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Abstract

We consider the classic problem of scheduling jobs with precedence constraints on a set of
identical machines to minimize the makespan objective function. Understanding the exact
approximability of the problem when the number of machines is a constant is a well-known
question in scheduling theory. Indeed, an outstanding open problem from the classic book of
Garey and Johnson [9] asks whether this problem is NP-hard even in the case of 3 machines
and unit-length jobs. In a recent breakthrough, Levey and Rothvoss [25] gave a (1 + ε)-
approximation algorithm, which runs in nearly quasi-polynomial time, for the case when job
have unit lengths. However, a substantially more difficult case where jobs have arbitrary
processing lengths has remained open. We make progress on this more general problem.
We show that there exists a (1 + ε)-approximation algorithm (with similar running time as
that of [25]) for the non-migratory setting : when every job has to be scheduled entirely on a
single machine, but within a machine the job need not be scheduled during consecutive time
steps. Further, we also show that our algorithmic framework generalizes to another classic
scenario where, along with the precedence constraints, the jobs also have communication
delay constraints. Both of these fundamental problems are highly relevant to the practice
of datacenter scheduling.

1 Introduction

A classic problem in scheduling theory is as follows: We are given a set J of n jobs, where
each job j ∈ J has a processing length pj . The jobs have precedence constraints, which are
given by a partial order “≺”. A constraint j ≺ j′ requires that job j′ can only start after job
j is completed. The jobs need to be scheduled on a set of m identical machines. The goal
is to schedule the jobs while respecting the precedence constraints so as to optimize a certain
objective function. The most popular objective function is the makespan of a schedule, which
is the focus of this paper. The makespan of a schedule is defined as the completion time of
the last job. In the classic three-field notation1 [12], the problem is denoted by P |prec|Cmax.
Since the seminal result of Graham [11], the problem has been studied quite extensively in the
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denoted by P . We use Pm to denote m = O(1) machines, P∞ when the number of machines is unbounded.
The second field describes constraints that a schedule must satisfy (e.g. prec denotes precedence constraints), as
well as assumptions on the input (e.g. pj = 1 denotes unit-length jobs). The third field denotes the objective
function, which in this paper is always the makespan (Cmax).
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literature [12, 8, 6, 5, 28, 35, 17, 24, 37, 3, 25, 28, 14, 4, 30]. Despite this, large gaps remain
in our understanding of the problem. The influential survey of Schuurman and Woeginger [33]
and a more recent one by Bansal [2] list determining the exact approximability of this setting
as one of the top ten open problems in scheduling theory (Open Problem 1).

Already in 1966, Graham [11] showed that any greedy non-idling schedule is a (2 − 1/m)-
approximation to the problem of minimizing makespan with precedence constraints on identical
machines. Fifty years later, assuming a variant of the Unique Games Conjecture (UGC) intro-
duced by Bansal and Khot [3], Svensson [37] showed that an approximation factor of (2− ε) is
indeed hard for this problem, even for the unit-length case (P |prec, pj = 1|Cmax). For the unit
job length case, the current best approximation factor is 2 − 7/(3m + 1), when m ≥ 4, due to
Gangal and Ranade [8].

In most applications, however, the number of machines is typically much smaller than the
number of jobs. Thus, a natural question that has attracted much attention is: what is the
exact complexity of the problem if m is a constant (setting denoted by Pm)? One of the
longest-standing open problems posed in the classic book by Garey and Johnson [9] is whether
Pm|prec, pj = 1|Cmax is NP-hard for any m ≥ 3. On the other hand, the more general problem
where jobs have different processing lengths is strongly NP-hard even if all jobs have lengths
1 or 2 and there are only two machines if no preemption is allowed [39]. On the positive side,
in a recent breakthrough Levey and Rothvoss [25] gave a (1 + ε)-approximation algorithm for

the problem Pm|prec, pj = 1|Cmax with running time n(logn)Om,ε(log logn)
, which is nearly quasi-

polynomial time. They obtain this result by an elegant, though quite technically involved,
rounding of a fractional solution obtained from the Sherali-Adams lift of an LP relaxation of
the problem to (log n)Om,ε(log logn) levels, which explains the running time of the algorithm.
Later, Garg [10] made the result strictly quasi-polynomial time. However, the more general
case, where jobs have arbitrary lengths, has remained open.

One of the tantalizing questions posed in [25] is whether LP hierarchies can also give a
(1 + ε)-approximation for the significantly harder case of jobs with arbitrary processing times.
In this paper, we show that the answer to this question may depend on the type of schedule we
are looking for. When jobs have arbitrary processing lengths, the optimal schedule can be of
three types:

1. Fully preemptive (Pm|prec, pmtn,migration|Cmax): In this case, a job j can be scheduled
on multiple machines (respecting the precedence constraints). However, at any time step
t only one machine can be processing the job j.

2. Preemptive but non-migratory (Pm|prec,pmtn|Cmax): In this case, a job j must be sched-
uled completely on a single machine. However, within a machine the job can be preempted
and need not be processed during consecutive time steps.

3. Non-preemptive (Pm|prec|Cmax): Here we require that a job j must be scheduled on a
single machine during pj consecutive time steps.

It is interesting to note that the optimal solutions for the above three cases can be quite
different.2 See Appendix A for examples where the above three schedules are a constant fac-
tor away from each other. Hence, there cannot be black-box reductions among these prob-
lems if our goal is to achieve (1 + ε)-approximation. Observe that the fully preemptive case
(Pm|prec, pmtn,migration|Cmax) is equivalent to the unit-length case, assuming all sizes are
polynomially bounded: one can break a job j of length pj into a chain of pj unit-length jobs

2We are not aware of any other setting for makespan minimization where there is a gap between the optimal
schedules 2 and 3. However, this situation is quite common for flow-time objective functions, where preemptive
but non-migratory is the standard assumption.
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(see Appendix B for how to handle the case when this assumption does not hold). Thus, the
(1 + ε)-approximation algorithm due to [25] readily extends to this case.

In this paper we first consider the preemptive but non-migratory setting (Pm|prec, pmtn|Cmax).
We prove that there is a Sherali-Adams hierarchy based algorithm that gives a (1+ε)-approximation,
which generalizes the framework of Levey and Rothvoss [25] for the unit-length case to the gen-
eral job length case, thus positively answering the question posed by the authors in our setting.

The first main result of this paper is the following.

Theorem 1.1. For any ε > 0, there is a (1 + ε)-approximation algorithm for the problem

Pm|prec, pmtn|Cmax that runs in time n(logn)O((m2/ε2) log logn))
.

We give a detailed explanation of our algorithm and techniques in Section 2.3, preceded
by an introduction to Levey and Rothvoss’ framework in Section 2.2. In Section 4, we give a
complete proof of Theorem 1.1.

Next, we turn our attention to the non-preemptive case (Pm|prec|Cmax). Here we give some
evidence to show that the algorithmic framework based on the Sherali-Adams hierarchy may
not be sufficient to get a polynomial-time (1 + ε)-approximation, even when there are only 2
machines. Our reasoning behind this claim is as follows. The rounding algorithm used in the
proof of Theorem 1.1 reduces our problem to the case of a deadline scheduling problem with the
objective of maximizing throughput; that is, maximizing the number of job units completed,
where a job may be processed partially. For this problem, somewhat surprisingly, we prove that
any o(log n)-level Sherali-Adams lift of the basic LP has at least a constant integrality gap.
Since the throughput problem is equivalent to a special case of non-preemptive scheduling on 2
machines (P2|prec|Cmax), we believe that P2|prec|Cmax also has a constant integrality gap with
an o(log n)-level Sherali-Adams lift. This is in contrast to the unit-length case, where a 2-level
Sherali-Adams hierarchy can solve the problem P2|prec, pj = 1|Cmax exactly [32], and many
experts believe that O(m) levels should give either an exact solution or a (1+ ε)-approximation.
We give more details about the hard instances for P2|prec|Cmax in Section 6.

The second main result of the paper concerns another classic problem: scheduling jobs with
precedence and communication delay constraints. This model was introduced by Papadimitriou
and Yannakakis [29] and Veltman et al. [40] to capture the fact that in multiprocessor systems,
when jobs have dependencies j ≺ j′, it takes time to transfer the output of a job j to another
machine, where it will become the input of job j′. MapReduce systems and multi-core processors
are modern examples of such systems. The formal setting of this problem is similar to that of
makespan minimization with precedence constraints. However, if two jobs with j ≺ j′ are
executed on different machines, the second job j′ is allowed to start only cj,j′ ≥ 0 time units
after the completion time of job j. Here cj,j′ is the communication delay between j and j′. On
the other hand, if j and j′ are executed on the same machine, then j′ can start right after j
completes.

This model has been studied quite extensively in the literature, and yet our understanding
of it is very limited. The surveys by Schuurman and Woeginger [33] and Bansal [2] list the
approximability status of problems in this model as a top-ten open problem in scheduling
theory. Most known results are for the special case where all the jobs have unit lengths and
the communication delays cj,j′ are also identically 1. In the classic notation, this special case
is denoted by P |prec, pj = 1, c = 1|Cmax. For this problem, Hanen and Munier [15] gave a
polynomial-time 7/3-approximation algorithm, while on the hardness side Hoogeveen et al. [18]
showed the problem does not admit a better than 5/4-approximation algorithm unless P = NP .
Another important case that has gained a lot of interest is when the number of machines
is unbounded; the setting is non-trivial in presence of communication delays. The problem,
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denoted as P∞|prec, pj = 1, c = 1|Cmax, admits a 4/3-approximation due to Munier and Konig
[27], and it is NP-hard to do better than 7/6 [18]. Papadimitriou and Yannakakis claim that
there is a lower bound of 2 for the P∞|prec, pj = 1, c|Cmax problem (where the communication
delays are uniform but arbitrary), yet there has been no proof of this claim as far as we know;
see Open Problem 3 in the survey by Schuurman and Woeginger [33] for more details.

As communication delay constraints with cj,j′ ≥ 0 strictly generalize scheduling with prece-
dence constraints3, Svensson’s hardness result [37] for P |prec, pj = 1|Cmax, assuming UGC,
also applies to our problem with the communication delay even for unit job lengths; that is,
(P |prec, pj = 1, cj,j′ |Cmax). Hence, we initiate the study of this problem when the number of
machines is a constant. To the best of our knowledge, we are the first to consider the commu-
nication delay problem in the m = O(1) setting. Our second main result is a generalization of
our first result Theorem 1.1 to this setting.

Theorem 1.2. For any ε > 0, there is a (1 + ε)-approximation algorithm for the problem

Pm|prec, pmtn, cj,j′ |Cmax that runs in time n(logn)O((m2/ε2) log logn))
if maxj≺j′ cj,j′ = O(1).

Observe also that maxj≺j′ cj,j′ = O(1) is a weaker assumption than c = 1, which is the
only setting where previously known results hold. We obtain the above result by extending the
Sherali-Adams hierarchy framework introduced for the problem without communication delay
constraints, i.e., the setting of Theorem 1.1. This shows the versatility of the LP-hierarchy based
approaches to the study of these problems. We anticipate that such approaches should help in
resolving open problems in this model, which is one of the poorest-understood in scheduling.
We introduce our techniques behind this result in Section 2.4 and give the complete analysis in
Section 5.

1.1 Outline

The proofs of Theorems 1.1 and 1.2 are quite involved and build on [25], and hence need a fair
amount of background. Therefore, our paper is organized as follows. In Section 2, we give a
detailed but informal description of our two algorithms for Theorems 1.1 and 1.2, and discuss
the new ideas of this paper. We formally define the properties of Sherali-Adams solutions that
we use in our algorithms in Section 3. In Section 4, we first give a formal description of our
algorithm for the first problem along with all the necessary lemmas, and show how these lemmas
come together for the proof of Theorem 1.1; then we give complete proofs for these lemmas.
In Section 5, we show how to extend the algorithm to the setting with communication delays,
thus proving Theorem 1.2. Finally, we give our integrality gap result in Section 6.

2 High-Level Description of Our Algorithms and Techniques

Our proofs for Theorems 1.1 and 1.2 are obtained by rounding LP-hierarchy solutions of natural
LPs for the problems. First we focus on the makespan minimization problem with precedence
constraints for general job lengths when no migrations are allowed. Later we explain the new
ideas needed to extend this result to the communication delay setting. We often refer to the
former setting as the “no-delay” setting, and to the latter as the “delay setting”.

As our work generalizes the framework introduced by Levey and Rothvoss [25], we begin by
describing their algorithm for minimizing makespan when jobs have unit lengths. Beforehand,
it will be worthwhile to give an intuitive explanation of LP hierarchies and the “conditioning”
operation of LP-hierarchy solutions used in the design of our algorithms.

3This statement is not true if cj,j′ > 0 instead of cj,j′ ≥ 0. Thus, Svensson’s hardness result does not
immediately apply to the c = 1 case, for example.
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2.1 Intuitions behind Sherali-Adams Hierarchy and “Conditioning” Opera-
tion

We give a brief explanation of how we use the Sherali-Adams hierarchy in our algorithms;
see Section 3 for more details. Let us start with an ideal situation. Assume we have a set
X ⊆ {0, 1}n corresponding to the set of valid integral solutions for some instance of a problem.
Further suppose that we are given a vector x ∈ convex-hull(X ), the convex hull of X . That
is, there is an implicit distribution π over X such that x = Ex̃∼π x̃. Then, we hope there is an
oracle that, for an index i ∈ [n] with xi > 0, can return the vector x′ = Ex̃∼π:x̃i=1 x̃; that is, the
solution corresponding to the distribution x̃ ∼ π conditioned on the event x̃i = 1. This is called
the “conditioning” or “inducing” operation. We use the word conditioning, as it is same as the
conditioning operation known from probability theory.

In an intuitive sense, the Sherali-Adams hierarchy (and other LP/SDP hierarchies) provides
a weaker form of the oracle that can support the conditioning operations. Assume there is a
polytope P ⊇ convex-hull(X ) that corresponds to the feasible solutions for some LP relaxation
for the instance. Then the SA-hierarchy can be applied to P, giving the oracle with the following
restrictions. First, every vector x given to the oracle is associated with a level ` ∈ Z>0. If we
give a level-` vector x to the oracle, the vector x′ returned by the oracle will only have level
`− 1. Second, the vector x given to the oracle does not need to be in convex-hull(X ). Indeed,
for each level `, the SA-hierarchy gives a polytope SA(P, `) ⊆ [0, 1]n such that

P = SA(P, 1) ⊇ SA(P, 2) ⊇ · · · ⊇ convex-hull(X ) .

The oracle only needs a level-` vector x to be in SA(P, `) to perform the conditioning operation;
the returned vector x′ will be in SA(P, `−1). So for this reason, the vectors in SA(P, `) on which
the conditioning operation is performed are sometimes called “pseudo-distributions”. Finally,
to construct a vector x ∈ P`, in general we need a running time of nΘ(`). This means that `
needs to be small, which places a limit on the number `− 1 of conditioning operations that we
can apply to a vector x “sequentially”.

Certain key properties will be satisfied by the (pseudo-)conditioning operation, as in the
ideal case. For example, if we condition x on the event x̃i = 1, then the returned vector x′

will have x′i = 1. Also, conditioning can only shrink the support of vectors: if x′ is obtained
from x by conditioning, then xi′ = 0 implies x′i′ = 0 for every i′. Section 3 contains formal
statements. See also the following references [23, 34, 22, 26, 31]; in particular, [31] is an excellent
introduction to the use of hierarchies in approximation algorithms.

2.2 Overview of Levey-Rothvoss Algorithm

At the heart of the analysis of the Levey-Rothvoss algorithm [25] is the following simple obser-
vation: if the maximum chain length of jobs in the set J is at most εT , where T is a guess of
the optimal makespan, then Graham’s algorithm already gives a (1 + ε)-approximation. At a
high level, the algorithm in [25] uses the above observation in the following way: it partitions
the input instance J into three sets Jtop, Jmid and Jbot. It guarantees that the size of Jmid is
small, so for the moment we can ignore jobs in Jmid. The partitioning is done, guided by an
LP-hierarchy solution, satisfying the following three properties: 1) The maximum chain length
among Jtop is small. 2) The precedence constraints between the jobs in the sets Jtop and Jbot

are loose, and can be easily satisfied. 3) There is a partition of the entire time horizon into
small-length intervals such that each job in Jbot has fractional support completely contained in
one interval in the partition. Then one can recursively schedule the jobs in Jbot by considering
sub-instances defined by the small intervals, and such a schedule can be easily extended to
include Jtop due to Properties 1) and 2).
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Now we give more details about the algorithm. The Levey-Rothvoss algorithm first makes
a guess on the makespan T of the optimum schedule, which we can assume is a power of two.
The time horizon [T ] is partitioned into a binary laminar family I of intervals, where the root
interval is [T ] and each subsequent level is constructed by dividing each interval of the previous
level into two equal-sized intervals. Each leaf interval contains a single slot. To obtain a schedule
of J with makespan at most (1 + ε)T , it suffices to obtain a schedule with makespan T , but
with up to εT jobs discarded. This new goal is indeed more convenient for the description and
analysis of the algorithm. At the end, the discarded jobs are re-inserted into the final schedule,
each on a time slot of its own.

We start by solving a standard LP for the problem lifted to r rounds of the Sherali-Adams
hierarchy, for some r = (log n)Om,ε(log logn), to obtain a solution x. It takes nO(r) time to solve
a r-round Sherali-Adams lift of an LP with poly(n) variables; this is the reason for the running
time of this algorithm. Based on the solution x, each job j is assigned to the smallest interval
I in the binary decomposition I that fully contains the fractional schedule of the job. We then
say j is owned by I.

The recursive algorithm begins by considering the jobs assigned to the first k2 levels of the
binary decomposition I, for k = Θ(log log n). In the first step, we condition on some variables
of the LP solution to reduce the maximum chain length among these jobs. The number of
conditioning operations can be bounded due to the following reason: If there is a long chain
of jobs in the set, we can condition on some variable so that the support of many jobs in the
chain will shrink a lot; thus a few conditioning operations will be sufficient. In the second step,
we partition the intervals in I into top, middle and bottom intervals. Let `∗ ∈ [k + 1, k2] be
selected satisfying some property. The top intervals are those from level 0 to `∗ − k − 1 in the
laminar tree (the root has level 0), the middle intervals are those from level `∗ − k to `∗ − 1
and the bottom intervals are those at level `∗ and below. Then, we define Jtop, Jmid and Jbot

as the set of jobs owned by top, middle, and bottom intervals respectively. In the third step,
the rounding algorithm recursively and separately solves each of the bottom instances: such an
instance is defined by a bottom interval I ∈ I at the level `∗ and the set of bottom jobs owned
by sub-intervals of I, along with the solution x restricted to the interval I. This gives a schedule
of the jobs inside interval I. In the fourth step, we insert (a large subset of) the top jobs into
the constructed schedule to obtain our tentative schedule for the current instance.

Notice that the algorithm will discard all middle jobs and some top jobs. The number of
middle jobs discarded can be bounded by choosing the parameter `∗ carefully, while the number
of top jobs discarded across the entire algorithm can be bounded using Properties 1) and 2)
mentioned above. Property 1) (the chain lengths among top jobs are small) is satisfied because
of our conditioning in the first step. Property 2) (the precedence constraints between top and
bottom jobs are “loose”) is easy to satisfy using the fact that a top interval is at least 2k times
longer than the bottom intervals. We can “shrink” the fractional support of a top job by a small
amount in order to remove the dependence between top and bottom jobs; since a top interval
is so long, the shrinking operations only incur a small number of discarded top jobs. Finally,
we can put together all these pieces to show that the total number of discarded jobs is at most
εT , which gives a (1 + ε)-approximation to the problem.

2.3 Our Algorithm for General Job Lengths (Theorem 1.1)

A simple way to extend [25] to the case when jobs have arbitrary processing lengths would be the
following: Replace each job j of length pj by a chain a1,j ≺ a2,j ≺ . . . ≺ apj ,j of length pj , where
each ai,j is a “task” of unit length. Now, treat these tasks as separate entities, and schedule
them using the algorithm in [25]. However, as the subproblems in [25] are solved independently,
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this approach does not guarantee that the schedule is non-migratory; that is, tasks belonging
to a single job are scheduled on the same machine. A natural idea to get around this issue is
to assign a job to an interval in the binary laminar decomposition only if all the tasks of the
job belong to that interval. This will make sure that the tasks belonging to a single job are
handled in a single recursive call, and are not scheduled independently of each other. This is the
approach we wish to take. However, one difficulty that arises is: how to reduce the maximum
chain length among the top jobs? To understand this issue, consider the case when a long chain
consists entirely of a single top job. In this case, no matter how we condition, the support of
the job will not move down to the lower intervals. In general, it seems unavoidable that we
have to allow tasks of a same job to go to different branches of recursive calls to keep the chain
lengths among top jobs small. This brings us to the first main technical hurdle an algorithm
for general job lengths has to deal with: How to keep track of tasks of a single job going into
different recursive calls, and still ensure that they get scheduled on the same machine?

A crucial observation about the algorithm in [25] helps us in mitigating the tricky situation:
the total number of conditionings performed to reduce the chain length of the top jobs is small in
any recursive call of the algorithm. Let us call the jobs that the algorithm conditions on special
jobs. There cannot be more than O(log T · γ) such special jobs at any level of the recursion,
where γ is the total number of conditionings performed by our algorithm in a single recursive
call. As we argued earlier, this number is not too large. Further, for every special job, the
entire support of the job becomes concentrated on a single machine. This is guaranteed by the
non-migratory constraints of our machine-indexed LP (see Eq. (5)).

Our algorithm exploits the above two properties in tandem. For the special jobs, we allow
tasks of a single job to go to different branches of the recursion. On the other hand, for a job
that is not special, we ensure that all the tasks belonging to the job are considered by the same
recursive call. For each special job, our algorithm needs to know exactly which tasks belonging
to it go to each branch of the recursion. Moreover, we also require such tasks to be completely
scheduled in that interval. This is needed to argue that there will be enough free slots to insert
the top jobs after the tasks belonging to bottom jobs are recursively scheduled. Our algorithm
accomplishes this by introducing a new type of conditioning operation called splitting, which
precisely guarantees the above two invariants.

Using the splitting operation, our algorithm propagates all the tasks of special jobs down to
the lowest level of the recursion. In particular, our algorithm maintains the invariant that the
special jobs (more precisely, the tasks belonging to special jobs) will never be a part of the set
of top or middle jobs. At the lowest level, the tasks of special jobs eventually get scheduled by
conditioning on the LP solution. Since all the tasks of a special job have their support entirely
on a single machine due to the LP constraints, this implies that they are all scheduled on the
same machine.

Thus, the key ideas of special jobs and splitting conditioning operations help us to construct
a non-migratory schedule of bottom jobs. Now, we need to extend this schedule to include
top jobs, which brings us to the second major technical issue an algorithm for the general
lengths case has to solve: How can we schedule top jobs in a non-migratory fashion in the slots
left open by the bottom jobs? This is tricky because: a) Scheduling the bottom jobs is done
independently of the top jobs and it is not guaranteed that every job has pj units of empty
slots on some machine. b) The LP solution for top jobs only says that there is enough space
to schedule jobs if migration were allowed. Moreover, we also need to satisfy the precedence
relationships among the top jobs, and between the top and bottom jobs.

The second key contribution of this paper is a new algorithm to insert the top jobs. Notice
that the algorithm of Levey and Rothvoss [25] does give such a procedure, but only for the
unit-length case. In contrast, our algorithm needs to deal with the substantially harder case
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of arbitrary job sizes and the non-migratory constraints. Our method proceeds in two stages.
In the first stage, we build a tentative schedule which allows migration of jobs, but guarantees
that the precedence constraints between the top and the bottom jobs are satisfied. To that end,
we identify an interval [rj , dj ] for every job j such that if j is scheduled within this interval,
then the precedence constraints between the top and the bottom jobs are satisfied. Here, [rj , dj ]
may be shorter than the interval defined by the support of the LP solution for j. This leads
to discarding some tasks; however, a simple argument based on an extension of Hall’s theorem
proved in [25] shows that the number of discarded tasks is small. This stage is similar to the
procedure in [25, Section 5.1].

The more difficult question is how to convert the migratory schedule from the first stage
into a non-migratory schedule respecting the precedence constraints among the top jobs; this is
another technical contribution of our paper. To solve this problem, our algorithm considers the
jobs in the Earliest Deadline First (EDF) order of their dj values. Suppose Bj ≥ rj is the first
time slot where the job j can be scheduled respecting all the precedence constraints. Then our
algorithm assigns j to the machine i on which it will have the Earliest Completion Time (ECT).
Suppose Cj is its completion time. Now we make the following crucial observation about the
ECT policy: If one looks at the interval [Bj , Cj ] in which j was scheduled, there can be at most
pj empty slots on any other machine i′ 6= i. If this were not true, then it implies that there is
another machine i′ 6= i and time slot t′ < Cj such that job j could have been feasibly scheduled
in the interval [Bj , t

′] on the machine i′. This leads to a contradiction with our policy. This
observation, combined with the invariant maintained by our algorithm – that the chain lengths
are small among the top jobs – guarantees that the number of slots we waste because of the
precedence and non-migratory constraints is not too large.

Finally, it is possible that there is no machine i on which job j can be scheduled completely
within its deadline dj . In this case, we find the machine with the maximum number of empty
slots, and schedule the job partially. We discard the tasks that we could not schedule. This frag-
mentation also leads to some more slots being wasted. However, we argue that the EDF+ECT
policy guarantees that the number of slots wasted due to fragmentation is also small. In the
end, somewhat surprisingly, we prove that the total number of tasks our algorithm discards is
asymptotically the same as in [25].

2.4 Our Algorithm for Problem with Communication Delays (Theorem 1.2)

Now we give a high-level overview of how the LP hierarchy framework easily extends to the prob-
lem with communication delays where maxj,j′ cj,j′ = O(1), i.e, Pm|prec, pj = 1,pmtn, cj,j′ |Cmax,
which we call the “delay problem”. Recall that in the delay problem, along with precedence con-
straints, the algorithm also needs to enforce communication delay constraints; that is, if j ≺ j′
and j and j′ are scheduled on two different machines, then j′ cannot start earlier than Cj +cj,j′ ,
where Cj is the completion time of job j. For simplicity we assume that all communication
delays are 1. The arguments directly extend to the more general case cj,j′ = O(1).

It should be clear from the overview of our algorithm for Pm|prec,pmtn|Cmax, which we
call the “no-delay problem”, that it is almost impossible to control how jobs are scheduled
in the different branches of recursive calls. Hence, there is no easy way our algorithm can
make scheduling choices taking into account the delay constraints. Instead, we let our recursive
algorithm make choices without considering the communication delay constraints; when the
actual assignment of tasks to time slots is carried out, we will enforce the communication delay
constraints, assuming the worst possible scenario. Before we explain our strategy to do so, let
us first summarize the three points at which our algorithm for the no-delay problem actually
commits to the assignment of tasks to time slots.
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1. Scheduling tasks by conditioning. At the lowest level of recursive call, our algorithm
schedules the tasks by conditioning on the LP hierarchy solution.

2. Scheduling top jobs.

3. Scheduling discarded tasks.

Enforcing the communication delay in the first and third steps is rather easy: Our LP for
the problem, which includes communication delay constraints, guarantees that if two jobs are
scheduled by conditioning in the same recursive call, then the communication delay constraints
are satisfied. To argue that communication delay constraints are also satisfied if they belonged
to different branches of recursion needs a bit more work, but is not difficult. On the other hand,
as the number of discarded tasks is small, we can afford to create three new private slots for each
discarded task, and schedule the task in the middle, leaving the other two slots empty. This
will take care of communication delay constraints, no matter how other tasks are scheduled.
Thus, it only remains to argue how we guarantee that the communication delay constraints are
satisfied while inserting the top jobs.

Here, we go back to a central idea in [25]: If chain lengths are small (bounded by εT ), then
Graham’s algorithm already gives a (1+ε)-approximation to the no-delay problem. This crucial
observation easily extends in the presence of communication delay constraints: It is not hard
to argue that Graham’s list scheduling algorithm gives a (1 + 2ε)-approximation to makespan
if the chain lengths are small. Now note that in our algorithm the maximum chain length
among the top jobs is small due to conditioning. We make use of this fact, along with several
new observations, to give an extension of our algorithm for inserting top jobs for the no-delay
problem to the delay problem.

To argue that communication delay constraints are also satisfied even if one job gets sched-
uled by conditioning and the other job gets scheduled as a top job needs some care and some
additional tricks. However, the overall argument still relies mainly on the above three cases.

2.5 Note About Practical Applications

Besides being fundamental problems, the scheduling models studied in this paper have gained
much importance recently in the context of datacenter scheduling literature; see a recent work-
shop on this topic [38] for more pointers. We give some context here. Programming models such
as Dryad [7] or SparkSQL [36] compile scripts into job DAGs, which give rise to precedence-
constrained scheduling problems. See [13, 1] and references therein. Similarly, communica-
tion delay problems arise in workloads from MapReduce systems and in the model parallelism
paradigm [16] for training complex machine learning models on large clusters; see [16, 41, 20, 42]
and references therein. We do not claim that the algorithms in this paper can be used in these
applications directly; however, the framework of the algorithms proposed in this paper and in
[25] shares many parallels to the heuristic for DAG scheduling developed (independently) in [13],
which can be viewed as replacing the Sherali-Adams based “conditioning” step by a brute-force
search; see here [21] for an exposition.

3 Basics of the Sherali-Adams Hierarchy

In this section, we formally state some basic facts about the Sherali-Adams hierarchy that we
will need in our proofs. We refer the reader to [23, 34, 22, 26, 31] for an extensive introduction to
hierarchies. The purpose of this section is to formally state the properties intuitively described
in Section 2.1 so that there is no ambiguity in the proofs of Theorems 1.1 and 1.2. Hence, it
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can be skipped on the first reading. However, the integrality gap result in Section 6 needs to
use the details in the definition of the SA hierarchy.

Assume we have a feasibility LP of the form Ax ≤ b, which includes the constraints 0 ≤ xi ≤
1 for all i ∈ [n]. The set of feasible integral solutions is defined as X = {x ∈ {0, 1}n : Ax ≤ b}.
It is convenient to think of each i ∈ [n] as an event, and in a solution x ∈ {0, 1}n, xi indicates
whether the event i happens or not.

The idea of the Sherali-Adams hierarchy is to strengthen the original LP Ax ≤ b by adding
more variables and constraints. Of course, each x ∈ X should still be a feasible solution to the
strengthened LP (when extended to a vector in the higher-dimensional space). For some r ≥ 1,
the r-th round of the Sherali-Adams lift of the linear program has variables xS for every S ⊆ [n]
of size at most r. For every solution x ∈ X , xS is intended to indicate whether all the events in
S happen in the solution x; that is, xS =

∏
i∈S xi. Thus each x ∈ X can be naturally extended

to a 0/1-vector in the higher-dimensional space defined by all the variables.
To derive the set of constraints, let us focus on the j-th constraint

∑n
i=1 aj,ixi ≤ bj in the

original linear program. Consider two subsets S, T ⊆ [n] such that |S|+ |T | ≤ r − 1. Then the
following constraint is valid for all x ∈ X :

∏
i∈S

xi
∏
i∈T

(1− xi)

(
n∑
i=1

aj,ixi − bj

)
≤ 0.

To linearize the above constraint, we expand the left side of the above inequality and replace
each monomial with the corresponding variable xS′ . Then, we obtain the following linear
constraint:

∑
T ′⊆T

(−1)|T
′|

(
n∑
i=1

aj,ixS∪T ′∪{i} − bjxS∪T ′
)
≤ 0. (1)

The r-th round of the Sherali-Adams lift contains the above constraint for all j, S, T such
that |S| + |T | ≤ r − 1, and the trivial constraint that x∅ = 1. For a linear program P and an
integer r ≥ 1, we use SA(P, r) to denote the r-th round Sherali-Adams lift of P. We also view P
(resp. SA(P, r)) as the polytope of feasible solutions to the linear program P (resp. SA(P, r)).
For every i ∈ [n], we identify the variable xi in the original LP and x{i} in the lifted LP.

A simple observation is that xS1 ≥ xS2 if S1 ⊆ S2, for a valid solution x ∈ SA(P, r) and
|S1| ≤ |S2| ≤ r. For consider the case where S2 = S1 ∪ {i} for some i /∈ S1: linearizing the
constraint xi ≤ 1 multiplied by

∑
i′∈S1

xi gives the constraint xS2 ≤ xS1 . This implies that all
the variables have values in [0, 1], as x∅ = 1.

Conditioning Let x ∈ SA(P, r) for some linear program P on n variables and r ≥ 2. Let
i ∈ [n] be an event such that xi > 0; then we can define a solution x′ ∈ SA(P, r − 1) obtained
from x by “conditioning” on the event i. For every S ⊆ [n] of size at most r − 1, x′S is defined
as

x′S :=
xS∪{i}

xi
.

Observation 3.1. Let x′ be obtained from x ∈ SA(P, r) by conditioning on some event i, for
some r ≥ 2. Then x′ ∈ SA(P, r − 1) and x′i = 1.

Proof. x′i =
x{i}∪{i}

xi
= xi

xi
= 1, and x′∅ =

x∅∪{i}
xi

= xi
xi

= 1. The constraint (1) on x′ for j, S and
T is implied by (1) on x for j, S ∪ {i} and T .
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Observation 3.2. Let x ∈ SA(P, r) for some r ≥ 2 and x′ ∈ SA(P, r − 1) be obtained from x
by conditioning on some event i. Then, if xi′ ∈ {0, 1} for some i′ ∈ [n], then x′i′ = xi′.

Proof. If xi′ = 0, then x′i′ =
x{i′}∪{i}

xi
= 0 since x{i′}∪{i} ≤ xi′ = 0. Consider the case xi′ = 1.

Expanding the constraint (1 − xi)(1 − xi′) ≥ 0 gives the constraint 1 − xi − xi′ + x{i′,i} ≥ 0.

This implies xi = x{i′,i}. Thus, x′i′ =
x{i,i′}
xi

= 1.

The observation says that once an event i′ happens with extension 0 or 1 w.r.t. a lifted solu-
tion x, then it will always happen with the same extension (0 or 1) w.r.t any solution x′ obtained
from x by conditioning. To understand the conditioning operation and the above observations
better, it is useful to consider the ideal case where x corresponds to a convex combination of
integral solutions in X . Then we can view x as a distribution over X . Then, conditioning on
the event i over the solution x corresponds to conditioning on i over the distribution x.

4 Minimizing Makespan Under Precedence Constraints For Gen-
eral Job Lengths

In this section we consider the problem of minimizing the makespan when jobs have arbitrary
processing lengths, and prove Theorem 1.1. The input to the problem consists of a set of jobs
J , where each job j ∈ J has a processing length pj , and the precedence constraints ≺ between
jobs. We imagine j as being made up of pj tasks (or atoms) a1,j , a2,j , . . . , apj ,j . The set of tasks
of a job j is denoted by A(j). Similarly, we define A(J ′) as the set of tasks of jobs in J ′ for
every J ′ ⊆ J . Formally, A(J ′) :=

⋃
j∈J ′ A(j). We take the transitive closure of the precedence

relations among jobs; that is, if j1 ≺ j2 and j2 ≺ j3, then we have j1 ≺ j3.
We use the notation a ∼ a′ to mean that the tasks a and a′ belong to same job. Formally,

a ∼ a′ if there is j ∈ J such that a, a′ ∈ A(j). The precedence constraints between jobs
are extended to the tasks in the following natural way. For each job j, first we assume that
a1,j ≺ a2,j ≺ . . . ≺ apj ,j . Consider any two jobs j and j′ with precedence constraint j ≺ j′.
Then, for tasks a ∈ A(j) and a′ ∈ A(j′), we introduce a precedence constraint a ≺ a′. Sometimes
we also overload the precedence relation and write a ≺ j′ to mean that every task of j′ needs
to be scheduled after the task a; that is, there is j ∈ J such that a ∈ A(j) and j ≺ j′.

During the description of our algorithm we often go back and forth between two views. In
the task view of the problem, we imagine our input as consisting of a set of tasks A(J), each
task with unit size, and precedence constraints as defined above. In the job view, we treat each
job as a separate entity.

Our goal is to assign each job to a single machine and specify a schedule of tasks such that
the precedence constraints among jobs are satisfied. Our objective is to minimize the makespan
of the schedule, which is defined as the completion time of the last task. Formally, we define a
valid schedule as follows.

A schedule S for a subset A′ ⊆ A(J) of tasks on an interval I ⊆ [T ] with integer length
is a function S : A′ → [m] × I that indicates the (machine, time slot) pair that each task is
assigned to. For every a ∈ A′, we then use Smac(a) and Stime(a) to denote the first and second
component of S(a) respectively.

Definition 4.1. A schedule S for A′ ⊆ A(J) is valid if it satisfies the following constraints.

• Capacity Constraints: for every two tasks a 6= a′ ∈ A′, we have S(a) 6= S(a′).

• No-migration Constraints: For every pair of tasks a ∼ a′ ∈ A′, we have Smac(a) =
Smac(a

′).

• Precedence Constraints: For every pair of tasks a ≺ a′ ∈ A′, we have Stime(a) < Stime(a
′).
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So, a valid schedule for A′ guarantees that for a job j all the tasks of j in A′ are assigned
to a single machine. We define the completion time of job j as the time at which the last task
of j is scheduled and denote it by Cj . If j ≺ j′, then Cj < Cj′ . Throughout the section, we use
N =

∑
j pj to denote the total number of tasks. We can assume by appropriate scaling of the

input that N ≤ n2/ε; see Appendix B for details.

4.1 LP Relaxation

Our algorithm that proves Theorem 1.1 is based on rounding the Sherali-Adams lift of a natural
LP for the problem. The variables of LP are x(a,i,t), which are intended to be 1 if the task
a ∈ A(J) is assigned to machine i ∈ [m] at time t ∈ [T ]. A natural LP formulation to decide if
there is a valid schedule with makespan at most T is as follows:∑
i,t

x(a,i,t) = 1 ∀a (2)

∑
a

x(a,i,t) ≤ 1 ∀i, t (3)

∑
i,t′≤t+1

x(a′,i,t′) ≤
∑
i,t′≤t

x(a,i,t′) ∀a ≺ a′, t ∈ [T − 1] (4)

∑
t

x(a′,i,t) =
∑
t

x(a,i,t) ∀a ∼ a′, i (5)

x(a′,i,t) ∈ [0, 1] ∀a ∈ A(J), i ∈ [m], t ∈ [T ] (6)

The constraints (2) guarantee that every task is feasibly scheduled, while (3) are the capacity
constraints. The constraints (4) impose the precedence order among tasks. Here we appeal to
the task view of the problem. Finally, (5) are intended to enforce the no-migration constraints:
in a non-migratory schedule all the tasks A(j) of a job j are scheduled on a single machine.
Hence a valid schedule satisfies those constraints. Therefore, if there is an optimal integral
solution with makespan at most T , then there is a feasible solution to the LP. We use P(T ),
and simply P when T is clear from the context, to denote the polytope defined by the above
LP relaxation.

Towards proving the main result (Theorem 1.1), we first design a LP rounding algorithm
that only schedules a subset A(J) \Adiscarded of tasks. Our main goal in this section is to prove
the following lemma.

Lemma 4.2. Let T be the smallest value for which the Sherali-Adams lift of LP (2-6) to
r = (log n)O((m2/ε2). log logn) rounds has a feasible solution x. In time nO(r) we can find a valid
schedule S : A(J) \Adiscarded → [m]× [T ] with |Adiscarded| ≤ εT .

We give a brief sketch of the proof that a partial schedule S satisfying the guarantees
of the above lemma can be easily extended to a valid schedule S∗ for A(J) with makespan
[T + |Adiscarded|] as follows. Consider a discarded task a. Let t be the earliest time slot such
that scheduling a at t satisfies all the precedence constraints. We create a separate time slot
for a at time t, and schedule it there. We do not schedule any other task at t, and shift the
entire schedule of tasks following t by one time step. Since this time slot can be created on any
machine, the non-migratory constraints can be satisfied. We repeat this procedure for every
discarded task. Hence scheduling the tasks in Adiscarded increases the makespan by an additive
factor of |Adiscarded|. As |Adiscarded| ≤ εT , this implies that makespan of our final schedule S∗
is at most (1 + ε)T . As the Sherali-Adams lift of the linear program is a valid relaxation of
the optimal solution, the optimal makespan has to be at least T . Moreover, one can solve the
lifted linear program in time nO(r). Putting together all these facts, we conclude that Lemma
4.2 implies Theorem 1.1.
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4.2 Rounding Algorithm

Our algorithm to prove Lemma 4.2 is a generalization of the algorithm in [25]. Hence, for
easier reading we try to keep the notation and structure of our paper similar to [25] as much as
possible.

We begin by partitioning the interval [T ] into a balanced binary family I of intervals of
length T, T/2, T/4, . . . , 2, 1. W.l.o.g., we can assume that T is a power of two using the padding
trick in [25]. One way to visualize I is to think of a balanced binary tree, where the root node
corresponds to the interval [T ], and nodes at level ` correspond to the 2` intervals obtained by
partitioning [T ] into sub-intervals of length T/2`.

We define some notation that will be used throughout the paper. For an interval I ∈ I and
a subset of jobs J ′ ⊆ J we define

J ′(I, x) =

{
j ∈ J ′ : ∀a ∈ A(j),

∑
i

∑
t∈I

x(a,i,t) = 1

}
as the subset of jobs with support completely in the interval I in the LP-hierarchy solution x.
Similarly, we define

A(I, J ′, x) =

{
a ∈ A(J ′) :

∑
i

∑
t∈I

x(a,i,t) = 1

}
as the set of tasks belonging to jobs in J ′ that have their entire support in the interval I. We
emphasize that I may contain partial support of some tasks of A(J ′), but they are not included
in the set A(I, J ′, x). We use A(I, j, x) ⊆ A(j) as a shorthand for A(I, {j} , x), i.e, as the subset
of tasks of job j that have entire support in I.

Finally, we define four global constants k, δ,K and K ′. We set k = O(1)m
ε · log log T to be

large enough and δ = ε

8k2m22k2 log T
. Let K = 1

δ ·mk
2 ·2k2 and K ′ = K ·2k2 = 1

δ ·mk
2 ·22k2 . The

parameter δ is used to define what constitutes a long chain. The roles of constants k,K and K ′

will become clear when we give the description of our algorithm. For a set J ′ ⊆ J of jobs, we
use ∆(J ′) to denote the maximum possible total size of jobs in a precedence-chain in J ′.

The recursive algorithm PARTIAL-SCHEDULE used to prove Lemma 4.2 is given as Algo-
rithm 1. The main claim of [25] is that if we fix any interval I ∈ I and consider the set of
tasks that are entirely scheduled in the interval I by the LP solution x, then one can find a
partial schedule of the tasks in the interval I that discards few tasks. The main contribution
of this paper is that a similar statement can be shown even when jobs have arbitrary lengths
and we enforce no-migration constraints. In order to give the main lemma, we shall first define
a partial-scheduling instance.

Definition 4.3. In a partial-scheduling instance, we are given an interval I∗ ∈ I, an LP-
hierarchy solution x ∈ SA(P, r) for r = log |I∗| log T ·K ′, a set J∗ ⊆ J(I∗, x) of jobs that have
complete support in I∗ according to x, and a special set J∗special ⊆ J of jobs disjoint from J∗,

with |J∗special| ≤ log T
|I∗| · K. Further, we are given a function σ : J∗special → [m] such that for

every j ∈ J∗special, we have

1. j is only scheduled on σ(j) in x, i.e, x(a,i,t) = 0 if a ∈ A(j) and i 6= σ(j),

2. every task a of j is completely scheduled in I∗ w.r.t. x, or not scheduled in I∗ at all. That
is,
∑

t∈I∗ x(a,σ(j),t) is either 0 or 1.

The goal of the scheduling problem is to schedule (a subset of) A(J∗) ∪ A(I∗, J∗special, x) in I∗.
We denote the partial-scheduling instance by (I∗, J∗, J∗special, σ, x).
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Observe in the above definition that for each special job j ∈ J∗special in a partial-scheduling
instance, we are given a machine σ(j) on which j must be scheduled. Moreover, we know exactly
the set of special-job tasks that must be scheduled: these are the tasks that are completely
scheduled in I∗ on σ(j) in the LP solution x, and the other tasks are not scheduled at all.
Notice that the tasks to be scheduled are consecutive in the task chain for job j due to the
precedence constraints.

The following main lemma bounds the number of tasks discarded by the recursive algorithm
PARTIAL-SCHEDULE that solves the partial scheduling problem.

Lemma 4.4 (Main Lemma). Let (I∗, J∗, J∗special, σ, x) be a partial-scheduling instance, and let
A∗ := A(J∗) ∪ A(I∗, J∗special, x) be the tasks we need to schedule. Then, PARTIAL-SCHEDULE
returns a valid schedule S for A∗ \ Adiscarded of makespan I∗ for a set Adiscarded of discarded
tasks of size at most

|Adiscarded| ≤
ε

2
· log |I∗|

log T
· |I∗|+ ε

2m
· |A∗|.

Moreover, for every job j ∈ J∗special, the set A(I∗, j, x) of tasks is scheduled on the machine σ(j).

Observe that Lemma 4.2 follows immediately by instantiating the above lemma for the entire
interval [T ] and the set of jobs J∗ = J and J∗special = ∅. Then the total number of discarded
tasks will be

ε

2
· log T

log T
· T +

ε

2m
· |A(J)| ≤ ε · T,

where we used the fact that |A(J)| ≤ mT . Definition 4.3 also requires an LP-hierarchy solution
x of level r at least (log T )2 ·K ′.

We have T ≤ N ≤ poly(n). As we set k = O(1)m
ε · log log T and δ = ε

8k2m22k2 log T
and

K ′ = 1
δ ·mk

2 · 22k2 , we have

r = (log T )2 ·K ′ = (log n)O((m
ε

)2 log logn).

The term that determines the asymptotic running time of our algorithm in the above equa-
tion is 22k2 , which is at most (log n)O((m

ε
)2 log logn).

From now on we focus solely on proving Lemma 4.4, and we assume we are given an instance
(I∗, J∗, J∗special, σ, x). During our algorithm, I∗ does not change, but we shall move jobs from
J∗ to J∗special and extend σ accordingly. The LP-hierarchy solution x will also be updated using
the conditioning operation. Let T ∗ always denote |I∗|; note that T ∗ is some power of two. Let
I∗ denote the set of intervals in I that are sub-intervals of I∗. For an integer ` ∈ [0, log T ∗], we
use I∗` to denote the intervals in I∗ with length T ∗/2`; thus, I∗ := I∗0 ∪ I∗1 ∪ . . . ∪ I∗log T ∗ , and

each I∗` contains 2` intervals of length T ∗

2`
each.

For a job j ∈ J∗, let I ′ ∈ I∗ be the interval of smallest length such that it contains the
entire support of j. We say that I ′ owns the job j. If I ′ ∈ I∗` , then we also say that the level
` owns the job j. We use the notation J∗`′(x) to denote the subset of jobs in J∗ that are owned
by a level `′ ∈ [log T ∗]. That is,

J∗`′(x) :=

{
j ∈ J∗ : level `′ owns j

}
.

Contrast this with notation J∗(I, x), which indicates the set of jobs that have full support
in the interval I. Also notice that only jobs in J∗ are owned by intervals or levels. We say
that “the algorithm conditions on job j” or “condition on an event (a, i, t)” to mean that our
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Algorithm 1 PARTIAL-SCHEDULE
(
I∗, J∗, J∗special, σ, x

)
Input: a partial-scheduling instance (I∗, J∗, J∗special, σ, x) satisfying Definition 4.3
Output: a schedule S∗ : A(J∗) ∪A(I∗, J∗special, x) \Adiscarded → [m]× I∗ for some Adiscarded

1: if |I∗| < 2k
2

then schedule tasks by conditioning and return
2: for every job j ∈ J∗special do: x← SPLIT(x, j)
3: while there exists I ∈ I∗0 ∪ . . . ∪ I∗k2−1 and a chain C of jobs in J∗ owned by I with total

size at least δ|I| do
4: j ← the first job in C, a← last task of j
5: take (i, t) such that x(a,i,t) > 0 with the largest t
6: x← x conditioned on the event (a, i, t)
7: J∗ ← J∗ \ {j}, J∗special ← J∗special ∪ {j}, σ(j)← i
8: x← SPLIT(x, j)

9: Partition the jobs in the set J∗ as follows:
J∗top =

⋃`∗−k−1
`=0 J∗` (x); J∗mid =

⋃`∗−1
`=`∗−k J

∗
` (x); J∗bot =

⋃log T ∗

`=`∗ J∗` (x),
10: where `∗ ∈ {k, . . . , k2} is chosen satisfying the condition below:

|A(J∗mid)| ≤ ε

4
· T ∗

log T
+

ε

2m
·
(
|A(J∗mid)|+ |A(J∗top)|

)
11: for every interval I ∈ I∗`∗ do
12: PARTIAL-SCHEDULE

(
I, J∗bot(I, x), J∗special, σ, x

)
13: Insert J∗top into I∗ using Lemma 4.6.

Algorithm 2 SPLIT(x, j), where j ∈ J∗special

1: for every I ∈ I∗k2 from left to right do
2: t∗ := max

{
t ∈ I : (∃a ∈ A(I∗, j, x)) x(a,σ(j),t) > 0

}
3: if t∗ is defined then
4: let a∗ ∈ A(j) be any task with x(a∗,σ(j),t∗) > 0
5: x← x conditioned on (a∗, σ(j), t∗)

6: return x

algorithm conditions on the event x(a,i,t) = 1 for a task a ∈ A(j). Similarly, we use the phrase
“the algorithm conditions on task a”. Note that as the solution x changes due to conditioning,
the sets of jobs owned by certain intervals and levels can change as well. Recall that we call a
subset of jobs J ′ ⊆ J a chain if the precedence relation ≺ gives a total ordering on J ′. For any
subset J ′ of jobs, ∆(J ′) is defined as the maximum of

∑
j∈J ′′ pj over all chains J ′′ ⊆ J ′.

4.3 Main Steps of PARTIAL-SCHEDULE

Now we give details about our algorithm, which consists of five main steps. The pseudo-code
for the algorithm, which we call PARTIAL-SCHEDULE, is given in Algorithm 1.

Step 1: Reducing Chain Length Among Top Jobs. Let Ĵ :=
⋃k2−1
`=0 J∗` (x) be the set of

jobs that are owned by the first k2− 1 levels of I∗ in the solution x. By appropriately choosing
certain jobs in Ĵ and conditioning on events of the form xa,i,t = 1, our algorithm maintains

the invariant that there are no long chains in Ĵ . In particular, the maximum chain length
∆(Ĵ) ≤ k2δT ∗.
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The LP-hierarchy solution x changes in the following way. For every job j on which our
algorithm does the conditioning, the entire support of job j gets concentrated on a single
machine. The reason is that when we condition on an event xa,i,t = 1, the non-migratory
constraints in our LP (Eq. 5) force all the other tasks a′ of j to also have their entire support
on machine i. Since conditioning can only shrink the support of jobs, this property remains
true regardless of future conditioning operations. For every job j on which our algorithm does
conditioning, we define σ(j) as the machine on which the entire support of j resides in x.
Further, we insert the job into the set J∗special of special jobs and delete it from J∗. Hence,
by induction, we are guaranteed that in any recursive call to PARTIAL-SCHEDULE with input
parameters J ′ and J ′special, the invariant J ′ ∩ J ′special = ∅ is satisfied.

Another consequence of conditioning is that the support of some jobs in the set Ĵ shrinks,
and they move down the levels in I∗. Note however that a job j ∈ Ĵ can move down only k2

levels. We use this observation along with a simple counting argument to show that the total
number of conditioning operations required to reduce the chain length among jobs in the set Ĵ
is at most K ′, which is independent of the length of the interval I∗. In particular, we prove the
following lemma in Section 4.5.

Lemma 4.5. Let Ĵ :=
⋃k2−1
`=0 J∗` (x) denote the set of jobs owned by the intervals in I∗0 , I∗1 , . . . , I∗k2−1

according to the LP hierarchy solution x. Then, after line 8 in PARTIAL-SCHEDULE, we have
that ∆(Ĵ) ≤ k2δT ∗. Moreover, the number of iterations we run the loop on line 3 is at most K.

Step 2: Splitting Special Jobs. For every job in the set J∗special, we perform the operation of
splitting, which is given by the procedure SPLIT defined in Algorithm 2. Recall that for every
j ∈ J∗special, σ(j) is defined. Our algorithm guarantees that all the tasks of j are scheduled on
σ(j). The idea behind splitting is to ensure that every task of a job j ∈ J∗special is pushed to
the lowest level of the recursion, where it will eventually get scheduled by conditioning. This
guarantees that even if different tasks of a special job get assigned to different intervals, and
hence may be part of different recursive calls, all of them will be scheduled on the machine σ(j).
In order to do so, we need the sub-instances to satisfy Property 2 in Definition 4.3. That is,
each task a ∈ A(j) should either be completely scheduled in the sub-interval I in the solution
x or not scheduled at all. This is exactly what the procedure SPLIT does.

Here is how the splitting procedure for a job j ∈ J∗special works. LetA(I∗, j, x) := {1, 2, . . . , g}.
Starting from the left, let us denote the intervals in I∗k2 by I1, I2, . . . , I2k2

. Now, consider an

interval Iu for u ∈ [2k
2
]. Define t∗ := max{t ∈ Iu : (∃a ∈ A(I∗, j, x)) x(a,σ(j),t) > 0} as the

rightmost time slot t in the interval Iu for which some a ∈ {1, 2, . . . , g} has positive support
on machine σ(j). Let a∗ be such a task. Now we condition on the event xa∗,σ(j),t∗ = 1. After
conditioning, the fractional solution has the following property: every task a′ > a∗ is sched-
uled completely in Iu+1 ∪ Iu+2 ∪ · · · ∪ I2k2

and every task a′ ≤ a∗ is scheduled completely in
I1∪I2∪· · ·∪Iu. This follows from the precedence constraints in our LP and the choice of t∗. So,
by repeating the operation for u from 1 to 2k

2
, we partition the tasks in A(I∗, J∗special, x) into 2k

2

“chunks”, each of which contains a subset of consecutive tasks from A(I∗, j, x). We apply the
procedure first for all the jobs in the original set J∗special. When a new job j is added to J∗special

because of Step 1 of our algorithm, we also apply the procedure to j. Notice that splitting may
shrink the support of other jobs j′ ∈ J∗ ∪ J∗special because of the conditioning operations; the
running of step 2 is actually interleaved with the running of step 1.

For each special job we perform at most 2k
2

conditioning operations during splitting, which
we show is acceptable for our targeted running time. A crucial observation is that the total
number of special jobs at any level of recursion is small, hence the number of extra conditioning
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operations performed by our algorithm is small.4 This guarantees that the number of levels left
in the LP hierarchy solution x satisfies the requirements of Lemma 4.4.

Step 3: Partitioning Jobs into Top, Middle and Bottom Jobs. Let x be the LP-
hierarchy solution after the first two steps, and J∗ be the current set of jobs which have the
entire support in I∗. Note that the set J∗ may have reduced in size after the first two steps, as
we move some jobs from J∗ to J∗special in Step 1. Next, we select an index `∗ ∈ {k, . . . , k2} and
partition the jobs in J∗ into three sets.

1. A set of top jobs denoted by J∗top. These are the jobs owned by the levels 0, . . . , `∗−k−1;

formally, J∗top =
⋃`∗−k−1
`=0 J∗` (x).

2. A set of middle jobs denoted by J∗mid. These are the jobs owned by the levels `∗−k, . . . , `∗−
1; formally, J∗mid =

⋃`∗−1
`=`∗−k J

∗
` (x).

3. A set of bottom jobs denoted by J∗bot. These are the jobs owned by the levels `∗, . . . , log T ∗;

formally, J∗bot =
⋃log T ∗

`=`∗ J∗` (x).

Our algorithm completely discards the middle jobs. [25] showed using a counting argument
that there exists an index `∗ ∈ {k, . . . , k2} satisfying the following relation:

|A(J∗mid)| ≤ ε

4
· T ∗

log T
+

ε

2m
·
(
|A(J∗mid)|+ |A(J∗top)|

)
(7)

In this paper we assume that such an index exists and we refer the reader to [25] for more
details.

Step 4: Recursing on Bottom Jobs. In this step we find a partial schedule for the bottom
jobs. Notice that J∗bot is the union of the 2`

∗
disjoint sets {J∗(I, x)}I∈I∗

`∗
. For each interval

I ∈ I∗`∗ , the algorithm finds a partial schedule of jobs in J∗(I, x) ⊆ J∗bot in the interval I by
recursively invoking the procedure with input parameters (I, J∗(I, x), J∗special, σ, x). It is crucial
to note that every invocation of the recursive algorithm receives an independent copy of the
LP-hierarchy solution x; a programmer might say that x is passed by value. In other words,
the conditioning done in recursive call PARTIAL-SCHEDULE(I, J∗(I, x), J∗special, x) has no effect
on the recursive call PARTIAL-SCHEDULE(I ′, J∗(I ′, x), J∗special, x) if I, I ′ ∈ I∗`∗ are different
intervals. In fact, it can be imagined as being done in parallel.

A recursive application of Lemma 4.4 returns a feasible schedule of some tasks inA(J∗(I, x))∪
A(I, J∗special, x)) satisfying the conditions stated in the lemma. Let AI,discarded be the set of tasks
discarded by our algorithm in the interval I ∈ I∗`∗ . Let

SI : A(J∗(I, x)) ∪A(I, J∗special, x) \AI,discarded → [m]× I

denote the schedule returned by our recursive calls for each I ∈ I∗`∗ . Let Abottom-discarded =⋃
I∈I∗

`∗
AI,discarded. Then a schedule S of non-discarded tasks in bottom jobs and the tasks of

special jobs which have complete support in I can be obtained by combining the schedules SI .
Let

S : A(J∗bot) ∪A(I∗, Jspecial, x) \Abottom-discarded → [m]× I∗

denote this combined schedule. Formally, for a task a that belongs to an interval I, S(a) :=
SI(a). From our construction, S is a valid partial schedule.

Step 5: Scheduling Top Jobs. At this stage, it remains to assign tasks in the set A(J∗top)
in a non-migratory fashion. Recall that after the first four steps of our algorithm, we have a

4Note that our algorithm never conditions on negative events.

17



partial schedule of tasks belonging to the bottom jobs and the special jobs. For convenience,
define Â := A(J∗bot) ∪ A(I∗, Jspecial, x) \ Abottom-discarded. We want to extend the schedule S to
include A(J∗top). We achieve this in two stages.

• In the first stage, we build a tentative assignment of tasks in A(J∗top) in the slots left by
S. During this step, we pretend that each task in A(J∗top) is an independent entity with
no precedence constraints to any other task in the set A(J∗top). Furthermore, we do not
enforce the non-migratory constraints as well. However, this step guarantees that the
capacity constraints and the precedence constraints between tasks in A(J∗top) and Â are
satisfied. The precedence constraints are satisfied using the following strategy. For every
top job j we define an interval [rj , dj ], such that if j is scheduled within this interval, then
it satisfies all the precedence constraints to jobs in the bottom intervals. The interval
[rj , dj ] is defined assuming the worst possible schedule of the bottom jobs. Hence, it
is possible that [rj , dj ] may be shorter than the interval defined by the support of LP
solution for j. This implies that that some of the slots used to schedule top jobs in the
LP solution may not be available for our algorithm. To argue that this does not create
serious concerns, we make use of the fact that our algorithm completely discarded the jobs
in J∗mid (middle jobs). Because of this, the length of a top interval is signficantly longer
than a bottom interval. This helps us to argue that for most jobs the interval [rj , dj ] in
which j needs to be scheduled is not much shorter than the interval in which LP schedules
job j. In fact, an easy argument from [25] shows that most of the jobs in J∗top can still be
scheduled in the intervals [rj , dj ], and the number of discarded tasks is small.

• In the second stage, we convert the tentative schedule into a feasible schedule. Here we
run into a bigger technical hurdle: How do we schedule the top jobs such that a) Every
job is scheduled in the interval [rj , dj ] on a single machine; b) The precedence constraints
among the top jobs are satisfied. To accomplish this, we design a new algorithm, which
considers the top jobs in Earliest Deadline First (EDF) order of their dj values assigned in
the first stage. Then, the job is assigned to the machine on which it will have the Earliest
Completion Time (ECT). During this process we give our algorithm the flexibility of
scheduling a job partially and discard the tasks which it cannot schedule feasibly. We give
a careful argument to show that EDF and ECT policies together will guarantee that only
a small number of tasks are discarded during this process. Moreover, our partial schedule
also satisfies the constraints (a) and (b).

Our algorithms for the above two steps guarantee that the final partial schedule obtained
is indeed a valid partial schedule respecting all the precedence constraints. Let Atop-discarded

denote the total number of tasks discarded from the set A(J∗top) in the above stages. We show
the following lemma.

Lemma 4.6. The valid schedule S : Â→ I∗ can be extended to a valid schedule

S∗ :
(
Â ∪A(J∗top)

)
\Atop-discarded → [m]× I∗

such that |Atop-discarded| ≤ ε
4 ·

T ∗

log T .

4.4 Proof of the Main Lemma (Lemma 4.4)

With all the components, we can finish the proof of the main lemma.

Proof. We first check that the instance given to a recursive call of PARTIAL-SCHEDULE satisfies
the properties of Definition 4.3. By Lemma 4.5, the total number of jobs we add to J∗special in
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the loop on line 3 is at most K, since we add one job to J∗special in each iteration of the loop.

Initially, we have |J∗special| ≤ log T
|I∗| · K. Thus, after line 8 in PARTIAL-SCHEDULE, we have

that

|J∗special| ≤ log
T

|I∗|
·K +K ≤ log

T

|I∗|/2`∗
·K.

Hence, the number of special jobs given as input is small. Now we consider the number r′

of levels the LP-hierarchy solution x has after line 8. Initially, the number of levels x had was
r = log |I∗|(log T )K ′. The total number of conditioning operations performed on line 2 and in
the loop on line 3 is at most

log
T

|I∗|
·K · 2k2 +K · 2k2 =

(
log

T

|I∗|
+ 1

)
K ′ ≤ (log T )K ′.

Thus, the number r′ of levels x has after line 8 is at least log |I∗|(log T )K ′ − (log T )K ′ ≥
log |I

∗|
2`
∗ · (log T )K ′.

To sum up, since the interval I in each sub-instance has length |I
∗|

2`∗
, we have that |J∗special|

is small. Further, the number of levels x has is sufficiently large for each sub-instance. All the
other properties in Definition 4.3 follow directly from the description of PARTIAL-SCHEDULE.

Now we prove that the algorithm returns a schedule satisfying the properties stated in the
lemma. The schedule S∗ guarantees that every job j ∈ J∗ is assigned to a single machine.
On the other hand, our splitting operation guarantees that for every job j ∈ J∗special, the set
A(I, j, x) of tasks that have complete support in I is scheduled on machine σ(j). This follows
from the fact that all the tasks of special jobs are scheduled by conditioning at the lowest level
of recursion.

Thus to prove the lemma, it remains to bound the number of tasks discarded by our algo-
rithm. This calculation is same as in [25] and we do it for the sake of completeness. In the
following, the values of J∗ and J∗special are considered at the time after line 8.

Our recursive algorithm discards tasks in the following three steps.

• The entire set of middle jobs is discarded. From the discussion in Step 3 (Equation 7) of
our algorithm we know that

|A(J∗mid)| ≤ ε

4
· T ∗

log T
+

ε

2m
·
(
|A(J∗mid)|+ |A(J∗top)|

)
. (8)

• For each interval I ∈ I∗`∗ , our algorithm recursively schedules tasks in A(J∗(I, x)) ∪
A(I, J∗special, x) in the interval I. By recursive application of Lemma 4.4 we conclude that

AI,discarded ≤
ε

2
·

log( T
∗

2`∗
)

log T
· T
∗

2`∗
+

ε

2m
· |A(J∗(I, x)) ∪A(I, J∗special, x))|,

where we used the fact that |I| = T ∗

2`∗
. Therefore,

|Abottom-discarded| =
∑
I∈I∗

`∗

|AI,discarded|

≤
∑
I∈I∗

`∗

(
ε

2
·

log( T
∗

2`∗
)

log T
· T
∗

2`∗
+

ε

2m
· |A(J∗(I, x)) ∪A(I, J∗special, x))|

)

=
ε

2
· log T ∗ − `∗

log T
· T ∗ +

ε

2m
·
(
|A(J∗bot)|+ |A(I∗, J∗special, x)|

)
. (9)
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We used the fact that for every a ∈ A(I∗, J∗special, x), a is completely scheduled inside some
I ∈ I∗`∗ .
• We discard some more tasks from the set A(J∗top) while scheduling top jobs. By Lemma 4.6,

|Atop-discarded| ≤
ε

4
· T ∗

log T
. (10)

By combining (8), (9) and (10), we get

|Adiscarded| = |A(J∗mid)|+ |Abottom-discarded|+ |Atop-discarded|

≤ ε

4
· T ∗

log T
+
ε

2
· log T ∗ − `∗

log T
· T ∗ +

ε

4
· T ∗

log T

+
ε

2m

(
|A(J∗mid)|+ |A(J∗top)|+ |A(J∗bot)|+ |A(I∗, J∗special, x)|

)
≤ ε

2
· log T ∗

log T
· T ∗ +

ε

2m
· |A(J∗) ∪A(I∗, J∗special, x)|,

where we used `∗ ≥ 1 and the fact that the sets J∗top, J
∗
mid, J

∗
bot define a partition of J∗ and

J∗ ∩ J∗special = ∅. We want to bound the number of discarded jobs using the original J∗ and
J∗special, i.e, the sets specified in the input. However, it is fairly straightforward to see that the
set A(J∗) ∪A(I∗, J∗special, x) does not change when moving jobs from J∗ to J∗special. The lemma
follows by the definition of T ∗ and I∗.

Organization of the rest of Section 4: The rest of this section is devoted to proving
the lemmas mentioned in Steps 1 and 5. In Subsection 4.5 we prove Lemma 4.5. In Subsection
4.6 we prove Lemma 4.6.

4.5 Reducing the Chain Length and Bounding Number of Conditionings

In this section, we give more details about the first two steps of our algorithm. We first show
that the total number of conditionings required to reduce chain length among top jobs is small,
which in turn implies small number of conditionings during splitting operations. We begin by
proving Lemma 4.5 from Step 1, which we restate below for convenience.

Lemma 4.5. Let Ĵ :=
⋃k2−1
`=0 J∗` (x) denote the set of jobs owned by the intervals in I∗0 , I∗1 , . . . , I∗k2−1

according to the LP hierarchy solution x. Then, after line 8 in PARTIAL-SCHEDULE, we have
that ∆(Ĵ) ≤ k2δT ∗. Moreover, the number of iterations we run the loop on line 3 is at most K.

Proof. After line 8 in PARTIAL-SCHEDULE, we have that for every ` ∈
{

0, 1, . . . , k2 − 1
}

and

every interval I ∈ I∗` , the maximum chain length of jobs owned by I is at most δ|I| = δ T
∗

2`
.

Thus, the maximum chain length of jobs owned by level ` is at most δT ∗, since there are exactly
2` intervals. There are at most k2 levels, which implies that the maximum chain length of Ĵ ,
i.e, jobs owned by levels 0, 1, . . . , k2 − 1, is at most k2δT ∗.

Thus it remains to bound the number of iterations of the loop on line 3. We focus on
some interval I ∈ I∗` for some ` ∈

{
0, 1, . . . , k2 − 1

}
. Consider the chain C of jobs owned by the

interval I of length (total size) at least δ|I| and the job j ∈ C that we condition on in an iteration
of the loop. Let I1 and I2 be the left and right children of I in the laminar tree; so I1, I2 ∈ I∗`+1.

Notice that j will be removed from J∗ and thus Ĵ during the iteration. On the other hand, all
the other jobs in C will be owned by some sub-interval of I2 after the conditioning. This is true
for the following reason. Since j was owned by the interval I, it means that for the last task
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a of j and some time t ∈ I2 we have x(a,i,t) > 0. Furthermore, j was the first job in the chain
C. Therefore the entire support of the jobs in C \ {j} will lie inside I2 after the conditioning on
(a, i, t). Thus, every j′ ∈ C \ {j} is now owned by some level `′ ≥ `+ 1.

Appealing to the fact that support can only shrink upon conditioning, a single job (thus
a task) can move down at most k2 times before it is removed from Ĵ . Due to the capacity
constraints, there are at most mT ∗ tasks owned by all intervals I ⊆ I∗ in total, so there will
be at most mT ∗k2 events that a task moves down. On the other hand, in one iteration of the
loop on line 3, each task in C, of which there are at least δ|I| many, is either removed from the
set A(Ĵ) or moved down by at least one level. Note that δ|I| ≥ δT ∗

2k2
. Together we get that the

number of iterations of the loop is at most

mT ∗k2

δ T
∗

2k2

=
mk2 · 2k2

δ
= K.

4.6 Scheduling the Top Jobs

In this section we give an algorithm to schedule the top jobs J∗top. Recall that after the first
four steps of our algorithm, we have a partial schedule of tasks belonging to the bottom jobs
and the special jobs. Formally,

S : (A(J∗bot) ∪A(I∗, Jspecial, x)) \Abottom-discarded → [m]× I∗ .

Recall that for convenience we have defined Â := (A(J∗bot)∪A(I∗, Jspecial, x))\Abottom-discarded.
We want to extend S to a schedule S∗ that includes most tasks of the set A(J∗top).

As described in Step 5 of the algorithm, we accomplish this in two stages. In the first stage,
we build a tentative assignment of tasks in A(J∗top) in the slots left by S. At this stage, we do
not satisfy the non-migratory constraints but we guarantee that the capacity constraints and
the precedence constraints between tasks in A(J∗top) and Â are satisfied. During this step we
discard some tasks from the set A(J∗top), which we denote by A1

top-discarded. In the second stage,
we convert the tentative schedule into a valid partial schedule respecting all the precedence
constraints. This step also involves discarding some tasks from the set A(J∗top), which we
denote by A2

top-discarded.

Define Atop-discarded := A1
top-discarded + A2

top-discarded. The goal of this section is to prove
Lemma 4.6, which we re-state for convenience.

Lemma 4.6. The valid schedule S : Â→ I∗ can be extended to a valid schedule

S∗ :
(
Â ∪A(J∗top)

)
\Atop-discarded → [m]× I∗

such that |Atop-discarded| ≤ ε
4 ·

T ∗

log T .

4.6.1 Tentative Schedule

As we allow migration of jobs in this step, it gives us the flexibility to treat each task in A(J∗top)
almost independently. This lets us use the algorithm in [25] as a black box to build the tentative
schedule. We briefly sketch proofs of the claims made in this subsection, and refer the reader
to Section 5 in [25] for full details.

Recall that T ∗ denotes the length of interval I∗. For convenience we re-index the time slots
in I∗ so that I∗ := {1, 2, . . . , T ∗}. Let I∗ denote the binary laminar family of intervals, and let
I1, I2, . . . , Ip be the set of bottom intervals in I∗`∗ . From our construction p = 2`

∗
. For each
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interval Iv, v ∈ {1, 2, . . . , p}, let begin(Iv) and end(Iv) denote the first and the last time slots
that belong to Iv.

Our recursive algorithm schedules most of the tasks in A(J∗bot) ∪ A(I, J∗special, x) in the
intervals I1, I2, . . . , Ip. Recall that our algorithm recurses for each interval I ∈ I∗`∗ on the subset
of jobs J∗(I, x) and J∗special. By definition, every job j ∈ J∗(I, x) has its entire support in the
interval I. Furthermore, the tasks of jobs in the set J∗special that are scheduled in I are precisely
those tasks which have entire support in I. For each I ∈ I∗`∗ , our algorithm schedules a subset

of tasks in A(J∗(I, x)) ∪ A(I, J∗special, x). This implies that |A(J∗top)| ≤ m|I∗| − |Â|. In other
words, there are enough slots to schedule tasks in A(J∗top) in the slots left open by S.

In fact, we can say something stronger. Let [rj , dj ] denote the smallest interval in which the
entire support of any job j ∈ J∗top lies in the solution x. That is,

∑
i

∑
t∈[rj ,dj ]

x(i,a,t) = 1 for

every task a ∈ A(j). Let uj be the largest index such that begin(Iuj ) ≤ rj . Similarly let vj be
the smallest index such that end(Ivj ) ≥ dj . In other words, the interval [begin(Iuj ), end(Ivj )] is
the smallest interval that completely contains [rj , dj ] and whose beginning and ending coincide
with a beginning and ending of intervals in I1, I2, . . . , Ip. Let [r′j , d

′
j ] := [begin(Iuj ), end(Ivj )].

The current LP solution x also guarantees that there is enough space to fractionally schedule
tasks in A(J∗top) so that for every job j ∈ J∗top, all the tasks in A(j) are scheduled in the interval
[r′j , d

′
j ]. This can be proved by setting up a fractional bipartite matching between the jobs

and the empty slots in the intervals I1, I2, . . . , Ip. The existence of a fractional matching in a
bipartite graph implies that there exists an integral matching. Hence, there is an assignment of
tasks of A(J∗top) such that every job j is scheduled in the interval [r′j , d

′
j ].

Unfortunately, the schedule obtained using the above argument can violate the precedence
constraints between tasks in A(J∗top) and Â. The main reason is that the schedule of tasks in

Â had been constructed without taking A(J∗top) into account. We will define a release time r∗j
and a deadline d∗j for all jobs j ∈ J∗top in such a way that if all the tasks of j are scheduled in

the interval [r∗j , d
∗
j ], then the precedence constraints between A(J∗top) and Â will be satisfied. A

natural way to define the interval [r∗j , d
∗
j ] is as follows:

r∗j := begin(Iuj+1) and d∗j := end(Ivj−1). (11)

We claim that if our algorithm schedules all tasks of the job j in the interval [r∗j , d
∗
j ], then

the precedence constraints between tasks in A(J∗top) and Â will be satisfied. For this, note that

every task in Â is supported on a single interval in I∗`∗ in x; for tasks of bottom jobs this follows
from the definition, and for tasks of special jobs it is a consequence of our splitting procedure
(indeed every task of a special job is supported on a single interval in I∗k2 , and `∗ ≤ k2). Consider

a task a ∈ Â and a job j ∈ J∗top with a ≺ j. Then a must be supported on an interval Iu with
u ≤ uj . (Suppose otherwise that u > uj , and let a′ be the first task of j; then a′ is scheduled
with positive x-fraction on the interval Iuj by the definition of rj , yet the entire support of a in
x lies to the right of Iuj , contrary to a ≺ a′ and the constraints (4) of the LP.) Thus, as long as
j is scheduled after r∗j = begin(Iuj+1), the constraint a ≺ j will be satisfied. The argument for
precedence constraints of the form j ≺ a is symmetric.

Now observe that [r∗j , d
∗
j ] ( [r′j , d

′
j ]: the interval in which we are allowed to schedule the job

j is shorter than the interval in which the LP solution schedules the tasks. Therefore, it is no
longer clear that we will have enough slots to schedule all tasks in A(J∗top) and our algorithm
may have to discard some tasks. An argument in [25] shows that the number of tasks discarded
is not large.

Lemma 4.7 ([25]). A feasible partial schedule S : Â → [m] × I∗ can be extended to a new

schedule S ′ :
(
Â ∪A(J∗top)

)
\A1

top-discarded → [m]× I∗ satisfying the following properties:
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1. Consider j ∈ J∗top and let a ∈ A(j). Then in the schedule S ′, either a is assigned in the
interval [r∗j , d

∗
j ] or a ∈ A1

top-discarded.

2. The total number of discarded tasks |A1
top-discarded| ≤ 4m2−kT ∗.

3. The precedence constraints between tasks in A(J∗top) \A1
top-discarded and Â are respected.

4. The capacity constraints are satisfied.

The proof of this lemma in [25] crucially relies on the following observation. Notice that
although the interval in which we can schedule the job j shrinks, the loss is small. More
precisely, the LP solution x would have scheduled some portion of the job in the intervals Iuj
and Ivj , and now we will not be able to use them. However, the intervals in I∗`∗ are much shorter
than the intervals that own the top jobs. This is because we discarded a set of k consecutive
middle intervals. Hence, each interval I ∈ I∗`∗ is at least 2−k times shorter than an interval
I ′ ∈ I0 ∪ · · · ∪ I`∗−k−1. This fact can be used to show that we only need to throw away few
tasks to account for the loss of flexibility in scheduling top jobs.

4.6.2 From Tentative Schedule to Final Schedule

In this final step of our algorithm, we convert the schedule S ′ :
(
Â ∪A(J∗top)

)
\A1

top-discarded →
[m]× I∗ into a non-migratory schedule that satisfies all the precedence constraints among top
jobs. The main goal of this subsection is to prove Lemma 4.6. Our final schedule S∗ satisfying
the requirements of the lemma guarantees the following two invariants:

• For every job j ∈ J∗top, all the non-discarded tasks are scheduled within [r∗j , d
∗
j ].

• The assignment of tasks in Â remains the same as that in the schedule S ′.
The above two invariants together will imply that all the precedence constraints are satisfied

among non-discarded tasks in S∗. We build schedule S∗ by first designing an algorithm for a
new stand-alone scheduling problem, then using it as a black box for scheduling top jobs. We
first define the new scheduling problem.

A Deadline Scheduling Problem with Precedence Constraints: Consider a set of
jobs J with processing lengths pj , release times rj , deadlines dj and precedence constraints.
As before, we assume that each job j ∈ J is made up of pj unit-length tasks. The precedence
constraints among jobs satisfy the property that if j ≺ j′, then rj ≤ rj′ and dj ≤ dj′ . Recall that
we use ∆(J) to denote the maximum chain length in J . The time horizon [T ] is partitioned into
p equal sized intervals I1, I2, . . . , Ip. The release times and deadlines of jobs fall at beginnings
and ends of the intervals.

For each machine i, we are given a capacity function capi : [T ] → {0, 1}. If capi(t) = 1,
then the time slot t on machine i is available to schedule a task in A(J). For an interval
I = {t′, . . . , t′′}, we overload the notation to refer capi(I) as the number of available slots in

the interval I; that is, capi(I) =
∑t′′

t=t′ capi(t). Similarly, we use cap : [T ] → [m] to denote the
number of available slots at time t across all the m machines; cap(t) =

∑m
i=1 capi(t).

Suppose there is a schedule of tasks S ′ : A(J) → [m] × [T ] that assigns each task in A(J)
to a machine-timeslot pair such that no two tasks are assigned to the same machine and the
same time slot; that is, the capacity constraints on machines are satisfied. Moreover, S ′ ensures
that for each job j ∈ J , all the tasks in A(j) are scheduled within [rj , dj ]. We remark that S ′
may not respect the precedence constraints in J and the no-migration constraints. Our goal is
to schedule each j ∈ J on a single i so that precedence constraints among the jobs are satisfied
and enforce the no-migration constraints.

We prove the following theorem in this section.
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Algorithm 3 EDF+ECT

Input: A set of jobs J with release times, deadlines and precedence constraints; capacity
function capi : [T ]→ {0, 1} for each machine i.
Output: Schedule S : A(J)→ [m]× [T ] such that for a ∼ a′, either a or a′ belongs to Adiscarded

or Smac(a) = Smac(a
′).

1: Sort the jobs in J in the increasing order of their deadlines. Reindex the jobs so that
J := {1, 2, . . . , n} and d1 ≤ d2 ≤ . . . ≤ dn.

2: Initialize Adiscarded = ∅.
3: for j = 1 to n do
4: Find the earliest time slot t ∈ [T ] such that following conditions hold: i) capi(t) = 1 for

some machine i ∈ [m] and rj ≤ t ≤ dj ; ii) Cj′ < t for all j′ ≺ j.
5: If no such t exists, then set Bj := DISCARDED and add all the tasks A(j) to the set
Adiscarded.

6: If there is a t satisfying the conditions above, set Bj = t and do the following.
7: Find the set of machines M ′ = {i ∈ [m] : capi(Bj , dj) ≥ pj}.
8: if |M ′| = 0 then
9: i∗ = argmaxi{capi(Bj , dj)}.

10: Schedule capi∗(Bj , dj) tasks of the job j in the interval [Bj , dj ] on the machine i∗.
11: Set Cj = dj . Add the remaining pj − capi∗(Bj , dj) tasks to the set Adiscarded.
12: Update the capacity function capi∗ for the machine i∗ and the schedule S.

13: if |M ′| ≥ 1 then
14: Find the earliest time slot t∗ such that there exists a machine i∗ ∈ M ′ and

capi(Bj , t
∗) = pj .

15: Set Cj = t∗. Schedule all the tasks A(j) of j in the interval [Bj , Cj ] on the machine
i∗.

16: Update the capacity function capi∗ for the machine i∗ and the schedule S.

17: return S.

Theorem 4.8. There exists an algorithm that in polynomial time converts the schedule S ′ into
a valid schedule that satisfies the following properties:

1. It partially schedules every job on exactly one machine (no-migration). For a job that is
partially scheduled, we discard the remaining tasks; for the sake of the precedence con-
straints, we assume that every partially scheduled job or a fully discarded job is completely
processed.

2. The precedence constraints among the jobs are satisfied.

3. The total number of discarded tasks is at most 2p2m∆(J).

We prove the above theorem using the following scheduling algorithm, which considers jobs
in the Earliest Deadline First (EDF) order and assigns jobs to machines on which they will
have the earliest completion time (ECT). Our algorithm is given in Algorithm 3, which we call
EDF+ECT. See Figure 1 for an illustration.

For a job j, we call the interval [Bj , Cj ] the active interval. Bj denotes the first time instant
when the job is ready to be scheduled and there is an available slot on some machine i. Note
that it can be the case that no task of job j is scheduled at the time slot Bj , because we
choose the machine on which the job will have the earliest completion time. If for a job j,
Bj = DISCARDED then we say that the job is fully discarded; otherwise, if not all of its tasks
are scheduled, we say that it is partially discarded. For a fully discarded job, all its tasks belong

24



Figure 1: Figure illustrates scheduling a job j with pj = 4 in the non-migratory fashion when
m = 2. On the left, j is fully scheduled in the interval [Bj , Cj ] on M1. On the right, the first
three tasks are scheduled on machine M2, and the last task a4 is discarded.

to the set Adiscarded. We say that a job j is either partially or fully discarded in the interval
I ∈ {I1, I2, . . . , Ip} if dj ∈ I and j is either partially or fully discarded.

We call a time slot t on machine i idle if capi(t) = 1 and our schedule S does not assign any
task at time t on machine i. Roughly speaking, the idle time slots correspond to the number of
tasks we discard, and our goal going forward is to show that there are not too many idle time
slots in S. We make the following observations that will help in proving Theorem 4.8.

Observation 4.9. Fix an interval Iq for some q ∈ [p]. Suppose the following two conditions
hold:

• There is a time slot t∗ ∈ Iq that is idle on machine i in S.

• There exists a job j∗ with t∗ ∈ [rj∗ , dj∗ ] and either Bj∗ > t∗ or Bj∗ = DISCARDED.

Then there exists a job j such that t∗ ∈ [Bj , Cj ] and j ≺ j∗. Moreover, j is not scheduled on
machine i.

Proof. If no such job j exists, then, when our algorithm considers the job j∗ for scheduling, it
would set Bj∗ = t∗. This follows from line 4 of our algorithm. Moreover, if j were scheduled
on i, then it would have been scheduled on every time slot between Bj and Cj that is idle on i,
which contradicts the facts that t∗ ∈ [Bj , Cj ] and that t∗ is idle on i.

Observation 4.10. Consider a job j ∈ J with Bj 6= DISCARDED that is active in the interval
[Bj , Cj ] on machine i. Let p′j be the total number of tasks of j scheduled in [Bj , Cj ]. Then for
any other machine i′ 6= i, the number of idle time slots in the interval [Bj , Cj ] is at most p′j.

Proof. Consider the case when p′j = pj . In this case, the lemma follows since our algorithm
assigns jobs to machines on which they will have the earliest completion time. Now consider
the case when p′j 6= pj . As job j was scheduled on machine i, from line 9, it follows that i had
the maximum number of empty slots in the interval [Bj , dj ], which is equal to p′j . Since in this
case we set Cj = dj , no machine i′ 6= i had more than p′j empty slots.
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The above two observations will help us argue that the number of idle time slots on any
machine is small.

Lemma 4.11. Consider any arbitrary time interval I := {t′, . . . , t′′} ⊆ Iq for some q ∈ [p].
Suppose there is at least one job j∗ with I ⊆ [rj∗ , dj∗ ] and either Bj∗ > t′′ or Bj = DISCARDED.
Then, for any machine i ∈ [m] the number of idle time slots in I is at most ∆(J).

Proof. Consider a machine i; we will show that it has at most ∆(J) idle time slots in the
interval I. Let t∗ ∈ I be the last such time slot. Since j∗ is available at t∗, by Observation
4.9 there must exist a job j1 ≺ j∗ that is active at time t∗, i.e. t∗ ∈ [Bj1 , Cj1 ]. Now consider
the last time slot t1 < Bj1 that is empty on machine i. We claim that j1 is available for
processing at time t1. This follows from our assumptions that if j1 ≺ j∗, then rj1 ≤ rj∗ and the
release times and the deadlines of J align with the beginnings and the endings of the intervals.
Therefore, there must be a job j2 ≺ j1 such that t1 ∈ [Bj2 , Cj2 ]. Moreover, Cj2 < Bj1 as
j2 ≺ j1. We continue by induction to construct a chain of jobs jy ≺ jy−1 ≺ . . . ≺ j1 such that
[Bjy , Cjy ]∪[Bjy−1 , Cjy−1 ]∪. . .∪[Bj1 , Cj1 ] covers all the empty slots on machine i in the interval I.
These intervals are pairwise disjoint. The total size of the jobs in the chain jy ≺ jy−1 ≺ . . . ≺ j1,∑y

v=1 pjv , is at most ∆(J), since the maximum chain length among J is at most ∆(J). By
Observation 4.9, jobs j1, . . . , jy are not scheduled on i. Thus, by Observation 4.10, for any job
jv belonging to the chain, there can be at most pjv empty slots on the machine i in the interval
[Bjv , Cjv ]. Therefore, the number of all time slots idle on i in the union of these intervals is at
most

∑y
v=1 pjv ≤ ∆(J). We conclude by recalling that [Bjy , Cjy ]∪ [Bjy−1 , Cjy−1 ]∪ . . .∪ [Bj1 , Cj1 ]

covers all the idle slots on machine i.

The above lemma implies the following useful corollary.

Corollary 4.12. Suppose there is an interval Iq and a machine i with more than ∆(J) idle
time slots. If there is a job j∗ such that Bj∗ ∈ Iq+1 ∪ Iq+2 ∪ . . . ∪ Ip, then its release time
rj∗ ∈ Iq+1 ∪ Iq+2 ∪ . . . ∪ Ip.

Proof. For contradiction, let us assume that the release time of j∗ belongs to Iq′ , where q′ < q+1.
Recall that all jobs are released at the beginning of the intervals. Now, we invoke the previous
lemma on the interval Iq and the job j∗, which gives us the contradiction.

The next lemma shows that even if a job is partially discarded, the number of idle time slots
on a machine cannot be too large. This lemma accounts for the number of idle slots due to the
no-migration constraints, that is, due to the fragmentation of jobs.

Lemma 4.13. Consider any arbitrary time interval I := {t′, . . . , t′′} ⊆ Iq for some q ∈ [p].
Suppose there is at least one job j∗ with I ⊆ [rj∗ , dj∗ ] and A(j∗)∩Adiscarded 6= ∅. Then, for any
machine i the number of idle time slots in I is at most 2∆(J).

Proof. If Bj∗ > t′′, then the statement follows from Lemma 4.11. Therefore, Bj∗ ≤ t′′ and some
tasks of j∗ got discarded. By Observation 4.10, in the interval [Bj∗ , Cj∗ ] there cannot be more
than pj∗ ≤ ∆(J) idle slots on any machine i where j∗ was not scheduled (and there cannot
be any such slots on the machine where j∗ was scheduled since it was partially discarded).
A fortiori, there are at most ∆(J) such slots in the interval [Bj∗ , t

′′] ⊆ [Bj∗ , dj∗ ] = [Bj∗ , Cj∗ ]
(we have dj∗ = Cj∗ since j∗ was partially discarded). If Bj∗ ≤ t′, then we are done since
I ⊆ [Bj∗ , t

′′]. Otherwise, i.e. if Bj∗ > t′, we apply Lemma 4.11 to the interval [t′, Bj∗ − 1] and
the job j∗, obtaining that in the interval [t′, Bj∗ − 1] there can be at most ∆(J) idle time slots.
We conclude by combining the two intervals [t′, Bj∗ − 1] and [Bj∗ , t

′′].
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With all the above lemmas, it is easy to prove Theorem 4.8. For brevity, we use S−1(I) to
denote the set of tasks scheduled in the interval I in S.

Proof of Theorem 4.8. Our algorithm guarantees that in the schedule S all the tasks A(j) of a
job j ∈ J are assigned to a single machine and the precedence constraints among the jobs are
satisfied. Therefore, it only remains to show that the number of discarded tasks |Adiscarded| ≤
2p2m∆(J). The proof is based a double-counting argument, which was also used in [25]. Let
Ih, h ∈ [p] be any interval, and let α be the total number of tasks discarded in Ih. We argue
that α ≤ 2pm∆(J). As there are p intervals, this will complete the proof.

Let js be the lowest-priority (i.e. the highest-index) job that got discarded either completely
or partially in the interval Ih (if no such job exists, then we are done). Consider the set of jobs
J ′ := {j1, j2, . . . , js} and the intervals I1, I2, . . . , Ih. Imagine the following thought experiment:
Let us reschedule the jobs in the set J ′ using our algorithm in the intervals I1, I2, . . . , Ih. Let
S∗ be this new schedule. As our algorithm considers the jobs in EDF order, the schedule S∗
will be identical to S for the set J ′. In particular, this means that the interval Ih will have α
discarded tasks in S∗. This is true as we never discard a job until we hit its deadline, and by
our choice js is the highest-indexed job that got discarded. So all the tasks discarded in the
interval Ih belong to the jobs in J ′ in both schedules S and S∗.

From now on we will focus on the schedule S∗ and the set of jobs J ′. By Lemma 4.13, the
interval Ih cannot have more than 2∆(J) idle time slots on any machine i as there is a job js
that got discarded in Ih. Let g ∈ {1, 2, . . . , h} be the minimal index such that no machine i has
more than 2∆(J) empty slots in any of the intervals Ig, . . . , Ih. Let I ′ := Ig ∪ . . .∪ Ih. Consider
the following set of jobs:

J ′′ :=
{
j ∈ {j1, j2, . . . , js} : [Bj , Cj ] ⊆ I ′ or Bj = DISCARDED

}
.

For every job j ∈ J ′′ we claim that [rj , dj ] ⊆ I ′. To get this, it is enough to show that
rj ≥ begin(Ig). Then we have begin(Ig) ≤ rj ≤ dj ≤ djs = end(Ih). Our claim is clearly true if
g = 1. Otherwise we argue as follows. From our choice of the index g, Ig−1 has more than ∆(J)
(in fact, 2∆(J)) many idle time slots on some machine i. Now consider a job j ∈ J ′′. The first
case is that Bj ∈ I ′. Then from Corollary 4.12 (applied to Ig−1) we have rj ∈ I ′. The second
case is that Bj = DISCARDED. Towards a contradiction suppose that rj ≤ begin(Ig−1). By
applying Lemma 4.11 to Ig−1, we get that Ig−1 has at most ∆(J) idle slots on any machine,
which contradicts our choice of the index g. Therefore again rj ∈ I ′.

Conversely, any job j ∈ J ′ that has a task scheduled in I ′ must be in J ′′. Suppose otherwise;
then we would have g > 1, Bj < begin(Ig) ≤ Cj , and rj ≤ begin(Ig−1). This, together with
the fact that Ig−1 has more than 2∆(J) idle slots on some machine, implies that j should have
been scheduled fully in I1 ∪ · · · ∪ Ig−1 (via an argument similar to the proof of Lemma 4.11),
which is a contradiction.

Now we can use a simple double-counting trick to bound α. Let Adiscarded(J ′′) ⊆ A(J ′′)
denote the subset of tasks discarded by our schedule S∗. Then,

|A(J ′′)| ≥ |(S∗)−1(I ′)|+ |Adiscarded(J ′′)| ≥ cap(I ′)− 2pm∆(J) + α. (12)

The last inequality above follows from the fact that there are at most p intervals in {Ig, . . . , Ih}
and, by our definition of g, any interval Ig, . . . , Ih has at most 2∆(J) empty slots on any ma-
chine. But note that every task in A(J ′′) needs to be scheduled in I ′, because for every job
j ∈ J ′′, [rj , dj ] ⊆ I ′. By our assumption, there is a (possibly invalid) schedule S ′ that assigns
every task in A(J ′′) in the interval I ′. Therefore, A(J ′′) ≤ cap(I ′). Combining this with (12)
we have α ≤ 2pm∆(J). This completes the proof.
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Now we are ready to prove Lemma 4.6, which bounds the total number of tasks discarded
in the process of scheduling top jobs.

Proof of Lemma 4.6. We obtain the schedule S∗ by applying Theorem 4.8 on the jobs in the set
J∗top. For every job j ∈ J∗top, we define the truncated job length p′j by taking into account the

discarded tasks in A1
top-discarded. We define the release time of j as r∗j and the deadline as d∗j ,

where r∗j , d
∗
j are defined in Equation (11). For each machine i, capi(t) = 1 if time t on machine i

is not assigned any task in the schedule S. Recall that S gives an assignment of a subset of
tasks of the bottom jobs and the special jobs (Â) in the interval I∗.

By Lemma 4.5, the maximum chain length of jobs in J∗top is at most k2δT ∗, where T ∗ is
the length of interval I∗. Therefore, by Theorem 4.8, the total number of tasks discarded in
converting the tentative schedule into an actual schedule is given by

|A2
top-discarded| ≤ 2p2m · k2δT ∗.

By Lemma 4.7, we have

|A1
top-discarded| ≤ 4m2−kT ∗.

Therefore,

|Atop-discarded| = |A1
top-discarded|+ |A2

top-discarded|
≤ 2p2m · k2δT ∗ + 4m2−kT ∗

≤ ε

4
· T ∗

log T

The last inequality follows from substituting p = 2`
∗ ≤ 2k

2
, k = O(1)m

ε log log T , and δ =
ε

8k2m22k2 log T
.

5 Minimizing Makespan Under Precedence Constraints with
Communication Delays

Now we consider the problem of minimizing the makespan when jobs have precedence constraints
and communication delay constraints. For the rest of this section, we sometimes refer to the
problem we studied in the first part of the paper , Pm|prec, pmtn|Cmax, as “the no-delay
problem” or ”the first problem” and we refer the problem, Pm|prec, pmtn, cj,j′ |Cmax, as “the
delay problem”. We follow the notation developed for the no-delay problem, and whenever
necessary remind the readers their meaning. If we use a notation without definition in this
section, it implies that its meaning is same as in the no-delay problem.

Similar to the no-delay problem, the input to the problem consists of a set of jobs J , where
each job j ∈ J has a processing length pj , the jobs have precedence constraints, and we are
given a set of m machines. If there is a precedence constraint j ≺ j′, then we require that
job j′ can only start after job j is completed. Furthermore, if j and j′ are processed on two
different machines, then the processing of job j′ cannot start earlier than cj,j′ > 0 time units
after the completion time of j. We assume without loss of generality that cj,j′ are natural
numbers. If, however, j and j′ are processed on the same machine, then j′ can start right
after the completion of job j. We study the case when maxj≺j′{cj,j′} = O(1) case, which
is a generalization of the well studied case of when communication delays are all equal to 1.
However, to keep the notation simple, we first present our proof assuming c = 1. At the end,
when it will be clear that our framework is general enough to handle maxj≺j′{cj,j′} = O(1), and
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we give a sketch of our proof for maxj≺j′{cj,j′} = O(1). The goal is to schedule jobs satisfying
the precedence and communication delay constraints so as to minimize makepsan. In the three
field notation, the problem is denoted by Pm|prec,pmtn, c = 1|Cmax.

Our goal is to assign each job to a single machine and specify the schedule of tasks such
that the precedence constraints and communication delay constraints among jobs are satisfied.
Formally, we define a valid schedule as follows.

A schedule S for a subset A′ ⊆ A(J) of tasks to an interval I ⊆ [T ] with integer length is a
function S : A′ → [m]× I that indicates the (machine, slot) pair that each task is assigned to.
For every a ∈ A′, we then use Smac(a) and Stime(a) to denote the first and second component
of S(a) respectively.

Definition 5.1. A schedule S for A′ ⊆ A(J) is valid if it satisfies the following constraints.

• Capacity Constraints: for every two tasks a 6= a′ ∈ A′, we have S(a) 6= S(a′).

• No-migration Constraints: For every pair of tasks a ∼ a′ ∈ A′, we have Smac(a) =
Smac(a

′).

• Precedence Constraints: For every pair of tasks a ≺ a′ ∈ A′, we have Stime(a) < Stime(a
′).

• Communication Delay Constraints: Consider a pair of jobs j ≺ j′ with precedence con-
straints. Suppose a1,j′ ∈ A′ and apj ,j ∈ A′. If Smac(a1,j′) 6= Smac(apj ,j), then

Stime(a1,j′) > Stime(apj ,j) + 1

The first three constraints of the above definition is same as Definition 4.1 for the no-delay
problem. So, let us focus on the communication delay constraints. For a pair of jobs j ≺ j′ with
precedence constraints, we enforce the communication delay constraints only if the first task of
j′ (that is a1,j′) and the last task of j ( that is apj ,j) are in the set A′. The reason is that if
either one of them is not in the set A′, it means that our algorithm has discarded that task. For
such jobs, we enforce the communication delay constraints when inserting the discarded tasks
back.

5.1 LP Relaxation

Similar to our first result, the algorithm to prove Theorem 1.2 is also based on rounding Sherali-
Adams lift of a LP for the problem. We now give a new LP relaxation for minimizing makespan
with precedence and communication delay constraints, which extends the LP for the no-delay
problem. Similar to the LP for the no-delay problem, we use the variables x(a,i,t), which are
intended to be 1 if the task a ∈ A(J) is assigned to machine i ∈ [m] at time t ∈ [T ]. Let
[m]−i denote the set {[m] \ {i}}. In our new LP, we have all the constraints in the LP for the
precedence constraints problem (i.e, Constraints (2) to (6)). The only new set of constraints we
introduce is the following one:

x(a1,j′ ,i,t+1) +
∑

i′∈[m]−i

x(apj,j ,i
′,t) ≤ 1 ∀j ≺ j′, i ∈ [m], t ∈ [T − 1] (13)

Consider a pair of jobs j ≺ j′. We want to guarantee that if j and j′ are scheduled on
different machines, then j′ starts at least 1 time step after the completion of job j. This is
equivalent to satisfying the communication delay constraint on the last task of job j and the
first task of job j′. This further implies that if x(apj,j ,i,t)

= 1 for some machine i and time slot t,

then x(a1,j′ ,i
′,t) = 0 for all machines i′. The constraints (13) precisely guarantee this. Therefore,
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if there is an optimal integral solution with makespan at most T , then there is a feasible solution
to the LP. We use P(T ) (or P) to denote the polytope define by LP (2-6, 13). Our main goal
in this section is to prove the following theorem.

Theorem 5.2. Let T be the smallest value for which the Sherali-Adams lift of LP (2-6) to
r = (log n)((m2/ε2). log logn) rounds has a feasible solution x. Then any feasible solution x can be
rounded to produce valid a schedule S : A(J) → [m] × [(1 + ε)T ] satisfying the Definition 5.1.
Therefore, the makespan of S is at most (1 + ε)T .

Note that above theorem immediately implies Theorem 1.2.

Remark: We note that constraints (13) are not the strongest inequalities we can write for
the communication delay constraints. We can indeed describe exactly the convex hull of all
integral schedules restricted to the 2 jobs j ≺ j′. However, our algorithm uses the constraints
only at the lowest level of recursion where it schedules jobs by conditioning. So any constraint
that gives the correct set of integral solutions will be sufficient for our goal.

5.2 Rounding Algorithm

Towards proving Theorem 5.2, we first design an algorithm that only schedules a subset A(J) \
Adiscarded of tasks.

Lemma 5.3. Let T be the smallest value for which the Sherali-Adams lift of LP (2-6, 13)
to r = (log n)((m2/ε2). log logn) rounds has a feasible solution x. Then there is a valid schedule
S : A(J) \Adiscarded → [m]× [T ] with |Adiscarded| ≤ εT .

Our algorithm to prove Lemma 5.3 uses PARTIAL-SCHEDULE from the first part, but modi-
fies it to satisfy the communication delay constraints. Before we proceed with description of how
we accomplish that, let us summarize the three places in which the algorithm for the no-delay
problem actually makes the assignment of tasks to time slots.

1. Scheduling of tasks by conditioning: Consider the first line of PARTIAL-SCHEDULE pro-
cedure. Here, if the length of the interval |I∗| < 2k

2
, then the algorithm schedules tasks

by conditioning on the LP solution.

2. Scheduling of top jobs: The second place where our algorithm assigns tasks to time slots
is when inserting the top jobs in the last line of the procedure PARTIAL-SCHEDULE.

3. Scheduling of discarded tasks: Lastly, our algorithm assigns tasks to time slots when
scheduling the discarded tasks.

The high level idea of how we deal with the communication delay constraints is the following:
The constraints (13) of the LP guarantee that if tasks are scheduled by conditioning, then the
communication delay constraints are satisfied. For every discarded task, we simply create an
empty time slot on either side of the time slot on which it is scheduled. This guarantees
that no matter how other jobs that have precedence relationship with it are scheduled, the
communication delay constraints are satisfied. Finally, when scheduling top jobs we will make
use of the fact that the chain lengths among top jobs are small, hence the communication delay
constraints do not pose a big problem. We give a formal proof of validity of our schedule later
in proof of Theorem 5.2.

We give the modified PARTIAL-SCHEDULE algorithm for the delay problem is given in
Algorithm 4, which we call PARTIAL-SCHEDULE-COMM. First we highlight the places where
the two algorithms differ.
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1. Consider the first line of PARTIAL-SCHEDULE-COMM. Here, if the length of the interval
is sufficiently small, then our algorithm schedules the remaining tasks by conditioning the
LP solution x. Next, it also discards completely the set of the tasks scheduled in the last
time slot of the interval I∗; there can be m such tasks. We will make use of this fact in the
proof of Theorem 5.3 to show that the communication constraints are satisfied across all
jobs. Note that the length of the interval at the last level of recursion is at least Ω(log n),
hence, the number of such discarded tasks across all the intervals is very small.

2. The main difference between PARTIAL-SCHEDULE-COMM and PARTIAL-SCHEDULE is
in scheduling the top jobs. For this step we give a new algorithm to insert top jobs such
that communication delay constraints taken into account.

Algorithm 4 PARTIAL-SCHEDULE-COMM
(
I∗, J∗, J∗special, σ, x

)
Input: a partial-scheduling instance (I∗, J∗, J∗special, σ, x) satisfying Definition 4.3
Output: a schedule of S∗ : A(J∗)∪A(I∗, J∗special, x) \Adiscarded → [m]× I∗ for some Adiscarded

1: if (|I∗| < 2k
2
) then

2: schedule the tasks by conditioning on the LP solution x.
3: discard all the tasks scheduled at the last time slot |I∗| of the interval I∗.
4: return.
5: for every job j ∈ J∗special do: x← SPLIT(x, j)
6: while there exists I ∈ I∗0 ∪ . . . ∪ I∗k2−1 and a chain C of jobs owned by I with total size at

least δ|I| do
7: j ← the first job in C, a← last task of j,
8: take (i, t) such that x(a,i,t) > 0 with the largest t
9: x← x conditioned on the event (a, i, t)

10: J∗ ← J∗ \ {j}, J∗special ← J∗special ∪ {j}, σ(j)← i
11: x← SPLIT(x, j)

12: Partition the jobs in the set J∗ as follows:
J∗top =

⋃`∗−k−1
`=0 J∗` (x); J∗mid =

⋃`∗−1
`=`∗−k J

∗
` (x); J∗bot =

⋃log T ∗

`=`∗ J∗` (x),
13: where `∗ ∈ {k, . . . , k2} is chosen satisfying the condition below:

|A(J∗mid)| ≤ ε

4
· T ∗

log T
+

ε

2m
·
(
|A(J∗mid)|+ |A(J∗top)|

)
14: for every interval I ∈ I∗`∗ do
15: PARTIAL-SCHEDULE

(
I, J∗bot(I, x), J∗special, σ, x

)
16: Insert J∗top to I∗ using Lemma 5.4.

From the pseudo-code of PARTIAL-SCHEDULE-COMM, it is clear that most of the lemmas
proved for the precedence constrained scheduling directly extends to the communication delay.
Thus it only remains to argue that one can schedule the top jobs without discarding too many
tasks even when there are communication delay constraints.

5.3 Scheduling the Top Jobs With Communication Delay Constraints

Now we give more details about PARTIAL-SCHEDULE-COMM to schedule top jobs respecting
the communication delay constraints. Fix a recursive invocation of the procedure with the input
instance instance (I∗, J∗, J∗special, σ, x). We assume that the input satisfies Definition 4.3 given
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in the first half of the paper. As, the first 4 steps of PARTIAL-SCHEDULE-COMM procedure
remains exactly the same as PARTIAL-SCHEDULE, we assume that we have a partial schedule
of tasks belonging to the bottom jobs and the special jobs. Formally,

S : (A(J∗bot) ∪A(I∗, Jspecial, x)) \Abottom-discarded → [m]× I∗

Let Â := (A(J∗bot) ∪ A(I∗, Jspecial, x)) \ Abottom-discarded for rest of this subsection. We
want to extend the schedule S to S∗ which includes most of the tasks of the set A(J∗top). In
particular, we want to prove the following lemma which is a counterpart to Lemma 4.6, but
with communication delay constraints.

Lemma 5.4. The valid schedule S : Â→ I∗ can be extended to a valid schedule

S∗ :
(
Â ∪A(J∗top)

)
\Atop-discarded → [m]× I∗

such that |Atop-discarded| ≤ ε
4 ·

T ∗

log T .

Our strategy to prove the above lemma follows the same framework as in the no-delay
problem. In the first stage, we build a tentative assignment of tasks in A(J∗top) in the slots
left open by S. At this stage, we only make sure that capacity constraints (that is, only 1
task is scheduled in 1 time slot on a machine) and the precedence constraints between tasks in
A(J∗top) and Â are satisfied. Both the communication delay constraints and the non-migratory
constraints may be violated, and will be fixed in the second stage. During this step we discard
some tasks from the set A(J∗top), which we denote by A1

top-discarded. We obtain this schedule by
applying the tentative schedule algorithm from Section 4.6.1 for the no-delay problem. Then
we get the following lemma.

Lemma 5.5 ([25]). A feasible partial schedule S : Â → I∗ of tasks in bottom jobs can be

extended to a new schedule S ′ :
(
Â ∪A(J∗top)

)
\ A1

top-discarded → [m] × I∗ satisfying following

properties:

1. Consider j ∈ J∗top and let a ∈ A(j). Then in the schedule S ′, either a is assigned in the
interval [r∗j , d

∗
j ] or a ∈ A1

top-discarded.

2. The total number of discarded tasks |A1
top-discarded| ≤ 4m2−kT ∗.

3. The precedence constraints between tasks in
(
A(J∗top) \A1

top-discarded

)
and Â are respected.

4. The capacity constraints are satisfied.

Note that above conditions do not guarantee that the communication delay constraints

hold between jobs in
(
A(J∗top) \A1

top-discarded

)
and Â. Next, we convert the tentative schedule

into a valid partial schedule respecting all the precedence constraints and communication delay
constraints. During this step our algorithm discards some more tasks from the set A(J∗top),
which we denote by A2

top-discarded. Define A1
top-discarded = A1

top-discarded +A2
top-discarded. Our final

schedule

S∗ :
(
Â ∪A(J∗top)

)
\Atop-discarded → [m]× I∗

satisfies the following guarantees:

• For every job j ∈ J∗top, all the non-discarded tasks are scheduled within [r∗j , d
∗
j ].

• The assignment of tasks in Â remains same as that in the schedule S ′.
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• The communication delay constraints are satisfied among all non-discarded job.

The first two invariants guarantee that the precedence constraints are satisfied among all
non-discarded tasks. We will argue S∗ also satisfies the communication delay constraints, and
hence is a valid partial schedule of non-discarded tasks satisfying Definition 5.1. Similar to what
we did in the first half of the paper, we build schedule S∗ by first designing an algorithm for a
new stand-alone scheduling problem, then using it as a black-box for scheduling top jobs.

5.4 A Deadline Scheduling Problem with Precedence and Communication
Delay Constraints

We are given a set of jobs J with processing lengths pj , release times rj , deadlines dj . The jobs
have precedence constraints and communication delay constraints. The precedence constraints
among jobs satisfy the property that if j ≺ j′, then rj ≤ rj′ and dj ≤ dj′ . Recall that we use
∆(J) to denote the maximum chain length in J . The time horizon {1, 2, . . . , T} is partitioned
into p equal sized intervals I1, I2, . . . , Ip. The release times and deadlines of jobs correspond to
the beginning and the end of the intervals. For each machine i, we are given a capacity function
capi : [T ] → {0, 1}. If capi(t) = 1, then the time slot t on machine i is available to schedule a
task in A(J).

Suppose there is a schedule of tasks S ′ : A(J)→ [m]× [T ] that assigns each task in A(J) to
a machine, time slot pair such that no two tasks are assigned to the same machine and the same
time slot; that is, capacity constraints on machines are satisfied. Moreover, S ′ ensures that for
each job j ∈ J , all its tasks A(j) are scheduled within [rj , dj ]. However, S ′ may not respect the
precedence and communication delay constraints in J , the schedule may not be non-migratory.
Our goal is to schedule each j ∈ J on a single i such that the precedence and communication
delay constraints among the jobs is satisfied, and the schedule is non-migratory. We prove the
following theorem in this subsection.

Theorem 5.6. There exists an algorithm that in polynomial time converts the schedule S ′ into
a valid schedule σ that satisfies the following properties:

1. It partially schedules every job on exactly one machine (no-migration). For a job that is
partially scheduled, we discard the remaining tasks; For the sake of the precedence con-
straints, we assume that every partially scheduled job or a fully discarded job is completely
processed.

2. The precedence constraints among the jobs is satisfied.

3. The communication delay constraints among the jobs is satisfied, as given in Definition
5.1.

4. The total number of discarded tasks is at most 6p2m∆(J).

We prove the above theorem by extending the procedure EDF+ECT described in Algorithm
3 to satisfy the communication delay constraints. We give the pseudocode in Algorithm 5, and
refer to the procedure as EDF+ECT+COMM.

To prove how our algorithm satisfies the communication delay constraints, we need the
following simple observation.

Observation 5.7. Fix a job j ∈ J for which Bj 6= DISCARDED. Consider the active interval
[Bj , Cj ] as set by the procedure EDF+ECT+COMM. Then, no task of job j is scheduled at the
time slots Bj and Cj.

Proof. See Figure 2 for a proof by pictures. Consider the definition of Bj in line 6 of the
algorithm. This is the first time slot at which job j can be scheduled while respecting the
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Algorithm 5 EDF+ECT+COMM

Input: A set of jobs J with release times, deadlines and precedence constraints; capacity
function capi : [T ]→ {0, 1} for each machine i.
Output: Schedule S : A(J) → [m] × ([T ]) such that for a ∼ a′, either a or a′ belongs to
Adiscarded or Smac(a) = Smac(a

′).

1: Sort the jobs in J in the increasing order of their deadlines. Reindex the jobs so that
J := {1, 2 . . . , n} and d1 ≤ d2 ≤ . . . ≤ dn.

2: Initialize Adiscarded = ∅.
3: for j = 1 to n do
4: Find the earliest time slot t ∈ [T ] such that following conditions hold: i) capi(t) = 1 for

some machine i ∈ [m] and rj ≤ t ≤ dj ; ii) Cj′ < t for all j′ ≺ j.
5: If no such t exists, then set Bj := DISCARDED and add all tasks A(j) to the set
Adiscarded.

6: If there is a t satisfying the conditions above, set Bj = t and do the following.
7: Find the set of machines M ′ ⊂ [m] such that ∀i ∈M ′, capi(Bj + 1, dj − 1) ≥ pj .
8: if |M ′| = 0 then
9: i∗ = max

i
{capi(Bj + 1, dj − 1)}.

10: Schedule capi(Bj + 1, dj − 1) tasks of the job j in the interval [Bj + 1, dj − 1] on the
machine i∗.

11: Set Cj = dj . Add the remaining pj − capi(Bj + 1, dj − 1) tasks to the set Adiscarded.
12: Update the capacity function capi∗ for the machine i∗.

13: if |M ′| ≥ 1 then
14: Find the earliest time slot t∗ ≤ dj − 1 such that there exists a machine i∗ ∈M ′ and

capi(Bj + 1, t∗) = pj .
15: Set Cj = t∗ + 1. Schedule the tasks A(j) in the interval [Bj + 1, Cj − 1] on the

machine i∗ and update S.
16: Update the capacity function capi∗ for the machine i∗.

17: return S.

precedence constraints; that is, for every j′ ≺ j, Cj′ < Bj . Similarly, we define Cj as either dj
or the earliest time slot t∗+ 1 such that there are pj empty time slots on some machine i in the
interval [Bj , t

∗]; See the lines 15 and 11. From lines 10 and 15, it is clear that our algorithm
does not schedule any task of job j at the time steps Bj and Cj .

We will argue in the proof of Theorem 5.2 that above observation immediately implies that
the communication delay constraints are satisfied for a pair of jobs j and j′ if either one of them
happen to be a top job.

For now, we focus on arguing that EDF+ECT+COMM did not discard too many tasks.
Interestingly, we show that the total number of tasks discarded by our algorithm to enforce
communication delay constraints is only factor 5 more than EDF+ECT. The intuition is that
every time that was left empty to satisfy a communication delay constraint should also account
for the decrease in chain length. As the chain length among top jobs is small, we argue that
wasted time slots is also small. We now give more details about EDF+ECT+COMM.

We call a time slot t on machine i as idle if capi(t) = 1 and our schedule S does not assign
any task at time t on machine i. The idle time slots correspond to the number of tasks we
discard, and our goal going forward is to show that there are not too many idle time slots in S.
The following observations are needed for proving Theorem 4.8.
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Figure 2: The figure illustrates inserting a job j with pj = 4 on two machines. On the left,
the job is fully scheduled in the interval [Bj , Cj ] on machine M1. On the right, the task a4 is
discarded but the remaining tasks are scheduled on M2. In the both cases, notice that no task
of j is scheduled either at Bj or at Cj .

Observation 5.8. Fix an interval Iq for some q ∈ [p]. Suppose the following two conditions
hold:

• There is a time slot t∗ ∈ Iq that is idle on machine i in S.

• There exists a job j∗ with t∗ ∈ [rj∗ , dj∗ ] and Bj∗ > t∗ or all the tasks A(j∗) ∈ Adiscarded.

Then there exists a job j such that t∗ ∈ [Bj , Cj ] and j ≺ j∗.

Proof. Proof of the above observation follows by the fact that if no such job j exists, then when
our algorithm considers the job j∗ then it would setBj = t∗; refer to line 6 in EDF+ECT+COMM.

Observation 5.9. Consider a job j ∈ J with Bj 6= DISCARDED that is active in the interval
[Bj , Cj ]. Let p′j be the total number of tasks scheduled in [Bj , Cj ] on machine i. Then for any
other machine i′ 6= i, the number of idle time slots in the interval [Bj , Cj ] is at most p′j + 2.

Proof. See Figure 2 for a proof by pictures. Consider the case when p′j = pj . In this case, the
lemma follows from the observation that our algorithm assigns jobs to machines on which they
will have earliest completion time; See line 14 of the algorithm. Now consider the case when
p′j 6= pj . As job j was scheduled on machine i, from line , it follows that i had the maximum
number of empty slots in the interval [Bj + 1, dj − 1], which is at most p′j . Therefore, the
maximum number of empty slots on any machine in the interval [Bj , dj ] is at most p′j +2. Since
in this case we set Cj = dj , we complete the lemma.

We will use the above facts to argue that the number of idle time slots on any machine is
small.

Lemma 5.10. Consider any arbitrary time interval I := {t′, . . . , t′′} ⊆ Iq for some q ∈ [p].
Suppose there is at least one job j∗ with I ⊆ [rj∗ , dj∗ ] and Bj∗ > t′′ or all the tasks A(j∗) ∈
Adiscarded (Bj = DISCARDED). Then, for any machine i ∈ [m] the number of idle time slots
in I is at most 3∆(J).
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Before we proceed with the proof, contrast the above lemma with Lemma 4.11; the number
of idle slots increases in communication delay case increases by a factor of 3.

Proof. We prove this by showing a contradiction that if there are more than 3∆(J) idle time slots
on a machine, then the maximum chain length among jobs in J is more than ∆(J). Consider a
machine i with 3∆(J) + 1 idle time slots in the interval I. Let t∗ ∈ I be the latest time slot on
machine i that is idle. Since j∗ is available at t∗, by Observation 5.8, it must be the case that
there exists a job j1 ≺ j∗ that is active at time t∗, which implies t∗ ∈ [Bj1 , Cj1 ]. Now consider
the latest time slot t′ < Bj1 that is empty on machine i. We claim that j1 is available for
processing at time t′. This follows from our assumptions that if j1 ≺ j∗, then rj1 ≤ rj∗ and the
release times and the deadlines of J align with the beginnings and the endings of the intervals.
Therefore, there must be a job j2 ≺ j1 such that t′ ∈ [Bj2 , Cj2 ]. Moreover, Cj2 < Bj1 as j2 ≺ j1.
We continue by induction to construct a chain of jobs jy ≺ jy−1 ≺ . . . ≺ j1 ≺ j∗ such that
[By, Cy]∪ [By−1, Cy−1]∪ . . .∪ [Bj1 , Cj1 ] covers all the empty slots on machine i in the interval I.
Furthermore, for any two intervals I ′, I ′′ ∈ {[By, Cy], [By−1, Cy−1], . . . , [Bj1 , Cj1 ]}, I ′ ∩ I ′′ = ∅.
The total processing lengths of the jobs in the chain jy ≺ jy−1 ≺ . . . ≺ j1 ≺ j∗,

∑y
v=1 pv, is

at most ∆(J), since the maximum chain length among J is at most ∆(J). By Observation
5.9, for any job jv belonging to the chain, there can be at most pjv + 2 empty slots on the
machine i in the interval [Bjv , Cjv ]. Therefore,

∑y
v=1 Idlei(Bjv , Cjv) ≤

∑y
v=1(pv + 2) ≤ 3∆(J).

However, [By, Cy]∪ [By−1, Cy−1]∪ . . .∪ [Bj1 , Cj1 ] covers all the empty slots on machine i, which
is a contradiction.

The above lemma implies the following useful corollary.

Corollary 5.11. Suppose there is an interval Iq and a machine i with more than 3∆(J) idle
time slots. If there is a job j∗ such that Bj∗ ∈ Iq+1 ∪ Iq+2 ∪ . . .∪ Ip, then the release time of job
rj∗ ∈ Iq+1 ∪ Iq+2 ∪ . . . ∪ Ip.

Proof. For contradiction, let us assume that the release time of j∗ belongs to Iq′ , where q′ < q+1.
Recall that all jobs are released at the beginning of the intervals. Now, we invoke the previous
lemma on the interval Iq and the job j∗, which gives us a necessary contradiction.

The next lemma shows that even if a job is partially discarded then the number of idle time
slots on a machine cannot be too much.

Lemma 5.12. Consider any arbitrary time interval I := {t′, . . . , t′′} ⊆ Iq for some q ∈ [p].
Suppose there is at least one job j∗ with I ⊆ [rj∗ , dj∗ ] and Bj∗ > t′ or a subset of the tasks
A(j∗) ∈ Adiscarded. Then, for any machine i the number of idle time slots in I is at most
6∆(J).

Proof. If Bj∗ ≥ t′′, then the proof follows from Lemma 5.10. Therefore, Bj∗ ≤ t′′ and some
tasks of j∗ got discarded. By Observation 5.9, in the interval [Bj , t

′′] there cannot be more
than pj∗ + 2 ≤ ∆(J) + 2 idle slots on any machine i. By applying Lemma 5.10 to the interval
[t′, Bj∗ − 1] and job j∗, we conclude that in the interval [t′, Bj∗ − 1] there can be at most 3∆(J)
idle time slots. Therefore, there can be at most 3∆(J) + ∆(J) + 2 ≤ 6∆(J) idle slots on any
machine i.

With above two observations, it is easy to prove Theorem 5.6. For brevity, we use S−1(I)
to denote the set of tasks scheduled in the interval I in S.

Proof of Theorem 5.6. Our algorithm guarantees that in the schedule S all the tasks A(j) of
a job j ∈ J are assigned to a single machine and the precedence constraints among the jobs
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is satisfied. Moreover, communication delay constraints are satisfied as our algorithm while
scheduling a top job j always leaves the first slot in the active interval [Bj , Cj ] empty. Therefore,
it only remains to show that the number of discarded tasks |Adiscarded| ≤ 6p2m∆(J), which now
readily follows from the proof of Theorem 4.8 from the first part.

Now we are ready to prove Lemma 5.4, which bounds the total number tasks discarded in
inserting top jobs.

Proof. We obtain the schedule S∗ by applying Theorem 5.6 on the jobs in the set J∗top. For
every job j ∈ J∗top, we define the truncated job length p′j by taking into account the discarded

tasks in A1
top-discarded. We define the release time of j as r∗j and the deadline as d∗j , where r∗j , d

∗
j

are defined in Lemma 5.5 For each machine i, capi(t) = 1 if time t on machine i is not assigned
any task in the schedule S. Recall that S gives an assignment of subset of tasks in the bottom
jobs and the special jobs (Â) in the interval I∗.

The maximum chain length of jobs in J∗top is at most k2δT ∗, where T ∗ is the length of interval
I∗. This follows by applying Lemma 4.5 for the no-delay problem to our setting. Therefore, by
Theorem 5.6, the total number of tasks discarded in converting the tentative schedule into an
actual schedule is given by

|A2
top-discarded| ≤ 5p2m · k2δT ∗.

By Lemma 5.5,

|A1
top-discarded| ≤ 4m2−kT ∗.

Therefore,

|Atop-discarded| = |A1
top-discarded|+ |A2

top-discarded|
≤ 5p2m · k2δT ∗ + 4m2−kT ∗

≤ ε

4
· T ∗

log T

The last inequality follows from substituting p = 2`
∗ ≤ 2k

2
, k = O(1)m

ε log log T , and we set
δ = ε

16k2m22k2 log T
.

5.5 Proof of Theorem 5.2

First we note that guarantee of Lemma 5.4 is exactly same as the guarantee of Lemma 4.6
for the no-delay problem. As rest of the steps of PARTIAL-SCHEDULE-COMM remains exactly
same as PARTIAL-SCHEDULE, all the lemmas we proved for PARTIAL-SCHEDULE procedure
also directly extend to the PARTIAL-SCHEDULE-COMM. Hence it is not hard to see that a
proof of Lemma 5.3 follows by repeating the arguments in the proof of Lemma 4.2 for the
no-delay problem. We omit the proof as the details are fairly straightforward.

Now we have all the ingredients to prove our main result for the delay problem.

Proof of Theorem 5.2. Set ε′ = ε/3. By Lemma 5.3, there is a partial schedule for S for A(J) \
Adiscarded of makespan [T ] with |Adiscarded| ≤ ε′T . We extend S to a valid schedule S∗ for A(J)
with makespan [T + 3|Adiscarded|] as follows. We give a procedure to insert one discarded task
such that all the precedence and communication constraints are satisfied. The final schedule
is constructed by repeating this procedure for each discarded task. Consider a discarded task
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a. Let t be the earliest time step in S where a can be scheduled respecting the precedence
constraints. Now, create three new private slots at t, t+ 1 and t+ 2 for the task a. Schedule the
task a at the time step t+ 1 on the machine i such that non-migratory constraints are satisfied.
The makespan increases by an additive factor of 3 for every discarded task, and hence the total
increase in makespan is 3|Adiscarded|. As |Adiscarded| ≤ εT/3, we conclude that makespan of the
our schedule is at most (1 + ε)T .

It is easy to see that the precedence constraints and non-migratory constraints are satisfied
by our schedule. It remains to argue about the communication delay constraints.

Fix any two jobs j and j′ such that j ≺ j′. Recall that apj ,j denotes the last task of job j
and a1,j′ denotes the first task of job j′. Let t, t′ be the time slots at which the tasks apj ,j and
a1,j′ are scheduled by our algorithm. We will argue that if apj ,j and a1,j′ are scheduled on two
different machines then, t′ > t+ 1. We consider the following cases.

• Our algorithm discarded either apj ,j or a1,j′ . Let us, without loss of generality, assume
that a1,j′ was discarded. From our description of the algorithm to schedule discarded jobs,
it follows that the time slot t′ − 1 was empty. Therefore, t′ > t+ 1.

• Our algorithm scheduled either apj ,j or a1,j′ using the procedure EDF+ECT+COMM.
Consider the case when a1,j′ was in the set of top jobs. From Observation 5.7, it follows
that t′ ≥ Bj′+1, where Bj′ denotes the earliest time step when the job j′ can be scheduled
respecting the precedence constraints. Note that Bj′ > t. Hence, t′ ≥ Bj′ + 1 > t + 1.
On the other hand, consider the case when apj ,j was scheduled using EDF+ECT+COMM.
Again from Observation 5.7, it follows t < Cj ≤ dj , as no task of job j is scheduled at the
time step dj . Further, due to the precedence constraints t′ > dj . Thus, t′ > t+ 1.

Observe that in these cases we simply assumed the worst scenario that the jobs are sched-
uled on different machines by our algorithm.

• Both apj ,j and a1,j′ was scheduled by our algorithm by conditioning on the LP solution in
the first step of PARTIAL-SCHEDULE-COMM. We consider two cases. Suppose both apj ,j
and a1,j′ belonged to the same interval I∗, and were scheduled on two different machines.
In this case, t′ > t+ 1 follows by the LP constraints (13). Consider the second case where
apj ,j is scheduled by conditioning in the interval I∗ and a1,j is scheduled by conditioning
in a different interval I∗∗. Clearly, I∗ has to be to the left of I∗∗. Now consider the first
line of procedure PARTIAL-SCHEDULE-COMM. Here, we completely discard all the tasks
scheduled in the last time slot in the interval I∗. If there was at least one such discarded
task, it is clear that t′ > t+ 1 as every discarded task creates one empty time slot to the
right of it. If no tasks were discarded, then it implies that in last time slot of the interval
I∗ was completely empty. In this case also, t′ > t+ 1.

Therefore, we conclude that our algorithm satisfies communication delay constraints.

Thus to prove our second main Theorem, we only need to argue that proof of Theorem 5.2
also extends when.

Proof of Theorem 1.2. Define β = maxj≺j′{cj,j′}. We need the following changes to complete
our proof.

• The communication constraints in our LP become:

x(a1,j′ ,i,t+1) +
∑

i′∈[m]−i

t∑
t′=t−β

x(apj,j ,i
′,t′) ≤ 1 ∀j ≺ j′, i ∈ [m], t ∈ [T − 1]
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• In the first line of procedure PARTIAL-SCHEDULE-COMM, we completely discard all the
tasks scheduled in the last β time slots in the interval I∗.

• We modify the schedule obtained by running EDF+ECT+COMM on the set of top jobs
as follows: For every top job j, we discard first β − 1 and the last β − 1 tasks scheduled
in the interval [Bj , Cj ].

• While inserting a discarded task a, we create 2β + 1 time slots, and insert the task in the
middle.

By repeating the proofs for the case of β = 1, it is easy to see that the total number of discarded
tasks increases by a factor of O(β). So, by appropriately choosing ε′ = ε/O(β), and running
our entire algorithm by fixing ε′ we can show that the makespan of the schedule is at most
(1 + ε)T. It is also easy to see that all the communication delay constraints and the precedence
constraints are also satisfied by this strategy. This completes the proof.

6 Integrality Gap Instance For Sherali-Adams Hierarchy for
P2|prec|Cmax?

In this section, we give some evidence that an o(log n)-level Sherali-Adams lift of the basic
LP for P2|prec|Cmax may not lead to a (1 + ε)-approximation for non-preemptive precedence
constraints problems with arbitrary job lengths. Due to a certain technical difficulty, which will
become clear later, we do not quite prove this exact statement; instead, we introduce a new
scheduling problem that is equivalent to a special case of P2|prec|Cmax, and show an integrality
gap result for the new problem. However, we believe the instance we construct is the right one
for proving an integrality gap for P2|prec|Cmax.

6.1 A Scheduling Problem on Single Machine

In our problem, we have a single machine and n jobs J , each j ∈ J having a size pj ∈ Z>0, a
release time rj ∈ Z≥0 and a deadline dj ≥ rj + pj . There are no precedence constraints among
jobs, but they have to be processed during their respective (rj , dj ] windows.

In the problem, any job j ∈ J can be “partially processed”. More specifically, we can choose
a length p′j ∈ [0, pj ] for any j ∈ J and process j non-preemptively only for p′j units of time in
(rj , dj ]. The objective we consider is then to minimize

∑
j∈J(pj − p′j), the total job units that

are not processed (or “discarded”). We shall use
∑

j pjU
′
j to denote this objective of minimizing∑

j∈J(pj − p′j), where U ′j =
pj−p′j
pj

is the fraction of job j that is unfinished.5 We denote the

problem by 1|rj , dj |
∑

j pjU
′
j , and use the tuple (J, p, r, d) to denote an instance of this problem.

Suppose we are given an instance I = (J, p, r, d) of 1|rj , dj |
∑

j pjU
′
j . Let T =

∑
j∈J pj

and we assume T ≥ maxj∈J dj . We construct an equivalent instance I ′ of P2|prec|Cmax as
follows. The jobs in I ′ will be J ∪ Jchain, where Jchain = {jchain

1 , jchain
2 , · · · , jchain

T } is a set of
T unit-length jobs. For simplicity we define the lengths, release times and deadlines of Jchain

as follows: for every t ∈ [T ], we have pjchaint
= 1 and rjchaint

= t − 1 and drchaint
= t. Then the

precedence constraints are defined as follows: for every j, j′ ∈ J ∪ Jchain, j ≺ j′ if and only if
dj ≤ rj′ . In particular, this implies jchain

1 ≺ jchain
2 ≺ · · · ≺ jchain

T .
Our goal for I ′ is to schedule the precedence-constrained jobs J ∪ Jchain non-preemptively

on 2 machines so as to minimize the makespan. We use I ′ = (J ∪ Jchain, p,≺) to denote this
instance of P2|prec|Cmax. Ideally, we would like to use one machine to process J , and the other

5In the literature, Uj indicates if j is not scheduled; so we use U ′j ∈ [0, 1] to indicating the fraction of j that
is not processed.
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one to process Jchain. Then the time window constraints in I will correspond to the precedence
constraints in I ′. By discarding and inserting job units, a good schedule for I can be converted
to a good schedule for I ′ and vice versa. This technique was crucially used the in [25] for the
makespan minimization problem on unit-length jobs.

Formally, the following lemma establishes the equivalence between the two instances I and
I ′:

Lemma 6.1. Let I = (J, p, r, d) be an instance of 1|rj , dj |
∑

j pjU
′
j, T :=

∑
j∈J pj and assume

T ≥ maxj∈J dj. Let I ′ = (J ∪ Jchain, p,≺) be the instance of P2|prec|Cmax constructed using
the above procedure. Let δ ≥ 0 be any constant. Then,

• Any solution to I with cost δT can be efficiently converted to a solution to I ′ with makespan
at most (1 + δ)T .

• Any solution to I ′ with makespan (1 + δ)T can be efficiently converted to a solution to I
with cost at most 2δT .

Proof. Given a schedule for I on one machine with at most δT job units discarded, we construct
a schedule for I ′ as follows. We first add a second machine and schedule all the jobs Jchain

naturally on the machine: we schedule jchain
t at slot (t − 1, t]. The precedence constraints are

satisfied since they defined according to rj and dj values of jobs, and the schedule respects
the time window constraints. Then we can insert the discarded job units back, increasing the
makespan by at most δT .

Now suppose we are given a solution to I ′ with makespan (1 + δ)T . We focus on the time
slots where no jobs in Jchain are scheduled. We remove from the schedule these time slots, as
well as the job units processed in these slots. We removed at most 2δT job units. The resulting
schedule has makespan exactly T and each job jchain

t is scheduled in (t− 1, t]. We can assume
jobs in Jchain are processed on the same machine. Since the precedence constraints are satisfied,
we have that all jobs j ∈ J are scheduled within the window (rj , dj ]. Removing the machine
for Jchain gives us a schedule for I with at most 2δT job units discarded.

The factor of 2 in the lemma does not create an issue for our reduction: we are interested
in deciding whether the instance I ′ has makespan at most (1 + ε)T or at least cT for some
absolute constant c > 1. This is equivalent to deciding whether the instance I has cost at most
εT or at least c′T for some absolute constant c′ > 0. Our main theorem is that an o(log n)-level
Sherali-Adams lifting of some natural LP relaxation for 1|rj , dj |

∑
j pjU

′
j can not distinguish

between the two cases. We define the natural LP relaxation first and then give our theorem.

6.2 Integrality Gap Result for 1|rj, dj|
∑

j pjU
′
j

As is typical in the LP/SDP lifting framework, we specify an upper bound B on the solution
cost and impose a constraint for the objective function. In the LP, xj,t,p′ indicates weather j
is processed during the interval (t, t + p′] ⊆ (rj , dj ]. We require p′ ∈ [pj ] and t ∈ [rj , dj − p′];
notice that we do not have variables for the cases in which a job j is not processed at all.
For simplicity, we assume all the variables xj,t,p′ with (j, t, p′) not satisfying the property are
identically 0. The LP relaxation is as follows:

∑
j

pj −∑
t,p′

xj,t,p′p
′

 ≤ B (14)

∑
t,p′

xj,t,p′ ≤ 1 ∀j ∈ J (15)

∑
j,t,p′:t′∈(t,t+p′]

xj,t,p′ ≤ 1 ∀t′ ∈ [T ] (16)

xj,t,p′ ≥ 0 ∀j, p′, t (17)

40



(14) says that we can discard at most B job units; (15) says each job j can be scheduled at
most once. (16) requires that at any time t′, at most 1 job can be processed, and (17) requires
all variables to be non-negative. For a fixed instance I = (J, p, r, d) and a bound B, we use
PI(B) to denote the above polytope.

Our main theorem of the section is as follows:

Theorem 6.2. There exists some constant c > 0 such that the following holds for every small
enough ε > 0 and infinitely many integers n > 0. There is an instance I = (J, p, r, d) of
1|rj , dj |

∑
j pjU

′
j with n = |J | jobs and T :=

∑
j∈J pj = maxj∈J dj such that the following holds.

• The optimum solution to I has cost at least 0.2T .

• SA(PI(εT ), bcε log nc) 6= ∅.

The remaining part of this section is to prove the theorem. Throughout, let ε > 0 be a
small enough constant as in the theorem statement. Let L > 0 be a large enough integer; we
assume that L + 1 is an integer power of 2. We then define the instance I = (J, p, r, d) of
1|rj , dj |

∑
j pjU

′
j with n := |J | = 2L+1 − 1 and T :=

∑
j∈J pj = (L+ 1)2L.

The set of jobs J in I form a full binary tree of L+ 1 levels, where each node corresponds
to a job. The root of the tree is at level 0 and the leaves are at level L. So there are 2` jobs at
level `; all these jobs j have size pj = 2L−`; for every ` ∈ [0, L] and k ∈ [2`], the k-th job from
the left-side in the `-th level of the tree has release time rj = (L+ 1)(k − 1)2L−` and deadline
dj = (L+ 1)k2L−`. So, the window size dj − rj for every job j is exactly (L+ 1)pj ; the windows
of all the jobs form a laminar family represented by the tree structure. It is easy to verify that
the number n of jobs is 2L+1 − 1 and the total size of the jobs is T = (L+ 1)2L, which is equal
to maxj∈J dj . See Figure 3 for the illustration of the instance.

(
0, (L + 1)2L−1

] (
(L + 1)2L−1, (L + 1)2L

]

(
0, (L + 1)2L

]
p = 2L

p = 2L−1

p = 2L−2 (
0, (L+ 1)2L−2

]
(
(L+ 1)2L−2, (L+ 1)2L−1

]

p = 1 (0, L+ 1]

(L+ 1, 2(L+ 1)]

Figure 3: The gap instance for 1|rj , dj |
∑

j pjU
′
j . The jobs form a tree; the sizes of jobs are

2L, 2L−1, 2L−2, · · · , 1 from top to bottom of the tree. The windows of jobs form a laminar
family.

First we show that the optimum solution to the 1|rj , dj |
∑

j pjU
′
j instance I = (J, p, r, d) is

large.

Lemma 6.3. Any valid solution to the instance I of 1|rj , dj |
∑

j pjU
′
j has cost at least 0.2T .

Proof. We choose some integer A much smaller than L, whose exact value will be decided later.
We break the L+ 1 levels of the job tree into 3 classes: the top (L+ 1)/2−A levels, the middle
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A levels and the bottom (L + 1)/2 levels. Roughly speaking, we shall assume that the jobs in
the middle levels are processed for free and analyze the conflicts between top and bottom levels.

Focus on a bottom-level ` ∈ [(L+ 1)/2, L], and a top-level job j and assume it is scheduled
in (aj , bj ] in the optimum solution. Let a′j ≥ aj be the smallest integer that is a multiple of

(L + 1)2L−` and b′j ≤ bj be the smallest integer that is a multiple of (L + 1)2L−`. Then we
have that (a′j , b

′
j ] is the disjoint union of windows of some level-` jobs. So, these jobs at level `

can not be processed at all in the optimum solution; we call these jobs forbidden jobs. Taking
all top-level jobs j into consideration (notice that they have disjoint scheduling intervals in the
optimum solution), the total number of level-` forbidden jobs is at least:∑

j top job

(bj − aj − 2 · (L+ 1)2L−`)

(L+ 1)2L−`
=

1

(L+ 1)2L−`

∑
j top job

(bj − aj)− 2(#top jobs).

Let Ptop =
∑

j top job(bj − aj); notice that this is the total job units processed for top jobs. The

total number of top jobs is 2(L+1)/2−A − 1 < 2(L+1)/2−A. Since each level-` job has size 2L−`,
the total size of level-` forbidden jobs is at least

Ptop

L+ 1
− 2(L+1)/2−A · 2L−` ≥ Ptop

L+ 1
− 2L−A =

Ptop

L+ 1
− T

(L+ 1)2A
.

The total size of forbidden jobs at all bottom levels is at least (L+1)/2 times the above quantity,

which is
Ptop

2 −
T

2A+1 .
Let Pbot be the total job units processed for bottom jobs in the optimal solution. Then, we

have

Pbot ≤
T

2
− Ptop

2
+

T

2A+1
.

So, we have

Ptop + Pbot = Pbot +
Ptop

2
+
Ptop

2
≤ T

2
+

T

2A+1
+

1

2
· ((L+ 1)/2−A)T

L+ 1
=

3T

4
+

T

2A+1
− AT

2(L+ 1)
.

Considering the middle level jobs, the total scheduled job units in the optimum solution is
at most 3T

4 + T
2A+1 + AT

2(L+1) . Let A = log(L + 1), then the scheduled jobs is at most 3T
4 +

O(logL/L)T =
(

3
4 + o(1)

)
T . So, if L is large enough, the total scheduled job units is at most

0.8T , finishing the proof of the lemma.

Then we shall give an LP hierarchy solution to I with small cost. Recall that we are allowed
to partially process a job; however our fractional solution does not need to take the advantage:
for each job j, it either processes it completely, or does not process it at all. Moreover, the
fractional solution only starts a job j at a time that is a multiple of pj . Since dj−rj = (L+1)pj ,
there are exactly L + 1 possible starting times for a fixed job j. For simplicity, we use xj,t to
indicate the event that j is processed in (t, t+pj ]. We let D denote the set of (j, t) pairs for which
the variables can take positive value; that is D := {(j, t) : j ∈ J, t ∈ [rj , dj) is a multiple of pj}.
For convenience, we also treat each (j, t) pair as the interval (t, t + pj ]. Then, removing the
variables that are identically 0, and replace B with εT , the LP (14)-(17) becomes∑

(j,t)∈D

xj,tpj ≥ (1− ε)T (18)

∑
t:(j,t)∈D

xj,t ≤ 1 ∀j ∈ J (19)

∑
(j,t)∈D:t′∈(t,t+pj ]

xj,t ≤ 1 ∀t′ ∈ [T ] (20)

xj,t ≥ 0 ∀(j, t) ∈ D (21)
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Let ε′ = ε/4 let q = bε′(L+ 1)c be the number of rounds we shall allow. Since L = Θ(log n),
we have q ≥ bcε log nc if c is small enough. As I and B = εT are fixed, we can use P ′ to denote
the above polytope. Our goal is to prove that SA(PI(εT ), q) 6= ∅ is not empty. Since from P ′ is
obtained from PI(εT ) by setting some variables to be 0, it suffices to prove SA(P ′, q) 6= ∅; this
is our goal for remaining part of the section.

For a 1-round solution, we can simply set xj,t = 1/(L+ 1) for every (j, t) ∈ D. Notice that
there are L+ 1 levels of jobs and each job has L+ 1 possible intervals, the LP solution is valid
and has cost 0. We show that with a small loss, we can raise the solution by q levels using the
Sherali-Adams hierarchy.

Now, we define the solution in SA(P ′, q). For a set S ⊆ D, |S| ≤ r of variables, we set

xS =
(

1−ε′
L+1

)|S|
if S does not lead to a contradiction and 0 otherwise. Here, S leads to a

contradiction iff either some j ∈ J appears in more than one pair in S, or for two distinct pairs
(j, t), (j′, t′) ∈ S, (t, t+ pj ] and (t′, t′ + pj′ ] overlap.

We consider the constraints (18)-(20) one by one, and prove that their respective induced
constraints in the LP hierarchy are satisfied. First consider (19); we need to prove∑
R′⊆R,t:(j,t)∈D

(−1)|R
′|xS∪R′∪{(j,t)} ≤

∑
R′⊆R

(−1)|R
′|xS∪R′ , ∀S,R ⊆ D with |S|+ |R| ≤ r, j ∈ J,

(22)

We can assume S does not lead to a contradiction. If j appears in S, then t has to be the
value satisfying (j, t) ∈ S to make sure xS∪R′∪{(j,t)} 6= 0. Then (22) holds with equality. So, we
assume j does not appear in S. We can also assume that R and S are disjoint; otherwise, both
sides of (22) are 0. For the fixed S,R and j, (22) is equivalent to

∑
R′⊆R

(−1)|R
′|

xS∪R′ − ∑
t:(j,t)∈D

xS∪R′∪{(j,t)}

 ≥ 0.

Consider any R′ ⊆ R. If S ∪ R′ leads to a contradiction, or j appears in R′, then it is easy to
see that xS∪R′ −

∑
t xS∪R′∪{(j,t)} = 0. Otherwise, we have xS∪R′ −

∑
t xS∪R′∪{(j,t)} ≥ ε′xS∪R′ .

This holds since xS∪R′ =
(

1−ε′
L+1

)|S∪R′|
and for each relevant t, we have xS∪R′∪{(j,t)} is either 0

or
(

1−ε′
L+1

)|S∪R′|+1
.

Let ∗ be the family of subsets R′ of R such that S ∪R′ does not lead to a contradiction and
j does not appear in R′. Then, in order to prove (22), it suffices to show the following:∑

R′∈∗,|R′| even

ε′xS∪R′ −
∑

R′′∈∗,|R′′| odd

xS∪R′′ ≥ 0. (23)

Notice that we assumed that S and R are disjoint. For every R′ ∈ ∗ of even size, the ε′xS∪R′

budget can be used to cover the negative sum
∑

R′′∈∗:R′⊆R′′,|R′′|=|R′|+1 xS∪R′′ . This holds since

for every R′′ in the summation, we have xS∪R′′ =
(1−ε′)xS∪R′

L+1 . Since there are at most |R| ≤ r ≤
ε′(L+ 1) terms in the summation,the budget xS∪R′ is at least the sum. Also, notice that each
odd set R′′ ∈ ∗ is covered at least once. So, we have proved (23), which implies (22).

Now we turn to (20). We need to show∑
(j,t)∈D:t′∈(t,t+pj ]

∑
R′⊆R

(−1)|R
′|xS∪R′∪{(j,t)} ≤

∑
R′⊆R

(−1)|R
′|xS∪R′ ,

∀S,R ⊆ D with |S|+ |R| ≤ r, t′ ∈ [T ]. (24)
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This can be proved similarly as (22). First, we can assume that S does not lead to
a contradiction and the intervals in S do not cover t′. Then, we can prove that xS∪R′ −∑

(j,t) covers t′ xS∪R′∪{(j,t)} is 0 if S ∪ R′ leads to a contradiction or intervals in S ∪ R′ cover t′.

Otherwise, the quantity is at least ε′xS∪R′ . We can similarly define ∗ to be the family of subsets
R′ of R for which we have the latter case. Then using the same way we can prove (23), which
implies (24).

Finally we consider (18), the constraint for the objective value. By reorganizing the terms,
we need to prove that for every S,R ⊆ D with |S|+ |R| ≤ r,

∑
R′⊆R

(−1)|R
′|

 ∑
(j,t)∈D

xS∪R′∪{(j,t)} · pj − (1− ε)T · xS∪R′

 ≥ 0 (25)

Let us focus on some R′ ⊆ R such that S ∪ R′ does not lead to a contradiction. Define D′
be the set of (j, t) pairs in D \ (S ∪R′) such that S ∪R′ ∪ (j, t) does not lead to a contradiction.
Then

Q :=
∑

(j,t)∈D

xS∪R′∪{(j,t)} · pj = xS∪R′

 ∑
(j,t)∈S∪R′

pj +
1− ε′

L+ 1

∑
(j,t)∈D′

pj

 .

We are interested in upper and lower bounds of Q. For the upper bound , we have

Q ≤ xS∪R′
(
q · T

L+ 1
+

1− ε′

L+ 1
· T (L+ 1)

)
≤ xS∪R′

(
ε′T + (1− ε′)T

)
= xS∪R′T.

Above, we used that |S∪R′| ≤ q ≤ ε′(L+ 1), every j ∈ J has pj ≤ T
L+1 ,

∑
j∈J pj = T and every

j appears in D exactly L+ 1 times.
For the lower bound of Q, we lower bound the term

∑
(j,t)∈D′ pj . This is at least

(L+ 1)T −
∑

(j,t)∈D:j is in some pair in S∪R′
pj −

∑
(j,t)∈D intersects some interval in S∪R′

pj .

We upper bound the subtrahends one by one. The first subtrahend is at most q(L+1)· T
L+1 ≤

ε′(L + 1)T . The second term is maximized when S ∪ R′ contains q disjoint intervals of length
T/(L + 1), with boundaries being multiply of T/(L + 1). (Recall that we assumed L + 1
is a power of 2; this does not correspond to an actual S ∪ R′ since we only have 1 job of
length T/(L + 1); but it will give an upper bound.) In this case, for any job length 2`, we
have Pr(j,t)∼D

[
(j, t) intersects a interval in S ∪R′|pj = 2`

]
= q/(L + 1) ≤ ε′. So, the second

subtrahend is at most ε′(L + 1)T . Overall, we have
∑

(j,t)∈D′ pj ≥ (L + 1)T − 2ε′(L + 1)T =

(1− 2ε′)(L+ 1)T . This implies Q ≥ xS∪R′ · 1−ε′
L+1 (1− 2ε′)(L+ 1)T ≥ (1− 3ε′)xS∪R′T .

With the upper and lower bounds, we can prove (25). Let ∗ be the family of subsets R′ of
R such that S ∪R′ does not lead to a contradiction. Then, the left side of (25) is at least∑

R′∈∗:|R′| even

(
(1− 3ε′)xS∪R′T − (1− ε)xS∪R′T

)
−

∑
R′∈∗:|R′| odd

(
xS∪R′T − (1− ε)xS∪R′T

)
= ε′T

∑
R∈∗:|R′|even

xS∪R′ − εT
∑

R∈∗:|R′|odd

xS∪R′ ,

where we used that ε′ = ε/4. Using the same covering idea as before and that q ≤ (L + 1)/4,
we can prove the quantity is at least 0. This implies that (25) holds, which finishes the proof
of Theorem 6.2.
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6.3 Discussion

We showed that an o(log n)-level Sherali-Adams lift of a natural LP relaxation for 1|rj , dj |
∑

j pjU
′
j

can not distinguish between whether an instance I has cost at most εT or at least 0.2T . The
instance I ′ of P2|prec|Cmax constructed from I will have makespan at most (1 + ε)T and at
least 1.1T for the two cases.

One could ask if the natural LP relaxation for P2|prec|Cmax on the instance I ′ has large
intergrality gap when raised to o(log n) levels. Unfortunately we could not prove such a result.
It is known that some small modifications with no effect on the basic LP can change the feasibles
solutions in the hierarchy. For example, we can introduce new variables xj,bot in LP (14-17) to
indicate whether j is not scheduled, and require xj,bot = 1−

∑
t,p′ xj,t,p′ . This does not change

the LP, but we need to consider the new variables when deriving the constraints in the lifted
LP. We do not know how to give a fractional solution for this new lifted LP. This seems to be
a barrier to extend the negative result to P2|prec|Cmax, as in the problem, we do require every
job to be processed to an extent of 1. Nevertheless, we believe the instance we constructed is
the right one for proving an integrality gap result for P2|prec|Cmax.

We also remark that in the gap instance for 1|rj , dj |
∑

j pjU
′
j , the windows of all jobs form

a laminar tree of depth O(log n). Such an instance can be solved efficiently and exactly using
dynamic programming. Thus for this problem, the Sherali-Adams hierarchy does not capture
the dynamic programming idea using a small number of rounds. Moreover, using the dynamic
programming technique in [19], one may obtain a QPTAS for 1|rj , dj |

∑
j pjU

′
j . This suggests

that our reduction from 1|rj , dj |
∑

j pjU
′
j to P2|prec|Cmax is unlikely to give APX-hardness for

the latter problem, if such a result indeed holds.
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A Comparison of Three Optimal Schedules

Figure 4: The figure illustrates a gap of at least 4/3 between the optimal schedules for A and
B.

Recall that when jobs have arbitrary processing lengths, the optimal schedule for minimizing
makespan with precedence constraints can be of three types:

A) Fully preemptive (Pm|prec,pmtn,migration|Cmax);
B) Preemptive but non-migratory (Pm|prec, pmtn|Cmax);
C) Non-preemptive (Pm|prec|Cmax).
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Clearly, the value of optimal makespan for A is at most B which is at most C. Here we give
instances to prove that these three schedules can be constant factor away from each other, and
hence ruling out a black-box approach to the design of (1 + ε)-approximation algorithms for
these problems.

A.1 Gap Between A and B

Refer to Figure 4. In the instance we have 3 jobs each of length 2, and no precedence constraints.
The optimal schedules for A and B are shown in the figure. There is a gap of 4/3 between A
and B. We can generalize the instance to have m machines and m+ 1 jobs of length m. Then
model A can achieve makespan m+ 1, whereas model B needs to have makespan 2m. Thus the
gap can be made arbitrarily close to 2. This also gives a gap close to 2 between A and C, since
C is more restricted than B.

Figure 5: The figure illustrates a gap of at least 5/4 between the optimal schedules B and C.

A.2 Gap Between B and C

Refer to Figure 5. In the instance we have 7 jobs. The first six jobs have unit processing lengths,
and the precedence relationship is as shown in the figure. The job 7 is long and has processing
length of 2. The optimal schedules for B and C are shown in the figure. By making the DAG
contain 3n unit length jobs, and the processing length of long job as n, we can make the gap
approach 1.5.

B Removing the Polynomial Size Assumption on Job Lengths

We give a brief sketch of how to handle the case when pj ’s are not polynomially bounded.
Let pmax = maxj pj . We can round each job size down to the nearest multiple of εpmax/n; in
particular, if there is a job j such that pj < εpmax/n, we discard it. Thus, the total size of
jobs we discarded is at most εpmax. It is easily seen that the optimum value must be at least
pmax and hence the total size we discarded is at most ε times the optimum makespan. Scaling
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down all job sizes by a factor of εpmax/n, we obtain an instance where all job sizes are integers
between 1 and n/ε. Hence, we can assume that

∑
j pj is polynomial in n.
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