
A Lower Bound on Cycle-Finding in Sparse Digraphs

Xi Chen, Tim Randolph, Rocco A. Servedio, Timothy Sun
{xichen, rocco, tim}@cs.columbia.edu, t.randolph@columbia.edu

Columbia University

Abstract

We consider the problem of finding a cycle in a sparse directed graph G that is promised
to be far from acyclic, meaning that the smallest feedback arc set in G is large. We prove an
information-theoretic lower bound, showing that for N -vertex graphs with constant outdegree
any algorithm for this problem must make Ω̃(N5/9) queries to an adjacency list representation
of G. In the language of property testing, our result is an Ω̃(N5/9) lower bound on the query
complexity of one-sided algorithms for testing whether sparse digraphs with constant outdegree
are far from acyclic. This is the first improvement on the Ω(

√
N) lower bound, implicit in

Bender and Ron [BR02], which follows from a simple birthday paradox argument.

ar
X

iv
:1

90
7.

12
10

6v
1

 [
cs

.D
S]

 2
8

Ju
l 2

01
9

1 Introduction

In the current massive data era there is great interest in the abilities and limitations of sublinear
time algorithms for various computational problems. In particular, in recent years a number of re-
searchers have studied sublinear time algorithms for fundamental graph problems such as approx-
imating the size of the minimum vertex cover [PR07, MR09, NO08, YYI09, HKNO09, ORRR12],
the number of connected components [CRT05], maximum matching [NO08, YYI09], and the min-
imum spanning tree weight [CRT05, CS09, CEF+05]; counting edges [Fei06, GR08, BHPR+18],
stars [GRS11, ABG+18], triangles [ELRS17], k-cliques [ERS18], and arbitrary subgraphs [AKK19];
finding forbidden minors [KSS18, KSS19]; and checking k-colorability [RD85], bipartiteness [GR02],
planarity [BSS08], and more. The sublinear time regime imposes natural constraints on algorithms.
For instance, a simple “needle in a haystack” lower bound argument shows that it is impossible to
distinguish acyclic graphs from graphs with one or more cycles in sublinear time. As a result,
sublinear graph algorithms typically provide either approximate guarantees on their output1 or are
designed for property testing-style problems in which the input graph G is promised to satisfy some
condition that allows a sublinear algorithm to succeed.2 Our results are of the second type: We
prove a lower bound on the running time of algorithms for finding cycles in sparse digraphs that
are promised to be not too close to acyclic.

To motivate our inquiry, we observe that many of the most fascinating and enigmatic objects of
modern scientific research, such as brains, neural networks, social networks, and the Internet, are
naturally modeled as massive, sparse, directed graphs. Thus it is a compelling goal to understand
the capabilities of sublinear time algorithms on such graphs. Despite this fact, although there is a
substantial literature on property testing in general undirected graphs (see Chapters 8, 9, and 10
of [Gol17]), we are aware of fewer works on sublinear time algorithms or property testing on sparse
directed graphs [OR11, HS12, HS13, CPS16]. The most directly relevant previous work that we
are aware of is the early paper of Bender and Ron [BR02] on testing acyclicity in directed graphs,
which we discuss in detail below.

1.1 The query model and promise problem that we consider

Throughout this work, we consider digraphs on N vertices named [N] := {1, . . . , N} in which the
outdegree of each vertex is bounded from above by a small absolute constant d. It suffices to take
d ≥ 80 for our main result to hold. Graphs are represented using the adjacency list model, in which
a query consists of a vertex u ∈ [N] and an index i ∈ [d]. In response, the algorithm receives the
ith outneighbor of u or an empty string if u has fewer than i outneighbors. The query complexity
of an algorithm is the maximum number of queries that it makes on any N -vertex graph.

The algorithmic problem we consider is that of outputting a directed cycle given an input graph
G. The promise that G contains at least one cycle is insufficient to allow sublinear time algorithms:
for instance, if G consists of a single constant-length cycle and all other vertices are isolated, or if
G consists of a single cycle of length N , Ω(N) queries are required. Hence, in the spirit of property
testing, we consider the promise problem in which the input graph G is promised to be ε-far from
acyclic. This means that the smallest feedback arc set3 of G is of size at least εdN .

1For instance, the algorithms of [ORRR12, CRT05, ELRS17, AKK19].
2For instance, the algorithms of [KSS18, RD85, GR02, BSS08].
3Recall that a subset S ⊂ E of directed edges in a graph is a feedback arc set if every directed cycle in G contains

1

As we discuss later in item (1) of Section 9, the promise that G is ε-far from acyclic ensures that
G must contain very short cycles [Fox18], so this promise eliminates the concern that outputting a
directed cycle will already necessitate Ω(N) runtime. However, it is far from clear how many queries
may be required to find a cycle in sparse directed graphs that are ε-far from acyclic. This question
was implicitly considered by Bender and Ron: in [BR02] they gave an Ω(N1/3)-query lower bound
on property testing algorithms for testing whether a bounded-degree digraph is acyclic versus ε-far
from acyclic with two-sided error in the adjacency list model. Implicit in the proof of their Ω(N1/3)
lower bound is an Ω(N1/2) lower bound for one-sided testers, or equivalently, for algorithms that
find a directed cycle in far-from-acyclic bounded-degree digraphs. We give a proof sketch of this
lower bound in Section 3.1; as we explain there, their Ω(N1/2) lower bound is based on a simple
birthday paradox argument but such an argument cannot succeed in obtaining an ω(N1/2) lower
bound. We note that Bender and Ron [BR02] state as an explicit goal for future work the problem
of improving their lower bound, and that acyclicity testing in bounded-degree digraphs is listed as
“Open Problem #41” on the website sublinear.info.4

1.2 Our result: An Ω̃(N5/9)-query lower bound.

Our main result is a proof that any randomized algorithm under the adjacency list query model
must make Ω̃(N5/9) queries to find a cycle in a sparse N -vertex digraph that is ε-far from acyclic.
The lower bound holds even if ε is a fixed constant. In more detail, our main result is the following:

Theorem 1 (Main theorem). Let d, ε be fixed constants with d ≥ 80 and ε ≤ 1/60, and let G be
an arbitrary digraph, promised to be ε-far from acyclic and with outdegree bounded above by d. Any
algorithm that, given query access to the adjacency list representation of G, outputs a directed cycle
in G with constant probability must make Ω̃(N5/9) queries.

We give a detailed discussion of our techniques in Section 3; as explained there, the arguments
underlying our lower bound are significantly more involved, both conceptually and technically, than
the Ω(N1/2) lower bound of [BR02] for the same problem.

2 Preliminaries

A directed graph (or digraph) G = (V,E) consists of a set V of vertices and a set E of directed edges.
Each edge directed from u to v is represented by the pair (u, v). The outdegree (resp. indegree)
of a vertex u is the number of edges (u, v) (resp. (v, u)) between u and an outneighbor (resp.
inneighbor) v ∈ V . We say a digraph has outdegree bounded by d if every vertex has outdegree at
most d. A digraph is ε-far from acyclic if the minimum feedback arc set has size εdN (that is, at
least εdN edges must be removed to make G acyclic). An out-tree is an acyclic digraph in which
there exists a unique directed path from a root vertex to every other vertex. A vertex in an out-tree
with no outgoing edge is called a leaf ; otherwise it is called an internal vertex. An out-tree is said
to have degree d if every internal vertex has outdegree exactly d.

Given a positive integer n, we write [n] to denote {1, . . . , n}. For fixed d and ε, we consider the
problem of finding a cycle in a digraph G = ([N], E), with outdegree bounded by d, that is ε-far

at least one edge in S, or equivalently, deleting all the edges in S makes G become acyclic.
4https://sublinear.info/index.php?title=Open Problems:41

2

https://sublinear.info/index.php?title=Open_Problems:4

from acyclic. Algorithms may query the adjacency list representation of G as follows. We assume
the algorithm knows N . A query consists of a vertex u ∈ [N] and an index i ∈ [d]. In response, the
algorithm receives the ith outneighbor of u or an empty string if u has fewer than i neighbors. For
convenience, we simplify the adjacency list query model to the vertex query model, in which the
algorithm simply queries a vertex u and receives an ordered list containing all outneighbors of u.
Clearly, algorithms on digraphs with maximum outdegree at most d under the vertex query model
can be implemented in the adjacency list model by increasing the number of queries by a factor
of d, and thus asymptotic lower bounds in the vertex query model also hold in the adjacency list
model.

3 Our techniques

As is standard in property testing, we employ Yao’s principle [Yao77] to prove our lower bound.
By this principle, to prove Theorem 1 it suffices to define a probability distribution over N -vertex
digraphs with outdegree bounded by d and argue that

1. A random G drawn from this distribution is ε-far from acyclic with probability 1− oN (1).

2. Any deterministic algorithm A that makes

Q∗ :=
N5/9

logN

queries to G finds a cycle with probability oN (1).

In this section we first present a simple distribution from [BR02] and sketch the Ω(N1/2) lower
bound for this distribution that is implicit in the arguments of [BR02]. We then outline the difficulty
inherent in proving an asymptotically better lower bound, informally describe the distribution BR
that we use for Theorem 1, and outline our proof of the theorem.

3.1 A simple Ω(N1/2) lower bound due to Bender and Ron

The distribution over sparse digraphs we now describe corresponds to the distribution G2 defined
in Section 4 of [BR02]; we denote this distribution by BRsimple := BRsimple(N, d). A graph G drawn
from BRsimple is generated by randomly partitioning the N vertices {1, . . . , N} into two equal-size
subsets S1 and S2 and taking d random directed matchings from S1 to S2 and d random directed
matchings from S2 to S1 as the edges of G.

A straightforward probabilistic analysis (see Lemma 5 of [BR02]) shows that for any constant
d ≥ 128, a random graph G ∼ BRsimple is ε-far from acyclic for ε = 1/16. To complete the lower
bound, it remains to argue that any deterministic algorithm A that makes o(N1/2) queries finds a
directed cycle in G ∼ BRsimple with probability oN (1). This follows from the following stronger
property: with probability 1 − oN (1) over the choice of G ∼ BRsimple, no deterministic algorithm
that makes o(N1/2) queries receives in response to a query a vertex it has previously observed, either
as input to or output from a query.5 This property follows from a standard birthday paradox type
argument, i.e., the fact that a sequence of o(N1/2) uniform samples from an N -element set samples
the same element twice with probability oN (1).

5We assume without loss of generality that the algorithm never repeats a previous query.

3

3.2 A challenge in going beyond N1/2 many queries

Another birthday paradox type argument demonstrates that a random walk in G ∼ BRsimple will
collide with itself in O(N1/2) steps with high probability, thus yielding a cycle. Hence a different
construction must be considered to obtain an ω(N1/2) lower bound.

The essence of the simple Ω(N1/2) lower bound is that with high probability, each of o(N1/2)
many queries yields an answer that is uniform over all previously unseen vertices, in which case the
algorithm receives no useful information about the underlying graph. Unfortunately, this attractive
property does not hold for algorithms that make ω(N1/2) queries. For example, an algorithm that
repeatedly queries (u, i) pairs drawn uniformly at random from [N]× [d] would observe i.i.d. draws
from some distribution over [N]. Because ω(N1/2) i.i.d. draws from any distribution supported on
at most N elements will result in ωN (1) collisions with high probability, any argument establishing
an ω(N1/2) lower bound must contend with the nontrivial information that algorithms receive
about the unknown underlying graph through collisions. Indeed, the central difficulty in proving
an ω(N1/2) lower bound is showing that no algorithm can gain enough information from induced
collisions to find a cycle.

3.3 Our construction and a sketch of our main ideas

We now give an informal description of the distribution BR := BR(N, d) that we analyze (a detailed
description is given in Section 4). This distribution is a modified version of a construction proposed
by Bender and Ron in [BR02].

Each graph in the support of BR has 3N vertices, and each vertex has outdegree either d or 0.
A graph G drawn from BR is obtained as follows: N vertices are randomly selected and designated
as blue vertices, and the remaining 2N vertices are designated as red vertices. Red vertices are
randomly partitioned into L many layers R1, . . . , RL, each containing W = 2N/L vertices.6 Each
blue vertex is assigned d outneighbors by choosing each one uniformly at random from the blue
vertices and the first half of the layers of the red vertices. Each red vertex in layer Ri (i < L) is
assigned d outneighbors by choosing each one uniformly from the W vertices in Ri+1. For a visual
example, refer to Figure 1. A straightforward probabilistic argument (given in Section 4.2) shows
that with probability 1− oN (1) a random G ∼ BR is ε-far from acyclic, so the main challenge is to
show that it is hard to find a directed cycle in a graph drawn from this distribution.

We give some intuition behind the construction of graphs in BR. Note that every cycle in G
consists entirely of blue vertices. Thus, a cycle-finding algorithm may want to “avoid wandering
into the red region.” This, however, is difficult to do because the local neighborhood of a typical
vertex “looks the same” whether it is blue or red (note that an algorithm under the adjacency list
model of course never receives explicit information about whether any particular vertex is blue or
red). For example, the simple random walk approach sketched at the beginning of the previous
subsection will not work for G ∼ BR: even if the random walk starts at a blue vertex, after O(1)
steps on average it will reach a red vertex and will have no chance of completing a cycle. Given
that an algorithm needs Ω(N1/2) queries to find a cycle even if it is given the set of blue vertices
(since the blue part of G ∼ BR is very similar to graphs drawn from BRsimple described in Section

6Both L and W are NΘ(1); the exact values will be given later and are not important for our intuitive discussion
here.

4

B R1

R2

RL−1

RL

...

W

L

Figure 1: Cartoon of a random graph G ∼ BR.

3.1), it is natural to hope for an ω(N1/2) lower bound using the distribution BR.

There are two challenges in obtaining an ω(N1/2) lower bound using BR. First, as discussed in
the previous subsection (which applies not only to BR but to any distribution), an ω(N1/2)-query
algorithm may experience many collisions and hence potentially obtain a significant amount of
information about G. The second challenge is specific to BR. Despite the intuition, “wandering
into the red region” may actually provide useful information about G when done strategically (see
Section 8 for two attacks on BR based on exploring the red region; they together imply that one
cannot hope to obtain a lower bound better than N13/18 using BR). Given that many algorithmic
strategies are possible, how can one argue that every algorithm that does not make too many
queries is unlikely to find a cycle?

To explain the intuition that underlies our lower bound, we first note that for a query on vertex
u to reveal a cycle, it must be the case that u is blue and there is a directed path from one of
its outneighbors to u in the current “knowledge graph” of the algorithm (where the knowledge
graph consists of all edges that have been found so far and v is an ancestor of u if it has a directed
path to u). As a result, we focus on the maximum number of ancestors among all blue vertices in
the current knowledge graph because the probability that an algorithm discovers a cycle when it
queries a vertex is proportional to its number of ancestors in the knowledge graph. Our proof, at
a high level, shows that this crucial quantity cannot grow too fast.

A key notion behind our analysis is the division of a sequence of queries made by an algorithm
into distinct epochs. Roughly speaking, an epoch ends either when a collision occurs (i.e., one of
the outneighbors of the vertex queried is a vertex that the algorithm has seen before, either as
a query vertex or as an outneighbor of a query vertex), or when “too many” queries have been
made since the end of the previous epoch. We introduce the notion of epochs in Section 5 and
bound the number of epochs that occur in the execution of any algorithm that makes at most Q∗

queries (Lemma 2). We also bound the number of blue surprise epochs: these are epochs that end
because the vertex u queried is blue and has a blue outneighbor v that the algorithm has seen

5

before (Lemma 3). We pay special attention to such epochs because with the discovery of (u, v),
all ancestors of u become ancestors of v and thus, the number of ancestors of v may grow rapidly.

Next, in Section 6 we show that during an epoch of any algorithm, regardless of outcomes of
previous epochs, the vertices queried are unlikely to contain a path of blue vertices of length more
than 4 logN . This is captured in Lemma 4, which is at the heart of our lower bound argument. In
particular, Lemma 4 implies that during an epoch that is not a blue epoch (or during a blue surprise
epoch but ignoring the blue-blue collision edge found at the end of the epoch), the maximum number
of ancestors of blue vertices in the knowledge graph can increase by no more than 4 logN .

Finally, in Section 7, we combine Lemmas 2, 3, and 4 to bound the maximum number of
ancestors of blue vertices in its knowledge graph during the execution of any Q∗-query algorithm
on G ∼ BR. This is used to show that every such algorithm finds a cycle in G ∼ BR with
probability oN (1).

To simplify the presentation, we introduce in Section 5.1 an augmented query model, called the
color revelation model, in which more information is provided to the algorithm than in the standard
model. Specifically, at the end of each epoch the query algorithm is provided with the color of every
vertex it has previously seen. All our results discussed above are proved under this model and our
lower bound trivially carries over to the standard model since any algorithm under the latter can
be simulated under the color revelation model by simply ignoring the additional information.

4 The Bender-Ron graphs

In this section we formally describe the distribution BR := BR(N, d) and prove, in Section 4.2, that
G ∼ BR is 1/60-far from acyclic with probability 1− oN (1) when d ≥ 80. Theorem 1 follows from
the next theorem which we prove in the rest of the paper.

Theorem 2. Let d be a constant with d ≥ 80. Let A be any Q∗-query deterministic algorithm that
operates on graphs in the support of BR under the vertex-query model, where Q∗ := N5/9/ log(N).
Then the probability of A finding a cycle in G ∼ BR is oN (1).

4.1 The distribution

Let W := 2N/L = (2N)7/9 and L := (2N)2/9 be two parameters indicating the width of each red
layer and the number of red layers, respectively.7 We refer to a map from a subset of [3N] to L+ 1
colors {blue, red1, . . . , redL} as a coloring.

A digraph G ∼ BR over the vertex set [3N] is generated by the following randomized procedure:

1. Let U be the uniform distribution over all colorings C : [3N]→ {blue, red1, . . . , redL} such
that N vertices are colored blue and W vertices are colored redi for each i ∈ [L]. The
procedure starts by drawing a coloring C ∼ U. Naturally we refer to vertices in B as blue
vertices and vertices in R1 ∪ · · · ∪RL as red vertices in C. We view R1, . . . ,RL as L layers
of red vertices and refer to vertices in Ri as red vertices in the ith layer (see Figure 1).

7Note that by our choices of L and W , N + LW = 3N . This particular setting of L and W is chosen to optimize
our lower bound, as will become clear in the course of our analysis. We assume without loss of generality that N is
such that both L/2 and W are integers.

6

2. For each blue vertex u ∈ B, create its adjacency list by drawing a sequence of d vertices
without replacement from the following set of (N − 1) + LW/2 = 2N − 1 vertices:

(
B \ {u}

)
∪

L/2⋃
i=1

Ri. (1)

Thus, a blue vertex has d distinct outneighbors from B and the top L/2 layers of red
vertices.

3. For each red vertex in Ri, 1 ≤ i < L, create its adjacency list by drawing a sequence of d
vertices without replacement from Ri+1. Thus, each red vertex (other than those in the
bottom layer RL) has d distinct outneighbors in the next layer. Finally, set the adjacency
list of each vertex in RL to be empty. This finishes the construction of G. Note that every
vertex in G has out-degree either d or 0 so G is a bounded-outdegree-d digraph as promised.

We refer to graphs in the support of BR as Bender-Ron graphs, since these graphs are inspired by
a construction that was proposed (but not analyzed) in [BR02]. Figure 1 illustrates a graph in BR.
To facilitate our proof of Theorem 2 later, in addition we introduce BR∗ to denote the distribution
of (C,G) generated by the procedure above (so the marginal distribution of G in BR∗ is the same
as BR).

We record the following property that is trivial from the construction:

Property 1. Let (C,G) be a pair in the support of BR∗ and let (u, v) be an edge in G. Then either
(1) C(u) = C(v) = blue (a blue → blue edge), (2) C(u) = blue and C(v) = redi for some i ≤ L/2
(a blue→ red edge), or (3) C(u) = redi and C(v) = redi+1 for some i < L (a red→ red edge).

Moreover, if a vertex u has no outneighbor, then we must have C(u) = redL.

4.2 Almost all Bender-Ron graphs are far from acyclic

It is clear from the construction that no red vertex can participate in a cycle, but intuitively the
blue→ blue edges will result in many cycles in the blue part of the graph. Lemma 1 below makes
this intuition precise.

Lemma 1 (BR-graphs are far from acyclic). Let d ≥ 80 be a constant. Then a random digraph
G ∼ BR is 1/60-far from acyclic with probability 1− oN (1).

Proof. It suffices to show that for any fixed coloring C, the random graph G drawn using the same
procedure running on C is far from acyclic with high probability. To this end, we assume without
loss of generality that the blue vertices in C are [N]. We focus on the subgraph of G induced by
the blue vertices [N], which we refer to as the blue subgraph.

The following claim is folklore and we include its proof for completeness:

Claim 1. An N -vertex digraph G = (V,E) is ε-far from acyclic if and only if for every (bijective)
vertex ordering π : V → {1, . . . , N}, the number of “backedges” (i.e. directed edges (u, v) such that
π(u) > π(v)) is at least εdN .

7

Proof. We prove the contrapositive in both directions: (⇒) Deleting all the backedges leaves an
acyclic graph, showing that the graph is ε-close to acyclic. (⇐) Given a feedback arc set, after
deleting it we can find a topological sort of the resulting acyclic graph. The ordering resulting from
the topological sort has exactly the feedback arc set as its backedges.

We will use the following claim, which follows trivially from Claim 1, to bound the distance to
acyclicity of the blue subgraph of G:

Claim 2. Let G = (V,E) be an N -vertex digraph. Suppose that for all balanced partitions (V1, V2)
of V , the number of directed edges from V1 to V2 is at least εdN , then G is ε-far from acyclic.

Proof. Every ordering of vertices π induces a balanced partition (V1, V2) by taking V2 as the first
N/2 vertices in π and V1 as the last N/2 vertices in π. Then all edges from V1 to V2 are backedges
with respect to π. The result follows from Claim 1.

Fix a balanced partition (V1, V2) of the blue vertices [N]. We show below that the number of
edges from V1 to V2 in G is at least dN/20 with probability 1− exp(−N). It follows from a union
bound over all balanced partitions that with probability 1− oN (1), the number of edges one needs
to delete to make G acyclic is at least dN/20.

To bound the number of edges in G from V1 to V2, we go through vertices in V1 one by one
and for each vertex u ∈ V1, draw a sequence of d outneighbors without replacement from a set of
2N − 1 vertices which contains V2. For each of these dN/2 many rounds and for any outcomes in
previous rounds, the probability of gaining a directed edge from V1 to V2 is at least

(N/2)− (d− 1)

2N − 1− (d− 1)
≥ 1

5

when N is sufficiently large, so the expected number of edges is at least (dN/2) · (1/5) = dN/10. It
follows from a Chernoff bound (and a standard coupling argument) that the probability of having
fewer than dN/20 edges is at most

exp
(
−(dN/10)(1/2)2(1/2)

)
= exp(−dN/80) ≤ exp(−N),

when d ≥ 80. With a union bound over the at most 2N many balanced partitions, we conclude that
G has at least dN/20 edges from V1 to V2 in all balanced partitions (V1, V2) of [N] with probability
at least 1 − exp(−N) · 2N = 1 − oN (1). Thus the blue subgraph is (1/20)-far from acyclic with
probability 1− oN (1). Because the total number of vertices is 3N , after lifting back to the original
graph we have that G is (1/60)-far from acyclic with probability 1− oN (1).

5 Epochs and color revelation

The goal of the rest of the paper is to prove Theorem 2. Recall that under the vertex query
model, each time an algorithm queries a vertex u ∈ [3N] it receives as its answer an ordered
list a = (v1, . . . , v`) containing the outneighbors of u. We assume without loss of generality that
the algorithm never queries the same vertex twice. For Bender-Ron graphs in the support of BR
we know that the answer to each query is either an ordered list (v1, . . . , vd) of d distinct vertices
different from u or the empty list. This leads to the following definition of query histories.

8

Definition 1 (Query histories). A query history H is an ordered tuple ((u1, a1), . . . , (uq, aq)) for
some q ≥ 0 such that u1, . . . , uq are distinct vertices in [3N] and each ai is either a list of d distinct
vertices different from ui or the empty list. We refer to q as the length of H, and H as the empty
history when q = 0.

Each query history H = ((u1, a1), . . . , (uq, aq)) uniquely determines a knowledge graph, denoted
KG(H), which summarizes the information about the underlying graph contained in H: The vertex
set of KG(H), denoted VKG(H), consists of all vertices that appear in H (i.e., every ui and every
vertex v in ai for some i ∈ [q]); KG(H) contains a directed edge (u, v) if u = ui and v appears in
ai for some i ∈ [q]. Note that each vertex in KG(H) has outdegree either d or 0, and every vertex
with outdegree d is queried in H. On the other hand, a vertex u with outdegree 0 has two cases:
Either u is queried in H and the answer a is empty, in which case we refer to u as a sink in KG(H),
or u is discovered as an outneighbor of some vertex queried in H but itself is never queried in H.

To prove Theorem 2, we introduce the notion of epochs and a new query model called the color
revelation model in Section 5.1. In addition to receiving the adjacency list of the vertex queried, an
algorithm under the color revelation model receives additional information about colors of vertices
in the current knowledge graph at the end of each epoch. In the rest of the paper we show that,
under the color revelation model, any Q∗-query deterministic algorithm finds a cycle in G ∼ BR
with probability oN (1) (see the exact statement in Theorem 3). Theorem 2 follows from Theorem 3
trivially because the color revelation model is no harder than the vertex query model: any algorithm
under the vertex query model can be simulated under the color revelation model by simply ignoring
the additional information.

5.1 The color revelation model

Let H = ((u1, a1), . . . , (uq, aq)) be a query history for some q ≥ 0; we write Hi to denote its i-prefix
((u1, a1), . . . , (ui, ai)). We say the kth query (uk, ak) is a surprise in H if ak contains a vertex that
appears in VKG(Hk−1). Otherwise, we refer to (uk, ak) as surprise-free.

We now describe the color revelation model, which provides additional power to the query
algorithm by revealing the colors of vertices in previous epochs for free. Although this augmentation
makes the task of cycle-finding easier, it also makes it easier to prove lower bounds. Formally, the
oracle now contains a pair (C,G) in the support of BR∗, instead of just a Bender-Ron graph G as
in the vertex-query model. The oracle uses C to reveal to the algorithm colors of certain vertices.
(In general, a coloring C is not uniquely determined by a Bender-Ron graph G.)

Under the color revelation model, an algorithm A maintains a triple (H, E , P), where

1. H is the current query history, updated after each query as in the vertex-query model;

2. E = (E1, . . . , E`) for some ` ≥ 1 is a decomposition of H into epochs, where each epoch Ei is
by itself a query history and H = E1 ◦ · · · ◦ E`; and

3. Letting H ′ = E1 ◦ · · · ◦ E`−1, P is a coloring map from VKG(H ′) to {blue, red1, . . . , redL}.

Initially, H and E1 are empty and E = (E1). We refer to the final epoch El as the current
epoch. For clarity, we use the symbols P and S to denote partial colorings over subsets of [3N]
and use C to denote a full coloring over the vertex set [3N].

9

Let (H, E , P) denote the current triple maintained by an algorithmA. Under the color revelation
model, the next round proceeds as follows:

1. As in the vertex query model, A queries a vertex u, receives an ordered list a containing the
outneighbors of u in G, and concatenates (u, a) to H and E`.

2. The current epoch ends if (u, a) is a surprise in H or |E`| = L/2. In this case:

(a) A learns the colors of the vertices in the current epoch: P is extended so that
P (u) = C(u) for every u ∈ VKG(H).

(b) A new epoch begins: An empty epoch E`+1 is appended to E .

E is can be reconstructed from H by reading H serially and recording the end of an epoch if
a surprise occurs or the length of the epoch reaches L/2. Thus A needs only to maintain the pair
(H,P) instead of the triple (H, E , P). We refer to E as the epoch decomposition of H.

Next we introduce the notion of valid knowledge pairs.

Definition 2 (Valid knowledge pairs). A pair (H,P) is called a valid knowledge pair if

• H = ((u1, a1), . . . , (uq, aq)) is a query history for some q ≥ 0 and P is a coloring map over
VKG(H ′), where E = (E1, . . . , E`) is the epoch decomposition of H and H ′ = E1 ◦ · · · ◦ E`−1;

• There exists a pair (C,G) in the support of BR∗ such that C is an extension of P and G is
consistent with H, i.e., ai is the adjacency list of ui in G for every i ∈ [q].

Given a valid knowledge pair (H,P) we use BR∗(H,P) to denote the distribution of (C,G) ∼
BR∗ conditioning on C being an extension of P and G being consistent with H.

Note that the pair (H,P) maintained by an algorithm under the color revelation model is
always valid by definition. From now on we consider a deterministic query algorithm A under the
color revelation model as a map from valid knowledge pairs to vertices so that u = A(H,P) is the
next vertex that is queried. Theorem 2 follows directly from the following statement in the color
revelation model:

Theorem 3. Let d be a constant with d ≥ 80, and let A be a Q∗-query deterministic algorithm that
works on pairs in the support of BR∗ under the color revelation model, where Q∗ = N5/9/ logN .
Then the probability of A finding a cycle in (C,G) ∼ BR∗ is oN (1).

5.2 Epoch bounds

Let (H,P) be a valid knowledge pair and let E = (E1, . . . , E`) be the epoch decomposition of the
query history H. We refer to an epoch Ei, i < `, as a surprise epoch if its last query is a surprise in
H; otherwise Ei has length L/2 and ends by timeout. A surprise epoch Ei is a blue surprise epoch
if the last vertex queried in Ei is blue in P .

We begin our proof of Theorem 3 by proving upper bounds on the number of epochs and blue
surprise epochs that occur during the execution of a Q-query algorithm under the color revelation
model.

10

Lemma 2 (Epoch bound). There exists a constant c1 such that for any algorithm that makes Q
queries, we have

Pr
(C,G)∼BR∗

[
more than c1

(
Q2

W
+
Q

L

)
epochs occur

]
≤ exp

(
−Ω

(
Q2

W

))
. (2)

Proof. Let A be an algorithm that makes Q queries. Since each epoch is either a surprise epoch
or ends by timeout, the number of epochs which take place in running A on a pair (C,G) in the
support of BR∗ is bounded from above by the number of surprise queries plus 2Q/L. As a result,
it suffices to show that the probability of A observing more than O(Q2/W) many surprises when
running on (C,G) ∼ BR∗ is at most exp(−Ω(Q2/W)).

For this purpose we fix a valid knowledge pair (H,P) and let u = A(H,P) be the vertex that A
queries next. Below we upper bound the probability of u being a surprise by O(Q/W) when A runs
on (C,G) ∼ BR∗(H,P). Since u has not been queried before, a key observation is that, fixing any
coloring C in the support of BR∗(H,P) and conditioning (C,G) ∼ BR∗(H,P) further on C = C,
the adjacency list of u is distributed as follows: If C(u) = blue then each of its d outneighbors is
drawn without replacement from vertices of color blue in C (other than u itself) and vertices of
color redi, i ≤ L/2; If C(u) = redi for some i < L then each of its d outneighbors is drawn without
replacement from vertices of color redi+1 in C; If C(u) = redL, then its adjacency list is empty.

As a result, if C(u) = blue, the probability of u being a surprise query (as (C,G) ∼ BR∗(H,P)
further conditioning on C = C) is at most

d · Q(d+ 1)

2N − 1
≤ d2Q

N
,

using a union bound and the fact that VKG(H) has size at most q(d+ 1) ≤ Q(d+ 1). Similarly the
probability of u being a surprise when C(u) = redi for some i < L can be bounded from above by
2d2Q/W . Since u is always surprise-free if C(u) = redL, we have that the probability of u being a
surprise when A runs on (C,G) ∼ BR∗(H,P) is at most 2d2Q/W .

Now for each q ∈ [Q], let Xq be a Bernoulli random variable which is 1 if the qth query made
by A on (C,G) ∼ BR∗ is a surprise. Then what we have shown above implies that the probability
of Xq = 1 is O(Q/W) even conditioning on any outcomes of X1, . . . ,Xq−1. It then follows from
the Chernoff bound (together with a standard coupling argument) that

Pr

∑
q∈[Q]

Xq ≥
4d2Q2

W

 ≤ exp

(
−Ω

(
Q2

W

))
.

This finishes the proof of the lemma.

Recall that an epoch ends as a blue surprise epoch if the last query u is both a surprise and a
blue vertex. If we let Xq denote the random variable that is 1 if the qth query of A turns out to be
the last query of a blue surprise epoch, when running on (C,G) ∼ BR∗, then the argument used
in the proof of Lemma 2 implies that the probability of Xq = 1 is at most O(Q/N) conditioning
on any outcomes of X1, . . . ,Xq−1. This gives us the following upper bound:

11

Lemma 3 (Blue surprise epochs bound). There exists a constant c2 such that for any algorithm
that makes Q queries, we have

Pr
(C,G)∼BR∗

[
more than

c2Q
2

N
blue surprise epochs occur

]
≤ exp

(
−Ω

(
Q2

N

))
. (3)

6 Bounding the probability of long blue paths

In this section we prove a key lemma necessary for the proof of Theorem 3: that in any given
epoch, the probability that a Q∗-query algorithm discovers a “long” path of previously unseen blue
vertices is low. As a result, with high probability, the subgraph induced by the blue nodes revealed
at the end of each epoch is a forest in which every tree has small depth.

Lemma 4 (Long blue paths are unlikely.). Let (H,P) be a valid knowledge pair in which the length
q of H is bounded by Q∗. Let E` be the current epoch of H and let (C,G) ∼ BR∗(H,P). The
probability that KG(E`) contains a path of length at least 4 logN consisting of blue vertices only
under C is o(N−2).8

We begin with some notation and a sketch of the proof. Let (H,P) be a valid knowledge pair,
let E = (E1, . . . , E`) be the epoch decomposition of H, and let H ′ = E1 ◦ · · · ◦E`−1. By definition,
the current epoch E` satisfies |E`| < L/2 and every query in E` is surprise-free in H. As a result,
the graph KG(E`) is a vertex-disjoint union of degree-d out-trees.9 This leads to the following
observation:

Property 2. Let T be an out-tree in KG(E`).

1. Every vertex of T , other than the root, lies outside VKG(H ′). (The root may or may not lie
in VKG(H ′).)

2. Every internal vertex and every sink in T is queried in E`.

Let S ∼ S be the distribution of partial colorings over VKG(H) induced by C drawn as in
(C,G) ∼ BR∗(H,P). Then every partial coloring S in the support of S must be a good partial
coloring over VKG(H) (see Property 1):

Definition 3. We say S is a good partial coloring over VKG(H) if (1) S is an extension of P , (2)
For each directed edge (u, v) in KG(H), either S(u) = S(v) = blue, or S(u) = blue and S(v) = redi
for some i ∈ [L/2], or S(u) = redi and S(v) = redi+1 for some i < L, and (3) S(u) = redL for
every sink vertex in H.

In other words, Lemma 4 states that KG(E`) is unlikely to have a long blue path under S ∼ S.
To prove Lemma 4, we introduce a naive distribution S′ in Section 6.1 that is much easier to work
with and at the same time serves as a good approximation of the distribution S. We then show
that KG(E`) is unlikely to have a long blue path under S′ ∼ S′, from which Lemma 4 follows.

8The constant factors in the lemma statement are arbitrary but will be convenient later in the analysis.
9Note that an isolated vertex is also counted as a degree-d out-tree.

12

The intuition behind the naive distribution S′ is that we color each tree T in KG(E`) indepen-
dently, ignoring all information in the knowledge pair (H,P) other than the tree T itself. Roughly
speaking, we generate a coloring for T as follows. If the root of T lies outside of VKG(H ′), we color
it red with probability 2/3 and blue with probability 1/3 as if it were drawn uniformly at random
from [3N]. If the root of T lies inside VKG(H ′), its color is known. We then propagate down the
tree in breadth-first order. If the parent of a vertex v was colored blue, v is colored blue with
probability 1/2 and redi with probability 1/L for each i ∈ [L/2]; if the parent of v was colored redi

then v is colored redi+1. S′ does not capture S perfectly, but we show in Section 6.2 that they are
pointwise very close to each other.

6.1 The naive distribution

Before introducing the naive distribution S′, we start by classifying trees of KG(E`) into four types
and note that we can already deduce colors of certain vertices in any good coloring S over VKG(H).
Let T be an out-tree of KG(E`) with height h(T) and root vertex r:

• T is a type-1 out-tree if r ∈ VKG(H ′) (so the color of r has already been revealed in P) and
P (r) = redi for some i ∈ [L]. It follows from Property 1 that every valid coloring S has
S(v) = redi+` for each vertex v of depth ` in the tree. (Note that we must have
i+ h(T) ≤ L; otherwise the pair (H,P) cannot be a valid knowledge pair.)

• T is a type-2 out-tree if r ∈ VKG(H ′) and P (r) = blue. Then none of its leaves can be a
sink; otherwise (H,P) implies that there is a path from a blue vertex to a redL vertex of
length at most h(T) ≤ |E`| < L/2, contradicting with the validity of (H,P).

• T is a type-3 out-tree if r is not in VKG(H ′) but T contains at least one sink leaf v∗. Given
that h(T) < L/2, it follows from Property 1 that every good coloring S satisfies
S(r) = redL−k, where k is the depth of v∗ in T , and S(v) = redL−k+` for every vertex v of
depth ` in the tree.

• T is a type-4 out-tree if r is not in VKG(H ′) and none of its leaves is a sink.

Figure 2 illustrates the four types of out-trees. Let U denote the set of vertices that are always
colored red or always colored blue in a good partial coloring for VKG(H); that is, every vertex
in VKG(H ′) as well as vertices in type-1 and type-3 trees in KG(El). Let P ′ denote the unique
partial coloring over U that agrees with every good partial coloring S over VKG(H). We let
Y := VKG(H) \ U denote the set of vertices which may be colored either red or blue in a good
coloring; that is, all vertices in type-2 and type-4 trees except for the roots of type-2 trees.

We are ready to define the naive distribution S′ of partial colorings over VKG(H). A coloring
S′ ∼ S′ is drawn using the following procedure:

1. First we color each vertex u ∈ U as P ′(u) (so S′ is always an extension of P ′);

2. For each type-4 tree T , color its root vertex r blue with probability N/(3N − h(T)W) and
redi with probability Y/(3N − h(T)W) for each i ≤ L− h(T). (The intuition behind the
denominator is that because there is a path of length h(T) that starts at r, its color cannot
be redL−h(T)+1, . . . , redL.)

13

VKG(H)

VKG(H ′)

1 2 3 4

sink(s)

no sinks

Figure 2: Possible out-tree types during a given epoch. Bichromatic circles denote vertices whose
types cannot be determined from (H,P) alone.

3. Then we go through each type-2 and type-4 tree one by one and consider uncolored vertices
in breadth-first order. For each vertex v, if its parent is colored blue, color v with blue with
probability 1/2 and with redi for each i ∈ [L/2] with probability 1/L. If the parent of v is
colored redi, color v redi+1.

10

The following property follows directly from the procedure for S′ above:

Property 3. Every partial coloring in the support of S′ is a good partial coloring over VKG(H).

Both distributions S and S′ are supported on good partial colorings over VKG(H). The next
lemma shows that S′ is a good approximation of S:

Lemma 5. For every good partial coloring S over VKG(H), we have

0.9 · Pr
S′∼S′

[
S′ = S

]
≤ Pr

S∼S

[
S = S

]
≤ 1.1 · Pr

S′∼S′
[
S′ = S

]
. (4)

Before proving Lemma 5 in Section 6.2, we use it to give a quick proof of Lemma 4.

Proof of Lemma 4 using Lemma 5. Given a good coloring S over VKG(H) we use LBP(S) to denote
the event that KG(E`) contains a blue path of length at least 4 logN under S. It follows from
Lemma 5 that

Pr
S∼S

[
LBP(S)

]
≤ 1.1 · Pr

S′∼S′
[
LBP(S′)

]
. (5)

10 Observe that we never go beyond redL because the height of each tree is at most L/2.

14

On the other hand, if LBP(S) holds then there must be a vertex v in either a type-2 or a type-4
tree (since every vertex in a type-1 or type-3 tree must be red in a good partial coloring) such that
v is of depth at least 4 logN and the path from the root to v is all blue. For each such vertex v, let
LBP(S, v) denote the event that the path from the root to v is blue under S. Then the probability
of LBP(S′, v) when S′ ∼ S′ is (1/2)` ≤ 1/N4 if v is in a type-2 tree and has depth `, and is

N

3N − h(T)W
· (1/2)` ≤ 1/N4

if v is in a type-4 tree T . As a result, the probability of LBP(S′) when S′ ∼ S′ is O(1/N3) by a
union bound since the number of v is trivially at most 3N . The lemma follows from (5).

6.2 The naive distribution is a good approximation: Proof of Lemma 5

To simplify the presentation, in this section we use the notation “a± b” to denote a quantity that
is between a− b and a+ b.

Let S be a good partial coloring over VKG(H). We write T2 to denote the set of type-2 trees
in KG(E`) and T4 to denote the set of type-4 trees in KG(E`), and we write T to denote T2 ∪ T4.
Given S, we write T4,b(S) to denote the set of type-4 trees with a blue root and T4,r(S) to denote
the set of type-4 trees with a red root in S. We also use #br(S),#bb(S) and #rr(S) to denote the
total number of blue-red, blue-blue and red-red edges in all trees in T .

We start with the easier task of obtaining a closed-form expression for PrS′∼S′ [S
′ = S]. This

quantity can be written as a product: each root of a type-4 tree contributes a factor which depends
on its color in S (recall the second step of the procedure for drawing from S′), and each edge of a
tree in T contributes a factor which is 1/2 if it is a blue-blue edge in S, 1/L if it is a blue-red edge,
and 1 if it is a red-red edge. As a result, we have

Pr
S′∼S′

[
S′ = S

]
=

 ∏
T∈T4,b(S)

N

3N − h(T)W

 ∏
T∈T4,r(S)

W

3N − h(T)W

(1

L

)#br(S)
(

1

2

)#bb(S)

=

∏
T∈T4

W

3N − h(T)W

(L
2

)|T4,b(S)|(1

L

)#br(S)
(

1

2

)#bb(S)

= τ1 ·
(
L

2

)|T4,b(S)|(1

L

)#br(S)
(

1

2

)#bb(S)

,

where the second equality uses WL/2 = N and the fact that T4 is the disjoint union of T4,b(S) and
T4,r(S), and the quantity τ1 > 0 is a value that does not depend on S.

Next we work on the probability distribution S. For each good partial coloring S over VKG(H),
we write w(S) as a shorthand for

w(S) := Pr
(C,G)∼BR∗

[
C is an extension of S and G is consistent with H

]
. (6)

Given the definition of S and w(·), we have

Pr
S∼S

[
S = S

]
=

w(S)∑
good S′ w(S′)

, (7)

15

where the sum is over all good partial colorings S′ over VKG(H).
Looking ahead, our plan is to show that there is a value τ > 0 (independent of S) such that

0.99 · τ · Pr
S′∼S′

[
S′ = S

]
≤ w(S) ≤ 1.01 · τ · Pr

S′∼S′
[
S′ = S

]
. (8)

With (8), it follows from
∑

good S′ PrS′∼S′ [S
′ = S′] = 1 (which holds because S′ is supported on

good colorings) that

0.99τ ≤
∑

good S′

w(S′) ≤ 1.01τ.

Combining this with (8) and (7), we have

Pr
S∼S

[
S = S

]
≤ 1.01 · τ · PrS′∼S′ [S

′ = S]

0.99τ
< 1.1 · Pr

S′∼S′
[
S′ = S

]
and the other side of (4) can be proved similarly.

So it suffices to prove (8). We start with some notation. Recall that U is the uniform distribution
over all full colorings. Given a full coloring C, we use BR(C) to denote the distribution of Bender-
Ron graphs generated using C as the full coloring in the procedure for BR.

Now we consider the (C,G) ∼ BR∗ in the definition of w(S) (recall (6)) by first drawing a
full coloring C ∼ U. If C is not an extension of S then we already fail to satisfy the condition in
the definition of w(S). If C is an extension of S then we draw G ∼ BR(C) to see if G is consistent
with H.

A useful observation is that every C that extends S shares the same probability of G ∼ BR(C)
being consistent with H. Let #b(U) (respectively #r(U)) be the number of blue (respectively red)
vertices in U under S that are queried in H; note that these two numbers are independent of S
since every good coloring must be an extension of P ′ on U . Let #b(Y, S) (respectively #r(Y, S))
denote the number of blue (respectively red) vertices in Y under S that are queried in H. Then
for every C that is an extension of S, the probability of G ∼ BR(C) being consistent with H is(

1

(2N − 1) · · · (2N − d)

)#b(U)+#b(Y,S)
(

1

W · · · (W − d+ 1)

)#r(U)+#r(Y,S)

= τ2 ·
(

1

(2N − 1) · · · (2N − d)

)#b(Y,S)
(

1

W · · · (W − d+ 1)

)#r(Y,S)

, (9)

for some positive value τ2 independent of S. Note that our choices of L,W and Q∗ satisfy

LQ∗ = o(W). (10)

Using (10) (we only need L = o(W) here) and the fact that #b(Y, S),#r(Y, S) ≤ L/2, (9) becomes

(1± oN (1)) · τ2 ·
(

1

2N

)d·#b(Y,S)

·
(

1

W

)d·#r(Y,S)

= (1± oN (1)) · τ3 ·
(

1

L

)d·#b(Y,S)

,

for some positive value τ3 that is independent of S since #b(Y, S) + #r(Y, S) is a constant inde-
pendent of S.

16

Note that d ·#b(Y, S) = #bb(S) + #br(S)− d|T2|. This is just because each blue vertex queried
in Y introduces d edges that are either blue-blue or blue-red in T ; we need to subtract d|T2|
because roots of type-2 trees are not included in Y . Since |T2| is a value independent of S, (9) can
be simplified to

(1± oN (1)) · τ4 ·
(

1

L

)#bb(S)+#br(S)

,

for some positive value τ4 that is independent of S. As a result, we have

w(S) = (1± oN (1)) · Pr
C∼U

[
C is an extension of S

]
· τ4 ·

(
1

L

)#bb(S)+#br(S)

. (11)

Next evaluate the probability that C ∼ U is an extension of S over VKG(H) = U ∪ Y . For this
purpose we consider the following experiment:

1. Pick an arbitrary ordering u1, . . . , u|U | of U and an arbitrary ordering y1, . . . , y|Y | of Y .

2. Start with N blue pebbles and W redi pebbles for each i ∈ [L]. Go through vertices
u1, . . . , u|U | one by one and assign each one a remaining (as yet unassigned) pebble
uniformly at random. Then go through vertices y1, . . . , y|Y | one by one and assign each one
a remaining pebble uniformly at random.

3. For each ui, we use Xi to denote the Bernoulli random variable that is 1 if ui is assigned a
pebble of color S(ui), and define Y i similarly for each yi.

Then the probability PrC∼U[C is an extension of S] that we are interested in is

Pr
[
X1 = · · · = Y |Y | = 1

]
= Pr

[
X1 = · · · = X |U | = 1] ·

∏
i∈[|Y |]

Pr
[
Y i = 1 |X1 = · · · = Y i−1 = 1

]
= τ5 ·

∏
i∈[|Y |]

Pr
[
Y i = 1 |X1 = · · · = Y i−1 = 1

]
,

for some positive value τ5 that is independent of S. For each yi with S(yi) = blue, we have

N −Q∗(d+ 1)

3N
≤ Pr

[
Y i = 1 |X1 = · · · = Y i−1 = 1

]
≤ N

3N −Q∗(d+ 1)
.

This is because regardless of outcomes for vertices before yi, the number of blue pebbles left in the
round of yi lies between N −Q∗(d+ 1) and N (since VKG(H) has no more than Q∗(d+ 1) vertices)
and the total number of pebbles left is between 3N −Q∗(d+ 1) and 3N .

Similarly for each yi with S(yi) = redj for some j ∈ [L], we have

W −Q∗(d+ 1)

3N
≤ Pr

[
Y i = 1 |X1 = · · · = Y i−1 = 1

]
≤ W

3N −Q∗(d+ 1)

17

Let #∗b(Y, S) (or #∗r(Y, S)) denote the number of blue (or red) vertices in Y under S (unlike #b(Y, S)
and #r(Y, S), these vertices may have not been queried). It follows from (10) and |Y | = O(L) that

Pr
C∼U

[
C is an extension of S

]
= (1± oN (1)) · τ5 ·

(
1

3

)#∗b (Y,S)
(
W

3N

)#∗r(Y,S)

= (1± oN (1)) · τ6 ·
(

2

L

)#∗r(Y,S)

, (12)

for some value τ6 > 0 that is independent of S since #∗b(Y, S) + #∗r(Y, S) is a constant independent
of S. Finally we have

w(S)

PrS′∼S′ [S
′ = S]

= (1± oN (1)) · τ7 ·
(

2

L

)#∗r(Y,S)+#bb(S)+|T4,b(S)|

for some value τ7 > 0 that is independent of S. Note that for any good coloring S, the quantity
#∗r(Y, S) + #bb(S) + |T4,b(S)| is equal to |Y |, a constant that does not depend on S. This finishes
the proof of (8) and Lemma 5.

7 A Lower Bound on Cycle Finding

This section combines the results of Lemmas 2, 3 and 4 to establish Theorem 3, which is restated
below:

Theorem 3. Let d be a constant with d ≥ 80, and let A be a Q∗-query deterministic algorithm that
works on pairs in the support of BR∗ under the color revelation model, where Q∗ = N5/9/ logN .
Then the probability of A finding a cycle in (C,G) ∼ BR∗ is oN (1).

Proof. Let A be a Q∗-query algorithm. We start with the definition of typical pairs in the support
of BR∗ with respect to A, and then show that (C,G) ∼ BR∗ is typical with probability 1− oN (1).

Definition 4. We say a pair (C,G) in the support of BR∗ is typical with respect to an algorithm
A if the following conditions hold:

(i) The number of epochs during the execution of A on (C,G) is O(Q∗2/W +Q∗/L).

(ii) The number of blue surprise epochs during the execution of A on (C,G) is O(Q∗2/N).

(iii) For each q ∈ [Q∗], let (H(q), P (q)) denote the knowledge pair of running A on (C,G) after
q queries and let E(q) denote the current epoch (in the epoch decomposition of H(q)). Then
there is no blue path longer than 4 logN in KG(E(q)) under the coloring C.

We combine Lemmas 2, 3 and 4 to show that (C,G) ∼ BR∗ is typical with respect to A with
probability 1−oN (1). We focus on the third condition (iii) since the probability of (C,G) satisfying
the first two conditions is 1− oN (1) by Lemmas 2 and 3. For (iii) we have

Pr
(C,G)∼BR∗

[
(C,G) violates (iii)

]
≤

Q∗∑
q=1

Pr
(C,G)∼BR∗

[
(C,G) violates (iii) after q queries

]
.

18

On the other hand, the qth probability in the sum can be written as∑
valid (H,P)

Pr
(C,G)∼BR∗

[
A observes (H,P) after q queries on (C,G)

]
× Pr

(C,G)∼BR∗(H,P)

[
(C,G) violates (iii) after q queries

]
, (13)

where the sum is over all valid knowledge pairs (H,P) of length q. It follows from Lemma 4 that
the latter probability in (13) is o(N−2) for every valid knowledge pair (H,P). As a result, the
probability of (C,G) ∼ BR∗ violating (iii) is o(N−1) and thus (C,G) is typical with probability
1− oN (1).

Given a query history H and a vertex u, we write anc(H,u) to denote the set of ancestors of u in
KG(H), i.e., the set of vertices (other than u itself) that have a directed path to u. (If u /∈ VKG(H)
then anc(H,u) is trivially empty.) The claim below shows that if (C,G) is typical then at any time
during the execution of A on (C,G), every blue vertex has a small set of ancestors in KG(H).

Claim 3. Let (C,G) be a typical pair with respect to A. Then for each q ∈ [Q∗], letting H be the
query history of A after making q queries on (C,G), we have

∣∣anc(H,u)
∣∣ ≤ O(logN ·

(
Q∗2

W
+
Q∗

L

)
· Q
∗2

N

)
, (14)

for every vertex u with C(u) = blue.

Proof. Recall that at the end of each blue surprise epoch, A may find an edge (u, v) such that the
vertex u being queried is blue and v is a vertex encountered before. We refer to such an edge as a
surprise edge if v also turns out to be blue.

Now we consider running A on a typical pair (C,G). Let (H(i), P (i)) denote the knowledge pair
maintained by A after i queries, let E(i) be the current epoch, and let H(i) = H ′(i) ◦E(i). We focus
on the evolution of the blue subgraph (the subgraph induced by its blue vertices) of KG(H ′(i)) over
time. We write BKG(H ′(i)) to denote the blue subgraph of KG(H ′(i)).

First we note that KG(H ′(i)) (and thus, BKG(H ′(i))) is only updated at the end of each epoch.
If an epoch ends at the ith query, a number of out-trees are added to KG(H ′(i−1)). Each such tree
(other than its root) is vertex-disjoint from KG(H ′(i−1)). In addition, if the epoch is a blue surprise
epoch, no more than d many surprise edges are added to KG(H ′(i)). Now focusing on BKG(H ′(i)) vs
BKG(H ′(i−1)), we have that at the end of each epoch, each out-tree added to BKG(H ′(i−1)) satisfies
the extra condition of having depth at most 4 logN . If it is the end of a blue surprise epoch we
may need to add no more than d surprise edges to BKG(H ′(i)) .

As a result, letting H be the query history of A after making q queries on a typical pair (C,G),
we have that BKG(H ′) is the union of (1) a forest in which each out-tree has depth at most

O

(
logN ·

(
Q∗2

W
+
Q∗

L

))
(15)

and (2) a set of at most

O

(
Q∗2

N

)
(16)

19

many surprise edges, where (15) follows from the bound for the number of epochs and (16) follows
found the bound for the number of blue surprise epochs given that (C,G) is typical.

Let u be a vertex in BKG(H ′). To bound the number of its ancestors, we consider an in-tree T
rooted at u such that every ancestor of u appears in T (with a directed path to u). If we remove
surprise edges from T , it is left with a vertex-disjoint union of directed paths; this is because, after
removing surprise edges, BKG(H ′) is a forest of out-trees (so no vertex has indegree larger than 1).
Since each path has length bounded by (15) and the number of surprise edges is bounded by (16),
the number of vertices in T (or the number of ancestors of u) is bounded by (14).

Now in Claim 3, u can be a vertex in VKG(E). Note that KG(E) must be a forest of out-trees
and because (C,G) is typical, the blue subgraph of each such out-tree has depth at most 4 logN .
As a result, considering vertices in VKG(E) may add a term of 4 logN to our bound for the number
of ancestors, which is still captured by (14). This finishes the proof of the claim.

Now we show that A finds a cycle in (C,G) ∼ BR∗ with probability oN (1). Given that (C,G)
is typical with probability at least 1− oN (1), we have

Pr
(C,G)∼BR∗

[
A finds a cycle

]
(17)

≤ oN (1) + Pr
(C,G)∼BR∗

[
(C,G) is typical and A finds a cycle

]
≤ oN (1) +

∑
q∈[Q∗]

Pr
(C,G)∼BR∗

[
(C,G) is typical and A finds a cycle in the qth round

]
.

As a result, it suffices to bound each probability in the sum by o(1/N).
Fix any q ∈ [Q∗]. Given a pair (H,C), where H = H ′ ◦E is a query history of length q− 1 and

C is a full coloring, we write P (H,C) to denote the restriction of C on VKG(H ′). Then we have

Pr
(C,G)∼BR∗

[
(C,G) is typical and A finds a cycle in the qth round

]
(18)

≤
∑
(H,C)

Pr
(C,G)∼BR∗

[
C = C and A running on (C,G) observes (H,P (H,C))

]
× Pr

(C,G)∼BR∗(H,C)

[
A finds a cycle in the qth round

]
, (19)

where the sum is over all (H,C) such that every blue vertex (under C) in VKG(H) has its number
of ancestors bounded by (14). This follows from Claim 3 since (C,G) is typical in (18).

Fix such a pair (H,C) and let u = A(H,P (H,C)) be the next vertex that is queried by A.
If u /∈ VKG(H) or u ∈ VKG(H) is not blue under C, the probability in (19) is trivially 0. If
u ∈ VKG(H) is blue, we note that under (C,G) ∼ BR∗(H,C), outneighbors of u are picked
randomly from 2N − 1 vertices without replacement. Consequently the probability that one of
them is an ancestor of u can be bounded by

O

(
logN ·

(
Q∗4

WN2
+
Q∗3

LN2

))
.

As a result, this is an upper bound for (19) as well as (18) and thus, the sum in (17) is at most

Q∗ ·O
(

logN ·
(
Q∗4

WN2
+
Q∗3

LN2

))
= O

(
logN ·

(
Q∗5

WN2
+
Q∗4

LN2

))
= oN (1) (20)

20

with our choices of L,W and Q∗. This finishes the proof of the lemma.

Looking back regarding our choices of L := (2N)2/9 and W := 2N/L = (2N)7/9, we need L,W
and Q∗ to satisfy the following two inequalities for the proof to work: (10): LQ∗ = o(W) and that
(20) above is oN (1). Our choices of L and W are optimized to maximize the query complexity Q∗

under these conditions.

8 Finding cycles in Bender-Ron-graphs using O(N 13/18) queries

Given the lower bound established above for cycle-finding in Bender-Ron graphs, one natural ques-
tion concerns the limitations of this approach: what is the true query complexity of cycle-finding
in graphs drawn from this distribution? This section sketches two algorithmic approaches that find
cycles with high probability in random graphs G ∼ BR for many values of the length parameter
L. In particular, setting L = Θ(N2/9) as in our lower bound construction yields an algorithm for
cycle finding in BR graphs with query complexity roughly N13/18.

Algorithm 1. We begin with the following simple observation: With high probability over a
random Bender-Ron graph G ∼ BR, for each vertex v ∈ [3N] it is possible to correctly determine
the color (and layer, if the color is red) of v in O(L) queries. This is a straightforward consequence
of the following two facts. First, if v is a red vertex in layer Ri, then every directed path from
v reaches a sink after exactly L − i edges. Second, for almost every graph G ∈ BR, a sequence
of random walks made from any blue vertex in G will differ significantly in the distance they
travel before they find a sink. Thus an algorithm can determine the color and layer of v with high
probability by making several random walks of length O(L).

We can leverage this observation to find a cycle with high probability in O(L
√
N) queries

as follows. The algorithm works by first identifying a blue vertex in O(L) queries by randomly
sampling and confirming its color using the procedure described above. Each child of a blue vertex
G ∼ BR is blue with probability 1/2, so we can grow a blue path from our seed vertex at a cost
of roughly O(L) queries to confirm the color of each additional vertex.11 We construct a blue
path of length C

√
N , at which point each successive blue vertex added to the path creates a cycle

with probability at least C/(2
√
N). By a birthday paradox argument, the next C

√
N blue vertices

added to the path yield a cycle with high probability for large C. Setting L = (2N)2/9 as in our
lower bound proof, the query complexity of the resulting algorithm is O(N13/18).

Algorithm 2. Algorithm 1 provides a good upper bound on the query complexity of cycle-
finding in Bender-Ron graphs when L is relatively small. In this section we sketch a more sophis-
ticated strategy that gives a query-efficient algorithm when L is large. The key observation here is
that for almost every graph G ∼ BR, given any red vertex v in layer Ri, by making P := Õ(W)
queries it is possible to query almost every vertex in layer Ri+t, where t = logd P. This is accom-
plished by performing a breadth-first search of depth t starting from vertex v. We think of this as
the query algorithm “building a wall” at layer Ri+t.

Algorithm 2 has two stages. In the first stage, it builds a series of walls, effectively mapping
out the structure of G. In the second stage, it exploits its knowledge about the structure of G to

11 With high probability, the number of red vertices we identify is proportional to the length of the path. If a blue
node has no blue children, an event which occurs with probability 1/2d, we backtrack to the previous node.

21

efficiently build a long blue path using a method similar to Algorithm 1.

In more detail, the first stage starts by first identifying M red vertices by sampling vertices at
random and using random walks to confirm their color, a process which takes O(LM) queries. In the
rest of the first stage the algorithm then performs the wall-building procedure at each of these ver-
tices, a process which takes roughly Õ(MW) queries.12 At this point, the query algorithm has built
Θ(M) walls, which with high probability are typically spaced at intervals roughly O(L/M) apart
throughout the layers R1, . . . , RL. Thus the first stage takes about Õ(M(W+L)) = Õ(M(N/L+L))
queries.

In the second stage, Algorithm 2 is the same as Algorithm 1, except that Algorithm 2 can
identify vertex colors by reaching a wall instead of a sink vertex. Consider a random walk from a
vertex v. If v is in layer Ri, then most random walks from v will collide with the next wall in a
particular, fixed number of queries ai, which will typically be O(L/M). If v is a blue vertex, then
most random walks from v will still collide with a wall in O(L/M) queries, but with high probability
the length of these walks will vary significantly. As a result, using the same method as Algorithm
1, Algorithm 2 can identify vertex colors in O(L/M) queries and find a cycle of length O(

√
N) in

O(L
√
N/M) queries. Thus the query complexity of Algorithm 2 is Õ(M(N/L+L) +L

√
N/M). If

L� N1/4, then taking M = N1/4L√
N+L2

� 1, we get that the query complexity of this second approach

is roughly Õ(N1/4
√
N + L2), which is o(N) for N1/4 � L ≤ o(N3/4).

9 Directions for future work: towards upper bounds

Given our Ω̃(N5/9) lower bound, it is natural to ask the true query complexity of cycle finding in
sparse digraphs that are ε-far from acyclic. We conjecture that there is an o(N)-query algorithm
for this problem, and we pose the problem of finding such an algorithm as a tantalizing goal for
future work. We conclude with a few comments towards this goal:

1. Let ` = `(m, ε) be the smallest value such that every m-edge digraph G with the smallest
feedback arc set of size at least εm must have a cycle of length at most `. Fox [Fox18] has
proved that `(m, ε) ≤ Õ(logm)/ε. It follows that every bounded-outdegree-d N -vertex
digraph that is constant-far from acyclic must contain a cycle of length Õ(logN). This
structural result may be viewed as a highly efficient nondeterministic algorithm (with
query complexity Õ(logN)) for the cycle-finding problem that we consider.

2. It is possible that a simple algorithm based on breadth first search may have sublinear
query complexity for cycle-finding in far-from-acyclic bounded-degree digraphs. In more
detail, we do not know a counterexample to the following conjecture: “Let 0 < ε < 1 be a
(small) constant. Let A′ be an algorithm which works as follows: for C = C(ε) (a large
constant) many repetitions, A′ picks a random vertex v in G and performs a breadth first
search out from v until CN/ logN vertices have been explored. When run on any N -vertex
graph G that is ε-far from acyclic, one of the C(ε) BFS’s performed by algorithm A′ finds a
cycle with constant probability.” (We note that by considering the case in which G is a

12 If the algorithm finds a sink while attempting to run a breadth-first search of depth t, this wall fails and the
procedure continues.

22

union of d many randomly chosen bipartite matchings, it can be shown that N/ logN
cannot be replaced by any function of N that is o(N/ logN).)

Acknowledgements

We thank Jacob Fox for telling us about [Fox18]. X.C. is supported by NSF IIS-1838154 and NSF
CCF-1703925. R.A.S. is supported by NSF IIS-1838154, NSF CCF-1814873, NSF CCF-1563155,
and by the Simons Collaboration on Algorithms and Geometry.

References

[ABG+18] Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles,
Ronitt Rubinfeld, and Anak Yodpinyanee. Sublinear-time algorithms for counting
star subgraphs via edge sampling. Algorithmica, 80(2):668–697, 2018. 1

[AKK19] Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time
algorithm for counting arbitrary subgraphs via edge sampling. In 10th Innovations in
Theoretical Computer Science Conference (ITCS), pages 6:1–6:20, 2019. 1, 1

[BHPR+18] Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus
Rashtchian, and Makrand Sinha. Edge estimation with independent set oracles. In
Proceedings of the 2018 ACM Conference on Innovations in Theoretical Computer
Science, 2018. 1

[BR02] Michael A. Bender and Dana Ron. Testing properties of directed graphs: acyclicity
and connectivity. Random Struct. Algorithms, 20(2):184–205, 2002. (document), 1,
1.1, 1.2, 3, 3.1, 3.3, 4.1

[BSS08] Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property of
sparse graphs is testable. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC), pages 393–402, 2008. 1, 2

[CEF+05] Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan Newman, Ronitt
Rubinfeld, and Christian Sohler. Approximating the weight of the euclidean
minimum spanning tree in sublinear time. SIAM Journal on Computing,
35(1):91–109, 2005. 1

[CPS16] Artur Czumaj, Pan Peng, and Christian Sohler. Relating two property testing
models for bounded degree directed graphs. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 1033–1045, 2016. 1

[CRT05] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the
minimum spanning tree weight in sublinear time. SIAM J. Comput.,
34(6):1370–1379, 2005. 1, 1

23

[CS09] Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum
spanning trees in sublinear time. SIAM Journal on Computing, 39(3):904–922, 2009.
1

[ELRS17] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately counting
triangles in sublinear time. SIAM J. Comput., 46(5):1603–1646, 2017. 1, 1

[ERS18] Talya Eden, Dana Ron, and C Seshadhri. On approximating the number of k-cliques
in sublinear time. In Proceedings of the 50th ACM Symposium on the Theory of
Computing, pages 722–734, 2018. 1

[Fei06] Uriel Feige. On sums of independent random variables with unbounded variance and
estimating the average degree in a graph. SIAM Journal on Computing,
35(4):964–984, 2006. 1

[Fox18] Jacob Fox. Personal communication, 2018. 1.1, 1, 9

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, New
York, 2017. 1

[GR02] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs.
Algorithmica, 32(2):302–343, 2002. 1, 2

[GR08] Oded Goldreich and Dana Ron. Approximating average parameters of graphs.
Random Structures & Algorithms, 32(4):473–493, 2008. 1

[GRS11] Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small
subgraphs in sublinear-time. SIAM Journal on Computing, 25(3):1365–1411, 2011. 1

[HKNO09] Avinatan Hassidim, Jonathan A Kelner, Huy N Nguyen, and Krzysztof Onak. Local
graph partitions for approximation and testing. In Proc. 50th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 22–31. IEEE, 2009. 1

[HS12] Frank Hellweg and Christian Sohler. Property testing in sparse directed graphs:
Strong connectivity and subgraph-freeness. In Algorithms - ESA 2012 - 20th Annual
European Symposium, pages 599–610, 2012. 1

[HS13] Frank Hellweg and Christian Sohler. Property-testing in sparse directed graphs:
3-star-freeness and connectivity. CoRR, abs/1312.0497, 2013. 1

[KSS18] Akash Kumar, C. Seshadhri, and Andrew Stolman. Finding forbidden minors in
sublinear time: A n1/2+o(1)-query one-sided tester for minor closed properties on
bounded degree graphs. In 59th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 509–520, 2018. 1, 2

[KSS19] Akash Kumar, C Seshadhri, and Andrew Stolman. Random walks and forbidden
minors II: a poly(dε−1)-query tester for minor-closed properties of bounded degree
graphs. In Proceedings of the 51st ACM Symposium on the Theory of Computing,
2019. 1

24

[MR09] Sharon Marko and Dana Ron. Approximating the distance to properties in
bounded-degree and general sparse graphs. 5(2):22, 2009. 1

[NO08] Huy N Nguyen and Krzysztof Onak. Constant-time approximation algorithms via
local improvements. In Proc. 49th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 327–336. IEEE, 2008. 1

[OR11] Yaron Orenstein and Dana Ron. Testing eulerianity and connectivity in directed
sparse graphs. Theoretical Computer Science, 412:6390–6408, 2011. 1

[ORRR12] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal
sublinear-time algorithm for approximating the minimum vertex cover size. In
Proceedings of the 23rd annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1123–1131, 2012. 1, 1

[PR07] Michal Parnas and Dana Ron. Approximating the minimum vertex cover in
sublinear time and a connection to distributed algorithms. Theoretical Computer
Science, 381(1-3):183–196, 2007. 1

[RD85] V. Rödl and R.A. Duke. On graphs with small subgraphs of large chromatic number.
Graphs and Combinatorics, 1(1):91–96, 1985. 1, 2

[Yao77] A. Yao. Probabilistic computations: Towards a unified measure of complexity. In
Proc. Seventeenth Annual Symposium on Foundations of Computer Science (STOC),
pages 222–227, 1977. 3

[YYI09] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time
approximation algorithm for maximum matchings. In Proc. 41st Annual ACM
Symposium on Theory of Computing (STOC), pages 225–234. ACM, 2009. 1

25

	1 Introduction-0.06cm
	1.1 The query model and promise problem that we consider-0.05cm
	1.2 Our result: An (N5/9)-query lower bound.

	2 Preliminaries
	3 Our techniques
	3.1 A simple (N1/2) lower bound due to Bender and Ron
	3.2 A challenge in going beyond N1/2 many queries
	3.3 Our construction and a sketch of our main ideas

	4 The Bender-Ron graphs
	4.1 The distribution
	4.2 Almost all Bender-Ron graphs are far from acyclic

	5 Epochs and color revelation
	5.1 The color revelation model
	5.2 Epoch bounds

	6 Bounding the probability of long blue paths
	6.1 The naive distribution
	6.2 The naive distribution is a good approximation: Proof of lemmaapprox

	7 A Lower Bound on Cycle Finding
	8 Finding cycles in Bender-Ron-graphs using O(N13/18) queries
	9 Directions for future work: towards upper bounds

