
ar
X

iv
:2

00
1.

07
25

4v
2 

 [
m

at
h.

C
O

] 
 1

0 
A

ug
 2

02
1

FACTORS AND LOOSE HAMILTON CYCLES IN SPARSE

PSEUDO-RANDOM HYPERGRAPHS

HIÊ. P HÀN, JIE HAN, AND PATRICK MORRIS

Abstract. We investigate the emergence of subgraphs in sparse pseudo-random k-uniform hy-
pergraphs, using the following comparatively weak notion of pseudo-randomness. A k-uniform
hypergraph H on n vertices is called (p, α, ε)-pseudo-random if for all (not necessarily disjoint)
vertex subsets A1, . . . , Ak⊆V (H) with |A1| · · · |Ak|≥αnk we have

e(A1, . . . , Ak) = (1± ε)p|A1| · · · |Ak|.

For any linear k-uniform F we provide a bound on α = α(n) in terms of p = p(n) and F , such that
(under natural divisibility assumptions on n) any k-uniform

(

p, α, o(1)
)

-pseudo-random n-vertex
hypergraph H with a mild minimum vertex degree condition contains an F -factor. The approach
also enables us to establish the existence of loose Hamilton cycles in sufficiently pseudo-random
hypergraphs and, along the way, we also derive conditions which guarantee the appearance of any
fixed sized subgraph. All results imply corresponding bounds for stronger notions of hypergraph
pseudo-randomness such as jumbledness or large spectral gap.

As a consequence,
(

p, α, o(1)
)

-pseudo-random k-graphs as above contain: (i) a perfect matching

if α = o(pk) and (ii) a loose Hamilton cycle if α = o(pk−1). This extends the works of Lenz–Mubayi,
and Lenz–Mubayi–Mycroft who studied the analogous problems in the dense setting.

1. Introduction

Pseudo-random graphs, vaguely speaking, are deterministic graphs which resemble their random
counterparts in many characteristic properties. The systematic study of the topic was initiated
by Andrew Thomason [55, 56] who introduced a variant of the following notion of uniform edge
distribution. A graph G = (V,E) is called (p, β)-jumbled if for all (not necessarily disjoint) A,B⊆V
we have 1

(1.1) e(A,B) := |{(a, b) ∈ A×B : {a, b} ∈ E}| = p|A||B| ± β
√

|A||B|.
The definition of jumbledness captures how close a graph is to having uniform edge distribu-
tion, with the parameter β controlling the discrepancy from this paradigm. Further, β also con-
trols the size of subsets A,B⊆V for which the lower bound in (1.1) becomes void, namely, once
|A||B| = o(β2/p2) holds. The random graph G(n, p) is

(

p,O(
√
pn)

)

-jumbled almost always, which
is essentially optimal since it follows from the proof of Erdős and Spencer [19] that any graph with
edge density, say, p < 0.99 satisfies β = Ω(

√
pn).
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One topic of great importance and popularity in the area concerns the appearance of certain
subgraphs F in sufficiently pseudo-random graphs G. Here, F can be a small, fixed size graph such
as a triangle, an odd cycle or a fixed size clique, or it can be a large, indeed spanning subgraph
of G such as a perfect matching, a Hamilton cycle, or a Kr-factor

2. The fundamental question
then concerns the degree of pseudo-randomness which ensures that F is a subgraph of G and we
distinguish here the (dense) quasi-random case, when p = Ω(1) and β = o(n), and the (sparse)
pseudo-random case, when p = o(1) and β = β(n, p) is a function of n and p. Most of the time
proofs of results in the latter case can easily be modified to cover the former as well and in this
sense problems concerning pseudo-randomness are typically more difficult than the corresponding
ones for quasi-randomness. For the quasi-random case the subgraph containment problem is well
understood [13, 38]; for the pseudo-random case, however, it turned out to be notoriously difficult
already for small graphs F , and even more so for spanning subgraphs. Thus, while bounds exist for
general graphs F (see e.g. [4,33]), only few are known to be (essentially) best possible: triangles, odd
cycles, perfect matchings, Hamilton cycles and triangle-factors [5,6,39,48]. For further information
on pseudo-random graphs and the related subgraph containment problem we refer the reader to
the survey [39].

(Linear) pseudo-random hypergraphs. A k-uniform hypergraph, k-graph for short, is a pair

H = (V,E) with a vertex set V = V (H) and an edge set E = E(H)⊆
(V
k

)

, where
(V
k

)

denotes the set
of all k-element subsets of V . Launched by Chung and Graham [14], the investigation of pseudo-
random k-graphs is widely popular, albeit mostly restricted to the dense case due to the complexity
of the matter [1, 10–12,15,25,26,32,34,42,43,50–52,57]. There are several generalisations of (1.1)
to k-graphs, the simplest and most natural of which is perhaps the following. A k-graph H = (V,E)
is called (p, β)-jumbled if for all (not necessarily disjoint) A1, . . . , Ak⊆V we have

(1.2) e(A1, . . . , Ak) = p
∏

i∈[k]

|Ai| ± β
∏

i∈[k]

|Ai|
1/2

.

where e(A1, . . . , Ak) denotes the number of tuples (a1, . . . , ak), ai ∈ Ai, which form an edge in H.
Analogously to the graph setting, we separate the (dense) quasi-random case where p = Ω(1)

and β = o(nk/2), a range for which (1.2) only provides control over the edge distribution between
linear size sets Ai, i ∈ [k], and the (sparse) pseudo-random case where p = o(1) and β = β(n, p).

As discussed in detail below, questions concerning quasi-random hypergraphs, in particular the
emergence of subgraphs therein, have received a lot of attention in recent years, see e.g. [15,22,23,31,
32,42,44,45]. These results about quasirandom hypergraphs required considerable effort and so it is
no surprise that much less is known in the sparse (pseudo-random) setting. We refer to [17,24,35,36]
for results concerning subgraph containment using stronger and more complicated notions of sparse
pseudo-randomness, most prominently the work by Conlon, Fox, Zhao [17] reproving the Green-Tao
Theorem.

Quasi-randomness and linear hypergraphs. The subgraph containment problem for (dense) quasi-
random k-graphs, k ≥ 3, has been an interesting topic and is a good example of how quasi-random
hypergraphs can behave in a much more subtle manner than graphs. Indeed, with respect to
subgraph statistics it is well known [13] that the number of labelled copies of any fixed size graph F
in a large quasi-random graph with edge density p = Ω(1) is roughly as expected from the random
graph G(n, p). For k ≥ 3, however, Rödl noted that by a construction of [18], quasi-random k-
graphs may not contain a single copy of, say, a (k+1)-clique, let alone the expected number of such
copies. In contrast and somewhat surprisingly, the works of Kohayakawa et al. [32] and Conlon et
al. [15] show that quasi-randomness is strongly related, indeed equivalent, to the counting property

2That is, vertex disjoint copies of the r-clique Kr covering all the vertices of G.
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of linear k-graphs, those in which any two edges intersect in at most one vertex. More precisely,
a sequence of k-graphs (Hn)n→∞, n = |V (Hn)|, is (p, o(nk/2))-jumbled (aka quasi-random) if and
only if Hn contains peFnvF + o(nvF ) labelled copies of any linear k-graph F . Due to this reason,
quasi-randomness for k-graphs is often referred to as linear quasi-randomness. Much research has
looked into stronger notions of uniform edge distribution and stronger counting properties. Their
relations have only been clarified recently and we refer to [57] (see also [1]) for further information.

With regards to spanning subgraphs in quasi-random k-graphs (with a mild minimum vertex
degree), the situation also turned out to be more complex. Indeed, for graphs the famous Blow-
up Lemma [38] of Komlós, Sárközy and Szemerédi implies that a quasi-random graph with linear
minimum degree contains any bounded-degree spanning subgraph. For k-graphs, no such universal
statement is known but some natural spanning linear subgraphs have been studied. Lenz and
Mubayi [44] and Lenz, Mubayi, and Mycroft [45] investigated the existence of perfect matchings, F -
factors for linear F , and loose Hamilton cycles. As usual an F -factor in a k-graph H is a collection
of vertex disjoint copies of F in H which cover all of V (H). Furthermore, a k-uniform loose cycle
is a k-graph whose vertices can be cyclically ordered in such a way that each of its edges consists
of k consecutive vertices, and each edge intersects the subsequent edge (where the edge ordering is
inherited by the ordering of the vertices) in exactly one vertex. We say that the k-graph H contains
a loose Hamilton cycle if it contains a loose cycle on |V (H)| vertices as a subgraph.

For a k-graph H and sets U1, . . . , Uk−1⊆V (H), let deg(v;U1, . . . , Uk−1) = e({v}, U1, . . . , Uk−1)
denote the degree of v ∈ V (H) in (U1, . . . , Uk−1). When Ui = U for all i ∈ [k − 1] let3 deg(v;U) =
deg(v;U1, . . . , Uk−1) and define theminimum vertex degree ofH by δ(H) = minv∈V (H) deg(v;V (H)).
Lenz and Mubayi showed the following concerning factors in quasi-random k-graphs .

Theorem 1.1 ([44]). For all k ≥ 2, 0 < c, p < 1 and all linear k-graphs F on vF vertices there

exists an n0 and an ε > 0 such that the following holds. If H is a (p, εnk/2)-jumbled k-graph on
n ∈ vFN vertices such that n > n0, and H has minimum vertex degree δ(H) > cnk−1, then H
contains an F -factor. �

The result of Lenz, Mubayi and Mycroft concerning loose Hamilton cycles reads as follows.

Theorem 1.2 ([45]). For all k ≥ 2 and 0 < c, p < 1, there exists an n0 and an ε > 0 such that
the following holds. If H is a (p, εnk/2)-jumbled k-graph on n ∈ (k− 1)N vertices such that n > n0,
and H has minimum vertex degree δ(H) > cnk−1, then H contains a loose Hamilton cycle. �

We note here that the results in [44] and [45] are actually slightly stronger than stated and apply
to k-graphs satisfying only the lower bound of the edge count in (1.2).

Sparse pseudo-random hypergraphs. In the sparse regime (aka the pseudo-random case) the no-
tion (1.2) has been studied by Haviland and Thomason [31] and later by Friedman [22] and Fried-
man, Wigderson [23] in the context of hypergraph spectral gap. Concerning the emergence of
spanning subgraphs in pseudo-random k-graphs we note that there is a wealth of literature on this
topic for graphs, i.e., when k = 2 (see, e.g., [2, 4, 28,29,39,40,48]). For higher uniformity, Krivele-
vich, Frieze and Loh [24] used a stronger and more complicated notion of pseudo-randomness to
study packing of tight Hamilton cycles. The only result concerning (1.2) we are aware of is due
to Lenz and Mubayi [44] who studied perfect matchings in sparse pseudo-random 3-graphs. Their
result is stated in terms of hypergraph eigenvalues, a notion originated in the work of Friedman
and Wigderson [22, 23] for regular k-graphs and extended to all k-graphs by Lenz and Mubayi

3Recall that we define e(A1, . . . , Ak) to count labelled edges and so here any edge containing v and vertices of U
is counted (k − 1)! times in deg(v;U).
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in [42]. Given a k-graph H = (V,E) (possibly with loops) on the vertex set [n] = {1, . . . , n} and
the standard basis e1, . . . ,en of W = R

n, define the k-linear form τH : W k → R by

τH(ei1 ,ei2 , . . . ,eik) =

{

1 if {i1, . . . , ik} ∈ E,

0 otherwise.

By multi-linearity this thus determines τH . Let J denote the all-one k-linear form, i.e., the form
defined as above, but with J(ei1 , . . . ,eik) = 1 for all i1, . . . , ik ∈ [n]. Let ‖ · ‖ denote the Euclidean
2-norm on R

n and for a k-linear form ϕ : W k → R let its spectral norm be defined as

‖ϕ‖ = sup
‖u1‖=···=‖uk‖=1

|ϕ(u1, . . . ,uk)|

Then the first and the second eigenvalue of H are defined as

λ1(H) = ‖τH‖ and λ(H) =

∥

∥

∥

∥

τH − k!e(H)

nk
J

∥

∥

∥

∥

.

It was shown that k-graphs ([23] for regular and [42] for all H) with second eigenvalue λ = λ(H)

are (p, λ)-jumbled with p = k!e(H)
nk . The following is the result by Lenz and Mubayi, which ours will

improve upon in several aspects, see Theorem 1.4 and the discussion thereafter.

Theorem 1.3 ([44]). For all 0 < c < 1 there exists an n0 and an ε > 0 such that the following holds

for all n < n0. Let H be a 3-graph on n ∈ 3N vertices, with edge density p := 6|E(H)|
n3 , minimum

co-degree4 δ2(H) > cpn2 and second eigenvalue

λ(H) ≤ εp16n3/2.

Then H contains a perfect matching. �

Main results. Our results rely on the following weaker version of (1.2). Given a k-graph H and
p, α, ε ∈ [0, 1] we say that H is (p, α, ε)-pseudo-random if for all (not necessarily disjoint) subsets
A1, . . . , Ak⊆V (H) with |A1| · · · |Ak| ≥ α|V |k we have

(1.3) e(A1, . . . , Ak) = (1± ε)p · |A1| · · · |Ak|.
Our reasons to use this notion of pseudo-randomness are twofold. Firstly, it is weaker than (1.2) and
the notion of spectral gap studied by Friedman and Wigderson [22,23] and Lenz and Mubayi [42].
Indeed, note that for any ε > 0, a (p, β)-jumbled k-graph (and hence k-graphs with density p and

second eigenvalue λ(H) ≤ β) is (p, α, ε)-pseudo-random with α = β2

ε2p2nk . Secondly, we believe

that this notion is the most natural for this work and free from unnecessary intricacies. Indeed,
in what follows it will be sufficient to have ε > 0, which controls the variation from the average
density, to be a sufficiently small constant. The parameter α = α(n, p) then controls the size of the
vertex sets for which the condition is non-trivial. When investigating subgraphs of pseudo-random
(hyper-)graphs, this is often the parameter which is at the crux of the proofs, forcing the degree of
pseudo-randomness necessary.

Regarding the emergence of a perfect matching in sufficiently pseudo-random hypergraphs we
show the following.

Theorem 1.4. For all integers k ≥ 3 and c > 0 there is an ε > 0 and an n0 such that for any
n > n0, any (p, εpk, ε)-pseudo-random k-graph on n ∈ kN vertices with δ(H) ≥ cpnk−1 contains a
perfect matching.

In particular, this holds if H satisfies the minimum degree condition and is (p, β)-jumbled or is

of density p and has second eigenvalue λ(H) ≤ β with β < εpk/2+1nk/2.

4That is, every pair of vertices in V (H) is contained in at least δ2(H) edges.
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Theorem 1.4 is a direct consequence of Theorem 1.7 from below which addresses the existence
of F -factors for a linear F . Theorem 1.4 improves upon Theorem 1.3 for 3-graphs, and extends it
to k-graphs. Indeed, Theorem 1.3 relies on the stronger notion of pseudo-randomness coming from
the second eigenvalue of hypergraphs and requires that λ = o(p16n3/2), whilst ours only requires
λ(H) = o(p5/2n3/2). Moreover, our result only relies on minimum vertex degree, whilst Theorem 1.3
requires minimum co-degree condition, concretely, that all pairs of vertices in H are contained in
Ω(pn) edges, which is a rather strong restriction in general. Indeed, while pseudo-randomness
implies that most vertices have high degree, making the minimum vertex degree the natural one
to consider in this context, it is easy to construct pseudo-random hypergraphs with a substantial
proportion of pairs of vertices having co-degree zero.

Our approach also covers the case of loose Hamilton cycles and thus extends Theorem 1.2 to
sparse pseudo-random k-graphs as follows.

Theorem 1.5. For any given integer k ≥ 3 and c > 0 there is an ε > 0 and an n0 such that
for every n > n0 the following holds. Suppose that H is a (p, εpk−1, ε)-pseudo-random k-graph on
n ∈ (k − 1)N vertices with δ(H) ≥ cpnk−1. Then H contains a loose Hamilton cycle.

In particular, this holds if H satisfies the minimum degree condition and is (p, β)-jumbled or is

of density p and has second eigenvalue λ(H) ≤ β with β < εp(k+1)/2nk/2.

Finally we generalize Theorem 1.4 and address the appearance of F -factors in sufficiently pseudo-
random k-graphs for any constant size linear k-graph F . It should be noted that even the appear-
ance of a single copy of F has not been explicitly studied for the sparse case, neither for (1.2)
nor for (1.3). Nevertheless, we will show that the argument by Kohayakawa et al. [32] for (dense)
quasi-random k-graphs can be extended to the sparse range, i.e., that sufficiently pseudo-random
k-graphs contain the “expected” number of copies of any constant size, linear k-graph F .

But which degree of pseudo-randomness is sufficient for a given linear k-graph F? Which may be
the crucial parameter(s) of F which determine(s)/affect(s) the pseudo-randomness needed? Even
in the case of graphs the former question is notoriously difficult and wide open, being resolved
for a handful of specific graphs F only. While upper bounds on the pseudo-randomness required
do exist and are believed to be tight in many cases, matching lower bound constructions are
rare and difficult. A common strategy to find a copy of F in pseudo-random graphs relies on
sequential embedding of its vertices, see e.g. [4, 33, 37]. Hence the (vertex) degeneracy of F , i.e.,
dF = max{δ(F ′) : F ′ ⊂ F}, the largest minimum degree over all induced subgraphs of F , is usually
a crucial parameter in determining the pseudo-randomness required. We refer to [4,33,37] for some
results in similar settings in graphs which involve the vertex degeneracy (or its trivial upper bound,
the maximum degree) or related notions of degeneracies [3, 16].

Unfortunately, vertex embedding strategies fail when dealing with higher uniformities and this
is probably one of the main reasons why the notion of linear quasi-randomness remained obscure
for a long time. As it turns out, sequential edge embedding is a suitable strategy in this setting,
making the following notion of edge degeneracy a natural parameter to consider.

Briefly speaking the edge degeneracy of a linear k-graph F is simply the vertex degeneracy of its
line graph, i.e., the graph on the vertex set E(F ) in which two distinct vertices e, e′ ∈ E(F ) are
connected if they intersect. Let us expand on this notion! For an edge e in F we denote by deg(e)
its degree in the line graph of F . Thus deg(e) =

∑

v∈e(degF (v)−1) which is equal to the number of
edges e′ 6= e in F which intersect e. Let δ′(F ) = mine∈F deg(e) and ∆′(F ) = maxe∈F deg(e) denote
the minimum and the maximum edge-degree of F , respectively. Similar to the vertex degeneracy,
the edge degeneracy of F can be defined as

degen(F ) = max
{

δ′(F ′) : F ′ ⊂ F, V (F ′) = V (F )
}

,
5



the largest minimum edge-degree taken over all subgraphs F ′ ⊂ F on the vertex set V (F ). There
are further similarities between this notion of degeneracy and the vertex degeneracy. For example,
it is easily seen that degen(F ) is the minimum d for which there is an ordering e1, . . . , es of the
edges of F (s = |E(F )|) such that each ei has edge-degree at most d in the spanning subgraph
of F induced by the edges e1, . . . , ei. Moreover, the edge degeneracy is at most the maximum
edge-degree, degen(F ) ≤ ∆′(F ).

As a consequence of one of our auxiliary results, Lemma 2.1, we obtain the following concerning
the appearance of a single copy of a fixed size linear k-graph.

Theorem 1.6. For any linear k-graph F , there exists an ε > 0 and an n0 such that for every
n > n0, any n-vertex

(

p, εpdegen(F ), ε
)

-pseudo-random k-graph H contains a copy of F .
In particular, the same conclusion holds if H is (p, β)-jumbled or is of density p and has second

eigenvalue λ(H) ≤ β with β < εpdegen(F )/2+1nk/2.

We will in fact show that one has roughly the correct number of copies of F under the same
pseudo-random conditions. The pseudo-randomness condition in Theorem 1.6 is known to be tight
for graph triangles and conjectured to be tight for graph cliques and therefore cannot be improved
in general. Indeed, for graph triangles we have degen(K3) = 2 and by Alon’s construction [5]
there are K3-free n-vertex d-regular graphs with d = Ω(n2/3), which are (d/n, λ)-jumbled with

λ = O(n1/3).
Moving on to the appearance of F -factors in sufficiently pseudo-random k-graphs our result

establishes the following.

Theorem 1.7. For given integers f ≥ k ≥ 2 and c > 0 there is an ε > 0 and an n0 such that for
every n > n0 the following holds. Let F be a linear k-graph on f vertices and let

ℓ := degen(F ) + ∆′(F ) + k.

Suppose H is a (p, εpℓ, ε)-pseudo-random k-graph on n ∈ fN vertices with δ(H) ≥ cpnk−1. Then
there is an F -factor of H.

In particular, this holds if H satisfies the minimum degree condition and is (p, β)-jumbled or is

of density p and has second eigenvalue λ(H) ≤ β with β < εpℓ/2+1nk/2.

Note that in (p, εpℓ, ε)-pseudo-random k-graphs, with ℓ = degen(F ) we obtain a copy of F by
Theorem 1.6, and with ℓ = degen(F ) +∆′(F ) + k we get an F -factor by Theorem 1.7. Recall that
degen(F ) ≤ ∆′(F ), thus ℓ ≤ 2∆′(F )+k which may serve as a simple upper bound on ℓ. By taking F
to be a single edge we have ∆′(F ) = 0, thus Theorem 1.7 implies Theorem 1.4 concerning perfect
matchings. In general, Theorem 1.7 extends Theorem 1.1 from dense quasi-random k-graphs to
sparse pseudo-random k-graphs and establishes the first explicit condition on pseudo-randomness
that guarantees the existence of a factor.

It is difficult to comment on the tightness of our general results. Indeed, at this stage it is
not even clear what to conjecture as the threshold for the appearance of subgraphs of pseudo-
random hypergraphs. For graphs it is believed that the obstruction for finding an F -factor in a
pseudo-random graph is in fact the appearance of a single copy of F . That is, essentially the same
pseudo-random conditions that guarantee a single copy of F actually guarantee an F -factor. This
intuition is confirmed only for the case F = K3 where there still remains a log factor between
the upper and lower bounds [5, 48] and in general finding F -free pseudo-random graphs is a very
challenging problem, see e.g. [8].

One may conjecture that the same phenomenon occurs in hypergraphs, i.e., that the threshold
for the appearance of a single copy of a linear k-graph F and that for the appearance of F -factors
coincide. In this respect Theorem 1.6 provides conditions for the appearance of a fixed linear
hypergraph and so may serve as a benchmark for future work.
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Any further results providing constructions or conditions for finding general subgraphs, even
for constant sized subgraphs of hypergraphs, would be very interesting. Given the generality of
Theorem 1.6 and also Theorem 1.7, it will not too hard to to improve on the conditions for particular
linear k-graphs F .

1.1. Proof overview and organisation. As mentioned above, Theorem 1.4 is a consequence
of Theorem 1.7. The proofs of Theorem 1.7 and Theorem 1.5 work by absorption, a method
popularised by Rödl, Ruciński and Szemerédi, see e.g. [53]. Both proofs follow the same scheme
and so we will deal with them together. In the following we give a brief outline, ignoring some
technical details.

The main step is to show that a sufficiently pseudo-random H = (V,E) contains an absorbing
set A ⊂ V as follows: there is a flexible set Z ⊂ A and an integer m = Ω(n) so that

F -factors: for any Z ′ ⊂ Z of size m the induced k-graph H[A \ Z ′] contains an F -factor,
Ham-cyc: for any Z ′ ⊂ Z of size m the induced k-graph H[A \Z ′] contains a spanning loose

path with some fixed end vertices a1 and a2 independent of Z ′.

Considering the remaining vertices V \ A and with the flexibility in mind, we find some Z ′ ⊂ Z of
size m so that H

[

(V \A)∪Z ′
]

can be covered with disjoint F -copies or a spanning loose path with
end vertices a1 and a2, respectively. The flexibility property of Z then implies that H contains an
F -factor or a loose Hamilton cycle, respectively.

The absorbing set A is obtained as the vertex set of an absorbing structure A in H, which is
a family of copies of special k-graphs called absorbers. These absorbers and their properties can
be found in Section 3, see Lemma 3.1 for F -factors and Lemma 3.2 for loose Hamilton cycles. To
ensure the absorbing property of A = V (A), the copies in A are not disjoint but overlap according
to a certain prescribed structure called a template (see Lemma 3.4), a concept introduced by
Montgomery [46, 47]. This approach requires that we deal with rooted copies of absorbers, i.e.,
copies in which the overlapped (aka root) vertices are pre-embedded. In Lemma 2.1 from Section 2
we show how to find such rooted copies in sufficiently pseudo-random hosts and in Lemma 2.3 we
show how to put many of them together while controlling the intersection structure of the root
vertices. When the intersection structure is a suitable template this lemma yields the absorbing
structure A, but it will also be useful in other steps of the proof.

In Section 4 we prove Theorem 1.7 and Theorem 1.5 both together. We close the section with
the following.

Notation and properties of pseudo-random hypergraphs. Throughout the paper we omit
floor and ceiling signs where they do not affect the arguments. Further, we write α ≪ β ≪ γ to
mean that it is possible to choose the positive constants α, β, γ from right to left. More precisely,
there are increasing functions f and g such that, given γ, whenever we choose some β < f(γ) and
α < g(β), the subsequent statements hold. Hierarchies of other lengths are defined similarly.

As previously mentioned, we write x = y ± z to denote that y − z ≤ x ≤ y + z. We also write
equations such as y1± z1 = y2± z2 which means that y1+ z1 ≤ y2+ z2 and y1− z1 ≥ y2− z2. Thus
if x = y1 ± z1 and y1 ± z1 = y2 ± z2 then x = y2 ± z2. More involved equations using ± should all
be read the same; if we turn all the ± signs to +, then the equation holds if we replace all the =
signs with ≤ and if we turn all the ± signs to −, the equations hold with ≥ signs replacing the =
signs. Next, we collect some easy consequences of the definition of pseudo-randomness (1.3).

Fact 1.8. Given a (p, α, ε)-pseudo-random hypergraph H and U, V1, . . . , Vk⊆V (H);

• For any γ > 0, if |U | ≥ γ
1
k |V |, then H[U ] is (p, α/γ, ε)-pseudo-random.

• If |V1| · · · |Vk| < α|V |k, then
|e(V1, . . . , Vk)− p · |V1| · · · |Vk|| ≤ (1 + ε)p · α|V |k.

7



Proof. The first property follows directly from the definition. For the second we extend each Vi to
a Ui ⊂ V so that |U1| · · · |Uk| = α|V |k. Then pseudo-randomness yields

0 ≤ e(V1, . . . , Vk) ≤ e(U1, . . . , Uk) ≤ (1 + ε)p · α|V |k,
and the second property follows when e(V1, . . . , Vk) ≥ p · |V1| · · · |Vk|. When p · |V1| · · · |Vk| >
e(V1, . . . , Vk) the second property is immediate. �

Our next lemma shows that a pseudo-random hypergraph cannot be too sparse.

Lemma 1.9. Let ε > 0 and H be (p, εpℓ, ε′)-pseudo-random k-graph such that ε′ ≤ 1/2. Then

p = Ω(n−s), where s := k(k−1)
ℓ(k−1)+k . In particular, if ℓ ≥ k − 1, then p = ω(log n/n).

Proof. Extending Turán’s theorem to k-graphs, Spencer [54] (see also [7, p. 434]) showed that

any k-graph with average (vertex-)degree d has an independent set of size cnd−1/(k−1) for some
c = c(k) > 0. As e(H) ≤ pnk + ε′pnk ≤ 2pnk we infer that H has an independent set I of size

cn(2kpnk−1)−1/(k−1) = c′p−
1

k−1 for some c′ = c′(k) > 0. Clearly e(I, . . . , I) = 0, yet, if |I|k ≥ εpℓnk

then pseudo-randomness implies e(I, . . . , I) ≥ p|I|k(1 − ε′) > 0, which is a contradiction. Thus,

εpℓnk > |I|k ≥ (c′p−
1

k−1 )k which then yields p = Ω(n−s). �

2. Finding small subgraphs in pseudo-random hypergraphs

A rooted k-graph is a pair (F,X ) with a k-graph F on a vertex set V (F ) = {x1, . . . , xr, u1, . . . , uf}
and the (possibly empty) tuple X = (x1, . . . , xr) of specified vertices such that for every two vertices
xi, xj of X any edge containing xi is disjoint from any edge containing xj . Vertices in X are called
roots of (F,X ) (or simply of F ). Our aim is to find “rooted copies” of (F,X ) in a “sufficiently”
pseudo-random H.

Formally, let H be a k-graph with specified vertices (y1, . . . , yr) = Y and U ⊆ V (H) a vertex
subset. A rooted copy of (F,X ) in (H,Y, U) (or simply of F inH) is an (edge preserving) embedding
ϕ : V (F ) → V (H) such that ϕ(xi) = yi for all i ∈ [r] and ϕ(ui) ∈ U for all i ∈ [f ].

To deal with rooted k-graphs we need to extend our notion of edge degeneracy. Recall that
the edge degeneracy degen(F ), for a linear k-graph F , is the vertex degeneracy of its line graph.
Equivalently, let deg(e) =

∑

v∈e(deg(v)−1) be the degree of e in the line graph of F , which is equal
to the number of edges e′ 6= e in F which intersect e. Then degen(F ) is the minimum d for which
there is an edge exposure, i.e., a permutation σ ∈ Ss of the edge set E(F ) = {e1, . . . , es}, such that
each eσ(i) has degree at most d in the subgraph of F on the vertex set V (F ) and with the edges
eσ(1), . . . , eσ(i). For a rooted (F,X ) we additionally require from the edge exposure σ from above
that all edges containing a root appear before edges not containing any root, i.e., there are no i > j
such that eσ(i) contains a root and eσ(j) does not. At times, we will write degen(F,X ) to make
it clear that we refer to the rooted graph and hence only consider these restricted edge exposures
when calculating the degeneracy. However we will also simply write degen(F ) if X is clear from
context.

2.1. A counting lemma for rooted k-graphs. When H is sufficiently pseudo-random with
respect to a fixed rooted graph F , and satisfies certain mild degree conditions, then the following
lemma guarantees many rooted copies of F in H. It is an extension of an argument by Kohayakawa
et al. [32] to the sparse case.

Lemma 2.1 (Rooted counting). For integers k, f ≥ 2, r ≥ 0 and 1 ≥ c > 0 there is an ε > 0 and an
n0 ∈ N such that the following holds for all n ≥ n0. Let

(

F, (x1, . . . , xr)
)

be a rooted linear k-graph

on r+f vertices and with edge degeneracy ℓ. Suppose that H is a (p, εpℓ, ε)-pseudo-random k-graph
8



on n vertices with5 ∆2(H) < εpnk−1, U ⊆ V (H) a set of size |U | ≥ cn and y1, . . . , yr ∈ V (H)
vertices, which satisfy deg(yi;U) ≥ cp|U |k−1 for each i ∈ [r]. Then there are at least

1

2
(cp)e(F )|U |f

rooted copies of
(

F, (x1, . . . , xr)
)

in
(

H, (y1, . . . , yr), U
)

.

Note that ∆2(H) < εpnk−1 is a rather weak condition, which moreover can be dropped if
ℓ ≥ k − 1. Indeed, in this case p ≫ 1/n by Lemma 1.9 and thus ∆2(H) ≤ nk−2 ≪ pnk−1.

Proof. Given k, f, r and c we choose 0 < 1/n0 ≪ ε ≪ γ ≪ 1/f2, c. Fix H, U , and y1, . . . , yr
satisfying the assumptions of the lemma. Without loss of generality we assume that cp|U |k−1 ≤
deg(yi;U) ≤ (1 + ε)cp|U |k−1 for each i ∈ [r], by passing to a subgraph of H if necessary. For a
rooted linear k-graph

(

F, (x1, . . . , xr)
)

let tF = e(F )−∑

i∈[r] degF (xi) denote the number of edges

containing no root vertices. By induction on t = tF we show that for any such
(

F, (x1, . . . , xr)
)

on
at most r + f vertices and with edge degeneracy at most ℓ, there are

(1± (t+ 1) · γ)ce(F )−tpe(F )|U |v(F )−r(2.1)

rooted copies of
(

F, (x1, . . . , xr)
)

in
(

H, (y1, . . . , yr), U
)

. As tF ≤
(f
2

)

the lemma then follows by
the choice of γ.

Consider first the case t = 0, i.e., all edges of F contain some root vertex. As F is linear and
edges of F containing different root vertices are disjoint, a rooted copy of F is simply a disjoint
union of stars with each star centered at some yi. The degree conditions therefore yield the correct
count on the number of rooted copies. Indeed, for any yi and any set X ⊂ U of at most r + f
vertices the number of edges containing yi and a vertex fromX is at most |X|∆2(H). Thus, for each
i ∈ [r] and each of the degF (xi) edges in F containing xi there are degH(yi;U) ± (r + f)∆2(H) =
(1± ε)cp|U |k−1± (r+ f)εpnk−1 ways to choose the image of this edge to build a copy of F . With I
denoting the number of isolated vertices of F , the number of rooted copies of F in H is then

(1 ± γ/2)
∏

i∈[r]

(

cp|U |k−1
)degF (xi)(|U | ± (r + f)

)I
= (1± γ)(cp)e(F )|U |v(F )−r,

proving the induction base.
For the induction step let t ≥ 1, let F be a k-graph with tF = t, and let σ be an edge exposure

which certifies the edge degeneracy of F . Note that the induction hypothesis applies to any proper
subgraph of F as it has edge degeneracy at most ℓ and strictly fewer edges. Let F ′ = Ft−1 =
(V (F ), E(F ) \ {eq}) where eq is the last edge of F according to the ordering σ, i.e., q := σ

(

t +
∑r

i=1 degF (xi)
)

. Note that F ′ is defined on the same vertex set as F . For a labelled copy T of F ′ in

H we denote by KT the k-set of vertices of T which corresponds to eq in F . Let 1H :
(V
k

)

→ {0, 1}
be the indicator function of the edge set of H. In this notation a copy T of F ′ in H extends to
a copy of F if and only if 1H(KT ) = 1, consequently, summing over all copies T of F ′ in H the
number of copies of F in H is

∑

T⊆H

1H(KT ) =
∑

T⊆H

(p+ 1H(KT )− p) =
∑

T⊆H

p+
∑

T⊆H

(1H(KT )− p).

Noting that e(F ′) = e(F )− 1 and v(F ′) = v(F ) the induction hypothesis yields
∑

T⊆H

p = (1± t · γ)ce(F )−tpe(F )|U |v(F )−r

5Here and throughout, ∆2(H) denotes the maximum 2-degree in H i.e. ∆2(H) := maxu 6=v∈V (H) |{e ∈ E(H) :

{u, v} ∈ e}|.
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and in the following we will give a bound to the error term
∑

T⊆H(1H(KT )− p).

Without loss of generality suppose that eq = {u1, . . . , uk} and let F∗ = F [V (F ) \ eq] be the
subhypergraph of F obtained by removing the vertices u1, . . . , uk. Due to linearity any edge in
E(F ′) \E(F∗) intersects eq in at most one ui. Hence, for any copy T∗ of F∗ there are sets Wi ⊆ U ,
i ∈ [k], such that any k-tupleK ∈ W1×. . .×Wk =: ext(T∗) extends T∗ to a copy of F ′. Explicitly,Wi

is the intersection of the neighbourhoods of the (k − 1)-sets in T∗, which are the images of those
(k− 1)-sets in F∗ contained in an edge with ui in F ′. (Such a copy of F ′ then extends to a copy of
F if and only if K ∈ E(H).) Let z := pwq |U |k, where wq is the weight of eq according to the edge

exposure σ, that is wq =
∑k

i=1 degF ′(ui) . Using that wq ≤ ℓ and Fact 1.8, we have that H[U ] is
(p, ε′pwq , ε′) pseudo-random for ε′ =

√
ε (using that ε ≪ c). There we obtain that

∣

∣

∣

∣

∣

∣

∑

T⊆H

(1H(KT )− p)

∣

∣

∣

∣

∣

∣

≤
∑

T∗⊆H

∣

∣

∣

∣

∣

∣

∑

K∈ext(T∗)

(1H(K)− p)

∣

∣

∣

∣

∣

∣

=
∑

T∗⊆H

∣

∣

∣
e(W1, . . . ,Wk)− p|ext(T∗)|

∣

∣

∣

≤
∑

T∗⊆H
|ext(T∗)|≥ε′z

ε′p|ext(T∗)|+
∑

T∗⊆H
|ext(T∗)|<ε′z

(1 + ε′)ε′p · z.(2.2)

Here, the estimate for the first sum comes from the definition (1.3) whilst the second sum follows
from Fact 1.8. Note that each edge in E(F ) \ (E(F∗) ∪ {eq}) contains exactly one vertex from eq,
hence we have e(F ) = e(F ′) + 1 = e(F∗) + wq + 1. Thus, with t∗ = tF∗ < t denoting the number
of root-free edges of F∗ = (F∗, (x1, . . . , xr)), we obtain from the induction hypothesis the following
for the second sum in (2.2):

∑

T∗⊆H
|ext(T∗)|<ε′z

(1 + ε′)ε′pz ≤ 2ce(F∗)−t∗pe(F∗)|U |v(F )−k−r · (1 + ε′)ε′pz ≤ γ

4
ce(F )−tpe(F )|U |v(F )−r .(2.3)

To derive a bound for the first sum in (2.2), we will split the sum further. Define J :=
log 1/ε′ + wq log 1/p and for all 0 ≤ j ≤ J , let bj be the number of copies T∗ of F∗ in H such

that 2jε′z ≤ |ext(T∗)| ≤ 2j+1ε′z. Note that this covers all possible copies as 2J+1ε′z ≥ |U |k. Then
the number of rooted copies of F ′ in H is at least

∑J
j=0 bj2

jε′z and, by induction hypothesis, at

most 2pe(F
′)|U |v(F ′)−r = 2pe(F )−1|U |v(F )−r . Consequently, the first sum in (2.2) is

∑

T∗⊆H
ε′z≤|ext(T∗)|≤|U |k

ε′p|ext(T∗)| ≤
J
∑

j=0

∑

T∗⊆H
2jε′z≤|ext(T∗)|≤2j+1ε′z

ε′p|ext(T∗)|

≤
J
∑

j=0

bj2
j+1ε′2pz ≤ 4ε′pe(F )|U |v(F )−r ≤ γ

4
(cp)e(F )|U |v(F )−r .

Together with (2.2) and (2.3) we conclude that |∑T⊆H(1H(KT ) − p)| < γ
2 c

e(F )−tpe(F )|U |v(F )−r

which finishes the proof of the lemma. �

Remark 2.2. Note that if we take r = 0 in Lemma 2.1, we can drop the maximum co-degree
assumption as it is not required in the proof and so this gives Theorem 1.6. In fact, the proof of
Lemma 2.1 actually establishes the stronger bounds (2.1), which under the same pseudo-randomness
condition on H, yields the counting property for linear k-graphs. In general, the condition is tight
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up to a multiplicative constant as seen, e.g., by Alon’s construction [5] of triangle-free n-vertex d-

regular graphs with d = Ω(n2/3), which are (d/n, λ)-jumbled with λ = O(n1/3). On the other hand
the bound can be improved for other graphs, e.g., when F is a larger odd cycle (see [39]).

2.2. Embedding compatible families. In this section we use the counting lemma, Lemma 2.1,
to build a linear sized structure in the host k-graph. This structure is key to the absorption step
but will also be useful in other parts of the proof. Let (A,X ) be a fixed rooted hypergraph with r
root vertices. The structure we look to find will consist of many rooted copies of A in H, which
respect a certain intersection restriction on the root vertices but are disjoint otherwise. Formally, let
T = (VT , E) be a labelled r-graph with the vertex set VT ⊂ V (H) (which captures the intersection
structure)6. Then {Ae}e∈E(T ) is called a T -compatible family of copies of (A,X ) (or simply T -
compatible) if:

(1) each Ae, e ∈ E(T ), is a rooted copy of (A,X ) in (H, e, V (H)), i.e., a rooted copy of A in H
which maps X to Y = e;

(2) each Ae, e ∈ E(T ), intersects VT exactly in e; and
(3) for any two edges e, e′ ∈ E(T ), the copies Ae and Ae′ intersect exactly in e ∩ e′.

In particular, note that the copies Ae and Ae′ , e 6= e′, are disjoint outside of V (T ). Our next
lemma shows that if T has bounded degree and our host hypergraph H is suitably pseudo-random
with respect to some k-graph A, then we can find some T -compatible family of copies of A.

Lemma 2.3. Given integers k ≥ 2, f, r ≥ 0, ∆ ≥ 1 and c > 0 there are ε > 0 and n0 such that for
n > n0 the following holds. Suppose that

• (A,X ) is a rooted linear k-graph with r + f vertices, r of which are roots,
• H is a (p, εpℓ, ε)-pseudo-random n-vertex k-graph, with ℓ ≥ degen(A,X ), and ∆2(H) <
εpnk−1, Y ⊂ V (H) with |Y | ≤ n

200∆2(r+f)2
and degH(v;V \ Y ) > cpnk−1 for all v ∈ Y ,

• T is an ordered r-graph on the vertex set VT = Y with maximum vertex degree ∆1(T ) ≤ ∆.

Then there exists a T -compatible family of rooted copies of (A,X ) in H.

We note here again that by Lemma 1.9 the condition ∆2(H) < εpnk−1 can be dropped if ℓ ≥ k−1.

Proof. Let integers k, f, r,∆ and c be given. We choose γ = 1
100∆f and as c > 0 only appears in

the lower bound for the degree condition we may assume that c < γ/8. We apply the counting

lemma, Lemma 2.1, with the parameters k, f, r, c2.1 = c
2k

to obtain ε2.1. We choose ε = ε2.1
(cγ)k

4kf∆

and let n0 be sufficiently large. Let (A,X ), H and T with VT = Y be as in the lemma.
The idea is to construct the required family of rooted copies of (A,X ) by repeatedly using the

greedy type Algorithm 1, which simply extends the family of rooted hypergraphs when it can and
records the failure otherwise.

This greedy approach almost succeeds in finding all the copies of (A,X ) but we can not guarantee
that it will log no failures. To deal with the small number of failures, we have to run the algorithm
several times. First, we analyse the following simple case where we can successfully embed a small
number of copies.

Claim 2.4. Suppose that T̂ ⊂ T is a subhypergraph of T with e(T̂ ) ≤ ck

4f pn and X ⊂ V (H) \ VT

is a set of size |X| ≥ cn so that deg(v;X) > cp|X|k−1 holds for each v contained in an edge of T̂ .

Then there is a T̂ -compatible family of rooted copies of (A,X ) whose vertices are entirely contained
in VT ∪X.

Proof of Claim 2.4. We run the Algorithm 1 with input (A,X ), H, T̂ and X and claim that the

family At, t = e(T̂ ), produced by the algorithm, has the required properties. Let (e1, . . . , et) be

6Note that each edge e ∈ E = E(T ) is a labelled r-set in VT ⊂ V (H).
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Algorithm 1: Greedy builder

Input: (A,X ), H, T̂ , X ⊂ V (H);

Let (e1, . . . , et) be an ordering of E(T̂ );

X1 := X, I0 := ∅, A0 := ∅, and s := 1;

while s ≤ t do
if there is a rooted copy As of (A,X ) in (H, es,X

s) then
As := As−1 ∪ {As};
Is := Is−1;

Xs+1 := Xs \ V (As);

else
Is := Is−1 ∪ {es};

s := s+ 1;

end

an ordering of E(T̂ ). Note that after step s ∈ [t] the algorithm has removed from X in total at
most f · s vertices. Thus, at each time s the set Xs in the algorithm has size |Xs| ≥ 1

2 |X| >
c2.1n and deg(v;Xs) ≥ deg(v;X) − fs · ∆2(H) > c2.1p|Xs|k−1 holds for each v ∈ es, using that

∆2(H) ≤ nk−2. Thus, Lemma 2.1 applied with the choices of constants yields a rooted copy As of

(A,X ) in (H, es,X
s). As this holds for all s ∈ [t] the family At is T̂ -compatible and is contained

in VT ∪X. �

Returning to the proof of Lemma 2.3, choose disjoint subsets U,W ⊂ V (H) \ Y of size |U | =
|W | = 2γn but arbitrarily otherwise. Let

B = {v ∈ VT : deg(v;W ) < 2cp|W |k−1}
and let T1 ⊂ T denote the subgraph of T on the same vertex set VT which consists of all edges
intersecting B. By the pseudo-randomness of H we conclude that |B| ≤ εγ−(k−1)pℓn. As e(T1) ≤
∆|B| we can apply Claim 2.4 with T̂ = T1 and X = V (H) \ VT to find a T1-compatible family A1.
Let7 U ′ = U \ V (A1) and W ′ = W \ V (A1) which are disjoint sets of size |U ′|, |W ′| ≥ γn and note
that each vertex v ∈ VT \B satisfies

deg(v;W ′) ≥ deg(v;W )− f · e(T1)∆2(H) > cp|W ′|k−1.(2.4)

Claim 2.5. Let T ′ ⊂ T be the subgraph obtained by removing the edge set E(T1) from T . Then
there is a subgraph T2 ⊂ T ′ with e(T2) ≥ e(T ′)− (2/γ)k−1∆εpℓn and a T2-compatible family A2 of
rooted copies of (A,X ) whose vertices are entirely contained in VT ∪ U ′.

Before proving the claim we note that it readily implies the lemma. Indeed, define T3 = T ′ \ T2

which then satisfies e(T3) ≤ (2/γ)k−1∆εpℓn. Further, (2.4) holds for all vertices in VT \ B, in

particular for all those contained in edges of T3. Thus we can apply Claim 2.4 with T̂ = T3 and
X = W ′ and obtain a T3-compatible family A3 of rooted copies of (A,X ) whose vertices are entirely
contained in VT ∪W ′. Since T = T1 ∪ T2 ∪ T3, the family A1 ∪ A2 ∪ A3 is T -compatible and the
lemma follows. �

Proof of Claim 2.5. We run the Algorithm 1 with input (A,X ), H, T̂ = T ′ and X = U ′ and it
is sufficient to show that |It| ≤ (2/γ)k−1∆εpℓn. Let (e1, . . . , et) be an ordering of E(T ′). As

t < ∆|VT | ≤ γn
2f ≤ |X|

2f and at each time s < t the algorithm removes at most f vertices from Xs

7Here, V (A) denotes the set of vertices which feature in rooted copies of A in the family A.
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to obtain Xs+1, we have for each time s ∈ [t] that |Xs| ≥ |X1| − (s− 1)f > |X1|/2 ≥ γn/2. Then
Lemma 2.1 applied with the choices of constants implies that for each s ∈ [t] there is a rooted copy of
(A,X ) in (H, es,X

s) unless the degree condition fails for a vertex in es. Thus, I
t comprises exactly of

those es such that for some vertex in es, say ys, we have deg(ys;Xs) < c2.1p|Xs|k−1 ≤ c2.1p|X|k−1,

which implies that deg(ys;Xt) < c2.1p|X|k−1 ≤ cp|Xt|k−1. Let

Y t = {y ∈ VT : deg(y;Xt) < cp|Xt|k−1}.
Clearly, e(Y t,Xt, . . . ,Xt) ≤ cp|Y t||Xt|k−1 and the pseudo-randomness condition together with
|Xt| ≥ γn/2 implies that |Y t| ≤ (2/γ)k−1εpℓn. On the other hand, for any es ∈ It, the vertex
ys ∈ es, as detailed above, is contained in Y t and every y ∈ Y t is ys for at most ∆ elements es ∈ I.
This shows that |It| ≤ ∆|Y t| and the claim follows. �

3. Absorbers and the template

As mentioned in Section 1.1 our proof works by absorption. In particular, it utilises the
“absorber-template” method introduced by Montgomery [46, 47] which has since been used by
various authors in different settings, see, e.g., [20, 21, 28–30, 41, 49]. In our case we combine many
copies of small special subgraphs called absorbers to a large family using a large template, which
captures how these copies intersect. The absorbers will depend on the spanning structure we are
interested in but in both cases we should be able to find them in the pseudo-random host, thus
they need to be linear hypergraphs and edges containing distinct rooted vertices should be disjoint.
Moreover, in light of Lemma 2.1 we want that absorbers have small edge degeneracy as to weaken
the pseudo-random condition necessary for the argument. The absorbers for factors given here are
straightforward to describe and rely on permuting copies of F in a grid-like structure so as to reduce
the degeneracy. The path absorbers, however, are more involved and differ from those used in ab-
sorbing arguments before. In particular, the first absorbers [9,27] for finding loose Hamilton cycles
in hypergraphs do not satisfy our definition of path absorbers, while the ones used, e.g., in [45],
have edge degeneracy k and so are not as effective as those given here, which have degeneracy k−1.

3.1. Absorbers for factors. For a linear k-graph F an absorber for F is a rooted linear k-graph
(AF ,X ) with non-empty root vector X such that there is an F -factor of AF and an F -factor of
the subgraph of AF obtained by removing all roots X . We will often refer to the F -factor on the
full vertex set of AF as the complete F -factor, while the factor on V (AF ) \ X is referred to as the
internal F -factor. Note that the number of root vertices is a multiple of |V (F )|.
Lemma 3.1. Given k and a linear k-graph F on [f ] vertices. Then there is an absorber (AF ,X )
of F with f2 vertices, f roots and edge degeneracy

degen(AF ,X ) ≤ degen(F ) + max
e∈E(F )

∑

u∈e

degF (u) = degen(F ) + ∆′(F ) + k,

where degen(F ) is considered here to be the degeneracy of F with an empty root set of vertices. In
particular, if F consists of a single edge, then there is an absorber of edge degeneracy at most k.

Proof. Given a linear k-graph F on the vertex set V (F ) = Zf = Z/fZ we define the k-graph AF

on the vertex set Zf × Zf as follows. For each i ∈ Zf , AF contains a copy Fi of F on the vertex
set V (Fi) = {i} × Zf . Further, for each j ∈ [f − 1], AF contains a copy F j of F on the vertex set
V (F j) = {(i, i+j) : i ∈ Zf} where addition is in Zf . These copies we place so that the projection to
the second coordinate ϕ((·, ℓ)) = ℓ defines an isomorphism between Fi and F and between F j and F ,
respectively. Note that AF is a linear hypergraph since Fi and Fj are disjoint for ij ∈ Zf × Zf ,
i 6= j, and F i and F j are disjoint for ij ∈ [f − 1]× [f − 1], i 6= j, while Fi and F j , ij ∈ Zf × [f − 1]
intersect only in the vertex (i, i+ j). We further define roots X = ((1, 1), . . . , (f, f)) and obtain the
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rooted k-graph (AF ,X ) with the property that {Fi}i∈Zf
gives the complete F -factor of AF while

{F j}j∈[f−1] gives the internal F -factor. Hence, AF is an absorber of F and it remains to show the
bound on the degeneracy of AF .

Let σ denote an edge exposure of F (without any roots) which yields the degeneracy of F . We
construct an edge exposure τ for AF by first exposing edges containing the roots in an arbitrary
order. Note that this step does not expose any edge of F j , j ∈ [f − 1], since none of them contains
root vertices. In the second step we expose the remaining edges of all Fi, i ∈ Zf in an arbitrary
order and finally, in the third step, we expose the edges of each F j , j = 1, . . . , f − 1 according to
the order given by σ. As the Fi’s are vertex disjoint each edge e from the second step has weight
at most

∑

u∈e(degF (u)− 1).
To bound the weights of the edges in the third step consider a j ∈ [f − 1] and let et = {(i1, i1 +

j), . . . , (ik, ik + j)} be the t-th edge of F j in the ordering τ . Recall that F j is disjoint from other

F j′ , that we expose the edges of F j according to σ and that V (Fi)∩V (F j) = {(i, i+ j)} for i ∈ Zf .
Therefore, the weight of et with respect to τ is exactly

wσ(t) +
∑

ℓ∈[k]

degFiℓ
((iℓ, iℓ + j)).

Recall also that Fi and F j are identical copies of F , i.e., the projection to the second coordinate
ϕ(·, ℓ) = ℓ is an isomorphism of Fi and F j to F . By this projection {i1+j, . . . , ik+j} is an edge in F
and the degree of (iℓ, iℓ+j) in Fiℓ is degF (iℓ+j) for each ℓ ∈ [k]. Hence,

∑

ℓ∈[k] degFiℓ
((iℓ, iℓ+j)) ≤

maxe∈E(F )

∑

u∈e degF (u). Together with wσ(t) ≤ degen(F ) this yields the desired bound. �

3.2. Path absorbers. A k-uniform path absorber is a rooted linear k-graph (P,X , y1, y2) with
a non-empty set of root vertices X and two distinguished vertices y1, y2 ∈ V (P ) \ X , called end
vertices, such that there is a loose path from y1 to y2 which uses all the vertices of V (P ) and a loose
path from y1 to y2 in P which covers the vertices V (P ) \ X . The first path we call the complete
loose path and latter is called the internal loose path.

Lemma 3.2. For each k ≥ 3, there exists a k-uniform path absorber (P,X , y1, y2) on 9k2−23k+15
vertices with roots X = {x1, . . . , xk−1} and degeneracy degen(P,X ) = k − 1.

Proof. Our path absorber is defined by smaller subgraphs which we call absorbing gadgets (see
Figure 1). An absorbing gadget Pi is a hypergraph on 5k−6 vertices, with disjoint vertex subsets Ai,
A′

i, Bi and Ci such that |Ai| = |A′
i| = k−2, |Bi| = k−3, |Ci| = 2k+1 and V (Pi) = Ai∪A′

i∪Bi∪Ci.
We label Ci = {ci1, . . . , cik, c′i1, . . . , c′ik, ci∗} and let E(Pi) = {ei, e′i, fi, f ′

i , gi} where

ei := {ci2, ci∗}∪Ai, fi := {ci1, . . . , cik},
e′i := {c′i2, ci∗}∪A′

i, f ′
i := {c′i1, . . . , c′ik} and

gi :={cik, ci∗, c′i1} ∪Bi.

The key property of the absorbing gadget is that there are two loose paths in Pi, both with end
vertices ci1 and c′ik. Indeed, there is a loose path from ci1 to c′ik which covers V (P ) \ (Ai ∪ A′

i),
namely taking the edge sequence (fi, gi, f

′
i). We call this the inner loose path of Pi. We also have

the outer loose path of Pi defined by the edge sequence (fi, ei, e
′
i, f

′
i) which covers V (P ) \ Bi and

also has endpoints ci1 and c′ik.
The path absorber P is then defined by taking copies of these absorbing gadgets, joining them

together using singular edges and identifying vertices in Ai ∪ A′
i ∪ Bi across the gadgets. In more

detail, we take the vertex set of P to be the disjoint union

V (P ) := X ∪ U ∪ V ∪W ∪
2k−3
⋃

i=1

Ci ∪
2k−4
⋃

i=1

Di.
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Figure 1. An absorbing gadget.

On V (P ) we will define absorbing gadgets P1, . . . , P2k−3, where V (Pi) = Ai ∪ A′
i ∪ Bi ∪ Ci and

E(Pi) = {ei, e′i, fi, f ′
i , gi} as above. The set Ci is also labelled as in the previous paragraph and is

used by Pi only, while vertices in Ai, A
′
i andBi will be shared with other gadgets in the way explained

in the next paragraph. The sets Di, |Di| = k−2, are used to build the edges hi = {c′ik, c(i+1)1}∪Di,
i ∈ [2k − 4] which connect Pi and Pi+1. All together we obtain edge set of P given by

E(P ) := E(P1) ∪ · · · ∪ E(P2k−3) ∪ {h1, . . . , h2k−4}
and we take y1 := c11 and y2 := c′(2k−3)k to be the two endpoints of P .

To complete the definition of P , it is left to assign the vertices in Ai, A
′
i and Bi as subsets of

X ∪ U ∪ V ∪W . For this purpose we consider the following labelling

X := {x1, . . . , xk−1},
U := {uij : 1 ≤ i, j ≤ k − 1 and i mod (k − 1) /∈ {j, j − 1}},
W := {wij : k ≤ i, j ≤ 2k − 3 and i 6= j},
V := {vij : 1 ≤ i ≤ k − 1 and k ≤ j ≤ 2k − 3}.

We assign the vertices as follows. For 1 ≤ i ≤ k − 1 we define

Ai := {xi} ∪ {uiℓ : 1 ≤ ℓ ≤ k − 1 and ℓ mod (k − 1) /∈ {i, i + 1}},
A′

i := {viℓ : k ≤ ℓ ≤ 2k − 3},
Bi := {uℓi : 1 ≤ ℓ ≤ k − 1 and ℓ mod (k − 1) /∈ {i− 1, i}}.

On the other hand, for k ≤ i ≤ 2k − 3, we assign the vertices in the following way:

Ai := {v(i−k+1)i} ∪ {wiℓ : k ≤ ℓ ≤ 2k − 3 and ℓ 6= i},
A′

i := {vℓi : 1 ≤ ℓ ≤ k − 1 and ℓ 6= i− k + 1)} and

Bi := {wℓi : k ≤ ℓ ≤ 2k − 3 and ℓ 6= i}.
This finishes the definition of P . Examples of these vertex set assignments are shown in Figure 2.
When k = 3, the sets Bi are empty which simplifies the situation considerably. The resulting
hypergraph in this case is shown in Figure 3.

Let us now establish the claimed properties. Firstly, it is easily verified that V (P ) has the
required size and we now show that P is linear. Note that for a fixed i ∈ [2k− 3], the vertices that
appear in the absorbing gadget Pi are all distinct. One can easily check that Pi is linear and the
edges hi intersect two distinct gadgets in one vertex each. Therefore it suffices to establish that if
e ∈ E(Pi) and f ∈ E(Pj), for i 6= j then |e∩f | ≤ 1. If i, j ∈ [k−1], i /∈ {j−1, j+1} mod (k−1), then
V (Pi)∩V (Pj) = {uij , uji} and these vertices do not lie in the same edge, neither in Pi nor in Pj . If
i ∈ {j−1, j+1} mod (k−1), then the situation is even simpler as |V (Pi)∩V (Pj)| ≤ 1. In a similar
fashion, we have that if k ≤ i, j ≤ 2k − 3 then V (Pi) ∩ V (Pj) = {wij , wji} and neither Pi nor Pj
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Figure 2. Assigning the vertices.
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Figure 3. A three-uniform path absorber.

have an edge which contains both of these vertices. Finally if 1 ≤ i ≤ k − 1 and k ≤ j ≤ 2k − 3,
then V (Pi) ∩ V (Pj) = {vij}.

We now verify that (P,X , y1, y2) defines a path absorber. Consider traversing the outer loose
path of Pi for 1 ≤ i ≤ k−1 and the inner loose path for k ≤ i ≤ 2k−3 as well as the edges hi which
link the absorbing gadgets. This gives a loose path from y1 to y2, which covers all the vertices
exactly once. Indeed, when we traverse the outer loose paths in the first k − 1 absorbing gadgets
we cover all of U , V and X exactly once whilst avoiding the Bi and thus avoiding taking any u ∈ U
more than once. Further, taking the inner loose paths for k ≤ i ≤ 2k − 3 guarantees that we
cover W and do not repeat any vertices of V in the process. Similarly, if we now consider taking
the inner loose path for all the absorbing gadgets Pi with 1 ≤ i ≤ k − 1 and the outer loose path
for all absorbing gadgets Pi with k ≤ i ≤ 2k − 3, one can see that we obtain a loose path from y1
to y2 on P which covers exactly the vertices V (P ) \ X .

Finally let us turn to the degeneracy of (P,X ). We consider the following edge exposure. We
reveal all the ei for i = 1, 2, . . . , 2k−3 first. This guarantees that all the edges with root vertices are
revealed first. We then reveal e′i for i = 1, 2, . . . , 2k − 3. Each e′i has weight at most k − 1. Indeed,
as we add e′i the vertex c′i2 contributes nothing to the weight, whilst all other vertices contribute at
most one. We then reveal gi for each i = 1, 2, . . . , 2k − 3. Again we can conclude that the weight
of gi according to this edge exposure is at most k − 1 as no edges containing cik or c′i1 have been
revealed yet and so they contribute nothing to the weight, whilst ci∗ contributes two and all other
vertices contribute at most one. Indeed all other vertices in the edge have degree two and so can
contribute no more than one to the weight. We can then reveal fi and f ′

i for i = 1, 2, . . . , 2k − 3,
each of which has weight two, given by the two vertices in the edge which have previously featured.
Finally, we reveal hi for i = 1, 2, . . . , 2k− 4 which again has weight two given by its two degree two
vertices. This gives an edge exposure with degeneracy k − 1.
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3.3. The template. We look to find many (path) absorbers in our host graph and the relative
positions of these absorbers will be determined by an auxiliary hypergraph which we call a template.

Definition 3.3. An (r,m)-template T is an r-uniform, r-partite hypergraph with vertex parts
V (T ) = Y0 ∪ Y1 ∪ . . . ∪ Yr−1 of sizes |Y0| = 4m, |Y1| = · · · = |Yr−1| = 3m such that the following
holds. There exists a subset Z ⊂ Y0, called the flexible set, of size |Z| = 2m with the property that
for any Z ′ ⊂ Z of size m the induced hypergraph T [V \ Z ′] has a perfect matching.

As T is r-uniform and r-partite there is no confusion in considering edges of T as sets or as ordered
tuples and we will switch between these viewpoints throughout. For large enough m the existence
of a (2,m)-template with maximum vertex-degree ∆1(T ) ≤ 40 was proven by Montgomery [46,47]
using a probabilistic argument. These easily extend to (r,m)-templates by taking r − 2 disjoint
copies Y2, . . . , Yr−1 of Y1 and adding to each edge ab ∈ (Y0×Y1)∩E(T ) the copies bi ∈ Yi of b ∈ Y1,
i ∈ {2, . . . , r − 1} to make it r-uniform. This yields the following.

Lemma 3.4. For an r ≥ 2 and large enough m there is an (r,m)-template T with ∆1(T ) ≤ 40. �

Templates T are defined so that they are flexible with respect to perfect matchings in T , reflected
by the existence of the flexible set Z ⊂ V (T ). Let T with V (T ) ⊂ V (H) be a suitable chosen
template. By combining this with the notions of absorbers from Section 3.1 and Section 3.2, and
that of T -compatible families from Section 2.2, one can transform V (T ) into a set A ⊃ V (T ) such
that Z ⊂ A is flexible with respect to the desired spanning structure, which means that for each
Z ′ ⊂ Z of size m the induced k-graph H[A\Z ′] contains an F -factor or a spanning loose path with
end vertices independent of Z ′. This is the key property in our proof of the main theorems.

4. Proof of Theorem 1.7 and Theorem 1.5

We prove both theorems, Theorem 1.7 and Theorem 1.5, at once following the outline from
Section 1.1. The proof essentially consists of two steps, encapsulated by Claim 4.2 and Claim 4.3.
The first, Claim 4.2, concerns the construction of the flexible and absorbing sets Z ⊂ A ⊂ V (H)
as explained in the outline given in Section 1.1 and in the last paragraph of the previous section.
The second, Claim 4.3, then makes use of the flexibility of Z to construct a spanning structure in
H[(V \A)∪Z ′] for some suitable Z ′ ⊂ Z. Combining this with the spanning structure in H[A\Z ′],
which exists by the flexibility of Z, we obtain the desired spanning structure of H.

Before delving into the proof let us first expand the outline of the construction of the absorbing
set from Claim 4.2 by some technical details and explain the role that Claim 4.1 plays. To be
able to make use of the flexible set Z ⊂ V (H) we require that essentially all vertices have high
degree into Z, including those in Z. Due to the necessity to connect paths we require slightly
more in the Hamilton cycle case, namely that these vertices have high degree, e.g., into sets Z1

and Z2 of a partition of Z and to another set W , which we use within the claim to connect the
many small path absorbers to one long path. One way to ensure this degree condition is to simply
choose a slightly larger set and remove vertices with bad degree, of which there are few due to the
pseudo-randomness. Using Claim 4.1 these vertices can then be covered by a small F -factor or a
loose path, respectively, giving rise to the additional set U in Claim 4.2. Claim 4.1 will also become
handy in the proof of Claim 4.3. We remark that the proof for F -factors (Theorem 1.7) is simpler
than that of Hamilton cycles (Theorem 1.5). Indeed certain technicalities that arise for Hamilton
cycles (e.g. the sets Z1 and Z2 and the constant α) can be ignored. The reader may therefore prefer
to concentrate just on F -factors on first read.

Proofs of Theorem 1.7 and 1.5. Let k and c be given as in the theorems. For Theorem 1.7 we
further have the parameter f ≥ k. Let ∆ = 40 and for convenience choose γ ≪ β ≪ α ≪ 1/∆, 1/f .
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We may also assume that c ≪ γ since it only appears in lower bounds. Apply Lemma 2.3 several
times, each time with parameters k, ∆, and c2.3 = c′ ≪ c, and for each f2.3 ∈ {9k2−24k+16, f2−
f}, and each r2.3 ∈ {k − 1, f}, to obtain ε′, the minimum ε2.3 over all choices of f2.3 and r2.3.
Choose ε ≪ ε′ and n0 sufficiently large. Thus we may assume the following hierarchy of constants

1/n0 ≪ ε ≪ ε′ ≪ c′ ≪ c ≪ γ ≪ β ≪ α ≪ 1/∆, 1/f.

For Theorem 1.7 let a linear k-graph F on f vertices be given. We define

ℓF := degen(F ) + max
e∈E(F )

∑

v∈e

degF (v) = degen(F ) + ∆′(F ) + k and ℓham = ℓham(k) := k − 1

We apply Lemma 3.1 to obtain an absorber (AF ,XF ) of F on f2 vertices, of which f are root
vertices such that AF has degeneracy degen(AF ) = ℓF . Similarly, apply Lemma 3.2 to obtain a
path absorber (Aham,Xham, y1, y2) on 9k2 − 23k + 15 vertices, of which k − 1 are roots such that
Aham has degeneracy ℓham .

Suppose that H is a (p, εpℓ, ε)-pseudo-random k-graph where ℓ = ℓF when dealing with Theo-
rem 1.7 and ℓ = ℓham when dealing with Theorem 1.5. We start with the following observation which
will be used to include small sets of vertices in substructures of our desired spanning structure.

Claim 4.1. Suppose that B̂, X̂ ⊂ V (H) are disjoint sets, (b̂1, . . . , b̂t) is an ordering of the vertices

of B̂, |X̂ | ≥ max{γn/4, 800(f2 + 9k2)2|B̂|} and deg(b̂; X̂) ≥ cp|X̂ |k−1 for each b̂ ∈ B̂. Then there

is a set B̂ ⊆ R̂ ⊆ B̂ ∪ X̂ such that the following holds:

F -factors: If ℓ = ℓF , then H[R̂] contains an F -factor and |R̂| ≤ f |B̂|+ f2.

Hamcyc: If ℓ = ℓham then |R̂| = 3(t− 1)(k− 1) + 1 and H[R̂] contains a loose spanning path

with end vertices b̂1 and b̂t and such that b̂1, . . . , b̂t appear in this order in the path.

Proof. By Fact 1.8 we know that H[B̂ ∪ X̂ ] is
(

p, ε′pℓ, ε)-pseudo-random. In particular, there are

f − 1 vertices v1, . . . , vf−1 ∈ X̂ with deg(vi; X̂) ≥ p
2 |X̂|k−1, i ∈ [f − 1], and in the case of F -

factors we may add some (at most f − 1) of them to B̂ so that |B̂| is a multiple of f . Abusing

notation slightly we denote this modified set by B̂. In the Hamilton cycle case we leave (b̂1, . . . , b̂t)
unchanged.

In both cases, ℓ = ℓF and ℓ = ℓham, we apply Lemma 2.3 with H2.3 = H[B̂ ∪ X̂] and Y2.3 = B̂.

• If ℓ = ℓF then we choose8 (A2.3,X2.3) = (AF ,XF ) and we fix T2.3 as an f -uniform perfect

matching on B̂. The lemma then implies that there is a T2.3-compatible family AF of
copies of (A2.3,X2.3), i.e., a family of disjoint copies of AF . Taking the complete F -factor

in each of these copies yields an F -factor of H[R̂] = H[V (AF )] and certainly B̂ ⊂ V (AF ).

• If ℓ = ℓham then we let T2.3 be the 2-uniform path with the vertex ordering b̂1, b̂2, . . . , b̂t,

i.e., b̂ib̂i+1 ∈ E(T2.3) for all i ∈ [t− 1] and we let (A′,X ′) be the loose path of length9 three
with the ends being the root vertices. Note that (A′,X ′) has edge degeneracy two, thus at
most ℓham. Applying Lemma 2.3 with (A2.3,X2.3) = (A′,X ′), we obtain a family A′ which

consists of t − 1 length three loose paths with ends b̂i and b̂i+1, i ∈ [t − 1], and which are

disjoint otherwise. Thus, R̂ = V (A′) has size 3(t − 1)(k − 1) + 1 and A′ forms a spanning

loose path with ends b̂1 and b̂t in H[R̂], as required.

�

With this auxiliary claim proven we now turn to the construction of the absorbing set.

8One could equally just cover with copies of F , avoiding the use of absorbers here but we prefer to use absorbers
for brevity.

9The length of a path is the number of edges in the path.
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Claim 4.2. Fix m := ⌈βn⌉. There are vertex sets Z1 ∪ Z2 = Z ⊂ A ⊂ V (H) and U ⊂ V (H) of
sizes |Z1| = m+ ⌈γn⌉ and |Z2| = m− ⌈γn⌉, |A ∪ U | ≤ 8f2βn such that

(4.1) deg(v;Zi) >
p

4
|Zi|k−1 for i = 1, 2 and any v ∈ V \ U

and such that Z ⊂ A ∪ U satisfies the following flexibility property:

F -factors: If ℓ = ℓF then for any Z ′ ⊂ Z of size m the subgraph H[(A∪U) \Z ′] contains an
F -factor.

Hamcyc: If ℓ = ℓham then there are a1, a2 ∈ A \ Z such that for any Z ′ ⊂ Z of size m the
subgraph H[(A ∪ U) \ Z ′] contains a spanning loose path with ends a1 and a2.

Proof. As explained in the beginning of this section we need to do some preprocessing as to guar-
antee (4.1). Let r = f in the case of F -factors and r = k − 1 in the case of finding a Hamilton

cycle. Let s = ⌈10kfγ−kεpℓn⌉. We choose disjoint sets Ẑ1, Ẑ2 ⊂ V of size |Ẑ1| = m + ⌈γn⌉ + s,

|Ẑ2| = m−⌈γn⌉+s and extend Ẑ = Ẑ1∪ Ẑ2 to a set Ŷ0 of size 4m+3s. Further, we choose disjoint

sets Ŷ1, . . . , Ŷr−1 ⊂ V (H) \ Ŷ0 each of size 3m+ s. Let Ŷ = Ŷ0 ∪ · · · ∪ Ŷr−1, let W ⊂ V \ Ŷ be a set
of size αn and let

B =
{

v ∈ V : deg(v;S) <
p

2
|S|k−1, for some S ∈ {Ẑ1, Ẑ2,W, V \ (W ∪ Ŷ )}

}

.

From the pseudo-randomness of H we infer that |B| ≤ εγ−(k−1)pℓn and thus

deg(v;V \B) ≥ deg(v) − |B|nk−2 >
c

2
pnk−1 for each v ∈ V.

F -factors: For ℓ = ℓF an application of Claim 4.1 with B̂ = B, X̂ = V \B then yields a set

U = R̂ ⊃ B of size |U | ≤ f(|B|+ f) < s such that H[U ] contains an F -factor.
Hamcyc: For ℓ = ℓham we choose u0, v0 ∈ V \B and let (u0, b1, . . . , b|B|, v0) be an ordering of

the vertices of B ∪ {u0, v0}. With this ordering and X̂ = V \ (B ∪ {u0, v0}) an application

of Claim 4.1 then yields a set U = R̂ ⊃ B of size |U | ≤ 3k|B| < s such that H[U ] contains
a spanning path with ends u0 and v0.

Consequently, from each of the sets Ẑ1, Ẑ2, Ŷ0 \ Ẑ, Ŷ1, . . . , Ŷr−1, we can remove a subset of size
exactly s to obtain sets Z1 ∪ Z2 = Z ⊂ Y0, Y1, . . . Yr−1 with |Z1| = m + ⌈γn⌉, |Z2| = m − ⌈γn⌉,
|Y0| = 4m, |Y1| = · · · = |Yr−1| = 3m, all disjoint from U . Let Y = Y0 ∪ · · · ∪ Yr−1, let V

′ = V \ U .
By the definition of B, the fact that B ⊂ U and noting that s · nk−2 < p

4 (γn)
k−1 we have that

(4.2) deg(v;S) >
p

4
|S|k−1 for any S ∈ {Z1, Z2,W, V ′ \ (W ∪ Y )} and any v ∈ V ′ ∪ {u0, v0}.

In particular, (4.1) holds and we can now turn to the core of the proof of the claim.

Recall that r = f in the case of F -factors and r = k − 1 in Hamilton cycle case. In both cases
we first apply Lemma 3.4 to obtain an (r,m)-template Tr with vertex set Y = Y0 ∪ · · · ∪ Yr−1,
maximum degree ∆1(Tr) ≤ ∆ and with the flexible set Z ⊂ Y0. In particular, there is a perfect
matching M(Z ′) of Tr[Y \ Z ′] for each set Z ′ ⊂ Z of size m. Then, apply Lemma 2.3 with
H2.3 = H[V ′ \ W ], Y2.3 = Y , T2.3 = Tr and with (A2.3,X2.3) = (AF ,XF ) in the case of F -
factors, and with (A2.3,X2.3) = (Aham,Xham) in the case of Hamilton cycle. Note that all the
conditions of Lemma 2.3 are indeed satisfied. In particular, the degeneracy of (A2.3,X2.3) is
at most ℓ (by our choice of ℓF and ℓham) and the maximum 2-degree condition in Lemma 2.3
is void for us here as ℓ ≥ k − 1. This yields a Tf -compatible family AF = {(Ae, e)}e∈E(Tf ) of

copies of (AF ,XF ) with Y ⊂ V (A) ⊂ V ′ \ W in the first case and a Tk−1-compatible family
Aham = {(Ae, e, ue, ve)}e∈E(Tk−1)

10 of copies of (Aham,Xham, y1, y2) with Y ⊂ V (Aham) ⊂ V ′ \W in

10Recall that ue, ve /∈ e and thus they are distinct for all e ∈ E(Tk−1).
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the second. In particular, by the defining property of (AF ,XF ) we infer that in any (Ae, e) ∈ AF

there is a complete F -factor, which covers all of V (Ae), and an internal F -factor, which covers
V (Ae) \ e. Similarly, in (Ae, e, ue, ve) ∈ Aham there is a complete loose path, which covers V (Ae)
and an internal loose path, which covers V (Ae) \ e, both with the same end vertices ue and ve.
Moreover, being Tr-compatible any two copies Ae and Ae′ in AF (in Aham, respectively) are disjoint
if e and e′ are.

Together with the flexibility of Z ⊂ Y with respect to the template Tf we now easily establish
the flexibility of Z ⊂ V (AF ) ∪ U , which thus concludes the proof for the case of F -factors by
setting A = V (AF ). Indeed, let Z

′ ⊂ Z of size m be given and let M(Z ′) ⊂ E(Tf ) denote a perfect
matching of Y \Z ′ ⊂ A. By taking a complete F -factor of Ae if e ∈ M(Z ′) while taking an internal
F -factor of Ae if e ∈ E(Tf )\M(Z ′) we obtain an F -factor of H[A\Z ′]. Together with the F -factor
of H[U ] and A ∩ U = ∅ this yields an F -factor of H[(A ∪ U) \ Z ′], as required.

By the same argument we obtain in the Hamilton cycle case that for any set Z ′ ⊂ Z of size m
there is a collection of e(Tk−1)+1 loose paths with fixed end vertices independent of Z ′, and which
span the vertices of H[(V (Aham)∪U) \Z ′]. Indeed, this follows by considering a perfect matching
M(Z ′) of Tk−1[Y \ Z ′] for a given set Z ′ ⊂ Z of size m and taking in each (Ae, e, ue, ve) ∈ Aham

the complete path if e ∈ M(Z ′) and the internal path if e ∈ E(Tk−1) \ M(Z ′), both having end
vertices ue and ve. Together with the loose spanning path in H[U ] with end vertices u0 and v0 we
obtain the required collection of e(Tk−1) + 1 loose paths. Thus, to obtain A and the flexibility of
Z ⊂ A ∪ U it is left to connect the end vertices of these paths to obtain a long path.

Let (Ae1 , . . . , Aet) be an ordering of the elements of Aham. As the end vertices ui := uei and
vi := vei of Aei , i ∈ [t], are all contained in V ′ we can make use of (4.2) (with S = W ) to apply

Claim 4.1 with the ordering (b̂1, b̂2, . . . , b̂2t) = (v0, u1, v1, u2, v2, . . . , ut), where t < ∆1(Tk−1) · |Y1| ≤
3∆m and X̂ = W to find a loose path connecting these vertices as given in the order. From this
path we only keep the connecting paths Pi+1 between vi and ui+1, i = 0, . . . , t− 1, discarding each
of the loose paths between ui and vi. Now let A = V (Aham) ∪ V (P1) ∪ · · · ∪ V (Pt) and let a1 = u0
and a2 = vt. Together with the argument from above we conclude that Z ⊂ A ∪ U has the desired
flexibility property. �

Using Claim 4.2, we can now prove the following claim which will conclude the proof.

Claim 4.3. Let V ′′ = V \ (A ∪ U) then there is a set Z ′ ⊂ Z of size m such that the following
holds:

F -factors: If ℓ = ℓF then H[V ′′ ∪ Z ′] contains an F -factor.
Hamcyc: If ℓ = ℓham then H[V ′′ ∪Z ′ ∪ {a1, a2}] contains a spanning loose path with ends a1

and a2.

Before proving the claim note that it implies the theorems. Indeed, if ℓ = ℓF then we use
Claim 4.3 and choose an F -factor of H[V ′′ ∪ Z ′], for some Z ′ ⊂ Z of size m. Claim 4.2 then
guarantees that there is an F -factor of H[(A ∪ U) \ Z ′] which thus yields an F -factor of H, as
V = V ′′ ∪A∪U . For ℓ = ℓham we take a loose Hamilton path of H[V ′′ ∪Z ′∪{a1, a2}] with ends a1
and a2. By Claim 4.2 there is a loose Hamilton path of H[(A∪U) \Z ′] with the same end vertices
which thus yields a Hamilton cycle of H. �

Proof of Claim 4.3. Consider first the F -factor case. Let R ⊂ V ′′ be the largest set such that H[R]
contains an F -factor and let L = V ′′ \R be the set of uncovered vertices. Suppose |L| ≥ γn, then

there is a vertex v ∈ L with deg(v;L) > p
2 |L|k−1 and by applying Claim 4.1 with B̂ = {v} and

X̂ = L \ {v} we find a copy of F in L, contradicting the maximality of R. Thus |L| < γn and the
claim follows (by setting R ∪ S = V ′′ ∪ Z ′) once we have shown that there is a set S such that

(1) L ⊂ S ⊂ L ∪ Z and H[S] contains an F -factor,
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(2) Z \ S has size m.

To find S consider first a smallest set S1 which satisfies the first property. Such a set exists since
we can apply Claim 4.1 with B̂ = L and X̂ = Z, noting that the assumptions are met due to (4.1)
and the fact that L ⊂ V \ U . Thus S1 exists and |S1| ≤ f(|L| + f) < m. Now let S2 ⊂ Z \ S1

be the largest set such that H[S2] contains an F -factor. By the same argument as in the previous
paragraph |Z \ (S2 ∪ S1)| < γn. Finally, due to Claim 4.2 we have

|V ′′|+m = |V | − (|A ∪ U | −m) ∈ fN,

and

|V ′′|+ 2m = |V ′′ ∪ Z| = |R|+ |S1|+ |S2|+ |Z \ (S1 ∪ S2)|.
This yields |Z \ (S1 ∪ S2)| −m ∈ fN and therefore we can remove copies of F from S2 to obtain
S1 ⊂ S ⊂ S1 ∪ S2 with the required properties.

Let us now turn to considering the Hamilton loose path. Here the argument is very similar to
the above but it is slightly more delicate as we have to connect the loose paths that we find to one.
For this, we use the partition of Z into Z1 ∪ Z2 as in Claim 4.2, and carry out the argument using
only vertices from Z1, reserving the vertices of Z2 to connect the paths in the very last step. The
details follow.

In V ′′ we choose the largest set R ⊂ V ′′ with the property that H[R] contains a loose Hamilton
path with one of its end vertices, say, a ∈ R satisfying deg(a;V ′′ \R) > 2cpnk−1. Let L = V ′′ \R
and suppose that |L| ≥ γn. Then there is a vertex b ∈ L with deg(b;L) > 4cpnk−1. Applying

Claim 4.1 with B̂ = {a, b} and with X̂ = L \ {b} we then find a path of length three in L ∪ {a}
connecting a and b, which thus yields a contradiction to the maximality of R. Thus |L| < γn.
Next, we claim that there is a set S such that

(1) L ⊂ S ⊂ L ∪ Z1 and H[S] has a spanning subgraph consisting of two vertex disjoint loose
paths,

(2) |Z \ S| = m+ 12(k − 1)− 4.

To find S consider first a smallest set S1 with L ⊂ S1 ⊂ L∪Z1 and a largest set S2 ⊂ Z1 \ S1 such
that H[S1] and H[S2] both contain a Hamilton path. Due to (4.1) and the fact that L ⊂ V \ U

we can apply Claim 4.1 with an arbitrary ordering of the vertices of B̂ = L and X̂ = Z1. This
shows that S1 exists and |S1| ≤ 3k|L| < m − 12(k − 1). Further, using the same argument which
was used to find R above, we have that |Z1 \ S2| < γn, thus |Z \ (S1 ∪ S2)| < γn+ |Z2| ≤ m. Note
that |Si| ≡ 1 mod (k − 1), i = 1, 2 and the same holds for |R| and also for (|A ∪ U | −m) due to
Claim 4.2. With |V | ∈ (k − 1)N this yields

|V ′′|+ 2m = |V |+m− (|A ∪ U | −m) ≡ m− 1 mod (k − 1)

and moreover we have

|V ′′|+ 2m = |V ′′ ∪ Z| = |R|+ |S1|+ |S2|+ |Z \ (S1 ∪ S2)|.
This yields |Z \ (S1 ∪S2)| ≡ m− 4 mod (k− 1) and therefore by shortening the path in S2 we can
enlarge |Z \ (S1 ∪ S2)| and thus choose a set S1 ⊂ S ⊂ S1 ∪ S2 with the required properties.

Finally, let (b1, b2), (c1, c2) and (d1, d2) denote the ends of a Hamilton path in H[R] and the two
paths in H[S] which cover all of S. Note that these vertices are contained in V \U . Hence, by (4.1)

we can apply Claim 4.1 with (a2, b1) and X̂ = Z2 and find a set Ra2,b1 ⊂ Z2 of size 3(k − 1) − 1

which connect a2 and b1 by a loose path. We repeat the argument with (b2, c1) and X̂ = Z2 \Ra2,b1

to find 3(k − 1) − 1 vertices in Z2 \ Ra2,b1 to connect b2 and c1 and in the same manner connect
(b2, c1), (c2, d1) and (d2, a1). This yields a loose path with ends a1 and a2 which covers all but
|Z \ S| − 12(k − 1) + 4 = m vertices of V ′′ ∪ Z, and the claim follows. �
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[9] E. Buß, H. Hàn, and M. Schacht, Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform

hypergraphs, J. Combin. Theory Ser. B 103 (2013), no. 6, 658–678. ↑3
[10] F. R. K. Chung, Quasi-random classes of hypergraphs, Random Structures & Algorithms 1 (1990), no. 4, 363–

382. ↑1
[11] , Regularity lemmas for hypergraphs and quasi-randomness, Random Structures & Algorithms 2 (1991),

no. 2, 241–252. ↑1
[12] , Quasi-random hypergraphs revisited, Random Structures & Algorithms 40 (2012), no. 1, 39–48. ↑1
[13] F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), no. 4, 345–

362. ↑1, 1
[14] F. R. K. Chung and R. L. Graham, Quasi-random hypergraphs, Random Structures & Algorithms 1 (1990),

no. 1, 105–124. ↑1
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[37] Y. Kohayakawa, V. Rödl, M. Schacht, P. Sissokho, and J. Skokan, Turán’s theorem for pseudo-random graphs,

J. Combin. Theory Ser. A 114 (2007), no. 4, 631–657. ↑1
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