=0

2−i/2 · E
x∼{0,1}n

[√
I−f (x)

]
≤

√
2√

2− 1
C · E

x∼{0,1}n

[√
I−f (x)

]
,

completing the proof of Theorem 1.3. Similarly, Proposition 3.3 implies Theorem 2.9.

4 A Nonadaptive Lower Bound for Erasure-Resilient Testers

In this section, we prove Theorem 1.5 that gives a lower bound on the query complexity of erasure-
resilient testers of monotonicity, unateness and the k-junta property. We prove the lower bound by
constructing two distributions D+ and D− on input functions f : {0, 1}n → {0, 1,⊥} that are hard
to distinguish for every nonadaptive tester and then applying Yao’s Minimax principle [64].
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Recall that ⊥ denotes an erased function value. We say that a function f : {0, 1}n → {0, 1,⊥}
is α-erased if at most an α fraction of its values are erased. If α is not specified, we call such a
function partially erased. A completion of a partially erased function f : {0, 1}n → {0, 1,⊥} is a
function f ′ : {0, 1}n → {0, 1} that agrees with f on all nonerased values, that is, for all x ∈ {0, 1}n, if
f(x) 6= ⊥ then f ′(x) = f(x). A partially erased function has property P if there exists a completion
of f that has P. A partially erased function is ε-far from having property P if every completion of
f is ε-far from having property P.

Proof of Theorem 1.5. We start by defining distributions D+ and D− on α-erased functions. Later,
we show that D+ is over monotone functions whereas most of the probability mass of D− is on
functions that are ε-far from monotone. Interestingly, the same distributions work to prove our
lower bounds for unateness and k-juntas: all functions in the support of D+ are unate (because
they are monotone) and also n/2-juntas whereas D− is mostly supported on functions that are
ε-far from unate and ε-far from n/2-juntas. The core of the argument is demonstrating that the
two distributions are hard to distinguish for nonadaptive testers that make too few queries.

Definition 4.1. For a set S ⊆ [n], let S denote the complement set [n] \ S, and let {0, 1}S denote
the restriction of {0, 1}n to the dimensions in S. For every x ∈ {0, 1}n, let |x| denote the Hamming
weight of x, and let xS denote the vector x ∈ {0, 1}n restricted to the dimensions in the set S ⊆ [n].

Let n be a multiple of 4. We first describe a collection of objects needed for defining the
distributions D+ and D−. As before, we use the convention that random variables are boldface
whereas fixed quantities use standard typeface.

• The set M of control dimensions and the control substring xM . We partition [n] into
two sets of size n/2: the set M of control dimensions and the set M . We call xM the control
substring of x. The random variable M is a uniformly random subset of [n] of size n/2.

• The subcube partition set PM and action subcubes. Let ΨM = {xM ∈ {0, 1}M :
|xM | = n

4 } denote the set of all control substrings of x which lie in the middle layer of the

subcube {0, 1}M . Each z ∈ ΨM corresponds to a subcube of the form {0, 1}M with the vertex
set comprised of points x with xM = z. All such subcubes are called action subcubes. The
subcube partition set PM is a subset of ΨM . The random variable PM is a uniformly random
subset of ΨM , that is, each xM ∈ ΨM is included in PM independently with probability 1/2.

• The functions gM,PM . Recall the parameter κ ∈ (0, 1/2) from Theorem 1.5. For a fixed
setting of M ⊂ [n] of size n/2 and a subcube partition set PM ⊆ ΨM , we define the function
gM,PM : {0, 1}n → {0, 1,⊥, 0?, 1?} as follows:

gM,PM (x) =



1 if |xM | > n
4 ;

0 if |xM | < n
4 ;

⊥ if |xM | = n
4 and |xM | ∈

[
n
4 − n

κ, n4 + nκ
]

;

1? if xM ∈ PM and |xM | /∈
[
n
4 − n

κ, n4 + nκ
]

;

0? otherwise.

To sample a function fromD+ andD−, we pick a uniformly random subsetM ⊂ [n] of size n/2 of
control dimensions and a uniformly random subcube partition set PM ⊆ ΨM . A function sampled
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Figure 2: Functions f+ ∼ D+ defined with respect to control dimensions M and the subcube
partition set PM .

from D+ and D− is identical to gM ,PM
on points x ∈ {0, 1}n for which gM ,PM

(x) ∈ {0, 1,⊥}, but
differs on the remaining values (see Figures 2 and 3). Specifically, for functions in D+, the values
0? and 1? are replaced with 0 and 1, respectively. That is, f+ ∼ D+ is defined by sampling M and
PM and letting

f+(x) =


gM ,PM

(x) if gM ,PM
(x) ∈ {0, 1,⊥};

0 if gM ,PM
(x) = 0?;

1 if gM ,PM
(x) = 1?.

For functions in D−, the value 0? is replaced with the majority function, denoted Maj(·), evaluated
on the bits indexed by M , whereas 1? is replaced with the antimajority of those bits. That is,
f− ∼ D− is defined by sampling M and PM and letting

f−(x) =


gM ,PM

(x) if gM ,PM
(x) ∈ {0, 1,⊥};

Maj(xM ) if gM ,PM
(x) = 0?;

1−Maj(xM ) if gM ,PM
(x) = 1?.

Lemma 4.2. There is an α = O(1/n1−κ) for which every function in the support of the distributions
D+ and D− is α-erased.

Proof. Consider a partially erased function f : {0, 1}n → {0, 1} in the support of D+ or D−. Let M
be the set of control dimensions used in defining f . The function f is erased in the middle 2nκ + 1
layers of every action subcube {0, 1}M for which the control substring xM is in the middle layer of
the subcube {0, 1}M . Since |M | = |M | = n/2, the number of erased points is at most(

n/2

n/4

)
·
(
n/2

n/4

)
(2nκ + 1) = O

( 2n/2√
n/2

)2

nκ

 = O

(
2n

n1−κ

)
.

Thus, the fraction of erasures in the constructed functions is O(1/n1−κ).
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Figure 3: Functions f− ∼ D− defined with respect to control dimensions M and the subcube
partition set PM .

4.1 Distance to Monotonicity, Unateness, and Being a Junta

In this section, we analyze the distance to monotonicity, unateness, and being an n/2-junta for
functions in the support of our hard distributions, D+ and D−.

Lemma 4.3. Every function f+ in the support of D+ is monotone, unate, and an n/2-junta.

Proof. Consider a partially erased function f+ in the support of D+. We show that f+ can be
completed to a monotone n/2-junta. Let M be the set of control dimensions and PM be the
subcube partition set used in defining f+. Define a completion f ′ : {0, 1}n → {0, 1} of f+ as
follows. For all x ∈ {0, 1}n with f+(x) = ⊥,

f ′(x) =

{
1 if xM ∈ PM ,
0 otherwise.

Since |M | = n/2 and f ′ depends only on coordinates in M, it is an n/2-junta.
To prove that f ′ is monotone, we show it is the disjunction of monotone functions. Let h :

{0, 1}n → {0, 1} be the indicator for |xM | > n/4, that is, h(x) = 1 iff |xM | > n/4. For every
y ∈ PM , let hy : {0, 1}n → {0, 1} be the indicator for xM = yM . Functions h and hy for all
y ∈ PM are monotone, and f ′ is the disjunction of these functions. Hence, f+ can be completed to
a monotone n/2-junta. Since monotone functions are unate, Lemma 4.5 holds.

Next we define an event called FAR, observe that it happens with high probability, and show
that functions distributed according to D− conditioned on FAR are far from the three properties we
are considering.

Definition 4.4 (Event FAR and distribution D̂−). Let FAR be the event that

|ΨM |
3
≤ |PM | ≤

2|ΨM |
3

.
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Define distribution D̂− = D−|FAR.

Recall that each element of ΨM is included in PM independently with probability 1/2. There-
fore, for sufficiently large n, by a Hoeffding bound,

Pr[FAR] ≤ 2e2|ΨM |· 162 ≤ 1

30
(10)

over the draw of f− ∼ D−.

Lemma 4.5. Every function f− in the support of D̂− has distance at least ε = Ω
(

1√
n

)
from

monotonicity, unateness, and being an n/2-junta.

Proof. Consider a partially erased function f− in the support of D̂−, and let M and PM be the set
of control dimensions and the subcube partition set used in defining f−, respectively. We start by
proving that f− is far from monotone. Even though it is technically not necessary, because it will
follow from the fact that f− is far from unate, we choose to do it for ease of presentation. After
that, we prove Claim 4.8 that states that f− is far from being an n/2-junta. Finally, we build on
ideas in these two proofs to show in Claim 4.9 that f− is far from unate.

Definition 4.6 (Decreasing pair). A pair of points {x, y} is decreasing with respect to a function
f if x ≺ y, but f(x) = 1 and f(y) = 0.

First, we prove that f− is ε-far from monotone for some ε = Ω(1/
√
n) by showing that there

exists a large matching of decreasing pairs with respect to f−. Consider all action subcubes {0, 1}M
for which xM ∈ PM . By definition, each such subcube is n/2-dimensional, and hence contains

2n/2 points. Since FAR holds, there are at least
(n/2
n/4

)
· 1

3 = Ω(2n/2√
n

) such subcubes. By standard

arguments (see5, e.g., [39, Lemma 22]), in each such action subcube, there is a matching of size
Ω(2n/2) consisting of decreasing pairs with respect to f−. The values of at least half of the points
in the matching need to be changed to make the function f− monotone. Moreover, at least two
thirds of the points in the action subcube are nonerased, and this matching contains all of them.
Since Ω(1/

√
n) fraction of points participates in action subcubes with xM ∈ PM , and the values of

at least a third of these points need to be changed to make f− monotone, the distance from f− to
monotonicity is Ω(1/

√
n).

Next, recall from Definition 1.1 that, for i ∈ [n], a hypercube edge whose endpoints differ in the
ith coordinate is called an i-edge.

Definition 4.7 (A constant edge, independence of a variable). An edge {x, y} is constant with
respect to a function f if f(x) = f(y). An edge that is neither decreasing nor constant is called
increasing. A function f is independent of a variable i ∈ [n] if all i-edges are constant with respect
to f .

Claim 4.8. Every function f− in the support of D̂− has distance at least ε = Ω
(

1√
n

)
from being

an n/2-junta.
5Fischer et al. [39, Lemma 22] prove that trimmed anti-oligarchy functions are far from monotone by applying

Hall’s Theorem to argue that there is a large matching of decreasing edges. Given B ⊆ [n], the trimmed anti-oligarchy
function fB(x) is 1 if the Hamming weight of x is large, 0 if it is small, and is equal to 1 − Maj(xB), otherwise.
In particular, when B = [n], this function is equal to 1 −Maj(x) on a constant fraction of points x (located in the
middle layers of the hypercube). The functions on the actions subcubes under consideration in our lower are also
anti-majorities on a constant fraction of all points x (located in all but the middle layers of the subcubes).
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Proof. Observe that f− is an n/2-junta iff it is independent of at least n/2 variables.
Next, for each i ∈ M , we show that f− is ε-far from being independent of i. Fix i ∈ M . We

construct a large set Mi of increasing i-edges {x, y}. At least one of f−(x) and f−(y) for each
such edge has to change to make f− independent of i. Since Mi is a matching, |Mi|/2n is a lower
bound on the distance from f− to functions that do not depend on variable i.

Recall that the set ΨM = {xM ∈ {0, 1}M : |xM | = n
4 } is the set of all control substrings of x

that lie in the middle layer of the subcube {0, 1}M . We define, for every dimension i ∈M,

Mi = {{x, y} : {x, y} is an i-edge, xM ∈ ΨM , and f(x) = xi}.

Note that xi 6= yi and, by construction of functions gM,PM , we have f−(y) = gM,PM (y) = yi.
Therefore, f−(x) 6= f−(y) for all i-edges {x, y} ∈ Mi. (Note that all edges in Mi are increasing.
This fact will be used in the proof of Claim 4.9.) For each xM ∈ ΨM , more than a third of the
points x in the corresponding action subcube are assigned f−(x) = 0, and the same holds for
f−(x) = 1. Since each action subcube has 2n/2 points, the size of Mi is at least 1

3 · 2
n/2 · |ΨM | =

1
3 · 2

n/2 ·
(n/2
n/4

)
= Ω( 2n√

n
). That is, the distance from f− to being independent of variable i is at least

ε, where ε = Ω( 1√
n

).

Thus, if we change less than an ε fraction of values of f−, we cannot eliminate the dependence
on any of the n/2 variables in M . The only remaining possibility to make f− an n/2-junta with
fewer than ε · 2n modifications is to eliminate the dependence on all variables in M . This can
happen only if the modified function becomes constant on all the action subcubes, which again
requires changing at least 1

3 · 2
n/2 · |ΨM | values of f−. Thus, f− is ε-far from the set of n/2-juntas,

where ε = Ω( 1√
n

).

Claim 4.9. Every function f− in the support of D̂− has distance at least ε = Ω
(

1√
n

)
from

unateness.

Proof. To show that f− is ε-far from unate, let r ∈ {0, 1}n be an arbitrary assignment of directions
for each variable in [n] (that is, ri = 0 signifies that the variable i is monotone non-decreasing, and
ri = 1 signifies that the variable i is monotone non-increasing). We use ⊕ to represent bit-wise XOR
of two vectors. It suffices to show that the function g : {0, 1}n → {0, 1}, given by g(x) = f−(x⊕ r),
is ε-far from monotone.

Notice that if ri = 1 for some i ∈M , the function g is Ω(1/
√
n)-far from monotone. To see this,

recall that we constructed a matching Mi of Ω(2n/
√
n) increasing i-edges in f− in the proof of

Claim 4.8. If ri = 1, these i-edges are decreasing with respect to g, so the function is Ω(1/
√
n)-far

from monotone. Henceforth, we assume ri = 0 for all i ∈M .
Let R be the subset of dimensions {i ∈ M : ri = 1}. First consider the case when |R| ≤ n/4.

Recall that each action subcube contains 2n/2 points. Consider all action subcubes {0, 1}M for

which xM ∈ PM . Since FAR holds, there are Ω(2n/2√
n

) such subcubes, as we argued before. We show

that each of them contains a matching of Ω(2n/2) decreasing pairs with respect to g, thus proving
that g is Ω(1/

√
n)-far from monotone.

We further partition action subcubes into smaller subcubes, each of which contains all points
x ∈ {0, 1}n with the same xR (and the same control substring xM ). Let C be the set of all such

subcubes with xM ∈ PM and the Hamming weight |xR| in the range
[ |R|

2 −
√
n, |R|2 +

√
n
]
. Since

a constant fraction of z ∈ {0, 1}R is in the specified range, C contains Ω(2|R|) smaller subcubes
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for each action subcube we are considering. It remains to show that each subcube in C contains a
matching of Ω(2n/2−|R|) decreasing pairs with respect to g.

By definition of f−, the value of f−(y) depends only on the Hamming weight of yM for all
points y with yM ∈ PM . In particular, f−(y) = 0 if |yM | ≥

n
4 +nκ and f−(y) = 1 if |yM | ≤

n
4 −n

κ.
That is, for every x with xM ∈ PM ,

g(x) = f−(x⊕ r) =

{
0 if |(x⊕ r)M | ≥

n
4 + nκ;

1 if |(x⊕ r)M | ≤
n
4 − n

κ.

Recall that R ⊆M. Since (x⊕ r)i = 1− xi for all i ∈ R, and (x⊕ r)i = xi for all i /∈ R, we get

|(x⊕ r)M | = |(x⊕ r)R|+ |(x⊕ r)M\R| = |R| − |xR|+ |xM\R|.

Fix a subcube in C and note that it is of the form {0, 1}M\R. Recall that |M | = n/2, so the
subcube contains 2n/2−|R| points. The quantity |R|−|xR| is the same for all points x in the subcube.

Moreover, this quantity is in the range
[ |R|

2 −
√
n, |R|2 +

√
n
]
. We claim that g evaluates to 1 on

the points in the bottom layers of the subcube, and that it evaluates to 0 on the points in the top

layers. Specifically, if |xM\R| ≤
|M\R|

2 −
√
n−nκ, which holds for a constant fraction of points x in

the subcube, then

|(x⊕ r)M | = |R| − |xR|+ |xM\R| ≤
|R|
2

+
√
n+
|M \R|

2
−
√
n− nκ =

|M |
2
− nκ =

n

4
− nκ.

That is, in this case, g(x) = 0. Similarly, if |yM\R| ≥
|M\R|

2 +
√
n + nκ, which also holds for a

constant fraction of points in the subcube, then

|(y ⊕ r)M | ≥
|R|
2
−
√
n+
|M \R|

2
+
√
n+ nκ =

n

4
+ nκ.

That is, in this case, g(y) = 0. Similarly to the case of monotonicity, by a standard argument [39,
Lemma 22], there is a matching of decreasing pairs {x, y} with respect to g that matches all the
points x and y described above and, consequently has size Ω(2n−|R|/

√
n). We obtained the desired

bound on the matching size and, therefore, on the distance to unateness.
The argument for the case when |R| > n/4 follows similarly by symmetry. We consider action

subcubes for which the control substrings are not in PM . For each such subcube, f− evaluates to
a majority on xM , and variables in R are flipped in g, allowing us to construct a large matching of
decreasing pairs with respect to g.

This completes the proof of Lemma 4.5.

4.2 Indistinguishability of the Hard Distributions

Next, we show that the distributions D+ and D̂− are hard to distinguish for nonadaptive testers.
Consider a deterministic tester that makes q queries. Let Aq(f) be the sequence of query-answer
pairs (x, f(x)) obtained by the tester on input f . For every distribution D on input functions,
define D-view to be the distribution on A(f+) when f+ ∼ D. We use the version of Yao’s principle
stated in [58] that asserts that to prove a lower bound q on the worst-case query complexity of a
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randomized algorithm, it is enough to give two distributions D+ and D̂−, on positive and negative
instances, respectively, for which the statistical distance between D+-view and D̂−-view is less than
1/3.

We start by analyzing how a tester can distinguish D+ and D−. The key point is the only way
to do it is by querying a pair of points x, y ∈ {0, 1}n that fall in the same action subcube, but in
different nonerased layers—one below the erased layers, the other above the erased layers. If the
tester queries no such pair, then its view (that is, the distribution on the sequence of query-answer
pairs it obtains) is identical for the two cases: f+ ∼ D+ and f− ∼ D−.

Let BAD be the event that one of the
(
q
2

)
pairs of points the tester queries ends up in the same

action subcube, on different sides of erasures, as discussed above. Next, we show that conditioned
on BAD not occurring, the view of the tester is the same for both distributions.

Claim 4.10. D+-view|BAD = D−-view|BAD.

Proof. Consider an arbitrary fixed set of control dimensions M ⊂ [n] of size n/2, and let ΨM be
the set of control substrings. Partition the set of queries x1, . . . , xq ∈ {0, 1}n with nonerased values
according to their control substrings in ΨM ; namely, for z ∈ ΨM , let Qz ⊂ {x1, . . . , xq} be the set
of queries x for which xM = z and xM does not lie in the middle 2nκ layers of its action subcube.
This partition depends only on M , and not on the set PM .

Suppose, furthermore, that any two queries x, y ∈ {0, 1}n falling in the same action subcube
(i.e., from the same part Qz) are either both above the erased layers or both below the erased layers,
and notice that this implies f(x) = f(y) whenever x, y ∈ Qz, for f sampled from D+ as well as
D−. We will show that the distribution over answers to queries for a fixed M (and a random PM )
is exactly the same for D+ and D−. In both cases, the answer to a query x ∈ {0, 1}n is a function
of the control substring xM and is independent for two queries x, y ∈ {0, 1}n with different control
substrings. In fact, for each control substring z ∈ ΨM , the value of every f(x) with xM = z is a
uniformly random bit.

In order to see why, notice that for f+ ∼ D+, every x ∈ Qz has value f+(x) = 1 if and only
if z ∈ PM , which occurs with probability 1/2. For f− ∼ D−, we have two cases. The first case
is when x ∈ Qz has |xM | ≤ n/4 − nκ; then, f−(x) = 1 if and only if z ∈ PM , which occurs with
probability 1/2. The second case is when x ∈ Qz has |xM | ≥ n/4 +nκ; then, f+(x) = 0 if and only
if z /∈ PM , which occurs with probability 1/2.

Claim 4.11. For a deterministic nonadaptive tester making q ≤ 2n
κ

queries,

Pr[BAD] < 1/8

over the draw of M ⊂ [n] of size n/2.

Proof. We want to bound the probability over the draw of M that any two queries x, y ∈ {0, 1}n
which have the same control substring are either both above the erased layers, or both below the
erased layers in their action subcube. In particular, observe that the Hamming weights of any such
x and y must differ by at least 2nκ + 2. Consequently, x and y differ on at least 2nκ + 2 bits. Next,
we upper bound the probability that two queries x, y ∈ {0, 1}n which differ on at least 2nκ + 2
dimensions have the same setting of coordinates in M .

Let T = {i ∈ [n] : xi 6= yi} denote the set of all coordinates on which the points x and y differ.
Then |T | ≥ 2nκ+2. Observe that xM = yM iff T ∩M = ∅. Since M is a uniformly random subset
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of [n] of size n/2,

Pr
M

[T ∩M = ∅] =

(n−|T |
n/2

)(
n
n/2

) =

(n−|T |)!
(n/2)!·(n/2−|T |)!

n!
(n/2)!·(n/2)!

=
(n/2)!

(n/2− |T |)!
· (n− |T |)!

n!

=
n/2 · (n/2− 1) · · · (n/2− |T |+ 1)

n · (n− 1) · · · (n− |T |+ 1)
≤ 2−|T |.

Let BAD be the event that one of the
(
q
2

)
pairs of points the tester queries ends up in the same

action subcube, on different sides of erasures, as discussed above. Then, by a union bound,

Pr[BAD] <
q2

2
· 2−|T | ≤ 1

2
· 22nκ · 2−2nκ−2 =

1

8
.

Definition 4.12 (Notation for statistical distance). For two distributions D1 and D2 and a constant
δ, let D1 ≈δ D2 denote that the statistical distance between D1 and D2 is at most δ.

Lemma 4.13. For a deterministic nonadaptive tester making q ≤ 2n
κ

queries,

D+-view ≈9/28 D̂−-view.

Proof. By Claim 4.10, conditioned on BAD not occurring, the view of the tester is the same for
distributions D+ and D−:

D+-view|BAD = D−-view|BAD.

Conditioning on BAD does not significantly change the view distributions. We use the following
claim [58, Claim 4] to formalize this statement.

Claim 4.14 ([58]). Let E be an event that happens with probability at least δ = 1− 1/a under the
distribution D and let B denote distribution D|E. Then B ≈δ′ D where δ′ = 1/(a− 1).

Applying Claims 4.11 and 4.14 twice, we get

D+-view ≈1/7 D+-view|BAD = D−-view|BAD ≈1/7 D−-view.

Similarly, recalling that D̂− = D−|FAR, by (10) and Claim 4.14, we get

D−-view ≈1/29 D−-view|FAR = D̂−-view.

Since 1/7 + 1/7 + 1/29 < 9/28, this completes the proof of Lemma 4.13.

Theorem 1.5 follows by Yao’s Principle.
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5 From Tolerant Testing to Distance Approximation

The following theorem shows how to convert a tolerant tester to a distance approximation algorithm.

Theorem 5.1. Consider input objects whose size is measured with respect to a parameter n, and
let P be a property of these objects. Let g(n) be a polynomial in n such that g(n) = ω(1). Let A be
a tolerant tester of the property P that gets a parameter ε ∈ (0, 1/2) and oracle access to an input
object f , makes QA(n, ε) queries, and outputs close or far as follows:

1. If dist(f,P) ≤ ε
g(n) , then A(ε, f) outputs close with probability at least 2/3;

2. If dist(f,P) ≥ ε, then A(ε, f) outputs far with probability at least 2/3.

Suppose QA(n, ε) has at least linear dependence on 1/ε. Then, there exists a distance approximation
algorithm B for the property P that, given a parameter α ∈ (0, 1/2) and oracle access to an input
object f such that dist(f,P) ≥ α, returns an estimate that, with probability at least 2/3, is a
2g(n)-approximation to dist(f,P). The query complexity of B is O(QA(n, α) · log log(1/α)).

Proof. The distance approximation algorithm B is described in Algorithm 4.

Algorithm 4: Distance Approximation Algorithm B(α, f)

input : minimum distance parameter α ∈ (0, 1/2); oracle access to the input object f .
output: 2g(n) approximation ε̂ to dist(f,P).

1 for i = 1 to
⌊
log 1

α

⌋
do

2 Set c← 0 and t← d18 ln(3 log(1/α))e.
3 repeat t times
4 Run A(2−i, f). If it outputs far, c← c+ 1.

5 if c ≥ t/2 then return ε̂ = 2−i+1.

6 return ε̂ = α.

For each i ∈
[⌊

log 1
α

⌋]
, let Ei denote the event that c calculated by the algorithm in the

ith iteration of the for loop satisfies c ≥ t/2 when dist(f,P) ≥ 2−i/g(n) and c < t/2 when
dist(f,P) ≤ 2−i. Event Ei occurs when A errs in at least t/2 of its runs in Step 4. In each run, A
errs with probability at most 1/3. By Hoeffding bound, for each i ∈ [blog(1/α)c], the probability
Pr[Ei] < 1/(3 log(1/α)). Let E =

⋂
i∈[blog(1/α)c]Ei. By the union bound, Pr[E] < 1/3, which implies

that Pr[E] > 2/3. For the rest of the proof, condition on the event E happening. If ε̂ = 2−i+1,
then it implies that for all j < i, the algorithm determined that dist(f,P) ≤ 2−j . Substituting
j = i − 1 yields dist(f,P) ≤ 2−i+1 = ε̂. Similarly, in the ith iteration, the algorithm determined
that dist(f,P) ≥ 2−i/g(n) = ε̂/(2g(n)). Hence, with probability at least 2/3, the output ε̂ of the
algorithm B satisfies dist(f,P) ≤ ε̂ ≤ 2g(n) · dist(f,P), completing the proof of the approximation
guarantee.

The query complexity of B is at most t ·
∑blog(1/α)c

i=1 QA(n, 2−i). Since QA(n, ε) has at least linear
dependence on 1/ε, the sum is dominated by the last term. Therefore, the query complexity is
O(QA(n, α) · log log(1/α)).
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