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Abstract

The sensitivity metric in differential privacy, which is informally defined as the largest
marginal change in output between neighboring databases, is of substantial significance in de-
termining the accuracy of private data analyses. Techniques for improving accuracy when the
average sensitivity is much smaller than the worst-case sensitivity have been developed within the
differential privacy literature, including tools such as smooth sensitivity, Sample-and-Aggregate,
Propose-Test-Release, and Lipschitz extensions.

In this work, we provide a new and general Sensitivity-Preprocessing framework for reducing
sensitivity, where efficient application gives state-of-the-art accuracy for privately outputting
the important statistical metrics median and mean when no underlying assumptions are made
about the database. In particular, our framework compares favorably to smooth sensitivity for
privately outputting median, in terms of both running time and accuracy. Furthermore, because
our framework is a preprocessing step, it can also be complementary to smooth sensitivity and
any other private mechanism, where applying both can achieve further gains in accuracy.

We additionally introduce a new notion of individual sensitivity and show that it is an
important metric in the variant definition of personalized differential privacy. We show that our
algorithm can extend to this context and serve as a useful tool for this variant definition and its
applications in markets for privacy.

Given the effectiveness of our framework in these important statistical metrics, we further
investigate its properties and show that: (1) Our construction is conducive to efficient imple-
mentation with strong accuracy guarantees, evidenced by an O(n) implementation for median
(with presorted data), and O(n2) implementation for more complicated functions such as mean,
α-trimmed mean, and variance. (2) Our construction is both NP-hard and also optimal in the
general setting (3) Our construction can be extended to higher dimensions, although it incurs
accuracy loss that is linear in the dimension.
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1 Introduction

Differentially private algorithms for data analysis guarantee that any individual entry in a database
has only a bounded effect on the outcome of the analysis [DMNS06]. These algorithms ensure
that the outcomes on any pair of neighboring databases—that differ in a single entry—are nearly
indistinguishable. This is typically achieved by perturbing the analysis or its output, using noise
that scales with the magnitude of change in the analysis between neighboring databases. This
perturbation necessarily leads to decreased accuracy of the analysis. A fundamental challenge in
differentially private algorithm design is to simultaneously satisfy privacy guarantees and provide
accurate analysis of the database. Privacy alone can be achieved by outputting pure noise, but
this fails to yield useful insights about the data. Intuitively, stronger privacy guarantees should
yield weaker accuracy guarantees. Quantifying this privacy-accuracy tradeoff has been one major
contribution of the existing differential privacy literature. In the last several years, accurate and
differentially private algorithms have been designed for a diverse collection of data analysis tasks
(see [DR14] for a survey), and have been implemented in practice by major organizations such as
Apple, Google, Uber, and the U.S. Census Bureau. The formal guarantees of differential privacy
give sharp contrast to ad hoc privacy measures such as anonymization and aggregation, which have
both led to infamous privacy violations [NS08, HSR+08].

We formalize data analysis tasks as functions that map from the space of all databases to real-
valued outputs. The global sensitivity of a function is the worst-case difference in the function’s
value between all pairs of neighboring databases. Since differential privacy guarantees must hold for
all pairs of neighboring databases, this is the scale of noise that must be added to preserve privacy.
Strong bounds on global sensitivity imply that the function is well-behaved over the entire data
universe, and often allows for privacy-preserving output with strong accuracy guarantees. However,
this worst-case measure allows a single outlier database to significantly skew the accuracy of the
privacy-preserving algorithm for all databases. Although it is necessary to preserve the privacy of
outlying databases, we would prefer to add less noise for improved accuracy guarantees when the
average-case sensitivity is far smaller than the worst-case. A variety of well-known techniques have
been employed to address this problem including smooth sensitivity and Sample-and-Aggregate
[NRS07], Propose-Test-Release [DL09], and Lipschitz extensions [KNRS13, BBDS13, RS16].

Initial work in this space considered a database-specific definition of sensitivity, known as local
sensitivity, which is the maximum change in the function’s value between a given database and its
neighbors [NRS07, DL09]. Ideally, we would like to add noise that scales with the local sensitivity
of each database. This would allow us to add less noise to well-behaved regions of the database
universe, and only the outliers would require substantial noise. Unfortunately this procedure does
not satisfy differential privacy because the amount of noise added to a given database may be highly
disclosive. To avoid this information leakage, [NRS07] defined an intermediate notion of smooth
sensitivity, which smoothed the amount of noise added across databases to preserve differential
privacy once again. This technique was also combined with random subset sampling to give an
efficient and private procedure, Sample-and-Aggregate, with strong error guarantees when each
database was well-approximated by a random subset of its entries [NRS07].

Later work considered partitioning the database universe into well-behaved and outlying databases.
Propose-Test-Release defined this partition with respect to local sensitivity and gave accurate
outputs only on databases that were sufficiently far from outliers [DL09]. Propose-Test-Release
avoided some of the information leakage issues by outputting Null for any outlying database,
and gave efficient implementations for a variety of important functions. The Lipschitz exten-
sion framework instead partitioned according to global sensitivity, by identifying a subset of the
data universe where the given function had small global sensitivity. On this subset, the function
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of interest is simply a Lipschitz function with the constant defined as the small global sensitiv-
ity [KNRS13, BBDS13, RS16]. Extending the Lipschitz function to the remaining data universe
achieves a function with small global sensitivity that is identical to the original function on the
well-behaved databases. Applying any differential privacy algorithm to this Lipschitz function will
allow for the use of a much smaller global sensitivity input and will achieve high accuracy on the
well-behaved databases.

In this work, we introduce a Sensitivity-Preprocessing framework that will similarly approximate
a given function with a sensitivity bounded function, which we call the Sensitivity-Preprocessing
Function. Our Sensitivity-Preprocessing Function will take advantage of the specific metric space
structure of the data universe to give a more constructive approach. At a high-level, while Lipschitz
extensions are initialized with a well-behaved subset of the data universe, our algorithm will find
this well-behaved subset as it constructs the Sensitivity-Preprocessing Function. As a result, our
procedure will be much more localized and can always give an exponential-time construction even
in the most general setting, whereas Lipschitz extensions can often be uncomputable. In addition,
similar to smooth sensitivity, we achieve optimality and NP-hardness guarantees for accuracy in
this generalized setting under several reasonable metrics of optimality.

Furthermore, our Sensitivity-Preprocessing Function only requires a simple recursive construc-
tion that is more conducive to efficient implementation, which we achieve for important statistical
functions such as median, mean, and variance. These functions have been of particular interest
for similar techniques because they are highly important statistics and also have large worst-case
sensitivity, but small average sensitivity. We will compare our results to previous results in the fol-
lowing section, where our framework gives state-of-the-art accuracy for median and mean when no
underlying assumptions are made to the database. The key assumption that we would aim to avoid
is that data points are drawn iid, which is a popular assumption in previous results for outputting
functions such as α-trimmed mean (i.e., Propose-Test-Release [DL09]). While this assumption is
quite standard, we contend that real world data are often not iid, and so consideration of the
more general case is still an important problem. Comparing our framework to those that apply
the iid assumptions (and sometimes further assumptions, such as being drawn from a Gaussian
[KLSU]), we will also achieve similarly high accuracy for well concentrated databases, but concede
that mechanisms specifically catered for that setting will often be superior. However, we note that
because our framework is a preprocessing routine, it can be run before applying any differentially
private mechanism such as Propose-Test-Release to achieve further gains in accuracy. In avoid-
ing this iid assumption, the primary technique we will then compare our framework with will be
smooth sensitivity which is popularly used for privately outputting median. Both frameworks have
database-specific accuracy and direct comparison will be difficult, but we give strong evidence in
the next section of why our framework compares favorably to smooth sensitivity for median.

The localized construction of our Sensitivity-Preprocessing Function will also allow us to tailor
the new sensitivity parameters beyond previous techniques. To this end, we introduce a more
refined sensitivity metric, which we call individual sensitivity, and show that it is important for a
variant definition of personalized differential privacy introduced in [GR15], and used in subsequent
works on market design for private data [CCK+13, CLR+15]. We can apply our construction as a
preprocessing step for more refined sensitivity tailoring to take advantage of personalized differential
privacy guarantees. We believe this application of our results may be of independent interest for
future work in these directions.

In this work we cover a broad range of the more immediate results from this new framework,
but believe that there is still a substantial amount of work in this direction. While some of our
proofs will become involved, all of our results follow from first principles, suggesting the potential
for further results using more sophisticated tools within this framework. These further results
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include: efficient implementations of more difficult functions such as linear regression; optimizing
the trade-off between decreasing the sensitivity parameter and the error incurred by our Sensitivity-
Preprocessing for specific functions; applying our algorithm in the markets for privacy literature;
and variants of our algorithm that are optimized for specific computational settings or application
domains.

1.1 Our Results

Our results will primarily revolve around the Sensitivity-Preprocessing Function, which we introduce
below. It is an alternate schema for fitting a general function to a sensitivity-bounded function
in the context of differential privacy. More specifically, we consider the general problem of taking
any function f : D → R and constructing a new function g : D → R that satisfies given sensitivity
parameters and minimizes the difference |f(D)− g(D)| over all databases D ∈ D. The sensitivity
parameters we consider will be more refined and we define individual sensitivity, which is the
maximum change in a function’s value from adding or removing a single specific data entry. We
use ∆i to denote individual sensitivity to the i-th data entry. When a database is comprised of
data from multiple individuals, ∆i captures the sensitivity of the function to person i’s data.

In this section, we first give an overview of our recursively constructed Sensitivity-Preprocessing
Function that works in a highly generalized setting, along with the corresponding runtime and
error guarantees. We then examine the optimality and hardness of this general function in the
context of minimizing |f(D)− g(D)| over all databases D ∈ D. While constructing our Sensitivity-
Preprocessing Function will require exponential time in general, we show that it can be simply
and efficiently implemented in O(n) time for median (with presorted data), and in O(n2) time
for several other important statistical measures including mean and variance. We show that our
Sensitivity-Preprocessing Function tailors an important metric (individual sensitivity) in the variant
definition of personalized differential privacy, which provides different privacy guarantees to different
individuals in the same database, and is a useful tool in the design of markets for privacy. We further
generalize our construction of Sensitivity-Preprocessing Function to bound the ℓ1 sensitivity of 2-
dimensional functions f : D → R

2, and show that such techniques cannot be extended to higher
dimensions without treating each dimension independently.

Sensitivity-preprocessing function overview

Our construction of the Sensitivity-Preprocessing Function is similar to the Lipschitz extension
framework, but we extend only from the empty set. We start with f(∅) = g(∅), and inductively
construct g for larger databases while trying to achieve two desiderata: (1) maintain the appropriate
individual sensitivity bounds; and (2) keep g as close as possible to f . The first objective will be
strictly maintained, and we will optimize over the second objective.

The primary difficulty in this construction is that we often consider D to be infinite. As a
result, checking to make sure we do not violate any sensitivity constraints when defining g on a
new database can require checking all databases on which g was previously defined. For example,
general Lipschitz extensions require checking all previously defined databases to extend to another
database, which can often be uncomputable for general functions. To avoid these uncomputability
issues, we take advantage of the lattice structure of neighboring databases in the differential privacy
landscape. This will allow us to give a far more localized construction that critically utilizes the
following two key properties of the data universe metric space:

1. While each database could have infinitely many neighboring databases, it only has a finite
number of neighbors with strictly fewer entries.
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2. Any two neighbors of a strictly larger database must also be neighbors of a strictly smaller
database.

These properties ensure that whenever we define g on a new database, we only need to check
that sensitivity constraints of strictly smaller neighboring databases are satisfied. Once we have
found the feasible range of g that does not violate any sensitivity constraints, we will define g to
be as close as possible to f within this feasible range.

Definition 1.1 (Informal version of Definition 3.1). Given a function f : D → R and fixed
sensitivity parameters, we recursively define our Sensitivity-Preprocessing Function g : D → R

such that g(∅) = f(∅)1 and for any D ∈ D,

g(D) = closest point to f(D) in Feasible(D),

where Feasible(D) is the set of all points that do not violate the sensitivity constraints based
upon g(D′) for all neighbors D′ of D with fewer entries.

The recursive structure of this function allows us to compute g(D) by only looking at the
subsets of D, which unfortunately takes exponential time. Later in the paper (Sections 5 and 6),
we utilize the simplicity of the recursive structure to efficiently implement this algorithm for several
functions of interest that exhibit additional structure. Theorem 1.2 summarizes our main result on
the running time and accuracy guarantees of our Sensitivity-Preprocessing Function algorithm.

Theorem 1.2 (Informal version of Theorem 3.3). For any function f : D → R and desired
sensitivity bounds {∆i}, let g : D → R be the Sensitivity-Preprocessing Function of f . Given query
access to f in T (n) time for a database of size n, we give O((T (n) + n)2n) time access to g(D) for
any D ∈ D with n entries. We also give instance-specific bounds on each |f(D)− g(D)| based on
the sensitivity of f and {∆i}.

Our algorithm for computing the Sensitivity-Preprocessing Function g (Algorithm 1) is robust
to informational assumptions. We only assume query access to f , and do not require any knowledge
of the database universe D or the sensitivity of f .

This algorithm easily extends to functions that map to R
d, by treating each dimension inde-

pendently. See Remark 3.4 and Section 8 for more details on handling high-dimensional functions.

Approximate Optimality and Hardness

The construction of our Sensitivity-Preprocessing Function is quite simple in its greedy structure
and requires exponential running time. To justify these two properties, we complement our algo-
rithm with both optimality guarantees and hardness results.

In particular, we still consider the general problem of taking any function f : D → R and
constructing a new function g : D → R with individual sensitivity bounds {∆i}. The goal will then
be to minimize the difference |f(D)− g(D)| across databases D ∈ D. Despite its simplicity, we
show that our Sensitivity-Preprocessing Function still achieves a 2-approximation to the optimal
function in the ℓ∞ metric in this generalized setting.

Proposition 1.3 (Informal version of Corollary 4.4). Given any function f : D → R and sensitivity
parameters {∆i}, let g : D → R be our Sensitivity-Preprocessing Function. For any function
f∗ : D → R with individual sensitivity bounds {∆i},

max
D∈D

|f(D)− g(D)| ≤ 2max
D∈D

|f(D)− f∗(D)| .
1See Remark 3.2 for a discussion of how to initialize g(∅) if f(∅) is not well-defined.
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Our guarantees are even stronger because they also hold over finite subsets of the data universe.
While Proposition 1.3 measures error in the worst-case over D, we also show (Lemma 4.2) that
when the optimal error is small on certain subsets of the data universe, then our error is also small.

Furthermore, we can show that our Sensitivity-Preprocessing Function is Pareto optimal: there
is no strictly superior sensitivity-bounded function that improves accuracy over all databases.

Proposition 1.4 (Informal version of Lemma 4.5). Given any f : D → R, let g : D → R be
the Sensitivity-Preprocessing Function of f with individual sensitivity parameters {∆i}. For any
f∗ : D → R with individual sensitivity parameters {∆i}, if there is some D ∈ D such that

|f(D)− f∗(D)| < |f(D)− g(D)| ,

then there also exists some D′ ∈ D such that
∣

∣f(D′)− f∗(D′)
∣

∣ >
∣

∣f(D′)− g(D′)
∣

∣ .

These results imply that our Sensitivity-Preprocessing Function does quite well fitting to the
original function under the metrics we are considering. However, it does take exponential time,
so we complement these results by showing that getting the same approximation guarantees is
NP-hard even for a single sensitivity parameter {∆i} = ∆.

Proposition 1.5 (Informal version of Proposition 4.6). Given any function f : D → R and
sensitivity parameter ∆, it is NP-hard to construct any function f∗ : D → R with sensitivity ∆ that
enjoys the same accuracy guarantees as our Sensitivity-Preprocessing Function.

We further argue that it is uncomputable to do better than a 2-approximation in the ℓ∞
metric, and also uncomputable to achieve even a constant approximation in any ℓp metric for
p < ∞, which justifies our choice of metric. We believe that the combination of these results gives
a strong indication that our Sensitivity-Preprocessing Function and corresponding exponential time
construction is the best we can hope to achieve for the general problem under reasonable metrics
of optimality.

Efficient Implementation for Important Statistical Measures

One of the main benefits of our Sensitivity-Preprocessing Function is that its simple recursive struc-
ture is conducive to giving simple efficient variants for specific functions through largely straight-
forward state space reductions and dynamic programming. To this end, we give efficient imple-
mentations of our Sensitivity-Preprocessing Function for the important statistical functions mean,
median, α-trimmed mean, maximum, minimum, and variance. These statistical metrics can be sur-
prisingly difficult to release privately without assuming the input is restricted to some range, and
often requires further assumptions for metrics like mean, such as data being drawn from identical
and independent distributions. In fact, for Propose-Test-Release even the iid assumption is not
sufficient to apply their framework to mean, and other works required further concentration prop-
erties such as being drawn from the normal distribution. However, our Sensitivity-Preprocessing
Function does not require bounded sensitivity of the input function f , and can also avoid any iid
requirements. As a result, we are able to efficiently implement each of these statistical metrics
with no constraints on the inputs. It is important to note that our implementations only consider
a single sensitivity parameter ∆, but we believe each can be efficiently extended for individual
sensitivity parameters {∆i}.

For each of these statistical metrics, we are simply implementing our Sensitivity-Preprocessing
Function more efficiently, so all of the previously stated optimality guarantees still apply. To further
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strengthen these optimality guarantees, we give a more rigorous treatment of the error incurred by
our efficient implementation of median, mean, and variance, which we consider to be three of the
most fundamental statistical tasks.

Median We focus on privately and accurately computing median, because it has been exten-
sively studied under smooth sensitivity [NRS07]. Both our framework and smooth sensitivity
provide database-specific accuracy guarantees, so a direct comparison of accuracy will be difficult.
Nevertheless, we show that our framework compares favorably to smooth sensitivity on median.

We begin by stating our result which will use a definition from [NRS07] to give a more apparent
comparison in terms of accuracy. As in [NRS07], we formally define

A(k)(D) = max
d(D,D′)≤k

LSf (D
′)

as the k-local sensitivity of a function f for database D. For median this just reduces to A(k)(D) =
max0≤t≤k+1(xm+t − xm+t−k−1) where m = n+1

2 (when n is assumed to be odd). When n is even,
we define the median to be the average of the middle two entries (i.e. (x⌊n+1

2
⌋ + x⌈n+1

2
⌉)/2) as is

standard, and the resulting interpretation of A(k)(D) is nearly identical.
We also need to define median on the empty set. Since this is not naturally defined, we allow

it to be an input parameter med(∅) chosen by the data analyst as the estimated median. As our
comparison will mostly be with smooth sensitivity which must assume values are in a bounded
range [min,max], the natural choice would be med(∅) = max−min

2 . Further, it would be natural in
this setting to set our parameter ∆ = max−min

n .

Theorem 1.6. Let med : R<N → R be the median function for the data universe of all finite-
length real-valued vectors. For chosen parameters med(∅) and ∆, along with any database D =
(x1, ...., xn) ∈ R

<N, if x1 ≤ · · · ≤ xn we give O(n) time access to a function g : R
<N → R

with sensitivity ∆ such that g(D) = med(D) whenever A(k)(D) ≤ 2(k + 1)∆ for k ≤ n/4 and
med(D) ∈ [med(∅) − n

2∆,med(∅) + n
2∆].

To interpret this accuracy result, we begin by comparing performance on the specific example
that considered by [NRS07], where smooth sensitivity performed well. In fact, it was exactly this
setting that motivated our choice of assumptions under which to show our framework outperforms
smooth sensitivity. Consider an environment where data points x1, . . . , xn lie in a bounded range
[0, 1], and we naturally set med(∅) = 1/2 and ∆ = 1/n. Consider the particular database D =
(x1, . . . , xn), where xi = i/n. In this example, it is easy to check that the assumptions are satisfied
for our Sensitivity-Preprocessing Function to correctly output g(D) = med(D). Privately answering
the query g(D) using the Laplace mechanism (see Definition 7.2 for a formal definition) outputs
med(D) plus noise with scale ∆/ǫ = 1

ǫn . In contrast the noise parameter added under smooth
sensitivity (without our sensitivity preprocessing) would have to scale 1

ǫ2n , which is asymptotically
larger, and would thus yield significantly lower accuracy.

The assumptions in Theorem 1.6 that A(k)(D) ≤ 2(k + 1)∆ for all k ≤ n/4 and med(D) ∈
[med(∅)− n

2∆,med(∅)+ n
2∆] are then exactly the generalization of this condition where our database

still has values that are reasonably spread out, but also has low local sensitivity and we would still
like to achieve high accuracy. Further note that these assumptions allow both the bottom and
top quartile values to be arbitrarily small and large, implying that our construction is able to
handle outliers well. Restricting our attention to databases that satisfy these conditions allows
us to consider all of the databases under which smooth sensitivity performs well. Under these
assumptions, smooth sensitivity will achieve a noise magnitude of ∆

ǫ2 , whereas we instead achieve
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an asymptotically better noise magnitude of ∆
ǫ . Note that smooth sensitivity requires a bounded

range, which we are considering here to be of size n∆, giving a global sensitivity of n∆ for median.
Accordingly, standard mechanisms would have noise magnitude of n∆

ǫ , which is significantly worse
than both our framework and smooth sensitivity.

It is important to acknowledge that our Sensitivity-Preprocessing framework will not outper-
form smooth sensitivity in general. For example, consider again the domain where all data points
are bounded in [0, 1], and consider the database D of all 1’s. Then our g(D) = 1, and the Laplace
Mechanism would output med(D) with noise of magnitude 1

ǫn . However, the smooth sensitivity

of this database will be e−ǫn/2, and the smooth sensitivity framework only requires noise of mag-
nitude e−ǫn/2/ǫ. More generally, smooth sensitivity will often do better if most data entries are
exponentially close to one value 2. To achieve benefits from both techniques, an analyst could
simply apply the smooth sensitivity framework after our preprocessing step. Our preprocessing
algorithm will only improve the smooth sensitivity parameters, so this approach will continue to
achieve the strong accuracy guarantees of smooth sensitivity on highly concentrated databases 3.
On the example above, if we first apply our Sensitivity-Preprocessing Function and then add noise
based on the smooth sensitivity, then we will also have noise that scales approximately as e−ǫn/2/ǫ.
Since our algorithm is a preprocessing step, it is compatible with all techniques for improving ac-
curacy of differentially private algorithms. We view this as an exciting avenue for future work, to
optimize the use of each tool under different parameter settings.

Mean. We first note that mean is not naturally defined on the empty set, so we define it to be
an input parameter µ̂ chosen by the data analyst as the estimated mean. The analyst’s choice of
µ̂ should reflect her prior knowledge, and will play a role in our accuracy guarantees. Intuitively,
if two databases have means that are exponentially far apart, we cannot hope to output both
means accurately. As such, our Sensitivity-Preprocessing Function will be accurate on databases
with mean reasonably close to µ̂. Our efficient implementation of mean will take O(n2) time and
provide the following guarantees.

Theorem 1.7. Let µ : R<N → R be the mean function for the data universe of all finite-length real-
valued vectors. For chosen parameters µ̂ and ∆, along with any database D = (x1, ...., xn) ∈ R

<N,
we give O(n2) time access to a function g : R<N → R with sensitivity ∆ such that,

|g(D) − µ(D)| ≤ max
{

|µ(D)− µ̂| − n

3
∆, 0

}

+

n
∑

i=1

max

{

27 |xi − µ(D)|
n

−∆, 0

}

.

Additionally, if we are guaranteed that each xi ∈ [µ̂ + α∆, µ̂ + (α + n)∆] for α ∈ [−n, 0], then
g(D) = µ(D)

As was previously mentioned, we claim that our framework gives state-of-the-art accuracy for
privately outputting mean when no underlying assumptions are made on the database. It turns

2It is also necessary to mention neither mechanism will necessarily outperform the other when the assumptions are
not fulfilled, and for databases with high local sensitivity both mechanisms will have poor accuracy but in different
ways. Consider again the domain where all data points are bounded in [0, 1], and let the database D consist of n+1

2

values 1 and n−1

2
values 0, so med(D) = 1. Our Sensitivity-Preprocessing Function will output g(D) ≈ 1/2 and

add noise with magnitude 1

ǫn
, while smooth sensitivity will add prohibitively large noise parameter of scale 1/ǫ to

med(D), and neither gives any accurate information on the true median value.
3We note that this can be done efficiently, as both smooth sensitivity and our preprocessing step take time O(n2)

on database-ordered functions. Database-ordered functions will be defined in Section 5, and it will be seen that this
general class can be implemented in O(n2) time for our framework. While it is outside the scope of this paper, it is
straightforward to see that this also holds for the smooth sensitivity framework and that this property is preserved
when applying our preprocessing to the median function. We leave formal proofs of these to future work.
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out that the lack of assumptions on the database makes outputting mean privately incredibly diffi-
cult, where even Propose-Test-Release was unable to privately output mean with iid assumptions.
Often further assumptions such as data drawn from a normal distribution or other distributions
that concentrate well are necessary to guarantee highly-accurate private output of mean. To our
knowledge, the best algorithm to output mean privately when no underlying assumptions are made
is the naive algorithm, that simply considers the range [µ̂− n

2∆, µ̂+ n
2∆] of length n∆, and rounds

up or down any value outside of this range. It is important to note that this range must be chosen
independently of the database, as catering the range to the considered database can easily be shown
to violate privacy. Restricting values to a range of n∆ will then ensure that global sensitivity is at
most ∆ and standard mechanisms can be applied from here. For all databases with values inside
the range [µ̂ − n

2∆, µ̂+ n
2∆] this will then give accurate output.

Note that our second accuracy guarantee similarly considers databases under which our prepro-
cessing correctly outputs the mean. It can be immediately seen that the allowable range for values
in the database extends beyond the range for the naive algorithm, and can in some ways be seen
to double this range. Essentially, the minimum and maximum values must still be within n∆ for
us to guarantee correctly outputting the mean, but the range under with minimum and maximum
values can fall is now doubled. Given the significance of mean as a statistical metric, we still believe
this improvement is of significance and is the first to improve upon the naive algorithm when no
underlying assumptions are made with regard to the database.

To complement this comparison to the naive algorithm, we also give strong accuracy guarantees
for all databases not just the ones output correctly in our preprocessing. Unpacking the bound
in Theorem 1.7, the first term says that the mean of the database cannot be too far from µ̂.
The second term considers the individual sensitivity of each data point, where |xi − µ(D)| /n is
roughly the amount the mean changes from adding xi to the database. The sensitivity bound
on g requires that each individual change can only be offset by an additive ∆, and we need to
consider this contribution from each input. Intuitively, our error is small for databases whose mean
is reasonably close to µ̂ and do not have many significant outliers, which is exactly what one would
expect.

Variance. Variance is also not naturally defined on the empty set, so we define it to be 0 for
simplicity. Our efficient implementation of variance takes O(n2) time and provides the following
guarantee.

Theorem 1.8. Let Var : R<N → R be the variance function for the data universe of all finite-
length real-valued vectors. For fixed parameter ∆, along with any database D = (x1, ...., xn) ∈ R

<N,
we have O(n2) time access to a function g : R<N → R with sensitivity ∆ such that,

|g(D) −Var [D] | ≤ max
{

Var [D]− n

2
∆, 0

}

+

n
∑

i=1

max







n
∑

j=1

4(xi − xj)
2

n2
−∆, 0







.

The primary takeaway from the bound in Theorem 1.8 is that databases with reasonably small
variance and no major outliers will have low error bounds. The first term in the error bound says
that the variance of our database cannot be too large, which follows from our choice of the empty
set to be defined at 0. The second term is a bit more messy, but has a natural interpretation
under the known deformulation of variance, where we can consider

∑n
j=1(xi − xj)

2/n2 to be the
contribution of input xi to the variance. This contribution can then be offset by ∆, and we need
to consider this contribution from each input.
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Personalized Privacy

Due to the preprocessing aspect of our Sensitivity-Preprocessing Function, we can also apply our
framework to variant definitions of differential privacy. In particular, we consider personalized
differential privacy introduced in [GR15], which allows for a more refined definition whereby each
individual receives their own ǫi privacy parameter. Our definition of individual sensitivity is then
motivated by this privacy variant, as it can be exactly seen as the complementary sensitivity
measure for this variant. More specifically, most privacy mechanisms add noise proportional to
∆f/ǫ for outputting functions f : D → R while still preserving ǫ-differential privacy. This intimate
connection between ∆f and ǫ in the output accuracy will be equivalent for the individual sensitivity
measures ∆i(f) and its respective ǫi. Consequently, the necessary noise for personalized privacy will
be proportional to maxi∆i(f)/ǫi. We will formally prove this fact for two of the most fundamental
mechanisms, Laplace and Exponential, and further remark (Remark 7.6) that this approach extends
to any ǫ-differentially private mechanism.

Theorem 1.9 (Informal version of Propositions 7.3 and 7.5). For both the Laplace and Exponential
Mechanisms, instead of adding noise proportional to ∆/ǫ, the added noise can be proportional to
maxi ∆i/ǫi to ensure personalized differential privacy for privacy parameters {ǫi}.

As a result, it is no longer necessarily optimal to set the individual sensitivity parameters {∆i}
in our Sensitivity-Preprocessing Function to be equal, but instead set them according to the given
{ǫi} privacy parameters towards the goal of having each ∆i(g)/ǫi roughly equal. This extends the
interest in our Sensitivity-Preprocessing Function beyond the context of dealing with worst-case
sensitivity being much greater than average sensitivity.

For example, consider a well-behaved function where {∆i} = ∆, and {ǫi} = ǫ for all i except
for some individual j where ǫj = ǫ/2. Under this situation it may instead be optimal to halve the
individual sensitivity of j, which will allow adding half as much noise while only incurring a small
additive error by restricting the sensitivity of just one person.

In addition, the error bounds from our general procedure allow for the intuitive fact that in-
creasing any individual sensitivity will increase the accuracy of our preprocessing step for databases
including that individual. We note that when trying to preserve the fraction ∆i(g)/ǫi, any increase
in ǫi (reduced privacy for individual i) will allow us to increase our ∆i parameter, improving accu-
racy as desired. In this way, our Sensitivity-Preprocessing Function is able to fully take advantage
of the heterogeneous ǫi in the variant definition of personalized privacy, and is the first to give
accuracy bounds that increase/decrease independently with respect to each ǫi.

We believe that these accuracy guarantees can be of further interest in the context of markets
for privacy, where individuals sell their data to an analyst and demand different amounts of pri-
vacy, represented by their respective ǫi. The trade-off between privacy and accuracy is naturally
formalized in these markets through the analyst’s budget for procuring accurate estimates of popu-
lation statistics. Applying our Sensitivity-Preprocessing Function to achieve individualized privacy
guarantees will allow the analyst to more optimally balance these trade-offs because the accuracy
will respond proportionally to changes in privacy for each individual.

Higher-Dimensional Extensions for ℓ1 Sensitivity

Our Sensitivity-Preprocessing Function was only defined for 1-dimensional f : D → R. We also
consider the setting where f : D → R

d. We note that our Sensitivity-Preprocessing Function could
instead be given parameters {∆i} where ∆i = (∆i,1, ...,∆i,d) has different sensitivity parameters for
each dimension of the function. We could then apply our Sensitivity-Preprocessing Function to each
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dimension independently and would achieve the corresponding bounds on sensitivity. However, this
approach would require adding noise independently to each dimension when applying a differentially
private mechanism on the Sensitivity-Preprocessing Function. Instead, we would like to only require
bounds on the ℓ1 sensitivity of our constructed function.

We give a natural extension of our Sensitivity-Preprocessing Function to higher dimensions,
and show that the accuracy guarantees continue to hold in ℓ1-distance when f is 2-dimensional
(Theorem 8.3). We also show that this construction fails to extend to higher dimensions because a
key fact about the intersection of ℓ1 balls only holds in 1 and 2 dimensions.

1.2 Related Work

Our work touches upon several areas of interest. We first discuss previous work on dealing with
outlying databases within the data universe, and then discuss previous work on personalized dif-
ferential privacy and its use within the markets for privacy literature.

Worst-case vs average-case sensitivity

Instance-specific noise for dealing with worst-case sensitivity was first introduced in [NRS07], where
they considered adding noise proportional to local sensitivity. In order to avoid leaking too much
information through noise added by local sensitivity, [NRS07] constructed a smooth sensitivity
metric that minimized the instance-specific noise while still ensuring differential privacy. They
further showed that smooth sensitivity could be efficiently computed and utilized for a variety of
important functions for which average sensitivity was much smaller than global sensitivity. However,
for some functions computing smooth sensitivity was NP-hard or even uncomputable, which inspired
the introduction of Sample-and-Aggregate, a technique that preserved privacy and was efficient on
all functions with bounded range and for sufficiently large databases. The general idea was to
approximate the function with random subsets of the given database in order to impose stronger
bounds on the sensitivity of this approximation. Combining this with smooth sensitivity allowed
for strong error guarantees under the assumption that random subsets of the database often well-
approximated the full database.

In order to avoid some of these assumptions, an alternate framework, Propose-Test-Release,
was provided in [DL09], which also heavily relied on the notion of local sensitivity. In particular,
their framework would check if a given database was “far away” from an outlier, and only release
an accurate estimate of the output under this specific circumstance, while outputting ⊥ (meaning
Null) otherwise. Furthermore, this algorithm would define the outlying databases by explicitly
setting the allowable upper bound on local sensitivity. They show how to implement this framework
efficiently for several important functions, and give strong error guarantees when the mechanism
does not output ⊥.

Both of these frameworks relied upon local sensitivity, which is still a worst-case metric. It is
possible for most databases to have high local sensitivity while still having small average sensitivity.
To remedy this issue, previous work instead considered fitting the original function to one with
global sensitivity closer to the average sensitivity. This preprocessing step can largely be thought of
as forcing the output of outlying databases to be closer to that of the well-behaved databases. This
procedure then fits in the general notion of Lipschitz extensions. Informally, Lipschitz extensions
show that there always exists an extension of a smooth function restricted to a subspace to the
entire metric space. By considering “smoothness” in the context of differential privacy to be the
sensitivity of the function, previous work generally considers the restricted subspace to be the
well-behaved databases.
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Lipschitz extensions were first implicitly used in [KNRS13] under the context of node differential
privacy. This work considered restricting the maximum degree of graphs for outputting a variety
of graph statistics in bounded-degree graphs. This work was then extended in [RS16] which gave
efficient Lipschitz extensions for higher-dimensional functions on graphs such as degree distribution.
In this work, [RS16] further utilize Lipschitz extensions for a generalization of the exponential
mechanism. Lipschitz extensions were also considered in [BBDS13] were the goal was to achieve
a restricted sensitivity under a certain hypothesis of the database universe and extending to the
entire data universe with this global sensitivity constraint. While this procedure was in general
computationally inefficient, [BBDS13] gave efficient versions for subgraph counting queries and
local profile queries.

Our technique of considering only strictly smaller neighboring databases is related to a technique
used to achieve differential privacy over graphs. The down sensitivity [RS] (also called empirical
global sensitivity in [CZ13]) of a function at a graph G is the global sensitivity of the function
when restricted to the space of all subgraphs of G. That is, it is the maximum change in the
function’s value between any two neighboring subgraphs of G. Similar to our work, this requires
checking sensitivity on a smaller number of neighboring databases, and can allow less noise to be
added to analysis on databases with small down sensitivity. Through this lens, our construction
of Sensitivity-Preprocessing Function can be viewed as ensuring that all databases have low down
sensitivity. However, an important distinction between these two results is that down sensitivity
considers all pairs of neighboring subgraphs of G, which, for example, may be the empty graph and
a single node for a large graph G. To contrast, at each recursive step of our algorithm, we only
consider only smaller neighbors of the current database, i.e., with one entry removed. This refined
analysis means that a database might have large down sensitivity, and our Sensitivity-Preprocessing
Function can still be accurate

Personalized privacy and markets for privacy

We show how our Sensitivity-Preprocessing framework can be applied to personalized differential
privacy, where each user in the database has her own privacy parameter ǫi. This definition was
first introduced by [GR15], in the context of purchasing data from privacy-sensitive individuals. A
subsequent line of work on market design for private data [CCK+13, NOS12, NST12, LR12, FL12,
GR15, GLRS14, CLR+15, CIL15, WFA15, CPWV16] leveraged personalized privacy guarantees
to purchase data with different privacy guarantees from individuals with heterogeneous privacy
preferences. The vast majority of this work focused on the market design problem of procuring
data, and not on the differentially private algorithms that provided personalized privacy guarantees.
[CLR+15] gave a technique for achieving personalized privacy for linear functions by reweighting
each person’s data inversely proportional to their privacy guarantee. Unfortunately, this reweighting
technique does not extend beyond linear functions. [CCK+13] proposed an even stronger notion
of personalized privacy, that was both personalized and data-dependent, but did not give any
algorithmic techniques to satisfy this definition.

Several other results gave mechanisms specific to personalized differential privacy by randomly
keeping each individuals data in the database with probability proportional to their respective ǫi
[JYC15, AGK17, LXJJ17]. However, they are unable to provide corresponding error guarantees
with such procedures for general functions. [AKZ+17] gave a technique for providing two-tiered
personalized privacy guarantees. Some users received differential privacy and some users received
a stronger guarantees of local differential privacy, where the users do not trust the data analyst to
see their true data.

Finally, there is a small body work on high probability privacy guarantees and average-case
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privacy guarantees [BLR08, CLN+16, BF16]. This work addresses a very different problem than we
study here. These papers assume that databases are sampled according to some distribution over the
data universe, and provide high probability guarantees with respect to the sampling distribution,
allowing a failure of either privacy or accuracy on some set of unlikely databases. To contrast,
we assume that databases are fixed, not randomly sampled. We provide privacy and accuracy
guarantees that depend on the well-behavedness of a given function over the data universe, and
our guarantees hold everywhere in the data universe.

1.3 Organization

In Section 2, we introduce some of the notation and basic definitions that will be used throughout
the paper. In Section 3, we introduce our Sensitivity-Preprocessing Function and prove its general
accuracy guarantees. In Section 4, we give optimality and hardness guarantees for our sensitivity-
preprocessing procedure. In Section 5, we show that several important functions can be efficiently
implemented in our framework, such as mean, median, maximum, minimum, and we also give
strong error guarantees on the implementation of mean. In Section 6, we efficiently implement our
framework for variance and give corresponding error guarantees. In Section 7, we prove several
useful facts regarding individual sensitivity and the variant definition of personalized differential
privacy, and show how our framework can be very useful in this context. In Section 8, we consider
a natural extension of our algorithm that bounds a function’s sensitivity in the ℓ1 metric for 2
dimensions.

2 Preliminaries

We introduce the standard notion of differential privacy and the corresponding global sensitivity
metric. We say that two databases are neighboring if they differ in at most one entry.

Definition 2.1 (Differential privacy [DMNS06]). A mechanism M : D → R is ǫ-differentially
private if for every pair of neighboring databases D,D′ ∈ D, and for every subset of possible
outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ exp(ǫ) Pr[M(D′) ∈ S].

Definition 2.2 (Global Sensitivity). The global sensitivity of a function f : D → R
d is:

∆f = max
D,D′, neighbors

∥

∥f(D)− f(D′)
∥

∥

1
.

Our result is primarily concerned with tailoring a more refined version of global sensitivity, for
which we will need more specific notation for neighboring databases. In particular, we will consider
the data universe D to be composed of (a possibly infinite) collection of individuals, where xi will
denote the data of individual i. Any database D ∈ D is then composed of the data of some finite
subset of individuals I, so D = {xi : i ∈ I}. For ease of notation, we will often assume that
D = (x1, ..., xn). Further, if individual i’s data is contained in database D, then we will consider
D− xi to be the database with individual i’s data removed. Similarly, if i’s data is not included in
database D, then we consider the database D+xi to be the database with i’s data added. We will
also sometimes use i ∈ D to denote that individual i’s data is included in database D. Finally, we
also assume that for any D ∈ D, if D′ ⊂ D is non-empty, then D′ ∈ D.

With this notation, we introduce the notion of individual sensitivity that is the maximum change
in output that is possible by adding individual i’s data.
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Definition 2.3 (Individual Sensitivity). The individual sensitivity of a function f : D → R
d with

respect to i is:

∆i(f)
def
= max

xi,{D:i/∈D}
‖f(D)− f(D + xi)‖1 .

We further let {∆i(f)} denote the individual sensitivities of f to all individuals.

For reference, we also provide the definition of local sensitivity that will not be used in this
work, but was referred to extensively in related works.

Definition 2.4 (Local Sensitivity). The local sensitivity of a function f : D → R
d at database

D ∈ D is:
∆Df = max

D′: neighbor of D

∥

∥f(D)− f(D′)
∥

∥

1
.

3 Sensitivity-Preprocessing Function

In this section we formally define our Sensitivity-Preprocessing Function, give the corresponding
constructive algorithm for accessing this function, and prove instance-specific error bounds between
the original function and our Sensitivity-Preprocessing Function. Recall that our primary goal is
to give an alternate schema for fitting a general function to a sensitivity bounded function. More
specifically, suppose we are given a function f : D → R and desired sensitivity parameters {∆i},
and want to produce another function g : D → R that closely approximates f , and has individual
sensitivity at most ∆i for all i.

The Sensitivity-Preprocessing Function will ultimately be defined as a simple greedy recursion
that builds up from the empty set. The key insight is that we can take advantage of the particular
metric space structure of databases such that defining our function on a new database only depends
on the subsets of that database. We first use the fact that while each database could have infinitely
many neighboring databases, it only has a finite amount of neighbors with strictly fewer entries.
This will allow us to only consider the constraints incurred by each D − xi for some database D.
In particular, for each g(D − xi) it is allowable to place g(D) anywhere in the region [g(D − xi)−
∆i, g(D − xi) + ∆i]. Intersecting each of these intervals will give the feasible region for g(D), and
we will greedily chose the point closest to f(D). We then use the fact that any two neighbors of a
strictly larger database must also be neighbors of a strictly smaller database. This will ensure that
the intersection of all feasible intervals is non-empty, even under our greedy construction.

As a result, the Sensitivity-Preprocessing Function g is defined inductively starting from the
empty set, and new data points are added one by one. The algorithm ensures that the value of g
changes by at most ∆i when new data point xi is added, while minimizing the distance |f(D)−g(D)|
at every point.

Definition 3.1 (Sensitivity-Preprocessing Function). Given any function f : D → R and non-
negative parameters {∆i}, we say that a function g : D → R is a Sensitivity-Preprocessing Func-
tion of f with parameters {∆i}, if g(∅) = f(∅)4 and

g(D) =











Upper(D), if Upper(D) ≤ f(D)

Lower(D), if Lower(D) ≥ f(D)

f(D), otherwise

where Upper(D) = minj∈D{g(D − xj) + ∆j} and Lower(D) = maxj∈D{g(D − xj)−∆j}.
4See Remark 3.2 for a discussion of how to initialize g(∅) if f(∅) is not well-defined.
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If {∆i} = ∆ for some non-negative ∆, then we say that g is a Sensitivity-Preprocessing Func-
tion of f with parameter ∆.

The generalization from global sensitivity to individual sensitivities is critical to our personalized
privacy results in Section 7. This generalization does not increase the running time, and it is easy
to see that this yields global sensitivity equal to the maximum individual sensitivity.

3.1 Algorithmic Construction of Sensitivity-Preprocessing Function

The algorithm Preprocessing is presented in Algorithm 1. It begins by initializing g(∅) = f(∅),
and building up g to be defined on databases of increasing size. At each step, the algorithm ensures
that no sensitivity constraints are violated and chooses the best value for g(D) subject to those
constraints.

For a given database D, Upper(D) is the maximum value g(D) can take without letting it
increase too much from a smaller database (violating an individual sensitivity parameter). Similarly,
Lower(D) is the minimum value we can make g(D) without letting it decrease too much from
a smaller database. We then define g(D) to be the value in [Lower(D),Upper(D)] that is the
closest to f(D).

Algorithm 1 Sensitivity-Preprocessing Function Algorithm : Preprocessing(f : D →
R, {∆i},D)

Input: Function f : D → R, individual sensitivity bounds {∆i}, and database D of size n.
Output: g(D), where g satisfies individual sensitivity ∆i for all i.
Initialize g(∅) = f(∅)
for k=1, . . . , n do

for every database D′ ⊆ D of size k do

Set Upper(D′) = mini∈D′{g(D′ − xi) + ∆i}
Set Lower(D′) = maxi∈D′{g(D′ − xi)−∆i}

Set g(D′) =











Upper(D′), if Upper(D′) ≤ f(D′)

Lower(D′), if Lower(D′) ≥ f(D′)

f(D′), otherwise
end for

end for

Output g(D)

This construction of g ensures that the individual sensitivity of g does not exceed ∆i for each
i. We can then use these bounds on the sensitivity of g to calibrate the scale of noise that must
be added to ensure differential privacy. In the special case that ∆i = ∆ for all i, then the global
sensitivity of g is ∆, and we can add noise that scales with O(∆ǫ ) to achieve ǫ-differential privacy.
Note that this guarantee holds even if f has unbounded sensitivity. In Section 7, we show how to
satisfy differential privacy under heterogeneous ∆i.

Remark 3.2. Our algorithm is initialized using f(∅), and thus centers g around this point. In the
case that f(∅) is undefined—for example, when f computes the mean of a database—the analyst
should initialize g(∅) using some domain knowledge or prior beliefs on reasonable centering of the
function. If no prior knowledge is available, the analyst can sample multiple databases and evaluate
f on the samples to estimate a reasonable centering point for g(∅). The sensitivity bounds will
still hold regardless of the centering of g, but accuracy may suffer if g(∅) is set to be far from most
values of f .
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In addition to sensitivity guarantees and runtime analysis, we also provide an instance-specific
error bound. Unfortunately this bound will not be in a clean form, but it does capture the intuitive
fact that if we increase any ∆i then it is likely that accuracy also increases.

However, we are able to obtain a bit more intuition on our instance-specific error bounds, and
can consider them in a similar context to local sensitivity. Given that our Sensitivity-Preprocessing
Function defines a database recursively in terms of its subsets, it makes sense that our error guar-
antees will be in terms of these subsets. These error bounds can then be seen as capturing the
sensitivity between the neighboring subsets of D. Analogously to local sensitivity, we will have
larger errors for databases with high sensitivity between the neighboring subsets.

Theorem 3.3. Given T (n) time query access to an arbitrary function f : D → R, and sensi-
tivity parameters {∆i}, Preprocessing provides O((T (n) + n)2n) time access to the Sensitivity-
Preprocessing Function g : D → R such that ∆i(g) ≤ ∆i for all i. Further, for any database
D = (x1, ..., xn),

|f(D)− g(D)| ≤ max
σ∈σD

|D|
∑

i=1

max{
∣

∣f(Dσ(<i) + xσ(i))− f(Dσ(<i))
∣

∣−∆σ(i), 0},

where σD is the set of all permutations on [n], and Dσ(<i) = (xσ(1), ..., xσ(i−1)) is the subset of D
that includes all individual data in the permutation before the ith entry.

Remark 3.4. We can easily extend this theorem to f : D → R
d by running Preprocessing on

each dimension independently in terms of sensitivity parameters and error bounds Specifically,
suppose we were instead given parameters {∆i} where ∆i = (∆i,1, ...,∆i,d) has different sensitivity
parameters for each dimension of the function. We could then consider the function restricted
to a single dimension d′, and run Preprocessing on this projection with sensitivity parame-
ters {∆i,d′}. This will give the desired sensitivity bounds in that single dimension, then running
Preprocessing on all dimensions and composing across dimensions will give the appropriate
Sensitivity-Preprocessing Function in d dimensions. In Section 8, we consider extensions to higher
dimensions where each dimension is not treated independently.

3.2 Sensitivity-Preprocessing Function Correctness

We first prove that the Sensitivity-Preprocessing Function given in Definition 3.1 both meets the
individual sensitivity criteria and is also defined on all databases.

Lemma 3.5. For any function f : D → R and non-negative sensitivity parameters {∆i}, if g : D →
R is defined according to Definition 3.1, then g is defined on all databases D ∈ D and ∆i(g) ≤ ∆i

for all i.

Proof. It suffices to show that for any D ∈ D with at least one entry and for any xi ∈ D, we
have g(D − xi) −∆i ≤ g(D) ≤ g(D − xi) + ∆i. By our construction, this must always be true if
Lower(D) ≤ g(D) ≤ Upper(D) for any D ∈ D \ {∅}. Our construction of g will always place
g(D) ∈ [Lower(D),Upper(D)] if the interval is non-empty, so it suffices to show that for all
D ∈ D \ {∅},

Lower(D) ≤ Upper(D).

We will prove this by induction starting with D = xi with one entry. Therefore, Upper(D) =
f(∅) + ∆i and Lower(D) = f(∅)−∆i, which implies our desired inequality because ∆i ≥ 0.
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We now consider an arbitrary D and assume that our claim holds for all D′ ⊂ D. Let xk ∈ D
minimize g(D − xi) + ∆i over all xi ∈ D, so

Upper(D) = g(D − xk) + ∆k,

and let xj ∈ D maximize g(D − xi)−∆i over all xi ∈ D, so

Lower(D) = g(D − xj)−∆j.

If k = j then the desired inequality immediately follows. Otherwise we consider D − xk − xj .
By our inductive hypothesis, we know Lower(D − xk) ≤ g(D − xk) ≤ Upper(D − xk), so

g(D − xk) ≥ Lower(D − xk) ≥ g(D − xk − xj)−∆j .

Similarly, we have Lower(D − xj) ≤ g(D − xj) ≤ Upper(D − xj), so

g(D − xj) ≤ Upper(D − xj) ≤ g(D − xk − xj) + ∆k.

Combining these inequalities gives g(D−xk)+∆j ≥ g(D−xj)−∆k, which implies our desired
result.

3.3 Error Bounds for Sensitivity-Preprocessing Function

We now prove the desired instance-specific error bounds between the original function and our
Sensitivity-Preprocessing Function.

Lemma 3.6. For any function f : D → R and non-negative sensitivity parameters {∆i}, if g :
D → R is defined according to Definition 3.1, then for any database D ∈ D,

|f(D)− g(D)| ≤ max
σ∈σD

|D|
∑

i=1

max{
∣

∣f(Dσ(<i) + xσ(i))− f(Dσ(<i))
∣

∣−∆σ(i), 0},

where σD is the set of all permutations on [n], and Dσ(<i) = (xσ(1), . . . , xσ(i−1)) is the subset of D
that includes all individual data in the permutation before the ith entry.

Proof. We will prove this claim inductively and first consider D = xj with one entry for some j.
We need to show

|f(D)− g(D)| ≤ max{|f(D)− f(∅)| −∆j , 0},
which follows easily from construction of g. We now consider an arbitrary D and assume that the
claim is true for all D′ ⊂ D. From our construction we claim that

|f(D)− g(D)| ≤ max
xi∈D

{|f(D)− g(D − xi)| −∆i, 0}.

This follows from the fact that if f(D) = g(D) then we must have |f(D)− g(D − xi)| ≤ ∆i for all
i, and otherwise there must be some xi ∈ D such that the constraint on g(D) with respect to ∆i

is tight. Using this fact we can bound |f(D)− g(D)| in the following way:

|f(D)− g(D)| ≤ max
xi∈D

{|f(D)− g(D − xi)| −∆i, 0}

= max
xi∈D

{|f(D)− f(D − xi) + f(D − xi)− g(D − xi)| −∆i, 0}

≤ max
xi∈D

{|f(D)− f(D − xi)| −∆i + |f(D − xi)− g(D − xi)| , 0}

≤ max
xi∈D

{max{|f(D)− f(D − xi)| −∆i, 0}+ |f(D − xi)− g(D − xi)|}
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We then apply the inductive hypothesis to |f(D − xi)− g(D − xi)|, which immediately implies
our desired bound.

3.4 Proof of Theorem 3.3

Proof of Theorem 3.3. The individual sensitivity guarantees are given by Lemma 3.5, and the error
bounds are given by Lemma 3.6. It then remains to show the running time. If we assume T (n)
time access to f for a database with n entries, then because we need to query each subset of D, this
will contribute time O(T (n)2n). Furthermore, for each subset we need to compute Upper(D) and
Lower(D) which takes O(n) time for each subset. This then gives our full runtime of O((T (n) +
n)2n).

4 Optimality and Hardness of Sensitivity-Preprocessing Function

Our algorithm in Section 3 took exponential time to query the Sensitivity-Preprocessing Function g
at each database D of interest, and, while we did achieve bounds on the error incurred, their
complicated formulation makes it difficult to determine whether these bounds are strong. In this
section we give strong justification for our construction of the Sensitivity-Preprocessing Function in
terms of both error incurred and the exponential running time for the general setting.

In Section 4.1 we consider the general problem of approximating an arbitrary function f : D → R

with one that has individual sensitivity bounded by {∆i}. Under the ℓ∞ metric, our Sensitivity-
Preprocessing Function will achieve a 2-approximation of the optimal function. Furthermore, this 2-
approximation can still be obtained when the optimal function is restricted to certain subsets of the
data universe. Informally, this will imply that on subsets which allow for small error between f and
a function with individual sensitivity bounded by {∆i}, our Sensitivity-Preprocessing Function will
also have small error. Due to ℓ∞ being a worst-case metric, it is then natural to ask if our
Sensitivity-Preprocessing Function actually still performs well on the non-worst-case databases. To
this end, we show that our Sensitivity-Preprocessing Function is Pareto optimal, meaning that
for any other function with individual sensitivity bounded by {∆i}, if it has smaller error on some
database relative to our Sensitivity-Preprocessing Function, then there must exist another database
on which it has higher error.

In Section 4.2 we show that it is NP-hard to achieve our approximation guarantees with respect
to the ℓ∞ metric. We further show that it is uncomputable to do better than a 2-approximation in
the ℓ∞ metric, and also uncomputable to achieve even a constant approximation in any ℓp metric for
p < ∞ which justifies our choice of metric. We believe that the combination of these results gives a
strong indication that our Sensitivity-Preprocessing Function and corresponding exponential time
construction is the best we can hope to achieve for the general problem.

4.1 Optimality guarantees

In this section we prove that our Sensitivity-Preprocessing Function achieves certain optimality
guarantees. As there are many ways in which to measure how close one function is to another, it
is first necessary to be more specific about the definition of optimality we use here. The set that
we are trying to optimize over will be all functions with bounded individual sensitivity:

Definition 4.1. Given a data universe D and individual sensitivity parameters {∆i}, define

F{∆i}(D)
def
= {f : D → R | ∆i(f) ≤ ∆i,∀i}.
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In this context, the general goal will then be to show that our Sensitivity-Preprocessing Func-
tion is close to the optimal function on this set. Here we will consider optimal to be under the
ℓ∞ metric, where we want f∗ ∈ F{∆i}(D) to minimize the maximum difference |f(D)− f∗(D)|
over all D ∈ D. Our Sensitivity-Preprocessing Function achieves a 2-approximation to the op-
timal f∗ ∈ F{∆i}(D) with respect to the ℓ∞ metric. For unbounded sensitivity functions, the
value |f(D)− f∗(D)| will be unbounded, so we will instead show the stronger result that this
2-approximation also holds if we restrict the data universe to a single database and its subsets.
Specifically, we show that if for certain subsets of the data universe it is possible to perfectly fit f
to a {∆i} individual sensitivity bounded function, then our Sensitivity-Preprocessing Function will
also perfectly fit to f in this subset. These guarantees are formalized in the following lemma.

Lemma 4.2. Given any f : D → R, let g : D → R be the Sensitivity-Preprocessing Function of f
with parameters {∆i}. For any arbitrary D ∈ D, define D′ = {D′ ⊆ D}. Then,

max
D′∈D′

|f(D′)− g(D′)| ≤ 2 min
f∗∈F{∆i}

(D′)
max
D′∈D′

|f(D′)− f∗(D′)|

Proof. We will prove this inductively on the size of D. It is immediately true for D = ∅. We now
prove for arbitrary D where we assume the claim for all strict subsets of D. Our proof will be by
contradiction, where we suppose that our claim is not true for some D.

We first determine the database at which |f(D′)−g(D′)| is maximized. Suppose argmaxD′∈D′ |f(D′)−
g(D′)| = D̃ such that D̃ ⊂ D. Define D̃ = {D′ ⊆ D̃}. Because D̃ ⊂ D, it must follow that

min
f∗∈F{∆i}

(D̃)
max
D′∈D̃

|f(D′)− f∗(D′)| ≤ min
f∗∈F{∆i}

(D′)
max
D′∈D′

|f(D′)− f∗(D′)|.

By our assumption that the claim is not true on D, it follows that

|f(D̃)− g(D̃)| > 2 min
f∗∈F{∆i}

(D′)
max
D′∈D′

|f(D′)− f∗(D′)|.

Combining this with the previous inequality implies,

|f(D̃)− g(D̃)| > 2 min
f∗∈F{∆i}

(D̃)
max
D′∈D̃

|f(D′)− f∗(D′)|,

which contradicts our inductive hypothesis. Therefore we must have maxD′∈D′ |f(D′) − g(D′)| =
|f(D)− g(D)|.

We now apply Lemma 4.3, which we prove subsequently, to see that there must exist D̃ ⊂ D
such that |f(D)− f(D̃)| ≥ |f(D)− g(D)| +∑i∈D\D̃ ∆i. Therefore for any f∗ ∈ F{∆i}(D′) it must
be true that

max{|f(D̃)− f∗(D̃)|, |f(D)− f∗(D)|} ≥ |f(D)− g(D)|
2

,

because of the sensitivity constraints. We then use the fact that maxD′∈D′ |f(D′) − g(D′)| =
|f(D)− g(D)| to conclude,

max
D′∈D′

|f(D′)− g(D′)| ≤ 2 min
f∗∈F{∆i}

(D′)
max
D′∈D′

|f(D′)− f∗(D′)|.

This contradicts our assumption, so the claim must therefore be true for D.

Lemma 4.3. Given any f : D → R, let g : D → R be the Sensitivity-Preprocessing Function of f
with individual sensitivity parameters {∆i}. For any D ∈ D such that f(D) 6= g(D) there must exist
some D̃ ⊂ D such that g(D) ≥ f(D̃)+

∑

i∈D\D̃ ∆i if f(D) > g(D) and g(D) ≤ f(D̃)−∑i∈D\D̃ ∆i

if f(D) < g(D).

18



Proof. We prove the claim inductively, starting with the immediate observation that by construction
it is true when D only has one entry.

We now consider an arbitraryD and assume our claim for all subsets. Without loss of generality,
we will prove the claim if f(D) > g(D), and can symmetrically apply the proof for the case when
f(D) < g(D). If f(D) > g(D), then there must exist some xi ∈ D such that g(D) = g(D−xi)+∆i.
If f(D − xi) ≤ g(D − xi), then we can set D̃ = D − xi and the claim follows. Otherwise we must
have f(D − xi) > g(D − xi) and we apply our inductive hypothesis to obtain some D̃ ⊂ D − xi
such that

g(D − xi) ≥ f(D̃) +
∑

j∈(D−xi)\D̃

∆j.

We then use the fact that g(D) = g(D − xi) + ∆i to achieve

g(D) ≥ f(D̃) +
∑

j∈D\D̃

∆j.

We note that because Lemma 4.2 achieves a 2-approximation when the optimal function is
restricted to subsets of the data universe, we easily achieve a 2-approximation on the full data
universe.

Corollary 4.4. Given any f : D → R, let g : D → R be the Sensitivity-Preprocessing Function of
f with parameters {∆i}. Then,

max
D′∈D

|f(D′)− g(D′)| ≤ 2 min
f∗∈F{∆i}

(D)
max
D′∈D

|f(D′)− f∗(D′)|.

Pareto Optimality

We now complement our localized 2-approximation of the ℓ∞ metric with a Pareto optimality result.
As ℓ∞ is a worst-case metric we would still like our Sensitivity-Preprocessing Function to perform
well on the non-worst-case databases. In particular, for the databases that do not contribute to
the ℓ∞ error, we still want the error to be minimized. The following lemma will conclude that we
cannot improve the error of a single database without incurring more error on another database,
indicating that we are still performing well on the non-worst-case databases.

Lemma 4.5. Given any f : D → R, let g : D → R be the Sensitivity-Preprocessing Function of f
with individual sensitivity parameters {∆i}. For any h ∈ F{∆i}(D) if there is some D ∈ D such
that

|f(D)− h(D)| < |f(D)− g(D)| ,
then there also exists some D′ ∈ D such that

∣

∣f(D′)− h(D′)
∣

∣ >
∣

∣f(D′)− g(D′)
∣

∣ .

Proof. Suppose there is some h ∈ F{∆i}(D) such that

|f(D)− h(D)| < |f(D)− g(D)|

for some D ∈ D, and for all D′ ∈ D,

∣

∣f(D′)− h(D′)
∣

∣ ≤
∣

∣f(D′)− g(D′)
∣

∣
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Then it must be true that h(∅) = g(∅) because g(∅) = f(∅). Let D be the smallest database such
that h(D) 6= g(D), which implies that |f(D)− h(D)| < |f(D)− g(D)|. This inequality implies
g(D) 6= f(D), and by our construction of g, either Upper(D) < f(D) or Lower(D) > f(D).

Without loss of generality, assume Upper(D) < f(D) and thus g(D) = Upper(D). Using
the fact that |f(D)− h(D)| < |f(D)− g(D)|, we can conclude that h(D) > g(D). However, since
Upper(D) = g(D−xi)+∆i for some xi ∈ D, we must have h(D) > g(D−xi)+∆i. Our assumption
that D was the smallest database such that h(D) 6= g(D) then implies h(D) > h(D − xi) + ∆i,
contradicting the individual sensitivity of i being at most ∆i in h.

Therefore, F{∆i}(D) cannot contain such an h, which implies our claim.

4.2 Hardness of approximation

In this section we justify the exponential running time of our implementation of the Sensitivity-
Preprocessing Function for the general setting. Recall that in our construction we did not make any
assumptions about D and only required query access to the function f : D → R. Under this limited
knowledge setting it is reasonable that our localized greedy construction is the best we can hope
for, despite taking exponential time. Accordingly, we show here that even if we restrict D to be
exponential-sized, set all {∆i} to be the same ∆, and further force f to be polytime representable,
it is still NP-hard to compute our Sensitivity-Preprocessing Function. This proof will further imply
that it is NP-hard to compute a function that has identical individual sensitivity guarantees and
achieve the same approximation guarantees that our Sensitivity-Preprocessing Function does in
Lemma 4.2.

After proving this NP-hardness result, we will discuss the issues with computing individual
sensitivity bounded functions that obtain better approximations. We give strong justification that
it is uncomputable to achieve better than a 2-approximation in the ℓ∞ metric. Further, we give
similar reasons why it is uncomputable to achieve even a constant approximation on average error
for the general setting, which justifies our choice of metric for proving our approximation guarantees
in the previous section. We believe these ideas could be formalized in a straightforward manner,
but think that doing so is unnecessary for the scope of this paper.

NP-hardness

Proposition 4.6. For certain f : D → R such that |D| = O(3n), it is NP-hard to compute our
Sensitivity-Preprocessing Function g with parameter ∆ on a specific database.

Proof. In order to prove this claim, we will construct a gadget function that takes an arbitrary SAT
formula φ and constructs a function f : D → R such that |D| = O(3n) and on a specified database
D ∈ D, g(D) < n if and only if φ is satisfiable. We construct that gadget function below.

Gadget Function: Let D be the data universe with n individuals such that xi ∈ {T, F}. Let
φ : {T, F}n → {0, 1} be an arbitrary SAT formula of n variables that outputs 0 if false and 1 if true.
For any D ∈ D, let D + T ∈ {T, F}n be the assignment of variables that correspond to D and set
all variables not in D to be true. Let the function fφ : D → R be defined as fφ(D) = |D|−φ(D+T )
where |D| = |{i ∈ D}|. Further, define fφ(∅) = 0 and let ∆ = 1.

Claim: For the constructed gadget function f from SAT formula φ and our corresponding Sensitivity-
Preprocessing Function g with parameter ∆, we must have that g(Fn) < n iff φ is satisfiable.
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First, we assume φ is unsatisfiable which implies fφ(D) = |D| for all D. Therefore the sensitivity
of f is 1, and g will be identical to f , so g(Fn) = n.

Next, we show that if g(Fn) ≥ n then there cannot exist a satisfying assignment of φ. Suppose
there does exist a satisfying assignment, then take the one with the fewest false assignments and
denote this as x∗ ∈ {T, F}n. Further, consider the database D ⊆ Fn that consists of all of the false
assignments of x∗. By definition, we must have that fφ(D) = |D| − 1, and we further show that
g(D) = |D| − 1.

For any D′ ⊂ D, we have fφ(D
′) = |D′| by construction of fφ and our assumption that x∗ was

the satisfying assignment with the fewest false assignments. It is easy to see that g(D′) = |D′| by
construction, which implies that g(D) = |D|−1. Since the sensitivity is set to be 1, we have that for
every D̃ such that D̃ ⊇ D it must be true that g(D̃) ≤ |D̃|− 1. By construction, we know D ⊆ Fn,
which implies g(Fn) < n. This gives a contradiction and implies that φ is unsatisfiable.

Note that to satisfy the approximation guarantees given in Lemma 4.2, any f∗ ∈ F∆(D) would
require f∗(D) = |D| − 1 in our proof as well. Accordingly, for any f∗ ∈ F∆(D) that satisfies the
approximation guarantees of Lemma 4.2, it must also be true that f(Fn) < n iff φ is satisfiable.
Therefore, any algorithm that achieves the same guarantees must also be NP-hard to compute.

Uncomputability of better approximations

We now argue that it is uncomputable to achieve better approximation factors than our Sensitivity-
Preprocessing Function, with respect to both the ℓ∞ metric and any ℓp metric.

Remark 4.7. We claim that no finitely computable algorithm can obtain a function with appropri-
ately bounded individual sensitivities that achieves better than a 2-approximation on the ℓ∞ error.
Let D only contain the empty set and databases of size one, each containing a single real-valued
data entry x ∈ [0, 1], and set ∆ = 1. Consider any finite algorithm that constructs a ∆-sensitivity
function h to minimize the maximum difference between (adversarially chosen) f and h over all
databases.

If f is arbitrary and only query accessible, then the algorithm can only query a finite number
of databases, and an adversary could just set f(x) = f(∅) = 0 for all queried databases. In order
to achieve even a constant approximation, the algorithm would need to set f(x) = 0 just in case
f(x) = 0 for all x ∈ [0, 1]. However, the adversary could then set f(y) = 2 for all non-queried
databases. The function that minimizes the ℓ∞ error would then set f(x) = 1/2 for all queried
databases and f(y) = 3/2 for all non-queried databases. As a result, the finite algorithm can only
achieve a 2-approximation.

Remark 4.8. We further claim that no finitely computable algorithm can obtain a function with
appropriately bounded individual sensitivities that achieves a constant approximation on the aver-
age ℓp error. The optimal function in this scenario would be f∗ that minimizes:

min
f∗∈F{∆i}

(D)

(
∑

D∈D (f(D′)− f∗(D′))p

|D|

)1/p

.

We consider the same example as above, and note that the number of queried databases is finite and
the number of non-queried databases is infinite. In order to achieve a constant approximation, the
algorithm would need to set f(x) = 0 just in case f(x) = 0 for all x ∈ [0, 1]. However, it would then
have to set f(y) = 1 for all non-queried databases and the average ℓp error would be a constant.
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If instead it set f(x) = 1 for all queried databases and f(y) = 2 for all non-queried databases,
then the average ℓp error would approach 0 because the non-queried databases are infinite and the
queried databases are finite. As a result, no finitely computable algorithm can achieve a constant
approximation in this metric.

5 Efficient Implementation of Several Statistical Measures

In this section, we take our general recursive algorithm and show how it can be made efficient
for a variety of important statistical measures such as mean, α-trimmed mean, median, minimum,
and maximum. It is important to note that we will not change the key recursive structure, but
instead show that when we have more information about the function, we can ignore many of the
subproblems of the recursion for significant runtime speedups. As a result, the algorithm given for
these statistical tasks will take O(n2) time and have a simple dynamic programming construction.

The key idea will be that given a database D = (x1, ..., xn) where we assume for simplicity that
x1 ≤ · · · ≤ xn,

5 the only important subproblems will be D−x1 and D−xn. Consequently, instead
of considering every possible subset of D, we only need to consider every contiguous subset, which
limits the number of subproblems to O(n2).

We first give a general class of functions—which includes mean, median, α-trimmed mean,
minimum, and maximum—for which it is straightforward to show our algorithm can be applied
efficiently. We then give a more in-depth analysis of the error guarantees that correspond with this
implementation for mean. These bounds will ultimately be quite intuitive, but the proofs will be
more involved.

5.1 Efficient implementation for a simple class of functions

We will first define a class of functions under which database ordering is preserved for any subset,
which allows us to presort the data according to this ordering and restrict the number of sub-
problems. Intuitively, it implies that for any database D = (x1, ..., xn) there is an ordering of the
x1, ..., xn such that the extreme points in our recursion are determined by the databases that re-
move the maximum or the minimum. In particular, if we consider the mean function µ : R<N → R

then for any D = (x1, ..., xn) if we assume x1 ≤ · · · ≤ xn, then we know µ(D − xn) ≤ µ(D − xi)
and µ(D− x1) ≥ µ(D− xi) for any i. This will ultimately imply that our upper and lower bounds
on the allowable region for g(D) will be defined by g(D − x1) and g(D − xn), respectively.

Definition 5.1 (Database-ordered function). A function f : D → R is database-ordered if for any
D = (x1, ..., xn) ∈ D and any pair xi, xj ∈ D, we have that for every subset database D′ ⊂ D such
that xi, xj /∈ D′, then either f(D′ + xi) ≤ f(D′ + xj) for every D′ or f(D′ + xi) ≥ f(D′ + xj)
for every D′. Furthermore, if f(D′ + xi) ≤ f(D′ + xj) for every D′, we say that xi ≤ xj in the
entry-ordering, and vice-versa if f(D′ + xi) ≥ f(D′ + xj) for every D′.

The general idea of our efficient implementation will be to use the ordering and only consider
contiguous subsets according to this ordering.

Lemma 5.2. Given a database-ordered function f : D → R, let g : D → R be the Sensitivity-
Preprocessing Function of f with parameter ∆. Then for any D = (x1, ..., xn) where x1 ≤ · · · ≤ xn
in the entry-ordering we must have Upper(D) = g(D−xn)+∆ and Lower(D) = g(D−x1)−∆,
and our Preprocessing algorithm only requires solving O(n2) subproblems

5Our algorithm will presort and only incur O(n log n) running time.
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Proof. We first want to show Upper(D) = g(D − xn) + ∆ and Lower(D) = g(D − x1)−∆. It is
sufficient to show g(D − xn) ≤ g(D − xn−1) ≤ · · · ≤ g(D − x1), which we will prove by induction
on the size of the database. If D only has one entry, then this must be true.

Assume this is true for all D with at most n − 1 entries, and we want to show g(D − xi+1) ≤
g(D−xi) for any i ∈ [n−1]. Since f is database-ordered, we know that f(D−xi+1) ≤ f(D−xi). It
then suffices to show Upper(D−xi+1) ≤ Upper(D−xi) and Lower(D−xi+1) ≤ Lower(D−xi).
By our inductive hypothesis, Upper(D − xi) = g(D − xi − xn) + ∆ and Upper(D − xi+1) =
g(D − xi+1 − xn) + ∆ if i < n − 1, and we note that Upper(D − xn−1) = Upper(D − xn). Also
by our inductive hypothesis, g(D − xi+1 − xn) ≤ g(D − xi − xn), implying Upper(D − xi+1) ≤
Upper(D − xi). The proof for Lower(D − xi+1) ≤ Lower(D − xi) follows symmetrically.

With this fact, it is straightforward to see that opening up our algorithm, instead of considering
all subsets of size k, it suffices to consider subsets (x1, . . . , xk), (x2, . . . , xk+1), . . . , (xn−k, . . . , xn).
Then the total number of subproblems that need to be solved is O(n2).

If our function is efficiently computable and the entry-ordering is efficiently computable, this
then gives an efficient implementation of our recursive algorithm. In particular, for several functions
of statistical interest including mean, α-trimmed mean, median, maximum, and minimum, this
easily yields an efficient algorithm.

Algorithm 2 Efficient Implementation for database-ordered functions

Input: Database-ordered function f : R<N → R, sensitivity bound ∆, estimate for the empty
set µ̂, and database D = (x1, ..., xn) ∈ R

n for some arbitrary n.
Output: g(D), where g is the Sensitivity-Preprocessing Function of f .
Initialize g(∅) = µ̂
Sort D (We will assume x1 ≤ · · · ≤ xn for simplicity)
for k=1, . . . , n do

for i = 1, . . . n-k+1 do

for every database D′ = (xi, ..., xi+k−1) do

Let g(D′) =











g(D′ − xi+k−1) + ∆, if g(D′ − xi+k−1) + ∆ ≤ f(D′)

g(D′ − xi)−∆, if g(D′ − xi)−∆ ≥ f(D′)

f(D′), otherwise
end for

end for

end for

Output g(D)

Corollary 5.3. We can implement our Sensitivity-Preprocessing Function with parameter ∆ in
O(n2) time for the functions mean, α-trimmed mean, median, maximum, and minimum.

Proof. Let f be any of the functions listed above. It is simple to see that for any D = (x1, ..., xn) ∈
R
n, and any y, z ∈ R, if y ≤ z then f(D+y) ≤ f(D+z), and if y ≥ z then f(D+y) ≥ f(D+z). This

implies that f is database-ordered, then by Lemma 5.2 we only need to solve O(n2) subproblems.
Further, we note that finding the entry-ordering simply requires sorting the entries of D in

O(n log n) time. If the database is ordered, then computing median, minimum, and maximum
only requires O(1) time. If we know the mean or α-trimmed mean for D − xi for some xi, we can
compute the mean or α-trimmed mean of D in O(1) time using the fact that

x1 + ...+ xn
n

=
n− 1

n

(

x1 + ...+ xn−1

n− 1

)

+
xn
n
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Note that we compute D − xi for some i in our subproblems, so we will in fact have access to this
value. As a result, the full running time will take O(n2) time.

5.2 Improved runtime and accuracy for median

In the previous section, we showed that for several important statistical measures we could give a
simple efficient version of our general algorithm. To complement this result, we further examine the
median function and give an improved analysis that requires only O(n) time for presorted data and
provides strong accuracy guarantees. Improving the running time will utilize the critical property
that removing the minimum and maximum value does not change the median. As was seen in
our previous section, our recursion was reduced by only considering removing the maximum or
minimum value. The related fact regarding median will be incorporated into an inductive claim
that we never overshoot the true median, and can further reduce our recursion.

Lemma 5.4. Let med : R<N → R be the median function and g : R<N → R be the Sensitivity-
Preprocessing Function of med with parameter ∆. Then for any D = (x1, ..., xn) such that x1 ≤
· · · ≤ xn, computing g(D) takes O(n) time.

Proof. It follows immediately from Lemma 5.2 and Lemma 5.5 that if med(D) ≥ med(∅) then
g(D) = min{med(D), g(D − xn) + ∆} and otherwise g(D) = max{med(D), g(D − x1)−∆ }. We
can calculate med(D) and any contiguous subset of D in O(1) time, and the recursion will only be
upon one subproblem, implying a runtime of O(n).

Lemma 5.5. If med(D) ≥ med(∅), then med(∅) ≤ g(D) ≤ med(D)

Proof. The proof will be inductive, and it is easy to verify that the inequality holds for |D| ≤ 2.
We then consider an arbitrary D = (x1, ..., xn) where we assume without loss of generality that
x1 ≤ · · · ≤ xn and n ≥ 3. The critical fact we use here will be that the median does not change if
you remove the minimum and maximum values, which is to say that med(D) = med(D−x1−xn).
Therefore, if med(D) ≥ med(∅), then we must also have med(D−x1−xn) ≥ med(∅), which by our
inductive claim implies that med(∅) ≤ g(D − x1 − xn) ≤ med(D − x1 − xn) = med(D). Applying
Lemma 5.2, we then have

g(D − x1) ≤ g(D − x1 − xn) + ∆ ≤ med(D) + ∆

and
g(D − xn) ≥ g(D − x1 − xn)−∆ ≥ med(D)−∆

We then reapply Lemma 5.2 to achieve our desired result that med(∅) ≤ g(D) ≤ med(D)

As in [NRS07], define
A(k)(D) = max

d(D,D′)≤k
LSf (D

′).

which is the k-local sensitivity of function f for database D. For odd n, this just reduces to
A(k)(D) = max0≤t≤k+1(xm+t − xm+t−k−1) and m = n+1

2 . It is similar for n is even, and essentially
bounds the distance of each value from the median.

Combining this assumption with our previous lemma will then allow for stronger bounds upon
g(D).

Lemma 5.6. Given some parameter ∆ and med(∅), if A(k)(D) ≤ 2(k + 1)∆ for k ≤ n/4 and
med(D) ∈ [med(∅) − n

2∆,med(∅) + n
2∆], then g(D) = med(D)
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Proof. Without loss of generality, assume that med(D) ≥ med(∅). By Lemma 5.5 we know g(D) ≤
med(D), then applying Lemma 5.7 gives our desired result.

Lemma 5.7. Given some parameter ∆ and med(∅), assume A(k)(D) ≤ 2(k + 1)∆ for k ≤ n/4
and med(D) ∈ [med(∅) − n

2∆,med(∅) + n
2∆]. Let D[1:k] = (x1, ..., xk), if med(D) ≥ med(∅), then

g(D[1:k]) ≥ med(D)− (n− k)∆

Proof. It is straightforward to see that our assumptions imply

med(D[1:k]) ≥ med(D)− (n− k)∆

for any k ≥ n/2. We then consider our base case to be k = n/2, and note that from Lemma 5.5
we have g(D[1:k]) ≥ min{med(∅),med(D[1:k])}, which by our assumptions immediately implies
g(D[1:n/2]) ≥ med(D) − n

2∆.
We then assume this is true for k− 1 ≥ n/2, so g(D[1:k−1]) ≥ med(D)− (n− k)∆−∆. We also

know from Lemma 5.2 that

g(D[1:k]) ≥ min{med(D[1:k]), g(D[1:k−1]) + ∆}
which implies our desired inequality.

5.2.1 Proof of Theorem 1.6

We now have all the necessary components to give our proof of Theorem 1.6, which we restate and
prove below.

Theorem 1.6. Let med : R<N → R be the median function for the data universe of all finite-
length real-valued vectors. For chosen parameters med(∅) and ∆, along with any database D =
(x1, ...., xn) ∈ R

<N, if x1 ≤ · · · ≤ xn we give O(n) time access to a function g : R
<N → R

with sensitivity ∆ such that g(D) = med(D) whenever A(k)(D) ≤ 2(k + 1)∆ for k ≤ n/4 and
med(D) ∈ [med(∅) − n

2∆,med(∅) + n
2∆].

Proof of Theorem 1.6. The runtime guarantees follow immediately from Lemma 5.4. Furthermore,
if we assume that med(D) ≥ med(∅), then Lemma 5.5 implies that g(D) ≤ med(D) and Lemma 5.7
implies that g(D) ≥ med(D) because we have the same assumptions, and so g(D) = med(D) The
symmetric version of these lemmas follows immediately, and we also have g(D) = med(D) when
med(D) ≤ med(∅).

5.3 Accuracy bounds for mean

We next consider the mean function, and provide strong bounds on the accuracy of our Sensitivity-
Preprocessing Function. While the analysis will be rather involved, we believe that the ultimate
guarantees are highly intuitive. Our proof will also show that for databases with entries bounded in
a ∆ sensitivity range, we perfectly preserve the accuracy between our new function and the mean
function. Further, the key ideas in our proof are closely related to the construction of our recursive
function, and we believe could be extended to other functions using a similar framework.

The general proof idea will be to give two simpler recursive functions that yield reasonably tight
upper and lower bounds on our function. Due to their further simplicity, it will be much easier to
give nice error bounds with respect to the true mean for these functions.
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The idea behind constructing the upper and lower bound functions will be simple. Recall that
we showed our g for the mean function has the property that Upper(D) = g(D − xn) + ∆ and
Lower(D) = g(D − x1) −∆ because we showed g(D − xn) ≤ g(D − xn−1) ≤ · · · ≤ g(D − x1) if
we assume x1 ≤ · · · ≤ xn. Intuitively, this is due to the fact that removing the maximum value
will minimize mean and removing the minimum value will maximize mean. Accordingly, we will
just iteratively remove the maximum value to give a lower bound on our function and iteratively
remove the minimum value to give an upper bound on our function. These functions then only
require solving O(n) subproblems which will simplify the analysis.

Definition 5.8 (Mean-bounding functions). For any D = (x1, ..., xn), define

hlower(D) =











hlower(D − xn) + ∆, if hlower(D − xn) + ∆ ≤ µ(D)

hlower(D − xn)−∆, if hlower(D − xn)−∆ ≥ µ(D)

µ(D), otherwise

and

hupper(D) =











hupper(D − x1) + ∆, if hupper(D − x1) + ∆ ≤ µ(D)

hupper(D − x1)−∆, if hupper(D − x1)−∆ ≥ µ(D)

µ(D), otherwise

We will first show that hupper and hlower are upper and lower bounds, respectively, of our
Sensitivity-Preprocessing Function g with parameter ∆. Then we further examine the properties
of these functions.

Lemma 5.9. Let µ : R<N → R be the mean function with chosen parameters µ̂ and ∆. For any
D = (x1, ..., xn) ∈ R

n with x1 ≤ x2 ≤ · · · ≤ xn, then hlower(D) ≤ g(D) and hupper(D) ≥ g(D)
where g : R<N → R is our Sensitivity-Preprocessing Function with parameter ∆.

Proof. We will prove both inequalities by induction, where we first note that if D only has one
entry, then by construction hlower(D) = g(D) = hupper(D).

For any database D of n entries, by induction we have hlower(D−xn) ≤ g(D−xn) and note that
within the proof of Lemma 5.2 we showed g(D−xn) ≤ g(D−x1), which implies hlower(D) ≤ g(D).
Similarly, by induction we have hupper(D − x1) ≥ g(D − x1) and Lemma 5.2 gives g(D − x1) ≥
g(D − xn), which implies hupper(D) ≤ g(D).

We now use the simpler recursive structure of hlower and hupper to get more explicit forms of
their output.

Lemma 5.10. Let µ : R<N → R be the mean function with chosen parameters µ̂ and ∆. For any
D = (x1, ..., xn), assume that x1 ≤ x2 ≤ · · · ≤ xn, and let D[i:j] = (xi, ..., xj). Let k be the largest
index such that hlower(D[1:k]) ≥ µ(D[1:k]) (if one exists), then

hlower(D[1:k]) = max{µ̂− k∆, µ(D[1 : k])}.

Let l be the smallest index such that hupper(D[l:n]) ≥ µ(D[l:n]) (if one exists), then

hupper(D[l:n]) = min{µ̂+ (n− l)∆, µ(D[l:n])}.

Proof. We consider the first equality here, and the second follows symmetrically.
Note that µ(D[1:k]) is increasing in k because x1 ≤ · · · ≤ xn. By construction of hlower, if for

some index k′ we have hlower(D[1:k′]) ≤ µ(D[1:k′]), then hlower(D[1:k′+1]) ≤ µ(D[1:k′+1]). Accordingly,

26



if we let kmin be the first index such that hlower(D[1,kmin]) ≤ µ(D1,kmin
), then in the case that

k ≥ kmin we must have hlower(D[1:k]) = µ(D[1:k]). If k < kmin, then we must have hlower(D[1:k]) >
µ(D[1:k]), and furthermore hlower(D[1:k′]) > µ(D[1:k′]) for all k′ ≤ k, which implies that we always
decreased by ∆ and we get hlower(D[1:k]) = µ̂− k∆.

We use the explicit forms of hlower and hupper to sandwich the loss in accuracy, by considering
the inflection point of n/3 and bounding the error from hlower separately for k ≤ n/3 and for
k ≥ n/3. The analogous result follows symmetrically for hupper.

Lemma 5.11. Let µ : R
<N → R be the mean function with chosen parameters µ̂ and ∆. If

g : R<N → R is our Sensitivity-Preprocessing Function with parameter ∆, then given any D =
(x1, ..., xn),

|g(D)− µ(D)| ≤ max{|µ̂− µ(D)| − n

3
∆, 0}+

n
∑

i=1

max

{

27 |xi − µ(D)|
n

−∆, 0

}

.

Proof. If we can instead prove the same upper bounds for both |hlower(D)− µ(D)| and |hupper(D)− µ(D)|,
then the desired bound for |g(D) − µ(D)| follows from Lemma 5.9. We give the desired bound for
|hlower(D)− µ(D)|, and the bound for |hupper(D)− µ(D)| follows symmetrically.

Again, let k be the largest index such that hlower(D[1:k]) ≥ µ(D[1:k]) (if one exists). If k ≤ n/3
or none exists, then it immediately follows from Lemma 5.10 that hlower(D) ≥ µ̂ + n

3∆, which
implies |µ(D)− hlower(D)| ≤ |µ(D)− µ̂| − n

3∆.
If k ≥ n/3, then it is implied by Lemma 5.10 that hlower(D) = max{µ̂ − k∆, µ(D[1:k])} + (n−

k)∆ ≥ µ(D[1:k]) + (n− k)∆ and therefore,

µD − hlower(D) ≤ µ(D)− µ(D[1:k]) + (n− k)∆ =
n−1
∑

i=k

(

µ(D[1:i+1])− µ(D[1:i])
)

− (n− k)∆.

Furthermore,

µ(D[1:i+1])− µ(D[1:i]) =
x1 + · · · + xi+1

i+ 1
− x1 + · · · + xi

i
=

1

i(i+ 1)





i
∑

j=1

xi+1 − xj



 .

We use the fact that i ≥ n/3 to achieve,

µ(D)− hlower(D) ≤





9

n2

n
∑

i=k

i
∑

j=1

(xi − xj)



− (n− k)∆.

Applying Lemma 5.12 (stated below) gives,

µ(D)− hlower(D) ≤
(

27

n

n
∑

i=k

|xi − µ(D)|
)

− (n− k)∆ =

n
∑

i=k

(

27 |xi − µ(D)|
n

−∆

)

We then add in non-negative terms that are necessary for the symmetric version with hupper to
achieve our desired bound.

We used the following lemma to simplify the bounds in Lemma 5.11 beyond those stated in the
more general Lemma 3.6. We relegate the proof of this lemma to the appendix.
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Lemma 5.12. For any set of reals D = (x1, ..., xn) where x1 ≤ · · · ≤ xn, given any index k ∈ [n],

1

n2

n
∑

i=k

i
∑

j=1

1

3
|xi − xj | ≤

1

n

n
∑

i=k

|xi − µ(D)| .

To finally obtain all the necessary components for the proof of Theorem 1.7, it is only left
to show that when all the inputs of the database are in a nicely bounded range, our Sensitivity-
Preprocessing Function will perfectly fit to the function µ.

Lemma 5.13. Let µ : R
<N → R be the mean function with chosen parameters µ̂ and ∆. If

g : R<N → R is our Sensitivity-Preprocessing Function with parameter ∆, then given any D =
(x1, ..., xn) ∈ R

n, if for all xi ∈ D we have xi ∈ [µ̂ + α∆, µ̂ + (α + n)∆] for α ∈ [−n, 0], then
g(D) = µ(D).

Proof. First, it is straightforward to see by the construction of hlower and hupper that hlower(D) ≤
µ(D) if µ(D) ≥ µ̂ − n∆ and hupper(D) ≥ µ(D) if µ(D) ≤ µ̂ + n∆. Therefore, by Lemma 5.9,
the desired result is implied if hlower(D) ≥ µ(D) and hupper(D) ≤ µ(D). Here we show that
hlower(D) ≥ µ(D), and hupper(D) ≤ µ(D) will be implied symmetrically.

Suppose it is not true that hlower(D) ≥ µ(D), then there must exist the last index k < n such
that hlower(D[1:k]) ≥ µ(D[1:k]), which by construction implies that hlower(D) = hlower(D[1:k])+ (n−
k)∆. To achieve our contradiction, we want to show that µ(D)− hlower(D[1:k]) ≤ (n− k)∆.

By our restriction of each xi and by assumption we have,

µ̂+ α∆ ≤ µ(D[1:k]) ≤ hlower(D[1:k]).

Furthermore, because all of the remaining xi ≤ µ̂+ (α+ n)∆, we must have,

µ(D) ≤
kµ(D[1:k]) + (n− k)(µ̂ + (α+ n)∆)

n
≤

k · hlower(D[1:k]) + (n− k)(µ̂ + (α+ n)∆)

n
,

where the second inequality follows from our assumption that hlower(D[1:k]) ≥ µ(D[1:k]). This
implies,

µ(D)− hlower(D[1:k]) ≤
k · hlower(D[1:k]) + (n− k)(µ̂ + (α+ n)∆)

n
− hlower(D[1:k])

=
(k − n)hlower(D[1:k]) + (n− k)(µ̂ + n

2∆)

n

We use the fact that hlower(D[1:k]) ≥ µ̂+ α∆ and k < n to get,

µ(D)− hlower(D[1:k]) ≤
(k − n)(µ̂+ α∆) + (n− k)(µ̂ + (α+ n)∆)

n
= (n− k)∆,

giving our desired contradiction, which implies hlower(D) ≥ µ(D).

5.3.1 Proof of Theorem 1.7

We now have all the necessary components to give our proof of Theorem 1.7, which we restate and
prove below.
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Theorem 1.7. Let µ : R<N → R be the mean function for the data universe of all finite-length real-
valued vectors. For chosen parameters µ̂ and ∆, along with any database D = (x1, ...., xn) ∈ R

<N,
we give O(n2) time access to a function g : R<N → R with sensitivity ∆ such that,

|g(D) − µ(D)| ≤ max
{

|µ(D)− µ̂| − n

3
∆, 0

}

+

n
∑

i=1

max

{

27 |xi − µ(D)|
n

−∆, 0

}

.

Additionally, if we are guaranteed that each xi ∈ [µ̂ + α∆, µ̂ + (α + n)∆] for α ∈ [−n, 0], then
g(D) = µ(D)

Proof of Theorem 1.7. The fact that g has sensitivity ∆ follows from the fact that it is our Sensitivity-
Preprocessing Function and the guarantees of Lemma 3.5. The runtime follows from Corollary 5.3.
We then achieve the error bounds from Lemma 5.11 and Lemma 5.13.

6 Efficient Implementation for Variance

In this section, we show how to efficiently extend our recursive algorithm to variance, which is
an important statistical metric and a more complicated function than those considered in Section
5. Although variance is not a database-ordered function, we can still implement our Sensitivity-
Preprocessing Function for variance in O(n2) time, using similar techniques to reduce the number
of subproblems that must be considered. This suggests that database-ordered functions are not
the only class that have an efficient implementation, and that running time of our algorithm can
be improved more generally using structural properties of the function being considered.

The general idea will remain the same as we reduce the number of subproblems to O(n2) by
using structural properties of variance. We first formally define the discrete version of variance
with two equivalent equations.

Definition 6.1. For any D = (x1, ..., xn) ∈ R
n, let µ(D) = 1

n(x1+ · · ·+xn) and define the variance
function,

Var [D]
def
=

1

n

n
∑

i=1

(xi − µ(D))2 ,

or equivalently,

Var [D]
def
=

1

n2

n
∑

i=1

n
∑

j=1

1

2
(xi − xj)

2 .

As with mean, α-trimmed mean, median, maximum, and minimum, we will first sort the entries
of the database. Intuitively, we can decrease the variance most by removing either the minimum
or maximum value. We make use of the following fact, which we prove in the appendix for com-
pleteness.

Fact 6.2. Given D = (x1, ..., xn) ∈ R
n such that x1 ≤ · · · ≤ xn, then for any i,

min{Var [D − x1] ,Var [D − xn]} ≤ Var [D − xi] .

We will use this fact to show that the lower bound on g(D) will be defined by g(D − x1)
or g(D − xn). The difficulty now becomes that to increase variance the most, we would want
to remove an entry between x1 and xn. This poses a significant complication in constructing
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a dynamic program for the subproblems. More specifically, even if g(D) only required solving
two subproblems g(D − xi) and g(D − xj) for some xi, xj , we are still doubling the number of
subproblems at each step. The straightforward dynamic program for ordered-databases was able
to reuse different subproblems to avoid a runtime blow-up. The key idea will then be that we can
bound, with respect to the original variance, the amount variance can be increase by removing an
entry. In particular, we use the following fact that is likely a folklore result, but we could not find
a citation, so we prove it in the appendix for completeness.

Fact 6.3. Given any unordered (x1, ..., xn) ∈ R
n,

Var [x1, ..., xn−1] ≤
n

n− 1
Var [x1, ..., xn] .

We can then use this strong bound to show that if we initialize g(∅) = 0, the Sensitivity-
Preprocessing Function will never go above Var [D] for any g(D). As a result, the Sensitivity-
Preprocessing Function will never actually use Lower(D). This will then allow us to only recurse
on subproblems where the minimum or maximum has been removed, and the dynamic program
will be analogous to the one given for mean.

We first give the efficient implementation for variance and show that it can be done in O(n2)
time. Then we give stronger bounds on the error incurred by this efficient implementation, and
finally use these facts to prove Theorem 1.8.

6.1 Efficient algorithm for variance

As with mean and the database-ordered functions, the key to our efficient implementation will be
showing that the Sensitivity-Preprocessing Function can be equivalently defined using far fewer
subproblems. Using some of the intuition above, we are able to prove the following lemma that
reduces the Sensitivity-Preprocessing Function to a much simpler recursion.

Lemma 6.4. Let Var : R
<N → R be the variance function and set Var [∅] = 0. Then the

Sensitivity-Preprocessing Function with parameter ∆ can be equivalently defined as g(∅) = 0 and
g(D) = min{Var [D] , g(D − x1) + ∆, g(D − xn) + ∆} where D = (x1, ..., xn) with x1 ≤ · · · ≤ xn.

We will prove this lemma with the following two helper lemmas. The first will show that the
Sensitivity-Preprocessing Function will never exceed the true variance. The second uses the fact
that variance is minimized by either removing the minimum or maximum value to show that the
lower bound can simply consider the subproblems g(D − x1) and g(D − xn).

Lemma 6.5. Given any D = (x1, ..., xn) ∈ R
n, if g is the Sensitivity-Preprocessing Function of

variance with parameter ∆ and g(∅) = 0, then,

g(D) ≤ Var [D] .

Proof. We will prove this by induction. If D contains only a single entry, then Var [D] = 0 and by
construction g(D) = 0.

We then consider D = (x1, ..., xn) and assume the inequality holds for all subsets. By the
definition of the Sensitivity-Preprocessing Function, it suffices to show that g(D−xi)−∆ ≤ Var [D]
for all xi. Our inductive claim gives g(D − xi) ≤ Var [D − xi], and Fact 6.3 implies:

Var [D − xi]−Var [D] ≤ 1

n− 1
Var [D] ,
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These combine to give,

g(D − xi)−Var [D] ≤ 1

n− 1
Var [D] .

We now consider two cases. If g(D − xi) ≤ Var [D], then g(D − xi) − ∆ ≤ Var [D] because
∆ ≥ 0 and we have our desired inequality. If Var [D] ≤ g(D − xi) then,

g(D − xi)−Var [D] ≤ 1

n− 1
g(D − xi).

Further, by the definition of Sensitivity-Preprocessing Function and the fact that g(∅) = 0, we must
have g(D − xi) ≤ (n− 1)∆, implying,

g(D − xi)−Var [D] ≤ ∆,

which is our desired inequality.

Lemma 6.6. Given D = (x1, ..., xn) ∈ R
n such that x1 ≤ · · · ≤ xn and g is the Sensitivity-

Preprocessing Function of variance with parameter ∆ and g(∅) = 0, then,

min{g(D − x1), g(D − xn)} ≤ g(D − xi),

for any xi ∈ D.

Proof. We will prove this by induction. If D has just one entry then x1 = xi = xn and each term
is equivalent.

We then consider D = (x1, ..., xn) and assume the inequality holds for all subsets. We will
consider two cases. Our first case is g(D − xi) = Var [D − xi]. Lemma 6.5 implies:

min{g(D − x1), g(D − xn)} ≤ min{Var [D − x1] ,Var [D − xn]}.

Furthermore, by Fact 6.2 we have min{Var [D − x1] ,Var [D − xn]} ≤ Var [D − xi]. Combining
this with the assumption g(D − xi) = Var [D − xi] gives the desired inequality.

It is implied by Lemma 6.5 that the only other case we need to consider is g(D − xi) <
Var [D − xi]. This assumption and our definition of Sensitivity-Preprocessing Function together
imply,

g(D − xi) = min
j 6=i

{g(D − xi − xj) + ∆}.

The definition of Sensitivity-Preprocessing Function also gives:

min{g(D − x1), g(D − xn)} ≤ min{min
j 6=1

{g(D − x1 − xj) + ∆},min
j 6=n

{g(D − xn − xj) + ∆}}.

As a result, if minj 6=1{g(D− xi − xj)+∆} is minimized for j = 1 or j = n, then we easily have
min{g(D − x1), g(D − xn)} ≤ g(D − xi). Furthermore, if j 6= 1, n, then it suffices to show that,

min{g(D − x1 − xj), g(D − xn − xj)} ≤ g(D − xi − xj),

which follows from the inductive hypothesis and implies our desired result.

These two helper lemmas now easily imply Lemma 6.4.

Proof of Lemma 6.4. Lemma 6.5 implies that we will never need to use Lower(D), so we can
eliminate that case. Further, Lemma 6.6 implies that Upper(D) = min{g(D − x1) + ∆, g(D −
xn)+∆}. Combining these facts implies our recursion defined in the lemma statement is equivalent
to the Sensitivity-Preprocessing Function.
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Algorithm 3 Efficient Implementation for Variance

Input: Variance function Var : R<N → R, sensitivity bound ∆, and database D = (x1, ..., xn) ∈
R
n for some arbitrary n.

Output: g(D) where g is the Sensitivity-Preprocessing Function of variance with parameter ∆.
Initialize g(∅) = 0
Sort D (We will assume x1 ≤ · · · ≤ xn for simplicity)
for k=1, . . . , n do

for i = 1, . . . n-k+1 do

for every database D′ = (xi, ..., xi+k−1) do
Let g(D′) = min{Var [D′] , g(D′ − xi) + ∆, g(D′ − xi+k−1) + ∆}

end for

end for

end for

Output g(D)

With this reduction in the number of subproblems for the Sensitivity-Preprocessing Function,
we will be able to give a similar efficient dynamic programming algorithm for the implementation.

It immediately follows that the number of subproblems that we need to consider is O(n2), but
we still need to efficiently compute Var [D]. This computation would normally take O(n) time
and increase our running time to O(n3). However, we can use the computation from previous
subproblems to compute the variance in O(1) time with the following folklore fact that we prove
in the appendix.

Fact 6.7. For any D = (x1, ..., xn) ∈ R
n and any xa 6= xb ∈ D,

Var [D] =

(

n− 1

n

)2

Var [D − xa]+

(

n− 1

n

)2

Var [D − xb]−
(

n− 2

n

)2

Var [D − xa − xb]+
1

n2
(xa−xb)

2.

With this fact we can now show that we implement the Sensitivity-Preprocessing Function for
variance with parameter ∆ in O(n2) time.

Lemma 6.8. Let Var : R
<N → R be the variance function and set Var [∅] = 0. Then Algo-

rithm 3 will compute g(D) for any database of n entries in O(n2) time where g is the Sensitivity-
Preprocessing Function for variance with parameter ∆.

Proof. Correctness of the procedure follows immediately from Lemma 6.4. The running time follows
from the fact that we have O(n2) subproblems and from Fact 6.7 we can compute Var [D] in O(1)
time using the previous subproblems.

6.2 Accuracy guarantees for variance implementation

In this section we give stronger bounds on the error incurred by the Sensitivity-Preprocessing
Function. The proofs will be similar to those in Section 5.3 for mean, but will be slightly simpler
due to that fact that the Sensitivity-Preprocessing Function will never go above the actual variance.
As a result, we achieve a simpler form for the error of the Sensitivity-Preprocessing Function with
respect to variance in the following lemma.

Lemma 6.9. Given D = (x1, ..., xn) ∈ R
n and g that is the Sensitivity-Preprocessing Function of

variance with parameter ∆ and g(∅) = 0, then there must exist some D′ ⊆ D such that g(D) =
Var [D′] + (n− k)∆ for k = |D′|.
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Proof. We prove this inductively on the size of D and see immediately that the claim holds by
construction for D with a single entry.

We then consider D = (x1, ..., xn) and assume that our claim holds for all subsets. From
Lemma 6.5 we know that Var [D] ≥ g(D) for all databases. If Var [D] = g(D), then our claim is
immediately implied. If g(D) < Var [D] then we must have g(D) = g(D − xi) + ∆ for some xi.
Applying the inductive hypothesis on g(D − xi) gives our desired claim.

With this lemma in hand, the main idea for bounding accuracy is to condition on the size of
D′, which we denote k, and give bounds separately for the cases when k ≤ n/2 and k ≥ n/2. When
k is small we will just bound our error by Var [D] − (n − k)∆ and use the fact that (n − k)∆ is
large. When k is large we will look at the loss in accuracy from Var [D]−Var [D′] where we will
bound this by iteratively applying the following lemma.

Lemma 6.10. For any D = (x1, ..., xn) ∈ R
n and any xa ∈ D, then

Var [D]−Var [D − xa] ≤
1

n2

n
∑

i=1

(xa − xi)
2 .

Proof. By the definition of variance,

Var [D]−Var [D − xa] =
1

n2

n
∑

i=1

n
∑

j=1

1

2
(xi − xj)

2 − 1

(n− 1)2

∑

i 6=a

∑

j 6=a

1

2
(xi − xj)

2 .

This reduces to,

Var [D]−Var [D − xa] =
1

n2

n
∑

i=1

(xa − xi)
2 − 2n− 1

n2(n− 1)2

∑

i 6=a

∑

j 6=a

1

2
(xi − xj)

2 ,

which gives our desired equality.

Recall that we want to use this lemma to bound Var [D]−Var [D′] where D′ is a subset of D
with size k. Suppose D′ = (x1, ..., xk) and let Di = (x1, ..., xi) for any i; we will use the fact that
Var [D] − Var [D′] =

∑n
i=k+1Var [Di] − Var [Di−1]. The above Lemma 6.10 allows us to bound

this sum, which will be the key step in our accuracy bounds.

Lemma 6.11. Given D = (x1, ..., xn) ∈ R
n and g that is the Sensitivity-Preprocessing Function of

variance with parameter ∆ and g(∅) = 0, then

|Var [D]− g(D)| ≤ max
{

Var [D]− n

2
∆, 0

}

+
n
∑

i=1

max







n
∑

j=1

4(xi − xj)
2

n2
−∆, 0







.

Proof. Note that Lemma 6.5 implies |Var [D]− g(D)| = Var [D]−g(D). From Lemma 6.9 we know
that g(D) = Var [D′] + (n− k)∆ for some D′ ⊆ D of size k, and we can rewrite Var [D]− g(D) =
Var [D]−Var [D′]− (n− k)∆. If k ≤ n/2, then

Var [D]− g(D) ≤ Var [D]− n

2
∆,

because (n− k) ≥ n/2 and Var [D′] ≥ 0.
If k ≥ n/2, then for simplicity we will assumeD′ = (x1, ..., xk) and address this assumption later.

We then let Di = (x1, ..., xi) for any i and use the fact that Var [D]−Var [D′] =
∑n

i=k+1Var [Di]−

33



Var [Di−1]. Lemma 6.10 along with the fact that k ≥ n/2 allows us to then bound this summation
as

n
∑

i=k+1

Var [Di]−Var [Di−1] ≤
4

n2

n
∑

i=k+1

n
∑

j=1

(xi − xj)
2

We can then use this to achieve (for D′ = (x1, ..., xk))

Var [D]−Var
[

D′
]

− (n− k)∆ ≤
n
∑

i=k+1





n
∑

j=1

4(xi − xj)
2

n2
−∆





At this point we address the assumption that D′ = (x1, ..., xk) by simply adding non-negative
terms to the summation and ensuring that all of the entries in D′ are be included in this summation.
This gives us,

Var [D]−Var
[

D′
]

− (n− k)∆ ≤
n
∑

i=1

max







n
∑

j=1

4(xi − xj)
2

n2
−∆, 0







.

Adding both errors for k ≤ n/2 and k ≥ n/2 gives our desired bound.

6.3 Proof of Theorem 1.8

We now have all the necessary pieces for Theorem 1.8, which we restate and prove here.

Theorem 1.8. Let Var : R<N → R be the variance function for the data universe of all finite-
length real-valued vectors. For fixed parameter ∆, along with any database D = (x1, ...., xn) ∈ R

<N,
we have O(n2) time access to a function g : R<N → R with sensitivity ∆ such that,

|g(D) −Var [D] | ≤ max
{

Var [D]− n

2
∆, 0

}

+

n
∑

i=1

max







n
∑

j=1

4(xi − xj)
2

n2
−∆, 0







.

Proof. The fact that g has sensitivity ∆ follows from the fact that it is our Sensitivity-Preprocessing
Function from Lemma 6.8, and the guarantees of Lemma 3.5. The runtime also follows from
Lemma 6.8. We then achieve the error bounds from Lemma 6.11.

7 Sensitivity preprocessing for personalized privacy guarantees

In this section, we introduce personalized differential privacy, where each individual in a database
may receive a different privacy parameter ǫi. We show that our Sensitivity-Preprocessing Function is
naturally compatible with this privacy notion, and demonstrate the use of sensitivity-bounded
functions for achieving personalized privacy guarantees, using the Laplace Mechanism and the
Exponential Mechanism as illustrative examples. The notion of personalized privacy has been
previously applied to the design of markets for privacy. We demonstrate the use of Sensitivity-
Preprocessing Function for this application in Section 7.2, and hope that our results may be useful
tools for this well-studied problem in algorithmic economics.
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7.1 Personalized differential privacy

We begin by defining personalized differential privacy, which extends the standard definition of
differential privacy (Definition 2.1) to a setting where different individuals participating in the
same computation may experience different, personalized privacy guarantees. Similar definitions
have also been used in previous work [JYC15, ESS15, AGK17, LXJJ17]. Recall from Section 2 that
two databases are neighboring if they differ in at most one entry. We will say that two databases
are i-neighbors if they differ only in the i-th entry.

Definition 7.1 (Personalized differential privacy). A mechanism M : D → R is {ǫi}-personally
differentially private if for all i, for every pair of i-neighbors D,D′ ∈ D, and for every subset of
possible outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ exp(ǫi) Pr[M(D′) ∈ S].

Note that any {ǫi}-personally differentially private algorithm is also (maxi ǫi)-differentially
private, since differential privacy provides a worst-case guarantee over all pairs of neighboring
databases.

In this section, we show that personalized differential privacy can be achieved by combining our
sensitivity preprocessing step with existing differentially private mechanisms. An analyst can first
apply our preprocessing step to get g with desired individual sensitivity bounds, and then evaluate g
using a differentially private algorithm. The resulting {ǫi}-personal differential privacy guarantees
will depend on the chosen sensitivity parameters {∆i}. Since the function g is independent of the
database, the sensitivity preprocessing step does not leak any additional privacy.

Individual sensitivity guarantees are critical for accurate analysis in this new privacy model.
Using only global sensitivity bounds ∆, personally differentially private mechanisms add noise that
scales with maxi{∆/ǫi}. This alone cannot offer significant accuracy improvements because the
noise must still scale inversely proportionally to the smallest ǫi. By utilizing individual sensitivity
bounds, an analyst can tune each ∆i to scale with ǫi to achieve overall accuracy improvements with
personalized differential privacy.

We note that local differential privacy [KLN+08] also affords different privacy guarantees to
different individuals in the same database, by perturbing each user’s data locally before submitting
it to the database. Significantly stronger accuracy guarantees are possible in the presence of a
trusted curator—which we assume in our model—because the analyst can leverage correlation of
noise across individuals [Ull18].

A formal statement of the privacy and accuracy guarantees that arise from applying differentially
private algorithms to sensitivity-bounded functions will depend on the exact algorithm used. We
illustrate this approach below applying it on two of the most foundational differentially private
algorithms: the Laplace Mechanism and the Exponential Mechanism.

Laplace Mechanism

The Laplace Mechanism [DMNS06] is perhaps the most fundamental of all differentially private
algorithms. It first evaluates a real-valued function f on an input database D, and then perturbs
the answer by adding Laplace noise scaled to the global sensitivity of f divided by ǫ. The Laplace
distribution with scale b, denoted Lap(b), has probability density function:

Lap(x|b) = 1

2b
exp

(

−|x|
b

)

.
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Definition 7.2 (Laplace Mechanism [DMNS06]). Given any function f : D → R, the Laplace
Mechanism is defined as,

ML(D, f,∆f/ǫ) = f(D) + Y,

where Y is drawn from Lap(∆f/ǫ).6

The Laplace Mechanism is ǫ-differentially private [DMNS06]. We now show how to combine the
Laplace Mechanism with our Sensitivity-Preprocessing Function to achieve personalized differential
privacy guarantees.

Proposition 7.3. Let g : D → R be a function with individual sensitivities {∆i}. For any {ǫi},
the Laplace Mechanism ML (D, g,maxj{∆j/ǫj}) is {ǫi}-personally differentially private.

Proof. Let D,D′ ∈ D be i-neighbors, let g : D → R be a function with individual sensitivities {∆i},
and let r ∈ R be arbitrary.

Pr[ML(D, g,maxj{∆j/ǫj}) = r]

Pr[ML(D′, g,maxj{∆j/ǫj}) = r]
=

exp
(

−minj{ ǫj
∆j

}|g(D) − r|
)

exp
(

−minj{ ǫj
∆j

}|g(D′)− r|
)

= exp

(

min
j

{ ǫj
∆j

}
(

|g(D′)− r| − |g(D) − r|
)

)

≤ exp

(

min
j

{ ǫj
∆j

}
(

|g(D)− g(D′)|
)

)

≤ exp

(

min
j

{ ǫj
∆j

}∆i

)

≤ exp(ǫi)

Then this version of the Laplace Mechanism run on a function with individual sensitivities {∆i} is
{ǫi}-personally differentially private.

Proposition 7.3 shows that to achieve personalized privacy guarantees for a given function f ,
one can apply our Sensitivity-Preprocessing Function to produce Sensitivity-Bounded g, and then
apply the Laplace Mechanism. The accuracy guarantees of this procedure will depend on the worst-
case ratio of ∆i/ǫi, as well as global sensitivity of the original function f . If one person j requires
significantly higher privacy protections than the rest of the population, the analyst can account for
this by reducing ∆j . This may greatly improve accuracy over the standard approach, which would
require the analyst to add increased noise to the entire population. We address this challenge more
concretely in Section 7.2, using the application of market design for private data.

Exponential Mechanism

The Exponential Mechanism [MT07] is a powerful private mechanism for answering non-numeric
queries with an arbitrary range, such as selecting the best outcome from a set of alternatives. The
quality of an outcome is measured by a score function q : D×R → R, which relates each alternative
to the underlying data through a real-valued score. The global sensitivity of the score function is

6We note that the standard definition of the Laplace Mechanism in [DMNS06] takes ǫ as input instead of ∆f

ǫ
.

We use the latter here for ease of notation when extending to personalized differential privacy. This change does not
affect the algorithm at all.

36



measured only with respect to the database argument; it can be arbitrarily sensitive in its range
argument:

∆q = max
r∈R

max
D,D′ neighbors

|q(D, r)− q(D′, r)|.

We define the individual sensitivity of a quality score analogously with respect to only its database
argument:

∆i(q) = max
r∈R

max
D,D′ i−neighbors

|q(D, r)− q(D′, r)|.

The Exponential Mechanism samples an output from the rangeR with probability exponentially
weighted by score. Outcomes with higher scores are exponentially more likely to be selected, thus
ensuring both privacy and a high quality outcome.

Definition 7.4 (Exponential Mechanism [MT07]). Given a quality score q : D × R → R, the
Exponential Mechanism is defined as:7

ME(D, q,∆q/ǫ) = output r ∈ R with probability proportional to exp

(

ǫq(D, r)

2∆q

)

.

The Exponential Mechanism is ǫ-differentially private [MT07]. We now show that when a score
function has bounded individual sensitivity, the Exponential Mechanism is personally differentially
private.

Proposition 7.5. Let q : D×R → R be a score function with individual sensitivities {∆i}. For any
{ǫi}, the Exponential Mechanism ME (D, q,maxj{∆j/ǫj}) is {ǫi}-personally differentially private.

Proof. Let D,D′ ∈ D be i-neighbors, let q be a score function with individual sensitivities {∆i},
and let r ∈ R be an arbitrary element of the output range.

Pr[ME(D, q,maxj{∆j/ǫj}) = r]

Pr[ME(D′, q,maxj{∆j/ǫj}) = r]

=





exp

(

minj{
ǫj
∆j

}q(D,r)/2

)

∑

r′∈R exp

(

minj{
ǫj

∆j
}q(D,r′)/2

)









exp

(

minj{
ǫj

∆j
}q(D′,r)/2

)

∑

r′∈R exp

(

minj{
ǫj

∆j
}q(D′,r′)/2

)





=





exp
(

minj{ ǫj
∆j

}q(D, r)/2
)

exp
(

minj{ ǫj
∆j

}q(D′, r)/2
)



 ·





∑

r′∈R exp
(

minj{ ǫj
∆j

}q(D′, r′)/2
)

∑

r′∈R exp
(

minj{ ǫj
∆j

}q(D, r′)/2
)





= exp

(

min
j

{ ǫj
∆j

}
(

q(D, r)− q(D′, r)
)

/2

)

·





∑

r′∈R exp
(

minj{ ǫj
∆j

}q(D′, r′)/2
)

∑

r′∈R exp
(

minj{ ǫj
∆j

}q(D, r′)/2
)





≤ exp

(

1

2
min
j

{ ǫj
∆j

}∆i

)

· exp
(

1

2
min
j

{ ǫj
∆j

}∆i

)

·





∑

r′∈R exp
(

minj{ ǫj
∆j

}q(D, r′)/2
)

∑

r′∈R exp
(

minj{ ǫj
∆j

}q(D, r′)/2
)





= exp

(

min
j

{ ǫj
∆j

}∆i

)

≤ exp(ǫi)

7As with the Laplace Mechanism, we define the Exponential Mechanism to take ∆q

ǫ
as input, instead of ǫ. This

change is purely notational, and has no impact on the algorithm.
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Remark 7.6. The Exponential Mechanism is a canonical ǫ-differentially private algorithm: every
ǫ-differentially private algorithm M can be written as an instantiation of the Exponential Mecha-
nism using quality score q(D, r) = ln(Pr[M(D) = r]) with global sensitivity ∆q = ǫ. We can use
this reduction to show that any ǫ-differentially private algorithm can be modified to give personal
privacy guarantees using our Sensitivity-Preprocessing Function. First, re-write private mechanism
M as an Exponential Mechanism ME , and then perform Sensitivity-Preprocessing on the qual-
ity score of ME . Proposition 7.5 shows that the sensitivity-bounded version of ME will satisfy
personalized differential privacy.

7.2 Application: Markets for privacy

One motivating application for wanting personalized privacy guarantees comes from algorithmic
game theory and the study of market design for privacy. This is a well-studied problem in the algo-
rithmic economics community [CCK+13, NOS12, NST12, LR12, FL12, GR15, GLRS14, CLR+15,
CIL15, WFA15, CPWV16], and of practical importance as growing amounts of data are collected
about individuals. In a market for privacy, a data analyst wishes to purchase and aggregate data
from multiple strategic individuals. These individuals may have privacy concerns, and will require
compensation for their privacy loss from sharing data. On the opposite side of the market, firms
demand accurate estimates of population statistics, for uses such as market research or operational
decision making.

The analyst must first purchase data from these strategic individuals, and then aggregate the
collected data into an accurate estimate for firms. Her goal is to perform this task while maximizing
her own profits. One of the tools at her disposal is differential privacy: by offering individuals formal
privacy guarantees, their privacy costs from sharing data are diminished, and the analyst can
provide smaller payments. However, the noise from differential privacy may introduce additional
error.

It is the analyst’s task to determine the optimal privacy level for the market that balances
these opposing effects. Due to potentially heterogeneous privacy costs of the individuals, it may
be optimal in terms of her profit for the analyst to provide different privacy guarantees to differ-
ent individuals in the population. She could then use our Sensitivity-Preprocessing Function to
algorithmically provide the heterogeneous privacy levels demanded by the market. We leave the
challenge of modeling specifics of these markets as an open question to the algorithmic game the-
ory community, and hope that our preprocessing tool and mechanisms for personalized privacy will
open new avenues for designing markets for privacy.

8 Extension to 2-dimensions for ℓ1 sensitivity

In this section we show that our Sensitivity-Preprocessing Function can be naturally extended to
functions that map to 2-dimensional space where we consider the sensitivity in the ℓ1 distance
metric. While there is a natural extension of our Sensitivity-Preprocessing Function to higher
dimensions, the primary difficulty will be ensuring that our greedy construction still yields a non-
empty intersection of the constraints. Interestingly, we show that this set of constraints will give a
non-empty intersection for 2 dimensions, and provide a counter-example for higher dimensions.

Recall that our Sensitivity-Preprocessing Function found a range [Lower(D),Upper(D)] where
it could feasibly place g(D), then choose the point in that segment closest to f(D). This range of
feasible points came from intersecting each constraint [g(D − xi)−∆i, g(D − xi) + ∆i] induced by
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the neighbors of D that are strictly smaller. The Sensitivity-Preprocessing Function then chose the
point in this intersection closest to f(D). The key property needed by the algorithm was that this
intersection was non-empty.

To prove this key property we took advantage of the data universe structure, which immediately
yielded the fact that for any xi, xj ∈ D we must have [g(D − xi) −∆i, g(D − xi) + ∆i] ∩ [g(D −
xj)−∆j, g(D − xj) + ∆j] 6= ∅. As a result, we had a finite set of line segments whose intersection
was pair-wise non-empty, which immediately implies that the intersection of all line segments was
non-empty. We note that [g(D − xi) − ∆i, g(D − xi) + ∆i] is the ℓ1 ball with radius ∆i around
g(D − xi) in one dimension. For higher dimensions, the constraints will now be the ℓ1 ball with
radius ∆i around g(D − xi) in d dimensions. The structure of the data universe will still give that
each of these ℓ1 balls has a non-empty pair-wise intersection. However, this only implies that the
intersection of all these ℓ1 balls is non-empty if we are in 2 dimensions. We first formally define the
notion of an ℓ1 ball in higher dimensions.

Definition 8.1 (ℓ1 ball). The ℓ1 ball around point x∗ ∈ R
d with radius ∆ is the set:

(x∗,∆)d1
def
= {x ∈ R

d| ‖x− x∗‖1 ≤ ∆}.
To ensure that our choice of g(D) does not violate the individual sensitivity parameter ∆i, we

must place g(D) ∈ (g(D − xi),∆i)
d
1. In the one-dimensional case, we had the same constraints,

but they were simpler to handle because the ℓ1 ball is simply a line segment. We now define our
Sensitivity-Preprocessing Function for two dimensions, which chooses the point that satisfies our
constraints and is closest to f(D), just as in the one-dimensional case.

Definition 8.2 (2-dimensional Sensitivity-Preprocessing Function). Given a function f : D →
R
2 for any data universe such that for any D ∈ D, all D′ ⊂ D are also in D. For any non-

negative individual sensitivity parameters {∆i}, we say that a function g : D → R
2 is a Sensitivity-

Preprocessing Function of f with parameters {∆i} if g(∅) = f(∅) and
g(D) = closest point in ∩xi∈D (g(D − xi),∆i)

2
1 to f(D) in the ℓ2 metric.

If all ∆i = ∆ for some non-negative ∆, then we say that g is a Sensitivity-Preprocessing Function of
f with parameter ∆.

Our primary goal of this section will then be to prove the following theorem that is equivalent
to Theorem 3.3 but works for 2-dimensions. We will also point out the key spot within the proof
where it breaks for dimensions greater than 2.

Theorem 8.3. Given T (n)-time query access to an arbitrary f : D → R
2, and sensitivity parame-

ters {∆i}, we provide O((T (n)+n)2n) time access to Sensitivity-Preprocessing Function g : D → R
2

such that ∆i(g) ≤ ∆i. Further, for any database D = (x1, . . . , xn),

‖f(D)− g(D)‖1 ≤ max
σ∈σD

|D|
∑

i=1

max{
∥

∥f(Dσ(<i) + xσ(i))− f(Dσ(<i))
∥

∥

1
−∆σ(i), 0},

where σD is the set of all permutations on [n], and Dσ(<i) = (xσ(1), ..., xσ(i−1)) is the subset of D
that includes all individual data in the permutation before the ith entry.

As before, we will break the proof of this theorem into two parts. It immediately follows from
construction that our 2-dimensional Sensitivity-Preprocessing Function will have the appropriate
individual sensitivity parameters, but only if the function is well-defined. To this end, we first show
in Section 8.1 that the intersection of the ℓ1 balls is always non-empty if each pair-wise intersection
is non-empty. Then in Section 8.2 we give the analogous error guarantees where the proof will just
follow equivalently to the one-dimensional case.
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8.1 Correctness of Sensitivity-Preprocessing Function

In this section we show that for our 2-dimensional Sensitivity-Preprocessing Function, it is always
the case that g(D) is defined. This is equivalent to showing:

⋂

xi∈D

(g(D − xi),∆i)
2
1 6= ∅.

We will first take advantage of the structure of data universes to show that the pair-wise
intersection is always non-empty. Then we will use the fact that pair-wise intersection of ℓ1 balls in
2-dimensions implies that the intersection of all ℓ1 balls is non-empty. Intuitively, this is because
ℓ1 balls in 2-dimensions are simply rotated squares. Further, we will show that this is exactly the
step that breaks the algorithm for higher dimensions.

Lemma 8.4. Given any f : D → R
2 and desired sensitivity parameters {∆i}, let g : D → R

2 be the
Sensitivity-Preprocessing Function with parameters {∆i}. For any D ∈ D with at least two entries,
assume that g(D′) is defined for any D′ ⊂ D. Then for any xi, xj ∈ D,

(g(D − xi),∆i)
2
1 ∩ (g(D − xj),∆j)

2
1 6= ∅.

Note that we have not yet proven that g(D) is defined on all databases, so we will need to first
assume that it is on all subsets of D. Our proof of this fact will be done inductively.

Proof. We use the fact that D has at least two entries and consider the database D−xi −xj . Due
to our assumption that g(D′) is defined on all D′ ⊂ D, it follows from our construction of g that

‖g(D − xi)− g(D − xi − xj)‖1 ≤ ∆j,

and
‖g(D − xj)− g(D − xi − xj)‖1 ≤ ∆i,

Applying triangle inequality gives,

‖g(D − xi)− g(D − xj)‖1 ≤ ∆i +∆j,

which implies our claim by the definition of ℓ1 balls.

With this pair-wise intersection property, it now remains to be shown that this implies the
intersection of all ℓ1 balls is non-empty. For this we prove a general fact about the intersection of
ℓ1 balls in 2-dimensions.

Lemma 8.5. Consider any set of points y1, ..., yn ∈ R
2, where we let (yi)1 and (yi)2 denote the

respective coordinates of yi. Consider any set of non-negative ∆1, ...,∆n. If for any yi, yj ,

(yi,∆i)
2
1 ∩ (yj ,∆j)

2
1 6= ∅,

then,
n
⋂

i=1

(yi,∆i)
2
1 6= ∅.

Our proof will first rewrite each ℓ1 ball as a set of 4 linear inequalities. From this interpretation
we will then use two critical facts. First, each inequality has a corresponding parallel inequality in
any other ℓ1 ball. Second, removing any one of these constraints gives an unbounded polytope.
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Proof. Further examination of Definition 8.1 shows that

(yi,∆i)
2
1
def
= {x ∈ R

2| ‖x− yi‖1 ≤ ∆i} = {x ∈ R
2| |(x)1 − (yi)1|+ |(x)2 − (yi)2| ≤ ∆i}.

We then use a known trick of converting absolute values into linear inequalities where |x| ≤ k
becomes x ≤ k and −x ≤ k.

(yi,∆i)
2
1 ={x ∈ R

2|(x)1 + (x)2 ≤ (yi)1 + (yi)2 +∆i}
∩ {x ∈ R

2| − (x)1 − (x)2 ≤ −(yi)1 − (yi)2 +∆i}
∩ {x ∈ R

2|(x)1 − (x)2 ≤ (yi)1 − (yi)2 +∆i}
∩ {x ∈ R

2| − (x)1 + (x)2 ≤ −(yi)1 + (yi)2 +∆i}

At this point we note that each of the balls have parallel inequalities, so we can use the following
fact:

{x ∈ R
2|(x)1 + (x)2 ≤ (yi)1 + (yi)2 +∆i} ∩ {x ∈ R

2|(x)1 + (x)2 ≤ (yj)1 + (yj)2 +∆j}
=
{

x ∈ R
2|(x)1 + (x)2 ≤ min{(yi)1 + (yi)2 +∆i, (yj)1 + (yj)2 +∆j}

}

.

We apply this fact to the full intersection and obtain,

n
⋂

i=1

(yi,∆i)
2
1 ={x ∈ R

2|(x)1 + (x)2 ≤ min
i∈[n]

{(yi)1 + (yi)2 +∆i}}

∩ {x ∈ R
2| − (x)1 − (x)2 ≤ min

i∈[n]
{−(yi)1 − (yi)2 +∆i}}

∩ {x ∈ R
2|(x)1 − (x)2 ≤ min

i∈[n]
{(yi)1 − (yi)2 +∆i}}

∩ {x ∈ R
2| − (x)1 + (x)2 ≤ min

i∈[n]
{−(yi)1 + (yi)2 +∆i}}.

Intuitively, if this intersection exists, it must be a rectangle that is rotated 45 degrees. To more
easily see this fact, we now multiply the second and fourth constraint by -1.

n
⋂

i=1

(yi,∆i)
2
1 ={x ∈ R

2|(x)1 + (x)2 ≤ min
i∈[n]

{(yi)1 + (yi)2 +∆i}}

∩ {x ∈ R
2|(x)1 + (x)2 ≥ min

i∈[n]
{(yi)1 + (yi)2 −∆i}}

∩ {x ∈ R
2|(x)1 − (x)2 ≤ min

i∈[n]
{(yi)1 − (yi)2 +∆i}}

∩ {x ∈ R
2|(x)1 − (x)2 ≥ min

i∈[n]
{(yi)1 − (yi)2 −∆i}}

With this interpretation it is straightforward to see that
⋂n

i=1(yi,∆i)
2
1 = ∅ if and only if

min
i∈[n]

{(yi)1 + (yi)2 +∆i} < min
i∈[n]

{(yi)1 + (yi)2 −∆i},

or
min
i∈[n]

{(yi)1 − (yi)2 +∆i} < min
i∈[n]

{(yi)1 − (yi)2 −∆i}.

Let k be the index that minimizes (yi)1 + (yi)2 + ∆i and let l be the index that minimizes
(yi)1 + (yi)2 −∆i. If

(yk)1 + (yk)2 +∆k < (yl)1 + (yl)2 −∆l,
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then we must have,

∆k +∆l < (yl)1 − (yk)1 + (yl)2 − (yk)2 ≤ |(yl)1 − (yk)1|+ |(yl)2 − (yk)2| ,

which contradicts our assumption that (yk,∆k)
2
1 ∩ (yl,∆l)

2
1 6= ∅. This follows identically for the

second inequality, so therefore neither of them can hold and the intersection must be non-empty.

We now remark that Theorem 8.3 cannot be extended to higher dimensions or to ℓp norms.

Remark 8.6. For extending to dimensions greater than two, the proof breaks down at Lemma 8.5.
Intuitively, we can still interpret each ℓ1 ball as a set of linear inequalities, however it no longer has
the critical property that removing one of the constraints creates an unbounded polytope. More
specifically, consider the following counter-example for 3 dimensions:

Let A = {(1, 1,−1), (1,−1, 1), (−1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)} and set ∆ = 3. It
is not difficult to see that taking the intersection of ∆-radius ℓ1 balls around each point in A
will only contain the origin (0, 0, 0). We then consider adding the point (3/2, 3/2, 3/2), and it is
straightforward to verify that the ℓ1 distance between this point and any point in A is at most
11/2 < 2∆. However, the origin is not within the ℓ1 ball around (3/2, 3/2, 3/2). Therefore, if we
consider the set of ℓ1 balls of radius ∆ around the points in A ∪ (3/2, 3/2, 3/2), then each pair of
ℓ1 balls will intersect, but the full intersection will be empty, giving our counter-example.

Remark 8.7. Even in 2-dimensions, we cannot have Lemma 8.5 for the ℓp ball with p ∈ (1,∞)
due to the curvature of each ball. For instance, consider the ℓ2 ball with radius 1 for the points
(−1, 0), (1, 0), (0,

√
3). Each of pair of these points is exactly distance 2 apart in the ℓ2 metric, so

their ℓ2 balls of radius 1 each pairwise intersect. However it is easy to see that the intersection of
all three is empty.

We can similarly extend this counter-example to other ℓp balls using the fact that there must be
some curvature of the ℓp ball, and the midpoint between any two points in the ℓp metric is unique
if p ∈ (1,∞).

With these lemmas, we are now able to show that our 2-dimensional Sensitivity-Preprocessing
Function must always be defined.

Lemma 8.8. Given any f : D → R
2 with sensitivity parameters {∆i}, let g : D → R

2 be the
Sensitivity-Preprocessing Function with parameters {∆i}. Then for any D ∈ D,

⋂

xi∈D

(g(D − xi),∆i)
2
1 6= ∅.

Proof. We will prove this fact inductively, and note that it is immediately true when D only has
one entry.

We then consider an arbitrary database D and assume that it is true for all D′ ⊂ D. With this
inductive claim we can apply Lemma 8.4 to get that all of the ℓ1 balls have non-empty pairwise
intersection. Our desired result then immediately follows from applying Lemma 8.5.

8.2 Error bounds for the 2-dimensional extension

The following lemma gives the desired error bounds on the 2-dimensional Sensitivity-Preprocessing
Function.
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Lemma 8.9. Given any f : D → R
2 and desired sensitivity parameters {∆i}, let g : D → R

2 be
the Sensitivity-Preprocessing Function with parameters {∆i}. Then for any D ∈ D,

‖f(D)− g(D)‖1 ≤ max
σ∈σD

|D|
∑

i=1

max{
∥

∥f(Dσ(<i) + xσ(i))− f(Dσ(<i))
∥

∥

1
−∆σ(i), 0},

where σD is the set of all permutations of the set [n], and let Dσ(<i) = (xσ(1), ..., xσ(i−1)) be the
subset of D that includes all individual data in the permutation before the ith entry.

The proof of Lemma 8.9 follows identically to the proof of Lemma 3.6 where by replacing any
instance of absolute value with the 1-norm.

We are finally ready to complete the proof of our main theorem for two dimensions.

Proof of Theorem 8.3. The individual sensitivity guarantees follow from the construction of g and
Lemma 8.8. The error bounds are given by Lemma 8.9. It then remains to prove the running time.
For each subset of D we need to query f which takes T (n) time by assumption. We note that
within the proof of Lemma 8.5 we gave a construction for obtaining the intersection of n different
ℓ1 balls which could clearly be done in O(n) time. Finding the closest point to f(D) then takes
O(1) time for the polytope defined by four inequalities. Therefore, the running time is T (n)+O(n)
for each of the 2n subsets, which implies the desired running time.

9 Future Directions

We are especially interested in efficiently implementing our framework for more complicated and,
in particular, higher-dimensional functions such as linear regression. We believe that leveraging the
simple recursive construction of our algorithm along with non-trivial structural properties of these
more difficult functions can allow for efficient and accurate implementation. We are particularly
optimistic because all of our proofs in this work were from first principles, suggesting that we may
be able to obtain further results from this framework by using more sophisticated tools.

While our construction did not generalize to any dimension under the ℓ1 sensitivity metric, we
note that this was in the most general setting. If the class of functions we consider is significantly
restricted, then we believe the natural extension could both work and be efficiently implementable.
Furthermore, we have not yet investigated variants of our algorithm that might work better under
stronger assumptions or combining our construction with other frameworks for handling worst-case
sensitivity.

We also believe that our construction opens up several intriguing directions with respect to
personalized differential privacy and its application in markets for privacy. Our construction allows
for tailoring individual sensitivity, but this presents a natural trade-off between choosing small
individual sensitivity parameters and the error incurred by our preprocessing step. For specific
functions, this may yield interesting optimization problems that can also be considered in the
context of markets for privacy.
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A Omitted Proofs

In this appendix we provide proofs that were omitted from Sections 5 and 6.

A.1 Proof of Lemma 5.12

Proof of Lemma 5.12. We start by decomposing the RHS:

1

n

n
∑

i=k

|xi − µD| =
1

n

n
∑

i=k

∣

∣

∣

∣

xi −
x1 + · · ·+ xn

n

∣

∣

∣

∣

=
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∑

i=k
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∣
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∣
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n
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j=1

(xi − xj)
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∣
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.

It now suffices to show,
n
∑

i=k

i
∑

j=1

1

3
|xi − xj| ≤

n
∑

i=k
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∣

∣
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∣

n
∑

j=1

(xi − xj)

∣
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∣

∣

∣

.
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We further examine the RHS and use our assumption that x1 ≤ · · · ≤ xn, which implies that
for each i,

∣

∣

∣

∣

∣

∣

n
∑

j=1

(xi − xj)

∣

∣

∣

∣

∣

∣

= max{
i
∑

j=1

|xi − xj | −
n
∑

j=i

|xi − xj | ,
n
∑

j=i

|xi − xj | −
i
∑

j=1

|xi − xj |}.

The idea will then be that because we have an ordering on x1, ..., xn, there will be a transition
index. In particular, there is some l ∈ [n− 1] such that
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∣
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=
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n
∑

j=i

|xi − xj |

for all i > l, and
∣

∣

∣

∣
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(xi − xj)
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∣

∣

∣
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∣

=

n
∑

j=i

|xi − xj | −
i
∑

j=1

|xi − xj |

for all i ≤ l. If we then have l ≤ k, then,

n
∑

i=k
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


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|xi − xj|


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By cancellation, we get,
n
∑

i=k
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∣
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j=1

(xi − xj)
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∣
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=
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i=k

k
∑

j=1

|xi − xj| .

Applying Fact A.1 gives,
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|xi − xj | ,

as desired. If l > k, then,
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
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We will simply lower bound the first term in the sum by 0, and note that Fact A.1 (stated below)
implies,

l
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i=k
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Furthermore, by cancellation, we get,
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We then use the fact that,

n
∑

i=l+1

l+1
∑

j=1

|xi − xj | ≥
l
∑

i=k

i
∑

j=1

|xi − xj| ,

and
n
∑

i=l+1

l+1
∑

j=1

|xi − xj| ≥
n
∑

i=l+1

i
∑

j=l

|xi − x+ j| ,

from Fact A.1, to obtain:

3

n
∑

i=l+1

l+1
∑

j=1

|xi − xj| ≥
n
∑

i=k

i
∑

j=1

|xi − xj| ,

as desired.

Fact A.1. For any ordered values x1 ≤ · · · ≤ xn, and any k ∈ [n− 1] such that,

k
∑

j=1

|xk − xj | ≤
n
∑

j=k+1

|xk − xj | ,

then for any i ≤ k, we must have,

k
∑

j=1

|xi − xj | ≤
n
∑

j=k+1

|xi − xj| .

Proof. This follows from the fact that x1 ≤ · · · ≤ xk, so
∑k

j=1 |xi − xj | ≤ ∑k
j=1 |xk − xj| and

∑n
j=k+1 |xk − xj | ≤

∑n
j=k+1 |xi − xj|.

A.2 Omitted proofs from Section 6

In this section we prove some important facts about variance that were necessary for obtaining an
efficient algorithm for variance. We first show the intuitive fact that if we want to decrease the
variance most, we should remove the maximum or minimum value.

Proof of Fact 6.2. It suffices to show that Var [D − x1] ≤ Var [D − xi] if xi ≤ µ(D) and that
Var [D − xn] ≤ Var [D − xi] if xi ≥ µ(D). We will show the first, and the second follows equiva-
lently.

We again use the definition of variance stated as,

Var [x1, ..., xn] =
1

n2

n
∑

i=1

n
∑

j>i

(xi − xj)
2 ,

and by cancellation we see that showing Var [D − x1] ≤ Var [D − xi] is equivalent to,

1

n2

∑

j 6=1

(xi − xj)
2 ≤ 1

n2

∑

j 6=i

(x1 − xj)
2,

which is also equivalent to showing,
∑

j 6=1,i

(xi − xj)
2 ≤

∑

j 6=1,i

(x1 − xj)
2.
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The proof then follows from the fact that this is a sum of least squares minimization for the
vector x2, ..., xi−1, xi+1, ..., xn, where we know that x1 ≤ xi and µ(D − x1 − xi) ≥ µ(D) because
x1, xi ≤ µ(D).

We now prove Fact 6.3 using the simple helper fact that if we add a data point and want to
minimize the variance, then the added data point should the mean of the remaining points.

Fact A.2. Given any set x1, ..., xn ∈ R with mean µ, then

argmin
y

Var [y, x1, ..., xn] = µ.

Proof. By definition,

Var [x1, ..., xn] =
1

n2

n
∑

i=1

n
∑

j>i

(xi − xj)
2 .

The problem we are considering fixes x1, ..., xn and minimizes the variable y, so each term in the
summation that does not include y can be ignored, and our minimization problem then reduces to,

argmin
y

Var [y, x1, ..., xn] = argmin
y

n
∑

i=1

(y − xi)
2,

which is minimized when y = µ.

We use this fact to lower bound the variance from adding one additional variable, and complete
our proof of Fact 6.3.

Proof of Fact 6.3. We first upper bound the variance of all variables:

min
y

Var [x1, ..., xn−1, y] ≤ Var [x1, ..., xn] .

Fact A.2 implies that,

min
y

Var [x1, ..., xn−1, y] = Var
[

x1, ..., xn−1, µ[1:n−1]

]

,

where µ[1:n−1] is the mean of x1, ..., xn−1. We then apply the definition of variance to get,

Var
[

x1, ..., xn−1, µ[1:n−1]

]

=
1

n

n−1
∑

i=1

(xi − µ[1:n−1])
2.

Together, this implies that,

min
y

Var [x1, ..., xn−1, y] =
n− 1

n
Var [x1, ..., xn−1] ,

which gives our desired result.

Finally, we also needed the following fact to reduce our running time to O(n2) for implementa-
tion of variance.
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Proof of Fact 6.7. We utilize the definition of variance as,

Var [x1, ..., xn] =
1

n2

n
∑

i=1

n
∑

j=1

1

2
(xi − xj)

2 .

After cancellation from the scalars we have,
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1

2
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Separating out within the summation gives,

1

n2

∑
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2
(xi − xj)
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1
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2,

which is equivalent to Var [D] as desired.
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