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Abstract

Data-sensitive metrics adapt distances locally based the
density of data points with the goal of aligning distances
and some notion of similarity. In this paper, we give
the first exact algorithm for computing a data-sensitive
metric called the nearest neighbor metric. In fact, we
prove the surprising result that a previously published
3-approximation is an exact algorithm.

The nearest neighbor metric can be viewed as a spe-
cial case of a density-based distance used in machine
learning, or it can be seen as an example of a mani-
fold metric. Previous computational research on such
metrics despaired of computing exact distances on ac-
count of the apparent difficulty of minimizing over all
continuous paths between a pair of points.

We leverage the exact computation of the nearest
neighbor metric to compute sparse spanners and per-
sistent homology. We also explore the behavior of the
metric built from point sets drawn from an underly-
ing distribution and consider the more general case of
inputs that are finite collections of path-connected com-
pact sets.

The main results connect several classical theories
such as the conformal change of Riemannian metrics,
the theory of positive definite functions of Schoenberg,
and screw function theory of Schoenberg and Von Neu-
mann. We also develop some novel proof techniques
based on the combination of screw functions and Lips-
chitz extensions that may be of independent interest.

1 Introduction

The profound success of nonlinear methods in machine
learning such as kernels methods, density-based dis-
tances, and neural nets reveals that although data are
often represented as points in Rn, the shortest path be-
tween two points is not a straight line. It is widely
believed that a more useful metric on the data points
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would have the property that two points in a dense
cluster will be close in some underlying metric, even if
the Euclidean distance is far [AvL12, CFM+15, VB03,
BRS11]. That is, distances are scaled inversely accord-
ing to the density of the data along a path between
points. We call such a metric data-sensitive.

Data-sensitive metrics arise naturally in machine
learning, and are implicitly central in celebrated meth-
ods such as k-NN graph methods, manifold learning,
level-set methods, single-linkage clustering, and Eu-
clidean MST-based clustering (see Section 5 and Ap-
pendix A for details). The construction of appropriate
data-sensitive metrics is an active area of research. We
consider a simple data-sensitive metric with an under-
lying manifold structure called the nearest neighbor
metric. This metric was first introduced in [CFM+15].
It and its close variants have been studied in the past by
multiple researchers [HDHI16, CFM+15, SO05, BRS11,
VB03]. In this paper, we show how to compute the near-
est neighbor metric exactly for any dimension, which
solves one of the most important and challenging prob-
lems for any manifold-based metric.

The starting point will be the nearest neighbor
function rP for the data set P :

rP (z) = 4 min
x∈p
‖x− z‖,

where the factor of 4 normalizes and simplifies expres-
sions later. This function is also known as the dis-
tance function to the set P and is the basic object of
study in the critical point theory of distance functions,
a generalization of Morse Theory [Gro93]. This theory
has found many recent uses in computational geome-
try [CL08, CCSL09] as it is a natural way to infer un-
derlying structure from a sample of points. We have a
similar goal of inferring underlying structure when we
use rP as a cost function for a density-based distance
defined as follows (see also Section 4 for explicit infer-
ence results).

Definition 1.1. Given a continuous cost function c :
Rk → R, we define the density-based cost of a path γ
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relative to c as:

`c(γ) =

∫ 1

0

c(γ(t))‖γ′(t)‖dt.

Here, the path γ is defined as a continuous map γ :
[0, 1] → Rk. Let path(a, b) denote the set of piecewise-
C1 paths from a to b. We then define the density-based
distance between two points a, b ∈ Rk as

dc(a, b) inf
γ∈path(a,b)

`c(γ)

This is a slight simplification of the density-based
distances from [SO05] which included other require-
ments to facilitate approximation. Conceptually, the
density-based cost of a path is the weighted path length,
where each infinitesimal path piece is weighted ac-
cording to c. The cost c is usually some function
of an underlying density f (the natural choice would

be c(x) = f(x)−
1
k ). Density-based distances have

been notable in the machine learning setting for over
a decade [SO05, BRS11]. To build a data-sensitive met-
ric from density-based distances, we would like a cost
function c that is small when close to the data set, and
large when far away. The nearest neighbor function rP
is the most natural candidate, and has been tradition-
ally used as a proximity measure between points and a
data set in both the geometry and machine learning set-
tings [BRS11]. It has been used as such in nearest neigh-
bor (and k-NN) classification, k-means/medians/center
clustering, finite element methods, and any of the nu-
merous methods that use Voronoi diagrams or Delaunay
triangulation as intermediate data structures.

Definition 1.2. Given any finite set P ⊂ Rk, the
nearest neighbor cost function is `N := `rP and the
nearest neighbor metric is dN := drP . That is, it’s
the density-based distance with cost function rP .

�

s

Figure 1: In this figure we have a collection of points.
The length or cost of the green curve between the two
blue points is the integral along the curve scaled by the
distance to the nearest point.

The nearest neighbor metric, and density-based
distances in general, are examples of manifold
geodesics [SO05, TdSL00]. Manifold geodesics of data
sets are defined by embedding points into a manifold
and computing the infimum length path in the manifold.
Within computer science, dozens of foundational papers
in machine learning and surface reconstruction rely on
manifold-based metrics to perform clustering, classifica-
tion, regression, surface reconstruction, persistent ho-
mology, and more [TdSL00, CFM+15, VB03, BRS11,
SO05, ELZ02, AvL12, Lux07]. Manifold geodesics pre-
date computer science, and are the cornerstone of many
fields of physics and mathematics. Exactly computing
geodesics is fundamental to countless areas of physics
including: the brachistochrone and minimal-drag-bullet
problem of Bernoulli and Newton [Ber96], exactly de-
termining a particle’s trajectory in classical physics
(Hamilton’s Principle of Least Action) [CH53], com-
puting the path of light through a non-homogeneous
medium (Snell’s law), finding the evolution of wave
functions in quantum mechanics over time (Feynman
path integrals [Fey48]), and determining the path of
light in the presence of gravitational fields (General Rel-
ativity, Schwarzschild metric) [Sch16, SW97]. In math-
ematics, manifold geodesics appear in many branches
of higher mathematics including differential equations,
differential geometry, Lie theory, calculus of variations,
algebraic geometry, and topology.

One of the most significant problems on any mani-
fold geodesic is how to compute its length. Exact com-
putation of manifold metrics is considered a fundamen-
tal problem in mathematics and physics, dating back
for four centuries: entire fields of mathematics, includ-
ing the celebrated calculus of variations, have arisen to
tackle this [CH53]. Historically, mathematicians placed
strong emphasis on exact computation as opposed to
constant factor approximations [CH53]. An algorith-
mic problem on manifold geodesics, with modern ori-
gins, is to (1 + ε) approximate these metrics efficiently
on a computer. The core difficulty in the first prob-
lem is that geodesics are the minimum cost path out of
an uncountable number of paths that can travel ’any-
where’ on the manifold structure. This makes exactly
computing these metrics challenging, even in the case of
the nearest neighbor metric for just four fixed points in
two dimensions (the authors are unaware of any easy
method for this simplified task). Calculus of varia-
tions can show that the optimal nearest neighbor path is
piecewise hyperbolic, but this is generally insufficient to
exactly compute the nearest neighbor metric—there are
point sets where there are many differentiable, piecewise
hyperbolic paths between two data points with different
costs.
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In this paper, we solve both problems: we exactly
compute the Nearest Neighbor metric in all cases, and
we (1+ε) approximate it quickly. Our approach is based
on a novel embedding of the data into high dimensions
where the geodesics are straight lines. Then we use
a Lipschitz extension theorem to relate the lengths
of the shortest paths in the original space and the
embedding. We combine these tools to prove that the
nearest neighbor metric is exactly equal to a shortest
path distance on a geometric graph, the so-called edge-
squared metric, in all cases. This allows us to compute
the nearest-neighbor metric exactly for any given point
set in polynomial time, and it is the only known (non-
trivial) density-based distance that can be computed by
a discrete algorithm.

Definition 1.3. For x ∈ Rd, let ‖x‖ denote the Eu-
clidean norm. For a set of points P ⊂ Rd: the edge-
squared metric for a, b ∈ P is

d2(a, b) = inf
(p0,...,pk)

k∑
i=1

‖pi − pi−1‖2,

where the infimum is over sequences of points
p0, . . . , pk ∈ P with p0 = a and pk = b.

Theorem 1.1. The nearest neighbor metric and edge
squared metric are equivalent for any set P in arbitrary
dimension that is the finite collection of compact path-
connected sets.

This in particular covers the case of n points
in n − 1 dimension. The exact equality is realized
when the nearest neighbor path is piecewise linear,
traveling straight from data point to data point. The
edge squared metric has been previously studied by
multiple researchers in machine learning and power-
efficient wireless networks, but previously has only been
linked to the nearest neighbor metric by a fairly weak
3-approximation [CFM+15]. There are several reasons
why it is surprising that these metrics are equal:

1. The optimal nearest neighbor path for two points
not in the dataset is generally composed of hyper-
bolic arcs. This holds true even when the dataset
is a single point, and was established by [CFM+15]
using tools in Riemannian surfaces and the com-
plex plane. Meanwhile, our Theorem implies an
optimal nearest neighbor path for two data points
(in a dataset of any size) is piecewise linear!

2. There are simple and natural variants of the near-
est neighbor metric, for which no analog of Theo-
rem 1.1 is known nor suspected. For example, if

one considers powers (other than one) of the dis-
tance function as a cost, a corresponding graph-
based metric is known to exist only for sets of size
at most two.

3. For just three points in a right triangle configura-
tion, there exist an uncountable suite of optimal-
cost paths between the two endpoints of the hy-
potenuse. Each path in this uncountable suite
is piecewise hyperbolic, but, surprisingly, they all
have the exact same cost as the edge-squared dis-
tance. Thus, there shortest paths may not even be
unique.

4. The finite union of compact path-connected geo-
metric bodies in arbitrary dimension can have ex-
tremely complicated geometry, and the Voronoi di-
agram on which the nearest neighbor metric de-
pends is poorly understood for even three of these
bodies in two dimension. There is no other restric-
tion on the compact geometric objects, and they
need not be convex or even simply connected, see
figure 2.

�
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Figure 2: In this figure we have a collection of compact
bodies in black. The length or cost of the green curve
between the two blue points is the integral along the
curve scaled by the distance to the nearest body. A
curve may traverse a body at no cost. Theorem 1.1
establishes that the shortest path curve between two
points goes straight from compact body to compact
body.

We can now tackle a second problem of interest for
manifold geodesics, which is efficiently (1 + ε) approxi-
mating them. In this paper, we show that the nearest
neighbor metric admits (1 + ε) spanners computable in
nearly-linear time, with linear size, for any point set
in constant dimension. Remarkably, these spanners are
significantly sparser and faster to compute than the the-
oretically optimal Euclidean spanners with the same ap-
proximation constant, and nearly match the sparsity of
the best known Euclidean Steiner spanners. Moreover,
if the point set comes from a well-behaved probability
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distribution in constant dimension (a foundational as-
sumption in machine learning [HDHI16]), we show that
the nearest neighbor metric has perfect 1-spanners of
nearly linear size. The latter result is impossible for
many non-density sensitive metrics, such as the Eu-
clidean metric. Both results rely on Theorem 1.1, and
significantly improve the nearest neighbor spanners of
Cohen et al in [CFM+15].

Theorem 1.1 and our spanner theorems solve two
core problems of interest for the nearest neighbor met-
ric: exactly computing it for any dimension, and ap-
proximating it quickly for both general point sets and
point sets arising from a well-behaved probability dis-
tribution in constant dimension. This is the first work
we know of that computes a manifold metric exactly
without calculus of variations, and we hope that our
tools can be useful for other metric computations and
approximations.

1.1 Contributions and Past Work Our primary
contribution is Theorem 1.1, which lets us exactly
compute the nearest neighbor metric. This significantly
strengthens a core result of Cohen et al [CFM+15].
This theorem should be considered quite surprising:
it equates the nearest neighbor metric with the edge-
squared metric, even when the point set is a collections
of compact, path-connected objects in arbitrarily large
dimension. There are no restrictions on the convexity or
simple-connectedness of such objects, so in general the
Voronoi diagram of these objects (on which the nearest
neighbor metric critically depends) can be extremely
complicated.

Besides for exactly computing the nearest neighbor
metric, we present the following theorems on approxi-
mate computation:

Theorem 1.2. For any set of points in Rd for con-
stant d, there exists a (1 + ε) spanner of the nearest
neighbor metric with size O

(
nε−d/2

)
computable in time

O
(
n log n+ nε−d/2 log 1

ε

)
. The log 1

ε term goes away
given access to an algorithm computing floor function
in O(1) time.

Theorem 1.3. Suppose points P in Euclidean space
are drawn i.i.d from a Lipschitz probability density
bounded above and below by a constant, with support on
a smooth, connected, compact manifold with intrinsic
dimension d with boundary of bounded curvature. Then
w.h.p. the k-NN graph of P for k = O(2d lnn) and edges
weighted with Euclidean distance squared, is a 1-spanner
of the nearest neighbor metric on P .

These theorems rely on Theorem 1.1 and considerably
strengthen the spanner results on the nearest neighbor

metric from [CFM+15]. They critically rely on Theo-
rem 1.1, which show it suffices to compute spanners of
the edge-squared metric. Previously, sparse spanners of
the edge-squared metric were shown to exist in two di-
mensions via Yao graphs and Gabriel graphs [LWW01],
but these did not generalize well to constant dimen-
sion: Yao graphs are not very efficient to compute, and
Gabriel graphs can have quadratically many edges even
in 3 dimensions [CEG+94]. The spanners we produce
are sparser than the theoretical optimal for Euclidean
spanners [LS19].

Theorem 1.3 proves that a 1-spanner of the near-
est neighbor metric can be found assuming points are
samples from a probability density, by using a k-NN
graph for appropriate k. Our result is tight when d
is constant. This is not possible for Euclidean dis-
tance, as a 1-spanner is almost surely the complete
graph. Although the restrictions on the probability
density may seem limiting, they are in fact quite flexi-
ble and standard in machine learning theory and prac-
tice [HDHI16, AvL12]. For example, although they do
not cover the case of a Gaussian (unbounded support),
they do cover the case of a Gaussian where the very thin
tail is cut off, and this recovers most of the relevant data
in a Gaussian distribution. Past work on similar results
include [BBSW05, GBQ03].

Theorem 1.1 will additionally allow us to compute
the persistent homology of dN , a task useful for topo-
logical data analysis [ELZ02]. We also show how the
nearest neighbor metric generalizes Euclidean distance
and maximum-edge Euclidean MST distance [LWW01]

The core mathematical contribution of our work
is the statement and proof of Theorem 1.1. The
techniques to prove our other results are simpler and
mostly leverage Theorem 1.1 and past work. We have
included them nonetheless to provide a more complete
picture of the nearest neighbor metric, and to provide
possible directions for future work.

1.2 Definitions and Preliminaries In this section,
we establish additional definitions for our paper. These
are mostly of interest for our spanner and persistent
homology results, and are not strictly necessary for
Theorem 1.1.

Spanners: For real value t ≥ 1, a t-spanner of a
weighted graph G is a subgraph S such that dG(x, y) ≤
dS(x, y) ≤ t · dG(x, y) where dG and dS represent the
shortest path distance functions between vertex pairs in
G and S. Spanners of Euclidean distances, and general
graph distances, have been studied extensively, and
their importance as a data structure is well established.
[Che86, Vai91, CK93, HPIS13].
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k-nearest neighbor graphs: The k-nearest neighbor
graph (k-NN graph) for a set of objects V is a graph
with vertex set V and an edge from v ∈ V to its k
most similar objects in V , under a given distance mea-
sure. In this paper, the underlying distance measure
is Euclidean, and the edge weights are Euclidean dis-
tance squared. k-NN graph constructions are a key data
structure in machine learning [DCL11, CFS09], cluster-
ing [Lux07], and manifold learning [TdSL00].

Gabriel Graphs: The Gabriel graph is a graph where
two vertices p and q are joined by an edge if and only
if the disk with diameter pq has no other points of S
in the interior. The Gabriel graph is a subgraph of the
Delaunay triangulation [Sri15], and a 1-spanner of the
edge-squared metric [Sri15]. Gabriel graphs will be used
in the proof of Theorem 1.3.

Persistent Homology: Persistent homology is a pop-
ular tool in computational geometry and topology to as-
cribe quantitative topological invariants to spaces that
are stable with respect to perturbation of the input. In
particular, it’s possible to compare the so-called per-
sistence diagram of a function defined on a sample to
that of the complete space [CO08]. These two aspects
of persistence theory—the intrinsic nature of topologi-
cal invariants and the ability to rigorously compare the
discrete and the continuous—are both also present in
our theory of nearest neighbor metrics. Indeed, our pri-
mary motivation for studying these metrics was to use
them as inputs to persistence computations for prob-
lems such as persistence-based clustering [CGOS13] or
metric graph reconstruction [ACC+12].

2 Outline

Section 3 contains the proof of Theorem 1.1, equating
the edge-squared metric and nearest neighbor metric in
all cases. It should be noted that our proof is robust
enough to handle not just finite point sets, but also
countably infinite collections of disjoint path-connected,
compact sets. Remarkably, there is no restriction on the
convexity or simply-connectedness of these sets.

As an example of using the nearest neighbor met-
ric to compute intrinsic structure, Section 4 shows how
Theorem 1.1 allows us to compute the persistent homol-
ogy of the nearest neighbor metric.

Section 5 introduces the p-power metrics. We show
that Euclidean spanners and Euclidean MSTs are spe-
cial cases of p-power spanners. We show how clustering
algorithms including k-means, level-set methods, and
single linkage clustering, are special cases of clustering
with p-power metrics. p-power metrics are identical to
the Neighbor metric when p = 2. This is further de-

tailed in Appendix A.
Section 6.2 outlines a proof of Theorem 1.2, and

compares our spanner to new lower bounds on the
sparsity of (1+ε)-spanners of the Euclidean metric. We
outline a proof of Theorem 1.3 in Section 6.1 and discuss
its implications.

Conclusions and open questions are in Section 7.
Full proofs for Theorems 1.3, 1.2 are contained in the
Appendix.

3 Exactly Computing the nearest neighbor
metric

In this section, we prove Theorem 1.1 on finite point
sets, and explain in Section 3.1 that our proof strategy
applies to finite collections of path-connected compact
bodies.

First, lets observe what happens when P has only
two points a and b, d2(a, b) = dN (a, b). This reduces to
a high school calculus exercise as the minimum path γ
will be a straight line between the points and the nearest
neighbor metric is

dN (a, b) = 4

∫ 1

0

rP (γ(t))‖γ′(t)‖dt

= 8

∫ 1
2

0

t‖a− b‖2dt = ‖a− b‖2 = d2(a, b).

Now it is easy to observe that the nearest neighbor
metric is never greater than the edge-squared distance,
as proven in the following lemma.

Lemma 3.1. For all s, p ∈ P , we have dN (s, p) ≤
d2(s, p).

Proof. Fix any points s, p ∈ P . Let q0, . . . , qk ∈ P be
such that q0 = s, qk = p and

d2(s, p) =

k∑
i=1

‖qi − qi−1‖2.

Let ψi(t) = tqi+(1− t)qi−1 be the straight line segment
from qi−1 to qi. Observe that `(ψi) = ‖qi − qi−1‖2/4,
by the same argument as in the two point case. Then,
let ψ be the concatenation of the ψi and it follows that

d2(s, p) = 4`(ψ) ≥ 4 inf
γ∈path(s,p)

`(γ) = dN (s, p).

By Lemma 3.1, it suffices to show that dN (a, b) ≥
d2(a, b) for all a, b ∈ P .

Let P ⊂ Rd be a set of n points. Pick any source
point s ∈ P . Order the points of P as p1, . . . , pn so that

d2(s, p1) ≤ · · · ≤ d2(s, pn).
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This will imply that p1 = s. It will suffice to show that
for all pi ∈ P , we have d2(s, pi) = dN (s, pi). There are
three main steps:

1. We first show that when P is a subset of the vertices
of an axis-aligned box, d = dN . In this case,
shortest paths for d are single edges and shortest
paths for dN are straight lines.

2. We then show how to lift the points from Rd to Rn
by a Lipschitz map m that places all the points on
the vertices of a box and preserves d2(s, p) for all
p ∈ P .

3. Finally, we show how the Lipschitz extension of
m is also Lipschitz as a function between nearest
neighbor metrics. We combine these pieces to show
that d ≤ dN . As d ≥ dN (Lemma 3.1), this will
conclude the proof that d = dN .

The key to the second step, to be elaborated in Sec-
tion 3.0.2, is that if you take points on a line and raise
the pairwise distances to the 1/2 power, you get points
on a box. This is a special case of the general the-
ory on screw functions developed by Von Neumann and
Schoenberg, which asserts a far more general criterion
on when functions applied to pairwise distances be-
tween points on a line can be embedded into Euclidean
space [NS41].

3.0.1 Boxes Let Q be the vertices of a box in
Rn. That is, there exist some positive real numbers
α1, . . . , αn such that each q ∈ Q can be written as
q =

∑
i∈I αiei, for some I ⊆ [n].

Let the source s be the origin. Let rQ : Rn → R
be the distance function to the set Q. Setting ri(x) :=
min{xi, αi−xi} (a lower bound on the difference in the
ith coordinate to a vertex of the box), it follows that

(3.1) rQ(x) ≥

√√√√ n∑
i=1

ri(x)2.

Let γ : [0, 1] → Rn be a curve in Rn. Define γi(t)
to be the projection of γ onto its ith coordinate. Thus,

(3.2) ri(γ(t)) = min{γi(t), αi − γi(t)}

and

(3.3) ‖γ′(t)‖ =

√√√√ n∑
i=1

γ′i(t)
2.

We can bound the length of γ as follows. For simplicity
of exposition we only present the case of a path from

the origin to the far corner, p =
∑n
i=1 αiei.

`(γ) =

∫ 1

0

rQ(γ(t))‖γ′(t)‖dt

[by definition]

≥
∫ 1

0

√√√√ n∑
i=1

ri(γ(t))2

√√√√ n∑
i=1

γ′i(t)
2

 dt

[by (3.1) and (3.3)]

≥
n∑
i=1

∫ 1

0

ri(γ(t))γ′i(t)dt

[by Cauchy-Schwarz]

≥
n∑
i=1

(∫ `i

0

γi(t)γ
′
i(t)dt+

∫ 1

`′i

(αi − γi(t))γ′i(t)dt

)
[by (3.2) where γi(`i) = αi/2 for the first time

and γi(`
′
i) = αi/2 for the last time.]

=

n∑
i=1

2

∫ `i

0

γi(t)γ
′
i(t)dt

[by symmetry]

≥
n∑
i=1

α2
i

4

[by basic calculus]

It follows that if γ is any curve that starts at s and
ends at p =

∑n
i=1 αiei, then dN (s, p) = d2(s, p).

3.0.2 Lifting the points to Rn Define a mapping
m : P → Rn. We do this by adding the points
p1, . . . , pn, as defined above, one point at a time. For
each new point we will introduce a new dimension. We
start by setting m(p1) = 0 and by induction:

(3.4) m(pi) = m(pi−1) +
√

d2(s, pi)− d2(s, pi−1)ei,

where the vectors ei are the standard basis vectors in
Rn. A similar embedding works for some other functions
and was extensively studied by Schoenberg and Von
Neumann in the theory of screw functions.

Lemma 3.2. For all pi, pj ∈ P , we have

(i) ‖m(pj)−m(pi)‖ =
√
|d2(s, pj)− d2(s, pi)|, and

(ii) ‖m(s)−m(pj)‖2 ≤ ‖m(pi)‖2 + ‖m(pi)−m(pj)‖2.

Proof. Proof of (i). Without loss of generality, let i ≤ j.
Then, by the definition of m, expanding the norm, and
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telescoping the sum, we get the following.

‖m(pj)−m(pi)‖

=

∥∥∥∥∥
j∑

k=i+1

√
d2(s, pk)− d2(s, pk−1)ek

∥∥∥∥∥
=

√√√√ j∑
k=i+1

(d2(s, pk)− d2(s, pk−1))

=
√

d2(s, pj)− d2(s, pi).

Proof of (ii). As m(s) = 0, it suffice to observe that

‖m(pj)‖2 = d2(s, pj) [by (i)]

≤ d2(s, pi) + |d2(s, pj)− d2(s, pi)|
= ‖m(pi)‖2 + ‖m(pi)−m(pj)‖2 [by (i)]

We can now show that m has all of the desired
properties.

Proposition 3.1. Let P ⊂ Rd be a set of n points, let
s ∈ P be a designated source point, and let m : P → Rn
be the map defined as in (3.4). Let d′ denote the edge
squared metric for the point set m(P ) in Rn. Then,

(i) m is 1-Lipschitz as a map between Euclidean met-
rics,

(ii) m maps the points of P to the vertices of a box, and

(iii) m preserves the edge squared distance to s, i.e.
d′(m(s),m(p)) = d2(s, p) for all p ∈ P .

Proof. Proof of (i). To prove the Lipschitz condition,
fix any a, b ∈ P and bound the distance as follows.

‖m(a)−m(b)‖ =
√
|d2(s, a)− d2(s, b)| [Lem. 3.2(i)]

≤
√

d2(a, b) [triangle ineq.]

≤ ‖a− b‖. [by def. of d2]

Proof of (ii). That m maps P to the vertices of a box is
immediate from the definition. The box has side lengths
‖mi−mi−1‖ for all i > 1 and pi =

∑i
k=1 ‖mk−mk−1‖ek.

Proof of (iii). We can now show that the edge squared
distance to s is preserved. Let q0, . . . , qk be the shortest
sequence of points of m(P ) that realizes the edge-
squared distance from m(s) to m(p), i.e., q0 = m(s),
qk = m(p), and

d′(m(s),m(p)) =

k∑
i=1

‖m(qi)−m(qi−1)‖2.

If k > 1, then Lemma 3.2(ii) implies that removing q1
gives a shorter sequence. Thus, we may assume k = 1
and therefore, by Lemma 3.2(i),

d′(m(s),m(p)) = ‖m(s)−m(p)‖2 = d2(s, p).

3.0.3 The Lipschitz Extension Proposition 3.1
and the Kirszbraun theorem on Lipschitz extensions
imply that we can extend m to a 1-Lipschitz function
f : Rd → Rn such that f(p) = m(p) for all p ∈ P
[Kir34, Val45, Bre81].

Lemma 3.3. The function f is also 1-Lipschitz as map-
ping from Rd → Rn with both spaces endowed with the
nearest neighbor metric.

Proof. We are interested in two distance functions rP :
Rd → R and rf(P ) : Rn → R. Recall that each is the
distance to the nearest point in P or f(P ) respectively.

rf(P )(f(x)) = min
q∈f(P )

‖q − f(x)‖ [by definition]

= min
p∈P
‖f(p)− f(x)‖ [q ∈ f(P )]

≤ min
p∈P
‖p− x‖ [f is 1-Lipschitz]

= rP (x). [by definition]

For any curve γ : [0, 1] → Rd and for all t ∈ [0, 1], we
have ‖(f ◦ γ)′(t)‖ ≤ ‖γ′(t)‖. It then follows that

`′(f ◦ γ) =

∫ 1

0

rf(P )(f(γ(t)))‖(f ◦ γ)′(t)‖dt

≤
∫ 1

0

rP (γ(t))‖γ′(t)‖dt = `(γ),(3.5)

where `′ denotes the length with respect to rf(P ). Thus,
for all a, b ∈ P ,

dN (a, b) = 4 inf
γ∈path(a,b)

`(γ) [by definition]

≥ 4 inf
γ∈path(a,b)

`′(f ◦ γ) [by (3.5)]

≥ 4 inf
γ′∈path(f(a),f(b))

`′(γ′) [f ◦ γ is a path]

= dN (f(a), f(b)). [by definition]

We now restate Theorem 1.1 for convenience, and
prove it.
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Theorem 3.1. For any point set P ⊂ Rd, the edge
squared metric d and the nearest neighbor metric dN
are identical.

Proof. Fix any pair of points s and p in P . Define the
Lipschitz mapping m and its extension f as in (3.4).
Let d′ and d′N denote the edge-squared and nearest
neighbor metrics on f(P ) in Rn.

d2(s, p) = d′(m(s),m(p)) [Proposition 3.1(iii)]

= d′N (m(s),m(p)) [f(P ) are vertices of a box]

≤ dN (s, p) [Lemma 3.3]

We have just shown that d ≤ dN and Lemma 3.1 states
that d ≥ dN , so we conclude that d = dN as desired.

3.1 From Finite Sets to Finite Collections of
Compact Path-Connected Bodies All of our proof
steps hold for finite collections of compact, path-
connected bodies in arbitrarily large dimension. Our
Lipschitz map m can still be extended to a Lipschitz
map f in this setting, largely due to the generality of
the Kirszbraun theorem. In this case, the pre-image
of the contractive map is the set of all points belong-
ing to some body. Meanwhile, the image is a finite set
of points, the corners of a multi-dimensional box. Thus
our construction of m contracts each convex body into a
single point, and the image of our compact bodies under
f is still a finite point set on the corners of a box. There-
fore, the remainder of our theorem proof goes through
unchanged.

This result is rather remarkable: path-connected
compact sets in high dimensional space can have ex-
tremely convoluted geometry, and the Voronoi diagrams
on these collections (on which the nearest neighbor met-
ric depends) can be massively complex. The key is that
our Lipschitz map is robust enough to handle objects of
considerable geometric complexity.

4 Persistent Homology of the Nearest-neighbor
Geodesic Distance

In this section, we show how to compute the so-called
persistent homology [ELZ02] of the nearest neighbor
metric in two different ways, one ambient and the other
intrinsic. The latter relies on Theorem 1.1 and would
be quite surprising without it.

The input for persistence computation is a filtra-
tion—a nested sequence of spaces, usually parameter-
ized by a real number α ≥ 0. The output is a set of
points in the plane called a persistence diagram that
encodes the birth and death of topological features like
connected components, holes, and voids.

The Ambient Persistent Homology Perhaps
the most popular filtration to consider on a Euclidean
space is the sublevel set filtration of the distance to a
sample P . This filtration is (Fα)α≥0, where

Fα := {x ∈ Rd | rP (x) ≤ α},

for all α ≥ 0. If one wanted to consider instead the
nearest neighbor metric dN , one gets instead a filtration
(Gα)α≥0, where

Gα := {x ∈ Rd | min
p∈P

dN (x, p) ≤ α},

for all α ≥ 0.
Both the filtrations (Fα) and (Gα) are unions of

metric balls. In the former, they are Euclidean. In the
latter, they are the metric balls of dN . These balls can
look very different, for example, for dN , the metric balls
are likely not even convex. However, these filtrations are
very closely related.

Lemma 4.1. For all α ≥ 0, Fα = G2α2 .

Proof. The key to this exercise is to observe that the
nearest point p ∈ P to a point x is also the point
that minimizes dN (x, p). To prove this, we will show
that for any p ∈ P and any path γ ∈ path(x, p),
we have `(γ) ≥ 1

2rP (x)2. Consider any such x, p,
and γ. The euclidean length of γ must be at least
rP (x), so we will assume that ‖γ′‖ = rP (x) and will
prove the lower bound on the subpath starting at x of
length exactly rP (x). This will imply a lower bound
on the whole path. Because rP is 1-Lipschitz, we have
rP (γ(t)) ≥ (1− t)rP (x) for all t ∈ [0, 1]. It follows that

`(γ) =

∫ 1

0

rP (γ(t))‖γ′(t)‖dt

≥ rP (x)2
∫ 1

0

(1− t)dt =
1

2
rP (x)2

The bound above applies to any path from x to a point
p ∈ P , and so,

dN (x, p) = 4 inf
γ∈path(x,p)

`(γ) ≥ 2rP (x).

If p is the nearest neighbor of x in P , then dN (x, p) =
2rP (x), by taking the path to be a straight line. It
follows that minp∈P dN (x, p) = 2rP (x).

The preceding lemma shows that the two filtrations
are equal up to a monotone change in parameters. By
standard results in persistent homology, this means that
their persistence diagrams are also equal up to the
same change in parameters. This means that one could
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use standard techniques such as α-complexes [ELZ02]
to compute the persistence diagram of the Euclidean
distance and convert it to the nearest neighbor metric
afterwards. Moreover, one observes that the same
equivalence will hold for variants of the nearest neighbor
metric that take other powers of the distance.

Intrinsic Persistent Homology Recently, sev-
eral researchers have considered intrinsic nerve com-
plexes on metric data, especially data coming from met-
ric graphs [AAF+16, GGP+17]. These complexes are
defined in terms of the intersections of metric balls in
the input. The vertex set is the input point set. The
edges at scale α are pairs of points whose α-radius balls
intersect. In the intrinsic Čech complex, triangles are
defined for three way intersections, tetrahedra for four-
way intersections, etc.

In Euclidean settings, little attention was given to
the difference between the intrinsic and the ambient
persistence, because a classic result, the Nerve Theo-
rem [Bor48], and its persistent version [CO08] guaran-
teed there is no difference. The Nerve theorem, however,
requires the common intersections to be contractible,
a property easily satisfied by convex sets such as Eu-
clidean balls. However, in many other topological met-
ric spaces, the metric balls might not be so well-behaved.
In particular, the nearest neighbor metric has metric
balls which may take on very strange shapes, depend-
ing on the density of the sample. This is similarly true
for graph metrics. So, in these cases, there is a differ-
ence between the information in the ambient and the
intrinsic persistent homology.

Theorem 4.1. Let P ⊂ Rd be finite and let dN be the
nearest neighbor metric with respect to P . The edges of
the intrinsic Čech filtration with respect to dN can be
computed exactly in polynomial time.

Proof. The statement is equivalent to the claim that
dN can be computed exactly between pairs of points
of P , a corollary of Theorem 3.1. Two radius α balls
will intersect if and only of the distance between their
centers is at most 2α. The bound on the distance
necessarily implies a path and the common intersection
will be the midpoint of the path.

5 Relating the nearest neighbor metric to
Euclidean MSTs, Euclidean Spanners, and
More

The nearest neighbor metric, as seen in Theorem 1.1,
is equal to the edge-squared metric. This allows us
to connect this manifold distance to a graph distance,
which we will in turn show is a generalization of
maximum-edge distance on minimum spanning trees.
The results in this section are quite simple to prove, but

we nonetheless believe they are important properties of
the Nearest Neighbor metric and its variants.

The edge-squared metric on a Euclidean point set,
as we recall, is defined by taking the Euclidean distances
squared and finding the shortest paths. We could have
taken any such power p of the Euclidean distances. We
will soon see that taking p = 1 gives us the Euclidean
distance, and finding spanners of the graph as lim p →
∞ is the Euclidean MST problem. Let the p-power
metric be defined on a Euclidean point set by taking
Euclidean distances to the power of p, and performing
all-pairs shortest path on the resulting distance graph.

Theorem 5.1. For all q > p, any 1-spanner of the p-
power metric is a 1-spanner of the q-power metric on
the same point set

Proof. A 1-spanner of the q-power metric can be made
by taking edges uv where

min
p0=u,...pk=v,k 6=1

∑
k

||pi − pi−1||q > ||u− v||q.(5.6)

If
∑k
i=1 ||pi−pi−1||q > ||u−v||q for any points p1, . . . pk,

then
∑k
i=1 ||pi−pi−1||p > ||u−v||p for any q > p. Thus,

for all such edges uv satisfying Equation 5.6:

min
p0=u,...pk=v,k 6=1

∑
k

||pi − pi−1||p > ||u− v||p.

Such edges uv must be included in any 1-spanner of the
p-power metric.

Corollary 5.1. Let P be a set of points in Euclidean
space drawn i.i.d. from a Lipschitz probability density
bounded above and below, with support on a smooth,
compact manifold with intrinsic dimension d, bounded
curvature, and smooth boundary of bounded curvature.
Then the k-NN graph on P when k = O(2d log n) is a
1-spanner of the p-power metric for every p ≥ 2, w.h.p.

This follows from combining Theorem 1.3 and Theo-
rem 5.1.

5.1 Relation to the Euclidean MST problem

Definition 5.1. Let the normalized p-power met-
ric between two points in Rd be the p-power metric be-
tween the two points, raised to the 1

p power. Define the
normalized ∞-power metric as the limit of the normal-
ized p-power metric as p→∞.

Lemma 5.1. The Euclidean MST is a 1-spanner for the
normalized ∞-power metric.
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This lemma follows from basic properties of the MST.
The normalized p-power metrics give us a suite of
metrics such that p = 1 is the Euclidean distance and
p = ∞ gives us the distance of the longest edge on the
unique MST-path. Setting p = 2 gives the edge-squared
metric, which sits between the Euclidean and max-edge-
on-MST-path distance. Theorem 5.1 establishes that
minimal 1-spanners of the (normalized) p-power metric
are contained in each other, as p varies from 1 to ∞.
The minimal spanner for a general point set when p = 1
is the complete graph, and the Euclidean MST is the
minimal spanner for p =∞. Thus:

Theorem 5.2. For points in Rd, every 1-spanner of
the p-power metric on that set of points contains every
Euclidean MST.

Corollary 5.2. Every 1-spanner for the Nearest
Neighbor metric contains every Euclidean MST.

5.2 Generalizing Single Linkage Clustering,
Level Sets, and k-Centers clustering If our point
set is drawn from a well-behaved probability density,
then the normalized edge-power metrics converge to a
nice geodesic distance detailed in [HDHI16]. When p =
1, clustering with this metric is the same as Euclidean
metric clustering (k-means, k-medians, k-centers), and
when p =∞, clustering with this metric is the same as
the single-linkage clustering and the widely used level-
set method [Wis69, GR69, EKSX96, ABKS99]. Thus,
clustering with normalized edge-power metrics gener-
alizes these two very popular methods, and interpo-
lates between their advantages. Definitions of the level-
set method and a full discussion are contained in Ap-
pendix A

6 Spanners for the nearest neighbor metric

In this section, we prove our theorems on spanners
of the nearest neighbor metric. The proofs of these
theorems mostly leverage Theorem 1.1 and past work
on geometric spanners. We have nonetheless included
them for completeness, and to illustrate that spanners
of manifold distances like the nearest neighbor metric
can have interesting properties not found in Euclidean
spanners (assuming no Steiner points).

6.1 Exact-spanners of nearest neighbor metric
in the Probability Density Setting Theorem 1.3
states that for k = O(2d log n), the k-NN graph of n
points drawn i.i.d from a nicely behaved probability dis-
tribution is a 1-spanner of the nearest neighbor metric.
This section is dedicated to outlining a proof of this
Theorem, the full result which will be in Appendix C.
This result is clearly impossible for Euclidean distances,

whose 1-spanner is the complete graph almost surely.
Our theorem implies any off-the-shelf k-nearest neigh-
bor graph generator can compute edge-squared metric.
We strongly rely on Theorem 1.1 for this result, and
the fact that Gabriel graphs are 1-spanners of the edge-
squared metric.

First, let us assume that the support of our proba-
bility density D has the same dimension as our ambient
space. This simplifies our calculations without changing
the problem much. Then, we note that as our number of
sample points get large, the density inside a k-NN ball
around any point x (the ball with radius kth-NN dis-
tance, center at x) looks like the uniform distribution
on that ball, possibly intersected with a halfspace. The
bounding plane of our halfspace represents the bound-
ary of our density D.

For simplicity in the outline, let’s suppose that D is
convex. If we condition on the radius of the k-NN ball,
then the k − 1st nearest neighbors of x are distributed
roughly according to the above distribution, described
by the ball intersected with a halfspace. For any other
point p in D, we project p onto the k-NN ball to point
p′, and show that the ball p′x contains a kth nearest
neighbor w.h.p, when k = O(2d log n). This implies ball
with diameter px contains a kth nearest neighbor of x,
and thus px is not necessary in any 1-spanner of the
edge-squared metric. Then we take union bound over
all x. A rigorous proof of Theorem 1.3 requires careful
analysis, and is contained in Section C. Our proof can
be tweaked to show:

Theorem 6.1. Given a Lipschitz distribution bounded
above and below with support on convex set C ⊂ Rd, the
k-NN graph is Gabriel w.h.p. for k = O(2d log n).

6.2 Fast, Sparse Spanner for the Edge-Squared
Metric Now we outline a proof for Theorem 1.2,
which shows that one can construct a (1 + ε) near-
est neighbor metric spanner of size O(nε−d/2) in time
O
(
n log n+ nε−d/2 log

(
1
ε

))
, for points in constant di-

mensional space. The full proof is in Appendix B. We
critically rely on Theorem 1.1 for this work, which shows
a spanner for the edge-squared metric is equivalent to a
spanner for the nearest neighbor metric.

Note that this spanner is sparser and faster in
terms of epsilon dependency than the theoretical op-
timal spanner for Euclidean distances [LS19]. We
rely extensively on well-separated pair decompositions
(WSPDs), and this outline assumes familiarity with
that notation. For a comprehensive set of definitions
and notations on well separated pairs, refer to any of
[CK95, AM16, CK93, ADM+95]. Our proof consists of
three parts.
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1. Showing that connecting a (1+O(δ2))-approximate
shortest edge in a 1/δ well separated pair for all the
pairs in the decomposition gives a 1 +O(δ2) edge-
squared spanner. The processing for this step takes
O(n log n+ δ−dn) time.

2. Previous work contains an algorithm computing
1 + O(δ2)-approximate shortest edge in a 1/δ well
separated pair for all the pairs in a WSPD, and
takes O(1) time per pair. The pre-processing
for this step will be bounded by O(δ−dn log

(
1
δ

)
)

time. The log
(
1
δ

)
factor goes away given a fast

floor function. This procedure was first introduced
in [CK95].

3. Putting these two together, and setting ε = δ2

gives us a 1 + ε spanner with O(ε−d/2n) edges in
O(n log n+ ε−d/2n) time.

Full details of this proof are contained in Appendix B

7 Conclusions and Open Questions

We examined the nearest neighbor metric and showed
how to compute it exactly, as well as find sparse data
structures efficiently for approximate computation in
practice. Many problems remain open.

First: are there generalizations of these metrics, for
which our proof techniques will still hold? The nearest
neighbor metric has many natural generalizations, in-
cluding the kth nearest neighbor or powers of the nearest
neighbor function.

Can we efficiently compute o(log n)-spanners of the
nearest neighbor metric in high dimension, such the the
spanners have a nearly linear number of edges? The
existence of such spanners has been studied for Eu-
clidean metrics in [HPIS13], where the stretch obtained
is
√

log n.
Does computing k-NN graphs with approximate

nearest neighbor methods give 1-spanners of the edge-
squared metric with high probability? Approxi-
mate nearest neighbors have been studied extensively
[LMGY04, CFS09, DCL11], including locality-sensitive
hashing for high dimensional point sets [AIL+15] and
more [Laa18]. Recent work by Andoni et al. [ANN+18]
showed how to compute approximate nearest neighbors
for any non-Euclidean norm. Perhaps there is a rigorous
theory about data-sensitive metrics generated from any
such norm? Similar to how the edge-squared metric is
generated from the Euclidean distance.

It remains an open question how well clustering
or classification with nearest neighbor metrics performs
on real-world data. Experiments have been done by
Bijral, Ratliff, and Srebro in [BRS11]. Theorem 1.3
implies that future experiments can be done using any

k-nearest-neighbor graph. We believe that the interest
in alternative metrics on Euclidean data will continue
to be a rich source of interesting problems.

A Nearest Neighbor Metric and Edge-Power
Metrics relate to Single Linkage Clustering,
Level Sets, and k-Centers clustering

Many popular clustering algorithms, including k-
centers, k-means, and k-medians clustering, use Eu-
clidean distance as a measure of distance between points
in Rd. These methods are useful when clusters are
spherical and well-separated. However, it is believed by
practitioners that data-sensitive distances more accu-
rately capture intrinsic distances between data [AvL12].

The celebrated single-linkage clustering algo-
rithm [GR69, YV17], which is clustering based on an
MST, is a widely used tool in machine learning, and gets
around many of the problems of the Euclidean distance
clustering. In single-linkage clustering, two points are
considered similar if the maximum length edge on the
path between them in the MST is small. This turns out
to be equivalent to computing the normalized ∞-power
metric between the two points. Therefore, single linkage
clustering can be seen as clustering using the normalized
∞-power metric. Generally, normalized p-power met-
rics can be seen as an intermediary between Euclidean
distances (1-power metrics) and Euclidean MST-based
clustering.

Clustering with p-power metric relates to another
popular clustering method in machine learning, known
as level-set clustering. Loosely speaking, level set clus-
tering involves finding an estimate for the probability
density that points are drawn from, finding a cut thresh-
old t, and then taking as clusters all regions with prob-
ability density > t. Level set clustering has appeared in
many incarnations [Wis69, Stu03, Stu07], including the
celebrated and widely used DBScan method [EKSX96]
and its considerable number of variations [ABKS99]. It
is known that level-set clustering is related to single-
linkage clustering, as the latter is an approximation of
the former [Wis69, Stu07]. Level-set methods have the
advantage that they can find arbitrarily shaped clus-
ters [EKSX96], but can cause two points that are very
close in Euclidean distance to be considered far apart.

Clustering with the p-power metric incorporates the
advantages of both Euclidean distance clustering and
level set clustering, as it is both data-sensitive and takes
into account overall Euclidean distance between two
points. Here, p can be toggled to change the sensitivity
of the metric to the underlying density. As the number
of samples drawn from our probability density grows
large, it has been proven that the behavior of normal-
ized p-power metrics converges to a natural geodesic dis-
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tance on the underlying probability density [HDHI16].
Clustering with this geodesic distance for p = 1 is ex-
actly Euclidean clustering, and for p =∞ is exactly the
level set method. Thus, clustering with p-power metric
converges to a clustering method that smoothly inter-
polates between Euclidean-distance clustering and level
set clustering.

B Proving Faster and Sparser-than-Euclidean
Approximate Spanners

In this appendix, we finish the proof of Theorem 1.2
based on the outline given in Section 6.2.

B.1 1 +O(δ2) spanners can be generated from a
1/δ WSPD

Definition B.1. Let e be a critical edge in a shortest
path metric on any graph if the (possibly-not-unique)
shortest path between the endpoints of e is the edge e.

Lemma B.1. The set of critical edges on any graph
forms a 1-spanner of the shortest path metric.

The above lemma is known in the literature.
To check that any graph H is a (1 + O(δ2) span-

ner of any graph G, it suffices to prove that all crit-
ical edges in the edge-squared metric have a stretch
no larger than 1 + O(δ2). Let G be the edge-squared
graph arising from points P ⊂ Rd. Build a well-
separated pair decomposition on P, with pairs given
as {A1, B1}, {A2, B2}, . . . {Am, Bm}. Create a spanner
H as follows: for each pair {Ai, Bi}, connect an edge
{a, b}, a ∈ Ai, b ∈ Bi such that the Euclidean dis-
tance between a and b is a (1 + cδ2) approximation
of the shortest distance between point sets Ai and Bi,
for some constant c independent of i. This can be ac-
complished in O(1) time assuming a preprocessing step
of O(δ−d log

(
1
δ

)
time, as noted in Callahan’s paper on

constructing a Euclidean MST [CK95]. Do this for all
1 ≤ i ≤ m.

For each critical edge (s, t), consider the well-
separated pair {A,B} that (s, t) is part of. Let s ∈ A
and t ∈ B. Let (a, b) be a (1+cδ2)-approximate shortest
edge between A and B (a ∈ A, b ∈ B). Scale ||a − b||2
to be 1. A and B have Euclidean radius at most δ, by
the definition of a well separated pair. By induction on
Euclidean distance, H is an edge-squared 2-spanner of
the edge-squared metric for all points in A and B and
all points in B (assuming sufficiently small δ).

Lemma B.2.

distH(s, t) ≤ distH(s, a) + distH(a, b) + distH(b, t)

≤ 1 +O(δ2)

Proof. We know distH(a, b) = 1 by our scaling, and

distH(s, a) ≤ 2 · (distG(s, a)) ≤ 2 · ||s− a||2 ≤ 8δ2

The first inequality follows by the inductive hypothesis
that H is a 2-spanner of G in A. The third inequality
follows since both s and a are contained in a ball of
radius δ.

The same bound applies for distH(b, t).

Lemma B.3.

(1 + cδ2)(distG(s, t)) ≥ distG(a, b) = 1

⇒ distG(s, t) ≥ 1

1 + cδ2

Lemma B.3 follows from the fact that (a, b) is a
(1 + cδ2) approximate shortest distance between A and
B.

Therefore

stretchH(s, t) ≤ distH(s, t)

distG(s, t)

≤ (1 + 16δ2)(1 + cδ2)

= 1 +O(δ2)

Thus we have proven that H is a 1 + 16δ2 spanner.
Now set ε = δ2, which completes proof of Theorem 1.2.

C Spanners in the Probability Density Setting:
Full Proof

We prove Theorem 1.3 in full. Through this section,
we assume that D is a probability density function with
support on smooth connected compact manifold with
intrinsic dimension d embedded in ambient space Rs,
with smooth boundary of bounded curvature. This
probability density function is further assumed to be
bounded above and below, and to be Lipschitz. For
simplicity, we assume that s = d, and we can prove all
our results when s > d by taking coordinate charts from
the manifold into Euclidean space. We will show at the
end of the section that if the distribution is supported
on a convex set of full dimension in the ambient space,
then the k-NN graph is Gabriel for the same k. It is
not difficult to see that Gabriel graphs are 1-spanners
of the edge-squared metric [Sri15].

Lemma C.1. Let M be a compact object in Rd, whose
boundary is a smooth manifold of dimension d− 1 with
bounded curvature. Let B be any ball with sufficiently
small radius rB with center in M , that intersects the
boundary of D at some point x. Let H be the halfspace
tangent to M at x containing the center of the ball.
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For any point Q ∈ M , let Q′ be the point in B
closest to Q. If d(Q′, H)/rB > c for arbitrary constant
c, then d(Q,H) ≥ c′ for some constant c′.

This is a basic fact about the smoothness and
bounded curvature of the boundary.

Lemma C.2. Pick n points from D. W.h.p, any two
points in Support(D) with Euclidean distance ≥ Ω(1)
have nearest neighbor metric of o(1).

This is implicit in [HDHI16].

Lemma C.3. For any ball B with center O and any
point Q′ on the boundary of B, let BQ′O be the ball
with diameter Q′O. Let H be any halfspace containing
O. If d(Q′, H)/rB ≤ c for some constant c possibly
depending on the dimension d, then Vol(BQ′O ∩ H) ≥
1−c′
2d

Vol(B ∩ H) for some constant c′, where c′ goes to
0 as c goes to 0.

Proof. First, let us consider the case where d(Q′H) =
0, that is, Q′ is contained in halfspace H ′. In this
case, dilating BQ′O ∩ H by a factor of 2 about point
Q′ gives a superset of B ∩ H, as BQ′O maps to B
and H maps to a halfspace strictly containing H. In
this case, Vol(BQ′O ∩ H) ≥ 1

2d
Vol(B ∩ H) as desired.

The case when d(Q′, H)/rB is bounded follows in a
straightforward manner.

This leads us to our following theorem:

Theorem C.1. For any n point set P picked i.i.d from
D, consider any point O. Let B be the k-NN ball of O.
Let Q ∈ Support(D) be any point outside B, and let the
closest point to Q in B be Q′. For a point x inside B on
the boundary of D (assuming such a point exists), let H
be the tangent halfplane containing the center of B.

Then: either d(Q′, H)/rB ≤ c′ for some constant c′

or there exists a constant c where |QO| > c. Here, c
and c′ are independent of the number of points chosen,
and c′ can be set arbitrarily small.

In the latter case, w.h.p. QO is not in the edge-
squared 1-spanner. In the former case, setting c′ to be
a very small constant ε lets us say:

Vol(BQ′O ∩H) ≥ 1− ε
2d

Vol(B ∩H),(C.1)

or equivalently:

P
x∼D

[x ∈ BQO|x ∈ B](C.2)

≥ P
x∼D

[x ∈ BQ′O|x ∈ B](C.3)

≥1− ε− o(1)

2d
(C.4)

Expression C.3 > Expression C.4 follows from Equa-
tion C.1, and the fact that the radius of the k-NN ball
goes to 0 as n gets large, and thus the probability den-
sity of sampling x from D conditioned on x being in
B approaches the uniform density in B ∩ Support(D).
Also, B ∩H approaches B ∩ Support(D) as the radius
of B goes to 0.

Expression C.2 > Expression C.3 since BQO ⊃
BQ′O. (Here, the k-NN ball B w.r.t. point O is defined
as the ball centered at O with radius equal to the
distance of the kth nearest neighbor to O).

Note that the k − 1 nearest neighbors of O, condi-
tioned only on the radius of B, are distributed equiv-
alently to k − 1 i.i.d samples of D conditioned on con-
tainment in B. It follows that for any point Q outside
B and in the support of D, where |QO| < c:

P
P∼Dk

[QO is not Gabriel w.r.t. P |Q 6∈ B]

≥ 1−
(

1− 1− ε− o(1)

2d

)k
Thus, setting ε = 0.1 and k > O(log n/2d), and

factoring in the case where |QO| > c, then w.h.p.:

P
P∼Dk

[QO is not critical w.r.t. P |Q 6∈ B]

Here, we recall that an edge AB is Gabriel with respect
to a point set P if and only if BAB does not contain
any points in P . Note that every non-Gabriel edge is
non-critical, where a critical edge is an edge that must
be in the 1-spanner (as in Definition B.1). Thus taking
the union bound over Q,O ∈ P gives us that no edge
outside the k-NN graph is critical w.h.p, and thus the
k-NN graph contains all critical edges and is a 1-spanner
w.h.p.

This proves Theorem 1.3 when the support of D has
the same intrinsic dimension as the ambient space. If
the support of D has dimension d < d′ (where d′ is the
ambient dimension of the space), simply take coordinate
charts from D onto Rd and the previous arguments will
still carry through . We should note that if no point
x inside B on the boundary of D exists, then we can
ignore H and all the steps of the proof still follow.
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