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Abstract

Given a directed weighted graph G = (V,E) undergoing vertex insertions and deletions,
the All-Pairs Shortest Paths (APSP) problem asks to maintain a data structure that
processes updates efficiently and returns after each update the distance matrix to the
current version of G. In two breakthrough results, Italiano and Demetrescu [STOC ’03]
presented an algorithm that requires Õ(n2) amortized update time, and Thorup showed
in [STOC ’05] that worst-case update time Õ(n2+3/4) can be achieved. In this article, we
make substantial progress on the problem. We present the following new results:

• We present the first deterministic data structure that breaks the Õ(n2+3/4) worst-case
update time bound by Thorup which has been standing for almost 15 years. We
improve the worst-case update time to Õ(n2+5/7) = Õ(n2.71..) and to Õ(n2+3/5) =
Õ(n2.6) for unweighted graphs.

• We present a simple deterministic algorithm with Õ(n2+3/4) worst-case update time
(Õ(n2+2/3) for unweighted graphs), and a simple Las-Vegas algorithm with worst-case
update time Õ(n2+2/3) (Õ(n2+1/2) for unweighted graphs) that works against a non-
oblivious adversary. Both data structures require space Õ(n2). These are the first
exact dynamic algorithms with truly-subcubic update time and space usage. This
makes significant progress on an open question posed in multiple articles [COCOON’01,
STOC ’03, ICALP’04, Encyclopedia of Algorithms ’08] and is critical to algorithms in
practice [TALG ’06] where large space usage is prohibitive. Moreover, they match
the worst-case update time of the best previous algorithms and the second algorithm
improves upon a Monte-Carlo algorithm in a weaker adversary model with the same
running time [SODA ’17].
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1 Introduction
The All-Pairs Shortest Paths problem is one of the most fundamental algorithmic problems
and is commonly taught in undergraduate courses to every Computer Science student. Whilst
static algorithms for the problem are well-known for several decades, the dynamic versions
of the problem have recently received intense attention by the research community. In the
dynamic setting, the underlying graph G = (V,E) undergoes updates, most commonly edge
insertions and/or deletions. Most dynamic All-Pairs Shortest Paths algorithms can further
handle vertex insertions (with up to n incident edges) and/or deletions.

The problem. In this article, we are only concerned with the fully-dynamic All-Pairs Shortest
Path (APSP) problem with worst-case update time, i.e. given a fully-dynamic graph G = (V,E),
undergoing vertex insertions and deletions, we want to guarantee minimal update time after
each vertex update to recompute the distance matrix of the new graph. This is opposed to
the version of the problem that allows for amortized update time. Moreover, we focus on
space-efficient data structures and show that our data structures even improve over the most
space-efficient APSP algorithms with amortized update time. We further point out, that for
the fully-dynamic setting, vertex updates are more general than edge updates, since any edge
update can be simulated by a constant number of vertex updates.

Related Work. The earliest partially-dynamic algorithm to the All-Pairs Shortest Path
problem is most likely the algorithm by Johnson [Joh77] that can be easily extended to handle
vertex insertions in O(n2) worst-case update time per insertion given the distance matrix of
the current graph. The first fully-dynamic algorithm was presented by King [Kin99] with
O(n2.5√W logn) amortized update time per edge insertion/deletion where W is the largest
edge weight building upon a classic data structure for decremental Single-Source Shortest Paths
by Even and Shiloach [E+79]. Later, King and Thorup [KT01] improved the space bound
to Õ(n2.5√W ). In follow-up work by Demetrescu and Italiano [DI02, DI06b], the result was
generalized to real edge weights with the same bounds. In 2004, Demetrescu and Italiano[DI04]
presented a new approach to the All-Pairs Shortest Paths problems that only requires Õ(n2)
amortized update time for vertex insertions/deletions using O(n3) space. Thorup improved
and simplified the approach in [Tho04] and even extended it to handle negative edge weights.
Based on this data structure, he further developed the first data structure with Õ(n2+3/4)
worst-case update time [Tho05] for vertex insertion/deletions improving over the trivial O(n3)
worst-case update time that can be obtained by recomputation. However, his data structure
requires supercubic space in n.

Abraham, Chechik and Krinninger [ACK17] showed that using randomization a Monte
Carlo data structure can be devised with worst-case update time Õ(n2+2/3). For unweighted
graphs, they further obtain worst-case update time Õ(n2+1/2). Both algorithms require O(n3)
space since they require a list of size O(n) for each pair of vertices. Both algorithms work
against an oblivious adaptive adversary, that is the adversary can base the update sequence
on the output produced by the algorithm but has no access to the random choices that the
algorithm makes. A drawback of the algorithm is that if it outputs an incorrect shortest path
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(which it does with probability at most 1− n−c for some constant c > 0), the adversary can
exploit the revealed information and compromise the data structure for up to n1/3 updates
before their data structure is recomputed.

We also point out that the problem of Approximate All-Pairs Shortest Paths was solved
in various dynamic graph settings [BHS02, DI04, RZ04, Ber09, RZ12, AC13, Ber16, HKN16,
Che18, BN19, PW20]. In the setting of (1 + ε)-approximate shortest paths, the best algorithms
achieve amortized update time Õ(m/ε). However, the only of these algorithms that gives a
better guarantee than the trivial Õ(mn/ε) on the worst-case update time is the algorithm in
[BN19] that achieves time Õ(n2.045/ε2) for directed graphs with positive edge weights relies on
fast matrix multiplication.

Our results. We present the first deterministic data structure that breaks Thorup’s long-
standing bound of Õ(n2+3/4) worst-case update time.

Theorem 1.1. Let G be an n-vertex directed edge-weighted graph undergoing vertex insertions
and deletions. Then there exists a deterministic data structure which can maintain distances
in G between all pairs of vertices in worst-case update time O(n19/7(logn)8/7). If the graph is
unweighted, the running time can be improved to O(n2.6 logn).

Further, we present the first algorithm for the fully-dynamic All-Pairs Shortest Paths
problem (even amortized) in weighted graphs that obtains truly sub-cubic time and space usage
at the same time1. Further, this is also the first algorithm that breaks the space/update-time
product of Ω(n5) which stood up to this article even for unweighted, undirected graphs. We
hope that this gives new motivation to study amortized fully-dynamic algorithms that achieve
Õ(n2) update-time and space which is a central open question in the area, posed in [DI04,
Tho04, DI06a, Ita08] and has practical importance.

Theorem 1.2. Let G be an n-vertex directed edge-weighted graph undergoing vertex insertions
and deletions. Then there exists a deterministic data structure which can maintain distances
in G between all pairs of vertices in worst-case update time O(n2+3/4(logn)2/3) using space
Õ(n2). If the graph is unweighted, the running time can be improved to O(n2+2/3(logn)2/3).

Finally, we present a data structure that is randomized and matches the update times
achieved in [ACK17] up to polylogarithmic factors. However, their data structure is Monte-
Carlo, and our data structure uses only Õ(n2) compared to Õ(n3) space and is slightly more
robust, i.e. the data structure in [ACK17] works against an adaptive adversary and therefore
the adversary can base its updates on the output of the algorithm, whilst our algorithm works
against a non-oblivious adversary that is the adversary also has access to the random bits used
throughout the execution of the algorithm2.

1For small weights, i.e. weights in n1−ε for some ε > 0, the algorithm [DI06b] gives subcubic update time
and space, both bound by Õ(n2.5√

W ). However, as pointed out in [DI06a], real-world graphs often have large
edge weights (for example, the internet graph had largest weight of roughly 104 in 2006)

2The former model assumes for example that the adversary cannot use information about the running time
of the algorithm during each update whilst we do not require this assumption.
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Theorem 1.3. Let G be an n-vertex directed edge-weighted graph undergoing vertex insertions
and deletions. Then, there exists a Las-Vegas data structure which can maintain distances in
G between all pairs of vertices with update time O(n2+2/3(logn)3) w.h.p. using space Õ(n2)
against a non-oblivious adversary. If the graph is unweighted, the running time can be improved
to O(n2+1/2(logn)3).

Our Techniques. We focus on the decremental problem that we then generalize to the
fully-dynamic setting using Johnson’s algorithm. The most crucial ingredient of our new
decremental algorithms is a new way to use congestion: for each shortest path πs,t from s to t,
each vertex on the shortest path is assigned a congestion value that relates to the costs induced
by a deletion of such a vertex. If a vertex participates in many shortest paths, its deletion
is expensive since we need to restore all shortest paths in which it participated. Thus, if the
congestion of a vertex v accumulated during some shortest path computations is too large,
we simply remove the vertex from the graph and continue our shortest path computations
on the graph G \ {v}. We defer handling the vertices of high congestion to a later stage and
prepare for their deletion more carefully. This differs significantly from previous approaches
that compute all paths in a specific order to avoid high congestion. Our new approach is
simpler, more flexible and can be used to avoid vertices even at lower thresholds.

The second technique we introduce is to use separators to recompute shortest paths after a
vertex deletion. This allows us to speed up the computation since we can check fewer potential
shortest paths. Since long paths have better separators, we can reduce the congestion induced
by these paths and therefore reduce the overall amount of congestion on all vertices.

Once we complete our shortest path computations, we obtain the set of highly congested
vertices and handle them using a different approach presented by Abraham, Chechik and
Krinninger [ACK17] that maintains deterministically the shortest paths through these vertices.
These are exactly the shortest paths that we might have missed in the former step when we
removed congested vertices. Thus, taking the paths of smaller weight, we obtain the real
shortest paths in G.

Finally, we present a randomized technique to layer our approach where we use a low
congestion threshold initially to identify uncritical vertices and then obtain with each level
in the hierarchy a smaller set of increasingly critical vertices that require more shortest path
computations on deletion. Since the sets of critical vertices are decreasing in size, we can afford
to invest more update time in the maintenance of shortest paths through these vertices.

2 Preliminaries
We denote by G = (V,E,w) the input digraph where w is the weight function mapping each
edge to a number in the reals and define n = |V | and m = |E|. In this article, we define H ⊆ G
to refer to H being a vertex-induced subgraph of G, i.e. H = G[V \D] for some D ⊆ V . We
also slightly abuse notation and write G \D for D ⊆ V to denote G[V \D]. We let the graph
H with edge directions reversed be denote by ←−H .

The weight of a path π in an edge-weighted graph G is the sum of weights of its edges. We
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let w denote the weight function that maps each path in π to its weight. We use ⊥ to denote
the empty path of weight ∞. Given two paths π1 = 〈u1, u2, . . . , up〉 and π2 = 〈v1, v2 . . . , vq〉 in
G where up = v1, denote by π1 ◦ π2 the concatenated path 〈u1, u2 . . . , up = v1, v2, . . . , vq〉. For
any path π, we define π ◦ ⊥ = ⊥ ◦ π = ⊥.

Let πs,t be a path starting in vertex s and ending in vertex t. Then πs,t is a shortest path
in G if its sum of edge weights is minimized over all paths from s to t in G. We denote the
weight of a shortest path from s to t by distG(s, t).

We say πs,t is the shortest path from s to t through C ⊂ V , if πs,t is the path of minimum
weight from s to t that contains a vertex in C. We further say a path πs,t has hop h or is a
h-hop-restricted path in G if it consists of at most h edges. We denote by disth

G(s, t) the weight
of the h-hop-restricted shortest path from s to t. Finally, we define the notion of an improving
shortest path πs,t in G with regard to H ⊆ G to be a path of weight at most distH(s, t). We
often combine these notions, saying, for example, that πs,t is an h-hop-improving shortest path
through C in G with respect to G \D to refer to a path πs,t that is in G and has weight at
most equal to the shortest path between s and t of hop h that contains a vertex in C in G \D.

In this paper, we often use a black box a result by Zwick [Zwi02] that extends h-hop-
improving shortest paths in G \D to improving shortest-paths. Since the lemma is implicit in
[Zwi02] we provide an implementation of the algorithm and a proof of correctness that can be
found in appendix A.

Lemma 2.1 (see [Zwi02, ACK17]). Given a collection Π of the h-hop-improving shortest paths
for all pairs (s, t) ∈ V 2 in G \D, then there exists a procedure DetExtDistances(Π, h) that
returns improving shortest paths for all pairs (s, t) ∈ V 2 in time O(n3 logn/h+ n2 log2 n).

3 The Framework
In this section, we describe the fundamental approach that we use for our data structures. We
then refine this approach in the next section to obtain our new data structures. We start by
stating a classic reduction that was used in all existing approaches.

Lemma 3.1 (see [HK01, Tho05, ACK17]). Given a data structure on G that supports a batch
deletion of up to 2∆ vertices D ⊆ V from G such that the data structure computes for each
(s, t) ∈ V 2 a shortest path πs,t in G \D, and can return the k first edges on πs,t in time O(k)
time. Then, if the preprocessing time is tpre and the batch deletion worst-case time is tdel, there
exists a fully dynamic APSP algorithm with O(tpre/∆ + tdel + ∆n2) worst-case update time.

This lemma reduces the problem to finding a data structure with good preprocessing time
that can handle batch deletions. To get some intuition on how the reduction stated above
works, note that vertex insertions can be solved very efficiently.

Lemma 3.2 (implied by Johnson’s algorithm, see for example [Cor+09]). Given a graph G \C,
where C ⊂ V of size ∆, and given all-pairs shortest paths G \ C, we can compute all-pairs
shortest paths in G in time O(∆n2).
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Therefore, the algorithm can reduce the problem to a decremental problem and using the
shortest paths in G \ (D ∪ C) insert a batch of vertices C \ D after each update. When C
becomes of size larger than ∆ (i.e. after at least ∆ updates), we recompute the decremental
data structure. Using standard deamortization techniques for rebuilding the data structure,
the preprocessing time can be split into small chunks that are processed at each update and
therefore we obtain a worst-case guarantee for each update.

3.1 A Batch Deletion Data Structure with Efficient Preprocessing Time

In the following, we present a procedure DetPreprocessing(G, τ, h), given in Algorithm 1,
that is invoked with parameters G and integers h > 0 and τ ≥ 2n2 to compute paths πi

s,t for
each tuple (s, t) ∈ V 2 and for every i ∈ [0, ih] with ih = dlog3/2 he. Our goal is to use these
paths in the batch deletion to recompute all-pairs shortest paths.

Algorithm 1: DetPreprocessing(G, τ, h)
Input: A graph G = (V,E), a positive integer h > 0 determining the maximum hop and

an integer τ ≥ 2n2 regulating the congestion.
Output: A tuple (C, {Congestion(v)}v∈V , {πi

s,t}s,t∈V,i∈{0,...,ih}) with the properties of
Lemma 3.4.

1 C ← ∅;
2 foreach v ∈ V do Congestion(v)← 0;
3 foreach s, t ∈ V, i ∈ [0, ih] do πi

s,t ← ⊥;
4 X ← V ;
5 while X 6= ∅ do
6 Remove an arbitrary root s from X;
7 foreach i ∈ [0, ih] do
8 {πi

s,t}t∈V ← BellmanFord(s,G[V \ C], hi) ;
9 foreach t ∈ V, u ∈ πi

s,t do
10 Congestion(u)← Congestion(u) + dn/hie;
11 C ← {v ∈ V |Congestion(v) > τ/2};

This procedure maintains congestion values Congestion(u) for each u ∈ V . These counters
are initially 0. Let ih = dlog3/2 he and let hi = (3/2)i, for i = 0, . . . , ih throughout the rest of
the article. For each such i, hi-hop-restricted shortest paths πi

s,t in G are computed from roots
s to all t ∈ V where roots are considered in an arbitrary order.

For each u ∈ V , whenever an hi-hop-restricted path πi
s,t is found that passes through u,

Congestion(u) is increased by dn/hie. Hence, paths of long hop congest vertices on them less
than small hop paths; this is key to getting our update time improvement as it helps us to keep
the amount of congestion at O(n) for a path of any hop (as opposed to existing techniques
which can only bound the cost at O(nh)). Once a congestion value Congestion(u) increases
beyond threshold value τ/2, u is removed from the vertex set. More precisely, a growing set C
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keeps track of the set of vertices whose congestion value is above τ/2 and all hop-restricted
paths are computed in the shrinking graph G[V \ C].

Lemma 3.3. The procedure DetPreprocessing(G, τ, h) can be implemented to run in O(n3h)
time.

Proof. In each iteration of the for-loop in line 7, computing hi-hop-restricted shortest paths
from source s to all t ∈ V \C can be done with hi iterations of Bellman-Ford from s in G[V \C]
in time O(n2hi) time. It is straight-forward to see that this dominates the cost incurred by the
accounting in lines 9 to 11. From this and from a geometric sums argument, it follows that the
total running time over all sources s is O(n ·∑dlog3/2 he

i=0 n2(3/2)i) = O(n3h). The lemma now
follows.

To bound the time for updates in the next subsection, we need the following lemma.

Lemma 3.4. At termination of DetPreprocessing(G, τ, h), the algorithm ensures that

1. ∀v ∈ V : Congestion(v) ≤ τ ,

2. ∑
v∈V Congestion(v) = O(n3 log h), and

3. |C| = O(n3 log h/τ).

4. Each computed path πi
s,t is a hi-hop-improving shortest path in G with regard to G \ C.

Proof. We first observe that we maintain the loop invariant for the while-loop in line 5 that the
congestion of any vertex not in C is at most τ/2. This is true since initially the congestion of
all vertices is 0 and at the end of each iteration, we explicitly remove vertices with congestion
larger than τ/2 from C. To prove property 1, it therefore suffices to show that during an
iteration of the while-loop in line 5, the congestion of any vertex is increased by at most τ/2.
To see this, observe that there are at most n paths under consideration in each iteration of the
while loop. Every vertex u has its congestion increased by dn/hie ≤ n for each such path it
belongs to. Therefore, we add at most n2 ≤ τ/2 congestion to any vertex u during an iteration
of the while-loop.

To see property 2, define Φ = ∑
v∈V Congestion(v). Initially, Φ = 0. Observe that during

an iteration of the while-loop in line 5, we have at most n paths of hop up to hi. Thus at
most hi + 1 vertices increase their congestion due to a path by dn/hie and so each such path
increases Φ by at most O(n). Thus each while-loop iteration adds at most O(n2) to Φ and
since we execute the while-loop exactly ndlog3/2 he times, the final value of Φ is O(n3 log h).

Property 3 follows since each vertex c ∈ C has congestion at least τ/2, implying that there
can be at most 2Φ/τ = O(n3 log h/τ) vertices in |C|. Property 4 follows from the analysis of
Bellman-Ford.

The space-efficiency is straight-forward to analyze since each pair (s, t) ∈ V 2 requires
one path πi

s,t to be stored for each i ∈ [0, ih], storing the shortest paths explicitly requires
space O(∑dlog3/2 he

i=0 n2(3/2)i) = O(n2h). We defer the description of a more space-efficient data
structure with the same guarantees until Section 4.2.
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3.2 Handling Deletions

In this section, we use the data structure computed by DetPreprocessing(G, τ, h) with C
being again the set of congested vertices, and show how to use this data structure to handle a
batch D ⊆ V of at most 2∆ deletions, i.e. we show how to efficiently compute all-pairs shortest
paths in G \D. Our update procedure proceeds in multiple phases 1, . . . , ih. Throughout the
procedure, we enforce the following invariant.
Invariant 3.5. For every (s, t) ∈ V 2 where Πs,t is the collection of shortest-path from s to t
in G \D, and

• no πs,t ∈ Πs,t contains a vertex in C, and

• there is some shortest-path πs,t ∈ Πs,t of hop at most hi.
Then, after the execution of the ith phase, we have that πi

s,t is a shortest-path in Πs,t of minimal
hop.

Before we describe how to enforce the invariant, observe that the invariant implies that
after we finished phase ih, we have for each pair (s, t) a h-hop-improving shortest path in G \D
which can then be extended using procedure DetExtDistances({Ni}i, h) as described in
Lemma 2.1 to give all-pairs shortest paths in G \D, as required.

Algorithm 2: Delete(D,h)

1 foreach π0
s,t ∩D 6= ∅ do

2 π0
s,t ← ⊥

3 for i← 1 to ih do
4 foreach s ∈ V do
5 if hi > 3 then
6 Compute an integer Radi(s) ∈ (1

3hi,
2
3hi) that minimizes the size of

Separatori(s) = {x ∈ V \ {D ∪ C} | |πi−1
s,x | = Radi(s)}

7 else
8 Separatori(s)← V

9 foreach πi
s,t ∩D 6= ∅ do

10 Let x be any vertex in Separatori(s) ∪ {t} such that for any vertex
y ∈ Separatori(s) ∪ {t}, either w(πi−1

s,x ◦ πi−1
x,t ) < w(πi−1

s,y ◦ πi−1
y,t ) or

w(πi−1
s,x ◦ πi−1

x,t ) = w(πi−1
s,y ◦ πi−1

y,t ) and |πi−1
s,x ◦ πi−1

x,t | ≤ |πi−1
s,y ◦ πi−1

y,t |.
11 πi

s,t ← πi−1
s,x ◦ πi−1

x,t

12 return DetExtDistances({πih
s,t}(s,t)∈V 2 , hi)

Let us now describe how to implement the execution of a phase which is also depicted in
Algorithm 2. Initially, we change all precomputed paths π0

s,t with s or t in D to the empty
path ⊥. Clearly, this enforces Invariant 3.5 and can be implemented in O(n2) time.
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In the ith phase (for i > 0), we start by computing for each vertex s ∈ V , a hitting set of
all hi−1-hop-improving shortest paths starting in s. We take the separator set Separatori(s)
such that in particular each (real) shortest path from s of length at least 2

3hi contains at least
one vertex in Separatori(s) that is at distance Radi(s) from s. Here Radi(s) is chosen to be
between the (1

3hi)th and (2
3hi)th vertex on each path (with exception for very small hi where we

chose the separator to be the entire vertex set). Since there are Θ(hi) layers to chose Radi(s)
from, and the layers partition the vertex set V , we obtain that Separatori(s) is of size O(n/hi)
by the pigeonhole principle. Finally, to fix any precomputed hi-hop-improving shortest path
πi

s,t that is no longer in G\D, we check the paths πi−1
s,x ◦πi−1

x,t for each x ∈ Separatori(s)∪{t}
and take a path of minimal weight (and among those of minimal hop). We point out that this
path is either the concatenation of two hi−1-hop-improving shortest paths, or the path πi−1

s,t .
This completes the description of our update algorithm.

Lemma 3.6. The Invariant 3.5 is enforced throughout the entire execution of procedure
Delete(D,h).

Proof. Before the loop starts the invariant is clearly enforced since for i = 0, we either have an
edge between two points or not. Let us therefore take the inductive step for i > 0 and let us
focus on some path πi

s,t. Clearly, if πi
s,t contains no vertex in D, it is still hi-hop-improving

in G \D and therefore no action is required. Otherwise, let π̂s,t be some s-to-t shortest-path
in Πs,t of minimal hop (we assume that no shortest path intersects C). Clearly, if π̂s,t has
|π̂s,t| ≤ hi−1, then we have by the induction hypothesis that πi−1

s,t is a shortest-path from s-to-t
of minimal hop, and thus if x = t, we obtain πi

s,t = πi−1
s,t . If x 6= t, then the path πi

s,t is set to
another shortest-path of minimal hop by the way we choose x.

It remains to consider the case where hi ≤ |π̂s,t| > hi−1. Then, let x̂ be the Radt(s)th

vertex on π̂s,t (which exists since Radt(s) < 2
3hi = hi−1 < |π̂s,t|). Then, observe that

x̂ ∈ Separatori(s) ∪ {t} since by induction hypothesis every s-to-x̂ shortest-path πs,x̂ of
minimal hop has exactly Radt(s) hops and πi−1

s,x̂ is chosen among these paths by induction
hypothesis (also none of these paths intersects C since no s-to-t shortest-path does). Similarly,
we have that πi−1

x̂,t is a shortest path of minimal hop from x̂ to t. This implies that the path
πi−1

s,x̂ ◦ π
i−1
x̂,t is a shortest s-to-t path of minimal hop. Since x has x̂ among its choices, we thus

have that πi
s,t = πi−1

s,x ◦ πi−1
x,t is a shortest s-to-t path of minimal hop. The lemma follows.

Lemma 3.7. Given a data structure that satisfies the properties listed in Lemma 3.4 with
congestion threshold τ and a set of congested vertices C, there exists an algorithm that computes
all-pairs shortest paths in G\D and returns the corresponding distance matrix in time O(|D|τ +
|C|n2 + n3 logn/h).

Proof. By Invariant 3.5, we obtain all shortest paths of hop at most h for pairs that have
no shortest path through C. Thus, it is straightforward to adapt the procedure described in
Lemma 3.2 to return in O(|C|n2) time a collection of h-hop-improving shortest paths in G \D.
Finally, the Lemma 2.1 can be applied to recover in O(n3 logn/h) time the shortest paths in
G \D, as required.
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It remains to analyze the running time of Algorithm 2. We note that each phase requires
us to compute a separator for each vertex in V . Since returning the first hi edges of each path
πi−1

s,x requires time O(hi) since we represent paths explicitly, the time required to compute a
single separator in phase i is at most O(nhi). Thus, the overall time to compute all separators
can be bound by O(n2h) (using a geometric sum argument for the different phases).

To bound the time spend in the foreach-loop in line 9, observe that we iterate only over
paths that contain a vertex in D which can be detected in linear time. Observe that if a vertex
v in D is on a path πi

s,t, then the path contributed dn/hie credits to the congestion of v in the
preprocessing procedure. Since the separator of s at phase i has size O(n/hi) by the arguments
mentioned above, we have that the iteration to recover path πi

s,t requires time O(n/hi) (that is
since checking the weight of each path and concatenation can both be implemented in constant
time). Since each vertex v ∈ D has total congestion at most τ by Lemma 3.4, we can bound
the total running time of the algorithm by O(|D|τ + n2h).

Choosing τ = n2+1/4√logn, h = n1/4√logn and ∆ = n1/2 in Lemma 3.1, we obtain the
following corollary.

Corollary 3.8. Let G be an n-vertex directed edge-weighted graph undergoing vertex insertions
and deletions. Then there exists a deterministic data structure which can maintain distances in
G between all pairs of vertices in worst-case update time O(n2+3/4√logn).

3.3 Batch Deletion Data Structure for Unweighted Graphs

We point out that for unweighted graphs, we can replace the Bellman-Ford procedure by a
simple Breath-First-Search procedure (see for example [Cor+09]) which improves the running
time from O(n2h) to O(n2). This was also exploited before in [ACK17].

Corollary 3.9. Let G be an n-vertex directed edge-weighted graph undergoing vertex insertions
and deletions. Then there exists a deterministic data structure which can maintain distances in
G between all pairs of vertices in worst-case update time O(n2+2/3(logn)2/3).

In the following sections, we will not explicitly point out that the Bellman-Ford procedure
can be replaced by BFS but simply state the improved bound.

4 Efficient Data Structures
We now describe how to use the general strategy described in the previous section and describe
the necessary changes to obtain efficient data structures.

4.1 A Faster Deterministic Algorithm

To obtain a faster algorithm, we mix our framework with the following result from by Abraham,
Chechik and Forster [ACK17]. It is not explicitly stated in their paper but follows immediately
by replacing their randomly sampled vertex set by an arbitrary vertex set. Informally, the
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data structure takes a decremental graph G and a set C ⊆ V of vertices and maintains for all
vertices v ∈ V , the shortest-path through some vertex in C.

Lemma 4.1. Given an edge-weighted directed graph G = (V,E), a set C ⊆ V and a hop bound
h. Then there exists a deterministic data structure that supports the operations:

• ACKPreprocessing(G,C,∆′, h): Initializes the data structure with the given parame-
ters and returns a pointer to the data structure.

• ACKDelete(D): assuming D ⊆ V , returns for each (s, t) ∈ V 2, a h-hop-improving
shortest path πs,t through some vertex in C \D in G \D (with respect to G \D).

The operation ACKPreprocessing(G,C, h) runs in O(|C|n2h) time and each operation
ACKDelete(D) runs in O(|D|n2h logn+ |C|nh) time.

It is now straight-forward to obtain a new batch deletion data structure that combines
these two data structures. Intuitively, we exploit the strengths of both algorithms by setting
the τ -threshold of the algorithm introduced in previous section slightly lower which increases
the size of the set C of congested vertices but improves the running time of the data structure
to maintain shortest-paths that do not contain any vertices in C. Since C is precomputed, we
then use the data structure described above to obtain the shortest-paths through some vertex
in C. Let us now give a more formal description.

To initialize the new data structure, we invoke algorithm 1 with parameters τ and h to be
fixed later. The algorithm gives a data structure D1 and a set C is of size O(n logn/τ). We
then handle 2∆ updates as follows: At initialization and every ∆′ updates, we compute a data
structure D2 by invoking the preprocessing algorithm in Lemma 4.1 with parameters C and h.
We later chose τ larger than in the last section which implies that we can increase ∆, and take
care of the shortest paths through C by recomputing D2 more often, i.e. we set ∆′ � ∆. Since
the preprocessing time of D2 is smaller, this can be balanced efficiently such that both have
small batch update time at all times.

For each update, we letD1 be the batch of deletions since D1 was initialized andD2 the batch
of deletions since D2 was initialized. We then invoke D1.Delete(D1) and D2.ACKDelete(D2)
and combine the results in a straight-forward manner. This concludes the algorithm.

Using the reduction 3.1, and using that |D1| ≤ ∆ and D2 ≤ ∆′, we obtain an algorithm
with worst-case running time

O(n3h/∆ + ∆n2 + n3(logn)2/h+ ∆τ + ∆′hn2 logn+ n4h(log h)/τ + n5h(log h)/(τ∆′))

which is optimized by setting τ = n7/3h2/3(logn log h)1/3/∆2/3, h = n2/7(logn)6/7, ∆ =√
nh1/4/(logn log h)1/4, and ∆′ =

√
n3(log h)/(τ logn).

Corollary 4.2. Let G be an n-vertex directed edge-weighted graph undergoing vertex insertions
and deletions. Then there exists a deterministic data structure which can maintain distances
in G between all pairs of vertices in worst-case update time O(n19/7(logn)8/7). If the graph is
unweighted, the running time can be improved to O(n2.6 logn).
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4.2 A Simple and Space-Efficient Deterministic Data Structure

In order to reduce space, we replace the procedure BellmanFord(s,G[V \ C], hi) in the
preprocessing at line 8 by procedure BellmanFordSpaceEfficient(s,G[V \ C], hi) that is
depicted in algorithm 3. Unlike the Bellman-Ford algorithm, our algorithm does not return the
hi-restricted shortest paths but instead returns hi-improving shortest paths of length at most
O(hi). Using that the length of each hi-improving shortest paths is O(hi), it can be verified that
the proof of lemma 3.4 still holds under these conditions. Moreover, the information computed
by BellmanFordSpaceEfficient(s,H, hi) can be efficiently stored in Õ(n) space.

Algorithm 3: BellmanFordSpaceEfficient(s,H, hi = (3/2)i)
Input: A graph H and source s ∈ H(V ), an integer hi = (3/2)i ≥ 1.
Output: The algorithm returns a set of hi-hop-improving shortest paths {πi

s,t}t∈V each
of length O(hi) that can be represented in space Õ(n).

1 H ′ ← H; j ← i;
2 for j ← i down to 0 do
3 {τ j

s,t}t∈V ← BellmanFord(s,Hj , hj);
4 if hj > 3 then
5 Compute an integer Radj(s) ∈ (1

3hj ,
2
3hj) that minimizes the size of

Separatorj(s) = {x ∈ V ||πj
s,x| = Radj(s)}

6 else
7 Separatorj(s)← V

8 foreach x ∈ Separatorj(s) do
9 Store path τ j

s,x;
10 w′(s, t)← w(τ j

s,x)

The algorithm runs in iterations executed by the for-loop where the index j is initially
set to i and decreased after every iteration until it is 0. In each iteration, we compute the
hop-hj-restricted shortest paths {τ j

s,t}t∈V on the graph H ′. For the sake of analysis, we let Hj

be the graph of H ′ at the start of iteration j. After computing the paths on Hj , we compute a
separator set Separatorj(s) that contains all vertices whose shortest path from s has length
Radj(s) which is taken to be strictly between 1

3hj and 2
3hj (except for very small hj where we

chose the separator set to be V ).
In the foreach-loop in line 8, we store for every vertex x in the hitting set Separatorj(s),

the hj-hop-restricted shortest path τ j
s,x. If the first edge on the path represents a subpath from

a higher level, we add a pointer to the subpath. Then, we update Hj by setting the weight
of the edge from s to x to the weight of τ j

s,x. Observe that after the foreach-loop finished, all
paths τ j

s,t, for any t ∈ V (H), can be mapped to a path in H ′ of same weight and of length at
most hj−1 = 2

3hj and observe that this graph is graph Hj−1.
Finally, we store the paths πi

s,t by a pointer to τ0
s,t. Observe that each path τ0

s,t might then
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be unpacked to an hi-improving shortest path in H by replacing the first edge on a path by
the corresponding subpath on a higher level.

Lemma 4.3. The procedure BellmanFordSpaceEfficient(s,H, hi) computes a collection
of hi-hop-improving shortest paths {πi

s,t}t∈V from source s where each path is of length at most
O(hi) and provides a O(n log hi) sized data structure such that:

1. Each path πi
s,t can be extracted from the data structure in time O(|πi

s,t|), and

2. ∀u ∈ V , we can identify all paths Πu = {πi
s,t|u ∈ πi

s,t} that contain u in time O(|Πu|).

The procedure takes time O(n2hi).

Proof. We argued above that every hop hj-restricted shortest path in Hj can be mapped to
a hj−1-restricted shortest path in Hj−1. Thus, computing the hj−1-restricted shortest path
using Bellman-Ford on Hj−1 returns hj-hop-improving shortest paths. By a simple inductive
argument, it follows that every shortest path πj

s,t for any j is hi-hop-improving in regard to H.
To see that every path πi

s,t is of length O(hi) observe that on level j, we add at most hj − 1
new edges to the path since the only subpaths that we replace by shortcuts are s to t paths.
Thus the final path corresponds to a path of length O(∑i

j=0 hj) = O(hi).
To see that the data structure requires only Õ(n) space, observe that at iteration j,

each path τ j
s,t computed on Hj consists of at most O(hj) edges that need to be stored

explicitly and a pointer to a higher level subpath corresponding to the first edge of τ j
s,t. Since

|Separatorj(s)| = O(n/hj), and we only store paths τ j
s,x to each x ∈ Separatorj(s), we

therefore only require space O(∑i
j=0 hj · n/hj) = O(n log hi)

We can further implement the pointers for the subpath corresponding the first edge on
a path πi

s,t to point to the next higher level where the subpath is non-trivial (i.e. not itself
an edge). Thus following a pointer we can ensure to add at least one additional edge to the
path, and therefore we can extract the path in time O(|τ i

s,t|). Making pointers of the structure
bidirectional, we can also find all paths πi

s,t containing a vertex u in linear time. The overall
running time is dominated by running Bellman-Ford, which takes O(∑i

j=0 n
2hj) = O(n2hi)

time.

The lemma gives a straight-forward way to verify that Lemma 3.3 and 3.4 hold even by
using the relaxed Bellman-Ford procedure. The corollary below follows.

Corollary 4.4. Let G be an n-vertex directed edge-weighted graph undergoing vertex insertions
and deletions. Then there exists a deterministic data structure which can maintain distances
in G between all pairs of vertices in worst-case update time O(n2+3/4(logn)2/3) using space
Õ(n2). If the graph is unweighted, the running time can be improved to O(n2+2/3(logn)2/3).

4.3 A Space-Efficient and More Robust Las-Vegas Algorithm

In this section, we present a simple randomized procedure that allows to refine the approach
of our framework. On a high-level, we set the congestion threshold for each vertex quite
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small (very close to n2). Whilst this implies that our set of congested vertices C is quite
large, we ensured that we have the paths in G \ C covered for many deletions. We then try to
fine recursively all paths through vertices in C with slightly larger congestion threshold. By
shrinking the set C in each iteration, we speed-up the proprecessing procedure and therefore
we can re-compute the data structure more often. We point out that even though our layering
process again gives an efficient data structure to maintain paths that go through vertices in C,
it does not rely on the techniques by Abraham, Chechik and Krinninger [ACK17].

Algorithm 4: RandPreprocessing(G,Cin, τ, h)
Input: A graph G = (V,E), a positive integer h > 0 determining the maximum hop and

an integer τ ≥ 2n2 regulating the congestion.
Output: A tuple (Cout, {Congestion(v)}v∈V , {πi

s,t}s,t∈V,i∈{0,...,ih}) with the properties
of Lemma 4.5.

1 Cout ← ∅;
2 foreach v ∈ V do Congestion(v)← 0;
3 foreach s, t ∈ V, i ∈ [0, ih] do πi

s,t ← ⊥;
4 X ← Cin ;
5 while X 6= ∅ do
6 Remove a center c uniformly at random from X;
7 foreach i ∈ [0, ih] do
8 {πi

c,t}t∈V ← BellmanFordSpaceEfficient(c,G[V \ Cout], hi) ;
9 {πi

s,c}s∈V ← BellmanFordSpaceEfficient(c,
←−−−−−−−−
G[V \ Cout], hi) ;

10 foreach s, t ∈ V with w(πi
s,c ◦ πi

c,t) < w(πi
s,t) do

11 πi
s,t ← πi

s,c ◦ πi
c,t;

12 foreach u ∈ πi
s,t do

13 Congestion(u)← Congestion(u) + dn/hie;
14 if Cout 6= {v ∈ V |Congestion(v) > τ/2} then
15 Cout ← {v ∈ V |Congestion(v) > τ/2};
16 {πi

c,t}t∈V ← BellmanFordSpaceEfficient(c,G[V \ Cout], hi) ;
17 {πi

s,c}s∈V ← BellmanFordSpaceEfficient(c,
←−−−−−−−−
G[V \ Cout], hi) ;

We start by presenting an adapted version of the preprocessing algorithm 1 that is depicted
in algorithm 4. The new algorithm takes a set Cin of vertices and the goal of the procedure is
to produce h-hop-improving shortest paths through the vertices in Cin in the graph G[V \Cout]
where Cout is a set of vertices that are congested over the course of the algorithm. Instead of
taking vertices from X in arbitrary order, we now sample a vertex c uniformly at random in
each iteration. We then compute hi-hop-improving shortest paths from and to c by invoking
the adapted Bellman-Ford procedure on the original and the reversed graph.

We then test whether the concatenation of πi
s,c ◦πi

c,t has lower weight than the current path
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from s to t. If so, we add dn/hie units of congestion to each vertex u on the path πi
s,c ◦ πi

c,t.
In contrast to previous algorithms, if the congestion of one of the vertices u exceeds τ , we
immediately remove u from the graph and recompute the paths through the vertex c in the
new graph. Let us now analyze the algorithm.

Lemma 4.5. At termination of RandPreprocessing(G,Cin, τ, h), the algorithm ensures
that

1. ∀v ∈ V : Congestion(v) ≤ τ ,

2. ∑
v∈V Congestion(v) = O(n3(logn)3), and

3. |Cout| = O(n3(logn)3/τ).

4. Each computed path πi
s,t is a hi-hop-improving shortest path in G through a vertex in

Cin with regard to G \ Cout.

The algorithm runs in time O(|Cin ∪ Cout|n2h) and the properties are satisfied with probability
1− n−c for any constant c > 0.

Proof. We maintain again the loop invariant for the while-loop in line 12 that the congestion
of any vertex not in Cout is at most τ/2. It is further straight-forward to see that during a
loop-iteration only one path is evaluated at a time and therefore a single vertex can only obtain
an addition dn/hie ≤ 2n units of congestion. Since 2n ≤ τ/2, we immediately get property 1.

Next, let us analyze the total amount of congestion added in line 13. Observe therefore
that we add dn/hie congestion to at most 2(hi + 1) vertices respectively each time a pair
(s, t) ∈ V × V has its path πi

s,t (strictly) improved by a path πi
s,c ◦ πi

c,t through a randomly
drawn center vertex c ∈ C. Further, observe that we pick the centers in random order in line
6. Now let us first assume that all paths to and from centers are computed in the graph G
(instead of being dependent on the current state of the set Cout). Let c be the jth chosen center
and let us analyze the probability that πi

s,c ◦ πi
c,t is better than the best center seen so far.

Clearly, this probability is

Pr[c is better than the best center seen so far] = 1
j
.

Thus, the expected amount of congestion Xi
s,t added in line 13 for a pair (s, t) in phase i (under

the condition that we compute Bellman-Ford always onG) is E[Xi
s,t] = ∑|Cin|

j=1
1
j 2(hi+1)dn/hie =

O(nHn) where Hn is the nth harmonic number. Since we compute Bellman-Ford on G[V \Cout]
and vertex deletions might increase distances, we conclude that the random variable Y i

s,t that
is the expected amount of congestion added in line 13 for a pair (s, t) using graph G[V \ Cout]
is stochastically dominated by Xi

s,t. Hence E[Y i
s,t] ≤ O(n logn) and using Markov’s inequality,

we have with constant probability that Y i
s,t is at most O(n logn). Using the Chernoff-Bound,

we obtain for any (s, t) ∈ V 2, i ∈ [0, ih]

Pr[Y i
s,t > c′ ∗ n(logn)2] = 1− n−(c+2)
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where c′ is a constant chosen to be large. Finally, summing over all these events (for each
tuple (s, t) and i ∈ [0, ih]), a union bound implies that the probability that the total congestion
exceeds O(n3(logn)3) is at most 1−n−c. Thus, with probability 1−n−c, the algorithm satisfies
property 2 on termination.

Property 3 follows since each vertex c ∈ Cout has congestion at least τ/2, implying that
there can be at most 2Φ/τ = O(n3 log h/τ) vertices in Cout. Property 4 follows from Lemma
4.3. The running time is strictly dominated by running Bellman-Ford from and to each vertex
in Cin and at most Cout recomputations in the if-case in line 14.Thus, the total running time is
O(|Cin ∪ Cout|n2h) using again a geometric sum argument and Lemma 4.3.

It is straight-forward to verify that the update procedure from section 3.2 can be used
to recover pre-computed paths that are destroyed by batch deletions. The following lemma
formalizes that we can maintain efficiently h-hop-improving shortest paths through the set Cin

in the graph G \D with regard to G \ (D ∪ Cout).

Lemma 4.6. Given a data structure that satisfies the properties listed in Lemma 4.5 with
congestion threshold τ , with set Cin ⊆ V and with a set of congested vertices Cout, there exists
an algorithm that computes for each tuple (s, t) an improving shortest path πs,t through Cin

in G \D with regard to G \ (D ∪ Cout) and returns the corresponding distance matrix in time
O(|D|τ + n3/h).

Using this new algorithm to preprocess, we maintain data structures D0,D1, . . . ,Ddlg he
where each data structureDi is initialized by invoking procedure RandPreprocessing(G,Ci, τi, h)
that returns a set Ci+1 of congested vertices (here Ci takes the role of Cin and Ci+1 the role of
Cout). Initially, we set C0 = V , and τi = c ∗ (logn)3 ∗ 2in2 where c is chosen such that C1 in
Lemma 4.5 is of size at most n/2 which also stipulates that |Ci| ≤ n/2i for all i. Computing
the data structure Di once data structure Di−1 is computed is then well-defined. We finish
the initialization with the data structures D0,D1, . . . ,Ddlg he and a final set Cdlg he+1 of size
O(n(logn)3/h).

We now set for each data structure Di the number of updates until we recompute the data
structure to ∆i = n2/3/2i(logn). Observe that the total time to rebuild the data structures
amortized over the number of updates can now be bound by

dlg he∑
i=0

O(|Ci|n2h)
∆i

= O(n2+1/3(logn)4h)

We can again deamortize by building the data structures in the background using standard
techniques incurring at most an additional constant factor in the running time. A subtle
detail is that if a data structure at level i is replaced then all data structures at higher levels
have to be replaced at the same time so that the sets Ci form the hierarchy proposed in the
preprocessing. Since rebuilding the data structures at higher levels can be done more efficiently,
this however does only increase the running time by factor 2.

Finally, let us discuss the delete procedure. Data structure D1 returns the shortest paths in
G \D that does not contain a vertex in C1 by Lemma 4.6. Subsequently, each data structure

16



Di can be used to find the shortest paths through Ci that do not contain a vertex in Ci+1.
Combining these shortest paths by choosing the one of minimum weight for each tuple (s, t) ∈ V 2,
we obtain all shortest paths that do not contain a vertex in Cdlg he+1. Using Johnson’s algorithm
as described in Lemma 3.2, we can reinsert these vertices in time O(|Cdlg he+1|n2) and handle
the at most ∆0 insertions since the data structure D0 was last build. We can then return
all-pairs shortest paths.

The update time to process the batch deletion in all data structures and the time spent to
reinsert vertices can be bound by

(|Cdlg he+1|+ ∆0) ∗ n2 +
dlg he∑
i=0

(∆iτi + n3/h) = O(n2+2/3(logn)3 + n3 logn/h)

Setting h = n1/3(logn)2 optimizes the running time. Finally, we point out that after the
preprocessing step, each data structure is entirely deterministic. Since the initialization step
also fixes a graph version once it starts that it keeps working on, the adversary cannot change
the graph to affect the running time of the preprocessing step from that point. This implies
that the algorithm even works against a non-oblivious adversary, that is an adversary that has
access to the random bits used by the algorithms. We also point out that since we use the
adapted Bellman-Ford procedure to store paths, the space of the data structure only differs by
logarithmic factors from the space usage of the data structure presented in section 4.2.

Corollary 4.7. Let G be an n-vertex directed edge-weighted graph undergoing vertex insertions
and deletions. Then, there exists a Las-Vegas data structure which can maintain distances in
G between all pairs of vertices with update time O(n2+2/3(logn)3) w.h.p. using space Õ(n2)
against a non-oblivious adversary. If the graph is unweighted, the running time can be improved
to O(n2+1/2(logn)3).

5 Conclusion
In this article, we present the first deterministic data structure that improves upon the long-
standing result by Thorup [Tho05]. However, it remains open whether worst-case update time
Õ(n2+2/3) can also be achieved deterministically. We point out that one path to derandomize
our last data structure is to obtain an amortized update-time data structure that maintains
hop-restricted shortest paths. Further a fundamental open problem is whether the worst-case
update time can be further improved (or if lower bounds can rule out such an improvement).

Finally, we provided the first space-efficient data structures for the dynamic APSP problem,
i.e. the first data structures obtaining Õ(n2) space. Further progress towards an algorithm
with Õ(n2) (amortized) update time and Õ(n2) space remains an important open problem.
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A Proof of lemma 2.1
We often use a simple lemma to compute hitting sets deterministically.

Lemma A.1 (see [TZ05, RTZ05]). Let N1, N2, . . . , Nn ⊆ U be a collection of subsets of
U , with u = |U | and |Ni| ≥ s for all i ∈ [1, n]. Then, we can implement a procedure
Separator({Ni}i∈[1,n]) that returns a set A of size at most O(u log n

s ) with Ni ∩A 6= ∅ for all
i, deterministically in O(u+ ∑

i |Ni|) time.

Below we describe the algorithm presented in [Zwi02]. It is straight-forward to return paths,
however, for simplicity, our algorithm only returns distances. Here, imax = dlog3/2 ne.

Algorithm 5: DeterministicExtendDistances(Π = {πih(s, t)}s,t, h)
Input: A collection of paths Π, that contains a path for each tuple (s, t) ∈ V × V .
Output: Returns the set of distances {(Distimax(s, t)}s,t∈V×V .

1 foreach (s, t) ∈ V × V do
2 Distih(s, t)← w(πih(s, t))
3 for i← ih + 1 to imax do
4 Compute a set Separator of size O(n logn/hi) that contains a vertex from each

path in Π of hop at least b1
4hic.;

5 foreach (s, t) ∈ V × V do
6 Disti(s, t)← Disti−1(s, t);
7 foreach x ∈ Separator do
8 Disti(s, t)← min{Disti(s, t),Disti−1(s, x) + Disti−1(x, t)}

9 return {(Distimax(s, t)}s,t∈V×V

Lemma A.2 (Restatement of 2.1). Given a collection Π of the h-hop-improving shortest
paths for all pairs (s, t) ∈ V 2 in G \D, then there exists a procedure DetExtDistances(Π, h)
that returns improving shortest path distances for all pairs (s, t) ∈ V 2 in time O(n3 logn/h+
n2 log2 n).

Proof. Let us denote by Separatori the separator at phase i. We compute the initial separator
Separatorih+1 in time O(n2h) time by finding a hitting set for all paths of hop at least 1

4h.
For Separatori with i > ih + 1, we only hit the shortest paths from and to all vertices in
Separatori−1 of length 1

4hi. This suffices since the Separatori−1 "hit" all paths of length
1
4hi−1 so all paths of hop 1

4hi have to go through at least one such vertex. The running time to
compute the separator at phase i is thus O(n logn/hi ∗ nhi) = O(n2 logn). Using this layering
the initial separator Separatorih+1 can also be computed in time O(n2 logn). Once, the
separator is computed, each path at iteration i can be computed in time O(|Separatori|).
Using a geometric sum argument, we obtain the claimed running time.

The correctness of the lemma follows if we can establish the loop-invariant for the for-loop
in line 3 that at the beginning of iteration i, for each pair (s, t), if there is a shortest path from
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s to t in G \D which has hop at most hi−1 then Disti−1(s, t) is the weight of a shortest path
from s to t in G \D. Here, we prove the claim only for shortest paths, however, an extension
to improving shortest-paths is straight-forward.

The proof is by induction on i ≥ ih +1. When i = ih +1, the claim is true by our assumption
on Π. Now consider the beginning of an iteration i ≤ imax and assume that the invariant holds
at this point. Let s, t ∈ V be given and assume that there is a shortest path P from s to t in
G \D such that P has hop at most hi. Pick P such that its hop is minimized.

If |P | ≤ 2
3hi = hi−1 then in line 6, Disti(s, t) = Disti−1(s, t) = w(P ) = dG\D(s, t) by the

induction hypothesis. Since Disti(s, t) can never increase, the invariant holds at the beginning
of iteration i+ 1 for s and t.

Now, assume that |P | > 2
3hi. Since i ≥ ih + 1, we have |P | > 2

3hih+1 = h = h. Let a be
the vertex of P such that |P [s, a]| = d1

2 |P | −
1
8he and let b be the vertex of P [a, t] such that

|P [a, b]| = b1
4hc. Since P [a, b] is a shortest path of minimum hop, the induction hypothesis

implies that P ′ = P [s, a] ◦ πih(a, b) ◦ P [b, t] is a shortest path from s to t in G \D of minimum
hop |P ′| = |P |. Since |πih(a, b)| = |P [a, b]| = b1

4hc, πih(a, b) intersects Separator in a vertex x.
Since |P ′[s, x]| ≤ d1

2 |P |−
1
8he+b

1
4hc ≤

2
3 |P | ≤

2
3hi = hi−1, we have Disti−1(s, x) = w(P ′[s, x]).

Similarly, since |P ′[x, t]| ≤ |P |−d1
2 |P |−

1
8he ≤

2
3 |P | ≤ hi−1, we have Disti−1(x, t) = w(P ′[x, t]).

Hence, in line 8, Disti(s, t) is set to w(P ′[s, x]) + w(P ′[x, t]) = w(P ′) = DistG\D(s, t). This
shows that the invariant holds at the beginning of iteration i+ 1 for s and t, as desired.

At termination, i = imax + 1 and the invariant states that for all s, t ∈ V , if there
is a shortest path from s to t in G \ D and this path has at most himax ≥ n hops then
Distimax(s, t) = DistG\D(s, t). The lemma now follows since any simple shortest path has at
most n− 1 hops.
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