
ar
X

iv
:1

90
2.

06
90

8v
2

 [
cs

.G
T

]
 3

0
M

ar
 2

02
0

Inference from Auction Prices
∗

Jason Hartline† Aleck Johnsen‡ Denis Nekipelov§ Zihe Wang¶

March 31, 2020

Abstract

Econometric inference allows an analyst to back out the values of agents in a mechanism
from the rules of the mechanism and bids of the agents. This paper gives an algorithm to
solve the problem of inferring the values of agents in a dominant-strategy mechanism from
the social choice function implemented by the mechanism and the per-unit prices paid by the
agents (the agent bids are not observed). For single-dimensional agents, this inference problem
is a multi-dimensional inversion of the payment identity and is feasible only if the payment
identity is uniquely invertible. The inversion is unique for single-unit proportional weights social
choice functions (common, for example, in bandwidth allocation); and its inverse can be found
efficiently. This inversion is not unique for social choice functions that exhibit complementarities.
Of independent interest, we extend a result of Rosen (1965), that the Nash equilbria of “concave
games” are unique and pure, to an alternative notion of concavity based on Gale and Nikaido
(1965).

∗Arxiv: https://arxiv.org/abs/1902.06908
†Northwestern U., Evanston IL. Work done in part while supported by NSF CCF 1618502.

Email: hartline@northwestern.edu
‡Northwestern U., Evanston IL. Work done in part while supported by NSF CCF 1618502.

Email: aleckjohnsen@u.northwestern.edu
§U. of Virginia, Charlottesville, VA. Work done in part while supported by NSF CCF 1563708.

Email: denis@virginia.edu
¶Shanghai University of Finance and Economics (SUFE). Work done in part while supported by the Shanghai

Sailing Program (Grant No. 18YF1407900), the National NSFC Grant 61806121, Innovation Program of Shanghai
Municipal Education Commission, Program for Innovative Research Team of Shanghai University of Finance and
Economics, and the Fundamental Research Funds for the Central Universities. Email: wang.zihe@mail.shufe.edu.cn

1

http://arxiv.org/abs/1902.06908v2
mailto:hartline@northwestern.edu
mailto:aleckjohnsen@u.northwestern.edu
mailto:denis@virginia.edu
mailto:wang.zihe@mail.shufe.edu.cn

1 Introduction

Traditional econometric inference allows an analyst to determine the values of agents from their
equilibrium actions and the rules of a mechanism (Guerre et al., 2000; Haile and Tamer, 2003).
This paper studies an inference problem when only the profile of the agents’ per-unit prices is
available to the analyst. Such an inference may be applicable when bids are kept private but
prices are published; moreover, it is of interest even for incentive compatible mechanisms (where
agents truthfully report their preferences). As a motivating example, with the per-unit prices from
the incentive compatible mechanism for allocating a divisible item proportionally to agent values
(cf. Johari and Tsitsiklis, 2004), we prove that agents’ values are uniquely determined and can be
computed efficiently.

Econometric inference is a fundamental topic in a data-driven approach to mechanism design
and a number of recent papers have been developing its algorithmic foundations. The following are
prominent examples. Chawla et al. (2014, 2016) show that the revenue and welfare of a counter
factual auction can be estimated directly from Bayes-Nash equilibrium bids in an incumbent auc-
tion. Nekipelov et al. (2015) develop methods for identifying the rationalizable set of agent values
and regret parameters in repeated auctions with learning agents. Hoy et al. (2017) show that the
quantities that govern price-of-anarchy analyses can be determined directly from bid data and,
thus, empirical price-of-anarchy bounds can be established that improve on the theoretical worst
case.

There are two important questions in algorithmic econometrics. First, when are the values
uniquely identified? Second, can the values be efficiently computed when the values are identifiable?
The first question is studied in depth by the econometrics literature (for inference from actions);
the second question is an opportunity for algorithms design and analysis.

We consider inference in single-dimensional environments where a stochastic social choice func-
tion maps profiles of agent values to profiles of allocation probabilities. The characterization of
incentive compatibility (Myerson, 1981) requires the allocation probability of an agent be mono-
tonically non-decreasing in that agent’s value and that an agent’s expected payments satisfy a
payment identity. Per-unit prices – the expected payments conditioned on winning – are easily
determined from the expected payments in the payment identity by normalizing by the allocation
probability.1 Consequentially, given any social choice function and valuation profile, the allocation
probabilities and prices of an incentive compatible mechanism that implements the social choice
function are uniquely and easily determined. Our inference problem is the opposite. Given the
profile of the agents’ prices, determine the valuation profile that leads to these prices. The social
choice function and, thus, the function mapping values to prices is known. The resulting inversion
problem is multi-dimensional and this multi-dimensionality leads to a possibility of non-uniqueness
(and consequentially, non-identifiability) and computational challenges.

The first goal of this paper is to understand what social choice functions admit inference from
prices and which do not. Fundamentally, social choice functions with induced allocation rules that
are not strictly increasing do not admit inference. For example, the only inference possible from
the outcome of a second-price auction is that the winner has value above the winner’s price and the

1Our methods are written assuming that per-unit prices are observed rather than expected payments. These prices
are more natural for mechanisms usually considered in algorithmic mechanism design as they arise in mechanisms
where losers pay nothing, i.e., ex post individually rational mechanism. If instead the realized expected payments
and realized allocation probabilities are observed, then these per-unit prices can be easily calculated and our methods
applied to the result.

1

losers have value below the winner’s price. On the other hand, a “soft max” social choice function
like proportional values, where an agent receives a fraction of the item proportional to her value,
is strictly continuous and, as we will show, the valuation profile can be uniquely inferred from the
winner-pays prices. We will show sufficiency for social choice functions to admit inference from
prices as ones where the Jacobian of the payment identity has all minors positive on (almost) all
inputs and, as a class, proportional weights social choice functions (with general strictly monotonic
weight functions) satisfy this property. In contrast we show that this property does not generally
hold for social choice functions that exhibit complementarities.

These identification and non-identification results are complemented by an algorithm for effi-
ciently computing the valuation profile from the prices that corresponds to any proportional weights
social choice function for single-item environments.

Our focus is on proportional weights allocation rules for (probabilistically) sharing a unit re-
source. Such mechanisms have been previously considered in the literature on bandwidth allocation
(e.g., Johari and Tsitsiklis, 2004). Another point of contact with the literature is the special case
of exponential weights. The mechanism that implements the exponential weights allocation rule is
known as the exponential mechanism (Huang and Kannan, 2012). The exponential mechanism is
often considered because its realized allocation has good privacy properties. Huang and Kannan
(2012) recommend additionally adding Laplacian noise to the payments of the exponential mech-
anism so that its realized outcome (allocation and payments) is differentially private. Our main
result shows that, in fact, without such noise added to the payments the exponential mechanism is
not private.

Organization. The rest of this paper is organized as follows. Section 2 gives notation for dis-
cussing social choice functions, mechanisms, and agents; reviews the characterization of incentive-
compatible single-dimensional mechanisms; and reviews proportional weights allocations. Section 3,
then, gives an algorithmic framework for robustly identifying values from prices. It shows that val-
ues are identified from payments corresponding to social choice functions given by proportional
weights in single-item and multi-unit environments. Section 3.3 shows that values are not identifi-
able from prices for proportional weights allocations that correspond to environments with comple-
mentarities. Section 4 gives an efficient algorithm for inferring values from prices for proportional
weights social choice functions in single-item environments.

2 Preliminaries

This paper considers general environments for single-dimensional linear agents. Each agent i has
value vi ∈ [0, h]. For allocation probability xi and expected payment pi, the agent’s utility is
vi xi − pi. A profile of n agent values is denoted v = (v1, . . . , vn); the profile with agent i’s value
replaced with z is (z,v−i) = (v1, . . . , vi−1, z, vi+1, . . . , vn).

A stochastic social choice function x maps a profile of values v to a profile of allocation proba-
bilities. A dominant strategy incentive compatible (DSIC) mechanism (x,p) maps a profile of values
v to profiles of allocations x(v) and payments p(v) so that: for all agents i, values vi, and other
agent values v−i, it is optimal for agent i to bid her value vi. The following theorem of Myerson
(1981) characterizes social choice functions that can be implemented by DSIC mechanisms.

Theorem 1 (Myerson, 1981). Allocation and payment rules (x,p) are induced by a dominant
strategy incentive compatible mechanism if and only if for each agent i,

2

1. (monotonicity) allocation rule xi(vi,v−i) is monotone non-decreasing in vi, and

2. (payment identity) payment rule pi(v) satisfies

pi(v) = vi xi(v)−

∫ vi

0
xi(z,v−i) dz + pi(0,v−i), (1)

where the payment of an agent with value zero is often zero, i.e., pi(0,v−i) = 0.

Most DSIC mechanisms are implemented to satisfy an ex post individual rationality constraint;
specifically, an agent pays nothing when not allocated. The payment when allocated, i.e., the per-
unit price, is thus the expected payment normalized by the probability of winning. Throughout
this work, we assume pi(0,v−i) = 0. Denote the price function by π : Rn

+ → R
n
+, as

πi(v) = pi(v)/xi(v)

= vi −

∫ vi
0 xi(z,v−i) dz

xi(v)
(2)

for all agents i.
The main objective of this paper is to infer the agents’ values from observations of the per-unit

prices of the mechanism. A price profile ρ is observed, and it is desired to infer the valuation
profile v that generated this price profile by ρ = π(v). The key question of this paper is to identify
sufficient conditions on the social choice function x such that the price function π is invertible.

An important special case is the case where there is n = 1 agent and the price function π(·) is
single-dimensional. When the social choice function x(·) is strictly increasing, the price function
π(·) is strictly increasing (apply Lemma 1 with only one agent), and is uniquely invertible. Thus,
the agent’s value can be identified from her observed price ρ, e.g., by binary search.

Lemma 1. Assume ∂xi/∂vi(v) > 0 everywhere. Then ∂πi/∂vi(v) > 0 for all values except 0.

Proof. The partial of the price function π′
i(vi,v−i) =

x′
i(vi,v−i)

∫ vi
0

xi(z,v−i)dz

(xi(vi,v−i))
2 is positive if x′i(vi,v−i)

is positive, unless the numerator is 0 because vi = 0 and the integral endpoints are the same.

Our goal is to understand families of (multi-agent) social choice functions x that allow values
to be inferred from prices. Clearly, as in the single-agent case, if the allocation rule is not strictly
increasing in each agent’s value, then the values of the agents cannot be inferred. We assume that
the social choice function x is such that it has strictly-increasing allocation functions xi for any
given v−i, for all vi > 0.

Mechanisms in the literature for welfare and revenue maximization are based on social choice
functions that map agents’ values to weights and allocate to maximize the sum of the weights of
the agents allocated. In order to satisfy the required strict monotonicity property, our focus is on
smoothed versions of these social choice functions under feasibility constraints that correspond to
single-item auctions (or single-minded combinatorial auctions admitting only one winner).

In single-item environments a natural “soft max” is given by proportional weights allocations.
A weight function is given for each agent i as a strictly monotone and continuously differentiable
function wi : R+ → R+ and the proportional weights social choice function maps each agent’s value

3

to a weight and then allocates to agents with probabilities proportional to weights.2 A canonical
example of proportional weights is exponential weights: wi(vi) = evi for each agent i.

Given the assumptions on functions w, they are invertible. Where appropriate we will overload
vi to allow it to be the functional inverse of wi mapping a weight back to its value. We also overload
the notations x,π to take weights w as an input, with x(w) := x(v(w)) and π(w) := π(v(w)).

3 Identification and Non-identification

This section considers sufficient conditions under which values can be inferred from the observed
prices ρ of a DSIC mechanism (x,p). The critical challenge to identification arises from the obser-
vation that values can only possibly be identified from prices if the price function π is invertible.
We solve this challenge both in theory here in Section 3, and algorithmically in Section 4.

Our theoretical and algorithmic results are simpler to prove as inversions from prices to inter-
mediate weights, and then from weights to values. Describing the inversion via weights is without
loss because weights functions wi(·) are continuously differentiable, positive, strictly increasing
functions mapping an agent’s value to weight. The weights can be inverted as vi(wi) := w−1

i (vi).
Our approach is to write the problem of inverting the price function π at prices ρ as a proxy

game between proxy players where the actions are weights. The proxy game is a tool for comput-
ing the inverse: with proxy actions corresponding to weights, its unique Nash will be the desired
inversion point. Each proxy player represents an agent of the mechanism (x,p). A proxy player i
is responsible for identifying its agent’s weight wi, in the proxy game parameterized by ρ.

Towards designing the proxy game to have a specific (and unique) Nash equilibrium, we design
the proxy game’s payoff function Φρ

i of a proxy player i for (action) w̃i – given the profile of weight-
actions from the other proxy players w̃−i – to be optimized where πi(w̃) on the proxy action profile
is closest to the observed price ρi.

3 The first goal here is to give the technical description a price-
function inversion algorithm using a proxy game, and reduce the question of its correctness to the
uniqueness of a pure Nash equilibrium in the proxy game (Proposition 1).

Recalling equation (2), we transform the price function π to weights-space using calculus-
change-of-variables as

πi(w) = vi(wi)−

∫ wi

wi(0)
xi(z,w−i)v

′
i(z)dz

xi(w)
. (3)

For fixed observed prices ρ, define the price-imbalance function φρ

i (·) and the cumulative price-
imbalance Φρ

i (·) respectively as follows, and we set Φρ as the proxy game utility function:

φρ

i (w̃i, w̃−i) = ρi − πi(w̃i, w̃−i) = ρi − vi(w̃i) +

∫ w̃i

wi(0)
xi(z, w̃−i)v

′
i(z) dz

xi(w̃)
, (4)

Φρ

i (w̃i, w̃−i) =

∫ w̃i

wi(0)
φρ

i (z, w̃−i) dz. (5)

The proxy game is defined with weights w̃ as proxy actions, and with utilities for the proxy agents
given by the cumulative price-imbalance functions Φρ. Each function Φρ

i is strictly concave in

2For simplicity, we assume that all weights functions are everywhere strictly positive for all agents, even at vi = 0.
3The full importance of the proxy game construction is realized when “erroneous” prices are used as inputs, as the

proxy game is still defined with action space corresponding to weights space, is still continuous, and will still have a
unique pure Nash equilibrium which can be output.

4

dimension i, except at the lower end point of its domain where it is weakly concave (see Lemma 10
in Appendix A.2). From concavity of Φρ

i in (5), a “zero” of φρ

i in (4) is optimal. As desired, when
other players select proxy weights w̃−i, proxy player i would select proxy weight w̃i so that agent i’s
price according to π on w̃ is closest to agent i’s observed payment ρi (and ρi = πi(w̃) if possible).
Based on this proxy game, we define the following inference algorithm.

Definition 1. The price-inversion algorithm A on price space [0,∞)n for social choice function x

on value space [0, h]n is

1. Observe price profile ρ.

2. Select a Nash equilibrium w̃ in the proxy game defined in weight space with utility functions
given by the cumulative price-imbalance Φρ for ρ.

3. Return inferred values based on inferred weights w̃ as (v1(w̃1), . . . , vn(w̃n)).

A key property for the proper working of the price-inversion algorithm is whether the proxy
game admits a unique pure Nash equilibrium. For example, if there are multiple distinct valuation
profiles that map to the same prices via π (values of agents in the original auction), then each of
these valuation profiles will have a corresponding equilibrium in the proxy game (in proxy game
action-weights space). Proposition 1 formalizes the correctness of the price-inversion algorithm,
subject to the proxy game having unique pure Nash equilibrium.

Proposition 1. Any weights profile w ∈ [wi(0), wi(h)]
n such that observed price profile ρ satisfies

ρ = π(w) is a Nash equilibrium of the proxy game on the social choice function x and prices ρ; if
this Nash equilibrium w of the proxy game is unique then the inverse π−1(ρ) is unique and given
by the price inversion algorithm A.

Proof. The second part follows from the first part. For the first part, assume ρ = π(w) for some w
in weights space domain. Action profile w in the proxy game is a Nash equilibrium as follows. Each
proxy agent’s first-order condition is satisfied. Specifically, with utilities given by the cumulative
imbalances Φρ, the first-order condition is given by φρ

i (wi,w−i) = ρi − πi(wi,w−i) and is zero by
the choice of w. Further, checking first-order conditions is sufficient because Φρ is strictly concave

by Lemma 10, i.e.,
∂φρ

i
(wi,w−i)
∂wi

= −π′
i(w) < 0 (except at the lower bound where the partial is 0,

but this can not affect player i’s strict preference over actions).

Motivated by Proposition 1, the remainder of this section identifies proportional weights as a
large natural class of social choice functions for which the proxy game has a unique pure Nash
equilibrium for all price profiles, which we will state in Theorem 5. The computational question of
finding the Nash equilibrium of the proxy game is deferred to Section 4.

We outline the rest of the section. As mentioned previously, a necessary condition for the
uniqueness of pure Nash in the proxy game is that the price function π is one-to-one. In Section 3.1,
we show that π being one-to-one is implied by a slightly weaker condition than the following: for all
inputs the Jacobian of π – denoted Jπ – has all positive principal minors (i.e. it is a P -matrix, see
Definition 2 below). In Section 3.2 we show that all proportional weights social choice functions (for
single-unit environments) induce price functions that satisfy this condition. In contrast, Section 3.3
describes a natural variant of proportional weights social choice functions for environments which
resemble single-minded combinatorial auctions, and shows that the price functions for these social
choice functions are not generally invertible, and therefore the proxy game does not have a unique
pure Nash equilibrium in this extended setting.

5

3.1 Sufficiency of “Interior P-Matrix Functions”

This section shows that a sufficient condition for the uniqueness of a pure Nash equilibrium in
the proxy game defined in algorithm A (Definition 1) – necessary for its correctness – is that the
price function π (for the social choice rule x) is an “interior P -matrix function,” a property on its
Jacobian Jπ (to be defined shortly in Definition 3). An intuitive outline of the technique is:

• existence is by algorithm design, as the vector of true weights exists as a pure Nash point, in
particular one with all first-order conditions equal to 0;

• uniqueness results because the mapping between proxy game action vectors and proxy agent
utility gradients is a bijection with “high-dimensional monotonicity,” for which interior P -
matrix functions are sufficient; so the proxy game has “high-dimensional concavity.”

We will address existence in Theorem 4 and its proof. First we set up the structure towards
uniqueness (also Theorem 4). The next definition for P -matrix (“positive matrix”) comes from
Gale and Nikaido (1965), and so does Theorem 2 (below) connecting P -matrices to bijection and
invertibility.4 We give their definition and extend it to include “weak” and “negative” cases, and
list facts about P -matrices to be used in this and subsequent sections:

Definition 2. A K × K matrix is a P -matrix if all of its principal minors are positive (i.e.,
have strictly positive determinant). Such a matrix is a P0-matrix if all of its principal minors are
non-negative. Further, the terms N -matrix and N0-matrix are used to describe matrices that when
negated (all entries multiplied by −1) are, respectively, a P -matrix and a P0-matrix.

Fact 1. The following are true about P -matrices:

1. a P -matrix is downward-closed, i.e., each of its principal minors is a P -matrix too;

2. the class of P -matrices contains the class of all positive definite matrices as a special case
(where for our purposes, the definition of a positive definite matrix M is z

⊤Mz > 0 ∀ z 6= 0

with M not necessarily symmetric);

3. the product of a strictly positive, diagonal matrix and a P -matrix is also a P -matrix.

Theorem 2 (Gale and Nikaido, 1965). A continuously differentiable function f : Ω → R
n with

compact and convex product domain Ω ⊂ R
n is one-to-one if its Jacobian is everywhere a P -matrix.

We will need a generalization of Theorem 2 that relaxes the strict P -matrix condition on the
Jacobian, on the axis-aligned boundaries. The problem for our price-function setting is that the
pseudogradient of the utility function is only a P0-matrix on the lower boundaries (from equation (6)
below).

Define a function f : Rn → R
n to be a P -matrix function if its Jacobian is a P -matrix at all

points of the function’s domain. We need to extend this definition. Note, Definition 3 for interior
P -matrix functions depends on Definition 4 for identified boundaries (next).

Definition 3. 5 For product space Ω = [a1, b1]× [a2, b2] × · · · × [an, bn] and function f : Ω → R
n,

a function f : Ω → R
n is an interior P -matrix function (respectively interior N -matrix function)

if for every point ω ∈ Ω:

4Further supporting results given in Appendix A.1 are also from Gale and Nikaido (1965).
5We make frequent use of input space Ω in this paper as a compact and convex product space. Unless noted

specifically otherwise, we let the dimension-wise ranges be Ω = [a1, b1]× [a2, b2]× · · · × [an, bn] as in this definition.

6

• the Jacobian of f evaluated at ω as Jf (ω) is a P0-matrix (respectively N0-matrix);

• and choosing the minor of Jf (ω) that removes row/column pairs corresponding to the dimen-
sions in which ω is in identified boundaries of Ω, this principal minor of Jf (ω) is strictly a
P -matrix (respectively N -matrix).

Before giving the definition of identified boundaries, we give their intuition and justification. They
describe conditions which address the problem of Jacobians having determinant 0 at the boundaries.
By Theorem 2, Jacobian as P -matrix everywhere is sufficient for inversion. An identified boundary
(in input space dimension i) must first allow unilateral inversion of its coordinate, by mapping to a
unique, constant output in dimension i for all inputs in this identified boundary of i (i.e., bijectively);
and second, after fixing the input in all such identified-boundary dimensions i as parameters, the
reduced function in the remaining dimensions must have Jacobian as a strict P -matrix, which will
imply that it can be inverted; hence entire output vectors can be inverted.

Definition 4. For compact and convex product space Ω ⊂ R
n, and function f : Ω → R

n, a
boundary (described by ci ∈ {ai, bi}) is identified if both of the following hold for all ω−i ∈ Ω−i:

• fixing ωi = ci, function fi(ci,ω−i) is constant for all ω−i; or equivalently, all cross-partials
on the ci boundary are 0: ∂fi/∂ωj(ci,ω−i) = 0 for all j 6= i;

• the output is unique to the boundary: fi(ci,ω−i) 6= fi(di,ω−i) for all di ∈ [ai, bi] , di 6= ci.

As previously suggested, the implication of an identified boundary is that, (e.g.) the low point of
the domain in dimension i maps identically to the low point of the function’s range in dimension
i as a unilateral bijection. Further, note that a sufficient condition for the second point of the
definition is having partial ∂fi/∂ωi > 0 for all inputs ωi off the boundary.

Our Theorem 3 generalizes Theorem 2 of Gale and Nikaido. We use it as an interim result
towards our more pertinent result in Theorem 4, which connects interior P -matrix functions to
proxy games. Theorem 4 lets us reduce the correctness of price-inversion algorithm A to the
condition that π is an interior P -matrix function, stated formally in Corollary 1. Proofs for the
next two theorems are given in Appendix A.1.

Theorem 3. If function f : Ω → R
n on compact and convex product domain Ω ⊂ R

n is an interior
P -matrix function (Definition 3), then it is one-to-one, and therefore invertible on its image.

Theorem 4. A game with n players and

• a compact and convex product action space Ω1 × . . .× Ωn = Ω ⊂ R
n;

• a continuous and twice-differentiable utility function U : Ω → R
n such that:

– the pseudogradient
[

∂Ui

∂ωi

]

i
of the utility function U is an interior N -matrix function;

– and there exists ω0 ∈ Ω such that the pseudogradient evaluated at ω0 is 0 (the 0-vector);

has a unique Nash equilibrium, which is ω0, and this equilibrium is pure.

Corollary 1. Given agents with (unknown) values v ∈ [0, h]n. Consider price function π resulting
from a dominant-strategy incentive-compatible mechanism implementing x, with Jacobian Jπ.

If π is an interior P -matrix function, then on observed prices from restricted domain ρ ∈
Image(π), the price-inversion algorithm A (Definition 1) infers successively the true weights w

and the true values v from the mechanism’s outcome (as summarized by the prices ρ = π(v)).

7

Proof. We show that under the given assumptions, the proxy game meets the conditions of Theo-
rem 4. The action space of the proxy game is equal to the agents’ weights space which is a compact
and convex product space. The proxy game has payoffs given by Φρ such that utility functions are
continuous and twice-differentiable.

The pseudogradient of the payoffs is given by φρ, and the Jacobian of the pseudogradient is the
negation of the matrix Jπ. Given π as an interior P -matrix function, its negation −π is an interior
N -matrix function. The true values w as input-actions to the proxy game will result in evaluation
of the pseudogradient as φρ(w) = 0 by design of the game, so ω0 = w exists.

In conclusion, the proxy game indeed satisfies the conditions of Theorem 4, and admits w as
a unique Nash equilibrium which is pure. Defining the inverse function π−1 to output the unique
Nash of the proxy game is sufficient for its output to be unique and correct.

3.2 Single Item Proportional Weights Social Choice Functions

The goal of this section is to show that every proportional weights social choice function awarding
a single item has a price function π meeting the conditions of Corollary 1. We state this now as
the main theoretical result of the paper.

Theorem 5. A price function π (of equation (2)) – corresponding to a strictly monotone, contin-
uous, differentiable proportional weights social choice rule – is an interior P -matrix function, and
it is uniquely invertible.

Proof. We only need to show that Jπ is an interior P -matrix function. In Lemma 11 in Ap-
pendix A.2, we show that under π, the lower boundaries of the weights space domain are identified
boundaries. Lemma 2 (next) shows that when an input is in the lower boundary for any dimension
i, Jπ has all-zero elements in row i, such that its determinant is trivially 0, meeting the (weakened)
identified-boundary condition of a P0-matrix. Otherwise at all points of the weights space domain,
Theorem 7 (at the end of this section) shows that the critical minor of Jπ – i.e., the minor which
removes row/ column indexes corresponding to the dimensions in which its input exists in identified
(lower) boundaries – is strictly a P -matrix.

The rest of this section builds towards Theorem 7. We start with the straightforward calculation
of the partial derivatives of π, which in particular give the entries of the Jacobian Jπ. The steps
of the calculations and the proof of Lemma 2 are given in Appendix A.2.

∂πi
∂wi

(w) =

∫ wi

wi(0)
v′i(z)

1

wi
·

z

(
∑

k wk)− wi + z
·

[∑

k wk

wi
− 1

]

dz (6)

∂πi
∂wj

(w) =

∫ wi

wi(0)
v′i(z)

1

wi
·

z

(
∑

k wk)− wi + z
·

[∑

k wk

(
∑

k wk)− wi + z
− 1

]

dz (7)

Lemma 2. Given the price function π for proportional weights, for j, k 6= i, the cross derivatives
are the same: ∂πi

∂wj
= ∂πi

∂wk
. Evaluating the Jacobian at w, further, all elements of the Jacobian

matrix Jπ are positive, i.e., ∂πi

∂wi
> 0, ∂πi

∂wj
> 0, except at the wi(0) lower boundary in dimension i

where the elements of row i are ∂πi

∂wi
= ∂πi

∂wj
= 0.

We need to prove that π is an interior P -matrix function. Consider weights input w. Let
K be the count of dimensions i such that coordinate wi is “off” the lower identified boundary in

8

dimensioni, i.e., wi > wi(0). Without loss of generality we can assume the dimensions of identified
boundaries have the largest indexes (if any).

We critically consider only the principal minor of Jπ which results from keeping the first K
interior dimensions, as is sufficient to check an interior P -matrix function. We explicitly define the
ratio of an agent’s “self-partial” to its “cross-partial” for any j 6= i by hi, which will be needed for
analysis throughout the rest of the paper.6

hi =
∂πi
∂wi

/
∂πi
∂wj

(8)

The derivatives that appear are positive (Lemma 2). We write the principal minor’s Jacobian as

Jπ,K = D ·H =

∂π1/∂w2 0 0 . . . 0
0 ∂π2/∂w1 0 . . . 0
0 0 ∂π3/∂w1 . . . 0
...

...
...

. . .
...

0 0 0 . . . ∂πK/∂w1

·

h1 1 1 . . . 1
1 h2 1 . . . 1
1 1 h3 . . . 1
...

...
...

. . .
...

1 1 1 . . . hK

(9)

Multiplying by a positive diagonal matrix D is a benign operation with respect to the deter-
mination of a matrix as a P -matrix (Fact 1(3)). We will define H to be the rightmost matrix of
equation (9) which is composed of hi elements in the diagonal and all ones elsewhere. By reduction,
we need only show that H is a P -matrix, for which it is sufficient to show H is positive definite
(Fact 1(2)).

We claim the following results, starting with a complete characterization of when an arbitrary
matrix G (with structure of H) is positive definite, a result which could be of independent interest.

Theorem 6. Consider a K×K matrix G with diagonal g1, g2, ..., gK and all other entries equal to
1 (and without loss of generality g1 ≤ g2 ≤ . . . ≤ gK). The following is a complete characterization
describing when G is positive definite.

1. if g1 ≤ 0, then the matrix G is not positive definite;

2. if g1 ≥ 1 and g2 > 1, then G is positive definite;

3. if 0 < g1, g2 ≤ 1, then G is not positive definite;

4. if 0 < g1 < 1 and g2 > 1, then G is positive definite if and only if
∑

k
1

1−gk
> 1.

The proof of Theorem 6 is given in Appendix A.3 where the main difficulty is part (4). Theo-
rem 6 is for arbitrary G. We now return to the specific consideration of H resulting from π and
Jπ,K , showing in Theorem 7 that it must be covered by cases (2) or (4) from Theorem 6. The
proofs of Lemma 3 and Lemma 4 are given in Appendix A.4.

Lemma 3. If hi ≤ 1, then wi > 0.5
∑

k wk, and all other weights must have wj < 0.5
∑

k wk (and
hj > 1).

Lemma 4. When h1 < 1 and hj > 1 ∀j 6= 1, we have
∑

k
1

1−hk
> 1.

6Technically the hi terms are functions, each of input w, but we suppress this in the notation.

9

Theorem 7. Let matrix Jπ be the Jacobian of π at weights w of a positive, strictly increasing,
and differentiable proportional weights social choice functions. π is an interior P -matrix function.

Proof. By the definition of an interior P -matrix function (Definition 3), we consider the restriction
to the minor Jπ,K = D ·H at (w1, . . . , wK), where coordinates in identified (lower) boundaries of
weights space have been discarded (see equation (9)). Because weights (w1, . . . , wK) are definitively
off their respective lower boundaries, Lemma 2 implies that all hi ∈ {h1, . . . , hK} are strictly
positive. By Lemma 3, at most one agent i has hi ≤ 1. Without loss of generality, we can set this
i = 1. So there are just two cases:

1. h1 ≥ 1 and hj > 1 ∀j 6= 1, and

2. 0 < h1 < 1 and hj > 1 ∀j 6= 1.

These are respectively cases (2) and (4) of Theorem 6. To satisfy the condition within case (4)
of Theorem 6, Lemma 4 is sufficient. Thus, the factor H of the Jacobian minor Jπ,K is positive
definite. Finally, using Fact 1, H is a P -matrix and the product Jπ,K = D·H is also a P -matrix.

3.3 Impossibility Results for Complementarities

In this section we show that for a natural generalization of the proportional weights social choice
function to an environment with complementarities between agents, the values of the agents cannot
necessarily be identified from the prices output by the mechanism.

The impossibility result we present will consider a generalization of exponential weights to
environments with complementarities. We will consider the special case where the agents are
partitioned and the mechanism can allocate to all agents in any one part, but agents from multiple
parts may not be simultaneously allocated. We prove that a natural extension of exponential weights
to partition set systems results in a price function π that is not one-to-one, by counterexample.
Thus, the price function is generally not invertible: no algorithm can distinguish between two (or
more) valuation profiles which give the same prices.

Definition 5. The exponential weights social choice function for an n-agent partition set system
with parts S = (S1, . . . , Sr) is given by:

• vS =
∑

i∈S vi for S ∈ S;

• xS(v) =
evS∑

T∈S evT for S ∈ S;

• xi(v) = xS(v) for i ∈ S

The resulting price function corresponding to the exponential weights social choice function for
partition set systems is

πi(v) = vi −

∫ vi
0 xi(z,v−i)dz

xi(v)

= vi −

∑

T evT

evS

∫ vi

0

ezevS\{i}

ezevS\{i} +
∑

T 6=S evT
dz

= vi −

∑

T evT

evS

(

ln
(

∑

T
evT
)

− ln
(

evS\{i} +
∑

T 6=S
evT
))

The completion of the counterexample is in the following lemma.

10

0 2 4 6 8 10

−0.05

0

0.05

α

π
1
(α

)
−

π
5
(α

)

Figure 1: Graphing the function [π1(α) − π5(α)] from the proof of Lemma 5. The zeroes of the
function parameterize values for agents in S1 and S2 such that all agents across both parts have
identical prices, despite the agents of each group having strictly distinct values from each other.
(Note, by design, the curve is rotationally symmetric around the point (5, 0).)

Lemma 5. The price function π corresponding to the exponential weights social choice function for
partition set systems (with at least one partition containing two or more agents) is not one-to-one.

Proof. We prove that the price function is not one-to-one (and consequentially by the contrapositive
of Corollary 1 its Jacobian is not positive definite). We first set up a parameterized analysis and
then choose the parameters later.

Let there be k agents in set S1 who all have the same valuation α/k, and another k agents in
set S2 who all have the same valuation (β − α)/k. Note β = vS1

+ vS2
. Players in all other sets Sr

for r > 2 have a constant value vothers and can be summarized by a single parameter δ by letting
eδ =

∑

r>2 e
vSr . Parameters k, α, β and vothers will be determined later.

The price for agent 1 in part S1 is

π1 =
α

k
−

eα + eβ−α + eδ

eα
[ln(eα + eβ−α + eδ)− ln(e(1−1/k)α + eβ−α + eδ)]

The price for agent k + 1 in part S2 is

πk+1 =
β − α

k
−

eα + eβ−α + eδ

eβ−α
[ln(eα + eβ−α + eδ)− ln(e(1−1/k)(β−α) + eα + eδ)]

We now show that it is possible that player 1 and player k + 1 have different valuations but are
charged the same prices. Consider the case k = 4, β = 10, and there is one additional part S3 with
a single agent 9 with v9 = vothers = 4 inducing δ = 4. Then we can consider the quantity (π1 − π5)
as a function of parameter α with v1 = . . . = v4 = α/4 and v5 = . . . = v8 = (10− α)/4.

This function [π1)α) − π5(α)] is graphed in Figure 1, where we can see that there are three
solutions for π1 = π5. Without showing the explicit calculation, π1 = π5 holds for a value profile
where v1 = . . . = v4 = α/4 ≈ 0.375 and v5 = . . . = v8 = (β − α)/4 ≈ 2.125, and v9 = 4. In this

11

case, the seller cannot distinguish between S1 and S2 which part has agents with identical values
≈ 0.375 versus the other part whose agents all have values ≈ 2.125.

This lemma can be generalized as follows. A set system is downward-closed if all subsets of
feasible sets are feasible. Agents are substitutes if the set system satisfies the matroid augmentation
property, i.e., for any pair of feasible sets with distinct cardinalities, there exists an element from
the larger set that is not in the smaller set that can be added to the smaller set and the resulting
set remains feasible. A set system exhibits complementarities if agents are substitutes (i.e., there
exist sets that fail the augmentation property). Exponential weights can be generalized to any set
system by choosing a maximal set with probability proportional to its exponentiated weight. The
impossibility result above can then be easily generalized to any set system that exhibits comple-
mentarities by identifying the sets and taking S1 and S2 to be the agents uniquely in each set (i.e.,
not in their intersection), and setting all other agent values to zero.

4 Computational Methods for Inverting the Price Function

In Section 3 we gave the price-inversion algorithm (Definition 1), which is a well-defined, continuous
function that inverts the payment identity π to map prices ρ back to values v (Theorem 5). The
algorithm is straightforward except for Step 2 which requires the computation of a Nash equilibrium
in the defined proxy game. In this section we give a simple algorithm for identifying an equilibrium
of the proxy game and thus show that the inverse function can be efficiently computed.

The algorithm for solving the proxy game is enabled by two observations. First, for player i,
the sum of weights s =

∑

k wk summarizes everything that needs to be known about the other
players and this observation leads to a many-to-one reduction in the dimension of search space.
Consequently, the price function can be rewritten as a function π̄i(s,wi).

7 Second, because the
price function π is invertible, the sum s is uniquely determined from the prices.

Obviously at most one agent can have strictly more than half the total weight s. For the rest
of this section, without loss of generality we fix agent i∗ to mean that wi∗ is not restricted and
wi ≤ s/2 for all i 6= i∗.

Fix observed input prices ρ. For any agent i 6= i∗, consider the set of points (s,wi) for which π̄i
outputs ρi. Our first key Lemma 6 (below) will show that, restricting to the space wi ≤ s/2, this
set of points can be interpreted as a real-valued, monotone decreasing function of s, denoted wρ

i (·).
With this property holding for all agents other than i∗, we can express the price function for agent
i∗ with dependence on prices ρ−i∗ and sum s:8

πρ

i∗(s) := πi∗(max{s −
∑

i 6=i∗
wρ

i (s), wi∗(0)},w
ρ

−i∗(s)) (10)

where, for guess of total weight s, the quantity s −
∑

i 6=i∗ w
ρ

i (s) assigns an intermediate guess of
wi∗ as the “balance” of the quantity s having subtracted the implied weights of the “small” agents
for guess s.9 Our second key Lemma 7 (below) will show that, on the range of s for which it is

7See equation (21) in Appendix B for its formal definition.
8Regarding functions wρ

i and π
ρ

i∗ . We write them both parameterized by vector ρ to demark them with a simple
notation, in a common way because their usage is always related. Note however, ρ implies an over-dependence on
parameters. wρ

i only uses ρi, and π
ρ

i∗ uses all of ρ−i∗ but not ρi∗ .
9When the guess wi∗ = s−

∑
i6=i∗ w

ρ

i (s) is irrationally small or even negative, the structure of the problem allows
us to round it up to constant wi∗(0), sufficiently preserving monotonicity. See the proof of Lemma 7 in Appendix B.3.

12

well-defined, the function πρ

i∗ is strictly monotonically increasing.
This setup suggests a natural binary search procedure. For some agent i∗ and small initial guess

of s, the implied price for i∗ is smaller than the observed input, i.e. πρ

i∗(s) < ρi∗ . A large guess of
s implies too big of a price for i∗, and monotonicity will then guarantee a crossing. The algorithm
has the following steps:

1. Find an agent i∗ by iteratively running the following for each fixed assignment of agent
i ∈ {1, . . . , n}:

(a) temporarily set i∗ = i;

(b) determine the range of s on which πρ

i∗ is well-defined and searching is appropriate;10

(c) if this range of s is non-empty, permanently fix i∗ = i and break the for-loop;

2. use the monotonicity of πρ

i∗ to binary search on s for the true s∗, converging πρ

i∗(s) to ρi∗ ;

3. when the binary search has been run to satisfactory precision and reached a final estimate s̃,
output weights w̃ = (s̃ −

∑

i 6=i∗ w
ρ

i (s̃),w
ρ

−i∗(s̃)) which invert to values ṽ via respective vi(·)
functions.

The rest of this section formalizes our key results.

4.1 Computation through Total Sum Weights

The following theorem claims correctness of the algorithm, and is the main result of this section.

Theorem 8. Given weights w and payments ρ = π(w) according to a proportional weights
social choice function, the algorithm identifies weights w̃ to within ǫ of the true weights w in
time polynomial in the number of agents n, the logarithm of the ratio of high to low weights
maxi ln(wi(h)/wi(0)), and the logarithm of the desired precision ln 1/ǫ.

A major object of interest for this sequence of results is the price level set defined by Qρ

i =
{(s,wi) | π̄i(s,wi) = ρi}, i.e., all of the (s,wi) pairs mapping to the price ρi under π̄i, and also in
particular its subset Pρ

i = {(s,wi) | π̄i(s,wi) = ρi and wi ≤ s/2} ⊆ Qρ

i which restricts the set to the
region where wi is at most half the total weight s. Define rρi = min{s : (s,wi) ∈ Pρ

i } as the lower
bound on the sum s on which the set Pρ

i is supported. These quantities are depicted in Figure 2.
We give the formal statements of the two most critical lemmas supporting Theorem 8.

Lemma 6. The price level set Qρ

i is a curve; further, restricting Qρ

i to the region wi ≤ s/2, the
resulting subset Pρ

i can be written as {(s,wρ

i (s)) : s ∈ [rρi ,∞)} for a real-valued decreasing function
wρ

i mapping sum s to a weight wi that is parameterized by the observed price ρi.

Lemma 7. For any agent i∗ and s ∈ [maxj 6=i∗ r
ρ

j ,∞), function πρ

i∗ is weakly increasing; specifically,

πρ

i∗ is constant when s−
∑

i 6=i∗ w
ρ

i (s) ≤ wi∗(0) and strictly increasing otherwise.

10In the proper algorithm and proof, we will give better bounds on the range of the search; for now, as a simple
indication that bounds exist, note that there exists a solution for some appropriate i∗ within the general bounds on
s as

∑
k
wk(ρk) ≤

∑
k
wk(vk) = s ≤

∑
k
wk(h) for known ρi and max value h, because ρi ≤ vi ≤ h.

13

s

wi

rρi

wi(h)

wi(0)

s s/2
Qρ

i

Pρ

i

Figure 2: The price level set curve Qρ

i = {(s,wi) : π̄i(s,wi) = ρi} (thick, gray, dashed), is decreasing
below the wi = s/2 line (Lemma 6) where it is defined by its subset Pρ

i (thin, black, solid). It is
bounded above by the wi = s line (trivially as s sums over all weights) and the wi = wi(h) line (the
maximum weight in the support of the values), and below by the wi = wi(0) line which we have
assumed to be strictly positive. rρi is the minimum weight-sum consistent with observed price ρi
and weights wi ≤ s/2.

A key step in the proof of Lemma 7 will depend on Lemma 4. The 1
1−hk

terms in the statement

of Lemma 4 are realized to correspond to derivatives of wρ

k functions. Consequently, the correctness
of the algorithm critically relies on the proof of a unique inverse to the price function.

We give the proofs of Theorem 8, Lemma 6, and Lemma 7 in Appendix B.3. Preceding these
proofs is supporting material: Appendix B.1 gives a detailed analysis of the structure of the search
space, and Appendix B.2 gives the description of the binary search algorithm with full details.

References

Chawla, S., Hartline, J., and Nekipelov, D. (2014). Mechanism design for data science. In Proceed-
ings of the fifteenth ACM conference on Economics and computation, pages 711–712. ACM.

Chawla, S., Hartline, J., and Nekipelov, D. (2016). A/b testing of auctions. In Proceedings of the
2016 ACM Conference on Economics and Computation, pages 19–20. ACM.

Gale, D. and Nikaido, H. (1965). The Jacobian matrix and global univalence of mappings. Mathe-
matische Annalen, 159(2):81–93.

Guerre, E., Perrigne, I., and Vuong, Q. (2000). Optimal nonparametric estimation of first-price
auctions. Econometrica, 68(3):525–574.

Haile, P. A. and Tamer, E. (2003). Inference with an incomplete model of english auctions. Journal
of Political Economy, 111(1):1–51.

Hoy, D., Nekipelov, D., and Syrgkanis, V. (2017). Welfare guarantees from data. In Advances in
Neural Information Processing Systems, pages 3768–3777.

14

Huang, Z. and Kannan, S. (2012). The exponential mechanism for social welfare: Private, truthful,
and nearly optimal. In Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of
Computer Science, FOCS ’12, pages 140–149, Washington, DC, USA. IEEE Computer Society.

Johari, R. and Tsitsiklis, J. N. (2004). Efficiency loss in a network resource allocation game.
Mathematics of Operations Research, 29(3):407–435.

Myerson, R. B. (1981). Optimal auction design. Mathematics of Operations Research, 6(1):58–73.

Nekipelov, D., Syrgkanis, V., and Tardos, E. (2015). Econometrics for learning agents. In Proceed-
ings of the Sixteenth ACM Conference on Economics and Computation, pages 1–18. ACM.

Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave n-person games.
Econometrica, 33(3):520–534.

A Supporting Material for Section 3

A.1 Proofs of Theorem 3 and Theorem 4

Before getting to results, we define a dimensionally-reduced function by a parameterized procedure.
This procedure will be useful as a sub-routine in multiple proofs.

Definition 6. Given a function f : Ω → R
n, two points ω1,ω2 in compact and convex product

space Ω ⊂ R
n, and a set K of dimensions with identified lower boundaries with cardinality k = |K|.

Define a dimensionally-reduced function D : Ω−K → R
n−k where

• Ω−K ⊂ Ω is the projection of product space Ω into dimensions not in K, and further the lower
bounds of each remaining dimension i is (weakly) increased to min{ω1

i , ω
2
i } respectively, and

analogously each upper bound decreased to max{ω1
i , ω

2
i };

• D(ω−K) = f(ω−K ,ωK = cK) for (vector) cK the fixed inputs of (removed dimension) iden-
tified boundaries, input to f as constant parameters.

We restate and prove Theorem 3 here. Recall it is an extension of Theorem 2 (Gale and Nikaido,
1965). Its proof depends on Lemma 8 given immediately following.

Theorem 3. If function f : Ω → R
n on compact and convex product domain Ω ⊂ R

n is an interior
P -matrix function (Definition 3), then it is one-to-one, and therefore invertible on its image.

Proof. By contradiction, assume there exist two distinct inputs ω1, ω2 such that f(ω1) = f(ω2).
With equal outputs under f it must be that ω1, ω2 exist in the same set of identified boundaries
because by Lemma 8 (given next), an input in each of these identified boundaries outputs a unique
constant in its respective dimension. Let the common set of dimensions in identified boundaries be
K. We consider dimensionally-reduced function D applied to f, ω1, ω2 and set K (of Definition 6).
D now meets all of the conditions of Theorem 2 (in particular D has Jacobian as a P -matrix
everywhere because no coordinate of ω1

−K or ω2
−K is in the original identified boundaries, and f is

an interior P -matrix function which must be a strict P -matrix function when excluding identified
boundaries by definition). Therefore D is one-to-one on its restricted domain, which includes
ω1
−K , ω2

−K , a result which extends to analysis under f such that f must also be one-to-one. I.e.,
it must be that f(ω1) 6= f(ω2) in some coordinate outside the set K, giving the contradiction.

15

Lemma 8. If a function f : Ω → R
n on domain Ω ⊂ R

n is an interior P -matrix function (of
Definition 3), then function fi evaluates to constant fi(ci, ·) on an identified boundary in dimension
i with coordinate ci if and only if the input ω to fi has ωi = ci.

Proof. Without loss of generality, assume ci = ai the lower boundary in dimension i, with the
upper boundary argument by symmetry. For sufficiency, note that by definition of an identified
boundary (Definition 4), all cross-partials on the function fi (evaluated at the identified boundary)
are identically 0. I.e., ∂fi/∂ωj(ai,ω−i) = 0 for all j 6= i and for all ω−i. Therefore fi(ai,ω−i) is a
constant.

For necessity, consider an input (di,ω−i) with di > ai “off” the identified boundary. Evaluated
at all inputs ωi ∈ (ai, di], the self-partial ∂fi/∂ωi > 0 is necessary by the assumption that f is
an internal P -matrix function, because an implication of its definition is that, when ωi is not in
the lower boundary, the diagonal element of the Jacobian ∂fi/∂ωi at index (i, i) must be strictly
positive (because diagonal elements are principal minors with dimension 1× 1).

Therefore fi(di,ω−i) = fi(ai,ω−i) +
∫ di
ai

[∂fi/∂ωi(z, ω−i)] dz > fi(ai,ω−i) because the integral
of a strictly positive function is strictly positive when di > ai.

Note, an implication of Lemma 8 in the context of our price functions is that we observe agent i to
have price ρi = 0 if and only if agent i had minimal weight wi(0), trivially implying value vi = 0.

The rest of this appendix section is devoted to proving Theorem 4. Additionally, we develop
the following corollary, which should be of independent interest to the game theory community.

Corollary 2. A game with a compact and convex product action space and pseudogradient that is
an N -matrix function has a unique Nash equilibrium, which is pure.

A significance of Corollary 2 is that it extends a classic result by Rosen (1965).

Theorem 9 (Rosen, 1965). A game with a compact and convex product action space Ω and pseu-

dogradient
[

∂Ui

∂ωi

]

i
such that for all inputs ω1, ω2 ∈ Ω:

([

∂Ui

∂ωi

]

i

(ω2)−

[

∂Ui

∂ωi

]

i

(ω1)

)

· (ω2 − ω1) < 0

has a unique Nash equilibrium, which is pure.

We continue by listing three results from Gale and Nikaido (1965). The first, Theorem 10, is a
result which appears in their paper. The third restates their result which we have already given
as Theorem 2 in this paper. The second, Theorem 11, is a new intermediate sub-result state-
ment, which summarizes the preliminary analysis within Gale and Nikaido’s proof of Theorem 2.
Theorem 11 is a generalization of Theorem 10.11

Theorem 11 is indispensable for our Theorem 4 and Corollary 2 results, yet a proof for this
statement explicitly does not exist in continuous, cohesive form. To spare the reader the task
of personally piecing it together, we give the proof here, adapted from Gale and Nikaido. For
completeness, we will then finish the proof of Theorem 2 which basically becomes a corollary.

11An organizational note on numbering of theorems: our Theorem 2 is given as Theorem 4 in the Gale and Nikaido
paper; our Theorem 10 is their Theorem 3. Our Theorem 11 is their result but is not an explicit statement.

16

Theorem 10 (Gale and Nikaido, 1965). If function f : Ω → R
n on compact and convex product

domain Ω ⊂ R
n has Jacobian Jf which is a P -matrix at every ω ∈ Ω, then for any fixed input

ω1 ∈ Ω, and variable ω2 from the domain Ω, the inequalities

f(ω1) ≤ f(ω2), ω1 ≥ ω2

have only the solution ω1 = ω2.

Theorem 10 has an interpretation in the context of our proxy games, with ω as a vector of actions,
and f as the pseudogradient function on utilities. For games maximizing utility we would use
the equivalent analogous statement for Jacobian as N -matrix everywhere (and flip the sign of the
first vector inequality). What the N-matrix version of Theorem 10 says when it holds for a game
is: given ω2, there can not exist distinct pointwise “weakly larger” actions ω1 such that all local
preference gradients (with respect to own action) are also weakly larger at ω1 compared to ω2.

However there is nothing special about the “weakly larger” direction – i.e., the “all-positives”
orthant. The pure-math interpretation of Theorem 10 (still for N -matrix) is that “moves” from ω2

in the direction of the all-positive orthant to ω1 can not also move the output in the direction of
the all-positive orthant. The generalization says, given an N -matrix Jacobian everywhere, moving
the input in the direction of any orthant can not also move the output in the direction of the same
orthant, i.e., by the contrapositive, there must exist a dimension in which the change in the input
and the change of the corresponding output have opposite signs. This idea is immediately pertinent
in game theory with actions as inputs and utility gradients as outputs, as the basis of a technique
to contradict two action profiles supposedly both being in equilibrium.

We state this intermediate result formally here with Theorem 11 (but for continuity of language
in result statements, we write it as the P -matrix version). To repeat, the proof here mirrors the
first steps of Gale and Nikaido’s proof of Theorem 2, with slight re-working to be explicitly restated
as a generalization of Theorem 10. Note the following definition for use in Theorem 11.

Definition 7. Define the operators 1,−1 applied to inequalities by: multiplying an inequality by 1

leaves it unchanged, and multiplying it by −1 reverses the sign of the inequality.

Theorem 11 (Gale and Nikaido, 1965). If function f : Ω → R
n on compact and convex product

domain Ω ⊂ R
n has Jacobian Jf which is a P -matrix at every ω ∈ Ω, then for any fixed input

ω1 ∈ Ω, and variable ω2 from the domain Ω, for every binary vector B ∈ {1,−1}n the inequalities

B1

(

f1(ω
1) ≤ f1(ω

2)
)

, B1

(

ω1
1 ≥ ω2

1

)

...

Bn

(

fn(ω
1) ≤ fn(ω

2)
)

, Bn

(

ω1
n ≥ ω2

n

)

have only the solution ω1 = ω2. Equivalently (the contrapostive), given inputs ω1,ω2 6= ω1, there
must exist a dimension i such that (ω1

i − ω2
i) · (fi(ω

1)− fi(ω
2)) > 0.

Proof. Note that we will write the proof to parallel the argument as given by Gale and Nikaido,
and connect it back to the binary vector B as appropriate.

Inputs ω1, ω2 ∈ Ω are explicitly indexed by
(

ω1
1, . . . , ω

1
n

)

and
(

ω2
1 , . . . , ω

2
n

)

. By contradiction,
assume ω1, ω2 are distinct but there exists vector B∗ such that all of the inequalities listed in the
theorem statement are satisfied.

17

Without loss of generality we may assume there exists index k such that ω2
i ≤ ω1

i for i ≤ k and
ω2
i ≥ ω1

i for i > k. If k = n (or by symmetry k = 0) then we are in the exact setting of Theorem 10
(here with the vector B∗ = {1}n), which requires ω1 = ω2.

So from here on we assume 0 < k < n. To satisfy the second inequality in each line of the set of
inequalities in the theorem statement, it must be that B∗ is the vector of k 1s followed by (n− k)
−1s. Define the analogous mapping D : Rn → R

n by

D(ω1, . . . , ωn) = (ω1, . . . , ωk,−ωk+1, . . . ,−ωn)

Clearly D is a bijection on R
n with inverse D−1 = D, and further D(Ω) is still a compact and

convex product space. Let E : D(Ω) → R
n be the composite mapping E = D ◦ f ◦D. (I.e., the

function E on the domain D(Ω) operates as follows: the first application of D maps back to Ω, to
which E can then properly apply f , and finally D is applied again to this output.) At this point,
we confirm that the following inequalities hold by inspection, because the application of B∗ to the
system of inequalities in the theorem statement dovetails with the use of the mapping D.

E(D(ω1)) ≤ E(D(ω2)), D(ω1) ≥ D(ω2) (11)

The Jacobian JE of E is a P -matrix because it is obtained from the Jacobian Jf by simple changes
of row/column signs which preserve the classification as P -matrix. We use Lemma 9 to make this
explicit (given immediately following this proof). In comparison to the Jacobian of f , the Jacobian
of E is obtained by multiplying each row and each column of f with index at least k+1 by a factor
of −1. If we “transform” the Jacobian of f into the Jacobian of E by considering each i > k in
turn one step at a time, by multiplying the i row and i column each by −1 in each one step, we
have that the resulting matrix is still a P -matrix as an invariant after each step (by Lemma 9),
such that JE is a P -matrix when the transformation concludes.

With JE a P -matrix and equation (11), we can invoke Theorem 10 to conclude that D(ω1) =
D(ω2), which immediately implies that ω1 = ω2 by applying D−1 to both sides. This gives the
desired contradiction, as the analyzed contradiction also holds by analogy for f .

Lemma 9. Given K × K matrix M as a P -matrix. For any index i ∈ {1, ...K}, the matrix M ′

resulting from multiplying row i by −1 and successively column i by −1 is also a P -matrix.

Proof. As a first note, the element of matrix M ′ at index (i, i) gets multiplied by −1 in both the
row-multiplication and column-multiplication operations, so its sign remains unchanged. All other
elements of either the i row or i column have sign flipped from M .

Consider within matrixM ′, the determinant of any principal minorM ′′ ofM ′, including possibly
M ′ itself. Without loss of generality, the following argument holds for any M ′′, we don’t need to
explicitly consider any missing indexes from the original M ′. First in particular, if M ′′ excludes
row/column i then its determinant remains unchanged.

Otherwise we use the algebraic definition of a determinant. The determinant of M ′′ is a sum
over product-terms with the following property: each product-term includes exactly one element
from each row and each column of M ′′, and includes such exhaustively. Any such additive product-
term (within the sum making up the determinant calculation) that includes the element of M ′ at
index (i, i) can not include any other element of M ′ from row i or column i, therefore this term is
exactly equal to the respective principal minor determinant term when calculated for the matrix
M .

18

Any additive term that does not include the element of M ′ at index (i, i) must use some term
as (i, x) and also some term as (y, i) for x 6= i and y 6= i, both of which are negated from the
corresponding elements at the analogous indexes of M ′ such that again this determinant (additive)
term is equal to the respective determinant term using M .

This shows that term by term within their summed computations, the determinants of minors
of M ′ are everywhere equal to the respective determinants of minors of M . The conclusion is that
M ′ is indeed a P -matrix, because M is.

For completeness, before continuing we restate Theorem 2 and conclude its proof.

Theorem 2 (Gale and Nikaido, 1965). A continuously differentiable function f : Ω → R
n with

compact and convex product domain Ω ⊂ R
n is one-to-one if its Jacobian is everywhere a P -matrix.

Proof. The statement now follows as a corollary. By contradiction, assume there exist distinct
ω1, ω2 ∈ Ω with f(ω1) = f(ω2). Let P be the program of constraints described in the statement
of Theorem 11. Fix a binary vector B

RHS ∈ {1,−1} to satisfy the right-hand side equations of P
for these ω1, ω2. Assumptions in the theorem statement here meet the conditions of Theorem 11,
therefore ω1 6= ω2 implies that the left-hand side equations of P can not all be satisfied for BRHS.
In particular it cannot be that f(ω1) = f(ω2) (which would satisfy the left-hand side of P).

Theorem 11 has implications for our proxy games which become apparent in the proof of Theorem 4.
The intuition was previously described in the discussion immediately following Theorem 10.

Theorem 4. A game with n players and

• a compact and convex product action space Ω1 × ...× Ωn = Ω ⊂ R
n;

• a continuous and twice-differentiable utility function U : Ω → R
n such that:

– the pseudogradient
[

∂Ui

∂ωi

]

i
of the utility function U is an interior N -matrix function;

– and there exists ω0 ∈ Ω such that the pseudogradient evaluated at ω0 is 0 (the 0-vector);

has a unique Nash equilibrium, which is ω0, and this equilibrium is pure.

Proof. For existence, the action vector ω0 is assumed to exist. It is a pure Nash equilibrium by the
assumption that first-order conditions at ω0 are all identically 0, and utility functions Ui are strictly
concave with respect to their own unilateral changes (except possibly at the single points of the
lower and upper boundaries where it can be weakly concave, but this exception at a single boundary
point can not affect the uniqueness of a player’s optimal action). This concavity follows from the
pseudogradient as an interior N -matrix function, such that at all points (except boundaries), the

diagonal elements of the pseudogradient’s Jacobian
[

∂2Ui

∂ω2

i

]

i
must be strictly negative.

The Nash is unique first because the pseudogradient function is one-to-one by application of
Theorem 3, so no other action vector ω′ 6= ω0 can also map to 0 (under the pseudogradient
function). Next, the rest of this proof is devoted to showing that a second equilibrium ω′ can not
also exist in the boundaries by having non-zero first-order conditions (i.e., if an agent with action
on the boundary has a gradient pointing outside the action space). An outline is given as follows.

19

• First we argue to ignore consideration of any coordinates of ω′ which are in identified bound-
aries in their respective dimensions, with respect to the pseudogradient function as the output.
Our goal here is to show that ω′ and ω0 are the same in these coordinates.

• Second, we consider a dimensionally-reduced function D (Definition 6) applied to the pseu-
dogradient function, ω0, ω′, and K = Kω′ = Kω0 all the same set of dimensions, where
Kω′ , Kω0 are the sets of dimensions in which respectively ω′ and ω0 exist in identified
boundaries. Our arguments under D extend by analogy to our original pseudogradient func-
tion if and only if the parameters cK used in the definition of D represent the same assignment
as the values of the respective coordinates in both ω′ and ω0.

• Finally, we use D to obtain the contradiction and claim uniqueness of Nash equilibrium.

Per the outline, first we show Kω′ = Kω0 . Without loss of generality, we analyze identified
lower boundaries, with identified upper boundaries by symmetry. The simple direction to prove is
Kω0 ⊆ Kω′ . By contradiction, assume ω0

i is the lower bound of dimension i with its lower boundary
identified, but ω′

i > ω0
i . But then ω′ could not be an equilibrium point, because ∂U/∂ωi outputs

0 everywhere on the lower boundary in dimension i (it is constant on the boundary and we know
that it outputs 0 at point ω0 by assumption), and ∂U/∂ωi is monotone decreasing in ωi.

We next show Kω′ ⊆ Kω0 , which uses a similar but more technical argument. Consider ω′

to be in an identified lower boundary in dimension i, with general range [ai, bi] for dimension i.
The derivative ∂Ui/∂ωi is the element of the (output) psuedogradient function with index i. By
definition of an identified boundary, the output of ∂Ui/∂ωi is constant for inputs (ai,ω−i) for all
ω−i. At the lower boundary, it can not be that ∂Ui/∂ωi(ai,ω

′
−i) > 0 without contradicting ω′ as

an equilibrium, so it must be that ∂Ui/∂ωi(ai,ω
′
−i) ≤ 0.

However because ∂Ui/∂ωi(ai, ·) is constant, then it must also be that ∂Ui/∂ωi(ai,ω
0
−i) ≤ 0,

which implies that ω0 must also have ω0
i = ai (and in fact by assumption ∂Ui/∂ωi(ai = ω0

i ,ω
0
−i) =

0). This follows because any other (larger) value of ω0
i would contradict ω0 as an equilibrium, from

the non-positive derivative at ai and the strict concavity at all interior points from the pseudogra-
dient being an interior N -matrix function.

So we have ω0
i = ω′

i = ai and ∂Ui/∂ωi(ai,ω
0
−i) = ∂Ui/∂ωi(ai,ω

′
−i) = 0. The intermediate

conclusion here is that dimension i can not be used to maintain that ω′ is distinct from ω0. Further,
the analysis so far has applied for general i. Therefore, it must be that for every dimension i where
ω′ is in an identified boundary in dimension i, ω0 must be in each of the same identified boundaries;
i.e., it must be that Kω′ ⊆ Kω0 .

We continue to the second point of the outline. From this point on, we consider the dimensionally-
reduced function D applied to the pseudogradient function, ω0,ω′ and K the (common) set of
dimensions for which ω′ and ω0 each exist in identified boundaries. The reduction to D in space
Ω−K is faithful for the following analysis because the coordinates of the pseudogradient fixed by
cK reflect both ω′ and ω0. Putting together the definitions of a dimensionally-reduced function
(applied to D) and interior N -matrix function (applied to the pseudogradient), we have that D is
a strict N -matrix function, i.e., its Jacobian is an N -matrix everywhere on its (reduced) domain.

We now prove a contradiction. By the contrapositive of (the N -matrix version of) Theorem 11,
for the pseudogradient function and our two distinct inputs, there must exist at least one dimension

20

i such that

(ω′
i − ω0

i) ·

(

∂Ui

∂ωi
(ω′)−

∂Ui

∂ωi
(ω0)

)

< 0

⇔ (ω′
i − ω0

i) ·
∂Ui

∂ωi
(ω′) < 0

where the second line drops the derivative at ω0 because it is known to be 0.
If ω′

i < ω0
i , it must be that the pseudogradient at ω′ in dimension i is greater than 0; alternatively

if ω′
i > ω0

i , this pseudogradient element is less than 0. But both cases contradict ω′ as a Nash point
because in either case, the gradient points back in the direction of ω0, and the action space is
convex which therefore guarantees that player i has a better response than ω′

i when others play
ω′
−i.

Corollary 2. A game with a compact and convex product action space and pseudogradient that is
an N -matrix function has a unique Nash equilibrium, which is pure.

Proof. The description of the game here is sufficient to meet the conditions of Theorem 12 (below)
from (Rosen, 1965), with existence of pure Nash gauranteed as a result. Intuitively, existence of pure
Nash follows from the combination of continuity of the utility functions and resulting continuity of
upper-countour sets, and fixed point theorems on compact and convex spaces.

The intuition for uniqueness is that it follows from Theorem 11, with structure and explanation
mostly analogous to the proof of Theorem 4. In contrast to Theorem 4 however, because we have a
strictN -matrix function as the pseudogradient, we do not need to make special arguments regarding
identified boundaries.

Formally we argue uniqueness by contradiction. Assume there exist two distinct pure Nash
equilibrium points. Theorem 2 says there exists a bijection between action space and the image of
the pseudogradient function on utility (with the action space as domain). But Theorem 11 requires
that there must exist a dimension in which one of the two supposed-distinct equilibrium points has
a gradient pointing strictly in the direction of the other, a contradiction because the action space
is convex so a preferred deviation much exist.

For completeness we give the theorem by Rosen referenced in Corollary 2.

Theorem 12 (Rosen, 1965). Consider a game with n players and a compact and convex product
action space Ω. Assume the utility function U is continuous and for every player i and vector of
others actions’ ω−i, the function Ui(ωi,ω−i) is concave in ωi. There exists a pure Nash equilibrium.

A.2 Derivative Calculations; Proofs of Lemma 2, Lemma 10, Lemma 11

Allocation rule sub-calculations:

xi(w) =
wi

∑

k wk

∂xi
∂wi

(w) =
(
∑

k wk)− wi

(
∑

k wk)
2

∂xi
∂wj

(w) =
−wi

(
∑

k wk)
2 =

−xi(w)
∑

k wk

21

Re-stating the bid function:

πi(w) = vi(wi)−

∫ wi

wi(0)
xi(z,w−i)v

′
i(z)dz

xi(w)

Self-partial:

∂πi
∂wi

(w) = v′i(wi)−
xi(w)v′i(wi)

xi(w)
+

∫ wi

wi(0)
xi(z,w−i)v

′
i(z)dz ·

∂xi

∂wi
(w)

x2i (w)

=

∫ wi

wi(0)
xi(z,w−i)v

′
i(z)dz ·

∂xi

∂wi
(w)

x2i (w)

=

∫ wi

wi(0)
xi(z,w−i)v

′
i(z)dz ·

(
∑

k wk)−wi

(
∑

k wk)
2

(

wi∑
k wk

)2

=

∫ wi

wi(0)
xi(z,w−i)v

′
i(z)

[

(
∑

k wk)− wi

w2
i

]

dz

=

∫ wi

wi(0)
v′i(z)

1

wi
·

z

(
∑

k wk)− wi + z
·

[∑

k wk

wi
− 1

]

dz

Cross-partials:

∂πi
∂wj

(w) = −

∫ wi

wi(0)
∂xi

∂wj
(z,w−i)v

′
i(z)dz

xi(w)
+

∂xi

∂wj
(w)

∫ wi

wi(0)
xi(z,w−i)v

′
i(z)dz

x2i (w)

=

∫ wi

wi(0)
v′i(z) ·

[

xi(z,w−i)
∂xi

∂wj
(w)− ∂xi

∂wj
(z,w−i)xi(w)

]

dz

x2i (w)

=

∫ wi

wi(0)
v′i(z) ·

[

xi(z,w−i)
−xi(w)∑

k wk
− −xi(z,w−i)

(
∑

k wk)−wi+z
xi(w)

]

dz

x2i (w)

=

∫ wi

wi(0)
v′i(z) ·

[

xi(z,w−i)
−1∑
k wk

+ xi(z,w−i)

(
∑

k wk)−wi+z

]

dz

wi∑
k wk

=

∫ wi

wi(0)
v′i(z)

1

wi
·

[

−z

(
∑

k wk)−wi + z
+

z

((
∑

k wk)− wi + z)2
·
∑

k

wk

]

dz

=

∫ wi

wi(0)
v′i(z)

1

wi
·

z

(
∑

k wk)− wi + z
·

[∑

k wk

(
∑

k wk)− wi + z
− 1

]

dz

Lemma 2. Given the price function π for proportional weights, for j, k 6= i, the cross derivatives
are the same: ∂πi

∂wj
= ∂πi

∂wk
. Evaluating the Jacobian at w, further, all elements of the Jacobian

matrix Jπ are positive, i.e., ∂πi

∂wi
> 0, ∂πi

∂wj
> 0, except at the wi(0) lower boundary in dimension i

where the elements of row i are ∂πi

∂wi
= ∂πi

∂wj
= 0. The lower boundaries are identified.

22

Proof. All cross-derivatives ∂πi

∂wj
for fixed i and j 6= i are equal because a dwj increase in the weight

of any other agent j “looks the same” mathematically to the proportional weights allocation rule
of agent i, which is xi(wi) =

wi

wi+
∑

j 6=i wj
.

We continue by recalling our assumption that weights are strictly positive and strictly increasing
in value. Then all terms in the derivative equations (6) and (7) within the integrals are non-negative
everywhere by inspection. All denominator terms are strictly positive everywhere.

For any dimension i, consider wi > wi(0). For integrand z strictly interior to the endpoints
in (wi(0), wi), all terms in the derivative equations are strictly positive everywhere. With non-
negativity everywhere and positivity somewhere, all derivatives evaluate to be strictly positive.

Lemma 10. Each function Φρ

i is strictly concave taking derivatives with respect to i, except at the
lower end point of its domain where it is weakly concave.

Proof. We have Φρ

i (w̃i, w̃−i) =
∫ w̃i

wi(0)
φρ

i (z, w̃−i) dz =
∫ w̃i

wi(0)
ρi−πi(w̃i, w̃−i) dz, i.e., the function Φρ

i

is defined as the integral over the quantity which subtracts the price function πi from a constant
price term ρi. In Lemma 2 (appearing immediately above), function πi is shown to be monotone
strictly increasing on its domain except at the lower bound where its derivative is 0. Such an
integral is concave on its domain as stated.

Lemma 11. Given agents with (unknown) values v ∈ [0, h]n. Consider the price function π

resulting from a strictly increasing, continuous and differentiable proportional weights social choice
function x, and dominant-strategy incentive-compatible mechanism implementing x. The lower
boundaries of weights space are identified boundaries (Definition 4).

Proof. By our assumptions in Section 2 for a proportional weights social choice function x, its
(parameter) weight functions are strictly positive, even for an agent with value 0. Self-partials
in equation (6) and cross-partials in equation (7) are well-defined. By Lemma 2, for each i the
cross-partials at the lower bound of weight space wi(0) are everywhere identically 0, for all i,
regardless ofw−i, meeting the first requirement in the definition of an identified boundary. Again by
Lemma 2, self-partials ∂fi/∂ωi are strictly positive everywhere above the lower boundary (di > ai,
c.f. proof of Lemma 8): these are the diagonal element of the Jacobian at index (i, i). Therefore

fi(di,ω−i) = fi(ai,ω−i) +
∫ di
ai

[∂fi/∂ωi(z, ω−i)] dz > fi(ai,ω−i).

A.3 Proof of Theorem 6 in Section 3.2

Theorem 6. Consider a K×K matrix G with diagonal g1, g2, . . . , gK and all other entries equal to
1 (and without loss of generality g1 ≤ g2 ≤ . . . ≤ gK). The following is a complete characterization
describing when G is positive definite.

1. if g1 ≤ 0, then the matrix G is not positive definite;

2. if g1 ≥ 1 and g2 > 1, then G is positive definite;

3. if 0 < g1, g2 ≤ 1, then G is not positive definite;

4. if 0 < g1 < 1 and g2 > 1, then G is positive definite if and only if
∑

k
1

1−gk
> 1.

23

Proof. To prove positive definiteness in cases (2) and (4), we will show that for any non-zero vector
z, it must be true that z⊤G z > 0. For cases (1) and (3) we give counterexamples of z for which
z⊤G z ≤ 0. Given the structure of G (as all ones except the diagonal), we have

z⊤G z =
(

∑

i
zi

)2
+
∑

i
(gi − 1)z2i . (12)

We recall for use throughout this proof the assumption that, without loss of generality, the
diagonal elements are such that g1 ≤ g2 ≤ . . . ≤ gK . We prove each case of the characterization in
turn.

Case (1) is correct by counter-example, setting z = (−1, 0, . . . , 0).12

Case (2) is correct by inspection of equation (12) in which all terms are non-negative. The
vector z is non-zero, so either a (gj − 1)z2j term for j 6= 1 in the second sum is strictly larger than
0, or all such zj are 0 but then z1 6= 0 and the first sum-squared is strictly larger than 0.

Case (3) is correct by counter-example, setting z = (1,−1, 0, . . . , 0).
For case (4), we need to prove that when 0 < g1 < 1 and g2 > 1, then the matrix G is positive

definite if and only if
∑

k
1

1−gk
> 1.

For this last case, given the assumptions on the gi elements, only the (g1 − 1)z21 term from
equation (12) is negative, all other terms are non-negative. Therefore, from this point on, we can
ignore any sub-case where z1 = 0, as some (gj − 1)z2j term for j 6= 1 must be strictly positive.

Now consider fixing the value z1 to any real number z̄1 6= 0. We will show that equation (12) is
strictly positive for any z−1 ∈ R

n−1. Specifically, for any fixed z̄1 6= 0, equation (12) has a global
minimum in variables z−1 that is strictly positive. This global minimum z∗−1 satisfies

z∗−1 = argmin
z−1

(z̄1, z−1)
⊤ ·G · (z̄1, z−1) (13)

= argmin
z−1

(

z̄1 +
∑

j≥2
zj

)2
+
∑

j≥2
(gj − 1)z2j (14)

where the second line substitutes equation (12) and drops the constant z̄1 term from the right hand
sum. It will be convenient to denote the sum of the variables as S(z̄1) = z̄1 +

∑

j≥2 z
∗
j . After the

brief argument that the minimizer z∗−1 exists and is characterized by its first-order conditions, we
will use first-order conditions on z∗−1 to write all variables in terms of S(z̄1) which we substitute
into (12) to analyze.

To show that z∗−1 exists and is characterized by its first-order conditions, observe that the
polynomial (z̄1, z−1)

⊤G (z̄1, z−1) is a quadratic form with Hessian 2 · G[2:K,2:K], i.e., twice the
matrix G without the first row and column:

Hessian((z̄1, z−1)
⊤G (z̄1, z−1)) = G[2:K,2:K] =

g2 1 . . . 1
1 g3 . . . 1
...

...
. . .

...
1 1 . . . gK

.

Matrix G[2:K,2:K] is ones except by assumption we have gj > 1 for j ≥ 2 in the diagonal; thus,
by case (2) of the theorem, it is positive definite. A quadratic form with strictly positive definite
Hessian has a unique local minimum which is characterized by its first-order conditions.

12Of course, it is a well-known property of positive definite matrices G that all diagonal elements must be strictly
positive, otherwise they have z

⊤G z ≤ 0 with a simple counter-example z described by all zeroes except −1 in the
index of the matrix’s non-positive diagonal element.

24

We now use the first-order conditions to write optimizer z∗−1 of equation (14) in terms of S(z̄1).
13

0 = 2
(

z̄1 +
(

∑

k≥2,k 6=j
z∗k

)

+ (gj − 1) · z∗j

)

for each j ≥ 2 (15)

and re-arranging:

z∗j =
1

1− gj
S(z̄1) for each j ≥ 2 (16)

We now similarly identify a substitution of z̄1 in terms of S(z̄1). Starting from equation (16),
sum the z∗j first-order condition equalities over all j ≥ 2:

∑

j≥2

z∗j =
∑

j≥2

(

1

1− gj
S(z̄1)

)

(17)

Add z̄1 to both sides of the equation:

1 ·
(

z̄1 +
∑

j≥2
z∗j

)

= z̄1 +

(

∑

j≥2

1

1− gj

)

S(z̄1) (18)

Substitute S(z̄1) on the left and solve for the right-hand side z̄1 term:

z̄1 =

(

1−
∑

j≥2

1

1− gj

)

· S(z̄1). (19)

Notice that equation (19) and the definition of z̄1 6= 0 excludes the possibility that S(z̄1) = 0.
In the analysis below, the first line re-writes the objective function in (12). The second line

substitutes equations (16) and (19). Subsequent lines are elementary manipulations.

(z̄1, z
∗
−1)

⊤ ·G · (z̄1, z
∗
−1)

= (g1 − 1) z̄1 + S(z̄1)
2 +

∑

j≥2
(gj − 1) z∗j

= (g1 − 1)

1−
∑

j≥2

1

1− gj

2

S(z̄1)
2 +

1−
∑

j≥2

1

1− gj

S(z̄1)
2

= S(z̄1)
2

(g1 − 1)

1−
∑

j≥2

1

1− gj

2

+ 1−
∑

j≥2

1

1− gj

= S(z̄1)
2

1−
∑

j≥2

1

1− gj

(1− g1)

∑

j≥2

1

1− gj
− 1

+
1− g1
1− g1

= S(z̄1)
2

(

1−
∑

j≥2

1

1− gj

)

(1− g1)

[

∑

k

1

1− gk
− 1

]

.

Given the assumptions on the gi for current case (4), the first three terms of this product are strictly
positive (recalling 0 < g1 < 1 and gj > 1 for j > 1, and z̄1 6= 0 and S(z̄1) 6= 0, so (S(z̄1))

2 > 0).

13Note that line (16) is not a definition for z∗j , which appears on both sides of the equation. The goal is substitution
of z∗j from necessary first-order conditions, not to define it.

25

To finish, we observe that the exact dependence of positive definiteness of the matrix G is on
the bracketed fourth term (where the first term k = 1 of the sum is positive and all of the other
terms are negative):

For 0 < g1 < 1 and gj > 1 ∀j ≥ 2, G is positive definite iff
[

∑

k

1
1−gk

− 1
]

> 0.

A.4 Lemmas Supporting Theorem 7 in Section 3.2

Lemma 3. If hi ≤ 1, then wi > 0.5
∑

k wk, and all other weights must have wj < 0.5
∑

k wk, and
all other hj > 1.

Proof. Writing out hi from its definition as the ratio of partial derivatives,

hi =

∫ wi

wi(0)
v′i(z)

1
wi

· z∑
k wk−wi+z ·

[∑
k wk

wi
− 1
]

dz

∫ wi

wi(0)
v′i(z)

1
wi

· z∑
k wk−wi+z ·

[∑
k wk∑

k wk−wi+z − 1
]

dz

If hi ≤ 1, by implication it is well-defined so the denominator can not disappear and wi > wi(0).
There must exist z ∈ (0, wi], such that

∑

k wk
∑

k wk − wi + z
≥

∑

k wk

wi
(20)

which implies wi > 0.5
∑

k wk by noting equal numerators and comparison of denominators. The
rest of the claim follows as wi is obviously the only weight more than half the total, and claiming
hj > 1 for other j is simply an explicit statement of the contrapositive.

Lemma 4 proves the necessary and sufficient lower bound to show that π meets the conditions
of Theorem 7 Case (4). Technical Lemma 12 below it is used by Lemma 4.

Lemma 4. When h1 < 1 and hj > 1 ∀j 6= 1, we have
∑

k
1

1−hk
> 1.

Proof. With h1 < 1 by assumption, then w1 > 0.5
∑

k wk by Lemma 3, and x1 > 0.5. Thus xj < 0.5
for j 6= 1 and we can apply Lemma 12 (below), to get the first inequality in the following analysis:

∑

k

1

1− hk
>

x21
2x1 − 1

+
∑

k>1

x2k
2xk − 1

≥
x21

2x1 − 1
+

(1− x1)
2

2(1 − x1)− 1

= 1

and with the second step following because
x2

k

2xk−1

∣

∣

∣

0
= 0 and is a concave function when 0 < xk < 0.5

and
∑

k>1 xk = (1− x1) (its second derivative is 2
(2xk−1)3

and it acts submodular).

Lemma 12. When h1 < 1 and hj > 1 ∀j 6= 1, then ∀ i ∈ {1, . . . , n}, we have 1
1−hi

>
x2

i

2xi−1 .

26

Proof. By subtracting 1 from both sides, it is equivalent to prove the inequality on the right:

1

1− hi
>

x2i
2xi − 1

⇐⇒
hi

1− hi
>

x2i − 2xi + 1

2xi − 1
=

(1− xi)
2

2xi − 1

Working from the definition of hi:

hi
1− hi

=

∫ wi

wi(0)
v′i(z)

1
wi

· z∑
k wk−wi+z ·

[∑
k wk

wi
− 1
]

dz

∫ wi

wi(0)
v′i(z)

1
wi

· z∑
k wk−wi+z ·

[∑
k wk∑

k wk−wi+z −
∑

k wk

wi

]

dz

The numerator is always positive.
For the denominator, we would like to get a less complex upper bound on it by dropping the z

term within the brackets. Generally we can do this but we have to be careful that the overall sign
of the denominator does not change.

For i 6= 1 and hi > 1, then the denominator is negative by simple inspection of the left hand
side. For i = 1, h1 < 1, then the denominator is positive. We relax the denominator and increase
it, arguing after the calculations that doing this does not change the sign of the expression.

∫ wi

wi(0)
v′i(z)

1

wi
·

z
∑

k wk − wi + z
·

[∑

k wk
∑

k wk − wi + z
−

∑

k wk

wi

]

dz

<

∫ wi

wi(0)
v′i(z)

1

wi
·

z
∑

k wk − wi + z
·

[∑

k wk
∑

k wk − wi
−

∑

k wk

wi

]

dz

=

∫ wi

wi(0)
v′i(z)

1

wi
·

z
∑

k wk − wi + z
·

[

(
∑

k wk) (2wi −
∑

k wk)

wi (
∑

k wk − wi)

]

dz

The important term is (2wi −
∑

k wk). For i = 1, w1 > 0.5
∑

k wk by Lemma 3, and also for j 6= 1,
wj < 0.5

∑

k wk by Lemma 3. Then clearly the denominator is still positive for i = 1; and still
negative for agents i 6= 1. So we give a lower bound on the fraction using the proved upper bound
on the denominator.

hi
1− hi

>

∫ wi

wi(0)
v′i(z)

1
wi

· z∑
k wk−wi+z ·

[∑
k wk

wi
− 1
]

dz

∫ wi

wi(0)
v′i(z)

1
wi

· z∑
k wk−wi+z ·

[∑
k wk∑

k wk−wi
−

∑
k wk

wi

]

dz

=

∑
k wk

wi
− 1

∑
k wk∑

k wk−wi
−

∑
k wk

wi

=
(1− xi)

2

2xi − 1

B Supporting Material for Section 4

The goal of this section is to show in detail how to reduce the price inversion question to binary
search. We do this by showing that the analysis is largely many-to-one separable: we can make
meaningful observations about each agent individually, in particular by treating the (initially un-
known) sum total of all weights s =

∑

k wk as an independent variable used as input to the analysis
of each agent.

27

Before getting to the key results, we use a more measured pace than is possible in the main
body of the paper to give some preliminary analysis of the problem regarding price functions and
structure of search spaces, in particular for “small” agents with weight at most half the total. We
do this in Appendix B.1 and then the rest of this section is laid out as follows: Appendix B.2 gives
both intuition and the fully detailed version of the algorithm; Appendix B.3 gives the proofs of
the critical lemmas and Theorem 8 from Section 4; and finally technical Appendix B.4 is used to
support Appendix B.3 and to describe within the algorithm how we set up “oracle checks” to find
the correct sub-space of weight space to search for a solution, and the endpoints of binary search.

B.1 First Computations and Analysis of the Search Space

This section exhibits the fundamentals of a reduced, separated, one-agent analysis of the price
inversion question. Note the following explicit conversion of the function πi(·) to accept sum
s =

∑

k wk as an input variable in place of w−i. We recall equation (3):

πi(w) = vi(wi)−

∫ wi

wi(0)
xi(z,w−i)v

′
i(z)dz

xi(w)

where we also recall vi(·) is overloaded to be the function that maps from buyer i’s weight back to
buyer i’s value (well-defined by the assumption that wi(·) is strictly increasing). Re-arranging we
have:

π̄i(s,wi) = vi(wi)−
s

wi

∫ wi

wi(0)

z

s− wi + z
v′i(z)dz (21)

The form of equation (21) illustrates the critical relationships between π̄i, s, and wi. Our high
level goal will be to understand the behavior of the function π̄i in the space ranging over feasible s
and wi, starting with the technical computations of the partials on π̄i. Recall from Lemma 2 that
functions πi have the same cross-partials with respect to wj ∀ j 6= i. This property extends to π̄i:

π̄i(s+ dwi, wi + dwi) = πi(wi + dwi,w−i)

⇒ ∂π̄i

∂s dwi +
∂π̄i

∂wi
dwi =

∂πi

∂wi
dwi

π̄i(s,wi + dwi) = πi(wi + dwi, wj − dwi,w−i,j)

⇒ ∂π̄i

∂wi
dwi =

∂πi

∂wi
dwi −

∂πi

∂wj
dwi

Combining the above equations together, and any j 6= i we get

∂π̄i
∂wi

=
∂πi
∂wi

−
∂πi
∂wj

(22)

∂π̄i
∂s

=
∂πi
∂wj

(23)

We give the intuition for these calculations. If wi increases unilaterally without a change in s,
then it must be that some other wj decreases by an equal amount. If we increase s without an
observed change in wi, then it must be some other wj that increased.14 The result is the symbolic

14Note that because all the cross-derivatives are the same, it is without loss of generality that we assume that
changes ∂s are entirely attributable to one other particular agent j 6= i as ∂wj .

28

s

wi

rρi

wi(h)

wi(0)

s s/2
Qρ

i

Pρ

i

Figure 3: The price level set curve Qρ

i = {(s,wi) : π̄i(s,wi) = ρi} (thick, gray, dashed), is decreasing
below the wi = s/2 line (Lemma 6) where it is defined by its subset Pρ

i (thin, black, solid). It is
bounded above by the wi = s line (trivially as s sums over all weights) and the wi = wi(h) line (the
maximum weight in the support of the values), and below by the wi = wi(0) line which we have
assumed to be strictly positive. rρi is the minimum weight-sum consistent with observed price ρi
and weights wi ≤ s/2. This is an exact replica of Figure 2, copied here for convenience.

identities as given in equations (22) and (23) above. We will evaluate them in more detail in
Lemma 13 below.

We formally identify three objects of interest (initially discussed in Section 4, see Figure 3).
These quantities are defined for each agent i, weight function wi, and the observed price ρi of
this agent. Importantly, though the notation includes the whole profile of observed prices ρ, these
objects only depend on its ith coordinate ρi.

• First, the price level set Qρ

i is defined as {(s,wi) | π̄i(s,wi) = ρi}, i.e., these are the ρi level-sets
of π̄i(s,wi). The pertinent subset of Qρ

i is Pρ

i = {(s,wi) | π̄i(s,wi) = ρi and wi ≤ s/2} ⊆ Qρ

i ,
i.e., the subset which restricts the set Qρ

i to the region where wi is at most half the total
weight s.15 These sets are illustrated respectively by the dashed and solid lines in Figure 3.

• Second, the elements of the price level-set Pρ

i each have unique s coordinate (see Lemma 13).
It will be convenient to describe it as a function mapping sum s to weight wi of agent i,
parameterized by the price ρi. Denote this function wρ

i (s). This function is illustrated in
Figure 3 where below the dotted line wi = s/2, the curve is a function in s. Qualitatively, it
is monotone decreasing and not necessarily convex.

• Third, Pρ

i is non-empty and possesses a smallest total weights coordinate s which we define
as rρi = min{s : (s,wi) ∈ Pρ

i }. In the example of Figure 3, rρi is the s-coordinate of the point
where the level-set Pρ

i intersects the wi = s/2 line. In the case that the entire set Qρ

i is below
the wi = s/2 line, Pρ

i = Qρ

i and rρi is the sum s that uniquely satisfies π̄i(s,wi(h)) = ρi.
16

15We can not assume that the set Pρ

i is non-empty without proof. We prove that it is non-empty in Lemma 16.
16Further discussion will be given in Appendix B.4 where we show that r

ρ

i can be computed via a binary search,
between starting lower and upper bounds which are easy to find.

29

Continuing, consider price level set Qρ

i . We note again that π̄i(·) can be used to map a domain
of (s,wi) to price level sets (as depicted in Figure 3). In this context we return to analyzing
the partial derivatives of π̄i(·), formally with Lemma 13 (immediately to follow). Intuitively, the
statement of Lemma 13 claims the following, with relation to Figure 3:

• Part 1 of Lemma 13: below the wi = s/2 line, starting at any point (ŝ, ŵi), we strictly “move
up” fixed-price level sets as we move up to (ŝ, ŵi + δ), or to the right to (ŝ + δ, ŵi).

• Part 2 of Lemma 13: below the wi = s/2 line, price level sets are necessarily decreasing
curves; further they are defined for arbitrarily large s, which reflects the many-to-one nature
of this analysis: other than the summary statistic s, nothing specific is known about the
other agents, for example we do not need to know the number of other agents or their weights
functions or bounds on their weights.

• Additionally, above the wi = s/2 line, we “move up” fixed-price level sets with an increase in
s but not necessarily with an increase in wi.

For use in Lemma 13 and the rest of this Appendix B, we overload the notation hi as defined
in equation (8) to be a function of wi and s rather than w, with the obvious substitution in its
definition to replace

∑

k wk with s.

Lemma 13. Assume wi ≤ s/2 and fix the price of agent i to be ρi > 0. Let Qρ

i , P
ρ

i , w
ρ

i (s) and
rρi be defined as above, and hi =

∂πi

∂wi
/ ∂πi

∂wj
extended from equation (8). Then restricting analysis to

the cone described by wi ≤ s/2 and non-negative weight wi:

1. π̄i(s,wi) is a continuous and strictly increasing function in both variables s and wi, with

specifically ∂π̄i(s,wi)
∂s = ∂πi

∂wj
and ∂π̄i(s,wi)

∂wi
= ∂πi

∂wj
· (hi − 1);

2. wρ

i (s) is a well-defined and strictly decreasing function on s ∈ [rρi ,∞) with
dwρ

i (s)
ds = 1

1−hi
;

in particular the function is well-defined for arbitrarily large s independent of the number of
other agents or their weight functions;

3. wρ

i (s) can be computed to arbitrary precision using binary search.

Further, (1) partially extends such that π̄i(s,wi) is increasing in s with ∂π̄i(s,wi)
∂s = ∂πi

∂wj
holding

everywhere, (so including above the line wi = s/2).

Proof. For (1), as in Section 3.2, we set hi = ∂πi

∂wi
/ ∂πi

∂wj
, i.e., the diagonal entry in the Jacobian

matrix after the normalization (divide each row by its common cross-partial term), and with the
substitution s =

∑

k wk.
From equation (22), ∂π̄i

∂wi
= ∂πi

∂wi
− ∂πi

∂wj
= ∂πi

∂wj
· (hi − 1). By Lemma 3, hi is larger than 1 when

wi ≤ s/2. By Lemma 2, ∂πi

∂wj
> 0. Hence ∂πi

∂wj
· (hi − 1) > 0 when wi ≤ s/2. The ∂π̄i

∂s direction

follows directly from equation (23) with Lemma 2 applying to ∂πi

∂wj
. This argument is also sufficient

to prove the last claim of the lemma statement extending (1).
For (2), we first observe that the function wρ

i (s) is well-defined (on an appropriate domain)
because wρ

i (s) uses fixed ρi, otherwise it would contradict the monotonicity properties proved in
(1) which requires we “move up” price level sets whenever we unilaterally increase wi. Therefore

30

we can take the derivative with respect to s. We get
dwρ

i (s)
ds is negative for wi ≤ s/2 by the following

calculation (from first-order conditions as we move along the fixed curve resulting from π̄i(·) having
constant output ρi):

0 =
∂π̄i

∂wρ

i (s)
dwρ

i (s) +
∂π̄i
∂s

ds

⇒
dwρ

i (s)

ds
=

−∂π̄i

∂s
∂π̄i

∂wρ

i (s)

= −

∂πi

∂wj

∂πi

∂wi
− ∂πi

∂wj

=
1

1− hi
< 0

The last inequality uses Lemma 3 from which wi ≤ s/2 implies hi > 1. We next prove for (2)
that wρ

i (·) and its domain are well-defined.
Technical Lemma 16 (deferred to Appendix B.4) will show that Pρ

i is non-empty. Consider
starting at any of its elements. We can theoretically use its continuous derivative to “trace out”
the curve of the function wρ

i (s). As s increases from the starting point, we note that positive prices
can never be consistent with non-positive weights, such that the continuous and negative derivative
implies that the function converges to some positive infimum as s → ∞. As s decreases, the
function increases until either we reach a maximum feasible point with (s,wρ

i (s) = wi(h)) from the
maximum value type h, or otherwise the input-output pair (s,wρ

i (s)) intersects the line wi = s/2,
and minimum total weight rρi is realized at the point of intersection.

This shows that “reals at least rρi ” is a valid domain for wρ

i (s), and this completes the first
statement in (2). The second statement of (2) follows because the construction of the set Qρ

i is
independent of other agents: for any realization of the set of other agents, their effect is summarized
with the variable s.

For (3), we note that the output of function wρ

i (s) has constant lower-bound wi(0) and is
upper-bounded by s/2, so we can indeed run binary search.

Within Lemma 13 we explicitly note the significance of the hi terms in derivative calculations.
As the last part of the statement shows, these derivative calculations also hold for the space wi > s/2
(with a carefully extended interpretation of the wρ

i function to be sure to apply the mapping from
s at the correct wi); but we do not get the contrapositive of Lemma 3 in this region to guarantee
the sign of (1− hi), and so we do not get the monotonicity property of (2) everywhere.

Further, recall the statement of Lemma 4 (originally given on page 9):

Lemma 4. When h1 < 1 and hj > 1 ∀j 6= 1, we have
∑

k
1

1−hk
> 1.

As economic intuition for this result, we now see that the terms in the sum are exactly the
derivatives ∂π̄i(s,wi)

∂s , i.e., derivatives of the respective agents’ ρi level set curves. We will see the
importance of Lemma 4 below as the key final step in the proof of Lemma 7.

B.2 The Full Algorithm

Because the observed profile of prices ρ is invertible to a unique profile of weights (from Section 3.2),
the quantity s =

∑

k wk is uniquely determined by observed prices. The intuitive description of the
algorithmic strategy to compute the inversion from prices to weights is as follows.

Motivated by Appendix B.1, we intend to split the search space for the unique s. Clearly at
most one of the agents can have strictly more than half the weight. We cover the entirety of weights

31

space by considering n subspaces, representing the n possibilities that any one agent i∗ is allowed
but not required to have strictly more than half the weight. (The region where all agents have at
most half the weight is covered by all subspaces, without introducing a conflict.) Explicitly, define

Space-i =
{

w | wi unrestricted ∧ wj ≤
∑

k
wk/2, ∀ j 6= i

}

for i ∈ {1, . . . , n} (24)

Recall the definition of πρ

i∗ from line (10):

πρ

i∗(s) := πi∗(max{s −
∑

i 6=i∗
wρ

i (s), wi∗(0)},w
ρ

−i∗(s))

A specific monotonicity property within each Space-i (see Lemma 7 and its proof) will allow
the algorithm to use a natural binary search for the solution. Considering such a search in each of
n spaces will deterministically find s̃ to yield a vector of weights w̃ as ((s̃−

∑

i 6=i∗ w̄i(s̃)),w
ρ

−i(s̃)),
which are arbitrarily close to the true s∗ and true w∗ (i.e., the w∗ which maps to ρ under π).

The goal of the algorithm is to find the agent i∗ and unique s such that πρ

i∗(s) outputs ρi∗ , the
true payment. I.e., we search for the equality of πρ

i∗(s) = ρi∗ .
We now give the full version of the algorithm. Beyond the outline in the main body of the paper,

the most significant new technical piece in the expanded description is the use of rρj variables (j 6= i)

to lower bound the search for s in any given candidate Space-i. The rρj variables were described
as the third item of interest in Appendix B.1. They are used in the expanded descriptions of
new pre-process step 0, and steps 1(a)(b)(c). We also newly use s(h) =

∑

k wk(h) to denote the
maximum sum of weights possible.

The full algorithm (with intuitive remarks):

0. Pre-process: For each i, compute rρi :
17

(a) (general case: Pρ

i 6= Qρ

i) if π̄i(2wi(h), wi(h)) ≥ ρi, run binary search “diagonally” on
the line segment of wi = s/2 between (0, 0) and (2wi(h), wi(h)) to find an element of Qρ

i

and use its s coordinate as rρi (which we can do because π̄i(·) is strictly increasing on
this domain);

(b) (edge case: Pρ

i = Qρ

i) otherwise, fix wi coordinate to its maximum wi(h) and run binary
search “horizontally” to find ŝ ∈ [2wi(h), s(h)] representing (ŝ, wi(h)) ∈ Qρ

i (which we
can do because π̄i(·) is strictly increasing in s for constant wi); set minimum total weight
rρi = ŝ.

1. find an agent i∗ and search a range [sL, sH] over possible s by iteratively running the following
for each fixed assignment of agent i ∈ {1, . . . , n}:

(a) temporarily set i∗ = i;

(b) determine the range [sL, sH] on which πρ

i∗ is well-defined and searching is appropriate:

• identify a candidate lower bound sL = maxj 6=i∗ r
ρ

j (because any smaller s ∈ [0, sL)

is outside the domain of wρ

j , for some j);

17See Appendix B.4 for further explanation.

32

• run a “validation check” on the lower bound, specifically, exit this iteration of the
for-loop if we do not observe:

πρ

i∗(sL) = π̄i∗(sL,max{sL −
∑

k 6=i∗
wρ

k (sL), wi∗(0)}) ≤ ρi∗

(because recall the goal of the algorithm, to search for equality of πρ

i∗(s) = ρi∗ ; but
by Lemma 13, πρ

i∗ is increasing, then if the inequality here does not hold at the lower
bound, the left hand side is already too big and will never decrease);

• identify a candidate upper bound sH using binary search to find sH as the largest
total weight consistent with the maximum weight of agent i∗, i.e, such that sH −
∑

k 6=i∗ w
ρ

k (sH) = wi∗(h):

– search for sH ∈ [sL, s(h)] (s > sH will “guess” impossible weights wi∗ > wi∗(h)
as input to π̄i∗ , because wi∗ gets the balance of s after subtracting the decreasing
functions in

∑

k 6=i∗ wk(s), see Lemma 17);

• run a “validation check” on the upper bound, specifically, exit this iteration of the
for-loop immediately after either of the following fail (in order):

wi∗(0) ≤ sH −
∑

k 6=i∗
πρ

k (sH)

ρi∗ ≤ πρ

i∗(sH) = π̄i∗(sH , sH −
∑

k 6=i∗
wρ

k (sH))

(with the first line checking the rationality of the interim guess of weight wi∗ and
the second applying reasoning symmetric to the justification of the oracle on the
lower bound);

(c) permanently fix i∗ = i, sL, sH and break the for-loop (if this step is reached, then the
range [sL, sH] over s is non-empty and in fact it definitively contains a solution by passing
the checks at both end points, which is why they are “validation” checks);

2. use the monotonicity of πρ

i∗ to binary search on s for the true s∗, converging πρ

i∗(s) to ρi∗ ;

3. when the binary search has been run to satisfactory precision and reached a final estimate s̃,
output weights w̃ = (s̃ −

∑

i 6=i∗ w
ρ

i (s̃),w
ρ

−i∗(s̃)) which invert to values ṽ via respective vi(·)
functions.

B.3 Proofs of Lemma 6, Lemma 7, and Theorem 8 (Algorithm Correctness)

We now prove the key lemmas claimed in the main body of the paper. The purpose of Lemma 6 is
to show that if we fix the “large weight candidate agent” i∗ putting us in Space-i∗, then all other
agents have weights that are a precise, monotonically decreasing function of s. Critically, recall
that we can set i∗ to be any agent, it is not restricted to be the agent (if any) who actually has
more than half the weight (according to the true weights of any specific problem instance).

Lemma 6. The price level set Qρ

i is a curve; further, restricting Qρ

i to the region wi ≤ s/2, the
resulting subset Pρ

i can be written as {(s,wρ

i (s)) : s ∈ [rρi ,∞)} for a real-valued decreasing function
wρ

i mapping sum s to a weight wi that is parameterized by the observed price ρi.

Proof. This lemma follows as a special case of Lemma 13.

33

The purpose of Lemma 7 is to prove that function πρ

i∗ is monotone increasing in s within
Space-i∗; setting up our ability to identify end points sL and sH where we run oracle checks to
identify if a solution exists between them, i.e., setting up our ability to run binary search for the
unique solution s∗ in a correct space.

Lemma 7. For any agent i∗ and s ∈ [maxj 6=i∗ r
ρ

j ,∞), function πρ

i∗ is weakly increasing; specifically,

πρ

i∗ is constant when s−
∑

i 6=i∗ w
ρ

i (s) ≤ wi∗(0) and strictly increasing otherwise.

Proof. The quantity s −
∑

i 6=i∗ w
ρ

i (s) is monotone increasing in s as every term in the negated
sum is decreasing in s (Lemma 13). Therefore there are two cases: the “guess” of weight wg

i∗ :=
max{s −

∑

i 6=i∗ w
ρ

i (s), wi∗(0)} lies in one of two ranges that are delineated by the threshold where

the increasing quantity s−
∑

i 6=i∗ w
ρ

i (s) crosses the constant wi∗(0).
For small weight sums s (below the threshold), the guess wi∗ evaluates to wi∗(0). In this region

we have
πρ

i∗(s) = πi∗(wi∗(0),w
ρ

−i∗(s)) = 0

because an agent with minimum weight (from value 0) uniquely inverts back to value of 0; and an
agent with value 0 pays 0, from the definition of πi∗ , see equation (2).

The remainder of this proof is devoted to showing the second case, that the function πρ

i∗(s)
is strictly increasing for large weight sums s where the guess wg

i∗ for the weight of i∗ evaluates
to s −

∑

i 6=i∗ w
ρ

i (s). For the following, we use the result of Lemma 3 and the definition of hi in
equation (8). Note that when we are in Space-i∗, we have hk > 1 for k 6= i∗.

dπρ

i∗(s)

ds
=

dπi∗((s −
∑

i 6=i∗ w
ρ

i (s)),w
ρ

−i∗(s))

ds

=
∂πi∗

∂wi∗

1−
∑

i 6=i∗

dwρ

i (s)

ds

+
∂πi∗

∂wj 6=i∗

∑

i 6=i∗

dwρ

i (s)

ds

=
∂πi∗

∂wi∗

1−
∑

i 6=i∗

1

1− hi
+

1

hi∗

∑

i 6=i∗

1

1− hi

=
∂πi∗

∂wi∗

1 +

(

1

hi∗
− 1

)

∑

i 6=i∗

1

1− hi

In the second line here, the notation ∂πi∗

∂wj 6=i∗
recalls that all cross-partials are the same for other

agents j; moving from the second line to the third line, we replaced
dwρ

i
(s)

ds = 1/(1−hi) from Part 2
of Lemma 13, which also guarantees that each of these terms is strictly negative. When hi∗ ≥ 1,

the total bracketed term is positive, and
dπi∗((s−

∑
i6=i∗ wρ

i (s)),w
ρ

−i∗
(s))

ds > 0.
Alternatively to make an argument when hi∗ < 1, we further rearrange the algebra of the

34

partial. Continuing from the last line:

dπρ

i∗(s)

ds
=

∂πi∗

∂wi∗

1 +

(

1

hi∗
− 1

)

∑

i 6=i∗

1

1− hi

=
∂πi∗

∂wi∗

1
hi∗

− 1

1
hi∗

− 1
+

(

1

hi∗
− 1

)

∑

i 6=i∗

1

1− hi

=
∂πi∗

∂wi∗

(

1

hi∗
− 1

)

∑

i 6=i∗

1

1− hi

+
hi∗

1− hi∗
+

1

1− hi∗
−

1

1− hi∗

=
∂πi∗

∂wi∗

[

(

1

hi∗
− 1

)

((

∑

k

1

1− hk

)

+
hi∗

1− hi∗
−

1

1− hi∗

)]

=
∂πi∗

∂wi∗

(

1

hi∗
− 1

)

(

∑

k

1

1− hk
− 1

)

When hi∗ < 1, this quantity is again necessarily positive (with the last term positive by Lemma 4).18

So again
dπi∗((s−

∑
i6=i∗ w̄i(s)),w

ρ

−i∗
(s))

ds > 0. We conclude that πρ

i∗(s) := πi∗((s−
∑

i 6=i∗ w
ρ

i (s)),w
ρ

−i∗(s))
is strictly increasing in s for this second case, i.e., the region of large s for which

wg
i∗ := max{s−

∑

i 6=i∗
wρ

i (s), wi∗(0)} = s−
∑

i 6=i∗
wρ

i (s)

Finally we argue the correctness of the algorithm. However, correctness of the technical com-
putations in pre-processing step 0 will be delayed to Appendix B.4.

Theorem 8. Given weights w and payments ρ = π(w) according to a proportional weights
social choice function, the algorithm identifies weights w̃ to within ǫ of the true weights w in
time polynomial in the number of agents n, the logarithm of the ratio of high to low weights
maxi ln(wi(h)/wi(0)), and the logarithm of the desired precision ln 1/ǫ.

Proof. Fix observed prices ρ that correspond to true weights w with sum s =
∑

i wi. Fix an agent
i∗ with wi∗ > s/2 if one exists or i∗ = 1 if none exists. Set sL = maxi 6=i∗ r

ρ

i , and sH as calculated
in the algorithm for Space-i∗. It must be that πρ

i∗(sL) ≤ ρi∗ ≤ πρ

i∗(sH). The bounds follow by
wi ≤ s/2 for all i 6= i∗, and Lemma 16 and Lemma 17 (stated and proved in the next section).
Monotonicity of πρ

i∗(·) then implies binary search will identify a sum s̃ arbitrarily close to satisfying
πρ

i∗(s̃) = ρi∗ .
By the definition of πρ

i (·) and the convergence s̃ → s, the weights w̃ = wρ(s̃) satisfy π(w̃) ≈ ρ.
We discuss rates of convergence below, but this follows because wρ

i 6=i∗ functions are decreasing in
input s̃, so as the range of possible total weight decreases, their range of output also decreases (while
still containing the solution). The range of the guess wρ

i∗ for the weight of i∗ is upper-bounded by a
simple additive function of the ranges of possible s and w−i (see Lemma 15), so it is also decreasing
with each binary search iteration. By uniqueness of the inverse π−1, these weights are converging
to the original weights, i.e., w̃ ≈ w.

18The significance of Lemma 4 here was discussed after the original statement of Lemma 7 at the end of Section 4.1,
and after Lemma 13 at the end of Appendix B.1.

35

In the case where wi∗ > s/2, the iterative searches of Space-i for i 6= i∗ will fail as these
searches only consider points (s,wi∗) where wi∗ < s/2, but the weights w that corresponds to ρ are
unique (by Theorem 5) and do not satisfy wi∗ < s/2. When wi∗ ≤ s then all searches, in particular
i∗ = 1, will converge to the same result of w.

Lastly, we show that binary search over s-coordinates within Space-i∗ is sufficient to converge
the algorithm’s approximate w̃ to w (measured by L1-norm distance) at the same assymptotic rate
of the binary search on s, a rate which has only polynomial dependence on n, maxi ln(wi(h)/wi(0)),
and ln 1/ǫ.

By Lemma 14 below, for each agent k 6= i∗ there is a bound Bk on the magnitude of the slope

of
∂πρ

i

∂s as a function of the value space and weight functions inputs to the problem. Bk depends on
the factor wi/wi(0) ≤ wi(h)/wi(0) leading to the running time dependence.

Given a binary-search-step range on s with size S, for every agent k 6= i∗, the size of the range
containing wk can not be larger than s · Bk. Every time the range of s gets cut in half, this upper
bound on the range of wk also gets cut in half. The convergence of w̃i∗ to wi∗ follows from the
convergence in coordinates s,w−i∗ and Lemma 15.

We conclude this section with the lemmas supporting the convergence rate claims of Theorem 8.
Within the statement of Lemma 14 recall that the definition of the derivative was proved by
Lemma 13.

Lemma 14. Given agent i with wi ≤ s/2 and function πρ

i , the slope
∂πρ

i

∂s = 1
1−hi

< 0 has magnitude

bounded by wi

2wi(0)
≤ wi(h)

2wi(0)
.

Proof. We will show
∣

∣

1
1−hi

∣

∣ ≤ wi

2wi(0)
. To upper bound

∣

∣

1
1−hi

∣

∣, we lower bound hi > 1. Note that a

lower bound on hi will only be useful for us if it strictly separates hi above 1. Substitute s =
∑

k wk

into the definition of hi in equation (8) and bound, with justification to follow, as:

hi =

∫ wi

wi(0)
v′i(z)

1
wi

· z
s−wi+z ·

[

s
wi

− 1
]

dz

∫ wi

wi(0)
v′i(z)

1
wi

· z
s−wi+z ·

[

s
s−wi+z − 1

]

dz

≥

[

s
wi

− 1
]

[

s
s−wi+wi(0)

− 1
] ·

∫ wi

wi(0)
v′i(z)

1
wi

· z
s−wi+zdz

∫ wi

wi(0)
v′i(z)

1
wi

· z
s−wi+zdz

≥
s−wi + wi(0)

wi − wi(0)
> 1 +

2wi(0)

wi
> 1

The first inequality replaces the integrand z in the bracketted term in the denominator with its
constant lower bound wi(0) (which only decreases a denominator, in the denominator); thereafter
both bracketted terms can be brought outside of their respective integrals. The second inequality
replaces the numerator with 1 because wi ≤ s/2 by statement assumption. The third (strict)
inequality both replaces s with 2wi by the same reason, and adds wi(0) to both numerator and
denominator, which makes the fraction smaller because it was originally larger than 1.

Using this bound we get:
∣

∣

∣

∣

1

1− hi

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

1−
(

1 + 2wi(0)
wi

)

∣

∣

∣

∣

∣

=
wi

2wi(0)
≤

wi(h)

2wi(0)

36

Lemma 15. Given agent i∗, true s∗ ∈ [s−, s+], and true weights wk ∈
[

w−
k , w

+
k

]

for agents k 6= i∗,

which induce the range for i∗’s weight of wi∗ ∈
[

s− −
∑

k 6=i∗ w
+
k , s

+ −
∑

k 6=i∗ w
−
k

]

. If the sizes of

the ranges [s−, s+] and
[

w−
k , w

+
k

]

are each individually reduced by (at least) a constant factor α,
then the size of the range of wi∗ is also reduced by (at least) α.

Proof. The statement follows immediately from the induced range of wi∗ . Its size is exactly equal
to the sum of the n other ranges, i.e.,

∣

∣

∣

∣

[

s− −
∑

k 6=i∗
w+
k , s

+ −
∑

k 6=i∗
w−
k

]

∣

∣

∣

∣

=

∣

∣

∣

∣

[

s−, s+
]

∣

∣

∣

∣

+
∑

k 6=i∗

∣

∣

∣

∣

[

w−
k , w

+
k

]

∣

∣

∣

∣

B.4 Correctness of Algorithm Search End Points as Oracle Checks

This section has four purposes:

• analyze the structure of rρi corresponding to level set Qρ

i ;

• prove the correctness and run-time of the pre-process step 0 of the algorithm, which pre-
computes rρi for all i;

• conclude that the lower bounds sL of search in any given Space-i, determined within each
iteration of step 1 of the algorithm, are the correct lower bounds of feasibility;

• conclude that the upper bounds sH calculated within each iteration of step 1 are the correct
upper bounds of feasibility.

For strictly positive observed payment ρi > 0, the level set Qρ

i takes on the full range of weights
wi ∈ (wi(ρi), wi(h)] (the lower bound of wi(ρi) will not play an important role, our algorithms will
use the less restrictive bound of wi(0) instead). Our search for the minimum s-coordinate of Pρ

i , i.e.,
rρi , which is the intersection of Qρ

i with the points below the wi = s/2 line is either on the wi = s/2
boundary or on the wi = wi(h) boundary. This follows because constrained to wi ≤ s/2 the level
set is given by a decreasing function (Lemma 6) and all level sets extend to s = ∞ (this second
fact is true, but will not need to be explicitly proven). The two cases are depicted in Figure 4. For
convenience, we restate the preprocessing step of the algorithm:

0. Pre-process: For each i, compute rρi :

(a) (general case: Pρ

i 6= Qρ

i) if π̄i(2wi(h), wi(h)) ≥ ρi, run binary search “diagonally” on
the line segment of wi = s/2 between (0, 0) and (2wi(h), wi(h)) to find an element of Qρ

i

and use its s coordinate as rρi (which we can do because π̄i(·) is strictly increasing on
this domain);

(b) (edge case: Pρ

i = Qρ

i) otherwise, fix wi coordinate to its maximum wi(h) and run binary
search “horizontally” to find ŝ ∈ [2wi(h), s(h)] representing (ŝ, wi(h)) ∈ Qρ

i (which we
can do because π̄i(·) is strictly increasing in s for constant wi); set minimum total weight
rρi = ŝ.

There is an intuitive explanation to the order of operations in the pre-processing step 0. First
we check if we are in the general case. We can do this because price level-sets are strictly increasing

37

s

wi

rρi rρi
′

wi(h)

wi(0)

s s/2
Qρ

i

Pρ

i

Qρ
′

i

Pρ
′

i

Figure 4: The cases for the initialization of lower bound rρi are depicted. When ρi = 0 both of the
corresponding price level sets Pi and Qi are on the line wi = wi(0) (depicted, but not labeled). For
observed price ρi ≤ π̄i(2wi(h), wi(h)) the intermediate level sets look like the depicted Pρ

i 6= Qρ

i ,
and rρi corresponds to the s-coordinate at the intersection with the wi = s/2 line. For observed

price ρi ≥ π̄i(2wi(h), wi(h)) the high level sets look like the depicted Pρ
′

i = Qρ
′

i , and rρi
′
corresponds

to the s-coordinate at the intersection with the wi = wi(h) line.

on the line wi = s/2 (see Lemma 16 below, extending Lemma 13). So we can check the largest the
price at the largest possible point as π̄i(2wi(h), wi(h)); if it is too big, we can run binary search
down to π̄i(2wi(0), wi(0)) = 0; otherwise we are in the edge case where rρi corresponds to wi(h). In
this case, we can binary search the line wi = wi(h) for the point with payment ρi as, again, price
level-sets are strictly increasing (Lemma 13). The formal proof is given as Lemma 16.

Lemma 16. For any realizable payment ρi, price level set Pρ

i is non-empty and its s-coordinates
are lower bounded by rρi which can be computed to arbitrary precision by a binary search.

Proof. As mentioned previously, denote the maximum sum of weights possible by s(h) =
∑

iwi(h).
To find rρi , we first focus attention on the horizontal line with constant weight wi(h).

A point (ŝ, wi(h)) on price level set Qρ

i , i.e., with π̄i(ŝ, wi(h)) = ρi, can be found to arbitrary
precision with binary search over s ∈ (wi(h), s(h)]. Correctness of this binary search follows because
a realizable payment ρi must satisfy 0 = π̄i(wi(h), wi(h)) ≤ ρi ≤ π̄i(s(h), wi(h)) and because
increasing s-coordinate corresponds to increasing price-level set on any line with fixed weight wi by
Lemma 13. For the lower bound on the range, an agent wins with certainty and makes no payment
when the sum of the other agent weights is zero; the upper bound is from the natural upper bound
s ≤ s(h).

There are now two cases depending on whether this point (ŝ, wi(h)) is above or below the
wi = s/2 line.19 If below, then rρi = ŝ because this point is tight to the maximum weight wi(h)
(see Figure 4), and (again by Lemma 13) the slope of curve Pρ

i is strictly negative and all smaller
s are infeasible.

Alternatively suppose (wi(h), ŝ) is above the wi = s/2 line, then rρi can be found by searching the
wi = s/2 line. Part (1) of Lemma 13 guarantees that points on this line are consistent with unique
and increasing observed prices (partials of the price function are strictly positive in both dimensions

19If on the line, the cases are equal and either suffices.

38

wi and s, we can first move right ds, and then move up dwi, with the price function strictly increasing
as a result of both “moves”). On this line we have 0 = π̄i(2wi(0), wi(0)) ≤ ρi ≤ π̄i(2wi(h), wi(h))
where the lower bound observes an agent with value 0 to always pay 0, and the upper bound follows
from the supposition wi(h) ≥ ŝ/2 of this case. Thus, a binary search of the wi = s/2 line with
wi ∈ [wi(0), wi(h)] is guaranteed to find a point with price arbitrarily close to ρi. Since Pρ

i as a
curve is decreasing in s, the identified point, which is in Pρ

i , has the minimum s-coordinate.
The two cases are exhaustive and so rρi is identified and Pρ

i is non-empty.

We finish the section with the lemma showing the correctness of the search range of sum s within
[sL, sH].

Lemma 17. For true weights w, true weight sum s =
∑

wi, and i∗ with wi ≤ s/2 for i 6= i∗, sum
s is contained in interval [sL, sH] (defined in step 1 of the algorithm for i∗).

Proof. First for the lower bound sL, the assumption of the lemma requires i 6= i∗ satisfy wi ≤ s/2.
Therefore the true pair (s,wi) must be a point in Pρ

i , and the true sum s must be at least the lower
bound rρi for each i 6= i∗.

Second for the upper bound sH , recall the definition

πρ

i∗(s) := πi∗(max{s −
∑

i 6=i∗
wρ

i (s), wi∗(0)},w
ρ

−i∗(s))

which uses a guess at the total weights s̃ to guess the corresponding the weight of agent i∗ as
(s̃−

∑

i 6=i∗ w
ρ

i (s̃)). In fact, this guessed weight is strictly increasing in s̃ as each term in the negated
sum is strictly decreasing (Lemma 13). Our choice of sH equates this guessed weight with its
highest possible value wi∗(h). By monotonicity of the guessed weight the true s must be at most
sH .

39

	1 Introduction
	2 Preliminaries
	3 Identification and Non-identification
	3.1 Sufficiency of ``Interior P-Matrix Functions"
	3.2 Single Item Proportional Weights Social Choice Functions
	3.3 Impossibility Results for Complementarities

	4 Computational Methods for Inverting the Price Function
	4.1 Computation through Total Sum Weights

	A Supporting Material for s:nasheq
	A.1 Proofs of thm:gnext and thm:gameunique
	A.2 Derivative Calculations; Proofs of lem:pderi, lem:concutil, lem:priceid
	A.3 Proof of thm:mpd in Section 3.2
	A.4 Lemmas Supporting Theorem 7 in Section 3.2

	B Supporting Material for s:computation
	B.1 First Computations and Analysis of the Search Space
	B.2 The Full Algorithm
	B.3 Proofs of lem:decreasingweightj, lem:increasingstratbar, and thm:simplealg (Algorithm Correctness)
	B.4 Correctness of Algorithm Search End Points as Oracle Checks

