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Abstract

We give a 1.488-approximation for the classic scheduling problem of minimizing total
weighted completion time on unrelated machines. This is a considerable improvement on the re-
cent breakthrough of (1.5−10−7)-approximation (STOC 2016, Bansal-Srinivasan-Svensson) and
the follow-up result of (1.5− 1/6000)-approximation (FOCS 2017, Li). Bansal et al. introduced
a novel rounding scheme yielding strong negative correlations for the first time and applied it
to the scheduling problem to obtain their breakthrough, which resolved the open problem if one
can beat out the long-standing 1.5-approximation barrier based on independent rounding. Our
key technical contribution is in achieving significantly stronger negative correlations via iterative
fair contention resolution, which is of independent interest. Previously, Bansal et al. obtained
strong negative correlations via a variant of pipage type rounding and Li used it as a black box.
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1 Introduction

The unrelated machines setting is a classic scheduling model that has been widely used to model
fully heterogeneous parallel machines. In this setting, there is a set M of m machines and a set
J of n jobs to be scheduled on the machines. Machines are unrelated in the sense that each job
j ∈ J has an arbitrary size/processing time pij on each machine i ∈ M. Further, each job j has
weight wj.

1 In this paper we consider non-preemptive—and therefore non-migratory—scheduling,
which means that each job j must be executed without interruption on one of the machines. In this
paper we seek to optimize one of the most popular objectives, namely minimizing total weighted
completion time, i.e.,

∑
j∈J wjCj where Cj denotes job j’s completion time.

The problem we consider, denoted as R||
∑

j wjCj using the common three-field notation, is
known to be strongly NP-hard and APX-hard [22]. For this problem, more than fifteen years
ago, Schulz and Skutella [33] gave an 1.5 + ǫ-approximation based on a time indexed LP. Later,
Skutella [36] and Sethuraman and Squillante [35] gave 1.5-approximations based on novel convex
programming. It had been a long-standing open problem whether there exists a better than 1.5-
approximation for the problem [13, 33, 28, 40, 34] until it was recently answered by Bansal et al.
[8] in the affirmative.

The breakthrough by Bansal et al. had two important technical ingredients. First they in-
troduced a novel SDP (semi-definite programming) to capture the pairwise interaction between
jobs. Intuitively, this is important as the weighted completion time objective is not linear in job
sizes. This is because a job j′ can delay another job j if j′ starts its execution before j on the
same machine. Another contribution was developing a novel rounding scheme. All the aforemen-
tioned previous works used an independent rounding that randomly assigns each job j to machine
i with probability xij, which is obtained by solving linear or convex programming. Since the 1.5-
approximation factor is the best one can hope for using independent rounding, they had to develop
a new rounding scheme. Their rounding not only ensures negative correlation between any pair of
jobs assigned to the same machine but also ensures that any pair of jobs grouped together on the
same machine subject to a capacity constraint are strongly negatively correlated. Their rounding
was based on a variant of pipage style rounding. Using a SDP relaxation and the new rounding
with a delicate grouping of jobs, they were able to obtain a 1.5− 10−7-approximation.

Later, Li observed that a time-indexed LP can be used instead of a SDP [31]. A time-indexed LP
(fractionally) encodes when each job starts and ends on each machine. Using the special structure
of the time-indexed LP solution, he was able to use Bansal et al.’s strong negative correlation
rounding with a different grouping and obtained a better 1.5− 1/6000-approximation.

Up to date, the only way to obtain a better than 1.5-approximation for R||
∑

j wjCj has been
based on using the novel dependent rounding scheme by Bansal et al., which introduced the notion
of strong negative correlations for the first time.

1.1 Our Results

Theorem 1.1. For minimizing total weighted completion time on unrelated machines, R||
∑

j wjCj,
there exists a randomized 1.488-approximation.

As mentioned, this is a considerable improvement over the previous approximation ratios, 1.5−
10−7 and 1.5− 1/6000 if we measure the improvement by the margin over the 1.5-approximations
[36, 35] that are based on independent rounding. The improvement primarily comes from our new

1We can handle more general weights wij , which depend on machines, but we assume each job’s weight is the
same on all machines following the convention.
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randomized dependent rounding that achieves strong negative correlations. We formally state what
our randomized rounding guarantees as follows. We defer to Section 1.3 an overview of how we
apply this theorem to R||

∑
j wjCj , which is similar at a high-level to how Li [31] applied Bansal

et al.’s strong negative correlation rounding to the same scheduling problem.

Theorem 1.2. Suppose we are given a set M of machines and a set J of jobs together with a
fractional assignment {xij}i∈M,j∈J of jobs to machines (meaning that job j is assigned to machine
i by xij) such that xij ∈ [0, 1] for all i ∈ M, j ∈ J and

∑
i∈M xij = 1 for all j ∈ J . For each

machine i ∈ M, select any family Gi of disjoint subsets of jobs such that
∑

j∈G xij ≤ 1 for all
G ∈ Gi. Then, there is a randomized rounding algorithm that achieves the following properties:

1. (Feasible Integer Assignment) Each job j ∈ J is assigned to exactly one machine i ∈ M,
which is denoted as i← j.

2. (Preserving Marginal Probabilities) For every i ∈M and j ∈ J , Pr[i← j] = xij.

3. (Negative Correlation) For every i ∈ M and j 6= j′ ∈ J such that no G ∈ Gi has j and j′

simultaneously, Pr[i← j ∧ i← j′] ≤ xijxij′

4. (Strong Negative Correlation2) For every i ∈ M and j 6= j′ ∈ J such that j, j′ ∈ G for some
G ∈ Gi, Pr[i← j ∧ i← j′] ≤ 1

1+e(e
xij + exij′ )xijxij′ ≤ xijxij′.

The algorithm terminates in O(mn log n) time in expectation and w.h.p.

The theorem states the properties our randomized rounding guarantees when rounding a frac-
tional assignment of jobs to machines to an integer assignment. The first property says the rounding
always outputs a feasible integer assignment when it terminates. The second property ensures that
each job j is assigned to machine i with probability exactly xij , thus preserving the marginal prob-
abilities. The third property says that two jobs j 6= j′ that are not grouped together on machine
i are assigned to the same machine i with probability at most xijxij′; thus, the assignments are
negatively correlated. All these properties can be achieved by simple independent rounding.

The last property, which is most interesting, says that for any two jobs grouped to-
gether on machine i, the probability they are simultaneously assigned to machine i is at most
exp(xij)+exp(xij′ )

e+1 xijxij′ ≤ xijxij′ as xij + xij′ ≤ 1. So, if xij + xij′ is close to 1, the theorem doesn’t
guarantee strong negative correlation. However, it seems that we need strong negative correlation
only when xij and xij′ are sufficiently small, as will be discussed shortly. In the best scenario, we

have limxij ,xij′→0
exp(xij)+exp(xij′ )

e+1 = 2
e+1 < 0.5379.

We note that Theorem 1.2 is identical to Theorem 1.2 in [8] except that they have 107
108xijxij′

instead of 1
1+e(e

xij + exij′ )xijxij′ as the upper bound of the fourth property. So, they have strong
negative correlations regardless of value of xij + xij′. However, as alluded above, Bansal et al.
grouped j and j′ together on machine i only when xij, xij′ ≤ 1/10 and Li [31] did only when
xij , xij′ ≤ 1/100. Under their grouping of jobs, the coefficient of xijxij′ in the fourth property

of Theorem 1.2 becomes 2 exp(0.1)
e+1 ≃ 0.5945 and 2 exp(0.01)

e+1 ≃ 0.5433, respectively, meaning much
stronger negative correlations when the theorem is actually needed.

Our method to achieve strong negative correlations is completely different from the method of
Bansal et al. They used a very clever variant of pipage rounding. In contrast, we use a novel iterative
fair contention resolution. While our method is inspired by the fair contention resolution scheme

2 As noted in [8], it is impossible to impose strong negative correlation on every pair of jobs; thus, it was suggested
to obtain strong negative correlations only between jobs in the same group.

2



by Feige and Vondrák [17], our method is considerably different and perhaps easier to understand,
which we believe enables the iterative application of fair contention resolution. We discuss this in
more detail in the following subsection.

1.2 Our Techniques

We first discuss two previous works that are most closely related to our new rounding (Theorem 1.2).

A Variant of Pipage Rounding [8]. As mentioned before, Bansal et al. [8] achieved the first
strong negative correlations using a variant of pipage rounding. Note that the fractional assignment
{xij}i∈M,j∈J described in Theorem 1.2 can be thought of as a fractional matching of a bipartite
graph over (M,J ) saturating all jobs in J . While there are many variations and extensions
[2, 3, 14, 18, 25], a typical pipage rounding works as follows: In every iteration, the rounding finds
a path or cycle only consisting of edges (i, j) with fractional values, i.e., xij ∈ (0, 1). Then, it
either maximally increases the weight of all odd (even, resp.) edges and simultaneously decreases
the weight of all even (odd, resp.) edges by the same maximum margin—this choice is made at
random in a way to preserve the marginal probabilities. This update makes at least one more edge
have value either 0 or 1; and the value of such edges remains fixed afterwards. Intuitively, two
edges (i, j) and (i, j′) incident to the same machine i are chosen with negative correlation because
the rounding never increases xij and xij′ simultaneously. To obtain strong negative correlations
additionally, in each iteration Bansal et al. carefully chose paths of length 4 based on a random
2-coloring of the edges.

Fair Contention Resolution [17]. While our theorem statement is very similar to Bansal et al.’s
corresponding theorem in [8], our rounding scheme is completely different and is inspired by the fair
contention resolution by Feige and Vondrák [17]. To obtain a better than 1 − 1/e-approximation
for the Maximum Submodular Welfare problem3 and related problems, they developed a novel fair
contention resolution scheme: Suppose each player a claims item b independently with probability
qa,b. Now we need to assign each item that was claimed by one or more players to exactly one of
them. They gave an elegant contention resolution scheme where each player a gets an item b with

probability equal to
1−

∏
a′(1−qa′,b)∑
a′ qa′,b

, conditioned on a having claimed b. In the Maximum Submodular

Welfare problem, if each player claims a subest of items according to her own distribution, the
approximation guarantee was shown to be determined by the lowest probability that the player
receives item b conditioned on her having claimed it. The contention resolution scheme attempts
to maximize the lowest probability across all players and items; thus, the name fair contention
resolution comes.

As an attempt to obtain a theorem like Theorem 1.2 using the fair contention resolution scheme,
think of each group G defined in Theorem 1.2 as a player. Then, we let each group G ∈ Gi claim a job
j ∈ G with probability xij independently, hoping that this will help two different jobs in G less likely
be assigned to the same machine i with the aid of the fair contention resolution. The resolution

scheme guarantees that j is assigned to machine i with probability at least
1−

∏
i′ (1−xi′j)∑
i′ xi′j

xij ≥

(1−
∏

i′ e
−xi′j )xij = (1−1/e)xij . This seems like a good sign as the contention resolution preserves

each group’s choice up to 1− 1/e factor.
Unfortunately, there are several issues. First, their rounding satisfies none of the desired prop-

erties claimed in Theorem 1.2. It is not difficult to modify the scheme to satisfy the first two
properties. However, their rounding scheme has no guarantees on the third and fourth properties.

3The goal of the Maximum Submodular Problem is to allocate items to players so to maximize the total utility
where each player has a monotone submodular utility function.

3



At a high-level, their algorithm focuses on the best guarantee on the first moment (recall that their
goal was to give a better than 1 − 1/e-approximation for some assignment problems) and their
analysis is remarkably accurate. However, because of the very reason their algorithm and analysis
don’t seem to readily extend to satisfy negative and strong negative correlations.

Our Approach: Iterative Continuous Fair Contention Resolution. We develop a new
contention resolution scheme of a continuous flavor which we believe is perhaps more intuitive.4

Thus, while the analysis is non-trivial, we are able to analyze its iterative application, thereby
obtaining Theorem 1.2.

Here, we sketch how we develop our fair contention resolution along with the intuitions behind.
To gain some intuitions, let’s first focus on each job j. Instead of assigning j to a machine i with
probability xij as in independent rounding, we would like to have machine i claim job j, taking
other jobs into account, with probability xij in order to have a better control on jobs assigned to
each machine. Then, an obvious issue is that job j may be claimed by multiple machines (or by
no machine). Therefore, we need to resolve this contention for job j among machines. Towards
this end, we generate Nij (lottery) tickets for job j on machine i, where Nij ∼ Pois(xij), a Poisson
distribution with mean value xij. Note that this is equivalent to generating one ticket for job j on
machine i with probability ǫ independently, for each ǫ unit of xij. Thus, this way of generating
tickets allows us to view the problem more continutously. If no tickets are generated for j across
machines, which happens with probability 1/e, job j is not assigned; otherwise, we choose one ticket
of job j uniformly at random and assign the job to the machine from which the ticket originated.
It is an easy exercise to see that j is assigned to machine i with probability exactly (1− 1/e)xij .

Now, we want to impose strong negative correlations between jobs grouped together on each
machine. Towards this end, we let each group G ∈ Gi recommend one job j (or none) with
probability xij (if j ∈ G); here we use the fact that

∑
j∈G xij ≤ 1. The idea is to ensure that j has

tickets on machine i only when G recommends job j – by doing so, if j, j′ ∈ G, j having tickets
on i will be negatively correlated with j′ having tickets on i. To continue to have the above nice
contention resolution based on tickets, our goal is to ensure Nij ∼ Pois(xij) and Nij = 0 unless G
recommends j on machine i. To achive this, we use a simple trick. Let Ñij denote the number of
potential tickets sampled from a distribution whose probability mass for each value k > 0 is exactly
1/xij times that of Pois(xij). Then, we set Nij := Bij ·Ñij and have Nij ∼ Pois(xij). Here, Bij is an
indicator random variable that has value one iff j is recommended by the group where it belongs.
In words, j has Nij = Ñij real tickets only when Bij = 1 occurs.

Using the above observation that each job is assigned to some machine with probability exactly
1− 1/e, we can repeat the whole process, excluding jobs that have already been assigned, until all
jobs are assigned.

The actual proof of the third and fourth properties is quite non-trivial, particularly the third
property. This is because the random process of where two jobs j and j′ are assigned depends on
whether the two jobs are grouped together on each machine and how much they are assigned in
the fractional solution. At a high-level, we show that the worst case for us happens when the two
jobs j and j′ are not grouped together on any machines possibly except on machine i—then the
proof becomes relatively easy. To prove this we take a sequence of careful steps conditioning and
deconditioning on some random variables. Perhaps proving negative correlations of our method is
significantly more challenging than proving negative correlations of pipage rounding because our
method assigns (1 − 1/e)-fraction of remaining jobs in each iteration unlike pipage rounding that

4However, our method doesn’t give as strong guarantee on the first moment as [17]. That is, using our method,
each job j is assigned to machine i with probability exactly (1 − 1/e)xij (in the first iteration). In contrast, the
probability can be strictly greater in the method of [17] when {xij}i are not all tiny.
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assigns one job wlog in each iteration. Thus, we need to take a global view of the random process
considering how each pair of jobs are grouped on all machines.

1.3 Applying Theorem 1.2 to the Scheduling Problem

To obtain Theorem 1.1 by applying Theorem 1.2 to our scheduling problem, we borrow some
important ideas from Li’s approach [31]. Here we give a sketch of our rounding and briefly discuss
the difference between our approach and his. The time-indexed integer programming (IP) has an
indicator variable xijs which is 1 if and only if j starts its execution on machine i at time s. Note
that since we consider non-preemptive scheduling, if xijs = 1, then j completes at time s+ pij . Let
T be a sufficiently large upper bound on the number of time steps we need to consider. We assume
T is polynomially bounded in the input size since it was shown that this assumption is wlog with
a loss of (1 + ǫ) factor in the approximation ratio [24]. The time-indexed IP considered in [31] is
presented below.

Here, the first constraint ensures that every job is scheduled on some machine. The second
constraint ensures that every machine processes at most one job at each time. The third constraint
enforces that all jobs must complete by time T . By relaxing the last constraint into xijs ≥ 0, we
obtain a valid LP relaxation. Let x denote the optimal LP solution. Then, for each xijs > 0, it
will be convenient to think that we have a rectangle of height xijs starting at time s and ending at
time s+ pij, denoted as Rijs.

min
∑

j∈J

wj

∑

i∈M,s∈[T ]

xijs(s+ pij) (1)

∑

i∈M,s∈[T ]

xijs = 1 ∀j ∈ J (2)

∑

j∈J ,s∈(t−pij ,t]

xijs ≤ 1 ∀i ∈ M, t ∈ [T ] (3)

xijs = 0 ∀i ∈ M, j ∈ J , s > T − pij (4)

xijs ∈ {0, 1} ∀i ∈ M, j ∈ J , s ∈ [T ] (5)

We first review how the independent rounding gives a 1.5-approximation: for each job j, we
choose a rectangle Rijs independently with probability xijs – then, j is assigned to machine i.
Next, we sample a random offset τj for each job uniformly at random from [0, pij ]. Then, we set
θj = τj+s conditioned on Rijs being chosen for j. Now schedule jobs assigned to the same machine
in increasing order of θj. To upper bound the expected completion time of job j, we need to know
the expected size of jobs that are assigned to i and have smaller θ values than job j. Due to the
linearlity of expecation, we can focus on the expected size of each job j′ that is scheduled prior to
j on machine i, which we call the expected delay j′ causes to job j on machine i. Thanks to the
uniform choice of θ, τ values, one can show that fixing θj, the expected delay j′ causes to job j
on machine i is exactly the area of rectangle Rij′s′ up to time θj, if Rij′s′ is chosen for j′. This is

becuase the probability that j′ has a smaller θ value than j on the condition is exatly
max(θj−s′,0)

pij′
,

which is exacty the horizontal length of Rij′s′ up to the time θj, divided by pij′. Since the total
area of rectangles till time θj is at most 1 · θj = θj (recall at most one unit of job can be scheduled
at each time), we have E[Cj | θj, Rijs] ≤ θj + pij . Knowing that E[θj | Rijs] = s + pij/2, we
have E[Cj | Rijs] ≤ s + 1.5pij . Further, de-conditioning on the choice of j’s rectangle, we have
E[Cj] ≤

∑
i,j,s xijs(s + 1.5pij), which immediately gives a 1.5-approximation due to the linarity of

expectation.
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Now we sketch how we use strong negative correlations to obtain a better than 1.5-
approximation. For the purpose of better intuitions, let’s assume that there is at most one rectangle
Rijs with xijs > 0 for every pair of job j and machine i. In other words, assume that each job has
at most one rectangle on machine i. Further, assume all jobs have weight 1. Note that in the upper
bound of E[Cj | Rijs], the coefficient of s is just 1. Therefore, if s is considerably big compared
to pij, then job j is an easy job on machine i towards obtaining a better than 1.5-approximation.
Another case of job j being easy on machine i is when xijs is large. This is because in fact we
actually have a better upper bound of E[Cj | θj , Rijs] ≤ θj + pij − τjxijs. The reason why we get
the extra negative term is as follows: Recall that the expected delay other jobs cause to job j on
machine i is upper bounded by θj, which is a clear upper bound on the total area of rectangles of
other jobs up to time θj . Here, we can take off the area of Rijs of job j before time θj, which is
exactly (θj − s)xijs = τjxijs. Roughly speaking, the rectangle Rijs of each bad job j starts near
time 0 and has small height xijs. This was one of the key observations made by Li [31] although
the definition of easy jobs is slightly different from ours.

To obtain a better than 1.5-approximation, we need to use Theorem 1.2 (or the corresponding
theorem in [8]). To handle bad jobs on machine i using Theorem 1.2, we need to group them
carefully. At a high level, we group jobs of similar θ values. That is, we first sample θ value for
each rectangle of a bad job, and we group jobs if their θ values fall into the same time interval,
which is one of the intervals of exponentially increasing length partitioning the whole time horizon.
Using the fact that xijs is small for bad jobs and the rectangle of bad jobs starts near time 0,
with some care, we can bound the total x value of jobs in each group, which is needed to apply
Theorem 1.2. Then, thanks to strong negative correlations, when two jobs j and j′ have similar θ
values, they are less likely to be assigned to the same machine i with a good probability, which is
enough to give a better than 1.5-approximation.

While our rounding is different from Li’s in many places, the two main differences are as follows.
First, we use a random partition of time horizon into the intervals of exponentially increasing lengths
whileas Li used a deterministic partition. This is because we found the random partition seemed
to give a better grouping of jobs. Further, for analysis, we conceptually group non-overlapping
rectangles, so that we have a linear combination of subsets of non-overlapping rectangles, which
looks like a solution to the configuration LP [40]. Using this structure also helps to improve the
approximation ratio slightly. However, as mentioned before, the improvement of approximation
ratio primarily comes from our stronger negative correlations.

1.4 Other Related Work

Minimizing total (weighted) completion time is one of the most popular scheduling objectives
considered in the literature. For the single machine case, the algorithm highest-density-first, which
favors jobs of highest wj/pj , is known to be optimal [38]. The problem becomes NP-hard when
there are multiple machines [19]. However, when machines are identical (P ||

∑
j wjCj) or uniformly

related (Q||
∑

j wjCj), the problem admits PTASes [1, 37, 12]. Interestingly, even when machines
are unrelated, if the objective is to minimize total unweighted completion time (R||

∑
j Cj), the

problem is polynomially solvable using a min-cost bipartite matching [23, 10]. Kalaitzis et al.
[26] considered an important special case when each job’s processing time is proportional to its
weight, i.e., R|wij/pij = 1|

∑
i,j wijCj , and gave a 1.21-approximation. Interestingly, their result

also achieves a bi-criteria 2-approximation for the makespan objective. A configuration LP, which
encodes all possible scheules on each machine, was shown to be solvable optimally within (1 + ǫ)-
factor [40]; see [24] for a discussion on the strength of the configuration LP. The configuration
LP was shown to have an integrality gap of at least 1.08 [26]. If jobs have different arrival times,
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the problem, 1|rj |
∑

j wjCj , is NP-hard [29] even in the single machine case. When machines are
identical (P |rj |

∑
j wjCj) or related (Q|rj |

∑
j wjCj), the problem admits PTASes [1, 12]. When

machines are unrelated (R|rj |
∑

j wjCj), 2-approximation [33, 36] had been the best approximation
known for long until it was recently improved to 1.8687-approximation [24].

For the makespan objective on unrelated machines, i.e., R||maxj Cj , a classic 2-approximation
is known [30]. There have been considerable efforts to improve this ratio for some special cases,
e.g. [39, 15]. For the dual objective of maximizing the minimum total load of all machines,
see [9, 5, 4, 11, 16]. For R||(

∑
j(Cj)

k)1/k, see [6, 27]. For R|rj |
∑

j(Cj − rj), a poly-logarithmic
approximation is known [7]. For the special case of R|rj, pij ∈ {pj ,∞}|

∑
j(Cj − rj), see [20, 21].

For a survey of other approximate scheduling results, see [13].

1.5 Organization

We present our iterative fair contention resolution scheme in Section 2. Next, in Section 3, we
show that the rounding scheme satisfies all the properties claimed in Theorem 1.2. We present our
randomized rounding algorithm for the unrelated machines scheduling problem in Section 4. We
give the analysis of the algorithm in Section 5, thereby proving Theorem 1.1.

2 Rounding Procedure Yielding Strong Negative Correlations

2.1 Preliminaries

To describe our randomized rounding we need to introduce a probability distribution. Let Pois(λ)

denote the Poisson distribution with mean value λ. Recall that Pois(λ) has pmf, e−λ λk

k! , over
k ∈ Z

+ := {0, 1, 2, . . .}. The following is a well-known property of Poisson distribution.

Fact 2.1. For any set of independent random variables {Zh ∼ Pois(λh)}h∈[H], it is the case that∑
h∈[H]Zh ∼ Pois(

∑
h∈[H] λh).

For any λ > 0, let P̃ois(λ) denote the probability distribution with the following pmf:

{
e−λ λk−1

k! if k ∈ {1, 2, 3, . . .}

1− 1−e−λ

λ otherwise, i.e., k = 0

This pmf is well-defined since
∑

k≥1 e
−λ λk

λk! =
1−e−λ

λ ≤ 1.5 Note that P̃ois(λ)’s probability mass
for each value k > 0 is 1/λ times that of Pois(λ).

Observation 2.2. Let Ñ ∼ P̃ois(λ) and B be a Bernoulli (0-1) random variable with mean value
λ. Then, Ñ ·B ∼ Pois(λ).

2.2 Rounding Algorithm

We are now ready to describe our randomized rounding. To simplify notation, for every i ∈ M and
j ∈ J , if j /∈ G for all G ∈ Gi, then we create a singleton set of job j and add it to Gi. Note that
this has no effect on the properties we aim to prove as we do not change the existing groups. So,
we can assume wlog that ⊎G∈Gi

G = J for all i ∈ M.
Our randomized rounding is iterative. In the first iteration we perform as described in Figure 2.2.

In principle, we do not need to generate potential tickets for job j on machine i unless Bij = 1.

5Here, we used the well-known facts that ex =
∑

k≥0

xk

k!
and ex ≥ x+ 1.
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However, the description where we first generate potential tickets independently for every pair of
job j and machine i makes the analysis more intuitive. For brevity, we will interchangeably use Bij

and Bij = 1.

1. For each i ∈ M and j ∈ J , let Ñij ∼ P̃ois(xij) be an independent RV; if xij = 0, then
Ñij = 0. In words, we generate Ñij potential tickets for each job j on machine i, according

to P̃ois(xij), independently.

2. For each i ∈ M and G ∈ Gi, let BG ∈ G ∪ {nil} be an independent RV such that Pr[BG =
j] = xij for all j ∈ G. We use an indicator variable Bij to denote the event BG = j.
In words, each group G ∈ Gi recommends one job j in the group G with probability xij
independently and the event is denoted as Bij; or it may recommend no jobs.

3. For each i ∈ M and j ∈ J , let Nij = Bij · Ñij. In words, all Ñij potential tickets of job
j on machine i become real tickets if and only if the event Bij = 1 occurs. Job j has real
tickets on machine i iff Bij = 1 and it has non-zero potential tickets on the machine.

4. Each job j ∈ J is assigned to machine i ∈ M, denoted as i ←1 j, independently with
probability

Nij∑
i′∈M Ni′j

; if
∑

i′∈MNi′j = 0, then j is not assigned, denoted as nil ←1 j. In

words, among all real tickets of each job j across machines, we choose one uniformly at
random. If the ticket was generated on machine i, then we assign job j to machine i.

Figure 1: The first iteration of our randomized rounding

We now explain how the rounding works in the subsequent iterations, 2, 3, . . . . Every job
assignment is final. If job j is assigned to machine i in the ℓ-th iteration (denoted as i ←ℓ j) the
job is never considered in the subsequent iterations, ℓ+1, ℓ+2, . . . . Let J≤ℓ denote the set of jobs
that were assigned in iterations 1, 2, . . . , ℓ, i.e., J≤ℓ := {j ∈ J | i←ℓ′ j for some i ∈ M, ℓ′ ≤ ℓ}. At
the beginning of the ℓ+ 1-th iteration, we update J to J \ J≤ℓ and every set G ∈ Gi to G \ J≤ℓ.
Then, we perform the above four steps—all the RVs used in this iteration are different from those
used in the previous iterations. The ℓ-th iteration begins only when there exists a job that hasn’t
been assigned yet, i.e., J<ℓ 6= J . This completes the description of our randomized rounding.

3 Proof of Theorem 1.2

This section is devoted to proving Theorem 1.2. We first make an easy observation which will be
useful in the analysis. Since we renew all RVs in each iteration, we add superscript ℓ to RVs if they
are of the ℓ-th iteration—for example, N ℓ

ij denotes the RV in the ℓ-th iteration corresponding to
Nij . For RVs of the first iteration, we omit the superpscript.

Observation 3.1. Conditioned on no jobs in J ′ ⊆ J having been assigned in the previous itera-
tions, the stochastic process of assigning J ′ is identical to the same process starting from the first
iteration.

In particular, this observation means: For any event E(J ′, ℓ) concerning the assignment of some
jobs J ′ ⊆ J in the ℓ-th iteration or in the subsequent iterations, we have Pr[E(J ′, ℓ) | J ′∩J≤ℓ−1 =
∅] = Pr[E(J ′, 1)]. For example, consider the fourth property. Then, the observation implies that
Pr[i←≥ℓ j∧ i←≥ℓ j

′ | j, j′ /∈ Jℓ−1] = Pr[i← j∧ i← j′]. Here i←≥ℓ j denotes j being assigned to i
in the ℓ-th iteration or later. We illustrate Observation 3.1 using this as an example. Note that the
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assignment of j and j′ are completely determined by {Ñi′j}i′∈M, {Ñi′j′}i′∈M, and BG for all groups
G including j or j′. Further, for BG, what only matters is whether BG = j or j′, or not. These
events, Ñi′j , Ñij are not affected by whether other jobs have been assigned or not. Extending this
argument to Observation 3.1 is straightforward.

We now shift to proving the four properties and the running time guarantee.

3.1 First and Second Properties and Running Time

The first property says that the randomized rounding assigns each job to exactly one machine. In
each iteration the rounding algorithm attempts to assign jobs that have not been assigned in the
previous iterations. Therefore, the first property immediately follows if we show that the algorithm
eventually terminates. We will show that the algorithm terminates in O(log n) iterations with high
probability and also in expectation, after showing the second property.

For better readability we first give the analysis for the first iteration and extend it to arbitrary
iterations using Observation 3.1. We first make two easy observations.

Observation 3.2. For any i ∈M and j ∈ J , Nij ∼ Pois(xij).

Proof. The algorithm defines Nij = Bij · Ñij , where Ñij ∼ P̃ois(xij) and Bij is a Bernoulli RV with
mean value xij . Thus, this observation follows from Observation 2.2.

Observation 3.3. For any job j ∈ J , all RVs {Nij}i∈M are independent.

Proof. This is because all RVs {Ñij}i∈M,j∈J are independent; all RVs {Bij}i∈M are independent;
and Nij = Bij · Ñij.

Recall that J<ℓ denotes the set of job that are assigned to some machines before the ℓ-th
iteration.

Lemma 3.4. For any job j ∈ J , machine i ∈ M and iteration ℓ ≥ 1, we have Pr[i←ℓ j | B
ℓ
ij, j /∈

J<ℓ] = 1− 1/e.

Proof. Fix a job j and machine i. Say i = 1 wlog By Observation 3.3 and Fact 2.1, we have∑
i′∈M\{1} Ni′j ∼ Pois(

∑
i′∈M\{1} xi′j = 1−x1j). For notational convenience, let λ = x1j , Ñ1 = Ñ1j ,
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and N−1 =
∑

i′∈M\{1} Ni′j. Note that Ñ1 ∼ P̃ois(λ) and N−1 ∼ Pois(1− λ).

Pr[i←1 j | Bij ]

=
∑

k≥1,k′≥0

Pr[Ñ1 = k ∧N−1 = k′] ·
k

k + k′

=
∑

k≥1,k′≥0

Pr[Ñ1 = k] · Pr[N−1 = k′] ·
k

k + k′
[Ñ1 and N−1 are independent]

=
∑

k≥1,k′≥0

e−λ λk

λk!
· e−(1−λ) (1− λ)k

′

k′!
·

k

k + k′
[Ñ1 ∼ P̃ois(λ) and N−1 ∼ Pois(1− λ)]

=
∑

k≥0,k′≥0

e−λλ
k

k!
· e−(1−λ) (1− λ)k

′

k′!
·

1

k + k′ + 1

= e−1
∑

k′′≥0

∑

k,k′≥0:k+k′=k′′

λk

k!
·
(1− λ)k

′

k′!
· k′′! ·

1

(k′′ + 1)!

= e−1
∑

k′′≥0

1

(k′′ + 1)!
(λ+ (1− λ))k

′′

= e−1
∑

k′′≥1

1

(k′′)!
= e−1(e− 1) = 1− 1/e,

which, combined with Observation 3.1, yields the lemma.

Corollary 3.5. For any job j ∈ J , machine i ∈ M and iteration ℓ ≥ 1, we have Pr[i ←ℓ j | j /∈
J<ℓ] = (1− 1/e)xij .

Proof. Pr[i ←1 j] = Pr[i ←1 j ∧ Bij] = Pr[i ←1 j | Bij ] · Pr[Bij ] = (1 − 1/e)xij . Then, we use
Observation 3.1.

This also implies that job j is assigned in the 1-st iteration with probability exactly 1− 1/e.

Corollary 3.6. For any job j ∈ J and iteration ℓ ≥ 1, we have Pr[nil←ℓ j | j /∈ J<ℓ] = 1/e.

Proof. By the above corollary and the fact that a job can be assigned to at most one machine in
each iteration, the probability is 1 -

∑
i∈M(1− 1/e)xij = 1/e.

We are now ready to complete the proof of the second property.

Pr[i← j] =
∑

ℓ≥1

Pr[i←ℓ j]

=
∑

ℓ≥1

Pr[i←ℓ j | j /∈ J<ℓ] ·
∏

ℓ′<ℓ

Pr[nil←ℓ′ j | j /∈ J<ℓ′ ]

=
∑

ℓ≥1

(1− 1/e)xij(1/e
ℓ−1)

=xij

To complete the proof of the first property, we observe that Pr[j /∈ J≤ℓ] =
∏

ℓ′≤ℓ Pr[nil ←ℓ′

j | j /∈ J<ℓ′] = (1/e)ℓ by Corollary 3.6. Thus, using the linearity of expectation, we know that
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the expected number of jobs remaining unassigned after 2 log n iterations, i.e., E |J \ J≤2 logn| =
n(1/e)2 logn = 1/n. Thus, by Markov inequality, the probability that the randomized rounding
does not terminate within 2 log n iterations, meaning that there is at least one job unassigned, is
at most 1/n. Also using a simple union bound we know Pr[J 6= J≤ℓ] ≤ min{1, n(1/e)ℓ}. Thus, the
expected number of iterations before the termination is

∑
ℓ≥1min{1, n(1/e)ℓ} = O(log n). It is an

easy exercise to see each iteration takes O(mn) time assuming that we can determine the value of
each RV in O(1) time. As discussed already, it is clear that each job j is assigned to exactly one
machine if the algorithm terminates. Thus, we have shown the first property and running time.

3.2 Third Property

We restate the third property we aim to prove: Fix a machine i ∈M and two distinct jobs j, j′ ∈ J
from different groups of machine i, i.e., j ∈ A and j′ ∈ B for some A 6= B ∈ Gi. Then, we have
Pr[i ← j ∧ i ← j′] ≤ xijxij′. For notational convenience, let a = xij and b = xij′ , and M̃∗ = Ñij ,
Ñ∗ = Ñij′ . Assume wlog that a, b ∈ (0, 1) since otherwise the third property immediately follows
from the second.

Here is a very high-level overview of the proof. For the sake of contradiction assume that
Pr[i← j ∧ i← j′] > ab. Then, we will show that the probability remains greater than ab after de-
grouping the two jobs j and j′ on all machines. This is a contradiction because two events i← j and
i← j′ are independent after de-grouping, which would immediately imply Pr[i← j ∧ i← j′] = ab
due to the second property.

However, the actual analysis is quite involved. To help the reader keep the flow of the analysis,
we outline the proof in detail.

3.2.1 Proof Outline

For the sake of analysis, we need to define additional notation—then, we can give a more de-
tailed proof overview and explain the technical challenges. Let M− :=

∑
i′∈M\{i} Ni′j denote

the total number of real tickets generated for job j on machines other than i. Similarly, let
N− :=

∑
i′∈M\{i} Ni′j′ for job j′. Define PG(m,n) := PrG [M− = m,N− = n]; here G in the

subscript is to emphasize that this probability is under grouping G. Note that in this section we
override m and n, which were used to denote the number of machines and jobs respectively in
other sections. For comparison, create another grouping G′ by separating the two jobs j and j′ in
the same group on every machine. That is, for any machine i′ where j, j′ ∈ G for some G ∈ Gi′ ,
partition the group G arbitrarily into two groups Gij and Gij′ , so that j ∈ Gij and j′ ∈ Gij′ . Let
PG′(m,n) denote PrG′ [M− = m,N− = n] under this grouping.

Our goal is to show that

PrG′ [i← j ∧ i← j′] > ab if PrG [i← j ∧ i← j′] > ab (6)

Unfortunately, proving this directly seems very challenging. Let’s see why. First, our analysis
has very little room for loss since we need to show negative correlation for ever pair of jobs not
grouped together on the fixed machine. For careful analysis, we will have to take a close look at
probabilities fixing some random variables. Then, when we expand PrG[i ← j ∧ i← j′] depending
on the iterations in which the jobs are assigned, we run across the recursive structure for the case
j, j′ /∈ J≤1. It seems very challenging to compare the above two probabilities in Eqn. (6) with this
recursive structure combined with certain subtle conditions.

We get around this difficulty by first showing that Eqn. (6) pretending that after the first
iteration, each unassigned job is assigned independently in the second iteration. This thought
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process will ensure that the rounding terminates in two iterations, thus having no recursive structure
– let’s call this rounding as shadow rounding. To relate the shadow rounding to the actual rounding,
we will define Φ(P, κ, m̃∗, ñ∗). For notational convenience, let ζ := PrG [i ← j ∧ i ← j′]/(ab) and
ζ ′ := PrG′ [i← j ∧ i← j′]/(ab). Then, Φ will have the following nice properties.

(a) Φ(PG , ζ, m̃
∗, ñ∗) = PrG[i← j ∧ i← j′ | M̃∗ = m̃∗, Ñ∗ = ñ∗] for our actual rounding.

(b) Φ(PG′ , ζ ′, m̃∗, ñ∗) = PrG [i← j ∧ i← j′ | M̃∗ = m̃∗, Ñ∗ = ñ∗] for our actual rounding.

(c) Φ(PG , 1, m̃
∗, ñ∗) = PrG[i← j ∧ i← j′ | M̃∗ = m̃∗, Ñ∗ = ñ∗] for the shadow rounding.

(d) Φ(PG′ , 1, m̃∗, ñ∗) = PrG [i← j ∧ i← j′ | M̃∗ = m̃∗, Ñ∗ = ñ∗] for the shadow rounding.

Depending on whether m̃∗ > 0 or not and whether ñ∗ > 0 or not, Φ is slightly different—
so we will consider four cases, which are each presented in Sections 3.2.2, 3.2.3, 3.2.4 and 3.2.5.
We will show the above (a) and (b) for our actual rounding in Lemmas 3.7, 3.10, 3.12 and 3.14.
We do not show (c) and (d) for the shadow rounding because our proof only uses the algebraic
difference between Φ(PG , ζ, m̃

∗, ñ∗) and Φ(PG , 1, m̃
∗, ñ∗) and that between Φ(PG′ , ζ ′, m̃∗, ñ∗) and

Φ(PG′ , 1, m̃∗, ñ∗). Still, we mention (c) and (d) above as we believe they could give more intuitions.
Then, we will show that

Φ(PG′ , 1, m̃∗, ñ∗) ≥ Φ(PG , 1, m̃
∗, ñ∗)

for all m∗, n∗ ≥ 0 in Lemmas 3.9, 3.11, 3.13 and 3.15. By de-conditioning on M̃∗ and Ñ∗ and using
the aforementioned algebraic difference, we will be able to show Eqn. (6). We will present the
details on how to put all the pieces together in Section 3.2.6. This will complete the proof of the
third property.

Due to the space constraints, we defer to the full version of this paper the proof of each lemma.

3.2.2 Case M̃∗, Ñ∗ > 0

Recall M− :=
∑

i′∈M\{i} Ni′j denotes the total number of real tickets generated for job j on

machines other than i and N− is similarly defined for job j′. Also recall P (m,n) := Pr[M− =
m,N− = n].

Lemma 3.7. For every m̃∗, ñ∗ ≥ 1, define:

Φ(P, κ, m̃∗, ñ∗) :=ab
∑

m≥0,n≥0

m̃∗

m+ m̃∗
·

ñ∗

n+ ñ∗
· P (m,n) (7)

+ ab
∑

m≥0

m̃∗

m+ m̃∗
· (1− b) · P (m, 0) (8)

+ ab
∑

n≥0

ñ∗

n+ ñ∗
· (1− a) · P (0, n) (9)

+ ab (1− a)(1 − b)κ · P (0, 0) (10)

Then, we have

• Φ(PG , ζ, m̃
∗, ñ∗) = PrG[i← j ∧ i← j′ | M̃∗ = m̃∗, Ñ∗ = ñ∗]; and

• Φ(PG′ , ζ ′, m̃∗, ñ∗) = PrG′ [i← j ∧ i← j′ | M̃∗ = m̃∗, Ñ∗ = ñ∗].
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Proof. Note that Eqn. (7), (8), (9) have no dependency on κ. Eqn. (7) is for event (i←1 j∧i←1 j
′)

since

Pr[i←1 j ∧ i←1 j
′ | M̃∗ = m̃∗, Ñ∗ = ñ∗,M− = m,N− = n]

=
m̃∗

m+ m̃∗
· Pr[Bij ] ·

ñ∗

n+ ñ∗
· Pr[Bij′ ]

=ab
m̃∗

m+ m̃∗
·

ñ∗

n+ ñ∗
.

Here we used the fact that Bij and Bij′ are independent as j and j′ are not in the same group
on machine i. By de-conditioning on M− and N− using the fact that (M̃∗, Ñ∗) is independent of
(M−, N−), we have Eqn. (7).

Eqn. (8) is for event (i ←1 j ∧ i ←≥2 j′). Note that this event occurs only when ¬Bij′ (since
Ñ∗ is fixed to a non-zero value) and m = 0. Formally, we have,

Pr[i←1 j ∧ nil←1 j
′ | M̃∗ = m∗, Ñ∗ = ñ∗,M− = m,N− = n = 0]

=
m̃∗

m+ m̃∗
· Pr[Bij] · Pr[¬Bij′ ] =

m̃∗

m+ m̃∗
· a(1− b)

By de-conditioning on M− and N−, we have

Pr[i←1 j ∧ nil←1 j
′ | M̃∗ = m̃∗, Ñ∗ = ñ∗] =

∑

m≥0

m̃∗

m+ m̃∗
· a(1− b) · P (m, 0)

Due to the second property and Observation 3.1, we have Eqn. (8).
Since Eqn. (9) is for event (i ←≥2 j ∧ i ←1 j′), which is symmetric to the event of Eqn.

(8), it remains to show Eqn. (10). We will only show Eqn. (10) with κ = ζ for grouping G,
which is for event (i ←>1 j′ ∧ i ←>1 j′), since we can similarly show Eqn. (10) with κ = ζ ′ for
grouping G′. Note that this event occurs if and only if ¬Bij , ¬Bij′ , m = n = 0 and j and j′

are assigned to i in the subsequent iterations. Thus, by Observation 3.1, the event occurs with
probability P (0, 0) ·Pr[¬Bij ∧¬Bij′] ·Pr[i← j ∧ i← j′] = (1− a)(1− b)P (0, 0)Pr[i← j ∧ i← j′] =
(1− a)(1− b)P (0, 0)ζab, as desired.

In the following we re-write Φ, so that we have the co-efficient of each P (m,n) explicitly.

Lemma 3.8. For any m̃∗, ñ∗ ≥ 1, we have Φ(P, κ, m̃∗, ñ∗) =
∑

m,n≥0 d(m,n)P (m,n), where

d(m,n) :=





ab m̃∗

m+m̃∗ ·
ñ∗

n+ñ∗ if m,n > 0

ab m̃∗

m+m̃∗ (2− b) if m > 0, n = 0

ab ñ∗

n+ñ∗ (2− a) if m = 0, n > 0

ab(2− a)(2− b) + (κ− 1)(1 − a)(1 − b) if m = n = 0;
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Proof.

Φ(P, κ, m̃∗, ñ∗)

ab

=
∑

m>0,n>0

m̃∗

m+ m̃∗
·

ñ∗

n+ ñ∗
· P (m,n) +

∑

m>0

m̃∗

m+ m̃∗
· P (m, 0) +

∑

n>0

ñ∗

n+ ñ∗
· P (0, n) + P (0, 0)

+
∑

m>0

m̃∗

m+ m̃∗
· P (m, 0)(1 − b) + P (0, 0)(1 − b)

+
∑

n>0

ñ∗

n+ ñ∗
· P (0, n)(1 − a) + P (0, 0)(1 − a)

+ P (0, 0)(1 − a)(1− b) + P (0, 0)(κ − 1)(1− a)(1 − b)

=
∑

m>0,n>0

m̃∗

m+ m̃∗
·

ñ∗

n+ ñ∗
· P (m,n)

+
∑

m>0

m̃∗

m+ m̃∗
· P (m, 0)(2 − b) +

∑

n>0

ñ∗

n+ ñ∗
· P (0, n)(2 − a)

+ P (0, 0)((2 − a)(2 − b) + (κ− 1)(1 − a)(1− b))

Lemma 3.9. For any m̃∗, ñ∗ ≥ 1, Φ(PG , 1, m̃
∗, ñ∗) ≤ Φ(PG′ , 1, m̃∗, ñ∗).

Proof. Fix M̃∗ = m̃∗, Ñ∗ = ñ∗ where m̃∗, ñ∗ ≥ 1. For notational convenience, let machine 1 (6= i)
be the unique machine where G and G′ differ, i.e., G1 6= G1 but Gi′ = G

′
i′ for all i

′ ∈ M \ {1}. So, j
and j′ are in the same group of G1 but are in different groups of G′1.

Let P−1 denote PG (or equivalently PG′) without counting the tickets from machine 1. Formally,
P−1 :=

∑
i′∈M\{1,i} Ni′j. We will compare the outcome of the randomized rounding under G and

G′. Also fix ũ := Ñ1j and ṽ := Ñ1j′ —note that this is independent of any grouping. Let a1 := x1j
and b1 := x1j′ for notational convenience. Assume a1, b1 ∈ (0, 1) since otherwise B1j and B1j′ will
be independent under both G and G′

Note that

PG(m,n) := P−1(m,n)(1 − a1 − b1) + P (m− ũ, n)a1 + P (m,n − ṽ)b1

because the ũ (ṽ, resp.) potential tickets become real when B1j (B1j′ , resp.), which occur with
probability a1 (b1, resp.). Here, P (m,n) := 0 if m < 0 or n < 0. With another grouping G′, we
have

PG′(m,n) :=P−1(m,n)(1 − a1)(1 − b1)

+ P−1(m− ũ, n)a1(1− b1) + P−1(m,n− ṽ)(1− a1)b1

+ P−1(m− ũ, n− ṽ)a1b1

because B1j and B1j′ are independent under G′.
Our goal is to show that Φ(PG , 1, m̃

∗, ñ∗) ≤ Φ(PG′ , 1, m̃∗, ñ∗) (for any fixed M̃∗, Ñ∗, ũ and ṽ).

Using the observation that PG′(m,n)− PG(m,n) = a1b1

(
P−1(m,n)− P−1(m− ũ, n)− P−1(m,n−
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ṽ) + P−1(m− ũ, n− ṽ)
)
, we derive,

Φ(PG′ , 1, m̃∗, ñ∗)− Φ(PG , 1, m̃
∗, ñ∗)

=
∑

m,n≥0

d(m,n)
(
PG′(m,n)− PG(m,n)

)

=a1b1
∑

m,n≥0

d(m,n)
(
P−1(m,n)− P−1(m− ũ, n)− P−1(m,n− ṽ) + P−1(m− ũ, n− ṽ)

)

=a1b1
∑

m,n≥0

d(m,n)P−1(m,n)− a1b1
∑

m,n≥0

d(m+ ũ, n)P−1(m,n)

− a1b1
∑

m,n≥0

d(m,n + ṽ)P−1(m,n) + a1b1
∑

m,n≥0

d(m+ ũ, n+ ṽ)P−1(m,n)

=a1b1
∑

m,n≥0

P−1(m,n)
(
d(m,n)− d(m+ ũ, n)− d(m,n+ ṽ) + d(m+ ũ, n+ ṽ)

)

Therefore, to establish the lemma, it suffices to show that

D := d(m,n)− d(m+ ũ, n)− d(m,n + ṽ) + d(m+ ũ, n+ ṽ) ≥ 0 for all m,n, ũ, ṽ ≥ 0

Observe that the claim is immediate if ũ = 0 or ṽ = 0, so assume that ũ, ṽ > 0. Let f(m) := m̃∗

m+m̃∗

and g(n) := ñ∗

n+ñ∗ , which are both decreasing in m and n, respectively. The first case we consider
is when m,n > 0. Then, we have

D

ab
= f(m)g(n)−f(m+ũ)g(n)−f(m)g(n+ṽ)+f(m+ũ)g(n+ṽ) = (f(m)−f(m+ũ))(g(n)−g(n+ṽ)) > 0.

In the second case when m > 0 and n = 0, we have,

D/(ab) = (2− b)(f(m)− f(m+ ũ))− f(m)g(n+ ṽ) + f(m+ ũ)g(n + ṽ)

= (2− b)(f(m)− f(m+ ũ))− g(n+ ṽ)(f(m)− f(m+ ũ))

= (2− b− g(n+ ṽ))(f(m)− f(m+ ũ)) ≥ 0,

since g(n + v) ≤ 1 and f is decreasing in m. The case m = 0 and n > 0 is symmetric. In the last
case when m = n = 0, we have,

D/(ab) ≥ (2− b)(2 − a)− (2− a)g(ṽ)− (2− b)f(ũ)− f(ũ)g(ṽ)

= (2− a− f(ũ))(2 − b− g(ṽ)) ≥ 0,

since a, b, f(ũ), g(ṽ) ≤ 1.

3.2.3 Case M̃∗ > 0, Ñ∗ = 0

Previously, we considered the case M̃∗, Ñ∗ > 0. Here, we consider the case M̃ = m∗, Ñ∗ = 0 for
any fixed m∗ ≥ 1.

Lemma 3.10. For any m̃∗ > 0, ñ∗ = 0, define,

Φ(P, κ, m̃∗, ñ∗ = 0) :=
∑

m≥0

d(m, 0)P (m, 0) where
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d(m,n) =





ab m̃∗

m+m̃∗ if m > 0, n = 0

ab(2− a) + ab(κ − 1)(1 − a) if m = 0, n = 0

0 if n > 0

Then, we have

• Φ(P, ζ, m̃∗, 0) = PrG [i← j ∧ i← j′ | M̃∗ = m̃∗, Ñ∗ = 0]; and

• Φ(P, ζ ′, m̃∗, 0) = PrG′ [i← j ∧ i← j′ | M̃∗ = m̃∗, Ñ∗ = 0].

Proof. We only consider grouping G as the other grouping G′ can be handled analogously. Condi-
tioned on Ñ∗ = 0, we have ¬(i ←1 j′). Therefore, we can refine i ← j ∧ i ← j′ into two disjoint
events: (i ←1 j ∧ i ←≥2 j′) and (i ←≥2 j ∧ i ←≥2 j′). Note that i ←≥2 j′ only if N− = 0. We
consider the first event:

Pr[i←1 j ∧ i←≥2 j
′ | M̃∗ = m̃∗, Ñ∗ = 0,M− = m,N− = 0]

= Pr[i←≥2 j
′ | i←1 j, M̃

∗ = m̃∗, Ñ∗ = 0,M− = m,N− = 0]

· Pr[i←1 j | M̃
∗ = m̃∗, Ñ∗ = 0,M− = m,N− = 0]

= Pr[i←≥1 j
′] ·

(
a

m̃∗

m+ m̃∗

)
= ab

m̃∗

m+ m̃∗

The penultimate equality is due to Observation 3.1. By de-conditioning on M− and N−, we have

Pr[i←1 j ∧ i←≥2 j
′ | M̃∗ = m̃∗, Ñ∗ = 0] = ab

∑

m≥0

m̃∗

m+ m̃∗
P (m, 0) (11)

We now consider the second event. Notice that conditioned on M̃∗ > 0, nil ←1 j occurs iff
¬Bij and M− = 0. Likewise, conditioned on Ñ∗ = 0, nil←1 j

′ occurs iff N− = 0. Thus,

Pr[i←≥2 j ∧ i←≥2 j
′ | M̃∗ = m̃∗, Ñ∗ = 0]

=Pr[i←≥2 j ∧ i←≥2 j
′ ∧ ¬Bij ∧M− = N− = 0 | M̃∗ = m̃∗, Ñ∗ = 0]

=Pr[i←≥2 j
′ ∧ i←≥2 j | ¬Bij,M− = N− = 0, M̃∗ = m̃∗, Ñ∗ = 0]

· Pr[¬Bij ∧M− = N− = 0 | M̃∗ = m̃∗, Ñ∗ = 0]

=Pr[i←≥1 j
′ ∧ i←≥1 j] · (1− a)P (0, 0)

=abζ(1− a)P (0, 0) (12)

The penultimate equality follows due to the fact that ¬Bij ∧M− = N− = 0, M̃∗ = m̃∗, Ñ∗ = 0
implies j, j′ /∈ J≤1 and Observation 3.1. By adding up Eqn. (11) and (12) and rearranging terms,
we have the lemma.

Lemma 3.11. For all m̃∗ ≥ 1, we have Φ(PG , 1, m̃
∗, ñ∗) ≤ Φ(PG′ , 1, m̃∗, ñ∗).

Proof. The proof is very similar to that of Lemma 3.9. As before, it suffices to show that

D := d(m,n)− d(m+ ũ, n)− d(m,n + ṽ) + d(m+ ũ, n+ ṽ) ≥ 0

for m,n, ũ, ṽ ≥ 0; but with d(m,n) defined in Lemma 3.10.
Assume ũ, ṽ > 0 since otherwise D = 0 immediately. Also assume n = 0; otherwise D = 0. So,

we have D = d(m, 0) − d(m + ũ, 0). We consider two cases. If m > 0, then D/(ab) = m̃∗

m+m̃∗ −
m̃∗

m+ũ+m̃∗ ≥ 0. If m = 0, we have D/(ab) = (2− a) + (1− 1)(1− a)− m̃∗

ũ+m̃∗ = 2− a− m̃∗

ũ+m̃∗ ≥ 0.
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3.2.4 Case M̃∗ = 0, Ñ∗ > 0

This case is symmetric to M̃∗ > 0, Ñ∗ = 0. So, we just state the definition and lemma without
proof.

Lemma 3.12. For any ñ∗ > 0, define,

Φ(P, κ, m̃∗ = 0, ñ∗) :=
∑

n≥0

d(0, n)P (0, n) where

d(m,n) =





ab ñ∗

n+ñ∗ if m = 0, n > 0

ab(2− b) + ab(κ − 1)(1 − b) if m = 0, n = 0

0 if m > 0

Then, we have

• Φ(P, ζ, 0, ñ∗) = PrG [i← j ∧ i← j′ | M̃∗ = 0, Ñ∗ = ñ∗]; and

• Φ(P, ζ ′, 0, ñ∗) = PrG′ [i← j ∧ i← j′ | M̃∗ = 0, Ñ∗ = ñ∗].

Lemma 3.13. For all ñ∗ ≥ 1, Φ(PG , 1, 0, ñ
∗) ≤ Φ(PG′ , 1, 0, ñ∗).

3.2.5 Case M̃∗ = Ñ∗ = 0

This is the last case we consider.

Lemma 3.14. Define Φ(P, κ, 0, 0) := abκP (0, 0).

• Φ(P, ζ, 0, 0) = PrG [i← j ∧ i← j′ | M̃∗ = 0, Ñ∗ = 0]; and

• Φ(P, ζ ′, 0, 0) = PrG′ [i← j ∧ i← j′ | M̃∗ = 0, Ñ∗ = 0].

Proof. We only consider grouping G as the other grouping G′ can be handled analogously. For
i← j ∧ i← j′ to happen conditioned on neither j nor j′ having potential (therefore real) tickets on
machine i, it must be the case that neither j nor j′ are assigned in the first iteration. So, it must be
the case that M− = N− = 0. Therefore, we have Pr[j, j′ /∈ J≤1 | M̃

∗ = Ñ∗ = 0] = P (0, 0). Further,
we know that Pr[i←≥2 j ∧ i←≥2 j

′ | j, j′ /∈ J≤1, M̃
∗ = Ñ∗ = 0] = Pr[i←≥1 j ∧ i←≥1 j

′] = ζab by
Observation 3.1. Thus, we have the lemma.

Lemma 3.15. Φ(PG , 1, 0, 0) ≤ Φ(PG′ , 1, 0, 0).

Proof. As in the proof of Lemma 3.9, it suffices to show that

D := d(m,n)− d(m+ ũ, n)− d(m,n + ṽ) + d(m+ ũ, n+ ṽ) ≥ 0

for all m,n, ũ, ṽ ≥ 0; but with d defined in Lemma 3.14.
To see this, assume ũ, ṽ > 0, since otherwise D = 0. Further, assume m = n = 0 since otherwise

D = 0. Then, we have D = d(m,n) = ab · 1 = ab > 0.
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3.2.6 Putting All Pieces Together

From the definitions stated in Lemmas 3.7, 3.10, 3.12 and 3.14, we have :

Φ(PG , 1, m̃
∗, ñ∗)−Φ(PG , ζ, m̃

∗, ñ∗) =





−(1− a)(1− b)(ζ − 1)abPG(0, 0) if m̃∗ > 0, ñ∗ > 0

−(1− a)(ζ − 1)abPG(0, 0) if m̃∗ > 0, ñ∗ = 0

−(1− b)(ζ − 1)abPG(0, 0) if m̃∗ = 0, ñ∗ > 0

−(ζ − 1)abPG(0, 0) if m̃∗ = 0, ñ∗ = 0

(13)

Similarly, we have

Φ(PG′ , 1, m̃∗, ñ∗)−Φ(PG′ , ζ ′, m̃∗, ñ∗) =





−(1− a)(1 − b)(ζ ′ − 1)abPG′(0, 0) if m̃∗ > 0, ñ∗ > 0

−(1− a)(ζ ′ − 1)abPG′(0, 0) if m̃∗ > 0, ñ∗ = 0

−(1− b)(ζ ′ − 1)abPG′(0, 0) if m̃∗ = 0, ñ∗ > 0

−(ζ ′ − 1)abPG′(0, 0) if m̃∗ = 0, ñ∗ = 0

(14)

In Lemmas 3.9, 3.11, 3.13 and 3.15 we have shown that Φ(PG , 1, m̃
∗, ñ∗) ≤ Φ(PG′ , 1, m̃∗, ñ∗) for

all m̃∗, n∗ ≥ 0. Therefore, we have,
∑

m̃∗,ñ∗≥0

q(m̃∗, ñ∗)Φ(PG , 1, m̃
∗, ñ∗) ≤

∑

m̃∗,ñ∗≥0

q(m̃∗, ñ∗)Φ(PG′ , 1, m̃∗, ñ∗),

where q(m̃∗, ñ∗) := Pr[M̃∗ = m̃∗, Ñ∗ = ñ∗].
Using Eqn. (13), we have,

∑

m̃∗,ñ∗≥0

q(m̃∗, ñ∗)Φ(PG , 1, m̃
∗, ñ∗)

=
∑

m̃∗,ñ∗≥0

q(m̃∗, ñ∗)Φ(PG , ζ, m̃
∗, ñ∗)

−
∑

m̃∗,ñ∗>0

q(m̃∗, ñ∗)(1− a)(1 − b)(ζ − 1)abPG(0, 0)

−
∑

m̃∗>0

q(m̃∗, 0)(1 − a)(ζ − 1)abPG(0, 0)

−
∑

ñ∗>0

q(0̃, ñ∗)(1 − b)(ζ − 1)abPG(0, 0)

− q(0, 0)(ζ − 1)abPG(0, 0)

=Pr
G
[i← j, i← j′]− abPG(0, 0)(ζ − 1)

(
(1− a)(1− b)q++ + (1− a)q+0 + (1− b)q0+ + q00

)

=ζab− abPG(0, 0)(ζ − 1)
(
(1− a)(1− b)q++ + (1− a)q+0 + (1− b)q0+ + q00

)
,

where q++ := Pr[M̃∗ > 0, Ñ∗ > 0], q+0 := Pr[M̃∗ > 0, Ñ∗ = 0], q0+ := Pr[M̃∗ = 0, Ñ∗ > 0], q00 :=
Pr[M̃∗ = 0, Ñ∗ = 0].

Similarly, we obtain
∑

m̃∗,ñ∗≥0

q(m̃∗, ñ∗)Φ(PG′ , 1, m̃∗, ñ∗)

=ζ ′ab− abPG′(0, 0)(ζ ′ − 1)
(
(1− a)(1− b)q++ + (1− a)q+0 + (1− b)q0+ + q00

)
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Thus, we have,

ζab− abPG(0, 0)(ζ − 1)
(
(1− a)(1 − b)q++ + (1− a)q+0 + (1− b)q0+ + q00

)
(15)

≤ ζ ′ab− abPG′(0, 0)(ζ ′ − 1)
(
(1− a)(1 − b)q++ + (1− a)q+0 + (1− b)q0+ + q00

)
(16)

Note that Eqn. (15) and (16) are linear ζ and ζ ′, respectively. Further, q+++q+0+q0++q00 = 1
and q++ > 0 since a, b ∈ (0, 1). Therefore, both ζ and ζ ′ have strictly positive coefficients in Eqn.
(15) and (16), respectively. Further, Eqn. (15) has value ab when ζ = 1 and Eqn. (16) has value
ab when ζ ′ = 1. Thus, if ζ > 1, then it must be the case that ζ ′ > 1.

To summarize, we have shown that if PrG [i ← j ∧ i ← j′] > xijxij′ , then it must be the case
that PrG′ [i← j∧ i← j′] > xijxij′. Since G

′ was obtained from G by de-grouping the two jobs j and
j′ on one machine, by repeatedly refining G′ further, we know that what we have shown still holds
true when G′ doesn’t group j and j′ together on any machines. As mentioned before, this implies
that i ← j and i ← j′ are independent under G′. Thus, we have PrG′ [i ← j ∧ i ← j′] = xijxij′ .
Thus, if we assume PrG [i ← j ∧ i ← j′] > xijxij′ , then we obtain a contradiction. This completes
the proof of the third property.

3.3 Fourth Property

For ease of reference, we re-state the fourth property we aim to prove: For every i ∈ M and
j 6= j′ ∈ J such that j, j′ ∈ G for some G ∈ Gi, we have Pr[i← j∧ i← j′] ≤ 1

1+e(e
xij +exij′ )xijxij′ .

We first upper bound the probability that neither j nor j′ are assigned in the first iteration.
Towards this end, we need the following proposition.

Proposition 3.16. For any job j ∈ J and machine i ∈ M, we have,

• Pr[Nij = 0 | ¬Bij] = 1.

• Pr[Nij = 0 | Bij ] = 1−
1−exp(−xij)

xij
.

Proof. The first claim is immediate from the algorithm definition, that is, Nij = ÑijBij. The

second claim follows since Pr[Nij > 0 | Bij ] = Pr[Ñij > 0] =
∑

k>0 e
−λ λk

λk! = (1 − exp(−λ))/λ
where λ = xij .

Lemma 3.17. For any two jobs j 6= j′ ∈ J , Pr[nil←1 j ∧ nil←1 j
′] ≤ 1/e2.

Proof. The event occurs if and only if no tickets are generated for j and j′, i.e.,
∑

i∈M(Nij+Nij′) =
0. We will show that for any machine i,

Pr[Nij +Nij′ = 0] ≤ e−xij−xij′ . (17)

Since the events {Nij + Nij′ = 0}i∈M are independent, Eqn. (17) would imply Pr[
∑

i∈M(Nij +
Nij′) = 0] =

∏
i∈M Pr[Nij +Nij′ = 0] ≤

∏
i∈M exp(−xij − xij′) = exp(−

∑
i∈M xij −

∑
i∈M xij′) =

1/e2, as desired.
It now remains to show Eq. (17). Towards this end, fix a machine i ∈ M. For notational

convenience, let a := xij and b := xij′ . There are two cases we need to consider. If j and j′ are not
grouped together on machine i, the two RVs Nij and Nij′ are independent. By Observation 3.2,
we know that Nij ∼ Pois(xij = a) and Nij′ ∼ Pois(xij′ = b). Therefore, Pr[Nij = 0 ∧ Nij = 0] =
Pr[Nij = 0] · Pr[Nij = 0] = e−a · e−b.
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We now consider the other case where j, j′ ∈ G for some G ∈ Gi. Depending on which job (or
none) is recommended by the group G, we consider three disjoint events: ¬Bij ∧ ¬Bij′ , Bij , Bij′ .

Pr[Nij +Nij′ = 0]

=Pr[Nij +Nij′ = 0 ∧ ¬Bij ∧ ¬ ∧Bij′ ]

+ Pr[Nij +Nij′ = 0 ∧Bij ] + Pr[Nij +Nij′ = 0 ∧Bij′ ]

=Pr[¬Bij ∧ ¬ ∧Bij′] + Pr[Nij = 0 ∧Bij]

+ Pr[Nij′ = 0 ∧Bij′ ]

=(1− a− b) + Pr[Nij = 0 | Bij ] · Pr[Bij ]

+ Pr[Nij′ = 0 | Bij′ ] · Pr[Bij′ ]

=(1− a− b) + a · (1−
1− e−a

a
) + b · (1−

1− e−b

b
) (18)

[Proposition 3.16]

=e−a−b − (e−a − 1)(e−b − 1)

≤e−a−b = e−xij−xij′ ,

where the second equality follows since ¬Bij and ¬Bij′ imply Nij = BijÑij = 0 and Nij′ =
Bij′Ñij′ = 0, respectively.

By Observation 3.1, we obtain the following corollary.

Corollary 3.18. For any two jobs, j 6= j′ ∈ J and machine i ∈ M, we have Pr[i←≥2 j ∧ i←≥2

j′] ≤ (1/e2) Pr[i← j ∧ i← j′].

We now consider the other case when i←1 j ∧ i←≥2 j
′ or i←≥2 j ∧ i←1 j

′. This means that
one of the two jobs is assigned to machine i and the other is not assigned to any machines in the
first iteration.

Lemma 3.19. For any machine i ∈ M and for any two jobs j 6= j′ ∈ G for some G ∈ Gi, we have
Pr[i←1 j ∧ nil←1 j

′] ≤ (1− 1/e)(1/e)exij′ xij .

Proof. Fix any i, j, j′, G satisfying the lemma precondition. Say i = 1 wlog. We will show that
Pr[1 ←1 j ∧ nil ←1 j′] is maximized when j and j′ are not grouped together on any machines
except machine 1. Towards this end, if there is a machine i′ 6= i, say i′ = 2, where j, j′ ∈ G′ for
some G′ ∈ G2, we create another grouping by splitting G′ into A and B arbitrarily such that j ∈ A
and j′ ∈ B. Then we will show that the probability is no smaller under grouping G′ than it is under
G. Repeating this argument will prove the the claim.

Let PG denote Pr[i←1 j ∧ nil←1 j
′] under grouping G. Define PG′ analogously. Our goal is to

show PG ≤ PG′ . We will compare PG and PG′ fixing N1j , N1j′ , Ñ2j, Ñ2j′ , N−2j :=
∑

i′′∈M,i′′ 6=2 Ni′′j ,
and N−2j′ :=

∑
i′′∈M,i′′ 6=2 Ni′′j′ . Note that nil←1 j

′ only if N1j′ = N−2j′ = 0. Also, 1←1 j only if
N1j > 0. So, assume N1j > 0; then we also have N−2j ≥ N1j > 0.

Given that the aforementioned RVs are fixed, the only factor that potentially makes PG and
PG′ different is how B2j and B2j′ are related—the two are disjoint under G but are independent
under G′. We first observe that PG = PG′ if Ñ2j′ = 0. This is because if Ñ2j′ = 0, then N2j′ = 0
no matter what, meaning that B2j′ has no effect on PG or PG′ ; further, Pr[B2j ] is the same under
both G and G′. So, we assume that the fixed Ñ2j′ > 0.

To calculate PG and PG′ , we consider three disjoint events depending on the recommendation
made by G′ on machine 2, namely B2j , B2j′ , and ¬B2j ∧ ¬B2j′ . If B2j = 1, then N2j = Ñ2j . Note
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that per the above discussion, we can safely assume that N1j′ = N−2j′ = 0, N1j > 0, Ñ2j′ > 0.

So, we have Pr[1 ←1 j ∧ nil ←1 j′ ∧ B2j ] = x2j ·
N1j

Ñ2j+N−2j
. If B2j′ = 1, then N2j′ = Ñ2j′ > 0,

therefore j′ ∈ J≤1. Finally, if ¬B2j ∧ ¬B2j′, then N2j = N2j′ = 0 —so we have Pr[1←1 j ∧ nil ←

j′ ∧ ¬B2j ∧ ¬B2j′ ] = (1− x2j − x2j′)
N1j

N−2j
. Therefore, we have,

PG =
N1j

N−2j + Ñ2j

a+
N1j

N−2j
(1− a− b),

where we let a := x2j, b := x2j′ for notational convenience.
We now focus on calculating PG′ . Note that under grouping G′, B2j and B2j′ are independent.

For j′ /∈ J≤1 to happen, it must be the case that B2j′ = 0 since the fixed Ñ2j′ > 0. Then, by
considering whether Bij or not, we have,

PG′ = (1− b)
( N1j

N−2j + Ñ2j

a+
N1j

N−2j
(1− a)

)

Then, we have,

PG′ − PG = ab
(
−

N1j

N−2j + Ñ2j

+
N1j

N−2j

)
≥ 0,

since N−2j ≥ N1j , as desired.

Therefore, to upper bound Pr[i←1 j ∧ nil ←1 j′], we can safely assume that no group, except
G on machine 1, has both jobs j and j′ simultaneously. This implies that N−1j :=

∑
i′′∈M,i′′ 6=1 Ni′′j

and N−1j′ :=
∑

i′′∈M,i′′ 6=1 Ni′′j′ are independent. Note that N−1j ∼ Pois(1 − x1j) and N−1j′ ∼
Pois(1− x1j′) by Observations 3.2 and 3.3. We now derive,

Pr[1←1 j ∧ nil←1 j
′]

=Pr[1←1 j ∧B1j ∧N1j′ = N−1j′ = 0]

[1←1 j only if B1j ]

=Pr[1←1 j ∧B1j ∧N−1j′ = 0]

[N1j′ = 0 if B1j , since j, j′ ∈ G on machine 1)]

=Pr[1←1 j ∧B1j ] · Pr[N−1j′ = 0]

=Pr[1←1 j | B1j] · Pr[B1j ] · e
−(1−x

1j′ )

[N−1j′ ∼ Pois(1− x1j′)]

=(1− 1/e)e−(1−x
1j′ )x1j [Lemma 3.4]

The third equation follows since N−1j′ is determined by the recommendation of groups on machines
other than 1, which don’t include j, and {Ñi′′j′}i′′∈M,i′′ 6=1 – all these are independent of B1j and
1←1 j since j and j′ are not grouped together on any machines except machine 1.

Corollary 3.20. For any machine i ∈ M and for any two jobs j 6= j′ ∈ G for some G ∈ Gi, we
have

Pr[i←1 j ∧ i←≥2 j
′] ≤ (1− 1/e)(1/e)exij′ xijxij′; and

Pr[i←≥2 j ∧ i←1 j
′] ≤ (1− 1/e)(1/e)exijxijxij′ .
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Proof. We show the first inequality as follows.

Pr[i←1 j ∧ i←≥2 j
′]

=Pr[i←1 j ∧ i←≥2 j
′ ∧ nil←1 j

′]

=Pr[i←≥2 j
′ | i←1 j ∧ nil←1 j

′] · Pr[i←1 j ∧ nil ←1 j
′]

=Pr[i←≥1 j
′] · Pr[i←1 j ∧ nil←1 j

′]

≤xij′(1− 1/e)e−(1−x
1j′ )xij,

where the penultimate equality is due to Observation 3.1; and the last equality is due to the second
property and Lemma 3.19. The second inequality can be analogously shown using its symmetricity
to the first.

We are now ready to complete the proof of the fourth property. For any two jobs j 6= j′ ∈ G
for some G ∈ Gi, we know i←1 j and i←1 j

′ cannot happen simultaneously since Bij and Bij′ are
disjoint. Therefore, by Corollaries 3.18 and 3.20, we have

Pr[i← j ∧ i← j′]

≤Pr[i←1 j ∧ i←≥2 j
′]

+ Pr[i←2 j ∧ i←≥1 j
′] + Pr[i←≥2 j ∧ i←≥2 j

′]

≤(1− 1/e)(1/e)(exij + exij′ )xijxij′

+ (1/e2) Pr[i← j ∧ i← j′]

By rearranging terms, we have

Pr[i← j ∧ i← j′]

≤
(1− 1/e)(1/e)

1− 1/e2
(exij + exij′ )xijxij′

=
1

e+ 1
(exij + exij′ )xijxij′

This completes the proof of the fourth property.

4 Unrelated Machines Scheduling: Rounding Algorithm

In this section we describe how we round the optimal solution to the LP described in Section 1.3.
As mentioned, we will view the LP solution {xijs}i∈M,j∈J ,s as a collection of rectangles.

Definition 4.1. For every xijs > 0, where i ∈ M, j ∈ J , s ≥ 0, there is a rectangle Rijs that starts
at time s and ends at time s+ pij of height xijs.

Definition 4.2. The height of job j ∈ J on machine i ∈ M is defined as xij :=
∑

s xijs.

To apply Theorem 1.2, we need to group jobs on each machine, which will be done stochastically.
For every j ∈ J and i ∈ M such that xij > 0, we choose τij uniformly at random from (0, pij ]; and
select one rectangle Rijs with probability

xijs

xij
as the representative rectangle of job j on machine

i, which is denoted as Rij .
We now define good jobs and bad jobs on each machine. Intuitively, a job is good on a machine

if it is scheduled a lot on the machine in the LP solution or it starts considerably late compared its
size (the starting point of the job’s representative rectangle Rij is large compared to its size pij)—we
say a job is good because if all jobs are good, then we can obtain a better than 1.5-approximation
by independent rounding.
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Definition 4.3. Given Rij = Rijs, job j ∈ J is good on machine i ∈ M if s ≥ 1
10pij or xij ≥

9
100 ;

otherwise, job j is bad on machine i.

Definition 4.4. A rectangle Rijs is good if s ≥ 1
10pij or xij ≥

9
100 , otherwise bad.

Note that a job j is good on machine i if its representative rectangle Rij on machine i is good.
So, job j being good or bad is stochastic.

Before grouping jobs, we shift every rectangle to the right—how much a rectangle Rij = Rijs is
shifted depends on its start time and how much j is scheduled on the machine: Rectangle Rij = Rijs

is shifted to the right by

• 0.34(s + xijpij) if xij ≥
9

100

• 0.34s otherwise.

We denote the starting point of Rijs after shifting as ŝ. For each job j on machine i with
Rij = Rijs and random offset τij , we set θij = ŝ + τij . We will schedule the jobs assigned to each
machine i in increasing order of their θ values on machine i.

Now to decide where to assign each job j, we use Theorem 1.2. To apply the theorem we need
to group jobs on each machine. To define the grouping Gi on each machine i, fix a machine i ∈ M.
We only group bad jobs on machine i – or equivalently, we create a singleton group for each job
that is not grouped together with any other jobs on the machine. To group bad jobs on machine
i, we use a set of random grid points that are exponentially increasing. Choose a number ρ from
(1/10, 1) uniformly at random. A point in time is called a grid time if it is of the form ρ10l for
some integer l. Define the k-th grid interval, Ik := (ρ10k, ρ10k+1). Note that grid times partition
the time horizon (0,∞) into {Ik}k∈Z.

We associate job j with interval Ik on machine i if θij ∈ Ik and an independent coin gives a
head—the coin gives a head with probability u = 1/2—and we denote this event as j  i Ik. Now
consider all jobs associated with an interval Ik on machine i. If their total height is less than 1,
i.e.,

∑
j:j iIk

xij ≤ 1, we group them together and add this group to Gi. If two jobs j and j′ are

grouped together on machine i, we will denote the event as j
i
∼ j′; otherwise j

i
≁ j′. We now use

Theorem 1.2 to decide where to assign each job.
As mentioned above, given that every job is assigned to a machine, we order the jobs assigned

to the same machine i, in increasing order of their θij value. This completes the description of our
randomized rounding.

5 Unrelated Machines Scheduling: Analysis

This section is devoted to the analysis of the randomized algorithm in Section 4 with the goal of
proving Theorem 1.1.

We first remind the reader of the following fact.

Observation 5.1. All properties of our randomized rounding method (stated in Theorem 1.2) hold
true for any fixed value of the random variables {θij}i,j and ρ. In particular, Pr[i ← j] = xij
for any θ values of jobs and ρ value and is independent of how jobs are grouped together on each
machine and which rectangles are chosen as jobs’ representative rectangles.
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Let C̃j∗ be the completion time of a fixed job j∗ in the schedule returned by the rounding
algorithm. Using conditional expectation and the law of total expectation, we have

E[C̃j∗ ] =
∑

i∈M

∑

s∗

Pr[i← j∗] Pr[Rij∗ = Rij∗s∗ | i← j∗] E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ]

=
∑

i∈M

∑

s∗

xij∗ Pr[Rij∗ = Rij∗s∗ | i← j∗] E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ]

As stated in Observation 5.1, the event i← j∗ is independent of Rij∗ = Rij∗s∗ , which happens
with probability

xij∗s∗

xij∗
. Thus, we can simplify the above as follows.

E[C̃j∗ ] =
∑

i∈M

∑

s∗

xij∗s∗ E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ] (19)

From now on, we fix machine i. Our key lemma in the analysis is the following.

Lemma 5.2. For each job j∗, we have
∑

s∗

xij∗s∗E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ] ≤ 1.488
∑

s∗

xij∗s∗(s
∗ + pij∗)

Plugging this inequality into Eqn.(19) would immediately imply Theorem 1.1:

E[C̃j∗ ] ≤ 1.488
∑

i

∑

s∗

xij∗s∗(s
∗ + pij∗),

as summing E[C̃j∗ ] over all jobs multiplied by their weight gives an upper bound of our algorithm’s
expected objective by 1.488 times the LP optimum objective.

The rest of this section is devoted to proving Lemma 5.2. Following observations will be useful
for our analysis.

Observation 5.3. For any job j∗ and any rectangle Rij∗s∗ we have

E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ] =

∫ pij∗

0

1

pij∗
E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ , τij∗ = τ ] dτ (20)

Proof. Recall that τij∗ is chosen from (0, pij∗ ] uniformly at random. Using conditional expectation
and the law of total expectation, we have,

E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ]

=

∫ pij∗

0
Pr[τij∗ = τ | i← j∗, Rij∗ = Rij∗s∗ ] E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ , τij∗ = τ ] dτ

Note that τij∗ is independent of Rij∗ = Rij∗s∗, and i ← j∗ is independent of these two events as
observed in Observation 5.1. Thus, we have Pr[τij∗ ∈ [τ, τ + dτ) | i← j∗, Rij∗ = Rij∗s∗ ] = Pr[τij∗ ∈
[τ, τ + dτ)] = dτ

pij∗
. This completes the proof.

For the sake of analysis we define notation L̂ijs(θ) for any rectangle Rijs and ant time point θ
to be the length of part of the rectangle Rijs that appears before time θ after shifting. Note that
L̂ijs(θ) = min{θ, ŝ+ pij} − ŝ if ŝ < θ, otherwise L̂ijs(θ) = 0.

The next observation measures the probability that a job j will have a smaller θ value than the
fixed job j∗ on machine i. If this event occurs, and further, both jobs are assigned to the machine
i, job j will delay job j∗.
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Observation 5.4. For any two jobs j∗ and j on machine i, any fixed value θij∗ and any Rijs, we

have Pr[θij ≤ θij∗ | Rij = Rijs] =
L̂ijs(θij∗ )

pij
.

Proof. Since the representative rectangle of job j on machine i is fixed, the event θij = ŝ+τij ≤ θij∗

happens iff τij ∈ (0,max{0,min{θij∗ , ŝ+ pij} − ŝ}] = (0, L̂ijs(θij∗)]. Since τij is chosen from (0, pij ]

uniformly at random, the event τij ∈ (0, L̂ijs(θij∗)] occurs with probability
L̂ijs(θij∗ )

pij
.

5.1 Proof of the Lemma 5.2

We now get back to proving our main lemma, Lemma 5.2. Towards that end, we first express j∗’s
expected completion times in terms of the quantities we defined. The following lemma breaks down
j∗’s expected completion time conditioned on the fixed job j∗ being assigned to machine i, the
rectangle Rij∗s∗ being selected as j∗’s representative on machine i and the value of θi,j∗ being fixed.
Note that xijs · L̂ijs(θij∗) is exactly the volume of rectangle Rijs appearing before time θij∗ after
shifting and

∑
j,s xijs · L̂ijs(θij∗) −

∑
s xij∗s · L̂ij∗s(θij∗) is total volume of all rectangles excluding

those of job j∗ appearing before time θij∗ after shifting—this is exactly how much other jobs would
delay job j∗ if we used the standard independent rounding. The gain comes from representative
rectangles that are grouped together with the fixed Rij∗s∗, in which jobs of such rectangles are less
likely to be assigned to the same machine i due to the strong negative correlation property.

For brevity, we may shorten Rij = Rijs simply as Rijs particularly when it is stated in the

condition of a probability or expectation. Throughout this paper, we set η := 2 exp(0.09)
e+1 < 0.589,

which comes from the following: Recall the fourth property of Theorem 1.2. For any two distinct

bad jobs j and j′, as xij , xij′ < 9/100, we have Pr[i ← j ∧ i ← j′ | j
i
∼ j′] ≤ 2 exp(0.09)

e+1 xijxij′ <
0.589xijxij′.

Lemma 5.5. For any job j∗, representative rectangle Rij∗s∗ and any fixed τij∗ ∈ (0, pij∗ ], we have,

E
[
C̃j∗

∣∣∣ i← j∗, Rij∗s∗ , τij∗
]
− pij∗

=
∑

j,s

xijs · L̂ijs(θij∗)−
∑

s

xij∗s · L̂ij∗s(θij∗)− (1− η)
∑

j 6=j∗,s

xijs · pij · Pr[eij , j
i
∼ j∗ | Rijs, Rij∗s∗ , τij∗ ]

where eij denotes the event that θij ≤ θij∗.

Proof. For brevity, we omit the fixed τij∗ and representative rectangle Rij∗s∗ from the condition.
Then, we have,

E
[
C̃j∗

∣∣∣ i← j∗
]
− pij∗

=
∑

j 6=j∗,eij

Pr
[
i← j

∣∣∣ i← j∗
]
· pij

=
∑

j 6=j∗,eij ,j
i
≁j∗

Pr
[
i← j

∣∣∣ i← j∗
]
· pij +

∑

j 6=j∗,eij ,j
i
∼j∗

Pr
[
i← j

∣∣∣ i← j∗
]
· pij

≤
∑

j 6=j∗,eij ,j
i
≁j∗

xij · pij + η
∑

j 6=j∗,eij ,j
i
∼j∗

xij · pij

=
∑

j 6=j∗,eij

xij · pij − (1− η)
∑

j 6=j∗,eij ,j
i
∼j∗

xij · pij
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where the inequality follows from negative and strong negative correlation properties of our ran-
domized rounding algorithm stated in Theorem 1.2.

Note that fixing the representative rectangle Rij∗s∗ and the value of τij∗ fixes the value of θij∗.
Then, thanks to Observation 5.4, the first term becomes

∑

j 6=j∗,s

xij · pij · Pr[Rij = Rijs, eij ] =
∑

j 6=j∗,s

xij · pij · Pr[eij | Rijs] · Pr[Rij = Rijs]

=
∑

j 6=j∗,s

xij ·
xijs
xij
· pij ·

L̂ijs(θij∗)

pij
[Observation 5.4]

=
∑

j 6=j∗,s

xijs · L̂ijs(θij∗)

=
∑

j,s

xijs · L̂ijs(θij∗)−
∑

s

xij∗s · L̂ij∗s(θij∗)

The second term becomes

(1− η)
∑

j 6=j∗,s

xij · pij · Pr[Rijs, eij , j
i
∼ j∗]

= (1− η)
∑

j 6=j∗,s

xij · pij · Pr[eij , j
i
∼ j∗ | Rijs] · Pr[Rijs]

= (1− η)
∑

j 6=j∗,s

xijs · pij · Pr[eij , j
i
∼ j∗ | Rijs]

Thus, bringing back the omitted conditions τij∗ and Rij∗s∗ to the equation, we have the lemma.

Lemma 5.6. For each job j∗, and any representative rectangle Rij∗s∗, we have

E[C̃j∗ | i← j∗, Rij∗s∗] ≤ ŝ∗ + 1.5pij∗ −

∫ pij∗

0

1

pij∗
·
∑

s

xij∗s · L̂ij∗s(ŝ
∗ + τ) dτ (21)

Proof. The trivial lower bound for the second negative term of the lemma 5.5 is zero. Thus

E[C̃j∗ | i← j∗, Rij∗s∗ , τij∗ ] ≤ pij∗ +
∑

j,s

xijs · L̂ijs(θij∗)−
∑

s

xij∗s · L̂ij∗s(θij∗)

Note that the total volume of all rectangles appearing before time θ is at most θ. Further,∑
j,s xijs · L̂ijs(θ) is total volume of all rectangles appearing before time θ after shifting. Since we

shift rectangles to the right side, we have
∑

j,s xijs · L̂ijs(θ) ≤ θ. Thus we have

E[C̃j∗ | i← j∗, Rij∗s∗, τij∗ ] = pij∗ + θij∗ −
∑

s

xij∗s · L̂ij∗s(θij∗)

= pij∗ + ŝ∗ + τij∗ −
∑

s

xij∗s · L̂ij∗s(θij∗)

Thus, taking the integral on the value of τij∗, we have,

E[C̃j∗ | i← j∗, Rij∗s∗] ≤ pij∗ + ŝ∗ +

∫ pij∗

0
τ ·

1

pij∗
dτ −

∫ pij∗

0

(∑

s

xij∗s · L̂ij∗s(ŝ
∗ + τ)

)
·

1

pij∗
dτ

≤ 1.5 · pij∗ + ŝ∗ −

∫ pij∗

0

(∑

s

xij∗s · L̂ij∗s(ŝ
∗ + τ)

)
·

1

pij∗
dτ

as desired.
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Lemma 5.7. For each job j we have

∑

s∗

xij∗s∗E[C̃j∗ | i← j∗, Rij∗s∗] ≤ (1.5 −
xij∗

2
)xij∗pij∗ +

∑

s∗

xij∗s∗ ŝ
∗

Proof. Applying Lemma 5.6 to all rectangles {Rij∗s∗}s∗ of job j∗ on machine i, we can say

∑

s∗

xij∗s∗E[C̃j∗ | i← j∗, Rij∗s∗] ≤
∑

s∗

xij∗s∗
(
ŝ∗+1.5pij∗−

∫ pij∗

0

(∑

s

xij∗s ·L̂ij∗s(ŝ
∗+τ)

)
·
1

pij∗
dτ

)

(22)

Consider negative term here.

∑

s∗

xij∗s∗

∫ pij∗

0

(∑

s

xij∗s · L̂ij∗s(ŝ
∗ + τ)

)
·

1

pij∗
dτ

=
∑

{s∗,s}:s 6=s∗

xij∗s∗ · xij∗s

∫ pij∗

0

(
L̂ij∗s(ŝ

∗ + τ) + L̂ij∗s∗(ŝ+ τ)
)
·

1

pij∗
dτ

+
∑

s∗

x2ij∗s∗

∫ pij∗

0
L̂ij∗s∗(ŝ

∗ + τ) ·
1

pij∗
dτ (23)

We can show that for any two different s∗ and s we have

∫ pij∗

0

(
L̂ij∗s(ŝ

∗ + τ) + L̂ij∗s∗(ŝ+ τ)
)
·

1

pij∗
dτ = pij∗ (24)

W.l.o.g we can assume ŝ∗ < ŝ. Consider the case that two rectangles Rij∗s∗ and Rij∗s do not
overlap after shifting. In this case, for any τ , L̂ij∗s∗(ŝ+ τ) = pij∗. Thus the equality (24) holds in
this case. Now consider the case that two rectangles Rij∗s∗ and Rij∗s overlap after shifting. In this
case when τ ∈ (0, ŝ− ŝ∗], L̂ij∗s(ŝ

∗ + τ) = 0. When τ ∈ (ŝ− ŝ∗, pij∗], L̂ij∗s(ŝ
∗ + τ) = ŝ∗ + τ − ŝ. For

any τ , L̂ij∗s∗(ŝ+ τ) = min{ŝ + τ − ŝ∗, pij∗}. Thus we have

∫ pij∗

0

(
L̂ij∗s(ŝ

∗ + τ) + L̂ij∗s∗(ŝ+ τ)
)
·

1

pij∗
dτ

=

∫ pij∗

ŝ−ŝ∗
(ŝ∗ + τ − ŝ) ·

1

pij∗
dτ

+

∫ s∗+pij∗−s

0
(s+ τ − s∗) ·

1

pij∗
dτ

+

∫ pij∗

s∗+pij∗−s
(pij∗) ·

1

pij∗
dτ

= pij∗

Since L̂ij∗s∗(ŝ
∗ + τ) = τ we have

∫ pij∗

0
L̂ij∗s∗(ŝ

∗ + τ)
)
·

1

pij∗
dτ = pij∗/2 (25)
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Applying Eqn.(24) and Eqn.(25) in Eqn.(23),the negative term of Eqn.(22) becomes:

∑

{s∗,s}:s 6=s∗

xij∗s∗ · xij∗s · pij∗ +
∑

s∗

x2ij∗s∗ ·
pij∗

2

=
pij∗

2

(∑

s∗

xij∗s∗
)2

=
pij∗·x

2
ij∗

2

Plugging this equality in Eqn.(22) gives the lemma.

We now consider three cases in the following to prove Lemma 5.2.

5.1.1 When job j∗ is good on machine i because xij∗ > 9
100

The following corollary follows from Lemma 5.7; the proof is deferred to the full version of this
paper.

Corollary 5.8. When job j∗ is good on i because xij∗ > 9
100 we have

∑

s∗

xij∗s∗E[C̃j∗ | i← j∗, Rij∗s∗ ] ≤ 1.486
∑

s∗

xij∗s∗(s
∗ + pij∗)

Proof.

∑

s∗

xij∗s∗E[C̃j∗ | i← j∗, Rij∗s∗ ] ≤ (1.5 −
xij∗

2
)xij∗pij∗ +

∑

s∗

xij∗s∗ ŝ
∗

= (1.5 −
xij∗

2
)xij∗pij∗ +

∑

s∗

xij∗s∗(1.34s
∗ + 0.34xij∗pij∗)

= (1.5 − 0.16xij∗)xij∗pij∗ +
∑

s∗

1.34 · xij∗s∗ · s
∗

≤ (1.5 − 0.16 × 0.09) · xij∗ · pij∗ + 1.34
∑

s∗

xij∗s∗ · s
∗

< 1.486
∑

s∗

xij∗s∗(s
∗ + pij∗)

The second equality come from the fact that we shift Rij∗s∗ to the right side by 0.34(s∗ + xij∗pij∗).

This gives Lemma 5.2 for each good job j∗ with xij∗ ≥
9

100 . Now we focus on proving Lemma 5.2
for each job j∗ with xij∗ < 9

100 in the following.

5.1.2 When job j∗ with xij∗ < 9
100 is good on machine i because its representative

rectangle Rij∗s∗ is good on i

The goal of this subsection is to show Lemma 5.2 for each job j∗ with xij∗ < 9
100 and any good

representative rectangle Rij∗s∗ . Towards this end, it suffices to show the following.
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E[C̃j∗ | i← j∗, Rij∗s∗] ≤ ŝ∗ + 1.5pij∗ = 1.34s∗ + 1.5pij∗

= 1.486s∗ − 0.146s∗ + 1.5pij∗

≤ 1.486s∗ − 0.0146pij∗ + 1.5pij∗

≤ 1.486(s∗ + pij∗)

The first inequality is due to Lemma 5.6. The first equality comes from this fact as xij∗ < 9
100 , we

shift rectangle Rij∗s∗ to the right side by 0.34s∗, and the inequality follows from 10s∗ ≥ pij∗ for
any good rectangle Rij∗s∗ .

Thus, we have shown Lemma 5.2 for this case.

5.1.3 When job j∗ is bad on machine i

In this subsection we consider the case that xij∗ < 9
100 and the representative rectangle of job j∗ is

bad on i. To show Lemma 5.2 for this case, we will show,

E

[
C̃j∗

∣∣∣ i← j∗, Rij∗s∗ , τij∗
]
≤ pij∗ + ŝ∗ + 0.976τij∗ (26)

Then, by taking the integral on the value of τij∗, we have,

E[C̃j∗ | i← j∗, Rij∗s∗] ≤ pij∗ + ŝ∗ +

∫ pij∗

0
0.976τ ·

1

pij∗
dτ = ŝ∗ + 1.488pij∗

Since ŝ∗ = 1.34s∗, this means we have E[C̃j∗ | i← j∗, Rij∗s∗] ≤ 1.488(s∗ + pij∗), as desired.

To prove Eqn.(26), we will reformat the time-indexed LP solution {xijs}ijs, so that we have
a linear combination of non-overlapping rectangles on each machine. This view will make our
analysis easier. Formally, we will define a collection Fi of subsets of rectangles on each machine i
that satisfies the following properties.

1.
∑

f∈Fi
zif ≤ 1

2. A configuration f ∈ Fi is a set of disjoint rectangles; that is, for any two distinct rectangles
Rijs, Rij′s′ ∈ f , (s, s+ pij] and (s′, s′ + pij′ ] are disjoint.

3. For each rectangle Rijs, we have
∑

f∋Rijs
zif = xijs.

An easy way to obtain this linear combination decomposition to replace each rectangle with
sufficiently many copies of the same height preserving its total height. Then, it is not difficult to see
that we can group rectangles as desired. We note that we can directly obtain this type of solution
by solving a configuration LP [40].6

Now, we restate Lemma 5.5 using the above configuration view. As we will focus on a fixed
machine i, we may omit Fi. Due to the space constraints, we defer the proof of the following
corollary to the full version of this paper.

6The configuration LP solution is more structured than the above decomposition in that each configuration has
at most one rectangle of each job. However, we do not need such a strong property for our rounding.
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Corollary 5.9. For any job j∗, representative rectangle Rij∗s∗ and any fixed τij∗ ∈ (0, pij∗ ], we
have,

E
[
C̃j∗

∣∣∣ i← j∗, Rij∗s∗ , τij∗
]
− pij∗

=
∑

f

zif

(
L̂f (θij∗)−

∑

Rij∗s∈f

L̂ij∗s(θij∗)
)

− (1− η)
∑

f

∑

Rijs∈f :j 6=j∗

zif · pij Pr[eij , j
i
∼ j∗ | Rijs, Rij∗s∗ , τij∗ ]

where L̂f (θij∗) is the total length of all rectangles in f appearing up to time θij∗ after shifting.

Proof.

E
[
C̃j∗

∣∣∣ i← j∗, Rij∗s∗ , τij∗
]
− pij∗

=
∑

j,s

xijs · L̂ijs(θij∗)−
∑

s

xij∗s · L̂ij∗s(θij∗)− (1− η)
∑

j 6=j∗,s

xijs · pij · Pr[eij , j
i
∼ j∗ | Rijs, Rij∗s∗ , τij∗]

=
∑

f

∑

Rijs∈f

zif L̂ijs(θij∗)−
∑

f

∑

Rij∗s∈f

zif L̂ij∗s(θij∗)

− (1− η)
∑

f

∑

Rijs∈f :j 6=j∗

zif · pij Pr[eij , j
i
∼ j∗ | Rijs, Rij∗s∗ , τij∗ ]

=
∑

f

zif L̂f (θij∗)−
∑

f

∑

Rij∗s∈f

zif L̂ij∗s(θij∗)

− (1− η)
∑

f

∑

Rijs∈f :j 6=j∗

zif · pij Pr[eij , j
i
∼ j∗ | Rijs, Rij∗s∗ , τij∗ ]

=
∑

f

zif

(
L̂f (θij∗)−

∑

Rij∗s∈f

L̂ij∗s(θij∗)
)

− (1− η)
∑

f

∑

Rijs∈f :j 6=j∗

zif · pij Pr[eij , j
i
∼ j∗ | Rijs, Rij∗s∗ , τij∗ ]

We define Df as the contribution of each configuration f to E
[
C̃j∗

∣∣∣ i ← j∗, Rij∗s∗ , τij∗
]
as

following.

Df = zif

(
L̂f (θij∗)−

∑

Rij∗s∈f

L̂ij∗s(θij∗)− (1− η)
∑

Rijs∈f :j 6=j∗

pij · Pr[eij , j
i
∼ j∗ | Rijs, Rij∗s∗ , τij∗]

)

With this definition, we can say,

E
[
C̃j∗

∣∣∣ i← j∗, Rij∗s∗ , τij∗
]
= pij∗ +

∑

f

Df (27)

Since
∑

f zif = 1 and 0.976θij∗ ≤ ŝ∗ + 0.976τij∗ , if we show that

Df ≤ zif (0.976θij∗) for all configurations f, (28)

30



then we can prove Eqn. (26), and consequently we can get Lemma 5.2 for a bad job j∗.

Henceforth, the goal of our analysis is to show Eqn. (28). As mentioned there is a random
variable ρ in our algorithm that affects grid points, and therefore, affects the grouping of bad jobs

on each machine. Thus, for each f , Rijs, Rij∗s ∈ f , where j 6= j∗, the probability Pr[eij , j
i
∼

j∗ | Rijs, Rij∗s∗ , τij∗] in Df depends on the value of ρ. As ρ is sampled from ( 1
10 , 1] uniformly at

random, applying marginal probability and then Bayes’ rule, we have

Df = zif

(
L̂f (θij∗)−

∑

Rij∗s∈f

L̂ij∗s(θij∗)−(1−η)
∑

Rijs∈f :j 6=j∗

pij·

∫ 1

1

10

10

9
Pr[eij , j

i
∼ j∗ | Rijs, Rij∗s∗, τij∗ , ρ] dρ

)

(29)

Let I ∈ {Ik} be the interval containing θij∗ and g be the starting point of this interval. Note
that the rectangle Rij∗s∗ is associated with I with probability u = 1/2. It is worth mentioning
that, when θij∗ is fixed, fixing ρ determines I, and therefore, g as well. We first show that g is
considerably smaller than θij∗ in expectation. Note that for any ρ value, g > 0.1θij∗ .

Lemma 5.10. For any value of θij∗, E[g] ≤
11
20θij∗.

Proof. Let k be an integer such that 10k ≤ θij∗ < 10k+1. Let α be such that θij∗ = α10k+1. Note
that by definition of θij∗ and α, we have 1

10 ≤ α < 1. Since ρ is sampled from ( 1
10 , 1) uniformly at

random, the interval including θij∗ must be either Ik = (ρ10k, ρ10k+1) or Ik+1 = (ρ10k+1, ρ10k+2).
Precisely, we have g = ρ10k+1 when ρ ≤ α, otherwise g = ρ10k. Therefore, we derive,

E[g] =
10

9

∫ α

1

10

ρ · 10k+1 dρ+

∫ 1

α
ρ · 10k dρ = 10k+1(

α2

2
+

1

20
) ≤ 10k+1 11

20
α =

11

20
θij∗

The inequality follows from the fact that α2

2 + 1
20 ≤

11
20α when 1

10 ≤ α < 1. The last equality is
immediate from the definition of θij∗ .

The following observation will be useful in our analysis.

Observation 5.11. For any configuration f and value θ′ ≤ θij∗, such that no rectangle Rij′s′ in f

includes θ′, i.e. θ′ /∈ (s′, s′ + pij′) we have L̂f (θij∗) ≤ θij∗ −min(0.34θ′, θij∗ − θ′).

Proof. Since θ′ is not contained in the interior of any rectangle in f , a rectangle in f is either to
the left or to the right of θ′. The rectangles in f after θ′ will be shifted to the right side by at
least 0.34θ′. When 0.34θ′ > θij∗ − θ′, all rectangles after θ′ in f will be shifted to the right side of
θij∗. Thus L̂f (θij∗) ≤ θ′. When 0.34θ′ < θij∗ − θ′, the rectangles in f from θij∗ − 0.34θ′ to θij∗ will

be shifted to the right side of θij∗. Thus L̂f (θij∗) ≤ θij∗ − 0.34θ′. Combining two cases gives the
observation.

Consider the the interval H = (0.1θij∗ , 0.97θij∗ ]. We upper boundDf by considering three cases.

Case 1: The interval H is not a sub-interval of any rectangle (more precisely,
the interval defined by the rectangle’s starting and ending times) in f . In this case
there is θ′ ∈ H that is not interior of any rectangle in f . By observation 5.11,
L̂f (θij∗) ≤ θij∗ − min{0.03θij∗ , 0.34θ

′} ≤ θij∗ − min{0.03θij∗ , 0.34 × 0.1θij∗} ≤ 0.97θij∗ .
Thus Df ≤ zif0.97θij∗
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Case 2: The interval H is a sub-interval of a good rectangle Rijs ∈ f . We first observe

that the rectangle Rijs is shifted to the right side by at least 0.03θij∗ . If xij ≥
9

100 , the rectangle
Rijs is shifted to the right side by at least 0.34(s + 0.09pij) ≥ 0.34(0.09(s + pij)) > 0.03θij∗ .
When xij < 9

100 , Rijs is good because s > 1
10pij. In this case Rijs is shifted to the right side by

0.34s ≥ 0.34(0.09s + 0.91s) ≥ 0.34 × 0.09(s + pij) > 0.03θij∗ . As s + 0.03θij∗ < θij∗, this means
the total length of rectangles in f up to time θij∗ decreases by at least 0.03θij∗ due to the shifting.
Thus, we have Df ≤ zif0.97θij∗ .

Case 3: The interval H is a sub-interval of a bad rectangle Rijs ∈ f . This is the case where we
utilize strong negative correlations.

Pr[eij , j
i
∼ j∗ | Rijs, Rij∗s∗ , τij∗, ρ]

=Pr[eij , θij ∈ I, j  i I, j
∗
 i I,

∑

j′ iI

xij′ ≤ 1 for I s.t. θij∗ ∈ I | Rijs, Rij∗s∗ , τij∗, ρ]

=Pr[g < θij < min{θij∗, ŝ + pij} | Rijs, Rij∗s∗ , τij∗, ρ]

· Pr[j  i I | eij , θij ∈ I,Rijs, Rij∗s∗, τij∗ , ρ]

· Pr[j∗  i I | j  i I, eij , θij ∈ I,Rijs, Rij∗s∗, τij∗ , ρ]

· Pr[
∑

j′ iI

xij′ ≤ 1 | j∗  i I, j  i I, eij , θij ∈ I,Rijs, Rij∗s∗ , τij∗ , ρ]

≥
max{min{θij∗ , ŝ+ pij} − g, 0}

pij
· u · u · Pr[

∑

j′ 6=j,j∗ iI

xij′ ≤ 0.82]

Note that in the above equations, I is a grid interval including θij∗. Thus, fixing Rij∗s∗ and
τij∗ means fixing I and its starting point g. In the third equation, the first probability is for the
event eij and θij ∈ I. The second and third probabilities are for the events that j and j∗ are
associated with I respectively, conditioned on their θ values being in I – they are both u = 1/2.
The last probability is lower bounded by the probability that the total height of jobs, other than
j, j∗, assigned to I is at most 0.82, as only bad jobs are associated with I, meaning xij, xij∗ ≤ 9/100.

To keep the flow of the analysis, we defer the proof of the following lemma to the subsequent
section.

Lemma 5.12. Pr[
∑

j′ 6=j,j∗ iI
xij′ ≤ 0.82] ≥ 0.5317.

Assuming Lemma 5.12 holds true, we can complete our analysis. We have

Pr[eij , j
i
∼ j∗ | Rijs, Rij∗s∗ , τij∗ , ρ] > 0.1323 ·

max{min{θij∗ , ŝ+ pij} − g, 0}

pij

Applying the above inequality to Eqn. (29) we have.

Df ≤ zif

(
L̂f (θij∗)−

∑

Rij∗s∈f

L̂ij∗s(θij∗)− (1− η)

∫ 1

1

10

10

9
· 0.1323 · (max{min{θij∗ , ŝ+ pij} − g, 0}) dρ

)

≤ zif

(
L̂f (θij∗)−

∑

Rij∗s∈f

L̂ij∗s(θij∗)− (1− η)

∫ 1

1

10

10

9
· 0.1323 · (min{θij∗, ŝ + pij} − g) dρ

)

≤ zif

(
L̂f (θij∗)− 0.1323 · (1− η) ·

(
min{θij∗ , ŝ+ pij} − E[g]

))

≤ zif

(
L̂f (θij∗)− 0.1323 · (1− η) ·

(
min{θij∗ , s+ pij} − E[g]

))
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The last inequalities come from the fact min{θij∗ , ŝ+pij} ≥ min{θij∗, s+pij} and Lemma 5.10. We
observe that L̂f (θij∗) is also upper bounded by min{θij∗ , s+ pij}. To see this, assume s+ pij < θij∗

since otherwise this claim is immediate from the definition of L̂f (θij∗). Note that all rectangles in
f starting at time s+ pij or later are shifted to the right by at least 0.34(s+ pij) ≥ 0.34 ∗ 0.97θij∗ .
Since s+ pij ≥ 0.97θij∗ , this means all those rectangles are shifted to the right side of θij∗. Thus,
we have the claim. Thus, we have,

Df ≤ zif

(
(1− 0.1323 · (1− η)) ·min{θij∗ , s+ pij}+ 0.1323 · (1− η) ·

11

20
· θij∗

)

≤ zif

(
(1− 0.1323 · (1− η) + 0.1323 · (1− η) ·

11

20
)θij∗

)

Having η < 0.589, we can say Df ≤ zif · 0.976 θij∗.

5.1.4 Proof of Lemma 5.12

It now remains to prove Lemma 5.12.

Lemma 5.13. For any configuration f on machine i and any grid interval I, we have

∑

Rijs∈f :Rijs is bad on i

|I ∩ (ŝ, ŝ+ pij ]|

pij
≤ 1

Proof. Fix a machine i. We first show that at most two bad rectangles from the same configuration
f , after shifting, can overlap with a fixed grid interval I on a fixed machine i. To streamline our
analysis, by scaling all time points uniformly, we assume wlog that I = (1/10, 1). For the sake of
contradiction, say there are more than two bad rectangles from f overlapping with I after shifting.
Suppose R̂ij′s′ is the last bad rectangle overlapping with I and R̂ijs is the second to the last bad

rectangle overlapping with I. Here we use R̂ to denote the rectangle R after shifting.
The proof idea is to show that even if R̂ij′s′ barely overlaps with I, the second to the last

rectangle R̂ijs must start before I. So, we can assume ŝ′ = 1. For notational convenience, let p := pij
and p′ := pij′ . As Rij′s′ is bad, we know ŝ′ = 1.34s′. From the observation that the two rectangles
do not overlap and their relative order doesn’t change by the shifting, we have s′ ≥ s+p. Since Rijs

is bad, we have s ≤ (1/10)p. Therefore, we have 1 = 1.34s′ ≥ 1.34(s + p) ≥ 1.34(11s) = 14.75s.
Thus, we have ŝ = 1.34s ≤ 1/11. This means R̂ijs starts before I does. This, R̂ijs is the first bad
rectangle from f overlapping with I, a contradiction.

From the above argument, it is straightforward to see that if the first bad rectangle overlapping
with I is fully contained in I, then it is the only bad rectangle from f overlapping with I. In this
case, the summation is exactly one. To see this is in fact the maximum of the summation, fix two
adjacent bad rectangles R̂ijs and R̂ij′s′ from the same configuration, move I to the left or to the

right. Since p′ > p from the above argument, it is easy to see that when we increase R̂ij′s′ ’s overlap

with I by one unit and decrease R̂ijs’s overlap with I by one unit, the summation decreases. This
implies the summation is at most one, as desired.

Lemma 5.14. For any machine, the expected total height of jobs associated with a grid interval I
on the machine is at most u.
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Proof. We have

E[
∑

j iI

xij ] =
∑

j

xij Pr[j  i I]

=
∑

j

xij
∑

s:Rijs is bad on i

xijs
xij

Pr[j  i I | Rijs]

=
∑

j

xij
∑

s:Rijs is bad on i

xijs
xij
· u ·
|I ∩ (ŝ, ŝ+ pij ]|

pij

= u
∑

f

∑

Rijs∈f :Rijs is bad on i

zif ·
|I ∩ (ŝ, ŝ+ pij ]|

pij

≤ u
∑

f

zif (Lemma 5.13)

≤ u

The third equality follows since j is associated with I when θij ∈ I, which occurs with probability
|I∩(ŝ,ŝ+pij ]|

pij
conditioned on Rij = Rijs, and an independent fair coin (u = 1/2) gives a head.

To prove Lemma 5.12, we use the following well-known concentration inequality.

Theorem 5.15 (Theorem 2.3 of [32]). Let Z be the sum of n independent random variables where
each random variable takes value in [0,K]. Let µ = E[Z]. Then for any λ ∈ [0, 1], we have

Pr
[
Z ≥ (1 + λ)µ

]
≤ e−λ2µ/3K .

Let Zj′ denote the indicator variable for the event j′  i I. Then, we know E[Z :=∑
j′ 6=j,j∗ xij′Zj′ ] ≤ u = 1/2. Note that xij′Zj′ ≤ 9/100, as j′ is associated with interval I only

when it is bad on machine i; thus, we can set K = 9/100. Further, {Zj′}j′ 6=j,j∗ are independent
from one another. Therefore, by setting λ = 0.64, we obtain,

Pr[
∑

j′ 6=j,j∗ iI

xij′ ≤ 0.82] = 1− Pr[
∑

j′ 6=j,j∗ iI

xij′ ≥ 0.82]

≥ 1− exp(−0.642 · 0.5/(3 ∗ 0.09)) > 0.5317.

This completes the proof of Lemma 5.12.
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