
ar
X

iv
:1

80
7.

07
18

9v
2

 [
cs

.D
S]

 7
 M

ay
 2

01
9

A Tale of Santa Claus, Hypergraphs and Matroids

Sami Davies* Thomas Rothvoss† Yihao Zhang‡

Abstract

A well-known problem in scheduling and approximation algorithms is the Santa Claus
problem. Suppose that Santa Claus has a set of gifts, and he wants to distribute them among
a set of children so that the least happy child is made as happy as possible. Here, the value
that a child i has for a present j is of the form pi j ∈ {0, p j }. A polynomial time algorithm
by Annamalai et al. gives a 12.33-approximation and is based on a modification of Haxell’s
hypergraph matching argument.

In this paper, we introduce a matroid version of the Santa Claus problem. Our algorithm
is also based on Haxell’s augmenting tree, but with the introduction of the matroid structure
we solve a more general problem with cleaner methods. Our result can then be used as
a blackbox to obtain a (4+ ε)-approximation for Santa Claus. This factor also compares
against a natural, compact LP for Santa Claus.

1 Introduction

Formally, the Santa Claus problem takes as input a set M of children, a set J of gifts, and values
pi j ∈ {0, p j } for all i ∈ M and j ∈ J . In other words, a child is only interested in a particular subset
of the gifts, but then its value only depends on the gift itself. The goal is to find an assignment
σ : J → M of gifts to children so that mini∈M

∑

j∈σ−1(i) pi j is maximized.
The first major progress on this problem is due to Bansal and Sviridenko [BS06], who showed

a O(loglogn/logloglogn)-approximation based on rounding a configuration LP. The authors of
[BS06] also realized that in order to obtain a O(1)-approximation, it suffices to answer a purely
combinatorial problem: show that in a uniform bipartite hypergraph with equal degrees on
all sides, there is a left-perfect matching that selects a constant fraction of nodes from original
edges. This question was affirmatively answered by Feige [Fei08] who proved a large unspecified
constant using the Lovász Local Lemma repeatedly. Then Asadpour, Feige and Saberi [AFS08]
showed that one can answer the question of [BS06] by using a beautiful theorem on hypergraph
matchings due to Haxell [Hax95]; their bound1 of 4 has been slightly improved to 3.84 by Jansen
and Rohwedder [JR18c] and Cheng and Mao [CM18a]. Recently, Jansen and Rohwedder [JR18a]

*University of Washington, Seattle. Email: daviess@uw.edu
†University of Washington, Seattle. Email: rothvoss@uw.edu. Supported by NSF CAREER grant 1651861 and a

David & Lucile Packard Foundation Fellowship.
‡University of Washington, Seattle. Email: yihaoz93@uw.edu
1Note that the conference version of [AFS08] provides a factor of 5, which in the journal version [AFS12] has

been improved to 4.

1

http://arxiv.org/abs/1807.07189v2

also showed (still non-constructively) that it suffices to compare to a linear program with as few
as O(n3) many variables and constraints, in contrast to the exponential size configuration LP.

A hypergraph H= (X ∪̇W ,E) is called bipartite if |e ∩X | = 1 for all hyperedges e ∈ E . A (left-)

perfect matching is a set of hyperedges F ⊆ E that are disjoint but cover each node in X . In
general, finding perfect matchings in even bipartite hypergraphs is NP-hard, but there is an
intriguing sufficient condition:

Theorem 1 (Haxell [Hax95]). Let H = (X ∪̇W ,E) be a bipartite hypergraph with |e| ≤ r for all
e ∈ E . Then either H contains a left-perfect matching or there is a subset C ⊆ X and a subset
U ⊆W so that all hyperedges incident to C intersect U and |U | ≤ (2r −3) · (|C |−1).

It is instructive to consider a “standard” bipartite graph with r = 2. In this case, if there is no
perfect matching, then there is a set C ⊆ X with at most |C |−1 many neighbors — so Haxell’s
condition generalizes Hall’s Theorem. Unlike Hall’s Theorem, Haxell’s proof is non-constructive
and based on a possibly exponential time augmentation argument. Only very recently and with
a lot of care, Annamalai [Ann16] managed to make the argument polynomial. This was ac-
complished by introducing some slack into the condition and assuming the parameter r is a
constant. Preceding [Ann16], Annamalai, Kalaitzis and Svensson [AKS15] gave a non-trivially
modified version of Haxell’s argument for Santa Claus, which runs in polynomial time and gives
a 12.33-approximation2. Recently, Cheng and Mao altered their algorithm to improve the ap-
proximation to 6+ε, for any constant ε> 0 [CM18b]. Our algorithm will also borrow a lot from
[AKS15]. However, through a much cleaner argument we obtain a result that works in a more
general matroid setting and implies a better approximation of 4+ε for Santa Claus.

It should not go without mention that the version of the Santa Claus problem with arbitrary
pi j has also been studied before under the name Max-Min Fair Allocation. Interestingly, the
integrality gap of the configuration LP is at least Ω(

p
n) [BS06]. Still, Chakrabarty, Chuzhoy and

Khanna [CCK09] found a (rather complicated) O(log10(n))-approximation algorithm in nO(logn)

time3.
Santa Claus has a very well studied “dual” minmax problem. Usually it is phrased as Makespan

Scheduling with machines i ∈ M and jobs j ∈ J . Then we have a running time pi j of job j

on machine i , and the goal is to assign jobs to machines so that the maximum load of any
machine is minimized. In this general setting, the seminal algorithm of Lenstra, Shmoys and
Tardos [LST87] gives a 2-approximation — with no further improvement since then. In fact,
a (3

2 − ε)-approximation is NP-hard [LST87], and the configuration LP has an integrality gap
of 2 [VW11]. In the restricted assignment setting with pi j ∈ {p j ,∞}, the breakthrough of Svens-
son [Sve11] provides a non-constructive 1.942-bound on the integrality gap of the configuration
LP using a custom-tailored Haxell-type search method. Recently, this was improved by Jansen
and Rohwedder [JR17] to 1.834. In an even more restricted variant called Graph Balancing, each
job is admissable on exactly 2 machines. In this setting Ebenlendr, Krcál and Sgall [EKS08] gave
a 1.75-approximation based on an LP-rounding approach, which has again been improved by
Jansen and Rohwedder [JR18b] to 1.749 using a local search argument.

2To be precise they obtain a (6+2
p

10+ε)-approximation in time n
O(1

ε2 log(1
ε)).

3The factor is nε if only polynomial time is allowed, where ε> 0 is arbitrary but fixed.

2

1.1 Our contributions

Let M = (X ,I) be a matroid with groundset X and a family of independent sets I ⊆ 2X . Recall
that a matroid is characterized by three properties:

(i) Non-emptyness: ;∈ I ;
(ii) Monotonicity: For Y ∈ I and Z ⊆ Y one has Z ∈ I ;

(iii) Exchange property: For all Y , Z ∈ I with |Y | < |Z | there is an element z ∈ Z \ Y so that
Y ∪ {z} ∈ I .

The bases B(M) of the matroid are all inclusion-wise maximal independent sets. The cardinali-
ties of all bases are identical, with size denoted as rank(M). The convex hull of all bases is called
the base polytope, that is PB(M) := conv{χ(S) ∈ {0,1}X | S is basis}, where χ(S) is the characteristic

vector of S.
Now consider a bipartite graph G = (X ∪̇W ,E) with the ground set X on one side and a set of

resources W on the other side; each resource w ∈W has a size pw ≥ 0. In a problem that we call
Matroid Max-Min Allocation, the goal is to find a basis S ∈B(M) and an assignment σ : W → S

with (σ(w), w) ∈ E so that mini∈S
∑

w∈σ−1(i) pw is maximized. To the best of our knowledge, this
problem has not been studied before. In particular if T ≥ 0 is the target objective function value,
then we can define a linear programming relaxation Q(T) as the set of vectors (x, y) ∈RX

≥0 ×R
E
≥0

satisfying the constraints

x ∈ PB(M);
∑

w∈N(i)
pw yi w ≥ T ·xi ∀i ∈ X ; y(δ(w)) ≤ 1 ∀w ∈W ; yi w ≤ xi ∀(i , w) ∈ E .

Here, the decision variable xi expresses whether element i should be part of the basis, and
yi w expresses whether resource w should be assigned to element i . We abbreviate N (i) as the
neighborhood of i and y(δ(w)) is shorthand for

∑

i :(i ,w)∈E yi w . Then our main technical result
is:

Theorem 2. Suppose Q(T) 6= ;. Then for any ε> 0 one can find

(x, y) ∈Q

((
1

3
−ε

)

·T −
1

3
·max

w∈W
pw

)

with both x and y integral in time nΘε(1), where n := |X |+ |W |. This assumes that membership
in the matroid can be tested in time polynomial in n.

Previously this result was not even known with non-constructive methods. We see that Ma-
troid Max-Min Allocation is a useful framework by applying it to the Santa Claus problem:

Theorem 3. The Santa Claus problem admits a (4+ε)-approximation algorithm in time nΘε(1).

For a suitable threshold 0 < δ< 1, call a gift j small if p j ≤ δ·OPT and large otherwise. Then
the family of sets of children that can get assigned large gifts forms a matchable set matroid.
We apply Theorem 2 to the co-matroid of the matchable set matroid. Then we obtain a basis
S := {i ∈ M | xi = 1}, which contains the children not receiving a large gift. These children can
receive small gifts of total value (1

3 − δ
3 − ε) ·OPT . The remaining children receive a large gift

3

with value at least δ ·OPT . Setting δ := 1
4 implies the claim. Note the approximation factor

4+ε will be with respect to a natural, compact linear program with O(n2) many variables and
constraints. The smallest LP that was previously known to have a constant integrality gap was
the O(n3)-size LP of [JR18a].

2 An algorithm for Matroid Max-Min Allocation

In this section we provide an algorithm that proves Theorem 2.

2.1 Intuition for the algorithm

We provide some insight by starting with an informal overview of our algorithm. Let G = (X ∪
W ,E) be the bipartite graph defined in Section 1.1. If U ⊂W and i ∈ X with (i , j) ∈ E for all j ∈U ,
we can consider the pair (i ,U) to be a hyperedge. Then for 0 < ν < 1 and val(·) the function
summing the value in a hyperedge’s resources, we say that (i ,U) is a ν-edge if it a hyperedge
with minimal (inclusion wise) resources such that val(U) :=

∑

w∈U pw ≥ νT . By EνT we denote
the set of ν-edges.

Fix constants 0 < β <α< 1 and 0 < δ< 1, to be chosen later. The goal of the algorithm is to
find a basis S ∈B(M) and a hypergraph matching M ⊆ EβT covering S. The algorithm is initial-
ized with S := {i0}, for any node i0 ∈ X , and M :=;. We perform rank(M) many phases, where
in each phase we find a larger matching, and the set it covers in X is independent with respect to
the matroid. In an intermediate phase, we begin with S ∈ I and M ⊆ EβT a hypergraph match-
ing covering S \{i0} with one exposed node i0 ∈ X . At the end of a phase, the algorithm produces
an updated matching covering an independent set S ′, with |S ′| = |S|. For |S ′| < rank(M), there
exists i ′0 ∈ X \S ′ such that S ′∪{i ′0} ∈ I . Repeating this rank(M) times, we end with a basis which
is well-covered by β-edges.

The algorithm generalizes the notion of an augmenting path used to find a maximum match-
ings in bipartite graphs to an augmenting tree. Though instead of swapping every other edge in
an augmenting path, as is the case for a bipartite graph, the algorithm swaps sets of edges in the
augmenting tree to find more space in the hypergraph. During a phase, the edges are swapped
in such a way that the underlying set in X covered by the matching is always independent with
respect to the matroid. The edges which are candidates for being swapped into the matching
are called adding edges and denoted by A, while those which are candidates for being swapped
out of the matching are called blocking edges and denoted by B . It is helpful to discuss the nodes
covered by adding and blocking edges in each part, and so for hyperedges H ⊆ EνT we define
HX and HW as the nodes covered by H in X and W , respectively. The algorithm gives some
slack by allowing the adding edges to be slightly larger than the blocking edges.

The parameters α and β determine the value of the adding and blocking edges, respectively,
so the adding edges are a subset of EαT while the blocking edges are a subset of EβT . Set δ :=
maxw pw /T , so that all elements in the basis receive resources with value at most δT . The
following observations follow from minimality of the hyperedges:

1. A ν-edge has value less than (ν+δ)T . This implies that an add edge has value less than
(α+δ)T and a blocking edge has value less than (β+δ)T .

4

2. Every blocking edge has value at most β ·T not covered by an add edge.

To build the augmenting tree, the algorithm starts from the node in S uncovered by M , i0,
and chooses an edge e ∈ EαT covering i0 which is added to A. If there is a large enough hyper-
edge e ′ ∈ EβT such that e ′ ⊂ e and e ′ is disjoint from M , then there is enough available resources
that we simply update M by adding e ′ to it. Otherwise, e does not contain a set of resources
with total value βT free from M . The edges of M intersecting e are added to the set of blocking
edges, B . Nodes in C = {i0}∪BX are called discovered nodes, as they are the nodes covered by
the hypermatching M which appear in the augmenting tree.

Continuing to build the augmenting tree in later iterations, the algorithm uses an Expansion

Lemma to find a large set of disjoint hyperedges, H ⊂ EαT , that cover a subset which can be
swapped into S in place of some subset of C while maintaining independence in the matroid.
The set of hyperedges H either (i) intersects many edges of M or (i i) has a constant fraction of
edges which contain a hyperedge from EβT that is disjoint from M .

In the first case, a subset of H which intersects M , denoted Aℓ+1, is added to A, and the edges
of M intersecting Aℓ+1, denoted Bℓ+1, are added to B , for ℓ the index of the iteration. Note we
naturally obtain layers which partition the adding and blocking edges in our augmenting tree.
The layers for the adding and blocking edges respectively are denoted as Aℓ and Bℓ, with

A≤ℓ :=
ℓ⋃

i=0
Ai and B≤ℓ :=

ℓ⋃

i=0
Bi .

The layer indices are tracked because they are useful in proving the algorithm’s runtime. In the
second case, for the set of edges H ′ ⊂ EαT that have a hyperedge from EβT disjoint from M , the
algorithm finds a layer which has a large number of discovered nodes that can be swapped out
for a subset of nodes which H ′ covers.

2.2 A detailed procedure

Recall, we fixed δ = maxw∈W pw /T . Then, we set β = 1
3 −

δ
3 − ε and α = 1

3 − δ
3 − ε

2 , for 0 < ε <
(1−δ)/3. Here lies the subtle but crucial difference to previous work. In [AKS15] the authors
have to use adding edges that are a large constant factor bigger than blocking edges. In our
setup we can allow adding edges that are only marginally larger than the blocking edges. This
results in an improved approximation factor of 4+ε for Santa Claus compared to the 12.33 factor
by [AKS15].

The algorithm is described in Figure 1. For later reference, the constant from Lemma 7 is
1−2α−β−δ

1+δ = 2ε
1+δ ≥ ε, and the constant from Lemma 8 is α−β

δ+α = ε
2(1+δ) ≥ ε/4. We use Lemma 9,

with constant c = 1−2α−β−δ
1+δ · α−β

δ+α . Our bounds for constants do not use a specific choice of δ,
and instead they only use the fact that 0 < δ < 1. Both cases in the algorithm are visualized in
Figure 2 and Figure 3.

2.3 Correctness of the algorithm

Here, we prove several lemmas used in the algorithm which implies Theorem 2. We begin by
building up to our Expansion Lemma, Lemma 7. Our algorithm takes a fixed independent set,

5

Input: Node i0 and set S ∈ I with i0 ∈ S. Matching M ⊆ EβT with MX = S \ {i0}.
Initialize: A = A0 =;, B = B0 =;, C = {i0}, ℓ= 0.

while TRUE do

Find disjoint H ⊆ EαT covering D ⊆ (X \ S)∪C , s.t. |D| ≥ ε · |C |, (S \C)∪D ∈ I , *and HW is disjoint
from AW ∪BW .

// Build the next layer in the augmenting tree

if H intersects at least ε
4 · |H | ≥ ε2

4 · |C | many edges M on W -side then

B ← B ∪Bℓ+1, Bℓ+1 = {e ∈ M : e ∩H 6= ;}
// Find subset of H to add to A

for b ∈ Bℓ+1 do

Choose one edge hb ∈ H such that hb ∩b 6= ;
Aℓ+1 ← Aℓ+1 ∪ {hb }

end for

C ← BX ∪ {i0}
ℓ← ℓ+1

// Swap sets and collapse layers

else H ′ = {e ∈ H : val(eW \ MW)≥βT } has size at least ε
4 · |H |

For all e ∈ H ′, choose one e ′ ⊂ e with e ′ ∈ EβT and e ′
W ∩MW =;. Replace e for e ′ in H ′.

// Find a set to swap in, D̃, and a set to swap out, C̃

D ′ ⊆D are the nodes covered by H ′

C ′ ⊆C is such that |C ′| = |D ′| and S \C ′∪D ′ ∈ I
if i0 ∈C ′ then

Let i1 ∈ D ′ so that S ′ := S \ {i0}∪ {i1} ∈ I and let e1 ∈ H ′ be edge covering i1.
Return M ′ := M ∪ {e1} covering all of S ′ and terminate.

end if

Layer ℓ̃≤ ℓ contains C̃ ⊂C ′∩ (Bℓ̃)X , with |C̃ | ≥ γ|C ′|. **
Let D̃ ⊂ D ′ be such that |C̃ | = |D̃| and S ′ := S \C̃ ∪ D̃ ∈ I .
M̃ ⊂ M covers C̃ and H̃ ⊂ H ′ covers D̃.

M ← M \ M̃ ∪ H̃ , and S ← S ′

A ← A≤ℓ̃, B ← B≤ℓ̃ \ M̃ , C ← BX ∪ {i0}
ℓ← ℓ̃

end if***
end while

* Possible by Lemma 7 with W ′ := AW ∪BW .
** By Lemma 9, such a C̃ exists.
*** One of the conditionals occurs by Lemma 8.

Figure 1: Main algorithm

6

S, and swaps C ⊂ S out of S for a set of nodes D in order to construct a new independent set of
the same size. This is possible by Lemma 7.

Recall a variant of the so-called Exchange Lemma. For independent sets Y , Z ∈ I , let HM(Y , Z)
denote the bipartite graph on parts Y and Z (if Y ∩Z 6= ;, then have one copy of the intersection
on the left and one on the right). For i ∈ Y \ Z and j ∈ Z \ Y we insert an edge (i , j) in HM(Y , Z)
if Y \ {i }∪ { j } ∈ I . Otherwise, for i ∈ Y ∩ Z , there is an edge between the left and right copies of
i , and this is the only edge for both copies of i .

Lemma 4 (Exchange Lemma). For any matroid M = (X ,I) and independent set Y , Z ∈ I with
|Y | ≤ |Z |, the exchange graph HM(Y , Z) contains a left perfect matching.

Next, we prove several lemmas about vectors in the base polytope with respect to sets con-
taining swappable elements. Lemma 7 relies on a Swapping Lemma, Lemma 6, for which the
next lemma serves as a helper function.

Lemma 5 (Weak Swapping Lemma). LetM= (X ,I) be a matroid with an independent set S ∈ I .
For C ⊆ S, define

U := {i ∈ (X \ S)∪C | (S \C)∪ {i } ∈ I }.

Then for any vector x ∈PB(M) in the base polytope one has
∑

i∈U xi ≥ |C |.

Proof. Note that in particular C ⊆U . Moreover, an equivalent definition of U is

U = {i ∈ (X \ S)∪C | ∃ j ∈C : (S \ { j })∪ {i } ∈ I }.

Due to the integrality of the base polytope, there is a basis B ∈ I with
∑

i∈U xi ≥
∑

i∈U (χ(B))i =
|U ∩B |, where χ(B) ∈ {0,1}X is the characteristic vector of B . As S and B are independent sets
with |S| ≤ |B |, from Lemma 4 there is a left-perfect matching in the exchange graph HM(S,B).
The neighborhood of C in HM(S,B) is U ∩B . As there is a left-perfect matching, |B ∩U | is least
|C | and hence

∑

i∈U xi ≥ |U ∩B | ≥ |C |.

Next, we derive a more general form of the Swapping Lemma (which coincides with the
previous Lemma 5 if D =;):

Lemma 6 (Strong Swapping Lemma). Let M = (X ,I) be a matroid with an independent set
S ∈ I . Let C ⊆ S and D ⊆ (X \ S)∪C with |D| ≤ |C | and S \C ∪D ∈ I . Define

U := {i ∈ ((X \ S)∪C) \ D | S \C ∪D ∪ {i } ∈ I }.

Then for any vector x ∈PB(M) in the base polytope one has
∑

i∈U xi ≥ |C |− |D|.

Proof. Partition C =C1∪̇C2 so that C ∩D ⊆C1, |C1| = |D| and S ′ := S \C1 ∪D ∈ I . Then note that

U =
{

i ∈ X \ (S \C ∪D)
︸ ︷︷ ︸

=S ′\C2

| S \C ∪D
︸ ︷︷ ︸

=S ′\C2

∪{i } ∈ I
}

= {i ∈ (X \ S ′)∪C2 | S ′ \C2 ∪ {i } ∈ I }.

Then applying Lemma 5 gives
∑

i∈U

xi ≥ |C2| = |C |− |D|.

7

Having proved our swapping lemma, we are equipped to prove the Expansion Lemma. Note
that in our algorithm, layers are built to ensure that |Aℓ+1| ≤ |Bℓ+1|. Due to this and the mini-
mality of the edges in EαT and EβT , W ′ := AW ∪BW has val(W ′) ≤ (α+β+δ)T · |C |.

Lemma 7 (Expansion Lemma). Let C ⊆ S ∈ I , W ′ ⊆W with val(W ′) ≤ (α+β+δ)T · |C |. Further,

let µ := 1−2α−β−δ
1+δ > 0 and assume that there exists (x, y) ∈Q(T). Then there is a set D ⊆ (X \S)∪C

of size |D| ≥ ⌈µ · |C |⌉ covered by a matching H ⊆ EαT so that HW ∩W ′ =; and (S \C)∪D ∈ I .

Proof. Note that D may contain elements from C . Greedily choose D and the matching H with
|D| = |H | one node/edge after the other. Suppose the greedy procedure gets stuck — no edge
can be added without intersecting W ′∪HW . For the sake of contradiction assume this happens
when |D| <µ|C |. First, let

U := {i ∈ ((X \ S)∪C) \ D | (S \C)∪D ∪ {i } ∈ I }

be the nodes which could be added to D while preserving independence. Then for our fixed
x ∈PB(M), by Lemma 6 one has

∑

i∈U

xi ≥ |C |− |D| > (1−µ) · |C |.

Let W ′′ :=W ′∪HW be the right hand side resources that are being covered by the augment-
ing tree. Here, we let W ′ = AW ∪BW . Using the minimality of the adding and blocking edges,

val(W ′′) ≤µ|C |(α+δ)T +|C |(β+α+δ)T = |C |T (µ(α+δ)+β+α+δ).

By the assumption that the greedy procedure is stuck, there is no edge e ∈ EαT with eX ∈ U

and e ∩W ′′ = ;. If N (i) denotes the neighborhood of i ∈ X in the bipartite graph G , then this
means that val(N (i) \W ′′) <αT for all i ∈U . For every fixed i ∈U we can then lower bound the
y-weight going into W ′′ as

∑

(i ,w)∈E :w∈W ′′
pw yi ,w =

∑

w∈δ(i)

pw yi ,w

︸ ︷︷ ︸

≥T xi

−
∑

(i ,w)∈E :w∉W ′′
pw yi ,w

︸︷︷︸

≤xi

≥ T xi−xi

(∑

(i ,w)∈E :w∉W ′′
pw

)

︸ ︷︷ ︸

<αT

≥ T ·xi ·(1−α) (∗)

Then double counting the y-weight running between U and W ′′ with a lower and upper bound
shows that

(1−α)T
∑

i∈U

xi

︸ ︷︷ ︸

≥(1−µ)|C |

≤
∑

(i ,w)∈E :i∈U ,w∈W ′′
pw yi ,w ≤

∑

w∈W ′′
pw y(δ(w))

︸ ︷︷ ︸

≤1

≤ val(W ′′)

Simplifying the above,

(1−α) · (1−µ) ·T |C | < (µ(α+δ)+β+α+δ) ·T |C | ⇒
1−2α−β−δ

1+δ
<µ.

Thus we reach a contradiction for our choice of µ.

8

The algorithm relies on the fact that from the set of hyperedges, H , guaranteed by the Ex-
pansion Lemma, there is either some constant fraction of H to swap into the matching, or a
constant fraction of H is blocked by edges in the current matching. In the former, significant
space is found in W for S. In the latter, enough edges of the matching are intersected to guar-
antee the next layer in the augmenting tree is large. The following lemma proves at least one of
these conditions occurs.

Lemma 8. Set µ := α−β
δ+α > 0. Let M ⊆ EβT and F ⊆ EαT both be hypergraph matchings. Further,

let
H := {e ∈ F | val(eW \ MW) ≥βT }

be the edges in F that still have value βT after overlap with M is removed. Then either (i) |H | ≥
µ|F | or (ii) F intersects at least µ|F | edges of M .

Proof. Let W ′ := MW ∩FW be the right hand side nodes where the hypermatchings overlap and
suppose for the sake of contradiction that neither of the two cases occur. Then double counting
the value of W ′ gives

µ · (β+δ) ·T · |F | > (β+δ)T · (#edges in M intersecting W ′)
︸ ︷︷ ︸

µ|F |>

≥ val(W ′) ≥ |F \ H |
︸ ︷︷ ︸

≥(1−µ)·|F |

·(α−β) ·T.

Rearranging and simplifying, the above impliesµ> α−β
δ+α . Thus we contradict our choice ofµ.

Our last lemma will show that a constant fraction of the nodes which could be swapped out
of the augmenting tree come from the same layer in the tree. This allows us to swap out enough
nodes from the same layer to make substantial progress with each iteration. Here C ′ and C̃ are
labelled the same as in the algorithm.

Lemma 9. Let sets C ′ and {Bi }ℓ
i=0 be such that C ′ ⊂ (B≤ℓ)X . Further, suppose there exists con-

stant c > 0 such that |C ′| ≥ c · |B≤ℓ| and |Bi+1| ≥ c · |B≤i | for i = 0, . . . ,ℓ−1. Then, there exists a
layer 0≤ ℓ̃≤ ℓ and constant γ := γ(c) > 0, such that C̃ :=C ′∩ (Bℓ̃)X has size |C̃ | ≥ γ · |C ′|.

Proof. By induction, |B≤ℓ| can be written in terms of lower indexed sets as

|B≤ℓ| ≥ (1+c)k · |B≤ℓ−k |,

for k = 0, . . . ,ℓ. Therefore, the size of C ′ can be written as |C ′| ≥ c(1+ c)k · |B≤ℓ−k |. As c is a

constant, take k large enough so c(1+ c)k ≥ 2, namely k ≥ log(2
c)

log(1+c) . Then the collection of sets

(Bℓ−i)X for i = 0, . . . ,k contain at least half of C ′, so one of them must contain at least γ= 1
2(k+1)

of C ′.

2.4 Termination and runtime

As seen in Lemma 9,

|X | ≥ |B≤ℓ| ≥
(

1+
ε2

4

)ℓ|B0|,

9

X

W

SC

D

(A≤ℓ)W ∪ (B≤ℓ)W

Bℓ+1 Aℓ+1

i0

βT αT

Figure 2: Case 1 of the algorithm, where a set Aℓ+1 ⊆ EαT of hyperedges is found that intersects
many new edges Bℓ+1 ⊆ (M \ B≤ℓ). In particular |Bℓ+1| ≥ Ωε(|C |). Note that D might contain
nodes from C .

X

W

SCC̃

D̃

(A≤ℓ)W ∪MW

H̃

i0

βT

Figure 3: Case 2 of the algorithm, where H̃ ⊆ EβT of size |H̃ | ≥Ωε(|C |) is found so that (i) H̃ is
disjoint on the W -side to the matching M and the adding edges in the augmenting tree, (i i) H̃

covers a set D̃ with S \ C̃ ∪ D̃ ∈ I , and (i i i) C̃ is from one layer of the augmenting tree. Here D̃

and C̃ do not have to be disjoint.

10

and solving for ℓ shows log(|X |)
log

(

1+ ε2
4

) ≥ ℓ. Thus the total number of layers at any step in the al-

gorithm is O(log |X |). Note after each collapse of the layers, the matching M and possibly the
independent set S are updated. However, the fixed exposed node i0 will remain in S until the
very last iteration in which the algorithm finds an edge e1 that augments the matching. Be-
fore we begin discussing the proof guaranteeing our algorithm terminates, we need a lemma
to compare the number of blocking edges after a layer is collapsed to the number of blocking
edges at the beginning of the iteration.

Lemma 10. Let ℓ̃ be the index of the collapsed layer and let B ′ be the updated blocking edges

after a collapse step. Then, |B ′
≤ℓ̃

| ≤ |B≤ℓ̃| · (1− ε2

4 ·γ).

Proof. Recall B ′
ℓ̃
= Bℓ̃ \ F for F the edges of M covering C̃ . Further, the blocking edges in layers

indexed less than ℓ̃ are not effected in the iteration. Hence

|B ′
≤ℓ̃| = |B ′

≤ℓ̃−1
|+ |B ′

ℓ̃
| = |B≤ℓ̃−1|+ |B ′

ℓ̃
|

From Lemmas 7 and 8, |Bℓ+1| ≥ ε2

4 |B≤ℓ|. Then examining the collapsed layer by itself, we see

|B ′
ℓ̃
| = |Bℓ̃|− |F | ≤ |Bℓ̃|−

ε2

4
·γ|B≤ℓ̃|.

Substituting back into |B ′
≤ℓ̃

|, we find that

|B ′
≤ℓ̃| ≤ |B≤ℓ̃−1|+ |Bℓ̃|−

ε2

4
·γ|B≤ℓ̃|

= |B≤ℓ̃|−
ε2

4
·γ|B≤ℓ̃| = |B≤ℓ̃| ·

(

1−
ε2

4
·γ

)

.

To prove the algorithm terminates in polynomial time, we consider a signature vector s =
(s0, s1, . . . , sℓ,∞), where s j = ⌊logc |B≤ j |⌋ for c = 1

1− ε2
4 ·γ

. The signature vector and proof that the

algorithm terminates is inspired by [AKS15], but it is subtly different.

Lemma 11. The signature vector decreases lexicographically after each iterative loop in the al-
gorithm.

Proof. Let s = (s0, . . . , sℓ,∞) be a signature vector at the beginning of a step in the algorithm,
and let s ′ be the result of s through one iteration of the algorithm. For ℓ+1 denoting the newest

built layer in the algorithm, if the newest set of hyperedges found intersects at least ε2

4 |C | many
edges of M , then another layer in the augmenting tree is built and no layer is collapsed. Then
s ′ = (s0, . . . , sℓ, sℓ+1,∞) is lexicographically smaller than s.

Otherwise, layer 0 ≤ ℓ̃ ≤ ℓ is collapsed. All finite coordinates above sℓ̃ are deleted from the
signature vector, and all coordinates before sℓ̃ are unaffected. So it suffices to check that s ′

ℓ̃
< sℓ̃.

Again, let B ′ be the updated blocking edges after a collapse step. As Bℓ̃ is the only set of blocking

11

edges in B≤ℓ̃ affected by the collapse, by Lemma 10 one has |B ′
≤ℓ̃

| ≤ |B≤ℓ̃|(1− ε2

4 ·γ). Taking a log
we compare the coordinates

s ′
ℓ̃
=

⌊

logc

(∣
∣
∣B ′

≤ℓ̃

∣
∣
∣

)⌋

≤
⌊

logc

(
∣
∣B≤ℓ̃

∣
∣

(

1−
ε2

4
·γ

))⌋

=
⌊

logc

(∣
∣B≤ℓ̃

∣
∣
)⌋

−1= sℓ̃−1.

Choose the infinite coordinate to be some integer larger than log |X |. Since for every layer
ℓ, we have |B≤ℓ| ≤ |X |, then every coordinate of the signature vector is upper bounded by U =
O(log |X |). Recall the number of layers, and thus the number of coordinates in the signature
vector, is also upper bounded by U . Together, these imply that the sum of the coordinates of
the signature vector is at most U 2.

As the signature vector has non-decreasing order, each signature vector corresponds to a
partition of an integer z ≤ U 2. On the other hand, every partition of some z ≤ U 2 has a cor-
responding signature vector. Thus we apply a result of Hardy and Ramanujan to find the total

number of signature vectors is
∑

k≤U 2 eO(
p

k) = |X |O(1). Since each iteration of the algorithm can
be done in polynomial time and the signature vector decreases lexicographically after each it-
eration, the algorithm terminates after a total time of nΘε(1).

3 Application to Santa Claus

In this section, we show a polynomial time (4+ε)-approximation algorithm for the Santa Claus
problem. Recall that for a given set of children M , and a set of presents J , the Santa Claus prob-
lem asks how Santa should distribute presents to children in order to maximize the minimum
happiness of any child4. Here, present j is only wanted by some subset of children that we de-
note by A j ⊆ M , and present j has value p j to child i ∈ A j . The happiness of child i is the sum
of all p j for presents j assigned to child i . We assume w.l.o.g. to know the integral objective
function value T of the optimum solution, otherwise T can be found by binary search.

We partition gifts into two sets: large gifts JL := { j ∈ J | p j > δ2T } and small gifts JS := { j ∈ J |
p j ≤ δ1T }, for parameters 0 < δ1 ≤ δ2 < 1 such that all gifts have values in [0,δ1T]∪ (δ2T,T]. Let

P (T,δ1,δ2) be the set of vectors z ∈RJ×M
≥0 satisfying

∑

j∈JS :i∈A j

p j zi j ≥ T ·
(

1−
∑

j∈JL :i∈A j

zi j

)

∀i ∈ M

∑

i∈A j

zi j ≤ 1 ∀ j ∈ J

zi j ≤ 1−
∑

j ′∈JL :i∈A j ′

zi j ′ ∀ j ∈ JS ∀i ∈ A j

If n = |J |+ |M |, then this LP has O(n2) many variables and O(n2) many constraints. To see
that this is indeed a relaxation, take any feasible assignment σ : J → M with

∑

j∈σ−1(i) p j ≥ T for
all i ∈ M . Now let σ : J → M ∪ {;} be a modified assignment where we set σ(j) =; for gifts that

4We assume Santa to be an equitable man– not one influenced by bribery, social status, etc.

12

we decide to drop. For each child i ∈ M that receives at least one large gift we drop all small gifts
and all but one large gift. Then a feasible solution z ∈P (T,δ1,δ2) is obtained by letting

zi j :=
{

1 if σ(j) = i

0 otherwise.

We will show that given a feasible solution z ∈ P (T,δ1,δ2), there exists a feasible solution
(x∗, y∗) to Q(T). To do this, we will exploit two underlying matroids in the Santa Claus problem,
allowing us to apply Theorem 2. Let

I =
{

ML ⊆ M | ∃ left-perfect matching between ML and JL using edges (i , j) : i ∈ A j

}

,

be a family of independent sets. Then M = (M ,I) constitutes a matchable set matroid. We
denote the co-matroid of M by M∗ = (M ,I∗). Recall that the independent sets of the co-
matroid are given by

I
∗ =

{

MS ⊆ M | ∃ML ∈B(M) : MS ∩ML =;
}

.

We can define a vector x ∈ RM with xi =
∑

j∈JL :i∈A j
zi j that lies in the matroid polytope of

M. This fact follows easily from the integrality of the fractional matching polytope in bipartite
graphs. It is instructive to think of xi as the decision variable telling whether child i ∈ M should
receive a large present.

Unfortunately, x does not have to lie in the base polytope — in fact the sum
∑

i∈M xi might
not even be integral. However, there always exists a vector x′ in the base polytope that covers
every child just as well with large presents as x does. This observation can be stated for general
matroids:

Lemma 12. Let M= (X ,I) be any matroid and let x be a point in its matroid polytope. Then in
polynomial time one can find a point x′ in the base polytope so that x′ ≥ x coordinate-wise.

In fact the algorithm behind this claim is rather trivial: as long as x ∈ PM is not in the base
polytope, there is always a coordinate i and a µ> 0 so that x +µei ∈PM.

With the new vector x′ ∈PB(M) at hand, we can redefine the z-assignments by letting

z ′
i j =

{

zi j xi = 1
1−x′

i

1−xi
zi j xi 6= 1.

for j ∈ JS ; the new values z ′
i j

for j ∈ JL can be obtained from the fractional matching that cor-

responds to x′
i
. Note that 0 ≤ z ′

i j
≤ zi j for j ∈ JS . The reader should be convinced that still

z ′ ∈P (T,δ1,δ2), just that the corresponding vector x′ now lies in PB(M)
5.

It is well known in matroid theory that the complementary vector x∗ := 1−x′ lies in PB(M∗).
Again, it is instructive to think of x∗

i
as the decision variable whether child i has to be satisfied

with small gifts. Finally, the assignments y∗ are simply the restriction of z ′ on the coordinates

5There is an alternative proof without the need to replace x by x′. Add the constraint
∑

j∈JL ,i∈A j
zi j = rank(M) to

P (T,δ1,δ2). There is always a feasible integral solution satisfying this constraint. Then for any fractional solution
z ∈P (T,δ1,δ2), the corresponding vector x will immediately lie in the base polytope.

13

(i , j) ∈ M × JS . The obtained pair (x∗, y∗) lies in Q(T), where the matroid in the definition of
Q(T) is M∗.

As Q(T) 6= ;, we can apply Theorem 2 which results in a subset MS ∈B(M∗) of the children
and an assignmentσ : JS → MS , where each child in MS receives happiness at least

(1
3−

δ1
3 −ε

)

·T
from the assignment of small gifts. Implicitly due to the choice of the matroid M∗, we know
that the remaining children M \ MS = ML can all receive one large gift and this assignment can
be computed in polynomial time using a matching algorithm. Overall, each child receives either
one large present of value at least δ2 ·T or small presents of total value at least (1

3 −
δ1
3 −ε) ·T .

Therefore each child receives value at least

min
{(1

3
−
δ1

3
−ε

)

·T,δ2 ·T
}

≥
(1

4
−ε

)

·T (1)

for a choice of δ2 = δ1 = 1
4 . In some instances of Santa Claus, we can do better. Set δ1 so that

δ1 ·T is the largest gift value that is at most 1
4 T , and set δ2 so that δ2 ·T is the smallest gift value

that is at 1
4 T . Then the algorithm guarantees that each child receives value at least as in the left

hand side of Equation 1. When δ1 and δ2 are bounded away from 1/4, then the approximation
improves. For example, when δ2 ≥ 1/3 and δ1T is close to 0, such as in the case where all gifts
have value either T or 1, we approach a (3+ε)-approximation.

References

[AFS08] Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets hypergraph match-
ings. In Approximation, Randomization and Combinatorial Optimization. Algorithms

and Techniques, 11th International Workshop, APPROX 2008, and 12th International

Workshop, RANDOM 2008, Boston, MA, USA, August 25-27, 2008. Proceedings, pages
10–20, 2008.

[AFS12] Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets hypergraph match-
ings. ACM Trans. Algorithms, 8(3):24:1–24:9, July 2012.

[AKS15] Chidambaram Annamalai, Christos Kalaitzis, and Ola Svensson. Combinatorial algo-
rithm for restricted max-min fair allocation. In Proceedings of the Twenty-Sixth An-

nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,

January 4-6, 2015, pages 1357–1372, 2015.

[Ann16] Chidambaram Annamalai. Finding perfect matchings in bipartite hypergraphs. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1814–1823, 2016.

[BS06] Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In Proceedings of the

Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC ’06, pages 31–
40, New York, NY, USA, 2006. ACM.

[CCK09] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods
to maximize fairness. In 50th Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 107–116, 2009.

14

[CM18a] Siu-Wing Cheng and Yuchen Mao. Integrality gap of the configuration lp for the re-
stricted max-min fair allocation. arXiv preprint arXiv:1807.04152, 2018.

[CM18b] Siu-Wing Cheng and Yuchen Mao. Restricted max-min fair allocation. In 45th Inter-

national Colloquium on Automata, Languages, and Programming, ICALP 2018, July

9-13, 2018, Prague, Czech Republic, pages 37:1–37:13, 2018.

[EKS08] Tomás Ebenlendr, Marek Krcál, and Jirí Sgall. Graph balancing: a special case of
scheduling unrelated parallel machines. In Proceedings of the Nineteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California,

USA, January 20-22, 2008, pages 483–490, 2008.

[Fei08] Uriel Feige. On allocations that maximize fairness. In Proceedings of the Nineteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pages 287–293,
Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[Hax95] Penny E. Haxell. A condition for matchability in hypergraphs. Graphs and Combina-

torics, 11(3):245–248, 1995.

[JR17] Klaus Jansen and Lars Rohwedder. On the configuration-lp of the restricted assign-
ment problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 2670–2678, 2017.

[JR18a] Klaus Jansen and Lars Rohwedder. Compact LP relaxations for allocation problems.
In 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New

Orleans, LA, USA, pages 11:1–11:19, 2018.

[JR18b] Klaus Jansen and Lars Rohwedder. Local search breaks 1.75 for graph balancing.
CoRR, abs/1811.00955, 2018.

[JR18c] Klaus Jansen and Lars Rohwedder. A note on the integrality gap of the configuration
LP for restricted santa claus. CoRR, abs/1807.03626, 2018.

[LST87] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. In 28th Annual Symposium on Foundations

of Computer Science, Los Angeles, California, USA, 27-29 October 1987, pages 217–224,
1987.

[Sve11] Ola Svensson. Santa claus schedules jobs on unrelated machines. In Proceedings of

the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8

June 2011, pages 617–626, 2011.

[VW11] José Verschae and Andreas Wiese. On the configuration-lp for scheduling on unrelated
machines. In Algorithms - ESA 2011 - 19th Annual European Symposium, Saarbrücken,

Germany, September 5-9, 2011. Proceedings, pages 530–542, 2011.

15

	1 Introduction
	1.1 Our contributions

	2 An algorithm for Matroid Max-Min Allocation
	2.1 Intuition for the algorithm
	2.2 A detailed procedure
	2.3 Correctness of the algorithm
	2.4 Termination and runtime

	3 Application to Santa Claus

