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Abstract

We consider a generalization of the third degree price discrimination problem studied in
Bergemann et al. (2015), where an intermediary between the buyer and the seller can design
market segments to maximize any linear combination of consumer surplus and seller revenue.
Unlike in Bergemann et al. (2015), we assume that the intermediary only has partial information
about the buyer’s value. We consider three different models of information, with increasing order
of difficulty. In the first model, we assume that the intermediary’s information allows him to
construct a probability distribution of the buyer’s value. Next we consider the sample complexity
model, where we assume that the intermediary only sees samples from this distribution. Finally,
we consider a bandit online learning model, where the intermediary can only observe past
purchasing decisions of the buyer, rather than her exact value. For each of these models, we
present algorithms to compute optimal or near optimal market segmentation.
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1 Introduction

Third degree price discrimination occurs when a seller uses auxiliary information about buyers to
offer different prices to different populations, e.g., student and senior discounts for movie tickets.
A modern version of this arises in the context of online platforms that match sellers and buyers.
Here an intermediary observes information about buyers and may pass on some of this information
to the seller to help him price discriminate. One natural example where price discrimination could
be (and often is) used in practice is an ad exchange, which matches buyers and sellers of online ad
impressions. A buyer is an advertiser, and a seller is a publisher, and the impression is sold via
an auction where the seller sets a reserve price. The ad exchange commonly has additional data
about the user viewing the impression or about the buyers. It could share some of this data with
the seller before he sets the reserve price.

The seminal work of Bergemann et al. (2015) shows the following surprising result in such a
setting. Usually, there is a tradeoff between social welfare which is the value generated by the sale,
and seller revenue. Seller revenue is maximized by setting an appropriate price. Social welfare is
maximized by selling the item to the buyer as long as his value for the item is ≥ 0, but this generates
0 revenue for the seller. Almost magically, Bergemann et al. (2015) show that an intermediary can
segment the market such that it not only maximizes social welfare, but also guarantees that the
seller revenue doesn’t change in the process. This shows that price discrimination can be used to
benefit the customer, contrary to the belief that it exploits the customer, thus making it palatable.

While this is a strong result, it requires that the intermediary knows the buyer’s exact value,
which is a very strong assumption, and is often not satisfied in practice. What is more reasonable
is that the intermediary can estimate a personalized probability distribution once the buyer is seen.
For instance, if the intermediary observes that the buyer is a student, it may estimate a lower
willingness-to-pay, but is unlikely to know the buyer’s exact value. Realistically, the intermediary
may wish to use machine learning techniques to estimate the personalized probability distribution
for a new buyer based upon their observed characteristics and past market data. In this paper, we
analyze the power of third degree price discrimination in this setting where the intermediary has
only a noisy signal of a buyer’s value.

1.1 Model and Results

The seller sells a single item, and there is a single buyer. We consider value distributions with
a finite support. We assume that the intermediary observes finitely many types of buyers; each
type is associated with a different distribution over the values. We denote the set of values by
[V ] = {1, 2, . . . , V }, the set of types by [T ] = {1, 2, . . . , T}, and the distribution over values given a
type t by F(t). We denote the distribution over types by T . Given this, the mechanism proceeds
as follows. This is illustrated in Figure 1.

1. A segmentation is a pair of a segment set Σ, and a segment map G : [T ] 7→ ∆(Σ), where ∆(·)
denotes the set of all probability distributions over a given domain. Once the intermediary
decides on a segmentation, it is revealed to the seller.

2. When a buyer arrives, her type t and value v are drawn from the prior distribution. The
intermediary observes only her type t but not the value v.

3. Intermediary draws a segment σ from the distribution G(t) and reveals it to the seller.

4. On observing a segment σ, the seller posts the monopoly price p for the value distribution
conditioned on observing σ.
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Figure 1: Time line of a single round.

5. Buyer buys the item if and only if her value v ≥ p.

The model in Bergemann et al. (2015) is the special case where the type set is identical to the
value set, and the distributions F(t) are point masses.

A price is said to be a monopoly price if it maximizes seller revenue for a given distribution,
and this revenue is called the monopoly revenue. We call the marginal distribution over values [V ]
as the prior distribution. The seller is always guaranteed at least the monopoly revenue for the
prior distribution, since he can ignore the segment information and set a monopoly price.

The intermediary’s objective is some given positive linear combination of seller revenue and
consumer surplus. Consumer surplus is the expectation of the buyer’s utility, which is v − p if the
buyer with value v buys the item at price p, and is 0 otherwise. Of particular interest is the special
case of maximizing consumer surplus alone. We consider three informational models of increasing
difficulty for the intermediary, and show the following results.

Bayesian: The intermediary and the seller know the value-type distributions: F(t) for all t, and
T . We show that the optimal segmentation can be computed using a linear program (LP). The
range of achievable values for consumer surplus and revenue depend on the distribution, and one
may not always be able to achieve the full consumer surplus as in Bergemann et al. (2015). Some
other nice properties may not hold as well, see Appendix A for examples.

Sample Complexity: The intermediary and the seller observe a batch of signal-value pairs
sampled from the underlying distribution. We are interested in the number of samples required to
get an ε approximation. We first cosntruct a distribution for which no bounded function of ε is
sufficient. The F(t)’s in this example satisfy both boundedness and regularity, which are standard
assumptions in the sample complexity of mechanism design. This points to further limitations on
what such an intermediary can do: in case of noisy signals, the distribution cannot be arbitrary.
Motivated by this, we identify a property about the distributions, which we call MHR-like, and
show (via an algorithmic construction) that a polynomial number of samples are sufficient. This is
the technically most challenging part of the paper and most of the focus in the main body of the
paper is on this part.

Online Learning: The intermediary must learn the segmentation online using only bandit feed-
back from the buyer’s decision to purchase or not at the seller’s chosen price. The last step of the
timeline depicted in Figure 1 is modified in this setting so that the intermediary and seller only
observe the buyer’s purchase decision, not her value. Here we give no-regret learning algorithms.
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Clearly, we need certain assumptions on the seller’s behavior for any nontrivial result; there is not
much we can do if the seller picks prices randomly all the time. Our assumptions can accommodate
natural no regret learning algorithms on the seller side, including the Upper-Confidence-Bound
(UCB) algorithm and the Explore-then-Commit (ETC) algorithm.

1.2 Contributions to the Sample Complexity of Mechanism Design

Pioneered by Balcan et al. (2005), Elkind (2007), and Dhangwatnotai et al. (2015), and formalized
by Cole and Roughgarden (2014), the sample complexity of mechanism design, in particular, the rev-
enue maximization problem, has been a focal point in algorithmic game theory in the last few years
Morgenstern and Roughgarden (2015); Balcan et al. (2016); Devanur et al. (2016); Morgenstern
and Roughgarden (2016); Hartline and Taggart (2019); Cai and Daskalakis (2017); Gonczarowski
and Nisan (2017); Gonczarowski and Weinberg (2018); Huang et al. (2018b); Guo et al. (2019).

This paper adds to the literature of sample complexity of mechanism design in two-folds. The
first one is conceptual: we formulate the first sample complexity problem from the viewpoint of an
intermediary rather than the seller, and for the task of designing information dispersion rather than
allocations and payments. We show impossibility results for the general case and, more importantly,
identify sufficient conditions under which we derive positive algorithmic results.

Conceptually new models often lead to new technical challenges. Our second contribution is an
algorithmic ingredient that tackles such a new challenge. Let us start with a thought experiment:
consider a more powerful intermediary who knows the true distributions; the seller, however, still
acts according to some beliefs formed from the observed samples. Does the problem become trivial?
Can the intermediary simply run the optimal segmentation w.r.t. the true distributions and expect
near optimal outcomes?

The answers turn out to be negative. Consider a segment for which there are two prices p∗ and
p, such that p∗ is the monopoly price with a sale probability close to 1, while p gets near optimal
revenue with a sale probability close to 0. If the intermediary includes this segment, however, the
seller’s beliefs may overestimate the revenue of p and/or underestimate that of p∗ and, thus, deduce
that p is the monopoly price instead of p∗. As a result, the resulting social welfare may be much
smaller than what the intermediary expects from the true distributions.

This example shows that, unlike existing works on the sample complexity of mechanism design,
where the difficulties arise purely from the learning perspective of the problem, our problem presents
an extra challenge from the uncertainties in the seller’s behavior due to his inaccurate beliefs.

Intuitively, the intermediary would like to convert the optimal segmentation w.r.t. the true
distributions into a more robust version, such that for any approximately accurate beliefs that the
seller may have, the resulting objective is always close to optimal. We will refer to this procedure
as robustification, and the result as the robustified segmentation.

2 Bayesian Model

We start with an example through which we will illustrate the main ideas in this section.

Example 1. The example is parameterized by a noise level, 1 − z ∈ [0, 1]. The value set [V ] =
{1, 2, 3} is identical to the type set [T ]. Each type t ∈ [T ] corresponds to the distribution F(t):

Prv∼F(t)[v] =

{
z if v = t,
1−z

2 otherwise.
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(a) Partition of the simplex into Xv’s and
τ = the uniform distribution over [V ].

(b) Convex hull of types for z < 1. Solid inner
triangle is for z = 0.49; dashed one is for z =
0.8.

Figure 2: Simplex view for Example 1

When z = 1/3, all F(t)’s equal the uniform prior, and no non-trivial segmentation is possible. At
the other extreme, when z = 1 each F(t) is a pointmass at t, which is the Bergemann et al. (2015)
model.

Simplex View. As observed by Bergemann et al. (2015), the key idea is to identify segments
with probability distributions over [V ]. The only thing that matters given a segment σ is the
posterior distribution on [V ] conditioned on the intermediary choosing σ. Since [V ] is finite, it is
easier to think of ∆([V ]) as the unit simplex in the appropriate dimensions. Then, a segment σ is
simply a point in this simplex. Further, all that matters for a segmentation is the distribution over
σ’s as observed by the seller, i.e., it is sufficient to specify a distribution over the simplex ∆([V ]).
The only constraint on this distribution is that its expectation must equal the prior distribution
over values, which is another point on the simplex, denoted by τ .

Going further, it is sufficient to only consider some special points on the simplex. We denote
these special points by xS , for a subset S ⊆ [V ]: this is the equal revenue distribution with support
equal to the set S, i.e., these are distributions supported on S such that p ·Pr[v ≥ p] is the same
for all p ∈ S. These special points partition the simplex into regions Xv for each v ∈ [V ]: each
distribution in Xv is such that v is a monopoly price for it.

We now describe this through Example 1. Figure 2a shows the unit simplex, and the points
xS for all S ⊆ [V ]. The red region is X1, blue is X2 and green is X3. The uniform distribution
over [V ] is represented by τ . An optimal segmentation with no noise (when z = 1) corresponds to
representing τ as the following convex combination of the vertices of the blue polytope:

τ = 1
6x
{2} + 1

6x
{2,3} + 2

3x
[V ].

This corresponds to the following segmentation with Σ = {σ1, σ2, σ3} corresponding to x{2}, x{2,3}

and x[V ] resp. and G(1) = (0, 0, 1); G(2) = (1/2, 1/6, 1/3); and G(3) = (0, 1/3, 2/3).
Bergemann et al. (2015) consider segmentations that only consist of vertices of Xp∗ where p∗ is

a monopoly price of the prior distribution (which is the blue region X2 in Figure 2a). They assume
that ties for monopoly price are broken in favor of the lowest price, which is the lowest value in the
support. This implies that the item is always sold thus maximizing social welfare.
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Generalization of the Simplex View. We extend this simplex view to our model. When the
number of types T is at most the number of values V , and the type distributions are non-degenerate,
we can continue to consider the simplex on the set of values, as we have done so far. This will be
the case for Example 1. A more general view is to consider the simplex on the set of types. Most of
the intuition extends to this view, although geometrically the picture is somewhat different. (This
is the view we use in the proofs; the simplex on values is used just for illustration.)

The case when z < 1 is depicted in Figure 2b. The main difference from the previous picture
is that we are not allowed to choose any point on the simplex for our segmentation. Instead, we
are restricted to only choose the points in the convex hull of the F(t)s, for all t ∈ [T ]. We denote
this convex hull by ∆([T ]), by abuse of notation. For z = 0.49, the figure shows that ∆([T ]) is
contained entirely inside the blue region. Thus no matter what segmentation is used, the seller
always sets the monopoly price of 2; segmentation is therefore useless. For z = 0.8, the figure shows
that segmentation is possible because ∆([T ]) intersects with all three regions, X1, X2, X3.

We introduce some notation now. Given any segmentation (Σ,G), this induces a distribution
over segments, denoted S, and a posterior distribution on the values [V ] for each segment σ ∈ Σ,
which we abuse notation and denote by F(σ). For any distribution F , let Rev(F) denote its
monopoly revenue. Let CS(F) denote the consumer surplus when the seller sets the monopoly
price for distribution F . Our goal is to find a segmentation to maximize a linear combination of
revenue and consumer surplus, i.e., for some parameter λ ∈ [0, 1], maximize:

Eσ∼S

[
λ · Rev

(
F(σ)

)
+ (1− λ) · CS

(
F(σ)

)]
.

From now on, we let ∆([T ]) = {x ∈ RT+ : ‖x‖1 = 1} denote probability distributions over the
types. We first formalize the claim that segmentation schemes correspond to probability distribu-
tions over ∆([T ]) with a given expectation. The proofs in the section are deferred to Appendix B.

Lemma 2.1. Let τ denote the point in the simplex ∆([T ]) corresponding to the distribution T :
τ = (PrT [1],PrT [2], . . . ,PrT [T ]). There is a 1:1 correspondence between segmentations (Σ,G) and
probability distributions µ over ∆([T ]) such that the expectation is τ , i.e.,∫

xdµ = τ . (1)

Using this lemma, we switch our design space to probability distributions µ that satisfy (1).
We use σ ∈ Σ and x ∈ ∆([T ]) interchangably.

We now partition the simplex ∆([T ]) into V areas, X1, X2, . . . , XV , one for each value/price
in [V ], such that the price p is a monopoly price for any segment in Xp. For any distribution F
and any price p ∈ [V ], let Rev(F , p) denote the revenue of price p on distribution F , and CS(F , p)
denote the consumer surplus. For any p ∈ [V ], define:

Xp = {x : Rev(F(x), p) ≥ Rev(F(x), p′),∀p′ 6= p} .

Since the revenue function Rev(F(x), p) =
∑

t xt · Rev(F(t), p)) is linear in x, the set Xp is the
intersection of the simplex ∆([T ]) and a polytope defined by V − 1 linear constraints. Further, if
we restrict our domain to points x ∈ Xp, we have that these are linear functions in x.

Rev(F(x)) = Rev(F(x), p) =
∑
t

xt · Rev(F(t), p) , and

CS(F(x)) = CS(F(x), p) =
∑
t

xt · CS(F(t), p) .
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We next observe that this implies that it is sufficient to choose at most one point from each Xp.
The idea is that we can replace the distribution conditioned on x ∈ Xp by its expectation.

Lemma 2.2. There is an optimal segmentation such that the distribution µ is supported on at most
one point from each Xp, i.e., a finite set of the form {xp ∈ Xp, ∀ p ∈ [V ]}.

Using this lemma, we now show that the following linear program (LP) captures the optimal
segmentation. The variables are zp = xp · µ(xp). We denote by Zp the region that is the convex
hull of Xp and the origin. Rev and CS extend naturally to Zps.

max
∑
p∈[V ]

λ · Rev
(
F(zp)

)
+ (1− λ) · CS

(
F(zp)

)
(2)

s.t. ∀ p ∈ [V ], zp ∈ Zp and
∑
p∈[V ]

zp = τ .

Theorem 2.1. We can find an optimal segmentation in polynomial time by solving LP (2).

3 Sample Complexity Model

We scale the values to be in (0, 1], i.e., [V ] =
{

1
V ,

2
V , . . . , 1

}
. This treatment simplifies the notations

in the proofs, and separates the two roles of V : the scale of the values (less interesting, always has
the same degree as ε), and the number of possible values. To translate the bounds into the original
scaling, replace ε with ε

V everywhere. We further assume the type distribution to be uniform to
simplify discussions. This is w.l.o.g. up to duplication of types.

Following standard notations in algorithmic mechanism design, we refer to the sale probability
of a price as its quantile. We will consider the revenue curve in the quantile space where the x and
y coordinates are the quantile of a price and its revenue, respectively.

3.1 Model and Results

Intermediary: The intermediary has access to the value distributions of different types only in
the form of m i.i.d. samples per type. She chooses a segmentation based on these samples, and
then the chosen segmentation is evaluated on a freshly drawn type-value pair, i.e., the test sample.
The expectation of the objective is taken over the random realization of the m samples per type as
well as the test sample, and potentially the randomness in the choice of the segmentation.

Buyer: The buyer bids truthfully since the seller effectively posts a take-it-or-leave-it price.

Seller: We need to further define how the seller acts. Consider the following candidate models:

1. The seller knows the value distributions exactly. Hence, given the segmentation and the
realized segment, which induces a mixture of the value distributions of different types, the
seller posts the monopoly price of the mixture.

2. The seller can access the same set of m samples per type, and believes that the value distri-
butions are the empirical distributions, i.e., the uniform distributions over the corresponding
samples. Hence, she posts the monopoly price of the mixture of empirical distributions.

3. The seller further has access to other sources of samples.
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4. The seller further has access to other sources of prior knowledge.

This is only a nonexclusive list of many potential models that are equally well-motivated in our
opinion, depending on the actual applications. Is there a unifying model that allows us to study all
these settings in one shot and get non-trivial positive results?

To this end, this paper considers the following overarching model (the subscript S indicates
that these variables are associated with the seller):

For εS = O
(
m−1/2 log(mV )

)
, the seller forms beliefs FS(t)’s, t ∈ [T ], such that for any

type t the Kolmogorov-Smirnov distance between FS(t) and F(t) is at most εS , i.e., for
any value v ∈ [V ], v’s quantiles w.r.t. F(t) and FS(t) differ by at most εS . Then, she
posts the monopoly price of the mixture of the beliefs.

The choice of εS is based on a standard concentration plus union bound combination on the
empirical distributions over the m samples that the intermediary can access. In other words, we
assume that the seller’s beliefs are at least as good as what could have been estimated using the
intermediary’s samples. All aforementioned candidate models are special cases of ours.

We start with an impossibility result for general value distributions. See Section A for details.

Theorem 3.1. If the value distributions are allowed to have multiple monopoly prices whose social
welfare differ by at least Ω(1), e.g., the uniform distribution over {1

2 , 1}, no algorithm can obtain
any o(1)-approximation using a bounded number of samples.

(Discrete) MHR-like Distributions. Given the above impossibility result that relies on value
distributions that have multiple monopoly prices whose respective values of social welfare are vastly
different, we intuitively need the value distributions to be unimodal and far from having a plateau.
The family of continuous monotone hazard rate (MHR) distributions, a standard family of distri-
butions in the literature, has all the nice properties that we need, except that they are continuous.
They are unimodal since they have concave revenue curves in the quantile space (folklore). In fact,
their revenue curves in the quantile space are strongly concave near the monopoly price (Huang
et al., 2018b, Lemma 3.3). They also admit other useful properties: the optimal revenue is at least a
constant fraction of the social welfare (Dhangwatnotai et al., 2015, Lemma 3.10); and the monopoly
price has a sale probability lower bounded by some constant (Hartline et al., 2008, Lemma 4.1).

There is an existing notion of discrete MHR distributions by Barlow et al. (1963) that mimics the
functional form of the continuous version. However, it loses some useful properties. In particular,
it contains some distributions that have two monopoly prices, e.g., the uniform distribution over
{1

2 , 1}, and as a result still suffers from the impossibility result.
Instead, we define a family of (discrete) MHR-like distributions directly from the aforementioned

benign properties of continuous MHR distributions. Hence, unlike the existing notion of discrete
MHR distributions, our definition truly inherits the main features of continuous MHR distributions.
We remark that the constants 1

4 and 1
e in the following definition are merely copied from the

continuous counterparts; our results still hold asymptotically if they are replaced by other constants.

Definition 3.1 (MHR-like Distributions). A discrete distribution F is MHR-like if it satisfies:

1. (Concavity) Its revenue curve is concave in the quantile space.

2. (Strong concavity near monopoly price) For its monopoly price p∗ and any other price p′,
suppose their quantiles are q∗ and q′ respectively; then, we have:

Rev
(
p′,F

)
≤
(
1− 1

4(q∗ − q′)2
)
· Rev

(
p∗,F

)
.
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price !∗
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Figure 3: Plateau Example. In a revenue curve in the quantile space, the x and y coordinates are
the quantile of a price and its revenue respectively. On the left, the solid curve is the revenue curve
of a segment w.r.t. the true distributions; the dotted curves are those of the type distributions
mixed in the segment. On the right are the counterparts w.r.t. the seller’s beliefs. Prices p∗ and p
are monopoly prices of the segment w.r.t. the true distributions and the seller’s beliefs respectively.

3. (Large monopoly sale probability) Its monopoly price’s sale probability is at least 1
e .

4. (Small revenue and welfare gap) Its monopoly revenue is at least 1
eEv∼F [v].

The main difference of our MHR-like distribution and the notion in Barlow et al. (1963) is
property 2 in definition 3.1. An MHR-like distribution can be made by discretizing an continuous
MHR distribution, meanwhile ensuring that there is a gap between the optimal revenue and any
sub-optimal ones.

We show that polynomially many samples are sufficient for learning an ε-optimal segmentation,
with only the mild assumption on seller’s behavior discussed earlier in the section.

Theorem 3.2. With m = poly
(
ε−1, T, log V

)
i.i.d. samples, we can learn a segmentation that is

optimal up to an ε additive factor in poly
(
ε−1, T, V

)
time.

3.2 Robustification: Motivation and Definition

Recall the thought experiment in Section 1. Consider a more powerful intermediary who has exact
knowledge of the true distributions; the seller, however, still acts according to her approximately
accurate beliefs. Further, recall the example where the problem remains nontrivial even when the
intermediary has more power; we give more details below. Consider a segment for which there are
two prices p∗ and p, such that p∗ is the monopoly price with a quantile close to 1, while p gets close-
to-optimal revenue with a quantile close to 0. Even though a single MHR-like distribution cannot
have such a plateau, a mixture of MHR-like distributions can.1 See Figure 3a for an illustrative
example. If the intermediary includes this segment, the seller’s belief may overestimate the revenue
of p and/or underestimate that of p∗ and thus deduce that p is the monopoly price instead of
p∗. See Figure 3b. The resulting social welfare may be much smaller than what the intermediary
expects from the true distributions.

1In fact, every distribution on [V ] is a mixture of MHR-like distributions, because point masses are MHR-like.
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Intuitively, we would like to convert the optimal segmentation w.r.t. the true distributions into
a more robust version, such that for any approximately accurate beliefs that the seller may have,
the resulting social welfare and revenue are both close to optimal. As mentioned in Section 1, we
will refer to this procedure as robustification, and the result as the robustified segmentation.

In the following definition, the subscripts of εS and εI indicate they are the additive errors
that the seller and intermediary are aiming for, respectively. Further, it states that the robustified
segmentation must keep all segments in the original version (Σr ⊇ Σ∗). We ignore insignificant
segments due to technical difficulties in achieving the stated properties for them,2 and that their
roles in the revenue and social welfare are negligible. For any significant segment, the first two con-
ditions state that its weight and mixture of types are preserved approximately; the third condition
gives the desirable robustness against the uncertainties in the seller’s behavior.

Definition 3.2 (Robustified Segmentation). Suppose that (1) (Σ∗,G∗) is a segmentation, repre-
sented by x∗σ and weight w∗σ = µ(x∗σ), ∀ σ ∈ Σ∗; and (2) p∗σ is an optimal price w.r.t. F(x∗σ),
∀ σ ∈ Σ∗. For any εI ≥ εS > 0, (Σr,Gr) is an (εI , εS)-robustified segmentation, represented by xrσ
and weight wrσ with Σr ⊇ Σ∗, if for any σ ∈ Σ∗, either σ is insignificant in that Ev∼F(x∗σ)[v] < εI ,
or:

1. (Weight preservation) wrσ ≥ (1− εI) · w∗σ;

2. (Mixture preservation) ‖x∗σ − xrσ‖1 ≤ εI ; and

3. (Robustness) no εS-optimal price w.r.t. F(xrσ) has a quantile smaller than that of p∗σ by εI .

The next lemma shows that the technical conditions in the definition of robustified segmentation
indeed lead to robust bounds in terms of both social welfare and revenue and, by induction, their
linear combinations. The proof follows from straightforward calculations and therefore is deferred
Appendix C.1.

Lemma 3.1. For any prices prσ’s that are εS-optimal w.r.t. segments σ ∈ Σr in the robustified
segmentation, we have the following in terms of social welfare and revenue:∑

σ∈Σr w
r
σ · SW

(
prσ,F(xrσ)

)
≥
∑

σ∈Σ∗ w
∗
σ · SW

(
p∗σ,F(x∗σ)

)
−O

(
εI
)
,

|
∑

σ∈Σr w
r
σ · Rev

(
prσ,F(xrσ)

)
−
∑

σ∈Σ∗ w
∗
σ · Rev

(
p∗σ,F(x∗σ)

)
| ≤ O

(
εI
)
.

3.3 Robustification: Algorithm

This subsection introduces an algorithm that finds such an (εI , εS)-robustified segmentation in
polynomial time for any sufficiently large εI , i.e.:

εI ≥ ε
1
6
ST

2
3 log

1
6 V = Õ

(
m−

1
12T

2
3

)
, (3)

Lemma 3.2. There is an algorithm that computes in polynomial time an (εI , εS)-robustified seg-
mentation, for any εI and εS that satisfy Eqn. (3).

3.3.1 Proof Sketch of Lemma 3.2

Step 1: Robustify the significant segments one by one, ignoring the centroid constraint. Any
significant segment σ is represented by a point xσ and weight wσ = µ(xσ), whose intended price is

2If the expected value is tiny in the first place, all prices are εS-optimal. Hence, we cannot achieve robustness.
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Figure 4: Robustification.

p∗. In the simplex view, we want to move slightly away from xσ such that we end up far from all
regions Xp where price p gives a small consumer surplus. How do we find which direction to move
towards? (Since we are in high dimensions, we cannot rely on geometric intuition.)

The choice of direction to move towards relies on a structural result about the mixtures of
MHR-like distributions stated as Lemma 3.3. The lemma promises that there exists a type t∗ such
that for the distribution F(t∗), for prices whose quantiles are less than that of p∗ by at least εI ,
there is a revenue gap of εST

εI
. Once we prove existence, we can find such a type by enumerating

over all types and checking if the property holds.
In the simplex view, see Figure 4a. We want to move xσ(red point) towards the vertex that

corresponds to type t∗(to the green point); we want to be at (1− εI
T )xσ+ εI

T xt∗ . To do this, decrease
the probability of mapping each type to σ by an 1 − εI

T factor; then, increase the probability of
mapping t∗ to σ additively by wσεI

T to restore the original weight. Clearly, this satisfies the mixture
preservation condition.

Let p be any price whose quantile is smaller than that of p∗ by at least εI . The revenue gap
between p and p∗ for F(t∗) is εST

εI
, and we moved towards xt∗ by εI

T , therefore the revenue gap
between p and p∗ for the mixture is at least εS . As a result, p cannot be an εS-optimal price in the
resulting segment. Thus, we have the robustness condition.

Step 2: See Figure 4b. We will add a counterbalancing segment(yellow) to restore the centroid.
After the first step, the centroid may be shifted from its intended location, i.e., the middle of the
simplex, by up to εI

T . Consider the line that crosses the intended centroid and the shifted one. Add
a counterbalancing segment at its intersection with the boundary of the simplex on the opposite
side of shifted centroid, with an appropriate weight that restores the centroid. The weight is only
O(εI) because the distance between the intended centroid and the counterbalancing segment, in
fact, any point on the boundary of the simplex in general, is at least Ω( 1

T ) by basic geometry.
Finally, the total weight may now exceed 1 by up to O(εI). Normalize the weights of all segments

to restore a total weight of 1. It decreases the weights of the segments by at most 1 − O(εI) and
therefore satisfies the weight preservation condition.

We will show the formal algorithm and analysis in Appendix C.2.
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3.3.2 Structural Lemma and the Proof Sketch

Lemma 3.3. For any segment x ∈ ∆ that is significant in the sense that Ev∼F(x)[v] ≥ εI , and its
corresponding monopoly price p∗, there is a type t∗ ∈ [T ] such that for any price p whose quantile
w.r.t. F(x) is smaller than that of p∗ by εI , we have:

Rev
(
p,F(t∗)

)
< Rev

(
p∗,F(t∗)

)
− εST

εI
.

This is technically the most challenging part of the proof. We will show the full proof in
Appendix C.3. By concavity of the revenue curves of MHR-like distributions, it suffices to consider
the inequality when p is the smallest price whose quantile w.r.t. F(x) is smaller than that of p∗ by
εI . Let this price be p̄.

Recall the plateau example in Figure 3. From the picture, it is tempting to pick the type
that corresponds to the “right-most” dotted revenue curve, as it has the desirable shape that the
revenue rapidly decreases when the price increases from p∗. There are several problems with this
approach. First, the concept of “right-most” revenue curve is underdefined. Is it the one with the
smallest monopoly price? Or the one with the largest monopoly sale probability? Second, even if
we find a type whose revenue curve has the desirable shape, it still may not prove Lemma 3.3. For
example, it may not have a large enough optimal revenue in the first place and, thus, the RHS of
the inequality in the lemma is negative.

Instead, we will prove the lemma by contradiction. Intuitively, the contradiction will be that
there is a type t such that the revenue curve of F(t) has a large plateau; this is not possible for
MHR-like distributions. The assumption to the contrary guarantees that the revenue of p∗ is not
much above that of any price between p̄ and p∗. The following additional conditions formalize the
‘large plateau’ notion:

1. Revenue between p̄ and p∗ is not much higher: ∀ p′ ∈ [p∗, p̄] ,

Rev
(
p′,F(t)

)
− Rev

(
p∗,F(t)

)
≤ Õ

(
εST

2

ε2I

)
.

2. The plateau is high, i.e., revenue of p∗ is large: Rev
(
p∗,F(t)

)
≥ Ω

(
εI
T

)
.

3. The plateau is wide, i.e., the quantiles of p̄ and p∗ differ by at least Ω
( ε2I
T

)
.

The rest of the subsection assumes to the contrary that the inequality in the lemma fails to
hold for all types. Then, we use a probabilistic argument to show that there must be a type t such
that the distribution F(t) satisfies the conditions mentioned above, and argue that these lead to a
contradiction.

Probabilistic Argument. Consider sampling a type t according to the mixture induced by the
segment. We show that under the assumption to the contrary, the probability that condition 1 is
violated is less than O

(
εI
T

)
(Lemma C.3). Further, we prove that the revenue of p∗ w.r.t. F(x),

which is optimal for this distribution, is at least an Ω
(

1
T

)
fraction of the social welfare w.r.t.F(x)

(Lemma C.4). Then by the assumption that this segment is significant, this is at least Ω
(
εI
T

)
(Lemma C.5). Then, by a Markov inequality type argument, there is at least an Ω

(
εI
T

)
probability

that Condition 2 is satisfied (Lemma C.6). Putting together, there is a positive chance that we
sample a type t that satisfies the first two conditions. Finally, we finish the argument by showing
that the first two conditions actually imply the third one (Lemma C.7).
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Algorithm 1 Learn a (Robust) Segmentation from Samples

1. Construct empirical distributions E(t)’s, t ∈ [T ], from samples.

2. Find MHR-like empirical distributions Ẽ(t)’s, t ∈ [T ], such that the Kolmogorov-
Smirnov distances between them and the corresponding empirical distributions are small:
dKS

(
Ẽ(t), E(t)

)
≤ εS .

3. Find optimal segmentation (Σ∗,G∗) w.r.t. MHR-like empirical distributions Ẽ.

4. Construct the robustified segmentation (Σr,Gr) and return it.

Contradiction. The proof is a case by case analysis, so we present the bottleneck case which
forces the choice we made in Eqn. (3). This is when the monopoly price p(t) of type t is smaller
than both p̄ and p∗. A complete proof that includes the other cases are deferred to Appendix C.3
(Lemma C.8).

The concavity, and strong concavity near monopoly price, of MHR-like distributions, along with
the fact that both p̄ and p∗ are larger than the monopoly price, imply that the revenue gap is at
least the revenue of p∗ times the square of the quantile gap between the prices. Further by the
second and third conditions above, of having large revenue and large quantile gap, the revenue gap
between prices p̄ and p∗ is at least:

Ω

(
εI
T

)
· Ω
(
ε2I
T

)2

= Ω

(
ε5I
T 3

)

This is greater than εST
εI

by our choice of εI ≥ ε
1
6
ST

2
3 log

1
6 V in Eqn. (3).

3.4 Proof of Theorem 3.2: Project, Optimize, and Robustify

Finally, we show how to use the robustification technique to design an algorithm, presented as
Algorithm 1, that learns a (robust) O(εI) segmentation in the sample complexity model.

Algorithm. Similar to the existing works on the sample complexity of mechanism design, the
algorithm starts by constructing the empirical distributions. Then, we project them back to the
space of MHR-like distributions w.r.t. the Kolmogorov-Smirnov distance dKS , i.e., the maximum
difference in the quantile of any value. The feasibility of this step comes from the fact that the true
distributions are MHR-like and satisfy the inequality. We explain in Appendix D how to compute
in polynomial time approximate projections that relax the RHS of the inequality by a constant
factor; other constants in our analysis need to be changed accordingly but the bounds stay the
same asymptotically. Further, we optimize the segmentation according to the MHR-like empirical
distributions. Finally, we robustify the resulting segmentation using Lemma 3.2.

Analysis. Note that for any type t, the distances between the true distribution F(t) and the
seller’s belief FS(t), between F(t) and the empirical distribution E(t), and between E(t) and the
MHR-like empirical distribution Ẽ(t) are bounded by εS . Hence, the distance between the seller’s
belief FS(t) and the MHR-like distribution Ẽ(t) is at most 3εS by the triangle inequality and, thus,
the same conclusion holds replacing types with mixtures induced from the segments. Therefore,
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for any segment in the segmentation chosen by the algorithm, the seller’s monopoly price w.r.t.
her beliefs is a 6εS-optimal price w.r.t. the MHR-like empirical distributions. By Lemma 3.1, the
performance of the algorithm is an O(εI)-approximation comparing with the optimal w.r.t. the
MHR-like empirical distributions.

It remains to show that the optimal w.r.t. the MHR-like empirical distributions is an O(εI)-
approximation to the optimal w.r.t. the true distributions. To do that, it suffices to find a good
enough segmentation achieving this approximation. For this we once again resort to Lemma 3.2,
in particular, the existence of an (εI , εS)-robustified segmentation (Σr,Gr) for the optimal segmen-
tation w.r.t. the true distributions F(t)’s. Note that the MHR-like empirical distributions Ẽ(t)’s
are at most O(εS) away from the corresponding true distributions F(t)’s, by triangle inequality.
Therefore, running (Σr,Gr) on the MHR-like distributions, with a seller who posts the monopoly
price w.r.t. the MHR-like distributions, gives an O(εI)-approximation by Lemma 3.1.

4 Bandit Model

In the bandit model, the intermediary interacts with the seller and the buyer repeatedly for m
rounds for some positive integer m, with the buyer’s type-value pair freshly sampled in each round.
The goal is to maximize the cumulative objective during all m rounds. There are a large variations
of models depending on the modeling assumptions. Next, we explain our choice.

Intermediary’s Information: The intermediary does not know the value distributions at the
beginning and, therefore, must learn such information through the interactions in order to find a
good enough segmentation. Further, the intermediary observes in each round only the purchase
decision of the buyer, but not her value. This is similar to the bandit feedback in online learning
and hence the name of our model. We remark that the alternative model where the intermediary
can observe the values, which corresponds to full-information feedback in online learning, easily
reduces to the sample complexity model as the intermediary may simply run the algorithm in the
sample complexity model using the bids in previous rounds as the samples.

Since the intermediary can observe the buyer’s type in each round, she can easily learn the
type distribution through repeated interactions. To simplify the discussions, we will omit this less
interesting aspect of the problem and will assume that the type distribution is publicly known.
Following the treatment in previous models, we further assume that it is a uniform distribution.

Buyer’s Behavior: We assume the buyer is myopic and, therefore, buys the item in each round
if and only if the price posted is at most her value. In other words, the buyer does not take into
account that her behavior in the current round may influence how the intermediary and the seller
acts in the future. This challenge of non-myopic buyers was partly addressed in the online auction
problem by Huang et al. (2018a). Their techniques, however, do not directly apply to our problem.

Seller’s Information: We assume that, like the intermediary, the seller does not have any infor-
mation about the value distributions of the buyer at the beginning, and must learn such information
through bandit feedback. With this assumption, we will investigate how to encourage the seller
to explore on the intermediary’s behalf. What makes it challenging is that the seller’s objective
(revenue) and the intermediary’s objective (e.g., social welfare) may not be aligned.

Seller’s Behavior: Any algorithm by the intermediary must rely on some assumptions on the
seller’s behavior to get a non-trivial performance guarantee. Informally, we need the seller to pick
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an (approximately) optimal price in terms of revenue when there is enough information for finding
one; there is not much we can do if the seller simply ignores any information and picks prices
randomly. On the other hand, we also need the seller to explore at a reasonable rate in order
to learn the value distributions. If the seller could have other sources of information which allow
him to estimate the distribution accurately, he may severely limit his exploration on prices whose
confidence intervals suggest high-potential (and high uncertainty). Our assumption must disallow
such strategies and ensure that the seller learns the distributions only via observing the buyer’s
actions. What are the mildest behavioral assumptions (on the seller) that allow the intermediary to
have a non-trivial guarantee in bandit model?

Note that the seller herself faces an online learning problem with bandit feedback. Our model
is driven by the exploration-exploitation dilemma in her viewpoint. First, we introduce the upper
confidence bound (UCB) and the lower confidence bound (LCB) of the quantile of any value v and
any type t given past observations in the form of (type, price, purchase decision)-tuples.

1. For any value v ∈ [V ] and any type t ∈ [T ], suppose there are m(v, t) past observations with
type t and price v, among which the buyer purchases the item in m+(v, t) observations. Then,
for some constant C > 0 that depends on the desired confidence level, let:

Ũ(v, t) = m+(v,t)
m(v,t) +

√
C

m(v,t)

L̃(v, t) = m+(v,t)
m(v,t) −

√
C

m(v,t)

2. Noting that quantiles are monotone, we define the UCB and LCB as follows:

U(v, t) = min
v′≤v

Ũ(v′, t) L(v, t) = max
v′≥v

L̃(v′, t)

3. This further induces the UCB and LCB of the quantile of value v w.r.t. each segment x ∈ ∆:

U(v,x) =
∑
t∈[T ]

xt · U(v, t)

L(v,x) =
∑
t∈[T ]

xt · L(v, t)

For some target average regret 0 < εS < 1 of the seller, we say that she exploits in a round if
the segment x and her price p satisfy that:

U(p,x) ≥ max
p′∈[V ]

U(p′,x)− εS .

Otherwise, we say that she explores. We assume that the seller is an εS-canonical learner in the
sense that she exploits in all but at most an εS fraction of the rounds.

Among others, we give two example algorithms that satisfy this definition. First, the Upper-
Confidence-Bound (UCB) algorithm satisfies this with εS = 0. Further, consider the following

simple Explore-then-Commit (ETC) algorithm, with εS = Õ
(
m−

1
3TV

)
. The seller explores in the

first εSm = Ω̃
(
TV ε−2

S

)
rounds by posting random prices. Since a price-type pair shows up with

probability 1
TV in each of these rounds, she learns the quantile of every price p ∈ [V ] w.r.t. the value

distribution F(t) of every t ∈ [T ] up to an additive error of εS . Then, in the remaining rounds,
she can pick any price that is not obviously suboptimal in the sense that its UCB is smaller than
the LCB of some other price.
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Algorithm 2 Segmentation algorithm in the bandit model (in each round)

1. Let M(t) be the set of MHR-like distributions with support [V ] such that the quantile of
each value v ∈ [V ] is between the corresponding UCB and LCB.

2. Let F∗(t) ∈M(t), t ∈ [T ], be such that Opt(F∗) is maximized.

3. Find (Σ∗,G∗), the optimal segmentation w.r.t. F∗, via the algorithm in Section 2.

4. Construct (Gr,Σr), a robustified version of (Σ∗,G∗), via Algorithm 3, using εM in place of εS .

4.1 Algorithm

In each round, the algorithm seeks to place the intermediary in a win-win situation by maintaining
a set of optimistic hypothetical value distributions for the types, together with a robustified version
of the optimal segmentation w.r.t. the hypothetical distributions. If the seller indeed posts a price
that is consistent with our optimistic hypothesis, we use the analysis from the previous section
(Thm. 3.2) to show that the objective in this round is close to optimal. Otherwise, if the seller
posts a price that is inconsistent with our optimistic hypothesis, we argue that there must be a
sufficiently large gap between its UCB and LCB and, thus, the intermediary gets some useful new
information.

There is a caveat, however, when the algorithm constructs the robustified segmentation: it
needs to replace εS with some slightly larger parameter εM . In particular, let εM be such that if
we define εI using Eqn. (3), replacing εS with εM , we have: εIm = TV ε−3

M . Solving it gives that

εM = Θ
(
m−

6
19 poly(T, V )

)
and εI = Θ

(
m−

1
19 poly(T, V )

)
.

We show that for εS-canonical learners with a sufficiently small εS , which is satisfied by both
aforementioned examples, we can get sublinear regret.

Theorem 4.1. Algorithm 2 gets at least Opt−O
(
m−

1
19 ·poly(V, T )

)
per round on average, provided

that the seller is an εS-canonical learner with εS ≤ O(εM ) = O
(
m−

6
19 · poly(V, T )

)
.

If the seller explores in a round such that the corresponding UCB and LCB differs by not only
εS but by at least εM , we call it a major exploration. We first upper bound the number of rounds
that involve such major explorations in the following lemma.

Lemma 4.1. The expected number of rounds that are major explorations is at most Õ(TV ε−3
M ).

Proof. Every time that the seller makes a major exploration on some price p in a round, say, in
response to a segment represented by a point x ∈ ∆, the gap between the UCB and the LCB is
at least εM . Then, the expected gap between Ũ(p, t) and L̃(p, t) is also at least εM when type t is
sampled according to x. This implies that, with probability at least εM

2 , the realized type t actually

has a gap of at least εM
2 between Ũ(p, t) and L̃(p, t). Note that for any type t, and any price p,

this cannot happen by more than O
(
ε−2
M

)
times by the definitions of Ũ(p, t) and L̃(p, t). Hence, the

expected number of times that the seller explores cannot exceed O
(
TV ε−3

M

)
times.

We now prove Theorem 4.1.

Case 1: Seller picks an undesirable price. Suppose the seller fails to pick a price that is at
least 14εM -optimal w.r.t. the optimistically chosen distributions F∗. Instead, she chooses a price p.
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Then, either she is not exploiting in the sense of the definition in Section 4, which cannot happen
in more than an εS fraction of the rounds, or the UCB of p is at least the maximum UCB among
all prices less εS . This is larger than the expected revenue induced from the optimistically chosen
distribution F∗ by at least 14εM − εS > εM , by the assumption that p is not 14εM -optimal. Note
that the latter is weakly larger than the LCB. Hence, we conclude that the UCB and LCB differs
by at least εM , which means that this is a major exploration that cannot happen in more than an
m−1 ·O

(
TV ε−3

M

)
= O(εI) fraction of the rounds (Lemma 4.1).

Case 2: Sale probability is lower than expected. Next, consider the case when the seller
picks a price that is indeed 14εM -optimal w.r.t. the optimistically chosen distributions F∗, but the
sale probability of the price given by the true distributions is smaller than by F∗ by more than εI .
In this case, note that both sale probabilities are bounded between the UCB and LCB; we again
conclude that there is a gap of at least εI > εM between them. Hence, this is a major exploration
which cannot happen in more than O(εI) fraction of the rounds.

Case 3: Everything goes as expected. Finally, consider the good case, when the seller indeed
picks a price that is at least 14εM -optimal least 4 w.r.t. the optimistically chosen distributions F∗,
and that the sale probability of the price given by the true distributions is at least that by F∗ less
εI . Then, by Lemma 3.1, we get that the expected objective in this round is at least Opt−O(εI).

Since the first two cases cannot happen in more than an O(εI) fraction of the rounds, the bound
stated in Theorem 4.1 follows.

5 Further Related Work

The problem of price discrimination is highly related to screening in games of asymmetric infor-
mation, pioneered by Spence (1973); Courty and Hao (2000), where the less informed player moves
first in hopes of combating adverse selection. In our setting, the seller wishes to screen buyers by
charging different prices depending on the buyer’s value. The intermediary’s segmentation allows
the seller to screen more effectively. The intermediary themselves face a signaling problem, as their
choice of segmentation is effectively a signaling scheme to the seller.

As such, our work is related to the broad literature on signaling and information design, where
a mediator designs the information structures available to the players in a game Bergemann and
Morris (2016). A special case of this is known as Bayesian persuasion Kamenica and Gentzkow
(2011); Dughmi and Xu (2016): an informed sender (here the intermediary) sends a signal about
the state of the world to a receiver (here the seller), who must take an action that determines the
payoff of both parties. The goals of the sender and receiver may not be aligned, so the sender
must choose a signaling scheme such that the receiver’s best response still yields high payoff for the
sender. See Dughmi (2017); Bergemann and Morris (2018) for surveys on these topics.

Our results for online learning are also related to work on iteratively learning prices Blum and
Hartline (2005); Medina and Mohri (2014); Cesa-Bianchi et al. (2015); Paes Leme et al. (2016);
Bubeck et al. (2017); Huang et al. (2018a). Both lines of work consider the seller’s problem of
incentive design or learning, but do not have an intermediary or market segmentation component.
Our model is also somewhat related to the literature on dynamic mechanism design, which considers
the incentive guarantees of multi-round auctions where the same bidders may participate in multiple
rounds. Bergemann and Valimaki (2010); Kakade et al. (2013); Pavan et al. (2014) gave truthful
dynamic mechanisms for maximizing social welfare and revenue.
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Our results are related to recent work on incentivizing exploration in a bandit model Frazier
et al. (2014); Mansour et al. (2015, 2016). These papers typically model a myopic decision-maker in
each round, and an informed non-myopic principle who can influence the decision-maker to explore
rather than exploit. In our setting, the seller is myopic decision-maker who sets prices, and the
intermediary can influence that decision by changing the segmentation. The previous results do not
directly apply to our setting, as an action corresponds to setting a price in the observed segment.
Hence there are exponentially many actions, so one should not hope for polynomial run time or
good regret guarantees by directly applying those results. Additionally, the intermediary chooses
the segmentation but the observed segment is chosen randomly, so the intermediary cannot force
the seller to play any particular action.

6 Future Work

We view our results as initiating a new line of work on algorithmic price discrimination under
partial information. We believe there are many promising open problems left to be explored in this
direction, and hope this paper inspires future work under other informational models and market
environments. We now present some of the most interesting directions for future work.

Competitive Markets. This paper and Bergemann et al. (2015) consider a monopolist seller,
which is a good fit for something like an ad exchange. In many online marketplaces the sellers are
in a competitive rather than a monopolistic setting. The products are differentiated so sellers can
exert some pricing power, which still incurs deadweight loss. It would be very interesting to extend
this theory of price discrimination to such competitive markets.

Strategic Buyers. When a seller uses past buyer behavior in the form of auction bids or purchase
decisions to decide future prices, and a buyer has repeated interactions with such a seller, the buyer
may be incentivized to strategize. Even if each interaction in isolation is strategyproof, the buyer
may forgo winning an earlier auction in order to get a lower price in the future. When each buyer
represents an insignificant fraction of the entire market, techniques from differential privacy can
address this issue Huang et al. (2018a). In this paper we ignore this strategic aspect and assume
that buyers are myopic. It would be very interesting to get results analogous to Huang et al.
(2018a), since their techniques do not readily extend to our model.

Worst Case Model. In online learning, even for arbitrary sequence of inputs, we can often
get a regret guarantee matching that for an i.i.d. input sequence. In particular this is true for a
monopolistic seller learning an optimal price or an optimal auction Bubeck et al. (2017); Blum and
Hartline (2005). It is tempting to conjecture that the same holds for our setting as well, but we
run into difficulties even modeling the problem. How does the seller behave in such a scenario? In
this paper, we modeled the seller behavior based on the underlying distribution. Defining a seller
behavior model in the absence of such a distribution that is both reasonably broad and allows
regret guarantees in the worst case setting is an interesting challenge.
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A Further Examples

A.1 Benefit of Segmentation

We now reproduce an example from Bergemann et al. (2015) that shows how a segmentation can
eliminate deadweight loss.

Example 2. The value set [V ] = {1, 2, 3} is identical to the type set [T ], and each distribution F(t)
is a pointmass at t. The prior distribution over values/types is uniform. The monopoly reserve
of the uniform prior distribution is 2. When the seller does not segment the market and posts the
monopoly reserve price, revenue is 4/3, consumer surplus is 1/3, and the deadweight loss is 1/3.

Consider instead the following segmentation with Σ = {σ1, σ2, σ3} where G(1) = (1, 0, 0); G(2) =
(1/3, 1/6, 1/2); and G(3) = (2/3, 1/3, 0). Recall that G(t) is the distribution of signals sent by the
intermediary upon observing type t. This signaling scheme generates three market segments, one
corresponding to each of σ1, σ2, σ3. The seller can compute the conditional distribution of values
within each segment, and will post the monopoly price for that distribution. Within segment σ1, the
distribution of values is: x1 with probability 1/2, x2 with probability 1/6, and x3 with probability
1/3. This happens to be the equal revenue distribution on values {1, 2, 3}. Within segment σ2,
only buyers of types 2 or 3 will be present, since a buyer of type 1 will never be mapped into this
segment. The conditional distribution of values in this segment is: x2 with probability 1/3 and
x3 with probability 2/3, which also happens to be the equal revenue distribution on values {2, 3}.
Type 2 is the only type with positive probability of being mapped to segment σ3, so the value
distribution in segment σ3 is a point mass on value 2.

Since each market segment has an equal revenue distribution of values, the seller can maximize
his profit by posting any price in the support of that distribution. For the sake of this example,
we will assume the seller breaks ties by posting the lowest optimal price.3 In market segment
σ1, the seller will post price p = 1, which will generate revenue of 1 and consumer surplus of
(1/6)× 1 + (1/3)× 2 = 5/6. In σ2, the seller will post price p = 2, which will generate revenue of 2
and consumer surplus of (2/3)× 1 = 2/3. Finally, in market segment σ3, the seller will post price
p = 2, which will generate revenue of 2 and consumer surplus of 0.

Given the prior distribution of values, one can also compute the probability of the intermediary
generating each market segment. In this case, segment σ1 is drawn with probability 2/3, segment
σ2 is drawn with probability 1/6, and segment σ3 is drawn with probability 1/6. Combining these,
we see that the expected revenue of this segmentation is (2/3) × 1 + (1/6) × 2 + (1/6) × 2 = 4/3,
and the consumer surplus is (2/3) × (5/6) + (1/6) × (2/3) + (1/6) × 0 = 2/3. This segmentation
has zero deadweight loss, which means that full economic efficiency is achieved.

3 This can be strictly enforced using arbitrarily small perturbations.
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A.2 Noisy Types

Now consider the above example with noise. This example has been briefly discussed in Section 2.
This subsection includes more details.

Example 3. Given a noise level of 1 − z, each type t ∈ [T ] corresponds to the distribution F(t)
given by

Prv∼F(t)[v] =

{
z if v = t,
1−z

2 otherwise.

Note that when z = 1/3, all F(t) equal the uniform prior, and no further (non-trivial) seg-
mentation is possible. At the other extreme, when z = 1 each F(t) is a pointmass at t, which
corresponds to Example 1. For z = 0.49, it turns out that market segmentation cannot help at
all. Any segmentation will result in the seller always setting the monopoly reserve price of 2, and
the result is the same as no segmentation! As in Example 1, revenue from no segmentation is 4/3,
consumer surplus is 1/3, and the deadweight loss is 1/3.

On the other hand, when z = 0.8 segmentation is possible, but it is no longer possible to
achieve full economic surplus due to the noisy types. If the intermediary implemented the same
segment map as in Example 1, the resulting conditional value distributions in each segment would
no longer be equal revenue distributions because types are no longer perfectly correlated with
values. If the intermediary perfectly segments the market by types using the deterministic segment
map G(t) = σt, this will result in revenue 2 − 4(1−z)

3 = 1.7333, consumer surplus 2(1−z)
3 = 0.1333,

and deadweight loss 2(1−z)
3 = 0.1333. Note that under the noiseless setting of Example 1, this

segmentation would have allowed the seller to perfectly price discriminate, resulting in revenue 2,
consumer surplus 0, and deadweight loss 0. These changes in economic outcome are a direct result
of the fact that types are only a noisy signal of the buyer’s value. For example in market segment
σ3, the seller will still set monopoly price p = 3, but only a (1−z)-fraction of the segment will have
value 3 and purchase the item.

A.3 Impossibility of Bergemann et al. (2015) Style Characterization

Recall the simplex view and Figure 2. In the setting of Bergemann et al. (2015), the segmentation
only consists of points in Xp∗ where p∗ is the monopoly price of the prior distribution (which is the
blue region X2 in Figure 2a). As mentioned earlier, Bergemann et al. (2015) assume that ties for
monopoly price are broken in favor of the lowest price. This implies that even though the market
is now segmented, the price in each segment is at most p∗. In other words, segmentation can only
lower prices!

One could hope for a similar characterization even in the noisy signal case: after all we can still
write τ as a convex combination of points in the intersection of Xp∗ (the blue region) and ∆([T ])
(the convex hull of the type distributions, depicted as the triangles in the interior of the simplex
in Figure 2a), as can be seen in Figure 2b. Unfortunately we show that this is not without loss
of generality in the following example. In particular, the example shows that restricting to such
segments may lead to a strictly smaller social welfare than otherwise.

Example 4. In this example, there are two types, corresponding to the points x{1,2} and x{3}, i.e.,
type 1 is the uniform (equal revenue) distribution over {1, 2}, and type 2 is the point mass on 3.
The distribution over types is still uniform, which once again gives the same prior distribution τ
as before.
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(a) The two types correspond to the points
x{1,2} and x{3}. The line joining them is
the convex hull ∆([T ]) from which we can
pick our segments.

(b) The solid line represents the social welfare as
you move along the line from x{1,2} to x{3}. The
dotted line corresponds to the social welfare of the
corresponding convex combination of the two end
points

Figure 5: Example in Appendix A.3

The difference now is that we can only pick points from the line joining these two points, as
depicted in Figure 5a. Figure 5b shows the social welfare obtained as we move along this line. The
point mass on the left corresponds to x{1,2}, for which we assume that the seller picks a price of 1.
The left segment corresponds to the blue region X2, and the right to the green region X3. Using
only the blue region means using either the point mass on the left or the left segment. The dotted
line in Figure 5b shows the social welfare obtained from taking a convex combination of the end
points. This corresponds to the segmentation where the intermediary simply reveals the type that
he observes. As can be seen from the figure, this is strictly better than restricting to points in X2.

Nonetheless, we can add this as an additional constraint if so desired (at some loss in the
objective). Our algorithm extends to handle this easily: just skip iterating over Xp for prices
p > p∗.

A.4 Unbounded Sample Complexity in the General Case

So far we have assumed that the prior distribution is given to us as input and is common knowledge
to all players. How does this happen? What if you only have samples from the distribution? How
many samples do you need in order to get within an ε of the optimum? These questions have been
studied under ‘sample complexity of auction design’ quite intensively in the last few years. (See
Section 5 for details on this line of work.) Only recently, the optimal sample complexity of single
item auctions has been resolved Guo et al. (2019). In this paper, we consider the sample complexity
of market segmentation.

Unlike auction design, here the seller sets the price to maximize revenue but the intermediary’s
objective may be something different, such as consumer surplus. For an equal revenue distribution,
statistically the samples will indicate that the high price is revenue-optimal with a significant
probability. This is still true even for distributions that are “close to” equal revenue where the
low price is strictly revenue-optimal. Higher prices correspond to lower social welfare, since the
buyer is less likely to purchase the good; thus the segmentation based on the samples could have a
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much smaller consumer surplus compared to the optimal segmentation for the distribution. This is
particularly problematic because as saw earlier, the optimal segmentation only picks segments with
equal revenue distributions. (Recall that the vertices of the colored regions correspond to equal
revenue distributions.) We demonstrate this via the following example.

Example 5. Consider the distribution on V = {1, 2} where the probability of seeing 1 is 0.5+δ, for
some very small δ > 0. We will make the segmentation problem trivial: there is only one type, i.e.,
the intermediary observes no signal. The monopoly price is 1, and consumer surplus is therefore
0.5− δ; this is trivially the optimal consumer surplus we can obtain via segmentation.

When drawing multiple samples from this distribution, there is a constant probability of seeing
see more 2s than 1s. In this case, the seller sets a monopoly price of 2, leading to a consumer surplus
of 0. For any bounded function f of ε, we can set δ small enough such that with f(ε) samples,
this happens with probability > ε; we cannot therefore hope to get to within ε of the optimum.
This example shows that we need a stronger assumption on the input distributions, as compared
to those for single item auctions. The standard assumptions there are regularity and boundedness,
both of which are satisfied by the distribution in the example above.

In the above example, we assumed that the seller sets the monopoly price on the empirical
distribution on the samples. This is not necessarily an accurate assumption. If the seller follows
the literature on the sample complexity of single item auctions, he should consider a robust or a
regularized version of the empirical distribution. The seller might also have some additional sources
of information that allow him get an even more accurate estimate. We make a mild assumption on
the seller behavior: that his beliefs are at least as accurate as the intermediary’s estimate from the
samples. For a formal definition and more detailed discussion, see Section 3.

Given the discussion so far, it may be tempting to assume that the type distributions are far from
the boundaries of Xvs. This is too strong when you consider larger value ranges: two prices, say p
and p + 1, may have almost identical quantiles and, thus, revenues (which means the distribution
close to the boundary between Xp and Xp+1), but this is not a problem if they both give similar
consumer surpluses. We make a milder assumption, which is a discrete version of the monotone
hazard rate (MHR) assumption.4 Here, the naive way to generalize MHR to discrete distributions
is to use the functional form. This doesn’t seem to work; we instead require the distribution to
have some of the properties that continuous MHR distributions are known to satisfy. Once again,
a detailed discussion on this with formal statements are in Section 3.

B Missing Proofs in Section 2

Proof of Lemma 2.1 From Segmentations to Distributions. Given any segmentation (Σ,G),
consider the set X that is the union of the following points. For any segment σ ∈ Σ, let there be a
point x(σ) ∈ ∆([T ]) such that:

xt(σ) =
PrT [t] ·Pr[G(t) = σ]

PrS [σ]
.

The probability distribution over X is defined as µ(x(σ)) := PrS [σ]. It is easy to verify that this
is indeed a probability distribution and that it satisfies the expectation constraint (1).

4 MHR distributions have non-decreasing hazard rate f(x)
1−F (x)

, where f and F are the pdf and the cdf of the
distribution respectively.
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From Distributions to Segmentations. Given any (X,µ) that satisfies (1), consider the following
segmentation (Σ,G). Let Σ be such that there is some bijection between Σ and X, where σ ∈ Σ is
uniquely mapped to x(σ) ∈ X. For any type t, let G(t) follow a distribution given by

Pr[G(t) = σ] =
xt(σ)µ(x)

PrT [t]
.

The pair (X,µ) satisfies (1) implies that G(t) are valid probability distributions:

∀ t ∈ [T ],
∑
σ∈Σ

Pr[G(t) = σ] =
∑
σ∈Σ

xt(σ)µ(x)

PrT [t]
= 1 .

Proof of Lemma 2.2 Consider any optimal segmentation with an arbitrary, or even unbounded
number of segments. We show how to transform it into a segmentation with the same objective
and yet having at most one segment within each region Xp, replacing the distribution conditioned
on x ∈ Xp by its expectation.

Consider a specific area Xp. Let µp = Prµ
[
x ∈ Xp

]
be the probability of realizing a segment

in Xp. Let xp = Eµ

[
x |x ∈ Xp

]
. By the convexity of Xp, xp is also in Xp.

Further, recall that when we restrict our domain to points x ∈ Xp, we have that the revenue
and consumer surplus are both linear function because the seller chooses a fix price p within Xp.
Therefore, removing all segments in Xp and adding a new segment at xp with probability mass µx
do not change the objective. Repeating this process for all areas proves the lemma.
Proof of Theorem 2.1 Consider the following more direct mathematical program that uses xp’s
and µ(xp)’s as the variables:

max
∑
p∈[V ]

µ(xp)

(
λRev

(
F(xp)

)
+ (1− λ)CS

(
F(xp)

))
(4)

s.t. ∀ p ∈ [V ],xp ∈ Xp and
∑
p∈[V ]

µ(xp)xp = τ .

We need to show that (i) there is a one-to-one mapping between the variable space of program (4)
and that of LP (2), and (ii) under this mapping, the above program becomes LP (2).

The mapping from xp and µ(xp) to zp is already given, i.e., zp = µ(xp)xp. The other direction
goes as follows. Given any zp, let µ(xp) = ‖zp‖1 and xp = zp/‖zp‖1. Here, we use the fact that
xp lies on the probability simplex.

Under this mapping, the objective of (4) becomes that of LP (2) due to linearity of Rev
(
F(·)

)
and CS

(
F(·)

)
for any fixed p. Finally, the equivalence of the constraints follow by the definition of

the mapping.

C Missing Proofs Related to Robustification

C.1 Proof of Lemma 3.1

Proof. We partition Σ∗ into Σ∗s and Σ∗i , the former consists of the significant segments and the
latter the insignificant ones, in the sense defined in Definition 3.2. Similarly define Σr

s and Σr
i .

Welfare: The key lies in comparing the contributions from the significant segments, i.e., for
any σ ∈ Σ∗s, we will show that:

SW
(
prσ,F(xrσ)

)
≥ SW

(
p∗σ,F(x∗σ)

)
−O

(
εI
)
, (5)
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It follows from the following inequalities:

SW
(
prσ,F(xrσ)

)
=

∫ 1

prσ

v dF(xrσ)

≥
∫ 1

p∗σ

v dF(xrσ)− εI ((3) of Definition 3.2)

≥
∫ 1

p∗σ

v dF(x∗σ)−O
(
εI
)

((2) of Definition 3.2)

= SW
(
p∗σ,F(x∗σ)

)
−O

(
εI
)
.

Given Eqn. (5), the remaining the loss due to insignificant segments and the decrease in weights
can be bounded as follows:∑

σ∈Σr

wrσ · SW
(
prσ,F(xrσ)

)
≥
∑
σ∈Σ∗s

wrσ · SW
(
prσ,F(xrσ)

)
(Σ∗s ⊆ Σ∗ ⊆ Σr)

≥ (1− εI)
∑
σ∈Σ∗s

w∗σ · SW
(
prσ,F(xrσ)

)
((1) of Definition 3.2)

≥
∑
σ∈Σ∗s

w∗σ · SW
(
prσ,F(xrσ)

)
− εI (bounded values)

≥
∑
σ∈Σ∗s

w∗σ · SW
(
p∗σ,F(x∗σ)

)
−O(εI) (Eqn. (5))

≥
∑
σ∈Σ∗

w∗σ · SW
(
p∗σ,F(x∗σ)

)
−O(εI) . (insignificant segments)

Revenue: Similarly, the key is to compare the contribution from significant segments. For any
σ ∈ Σ∗s, we have:

Rev
(
prσ,F(xrσ)

)
≥ Rev

(
p∗σ,F(xrσ)

)
− εS (εS-optimality of prσ)

≥ Rev
(
p∗σ,F(x∗σ)

)
−O

(
εI
)
, ((2) of Definition 3.2; εS ≤ εI)

then follow almost a verbatim to the welfare counterpart, we can obtain:∑
σ∈Σr

wrσ · Rev
(
prσ,F(xrσ)

)
≥
∑
σ∈Σ∗

w∗σ · Rev
(
p∗σ,F(x∗σ)

)
−O(εI) .

Next, we prove:∑
σ∈Σ∗

w∗σ · Rev
(
p∗σ,F(x∗σ)

)
≥
∑
σ∈Σr

wrσ · Rev
(
prσ,F(xrσ)

)
−O(εI) .

Note that we also have:

Rev
(
p∗σ,F(x∗σ)

)
≥ Rev

(
prσ,F(x∗σ)

)
(optimality of p∗σ)

≥ Rev
(
prσ,F(xrσ)

)
−O

(
εI
)
. ((2) of Definition 3.2)
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By our construction of wrσ, we have w∗σ ≥ wrσ for σ ∈ Σ∗. Therefore,∑
σ∈Σ∗s

w∗σ · Rev
(
p∗σ,F(x∗σ)

)
≥
∑
σ∈Σ∗s

wrσ · Rev
(
prσ,F(xrσ)

)
−O(εI) . (6)

For insignificant segments, we have σ ∈ Σ∗i and x∗σ = xrσ. Then for all p, by the definition of
insignificant segments:

Rev
(
p,F(x∗σ)

)
= Rev

(
p,F(xrσ)

)
≤ Ev∼F(x∗σ)[v]

≤ εI .

Then, taking summation over Σ∗i , we get that:∣∣∣∣ ∑
σ∈Σ∗i

w∗σ · Rev
(
p∗σ,F(x∗σ)

)
−
∑
σ∈Σ∗i

wrσ · Rev
(
prσ,F(xrσ)

)∣∣∣∣ = O(εI) . (7)

Combine Equations (6) and (7) we can obtain:∑
σ∈Σ∗

w∗σ · Rev
(
p∗σ,F(x∗σ)

)
≥
∑
σ∈Σ∗

wrσ · Rev
(
prσ,F(xrσ)

)
−O(εI) .

Therefore it remains to show that∑
σ∈Σr\Σ∗

wrσ · Rev
(
prσ,F(xrσ)

)
= O(εI) . (8)

In fact we have:

1 =
∑
σ∈Σr

wrσ =
∑
σ∈Σ∗

wrσ +
∑

σ∈Σr\Σ∗
wrσ

≥ (1− εI)
∑
σ∈Σ∗

w∗σ +
∑

σ∈Σr\Σ∗
wrσ

= (1− εI) +
∑

σ∈Σr\Σ∗
wrσ .

The second line is because wrσ ≥ (1 − εI)w∗σ, for σ ∈ Σ ⊆ Σ∗. By boundedness of values, i.e.,
v ≤ 1, we get Eqn. (8).

C.2 Proof of Lemma 3.2

We formally define how the algorithm robustify an entire segmentation in Algorithm 3, building
on the subroutine that robustify a single (significant) segment introduced in Algorithm 4. The
feasibility of the first step of Algorithm 4 is by Lemma 3.3, whose proof is deferred to Appendix C.3.

Before proving Lemma 3.2 we show the following.

Lemma C.1. The robustified version of σ returned by Algorithm 4, represented by xrσ, satisfies the
last two properties stated in Definition 3.2, i.e.:

2. ‖x∗σ − xrσ‖1 ≤ εI .
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Algorithm 3 Robustify a segmentation

Input: MHR-like distributions F(t), t ∈ [T ];
segmentation (Σ∗,G∗), represented by point-weight pairs (x∗σ, w

∗
σ), σ ∈ Σ∗;

prices p∗σ, σ ∈ Σ∗, which are optimal w.r.t. the corresponding F(x∗σ)’s.

Output: Robustified segmentation (Σr,Gr), represented by xrσ’s and weights wrσ’s.

1. For every segment σ ∈ Σ∗:

(a) If segment σ is insignificant, i.e., Ev∼F(x∗σ)[v] < εI , let xrσ = x∗σ.

(b) Otherwise, construct xrσ using Algorithm 4;

(c) Decrease the weight by a 1− εI multiplicative factor, i.e., wrσ = (1− εI)w∗σ in both cases.

2. For every type t ∈ [T ]:

(a) Add a new segment σ(t) /∈ Σ∗ to Σr such that xrσ(t) is the vertex of simplex ∆ that
corresponds to type t.

(b) Let its weight be wrσ(t) = 1
T −

∑
σ∈Σ∗ w

r
σ · xrσ,t.

3. All εS-optimal prices w.r.t. F(xrσ) have quantiles at least that of p∗ less εI .

Proof. Property (2) follows directly by the definition that:

xrσ =
(
1− εI

T

)
· x∗σ + εI

T · xtσ .

It remains to verify property (3). We need to show that for any price p whose quantile w.r.t.
F(xrσ) is less than that of p∗ minus εI , it cannot be εS-optimal w.r.t. F(xrσ).

By the definition of xrσ, we have:

Rev
(
p,F(xrσ)

)
=
(

1− εI
T

)
· Rev

(
p,F(x∗σ)

)
+
εI
T
· Rev

(
p,F(tσ)

)
.

We next bound the two terms on the RHS separately. By that p∗ is optimal w.r.t. F(x∗σ), the
first term is upper bounded by:

Rev
(
p,F(x∗σ)

)
≤ Rev

(
p∗,F(x∗σ)

)
.

Further, note that p’s quantile w.r.t. F(x∗σ) is less than that of p∗ minus εI , due to the assumed
quantile gap w.r.t. F(xrσ), and that x∗σ and xrσ is close (property (2)). Hence, by the definition of
the algorithm (and Lemma 3.3), the second term is upper bounded by:

Rev
(
p,F(tσ)

)
< Rev

(
p∗,F(tσ)

)
− εST

εI
.

Putting together gives the followings:

Rev
(
p,F(xrσ)

)
<
(

1− εI
T

)
· Rev

(
p∗,F(x∗σ)

)
+
εI
T
·
(

Rev
(
p∗,F(tσ)

)
− εST

εI

)
<
(

1− εI
T

)
· Rev

(
p∗,F(x∗σ)

)
+
εI
T
· Rev

(
p∗,F(tσ)

)
− εS

= Rev
(
p∗,F(xrσ)

)
− εS .

Hence, such a price p cannot be εS-optimal w.r.t. F(xrσ).
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Algorithm 4 Robustify a (significant) segment

Input: MHR-like distributions F(t), t ∈ [T ];
segment σ, represented by x∗σ, such that Ev∼F(x∗σ)[v] ≥ εI ;
price p∗, which is optimal w.r.t. F(x∗σ).

Output: Robustified version of σ, represented by xrσ.

1. Find type tσ such that for any price p whose quantile w.r.t. F(x∗σ) is at most that of p∗ less
εI , we have Rev

(
p,F(tσ)

)
< Rev

(
p∗,F(tσ)

)
− εST

εI
.

2. Construct the robustified version as xrσ =
(
1− εI

T

)
·x∗σ + εI

T ·xtσ , where xtσ ∈ ∆ has its tσ-th
entry being one and all others being zeros.

Proof of Lemma 3.2. We prove it using Algorithm 3. Property (1) follows by the definition of the
algorithm, in particular, steps (1c). Properties (2) and (3) follows by how the algorithm handles
significant segments, i.e., step (1b), and Lemma C.1.

It remains to verify that the algorithm gives a feasible segmentation. First, we need to show
that the weights, in particular, those of the new segments added in step (2), are non-negative.
Second, we need to prove that centroid of the weighted point set lies in the middle of the simplex.

Note that the second part follows from step (2b) of the algorithm, provided that the weights
are non-negative. It remains to argue that:

wrσ(t) =
1

T
−
∑
σ∈Σ∗

wrσ · xrσ,t ≥ 0 .

It follows from a sequence of inequalities given below:∑
σ∈Σ∗

wrσ · xrσ,t =
(
1− εI

)
·
∑
σ∈Σ∗

w∗σ · xrσ,t

≤
(
1− εI

)
·
∑
σ∈Σ∗

w∗σ ·
(
x∗σ,t +

εI
T

)
(Definition of xrσ.)

=
(
1− εI

)
· 1 + εI

T
(
∑
w∗σx

∗
σ,t = 1

T ,
∑
w∗σ = 1)

<
1

T
.

C.3 Proof of Lemma 3.3

Note that the lemma holds trivially if there is no price whose quantile w.r.t. F(x∗σ) is at most that
of p∗ less εI . The rest of the proof assumes this is not the case. Also, for simplicity, in the proof
we introduce a frequently used notation εR = εST

εI
.

Then, let p̄ denote the smallest price whose quantile is at most that of p∗ less εI . By the
concavity of the revenue curve (Condition 1 of Definition 3.1), it suffices to show that for price p̄,
there exists a type t ∈ [T ] such that:

Rev
(
p̄,F(t)

)
< Rev

(
p∗,F(t)

)
− εR .
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Then, the inequality holds for all prices p ≥ p̄ and, thus, the lemma follows.
The rest of the subsection assumes for contrary that Lemma 3.3 does not hold. That is, we

assume that for every type t ∈ [T ]:

Rev
(
p̄,F(t)

)
≥ Rev

(
p∗,F(t)

)
− εR .

Let p1 = p∗ + 1
V , p2 = p∗ + 2

V , and so or, be the prices between p∗ (exclusive) and p̄ (inclusive).
Let P denote the set of these prices. By the concavity of the revenue curve (Condition 1 of
Definition 3.1), the above inequality implies that for any type t ∈ [T ], and any price pi ∈ P :

Rev
(
pi,F(t)

)
≥ Rev

(
p∗,F(t)

)
− εR . (9)

Under this assumption we will show that there must be a type t such that F(t) satisfies the
‘large plateau’ conditions(as mentioned in Section 3.3.2):

1. Revenue between p̄ and p∗ is not much higher: ∀ p ∈ [p∗, p̄] ,

Rev
(
p,F(t)

)
− Rev

(
p∗,F(t)

)
≤ Õ

(
εRT
εI

)
.

2. The plateau is high, i.e., revenue of p∗ is large: Rev
(
p∗,F(t)

)
≥ Ω

(
εI
T

)
.

3. The plateau is wide, i.e., the quantiles of p̄ and p∗ differ by at least Ω
( ε2I
T

)
.

Finally we argue that these conditions will lead to a contradiction.
We will first prove the following technical lemmas.

Lemma C.2. Suppose type t ∈ [T ] and price pi ∈ P satisfy that:

Rev
(
pi,F(t)

)
− Rev

(
p∗,F(t)

)
> 0 .

Then, for any pj ∈ P , j ≤ i, we have:

1

j
·
(
Rev

(
pj ,F(t)

)
− Rev

(
p∗,F(t)

))
≥ 1

i
·
(
Rev

(
pi,F(t)

)
− Rev

(
p∗,F(t)

))
.

(10)

Proof. For simplicity of notations, let Ri, Rj , and R∗ denote Rev
(
pi,F(t)

)
, Rev

(
pj ,F(t)

)
, and

Rev
(
p∗,F(t)

)
, respectively. Then, we can rewrite the inequality as:

1

j

(
Rj −R∗

)
≥ 1

i

(
Ri −R∗

)
.

Further, Let qi = Ri
pi

, qj =
Rj
pj

, and q∗ = R∗

p∗ be the corresponding quantiles.

By concavity of the revenue-quantile curve of MHR-like distributions, we have:

pjqj ≤
qj − qi
q∗ − qi

p∗q∗ +
q∗ − qj
q∗ − qi

piqi .

Multiplying both sides by q∗ − qi, and rearranging terms, we obtain:

qj
(
q∗(pj − p∗) + qi(pi − pj)

)
≥ qiq∗(pi − p∗) .
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By the definition of pi and pj , it becomes:

qj ≥
iqiq

∗

jq∗ + (i− j)qi
. (11)

Suppose we fix i, j, and qi, q
∗. Then, the larger qj is, the larger the LHS of (10) is, while the

RHS stays the same. Hence, it suffices to prove the lemma when the above Eqn. (11) holds with
equality.

For such a qj , the following three points (qi, Ri), (qj , Rj) and (q∗, R∗) are on the same line, since
the inequality is derived from the concavity of the revenue curve. In other words, we have:

Ri −R∗

Rj −R∗
=
q∗ − qi
q∗ − qj

.

Therefore, it remains to show the following inequality when Eqn. (11) holds with equality:

1

j

(
q∗ − qj

)
≥ 1

i
(q∗ − qi) ,

which is equivalent to:

qj ≤
(i− j)q∗ + jqi

i
.

Putting together, it suffices to show:

iqiq
∗

jq∗ + (i− j)qi
≤ (i− j)q∗ + jqi

i
,

which is equivalent to:
i2qiq

∗ ≤
(
jq∗ + (i− j)qi

)(
(i− j)q∗ + jqi

)
.

Rearranging terms, this is simply:

(i− j)j
(
q∗ − qi

)2 ≥ 0 .

So the lemma follows.

The rest of the proof considers sampling a type t according to x∗σ, and establishes a sequence
of technical claims regarding the probabilities of various events. The main technical ingredient is
the next lemma, which states that the chance of having a price in P whose revenue is much higher
than that of p∗ is small.

Lemma C.3. For any δ > 0, εR log V
δ upper bounds:

Prt∼x∗σ
[
∃pi ∈ P : Rev

(
pi,F(t)

)
≥ Rev

(
p∗,F(t)

)
+ δ
]
.

Choosing δ = Θ̃
(
εRT
εI

)
we obtain the probability that condition 1 is violated is less than O( εIT ).

Proof. For every pi ∈ P , let αi = 1
i log V . Then, multiplying both sides of Eqn. (9) by αi and

summing over all pi ∈ P , we have that for any type t ∈ [T ]:∑
pi∈P

αi ·
(
Rev

(
pi,F(t)

)
− Rev

(
p∗,F(t)

))
≥ −εR

∑
pi∈P

αi ≥ −εR .
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To simplify notations in the rest of the proof, let ∆t denote the LHS of the above inequality for
a given type t. Then, on one hand, we have:

Et∼x∗σ
[
∆t

]
=
∑
pi∈P

αi ·
(
Rev

(
pi,F(x∗σ)

)
− Rev

(
p∗,F(x∗σ)

))
.

It is nonpositive because of the optimality of p∗ w.r.t. F(x∗σ).
On the other hand, let δ′ = δ

log V , we have:

Et∼x∗σ
[
∆t

]
≥ Prt∼x∗σ

[
∆t ≥ δ′

]
· δ′ + min

t
∆t

≥ Prt∼x∗σ
[
∆t ≥ δ′

]
· δ′ + (−εR) ,

by the definition of ∆t and Eqn. (9).
Putting together we get that:

Prt∼x∗σ
[
∆t ≥ δ′

]
≤ εR

δ′
=
εR log V

δ
. (12)

The rest of the proof boils down to showing that whenever there exists pi ∈ P such that:

Rev
(
pi,F(t)

)
≥ Rev

(
p∗,F(t)

)
+ δ ,

it implies that ∆t ≥ δ′. This, together with Eqn. (12) would complete the proof of the lemma.
Indeed, when such a pi exists, we have:

∆t ≥
i∑

j=1

αj ·
(
Rev

(
pj ,F(t)

)
− Rev

(
p∗,F(t)

))
≥

i∑
j=1

αj ·
j

i
·
(
Rev

(
pi,F(t)

)
− Rev

(
p∗,F(t)

))
=

1

log V
·
(
Rev

(
pi,F(t)

)
− Rev

(
p∗,F(t)

))
≥ δ

log V
.

The second line is by Lemma C.2 and the third is by the definition of αj ’s. So the lemma
follows.

Some Notations In the following discussions, let p(t) denote the optimal price w.r.t. F(t), for
any type t ∈ [T ]. Further, let R(t) denote the corresponding optimal revenue, and similarly R(x)
for mixtures. Finally, let q∗(t) and q̄(t) denote the quantiles of p∗ and p̄ w.r.t. F(t); let q∗ and q̄,
i.e., without specifying a type, denote the quantiles w.r.t. F(x∗σ).

Lemma C.4. For any x ∈ ∆, the optimal revenue of the corresponding mixture F(x) is lower
bounded as follows:

R(x) ≥ Ω

(
Ev∼F(x)[v]

T

)
.
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Proof. First, we can rewrite the social welfare of distribution F(x) as follows:

Ev∼F(x)[v] =
∑
t∈[T ]

xt ·Ev∼F(t)[v] .

Next, note that for any given t′ ∈ [T ]:

Rev
(
p(t′),F(x)

)
= p(t′) ·Prv∼F(x)

[
v ≥ p(t′)

]
= p(t′) ·

∑
t∈[T ] xt ·Prv∼F(t)

[
v ≥ p(t′)

]
≥ p(t′) · xt′ ·Prv∼F(t′)

[
v ≥ p(t′)

]
= xt′ ·R(t′)

≥ xt′ · Ω
(
Ev∼F(t′)[v]

)
,

where the last line is by Condition 4 of Definition 3.1. Therefore, we have:

T ·R(x) ≥
∑
t∈[T ]

Rev
(
p(t),F(x)

)
≥ Ω

(
Ev∼F(x)[v]

)
.

Dividing both sides by T proves the lemma.

As a direct corollary of the above lemma, the assumption that Ev∼F(x∗σ)[v] ≥ εI , and that p∗ is
optimal w.r.t. F(x∗σ), we have the following lemma.

Lemma C.5. The optimal revenue of distribution F(x∗σ) is lower bounded as:

R
(
x∗σ
)

= Rev
(
p∗,F(x∗σ)

)
≥ Ω

(εI
T

)
.

Lemma C.6. There’s at least an Ω( εIT ) probability that:

Rev(p∗,F(t)) ≥ Ω(
εI
T

) .

Proof. In fact by Lemma C.5 we have:

Rev
(
p∗,F(x∗σ)

)
= Et∼x∗σ [Rev

(
p∗,F(t)

)
] ≥ Ω

(εI
T

)
.

This will be violated if Rev(p∗,F(t)) ≥ Ω( εIT ) does not have at least an Ω( εIT ) probability.

Next, we show a conditional lower bound on the quantile gap between price p̄ and p∗.

Lemma C.7. Suppose type t ∈ [T ] satisfies condition 1 and 2, i.e.:

∀p ∈ [p∗, p̄],Rev
(
p,F(t)

)
− Rev

(
p∗,F(t)

)
≤ Õ

(
εRT

εI

)
,

and
Rev

(
p∗,F(t)

)
≥ Ω(

εI
T

)

Then this type satisfies condition 3:

q∗(t)− q̄(t) ≥ Ω
(ε2I
T

)
.
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Proof. We first prove:
q̄(t)

q∗(t)
≤ 1− Ω

(
εI
)
.

By the condition in the lemma, we have:

p̄q̄(t) ≤ p∗q∗(t) +O

(
εRT

εI

)
≤
(

1 +
εRT

2

ε2I

)
· p∗q∗(t) ,

where the second inequality follows from Lemma C.6 (noting that p∗q∗(t) = Rev
(
p∗,F(t)

)
).

Hence, we have:

q̄(t)

q∗(t)
≤
(

1 +O

(
εRT

2

ε2I

))
· p
∗

p̄

=

(
1 +O

(
εRT

2

ε2I

))
·

Rev
(
p∗,F(x∗σ)

)
Rev

(
p̄,F(x∗σ)

) · q̄
q∗

.

The second term on the RHS is further bounded as follows:

Rev
(
p∗,F(x∗σ)

)
Rev

(
p̄,F(x∗σ)

) ≤ Rev
(
p∗,F(x∗σ)

)
Rev

(
p∗,F(x∗σ)

)
− εR

(Eqn. (9))

≤
(

1 +O

(
εRT

εI

))
. (Lemma C.5)

The third term is bounded as:

q̄

q∗
≤ q∗ − εI

q∗
(Definition p̄)

≤ 1− εI . (q∗ ≤ 1)

By Eqn. (3):

εI ≥ O
(
εRT

εI

)
, εI ≥ O

(
εRT

2

ε2I

)
,

so we have q̄(t)
q∗(t) ≤ 1− Ω

(
εI
)
. Note that p∗q∗(t) ≥ Ω( εIT ) and p∗ ≤ 1, we have q∗ ≥ Ω( εIT ), then

q∗(t)− q̄(t) ≥ Ω
(
εI
)
q∗(t) ≥ Ω

(ε2I
T

)
.

Up to now we have proved the existence of a type t that satisfies all the 3 ‘large plateau’
conditions. Let t be such a type. The next lemma handles the cases when p(t) is large, medium, or
small respectively, depending on its relation with p̄ and p∗. We show that the revenue gap between
prices p∗ and p̄ is at least εR, and will lead to contradiction.

Lemma C.8. For type t that satisfies all the 3 conditions, we will have:

Rev
(
p∗,F(t)

)
− Rev

(
p̄,F(t)

)
= Ω

(
εST

εI

)
.

Proof. Consider the relationship between p(t) and [p∗, p̄].
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(1) p(t) ≥ p̄. In this case q(t) ≤ q̄(t) ≤ q∗(t). The quantile of p(t) w.r.t. F(t) is at least
Ω(1) (Condition 3 of Defintion 3.1), we have that q∗(t) = Ω(1). Recall in Lemma C.7 we obtain
q∗(t)− q̄(t) ≥ Ω

(
εI
)
q∗(t). So q∗(t)− q̄(t) ≥ Ω

(
εI
)
. Further, by Rev

(
p∗,F(t)

)
≥ Ω( εIT ), we have:

R(t) ≥ Ω(
εI
T

) .

By that both p̄ and p∗ are no more than the monopoly price p(t), the concavity of the revenue
curve, and the strong concavity near monopoly price (Conditions 1 and 2 of Definition 3.1), we get
that the revenue of p̄ w.r.t. F(t) is larger than that of p∗ by at least:

Ω
(εI
T
· ε2I
)

= Ω

(
ε3I
T

)
≥ εR ,

where the inequality follows by Eqn. (3).

(2) p(t) ∈ [p∗, p̄). Follow the same statements as (1) we have:

q∗(t)− q̄(t) ≥ Ω
(
εI
)
, R(t) ≥ Ω(

εI
T

) .

Note that q∗(t) ≥ q(t) > q̄(t), the gap between q(t) and either q∗(t) or q̄(t) (or both) is at least
Ω(εS). On one hand, suppose it is the former. The strong concavity of the revenue curve near the
monopoly price (Condition 2 of Definition 3.1) implies that:

Rev
(
p(t),F(t)

)
− Rev

(
p∗,F(t)

)
≥ Ω

(εI
T
· ε2I
)

= Ω

(
ε3I
T

)
.

On the other hand, suppose it is the latter: The strong concavity of the revenue curve near the
monopoly price (Condition 2 of Definition 3.1) implies that:

Rev
(
p(t),F(t)

)
− Rev

(
p̄,F(t)

)
≥ Ω

(εI
T
· ε2I
)

= Ω

(
ε3I
T

)
.

Both cases violate the condition 1 of the ‘large plateau’ notion, because Ω
(
ε3I
T

)
≥ Õ( εRTεI ) by

Eqn. (3).

(3) p(t) < p∗. In this case we still have:

q∗(t)− q̄(t) ≥ Ω
(
εI
)
q∗(t), R(t) ≥ Ω(

εI
T

) .

And we can only use the quantile gap q∗(t) − q̄(t) ≥ Ω(
ε2I
T ) since q∗(t) is not always Ω(1). By

condition 2 of Definition 3.1, we get that the revenue of p∗ w.r.t. F(t) is larger than that of p̄ by
at least:

Ω

(
εI
T
·
(
ε2I
T

)2
)

= Ω

(
ε5I
T 3

)
> εR ,

where the inequality follows from Eqn. (3).
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Algorithm 5 Find a Nearby MHR-like Distribution

Input: A distribution E that is εS-close to some MHR-like distribution F in terms of dq;
the optimal price p∗ of the underlying MHR-like value distribution.

Output: An MHR-like distribution Ẽ that is 6εS-close to F in terms of norm dq.

1. Construct a sequence of distributions as follows:

(a) E1: Subtract εS from the quantile of every value; round it to 0 if it becomes negative.

(b) E2: Increase the quantile of p∗ to that in E plus εS .

(c) E3: Increase the quantile of each value until it meets the convex hull of the revenue
curve.

2. Return Ẽ = E3.

(a) E (empirical) (b) E1 (dominated) (c) E2 (strengthening p∗) (d) Ẽ = E3 (ironing)

Figure 6: Illustrative figures (in terms of the revenue curves in the quantile space) of how Algo-
rithm 5 finds a nearby MHR-like distribution. The dashed curve is the revenue curve of the true
distribution. The dotted curves are those obtain by subtracting/adding O(εS) to the quantiles of
every value (rounded to 0 or 1 if necessary). The bold black curve corresponds to the distributions
maintained by the algorithm.

D Poly-time Approximate Projection to MHR-like Distributions

This subsection explains how we can find an MHR-like distribution that is 6εS-close to the true
distribution in polynomial time, given an empirical distribution that is εS-close. Our algorithm will
guess which price is the optimal one w.r.t. the true distribution by brute-force. Given each guess p∗,
we try to find a nearby MHR-like distribution conditioned on p∗ being optimal using Algorithm 5.
It constructs a sequence of distributions with the last one being the desired output, provided that
the guess of p∗ is correct.

The first distribution E1 is obtained by subtracting εS from the quantiles of all values, rounding
up to 0 if necessary. The quantile of each value v w.r.t. the empirical distribution E is within a
[−εS , εS ] window near that w.r.t. the true distribution; in contrast, the quantile w.r.t. E1 is within
a [−2εS , 0] window. Distribution E1 is dominated by the true distribution in the sense of first-order
stochastic dominance and, hence, is called the dominated empirical distribution (e.g., Guo et al.
(2019); Roughgarden and Schrijvers (2016)).

Then, we construct the second distribution E2 by increasing the quantile of the conjectured
monopoly price p∗ to ensure that it is at least as large as in the true distribution. The purpose of

35



this step is to ensure the strong concavity property near the monopoly price.
Finally, we run an ironing step to restore concavity. The result, i.e., E3, is the final output.

See Figure 6 for an illustrative picture of relations between the revenue curves of the sequence of
distributions constructed by the algorithm.

Lemma D.1. Given any distribution E that is εS-close to an MHR-like distribution F , and the
monopoly price p∗ of F , Algorithm 5 computes in polynomial time an MHR-like distribution Ẽ that
is 6εS-close to F in terms of norm dq(·, ·).

Proof. The running time is trivial, noting that convex hulls can be computed in polynomial time.
It remains to show that the output is an MHR-like distribution, and is 6εS-close to E .

MHR-like – concavity: This part follows by the definition of the algorithm 5 (step 1c).

MHR-like – strong concavity near monopoly price: We will show that (1) p∗ is the
monopoly price of the final distribution Ẽ , and that (2) for any price p whose quantile w.r.t. Ẽ
is q, we have: (

1− 1
4(q∗ − q)2

)
· Rev

(
p∗, Ẽ

)
− Rev

(
p, Ẽ
)
≥ 0 ,(

1− 1
4(q∗ − q)2

)
· p∗q∗ − pq ≥ 0 .

We first prove them for distribution E2. Note that the quantiles of all values other than p∗ are
at most their counterparts in the true distribution F (step 1a), while the quantile of p∗ is at least
that in F (step 1b). Hence, p∗ is also the monopoly price for E2. Further, the LHS of the above
inequality is increasing in q∗ (fixing any p, p∗, and q), and decreasing in q (fixing any p, p∗, and
q∗). Since that the inequality holds for the true distribution, and that q∗ weakly increases and q
weakly decreases compared to the true distribution, it also holds for E2. Finally, we argue that,
moving from E2 to Ẽ = E3, i.e., the ironing step, will not make p∗ suboptimal, as the highest point
of the revenue curve will not be ironed. The inequality will also continue to hold, because the first
term is a concave function of q that stays the same while the second term becomes the convex hull
of the counter part in F2. If a concave function dominates another one, it dominates its convex
hull as well.

MHR-like – large monopoly sale probability: It follows from the fact that the quantile, i.e.,
the sale probability, of p∗ weakly increases by our construction.

MHR-like – small revenue and welfare gap: First, imagine that the quantile of p∗ is only
increase to that in the true distribution F , while the quantiles of other values weakly decrease by
our construction. Then, the optimal revenue stays the same and the social welfare weakly decreases
and therefore the small gap property continues to hold. Then, we further increase the quantile of
p∗ to that in our final output distribution Ẽ . As a result, the social welfare as well as the optimal
revenue increase by the same amount. This will not change the fact that their gap is small.

6εS-close: This is true by definition up to distribution E2. It remains to show that the ironing
step will not make the quantile of some value v exceeds its quantile w.r.t. the true distribution F
by more than 2εS . For any ironing that does not involved p∗, this is trivial: since both endpoints
of the ironed interval are below the revenue curve of the true distribution, which is concave, the
entire ironed interval is below that as well. Next, consider an ironed interval with p∗ being one of
the endpoints. Suppose p∗ is the right end point, i.e., there is another price p′ > p∗. See Figure 7a

36



!" !∗ !∗ + 2&'

(" (∗(

! + )*!

+" +
+, +,∗

+∗

-

(a)

!"!∗ !∗ + 2&'

("
(∗

(

! + )*!

+"
+

+,

+,∗

+∗

-

(b)

Figure 7: Illustrative pictures for the proof of Lemma D.1

for an illustrative picture of the argument below. The quantile of p′ w.r.t. Ẽ is upper bounded by
that w.r.t. the true distribution F , which we denote as q′; The quantile of p∗, on the other hand,
is upper bounded by that w.r.t. the true distribution, denoted as q∗, plus 2εS by our construction.
Then, consider any price p between p∗ and p′. We can lower bound the quantile of p as a function
of p′, p∗, q′, and q∗, by the concavity of the revenue curve of F . We denote this quantile by q:
Q′ = (q′, p′q′), Q = (q, pq), and Q∗ = (q∗, p∗q∗) lie on the same line. Finally, p’s quantile in the final
distribution, by definition, is determined by the ironing step. We denote this quantile by q + δq:
Q′ = (q′, p′q′), Q+ = (q + δq, p(q + δq)), and Q∗+ = (q∗ + 2εS , p

∗(q∗ + 2εS)) lie on the same line. It
suffices to bound δq. To do so, further let O = (0, 0) be the origin. We have:

δq
q

=
area(Q′Q+Q

∗)

area(OQ′Q∗)
≤

area(Q′Q∗+Q
∗)

area(OQ′Q∗)
=

2εS
q∗

. (13)

The other case, when p∗ is the left endpoint is almost verbatim up to the point of Eqn. (13).
See Figure 7b for an illustrative picture. The only catch is that we now have q′ ≥ q∗. Fortunately,
q′, which is at most 1, cannot much bigger since q∗ ≥ 1

e (Condition 3 of Definition 3.1). As a result,
we get a weaker bound that δq ≤ e · 2εS ≤ 6εS .
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