
Sticky Brownian Rounding and its Applications to Constraint

Satisfaction Problems

Sepehr Abbasi-Zadeh ∗ Nikhil Bansal† Guru Guruganesh ‡ Aleksandar Nikolov §

Roy Schwartz ¶ Mohit Singh ‖

Abstract

Semidefinite programming is a powerful tool in the design and analysis of approximation
algorithms for combinatorial optimization problems. In particular, the random hyperplane
rounding method of Goemans and Williamson [31] has been extensively studied for more than
two decades, resulting in various extensions to the original technique and beautiful algorithms
for a wide range of applications. Despite the fact that this approach yields tight approximation
guarantees for some problems, e.g., Max-Cut, for many others, e.g., Max-SAT and Max-
DiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the
fact that very few techniques for rounding semi-definite relaxations are known.

In this work, we present a new general and simple method for rounding semi-definite pro-
grams, based on Brownian motion. Our approach is inspired by recent results in algorithmic
discrepancy theory. We develop and present tools for analyzing our new rounding algorithms,
utilizing mathematical machinery from the theory of Brownian motion, complex analysis, and
partial differential equations. Focusing on constraint satisfaction problems, we apply our method
to several classical problems, including Max-Cut, Max-2SAT, and Max-DiCut, and derive
new algorithms that are competitive with the best known results. To illustrate the versatility
and general applicability of our approach, we give new approximation algorithms for the Max-
Cut problem with side constraints that crucially utilizes measure concentration results for the
Sticky Brownian Motion, a feature missing from hyperplane rounding and its generalizations.

∗University of Toronto. E-mail: sabbasizadeh@gmail.com.
†TU Eindhoven, and Centrum Wiskunde & Informatica. E-mail: bansal@gmail.com.
‡Google Research. Email: gurug@google.com.
§University of Toronto. Email:anikolov@cs.toronto.edu.
¶Technion. Email:schwartz@cs.technion.ac.il.
‖Georgia Institute of Technology. Email:mohitsinghr@gmail.com.

ar
X

iv
:1

81
2.

07
76

9v
2

 [
cs

.D
S]

 2
0

O
ct

 2
01

9

1 Introduction

Semi-definite programming (SDP) is one of the most powerful tools in the design of approximation
algorithms for combinatorial optimization problems. Semi-definite programs can be viewed as
relaxed quadratic programs whose variables are allowed to be vectors instead of scalars and scalar
multiplication is replaced by inner products between the vectors. The prominent approach when
designing SDP based approximation algorithms is rounding: (1) an SDP relaxation is formulated
for the given problem, (2) the SDP relaxation is solved, and lastly (3) the fractional solution for
the SDP relaxation is transformed into a feasible integral solution to the original problem, hence
the term rounding.

In their seminal work, Goemans and Williamson [31] presented an elegant and remarkably
simple rounding method for SDPs: a uniformly random hyperplane (through the origin) is chosen,
and then each variable, which is a vector, is assigned to the side of the hyperplane it belongs to.
This (binary) assignment is used to round the vectors and output an integral solution. For example,
when considering Max-Cut, each side of the hyperplane corresponds to a different side of the cut.
Using the random hyperplane rounding, [31] gave the first non-trivial approximation guarantees
for fundamental problems such as Max-Cut, Max-2SAT, and Max-DiCut. Perhaps the most
celebrated result of [31] is the 0.878 approximation for Max-Cut, which is known to be tight [39, 44]
assuming Khot’s Unique Games Conjecture [38]. Since then, the random hyperplane method has
inspired, for more than two decades now, a large body of research, both in approximation algorithms
and in hardness of approximation. In particular, many extensions and generalizations of the random
hyperplane rounding method have been proposed and applied to a wide range of applications ,
e.g., Max-DiCut and Max-2SAT [25, 40], Max-SAT [8, 13], Max-Bisection [12, 50], Max-
Agreement in correlation clustering [22], the Cut-Norm of a matrix [3].

Despite this success and the significant work on variants and extensions of the random hy-
perplane method, the best possible approximation ratios for many fundamental problems still
remain elusive. Several such examples include Max-SAT, Max-Bisection, Max-2CSP, and
Max-DiCut. Perhaps the most crucial reason for the above failure is the fact that besides the
random hyperplane method and its variants, very few methods for rounding SDPs are known.

A sequence of papers by Austrin [10], Raghavendra [48], Raghavendra and Steurer [49] has
shown that SDP rounding algorithms that are based on the random hyperplane method and its
extensions nearly match the Unique Games hardness of any Max-CSP, as well as the integrality gap
of a natural family of SDP relaxations. However, the universal rounding proposed by Raghavendra
and Steurer is impractical, as it involves a brute-force search on a large constant-sized instance of
the problem. Moreover, their methods only allow computing an ε additive approximation to the
approximation ratio in time double-exponential in 1/ε.

1.1 Our Results and Techniques.

Our main contributions are (1) to propose a new SDP rounding technique that is based on diffusion
processes, and, in particular, on Brownian motion; (2) to develop the needed tools for analyzing our
new SDP rounding technique by deploying a variety of mathematical techniques from probability
theory, complex analysis and partial differential equations (PDEs); (3) to show that this rounding
technique has useful concentration of measure properties, not present in random hyperplane based

1

techniques, that can be used to obtain new approximation algorithms for a version of the Max-Cut
problem with multiple global side constraints.

Our method is inspired by the recent success of Brownian motion based algorithms for construc-
tive discrepancy minimization, where it was used to give the first constructive proofs of some of the
most powerful results in discrepancy theory [14, 15, 16, 41]. The basic idea is to use the solution
to the semi-definite program to define the starting point and the covariance matrix of the diffusion
process, and let the process evolve until it reaches an integral solution. As the process is forced
to stay inside the cube [−1, 1]n (for Max-Cut) or [0, 1]n (for Max-2SAT and other problems),
and to stick to any face it reaches, we call the most basic version of our algorithm (without any
enhancements) the Sticky Brownian Motion rounding. The algorithm is defined more formally in
Section 1.2.1.

Sticky Brownian Motion. Using the tools we introduce, we show that this algorithm is already
competitive with the state of the art results for Max-Cut, Max-2SAT, and Max-DiCut.

Theorem 1. The basic Brownian rounding achieves an approximation ration of 0.861 for the Max-
Cut problem. Moreover, when the Max-Cut instance has value 1 − ε, Sticky Brownian Motion
achieves value 1− Ω(

√
ε).

In particular, using complex analysis and evaluating various elliptic integrals, we show that the
separation probability for any two unit vectors u and v separated by an angle θ, is given by a
certain hypergeometric function of θ (see Theorem 4 for details). This precise characterization of
the separation probability also proves that the Sticky Brownian Motion rounding is different from
the random hyperplane rounding. The overview of the analysis is in Section 1.2.2 and Section 2
has the details.

We can also analytically show the following upper bound for Max-2SAT.

Theorem 2. The Sticky Brownian Motion rounding achieves approximation ratio of at least 0.8749
for Max-2SAT.

While the complex analysis methods also give exact results for Max-2SAT, the explicit expres-
sions are much harder to obtain as one has to consider all possible starting points for the diffusion
process, while in the Max-Cut case the process always starts at the origin. Because of this, in
order to prove Theorem 2 we introduce another method of analysis based on partial differential
equations (PDEs), and the maximum principle, which allows us to prove analytic bounds on PDE
solutions. Moreover, numerically solving the PDEs suggests the bound 0.921. The overview and
details of the Max-2SAT analysis are, respectively, in Sections 1.2.3 and 3. Section 5.1 has details
about numerical calculations for various problems.

For comparison, the best known approximation ratio for Max-Cut is the Goemans-Williamson
constant αGW ≈ 0.878, and the best known approximation ratio for Max-2SAT is 0.94016 [40].
The result for Max-Cut instances of value 1 − ε is optimal up to constants [39], assuming the
Unique Games Conjecture.

We emphasize that our results above are achieved with a single algorithm “out of the box”,
without any additional engineering. While the analysis uses sophisticated mathematical tools, the
algorithm itself is simple, efficient, and straightforward to implement.

2

Algorithm Max-Cut Max-2SAT Max-DiCut ?

Brownian Rounding 0.861 0.921 0.79

Brownian with Slowdown 0.878† 0.929 0.81

Table 1: Approximation ratios for Sticky Brownian Motion rounding and Sticky Brownian Motion
with Slowdown. † indicates that for Max-Cut, the approximation for the slowed down walk differs
from the GW bound only in the fourth decimal. For Max-DiCut, the ? indicates that we only
consider the n+ 1-dimensional walk.

Extensions. Next, we consider two different modifications of Sticky Brownian Motion that allow
us to improve the approximation guarantees above, and show the flexibility of diffusion based
rounding algorithms. The first one is to smoothly slow down the process depending on how far it
is from the boundaries of the cube. As a proof of concept, we show, numerically, that a simple
modification of this kind matches the Goemans-Williamson approximation of Max-Cut up to
the first three digits after the decimal point. We also obtain significant improvements for other
problems over the vanilla method.

Second, we propose a variant of Sticky Brownian Motion running in n + 1 dimensions rather
than n dimensions, and we analyze it for the Max-DiCut problem. The extra dimension is used
to determine whether the nodes labeled +1 or those labeled −1 are put on the left side of the cut.
We show that this modification achieves an approximation ratio of 0.79 for Max-DiCut. Slowing
down the process further improves this approximation to 0.81. We give a summary of the obtained
results1 in Table 1. An overview and details of the extensions are given, respectively, in Sections
1.2.4 and 5.1.

Recent Progress. Very recently, in a beautiful result, Eldan and Naor [24] describe a slowdown
process that exactly achieves the Goemans-Williamson (GW) bound of 0.878 for Max-Cut, an-
swering an open question posed in an earlier version of this paper. This shows that our rounding
techniques are at least as powerful as the classical random hyperplane rounding, and are potentially
more general and flexible.

In general, given the dearth of techniques for rounding semidefinite programs, we expect that
rounding methods based on diffusion processes, together with the analysis techniques introduced
in this paper, will find broader use, and, perhaps lead to improved results for Max-CSP problems.

Applications. To further illustrate the versatility and general applicability of our approach, we
consider the Max-Cut with Side Constraints problem, abbreviated Max-Cut-SC, a generalization
of the Max-Bisection problem which allows for multiple global constraints. In an instance of the
Max-Cut-SC problem, we are given an n-vertex graph G = (V,E), a collection F = {F1, . . . , Fk}
of subsets of V , and cardinality bounds b1, . . . , bk ∈ N. The goal is to find a subset S ⊂ V that
maximizes the weight |δ(S)| of edges crossing the cut (S, V \ S), subject to having |S ∩Fi| = bi for
all i ∈ [k].

1Our numerical results are not obtained via simulating the random algorithm but solving a discretized version of
a PDE that analyzes the performance of the algorithm. Error analysis of such a discretization can allow us to prove
the correctness of these bounds within a reasonable accuracy.

3

Since even checking whether there is a feasible solution is NP-hard [23], we aim for bi-criteria
approximation algorithms.2 We give the following result for the problem, using the Sticky Brownian
Motion as a building tool.

Theorem 3. There exists a O(npoly(log(k)/ε))-time algorithm that on input a satisfiable instance
G = (V,E), F , and b1, . . . , bk, as defined above, outputs a (0.843 − ε, ε)-approximation with high
probability.

In the presence of a single side constraint, the problem is closely related to the Max-Bisection
problem [12, 50], and, more generally to Max-Cut with a cardinality constraint. While our meth-
ods use the stronger semi-definite programs considered in [50] and [12], the main new technical
ingredient is showing that the Sticky Brownian Motion possesses concentration of measure prop-
erties that allow us to approximately satisfy multiple constraints. By contrast, the hyperplane
rounding and its generalizations that have been applied previously to the Max-Cut and Max-
Bisection problems do not seem to allow for such strong concentration bounds. For this reason,
the rounding and analysis used in [50] only give an O(npoly(k/ε)) time algorithm for the Max-Cut-
SC problem, which is trivial for k = Ω(n), whereas our algorithm has non-trivial quasi-polynomial
running time even in this regime. We expect that this concentration of measure property will find
further applications, in particular to constraint satisfaction problems with global constraints.

Remark. We can achieve better results using Sticky Brownian Motion with slowdown. In par-
ticular, in time O(npoly(log(k)/ε)) we can get a (0.858 − ε, ε)-approximation with high probability
for any satisfiable instance. However, we focus on the basic Sticky Brownian Motion algorithm to
simplify exposition. Note that due to the recent work by Austrin and Stanković [11], we know that
adding even a single global cardinality constraint to the Max-Cut problem makes it harder to
approximate. In particular, they show that subject to a single side constraint, Max-Cut is Unique
Games-hard to approximate within a factor of approximately 0.858. Thus, assuming the Unique
Games conjecture, our approximation factor for the Max-Cut-SC problem is optimal up to small
numerical errors. (We emphasize the possibility of numerical errors as both our result, and the
hardness result in [11] are based on numerical calculations.)

1.2 Overview

1.2.1 The Sticky Brownian Motion Algorithm.

Let us describe our basic algorithm in some detail. Recall that the Goemans-Williamson SDP for
Max-Cut is equivalent to the following vector program: given a graph G = (V,E), we write

max
∑

(i,j)∈E

1−wi ·wj

2

s.t. wi ·wi = 1 ∀i ∈ V
2We say that a set S ⊂ V is an (α, ε)-approximation if

∣∣|S ∩ Fi| − bi∣∣ ≤ εn for all i ∈ [k], and |δ(S)| ≥ α · |δ(T)|
for all T ⊂ V such that |T ∩ Fi| = bi for all i ∈ [k].

4

where the variables wi range over n dimensional real vectors (n = |V |). The Sticky Brownian Mo-
tion rounding algorithm we propose maintains a sequence of random fractional solutions X0, . . . ,XT

such that X0 = 0 and XT ∈ {−1,+1}n is integral. Here, a vertex of the hypercube {−1,+1}n is
naturally identified with a cut, with vertices assigned +1 forming one side of the cut, and the ones
assigned −1 forming the other side.

Let At be the random set of coordinates of Xt−1 which are not equal to −1 or +1; we call these
coordinates active. At each time step t = 1, . . . , T , the algorithm picks ∆Xt sampled from the
Gaussian distribution with mean 0 and covariance matrix Wt, where (Wt)ij = wi ·wj if i, j ∈ At,
and (Wt)ij = 0 otherwise. The algorithm then takes a small step in the direction of ∆Xt, i.e. sets
Xt = Xt−1 + γ∆Xt for some small real number γ. If the i-th coordinate of Xt is very close to −1
or +1 for some i, then it is rounded to either −1 or +1, whichever is closer. The parameters γ and
T are chosen so that the fractional solutions Xt never leave the cube [−1, 1]n, and so that the final
solution XT is integral with high probability. As γ goes to 0, the trajectory of the i-th coordinate
of Xt closely approximates a Brownian motion started at 0, and stopped when it hits one of the
boundary values {−1,+1}. Importantly, the trajectories of different coordinates are correlated
according to the SDP solution. A precise definition of the algorithm is given in Section 2.1.

The algorithm for Max-2SAT (and Max-DiCut) is essentially the same, modulo using the
covariance matrix from the appropriate standard SDP relaxation, and starting the process at the
marginals for the corresponding variables. We explain this in greater detail below.

1.2.2 Overview of the Analysis for Max-Cut

In order to analyze this algorithm, it is sufficient to understand the probability that an edge (i, j)
is cut as a function of the angle θ between the vectors wi and wj . Thus, we can focus on the
projection ((Xt)i, (Xt)j) of Xt. We observe that ((Xt)i, (Xt)j) behaves like a discretization of
correlated 2-dimensional Brownian motion started at (0, 0), until the first time τ when it hits
the boundary of the square [−1, 1]2. After τ , ((Xt)i, (Xt)j) behaves like a discretization of a 1-
dimensional Brownian motion restricted to one of the sides of the square. From now on we will
treat the process as being continuous, and ignore the discretization, which only adds an arbitrarily
small error term in our analysis. It is convenient to apply a linear transformation to the correlated
Brownian motion ((Xt)i, (Xt)j) so that it behaves like a standard 2-dimensional Brownian motion
Bt started at (0, 0). We show that this linear transformation maps the square [−1, 1]2 to a rhombus
S centered at 0 with internal angle θ; we can then think of τ as the first time Bt hits the boundary
of S. After time τ , the transformed process is distributed like a 1-dimensional Brownian motion
on the side of the rhombus that was first hit. To analyze this process, we need to understand the
probability distribution of Bτ . The probability measure associated with this distribution is known
as the harmonic measure on the boundary ∂S of S, with respect to the starting point 0. These
transformations and connections are explained in detail in Section 2.2.

The harmonic measure has been extensively studied in probability theory and analysis. The
simplest special case is the harmonic measure on the boundary of a disc centered at 0 with respect
to the starting point 0. Indeed, the central symmetry of the disc and the Brownian motion implies
that it is just the uniform measure. A central fact we use is that harmonic measure in 2 dimensions
is preserved under conformal (i.e. angle-preserving) maps. Moreover, such maps between polygons
and the unit disc have been constructed explicitly using complex analysis, and, in particular, are

5

given by the Schwarz-Christoffel formula [2]. Thus, the Schwarz-Christoffel formula gives us an
explicit formulation of sampling from the harmonic measure on the boundary ∂S of the rhombus:
it is equivalent to sampling a uniformly random point on the boundary of the unit disc D centered
at the origin, and mapping this point via a conformal map F that sends D to S. Using this
formulation, in Section 2.3 we show how to write the probability of cutting the edge (i, j) as an
elliptic integral.

Calculating the exact value of elliptic integrals is a challenging problem. Nevertheless, by
exploiting the symmetry in the Max-Cut objective, we relate our particular elliptic integral to
integrals of the incomplete beta and hypergeometric functions. We further simplify these integrals
and bring them into a tractable form using several key identities from the theory of special functions.
Putting everything together, we get a precise closed form expression for the probability that the
Sticky Brownian Motion algorithm cuts a given edge in Theorem 4, and, as a consequence, we
obtain the claimed guarantees for Max-Cut in Theorems 1 and 7.

1.2.3 Overview of the Analysis for Max-2SAT

The algorithm for Max-2SAT is almost identical to the Max-Cut algorithm, except that the SDP
solution is asymmetric, in the following sense. We can think of the SDP as describing the mean
and covariance of a “pseudo-distribution” over the assignments to the variables. In the case of
Max-Cut, we could assume that, without loss of generality, the mean of each variable (i.e. one-
dimensional marginal) is 0 since S and S are equivalent solutions. However, this is not the case for
Max-2SAT. We use this information, and instead of starting the diffusion process at the center
of the cube, we start it at the point given by the marginals. For convenience, and also respecting
standard convention, we work in the cube [0, 1]n rather than [−1, 1]n. Here, in the final solution
XT , if (XT)i = 0 we set the i-th variable to true and if (XT)i = 1, we set it to false. We again
analyze each clause C separately, which allows us to focus on the diffusion process projected to the
coordinates ((Xt)i, (Xt)j), where i and j are the variables appearing in C. However, the previous
approach of using the Schwarz-Christoffel formula to obtain precise bounds on the probability does
not easily go through, since it relies heavily on the symmetry of the starting point of the Brownian
motion. It is not clear how to extend the analysis when we change the starting point to a point
other than the center, as the corresponding elliptic integrals appear to be intractable.

Instead, we appeal to a classical connection between diffusion processes and partial differential
equations [47, Chapter 9]. Recall that we are focusing on a single clause C with variables i and j,
and the corresponding diffusion process ((Xt)i, (Xt)j) in the unit square [0, 1]2 starting at a point
given by the marginals and stopped at the first time τ when it hits the boundary of the square;
after that time the process continues as a one-dimensional Brownian motion on the side of the
square it first hit. For simplicity let us assume that both variables appear un-negated in C. The
probability that C is satisfied then equals the probability that the process ends at one of the points
(0, 1), (1, 0) or (0, 0). Let u : [0, 1]2 → [0, 1] be the function which assigns to (x, y) the probability
that this happens when the process is started at (x, y). Since on the boundary ∂[0, 1]2 of the square
our process is a one-dimensional martingale, the value of u(x, y) is easy to compute on ∂[0, 1]2, and
in fact equals 1 − xy. Then, in the interior of the square, we have u(x, y) = E[u((Xτ)i, (Xτ)j)].
It turns out that this identifies u as the unique solution to an elliptic partial differential equation
(PDE) Lu = 0 with the Dirichlet boundary condition u(x, y) = 1 − xy ∀(x, y) ∈ ∂[0, 1]2. In our

6

case, the operator L just corresponds to Laplace’s operator L[u] = ∂2u
∂x2

+ ∂2u
∂y2

after applying a linear
transformation to the variables and the domain. This connection between our rounding algorithm
and PDEs is explained in Section 3.2.

Unfortunately, it is still not straightforward to solve the obtained PDE analytically. We deal
with this difficulty using two natural approaches. First, we use the maximum principle of elliptic
PDE’s [28], which allows us to bound the function u from below. In particular, if we can find a
function g such that g(x, y) ≤ u(x, y) = 1− xy on the boundary of the square, and Lg ≥ 0 in the
interior, then the maximum principle tells us that g(x, y) ≤ u(x, y) for all x, y in the square. We
exhibit simple low-degree polynomials which satisfy the boundary conditions by design, and use
the sum of squares proof system to certify non-negativity under the operator L. In Section 3.3, we
use this method to show that Sticky Brownian Motion rounding achieves approximation ratio at
least 0.8749.

Our second approach is to solve the PDE numerically to a high degree of accuracy using finite
element methods. We use this approach in Section 5.1 to numerically obtain results showing a
0.921 approximation ratio for Max-2SAT.

1.2.4 Extensions of Sticky Brownian Motion.

Using different slowdown functions. Recall that in the Sticky Brownian Motion rounding
each increment is proportional to ∆Xt sampled from a Gaussian distribution with mean 0 and
covariance matrix Wt. The covariance is derived from the SDP: for example, in the case of Max-
Cut, it is initially set to be the Gram matrix of the vectors produced by the SDP solution. Then,
whenever a coordinate (Xt)i reaches {−1,+1}, we simply zero-out the corresponding row and
column of Wt. This process can be easily modified by varying how the covariance matrix Wt

evolves with time. Instead of zeroing out rows and columns of Wt, we can smoothly scale them
based on how far (Xt−1)i is from the boundary values {−1, 1}. A simple way to do this, in the case
of the Max-Cut problem, is to set

(Wt)ij = (1− (Xt−1)
2
i)
α/2(1−Xt−1)

2
j)
α/2wi ·wj

for a constant 0 ≤ α < 2. Effectively, this means that the process is slowed down smoothly
as it approaches the boundary of the cube [−1,+1]n. This modified diffusion process, which we
call Sticky Brownian Motion with Slowdown, still converges to {−1,+1}n in finite time. Once
again, the probability of cutting an edge (i, j) of our input graph can be analyzed by focusing
on the two-dimensional projection ((Xt)i, (Xt)j) of Xt. Moreover, we can still use the general
connection between diffusion processes and PDE’s mentioned above. That is, if we write u(x, y) :
[−1, 1]2 → [0, 1] for the probability that edge (i, j) is cut if the process is started at (x, y), then
u can be characterized as the solution of an elliptic PDE with boundary conditions u(x, y) =
1−xy
2 ∀(x, y) ∈ ∂[−1, 1]2. We solve this PDE numerically using the finite element method to

estimate the approximation ratio for a fixed value of the parameter α, and then we optimize over
α. At the value α =1.61 our numerical solution shows an approximation ratio that matches the
Goemans-Williamson approximation of Max-Cut up to the first three digits after the decimal
point. We also analyze an analogous algorithm for Max-2SAT and show that for α =1.61 it
achieves an approximation ratio of 0.929. The detailed analysis of the slowed down Sticky Brownian
Motion rounding is given in Section 5.1.

7

A higher-dimensional version. We also consider a higher-dimensional version of the Sticky
Brownian Motion rounding, in which the Brownian motion evolves in n+ 1 dimensions rather than
n. This rounding is useful for asymmetric problems like Max-DiCut3 in which the SDP produces
non-uniform marginals, as we discussed above in the context of Max-2SAT. Such an SDP has a
vector w0 in addition to w1, . . . ,wn, and the marginals are given by w0 · wi. Now, rather than
using the marginals to obtain a different starting point, we consider the symmetric Sticky Brownian
Motion process starting from the center but using all the n + 1 vectors w0, . . . ,wn. At the final
step T of the process, in the case of Max-DiCut, the variables whose value is equal to (XT)0 are
assigned to the left side of the cut, and the variables with the opposite value are assigned to the
right side of the cut. Thus, for an edge i → j to be cut, it must be the case that (XT)i = (XT)0
and (XT)j = 1 − (XT)0. While analyzing the probability that this happens is a question about
Brownian motion in three rather than two dimensions, we reduce it to a two-dimensional question
via the inclusion-exclusion principle. After this reduction, we can calculate the probability that
an edge is cut by using the exact formula proved earlier for the Max-Cut problem. Our analysis,
which is given in Section 5.2, shows that this (n+ 1)-dimensional Sticky Brownian Motion achieves
an approximation of 0.79 for Max-DiCut. Moreover, combining the two ideas, of changing the
covariance matrix at each step, as well as performing the n+1-dimensional Sticky Brownian Motion,
achieves a ratio of 0.81.

1.2.5 Overview of the Analysis for Max-Cut-SC.

The starting point for our algorithm for the Max-Cut-SC problem is a stronger SDP relaxation
derived using the Sum of Squares (SoS) hierarchy. Similar relaxations were previously considered
in [12, 50] for the Max-Bisection problem. In addition to giving marginal values and a covariance
matrix for a “pseudo-distribution” over feasible solutions, the SoS SDP makes it possible to condi-
tion on small sets of variables. The global correlation rounding method [17, 32] allows us to choose
variables to condition on so that, after the conditioning, the covariance matrix has small entries on
average. Differing from previous works [12, 50], we then run the Sticky Brownian Motion rounding
defined by the resulting marginals and covariance matrix. We can analyze the weight of cut edges
using the PDE approach outlined above. The main new challenge is to bound the amount by which
the side constraints are violated. To do so, we show that Sticky Brownian Motion concentrates
tightly around its mean, and, in particular, it satisfies sub-Gaussian concentration in directions
corresponding to sets of vertices. Since the mean of the Sticky Brownian Motion is given by the
marginals, which satisfy all side constraints, we can bound how much constraints are violated via
the concentration and a union bound. To show this key concentration property, we use the fact
that the covariance that defines the diffusion has small entries, and that Brownian Motion is a mar-
tingale. Then the concentration inequality follows, roughly, from a continuous analogue of Azuma’s
inequality. The detailed analysis is given in Section 4. We again remark that such sub-Gaussian
concentration bounds are not known to hold for the random hyperplane rounding method or its
generalizations as considered in [12, 50].

3The input for Max-DiCut is a directed graph G = (V,E) and the goal is to find a cut S ⊆ V that maximizes
the number of edges going from S to S.

8

1.3 Related Work

In their seminal work, Goemans and Williamson [31] presented the random hyperplane rounding
method which yielded an approximation of 0.878 for Max-Cut. For the closely related Max-
DiCut problem they presented an approximation of 0.796. This was subsequently improved in a
sequence of papers: Feige and Goemans [25] presented an approximation of 0.859; Matuura and
Matsui improved the factor to 0.863; and culminating in the work of Lewin et. al. [40] who present
the current best known approximation of 0.874, getting close to the 0.878 approximation of [31] for
Max-Cut. Another fundamental and closely related problem is Max-Bisection. In their classic
work [27], Frieze and Jerrum present an approximation of 0.651 for this problem. Their result was
later improved to 0.699 by Ye [53], to 0.701 by Halperin and Zwick [34], and to 0.702 by Feige
and Langberg [26]. Using the sum of squares hierarchy, Raghavendra and Tan [50] gave a further
improvement to 0.85, and finally, Austrin et. al. [12] presented an almost tight approximation
of 0.8776. With respect to hardness results, H̊astad [35] proved a hardness of 16/17 for Max-Cut
(which implies the exact same hardness for Max-Bisection) and a hardness of 11/12 for Max-
DiCut (both of these hardness results are assuming P 6= NP). If one assumes the Unique Games
Conjecture of Khot [38], then it is known that the random hyperplane rounding algorithm of [31]
is tight [39, 44]. Thus, it is worth noting that though Max-Cut is settled conditional on the
Unique Games conjecture, both Max-DiCut and Max-Bisection still remain unresolved, even
conditionally.

Another fundamental class of closely related problems are Max-SAT and its special cases
Max-k-SAT. For Max-2SAT Goemans and Williamson [31], using random hyperplane rounding,
presented an approximation of 0.878. This was subsequently improved in a sequence of works:
Feige and Goemans [25] presented an approximation of 0.931; Matsui and Matuura [42] improved
the approximation factor to 0.935; and finally Lewin et. al. [40] presented the current best known
approximation of 0.94016. Regarding hardness results for Max-2SAT, assuming P 6= NP, H̊astad
[35] presented a hardness of 21/22. Assuming the Unique Games Conjecture Austrin [9] presented
a (virtually) tight hardness of 0.94016, matching the algorithm of [40]. For Max-3SAT, Karloff
and Zwick [37] and Zwick [54] presented an approximation factor of 7/8 based on the random
hyperplane method. The latter is known to be tight by the celebrated hardness result of H̊astad
[35]. For Max-4SAT Halperin and Zwick [33] presented an (almost) tight approximation guarantee
of 0.8721. When considering Max-SAT in its full generality, a sequence of works [7, 8, 13] slowly
improved the known approximation factor, where the current best one is achieved by Avidor et. al.
[13] and equals 0.797.4 For the general case of Max-CSP a sequence of works [10, 48] culminated
in the work of Raghavendra and Steurer [49] who presented an algorithm that assuming the Unique
Games Conjecture matches the hardness result for any constraint satisfaction problem. However,
as previously mentioned, this universal rounding is impractical as it involves a brute-force solution
to a large constant instance of the problem. Moreover, it only allows computing an ε additive
approximation to the approximation ratio in time double-exponential in 1/ε.

Many additional applications of random hyperplane rounding and its extensions exist. Some
well known examples include: 3-Coloring [5, 20, 36], Max-Agreement in correlation clustering
[22, 51], the maximization of quadratic forms [21], and the computation of the Cut-Norm [3].

4Avidor et. al. also present an algorithm with a conjectured approximation of 0.8434, refer to [13] for the exact
details.

9

Let us now briefly focus on the extensions and generalizations of random hyperplane rounding.
The vast majority of the above mentioned works use different extensions of the basic random
hyperplane rounding. Some notable examples include: rotation of the vectors [3, 45, 53, 55],
projections [21, 26, 46], and combining projections with clustering [10, 48, 49]. It is worth noting
that the above extensions and generalizations of the basic random hyperplane method are not
the only approaches known for rounding SDPs. The most notable example of the latter is the
seminal work of Arora et. al. [6] for the Sparsest-CUT problem. Though the approach of [6]
uses random projections, it is based on different mathematical tools, e.g., Lévy’s isoperimetric
inequality. Moreover, the algorithmic machinery that was developed since the work of [6] has found
uses for minimization problems, and in particular it is useful for minimization problems that relate
to graph cuts and clustering.

Brownian motion was first used for rounding SDPs in Bansal [14] in the context of constructive
discrepancy minimization. This approach has since proved itself very successful in this area, and
has led to new constructive proofs of several major results [15, 16, 41]. However, this line of work
has largely focused on improving logarithmic factors, and its methods are not precise enough to
analyze constant factor approximation ratios.

2 Brownian Rounding for Max-Cut via Conformal Mappings

In this section, we use Max-Cut as a case study for the method of rounding a semi-definite
relaxation via Sticky Brownian Motion. Recall, in an instance of the Max-Cut problem we are
given a graph G = (V,E) with edge weights a : E → R+ and the goal is to find a subset S ⊂ V that
maximizes the total weight of edges crossing the cut (S, V \S), i.e., a(δ(S)) :=

∑
{u,v}∈E:u∈S,v /∈S auv.

We first introduce the standard semi-definite relaxation for the problem and introduce the sticky
Brownian rounding algorithm. To analyze the algorithm, we use the invariance of Brownian motion
with respect to conformal maps, along with several identities of special functions.

2.1 SDP Relaxation and Sticky Brownian Rounding Algorithm

Before we proceed, we recall again the SDP formulation for the Max-Cut problem, famously
studied by Goemans and Williamson [31].

max
∑

e=(i,j)∈E

a(e)
(1−wi ·wj)

2

s.t. wi ·wi = 1 ∀i = 1, ..., n

We now describe the Sticky Brownian Motion rounding algorithm specialized to the Max-
Cut problem. Let W denote the positive semi-definite correlation matrix defined by the vectors
w1, . . . ,wn, i.e., for every 1 ≤ i, j ≤ n we have that: Wi,j = wi · wj . Given a solution W
to the semi-definite program, we perform the following rounding process: start at the origin and
perform a Brownian motion inside the [−1, 1]n hypercube whose correlations are governed by W.
Additionally, the random walk is sticky: once a coordinate reaches either −1 or +1 it is fixed and
does not change anymore.

10

Formally, we define a random process {Xt}t≥0 as follows. We fix X0 = 0. Let {Bt}t≥0 be

standard Brownian motion in Rn started at the origin,5 and let τ1 = inf{t : x0+W1/2Bt 6∈ [−1, 1]n}
be the first time x0 + W1/2Bt exits the cube. With probability 1, you can assume that τ1 is also
the first time that the process lies on the boundary of the cube. Here W1/2 is the principle square
root of W. Then, for all 0 ≤ t ≤ τ1 we define

Xt = x0 + W
1/2Bt.

This defines the process until the first time it hits a face of the cube. From this point on, we will force
it to stick to this face. Let At = {i : (Xt)i 6= ±1} be the active coordinates of the process at time t,
and let Ft = {x ∈ [−1, 1]n : xi = (Xt)i∀i ∈ At} be the face of the cube on which Xt lies at time t.
With probability 1, Fτ1 has dimension n− 1. We define the covariance matrix (Wt)ij = Wij when

i, j ∈ At, and (Wt)ij = 0 otherwise. Then we take τ2 = inf{t ≥ τ1 : Xτ1 + W
1/2
τ1 (Bt −Bτ1) 6∈ Fτ1}

to be the first time that Brownian motion started at Xτ1 with covariance given by Wτ1 exits the
face Fτ1 . Again, with probability 1, we can assume that this is also the first time the process lies
on the boundary of Fτ1 . For all τ1 < t ≤ τ2 we define

Xt = Xτ1 + W
1/2
τ1 (Bt −Bτ1).

Again, with probability 1, dim Fτ2 = n − 2. The process is defined analogously from here on. In

general, τi = inf{t ≥ τi−1 : Xτi−1 + W
1/2
τi−1(Bt − Bτi−1) 6∈ Fτi−1} is (with probability 1) the first

time that the process hits a face of the cube of dimension n − i. Then for τi−1 < t ≤ τi we have

Xt = Xτi−1 + W
1/2
τi−1(Bt−Bτi−1). At time τn, Xτn ∈ {−1, 1}n, so the process remains fixed, i.e. for

any t ≥ τn, Xt = Xτn . The output of the algorithm then corresponds to a cut S ⊆ V defined as
follows:

S = {i ∈ V : (Xτn)i = 1} .

We say that a pair of nodes {i, j} is separated when |S ∩ {i, j}| = 1.

Remark: While we have defined the algorithm as a continuous diffusion process, driven by Brow-
nian motion, a standard discretization will yield a polynomial time algorithm that achieves the
same guarantee up to an error that is polynomially small. Such a discretization was outlined in the
Introduction. An analysis of the error incurred by discretizing a continuous diffusion process in this
way can be found, for example, in [29] or the book [30]. More sophisticated discrete simulations of
such diffusion processes are also available, and can lead to better time complexity as a function of
the error. One example is the Walk on Spheres algorithm analyzed by Binder and Braverman [19].
This algorithm allows us to draw a sample Xτ from the continuous diffusion process, stopped at
a random time τ , such that Xτ is within distance ε from the boundary of the cube [−1, 1]n. The
time necessary to sample Xτ is polynomial in n and log(1/ε). We can then round Xτ to the nearest
point on the boundary of the cube, and continue the simulation starting from this rounded point.
It is straightforward to show, using the fact that the probability to cut an edge is continuous in
the starting point of our process, that if we set ε = o(n−1), then the approximation ratio achieved
by this simulation is within an o(1) factor from the one achieved by the continuous process. In the
rest of the paper, we focus on the continuous process since our methods of analysis are naturally
amenable to it.

5We will always assume that a standard Brownian motion starts at the origin. See Appendix A for a precise
definition.

11

2.2 Analysis of the Algorithm

Our aim is to analyze the expected value of the cut output by the Sticky Brownian Motion rounding
algorithm. Following Goemans and Williamson [31], we aim to bound the probability an edge
is cut as compared to its contribution to the SDP objective. Theorem 4 below gives an exact
characterization of the probability of separating a pair of vertices {i, j} in terms of the gamma
function and hypergeometric functions. We refer to Appendix B.1 for the definitions of these
functions and a detailed exposition of their basic properties.

Theorem 4. The probability that the Sticky Brownian Motion rounding algorithm will separate a
pair {i, j} of vertices for which θ = cos−1(wi ·wj) equals

1−
Γ(a+1

2)

Γ(1−a2)Γ(a2 + 1)2
· 3F2

[1+a
2 , 1+a

2 , a
2

a
2 ,

a
2 + 1

; 1

]
where a = θ/π, Γ is the gamma function, and 3F2 is the hypergeometric function.

Theorem 1 will now follow from the following corollary of Theorem 4. The corollary follows
from numerical estimates of the gamma and hypergeometric functions.

Corollary 1. For any pair {i, j}, the probability that the pair {i, j} is separated is at least 0.861·1−wi·wj2 .

We now give an outline of the proof of Theorem 4. The plan is to first show that the desired
probability can be obtained by analyzing the two-dimensional standard Brownian motion starting
at the center of a rhombus. Moreover, the probability of separating i and j can be computed using
the distribution of the first point on the boundary that is hit by the Brownian motion. Conformal
mapping and, in particular, the Schwarz-Christoffel formula, allows us to obtain a precise expression
for such a distribution and thus for the separation probability, as claimed in the theorem. We now
expand on the above plan.

First observe that to obtain the probability i and j are separated, it is enough to consider
the 2-dimensional process obtained by projecting to the ith and jth coordinates of the vector Xt.
Projecting the process onto these coordinates, we obtain a process X̃t ∈ R2 that can be equivalently
defined as follows. Let

W̃ =

(
1 cos(θ)

cos(θ) 1

)
,

where θ is the angle between wi and wj . Let Bt be standard Brownian motion in R2 started at
0, and let τ = inf{t : W̃1/2Bt 6∈ [−1, 1]t} be the first time the process hits the boundary of the
square. Then for all 0 ≤ t ≤ τ we define X̃t = W̃1/2Bt. Any coordinate k for which (X̃τ)k ∈ {±1}
remains fixed from then on, i.e. for all t > τ , (X̃t)k = (X̃τ)k. The coordinate ` that is not fixed
at time τ (one exists with probability 1) continues to perform one-dimensional Brownian motion
started from (X̃τ)` until it hits −1 or +1, at which point it also becomes fixed. Let σ be the time
this happens; it is easy to show that σ <∞ with probability 1, and, moreover, E[σ] <∞. We say
that the process {X̃t}t≥0 is absorbed at the vertex X̃σ ∈ {−1, 1}2.

Observation 1. The probability that the algorithm separates vertices i and j equals

Pr
[
{X̃t}t is absorbed in {(+1,−1), (−1,+1)}

]
.

12

With an abuse of notation, we denote X̃t by Xt and W̃ by W for the rest of the section which
is aimed at analyzing the above probability. We also denote by ρ = cos(θ) the correlation between
the two coordinates of the random walk, and call the two-dimensional process just described a ρ-
correlated walk. It is easier to bound the probability that i and j are separated by transforming the
ρ-correlated walk inside [−1, 1]2 into a standard Brownian motion inside an appropriately scaled
rhombus. We do this by transforming {Xt}t≥0 linearly into an auxiliary random process {Yt}t≥0
which will be sticky inside a rhombus (see Figures (1a)-(1b)). Formally, given the random process
{Xt}t≥0, we consider the process Yt = O ·W−1/2 ·Xt, where O is a rotation matrix to be chosen

shortly. Recalling that for 0 ≤ t ≤ τ the process {Xt}0≤t≤τ is distributed as
{
W1/2Bt

}
0≤t≤τ , we

have that, for all 0 ≤ t ≤ τ ,
Yt = O ·Bt ≡ Bt.

Above ≡ denotes equality in distribution, and follows from the invariance of Brownian motion
under rotation. Applying OW−1/2 to the points inside [−1, 1]2, we get a rhombus S with vertices
b1, . . . , b4, which are the images of the points (+1,−1), (+1,+1), (−1,+1), (−1,−1), respectively.
We choose O so that b1 lies on the positive x-axis and b2 on the positive y-axis. Since OW−1/2 is
a linear transformation, it maps the interior of [−1, 1]2 to the interior of S and the sides of [−1, 1]2

to the sides of S. We have then that τ is the first time Yt hits the boundary of S, and that after
this time Yt sticks to the side of S that it first hit and evolves as (a scaling of) one-dimensional
Brownian motion restricted to this side, and started at Yτ . The process then stops evolving at the
time σ when Yσ ∈ {b1, . . . , b4}. We say that {Yt}t≥0 is absorbed at Yσ.

The following lemma, whose proof appears in the appendix, formalizes the main facts we use
about this transformation.

Lemma 1. Applying the transformation OW−1/2 to {Xt}t≥0 we get a new random process {Yt}t≥0
which has the following properties:

1. If Xt is in the interior/boundary/vertex of [−1, 1]2 then Yt is in the interior/boundary/vertex
of S, respectively.

2. S is a rhombus whose internal angles at b1 and b3 are θ, and at b2 and b4 are π − θ. The
vertex b1 lies on the positive x-axis, and b2, b3, b4 are arranged counter-clockwise.

3. The probability that the algorithm will separate the pair {i, j} is exactly Pr[Yt is absorbed in b1 or b3].

In the following useful lemma we show that, in order to compute the probability that the process
{Yt}t≥0 is absorbed in b1 or b3, it suffices to determine the distribution of the first point Yτ on
the boundary ∂S that the process {Yt}t≥0 hits. This distribution is a probability measure on ∂S
known in the literature as the harmonic measure (with respect to the starting point 0). We denote
it by µ∂S. The statement of the lemma follows.

Lemma 2.

Pr[Yt is absorbed in b1 or b3] = 4 ·
∫ b2

b1

1− ‖p− b1‖
‖b2 − b1‖

dµ∂S(p).

Proof. Since both S and Brownian motion are symmetric with respect to reflection around the
coordinate axes, we see that µ∂S is the same as we go from b1 to b2 or b4, and as we go from b3 to
b2 or b4. Therefore,

Pr[pair {i, j} is separated] = 4 · Pr[pair {i, j} is separated | Yτ lies on the segment [b1, b2]].

13

0,0

𝑎1

𝑎2𝑎3

𝑎4

(a) {Xt}t≥0 in [−1, 1]2 square (b) {Yt}t≥0 in S

𝜔2

𝜔1𝜔3

𝜔4

0,0

(c) {Bt}t≥0 in D

Figure 1: Figure (a) depicts {Xt}t≥0 in the [−1, 1]2 square, Figure (b) depicts {Yt}t≥0 in the

rhombus S, and Figure (c) depicts {Bt}t≥0 in the unit disc D. The linear transformation W−1/2

transforms the [−1, 1]2 square to S (Figure (a) to Figure (b)), whereas the conformal mapping Fθ
transforms D to S (Figure (c) to Figure (b)).

The process {Yt}τ≤t≤σ is a one-dimensional martingale, so E[Yσ|Yτ] = Yτ by the optional stopping
theorem [43, Proposition 2.4.2]. If we also condition on Yτ ∈ [b1, b2], we have that Yσ ∈ {b1, b2}.
An easy calculation then shows that the probability of being absorbed in b1 conditional on Yτ and
on the event Yτ ∈ [b1, b2] is exactly ‖Yτ−b2‖

‖b2−b1‖ = 1− ‖Yτ−b1‖
‖b2−b1‖ . Then,

Pr[pair {i, j} is separated | Yτ ∈ [b1, b2]] = E
[
1− ‖Yτ − b1‖

‖b2 − b1‖

]
=

∫ b2

b1

1− ‖p− b1‖
‖b2 − b1‖

dµ∂S(p).

This proves the lemma.

To obtain the harmonic measure directly for the rhombus S we appeal to conformal mappings.
We use the fact that the harmonic measure can be defined for any simply connected region U in
the plane with 0 in its interior. More precisely, let Bt be standard 2-dimensional Brownian motion
started at 0, and τ(U) = inf{t : Bt 6∈ U} be the first time it hits the boundary of U . Then µ∂U
denotes the probability measure induced by the distribution of Bτ(U), and is called the harmonic
measure on ∂U (with respect to 0). When U is the unit disc centered at 0, the harmonic measure
is uniform on its boundary because Brownian motion is invariant under rotation. Then the main
idea is to use conformal maps to relate harmonic measures on the different domains, namely the
disc and our rhombus S.

2.3 Conformal Mapping

Before we proceed further, it is best to transition to the language of complex numbers and identify
R2 with the complex plane C. A complex function F : U → V where U, V ⊆ C is conformal if it is
holomorphic (i.e. complex differentiable) and its derivative f ′(x) 6= 0 for all x ∈ U . The key fact we
use about conformal maps is that they preserve harmonic measure. Below we present this theorem
from Mörters and Peres [43] specialized to our setting. In what follows, D will be the unit disc in
C centered at 0.

Theorem 5. [43, p. 204, Theorem 7.23]. Suppose Fθ is a conformal map from the unit disk D to
S. Let µ∂D and µ∂S be the harmonic measures with respect to 0. Then µ∂D ◦ F−1θ = µ∂S.

14

Thus the above theorem implies that in our setting, the probability that a standard Brownian
motion will first hit any segment S of the boundary of D is the same as the probability of the
standard Brownian motion first hitting its image under Fθ, i.e. Fθ(S) in ∂S.

To complete the picture, the Schwarz-Christoffel formula gives a conformal mapping from the
unit disc D to S that we utilize.

Theorem 6. [2, Theorem 5, Section 2.2.2] Define the function Fθ(ω) by

Fθ(ω) =

∫ ω

s=0
fθ(s)ds =

∫ ω

s=0
(1− s)−(1−θ/π)(1 + s)−(1−θ/π)(s− i)−θ/π(s+ i)−θ/πds.

Then, for some real number c > 0, cFθ(ω) is a conformal map from the unit-disk D to the rhombus
S.

The conformal map has some important properties which will aid us in calculating the prob-
abilities. We collect them in the following lemma, which follows from standard properties of the
Schwarz-Christoffel integral [2], and is easily verified.

Lemma 3. The conformal map cFθ(ω) has the following properties:

1. The four points located at {1, i,−1,−i} map to the four vertices {b1, . . . , b4} of the rhombus
S, respectively.

2. The origin maps to the origin.

3. The boundary of the unit-disk D maps to the boundary of S. Furthermore, the points in the
arc from 1 to i map to the segment [b1, b2].

Define the function r : [0, π/2]→ R as r(φ) := |Fθ(eiφ)− Fθ(1)|.

Lemma 4. The probability that vertices {i, j} are separated, given that the angle between wi and
wj is θ, is

2

π

∫ π/2

0
1− r(φ)

r(π/2)
dφ

Proof. Rewriting the expression in Lemma 2 in complex number notation, we have

Pr[{i, j} separated] = 4 ·
∫ b2

b1

1− |z − b1|
|b2 − b1|

dµ∂S(z) = 4 ·
∫ b2

b1

1− |z − cFθ(1)|
c|Fθ(i)− Fθ(1)|

dµ∂S(z).

Since the conformal map Fθ preserves the harmonic measure between the rhombus S and the
unit-disk D (see Theorem 5) and by Lemma 3, the segment from b1 to b2 is the image of the arc
from 1 to i under cFθ, we can rewrite the above as

= 4 ·
∫ π/2

0
1− |cFθ(e

iφ)− cFθ(1)|
c|Fθ(i)− Fθ(1)|

dµ∂D(eiφ).

The harmonic measure µ∂D on the unit-disk is uniform due to the rotational symmetry of
Brownian motion.

= 4 ·
∫ π/2

0
1− |cFθ(e

iφ)− cFθ(1)|
c|Fθ(i)− Fθ(1)|

dφ

2π
.

15

Simplifying the above, we see that the right hand side above equals

2

π
·
∫ π/2

0
1− |Fθ(e

iφ)− F (1)|
|Fθ(i)− F (1)|

dφ =
2

π
·
∫ π/2

0
1− r(φ)

r(π/2)
dφ.

This completes the proof.

To calculate the approximation ratio exactly, we will make use of the theory of special functions.
While these calculations are technical, they are not trivial. To aid the reader, we give a brief primer
in Appendix B.1 and refer them to the work of Andrews et al. [4], Beals and Wong [18] for a more
thorough introduction.

The proof of Theorem 4, will follow from the following key claims whose proofs appear in the
appendix. Letting a = θ/π and b = 1− a, we have

Claim 1.

r(φ) =
1

4
βsin2 φ(a/2, b/2)

when φ ∈ [0, π/2].

Claim 2.

4 ·
∫ π/2

0
r(φ)dφ =

β(a/2 + 1/2, 1/2)

2a
· 3F2

[1+a
2 , 1+a

2 , a
2

a
2 ,

a
2 + 1

; 1

]

2.4 Asymptotic Calculation for θ close to π.

We consider the case when the angle θ = (1− ε) · π as ε→ 0. The hyperplane-rounding algorithm
separates such an edge by θ/π, and hence has a separation probability of 1− ε. We show a similar
asymptotic behaviour for the Brownian rounding algorithm, albeit with slightly worse constants.
We defer the proof to the appendix.

Theorem 7. Given an edge {i, j} with cos−1(wT
i wj) = θ = (1− ε)π, the Sticky Brownian Motion

rounding will cut the edge with probability at least 1−
(
4
π ε+O(ε2)

)
.

3 Brownian Rounding for Max-2SAT via Partial Differential Equa-
tions

In this section we use Max-2SAT as a case study for extending the Sticky Brownian Motion
rounding method to other constraint satisfaction problems besides Max-Cut. In the Max-2SAT
problem we are given n variables z1, . . . , zn and m clauses C1, . . . , Cm, where the jth clause is of
the form yj1 ∨ yj2 (yj is a literal of zj , i.e., zj or zj). The goal is to assign to each variable zi a
value of true or false so as to maximize the number of satisfied clauses.

16

3.1 Semi-definite Relaxation and Brownian Rounding Algorithm

The standard SDP relaxation used for Max-2SAT is the following:

max
m∑
j=1

(1− vj1 · vj2)

s.t. v0 · v0 = 1 (1)

v0 · vi = vi · vi ∀i = −n, . . . , n (2)

vi · v−i = 0 ∀i = 1, . . . , n (3)

v0 · (vi + v−i) = 1 ∀i = 1, . . . , n (4)

1 ≥ v0 · vi + vj · v0 − vi · vj ∀i, j = −n, . . . , n (5)

vi · v0 ≥ vi · vj ∀i, j = −n, . . . , n (6)

vi · vj ≥ 0 ∀i, j = −n. . . . , n (7)

In the above v0 is a unit vector that denotes the false assignment (constraint 1), whereas a zero
vector denotes the true assignment. We use the standard notation that vi denotes the literal zi
and v−i denotes the literal zi. Therefore, vi · v−i = 0 for every i = 1,n (constraints 3 and 4)
since zi needs to be either true or false. The remainder of the constraints (constraints 5, 6 and 7)
are equivalent to the `22 triangle inequalities over all triples of vectors that include v0.

When trying to generalize the Brownian rounding algorithm for Max-Cut presented in Section
2 to Max-2SAT, there is a problem: unlike Max-Cut the Max-2SAT problem is not symmetric.
Specifically, for Max-Cut both S and S are equivalent solutions having the same objective value.
However, for Max-2SAT an assignment to the variables z1 = α1, . . . , zn = αn is not equivalent to
the assignment z1 = α1, . . . , zn = αn (here αi ∈ {0, 1} and αi = 1⊕ αi). For example, if vi · v0 = 1
then we would like the Brownian rounding algorithm to always assign zi to false. The Brownian
rounding for Max-Cut cannot handle such a requirement. In order to tackle the above problem
we incorporate v0 into both the starting point of the Brownian motion and the covariance matrix.

Let us now formally define the Brownian rounding algorithm for Max-2SAT. For simplicity of
presentation denote for every i = 1, . . . , n by xi the marginal value of zi, formally: xi := vi · v0.
Additionally, let wi be the (unique) unit vector in the direction of the projection of vi to the

subspace orthogonal to v0, i.e., wi satisfies vi = xiv0 +
√
xi − x2iwi.

6 Similarly to Max-Cut,

our Sticky Brownian Motion rounding algorithm performs a random walk in Rn, where the ith

coordinate corresponds to the variable zi. For simplicity of presentation, the random walk is defined
in [0, 1]n as opposed to [±1]n, where 1 denotes false and 0 denotes true.7 Unlike Max-Cut, the
starting point X0 is not the center of the cube. Instead, we use the marginals, and set (X0)i := xi.
The covariance matrix W is defined by Wi,j := wi ·wj for every i, j = 1, . . . , n, and similarly to
Max-Cut, let W1/2 be the principle square root of W. Letting {Bt}t≥0 denote standard Brownian
motion in Rn, we define τ1 = inf{t : W1/2Bt + X0 6∈ [0, 1]n} to be the first time the process hits
the boundary of [0, 1]n. Then, for all times 0 ≤ t ≤ τ1, the process Xt is defined as

Xt = W
1/2Bt + X0.

6It is easy to see that x−i = 1− xi and w−i = −wi for every i = 1, . . . , n.
7We note that the Brownian rounding algorithm for Max-2SAT can be equivalently defined in [−1, 1]n, however,

this will incur some overhead in the notations which we would like to avoid.

17

After time τ1, we force Xt to stick to the face F1 hit at time τ1: i.e. if (Xτ1)i ∈ {0, 1}, then we fix it
forever, by zeroing out the i-th row and column of the covariance matrix of W for all future time
steps. The rest of the process is defined analogously to the one for Max-Cut: whenever Xt hits a
lower dimensional face of [0, 1]n, it is forced to stick to it until finally a vertex is reached, at which
point Xt stops changing. We use τi for the first time that Xt hits a face of dimension n− i; then,
Xτn ∈ {0, 1}n.

The output of the algorithm corresponds to the collection of the variables assigned a value of
true T ⊆ {1, . . . , n}:

T = {i : (Xτn)i = 0},
whereas implicitly the collection of variables assigned a value of false are {i : (Xτn)i = 1}.

3.2 Analysis of the Algorithm

Our goal is to analyze the expected value of the assignment produced by the Sticky Brownian
Motion rounding algorithm. Similarly to previous work, we aim to give a lower bound on the
probability that a fixed clause C is satisfied. Unfortunately, the conformal mapping approach
described in Section 2 does not seem to be easily applicable to the extended Sticky Brownian
Motion rounding described above for Max-2SAT, because our calculations for Max-Cut relied
heavily on the symmetry of the starting point of the random walk. We propose a different method
for analyzing the Brownian rounding algorithm that is based on partial differential equations and
the maximum principle. We prove analytically the following theorem which gives a guarantee on
the performance of the algorithm. We also note that numerical calculations show that the algorithm
in fact achieves the better approximation ratio of 0.921 (see Section 5.1 for details).

Theorem 8. The Sticky Brownian Motion rounding algorithm for Max-2SAT achieves an ap-
proximation of at least 0.8749.

3.2.1 Analysis via Partial Differential Equations and Maximum Principle

As mentioned above, our analysis focuses on the probability that a single clause C with variables
{zi, zj} is satisfied. We assume the variables are not negated. This is without loss of generality as
the algorithm and analysis are invariant to the sign of the variable in the clause.

For simplicity of notation we denote by x the marginal value of zi and by y the marginal value
of zj . Thus, vi = xv0 +

√
x− x2wi and vj = yv0 +

√
y − y2wj . Projecting the random process

{X}t≥0 on the i and j coordinates of the random process, we obtain a new process {X̃t}t≥0 where

X̃0 = (x, y). Let

W̃ =

(
1 cos(θ)

cos(θ) 1

)
,

where θ is the angle between wi and wj . Then X̃t = X̃0 + W̃1/2Bt for all 0 ≤ t ≤ τ , where
τ = inf{t : X̃0 + W̃1/2Bt 6∈ [0, 1]2} is the first time the process hits the boundary of the square.
After time τ , the process X̃t performs a one-dimensional standard Brownian motion on the first
side of the square it has hit, until it hits a vertex at some time σ. After time σ the process stays
fixed. Almost surely σ <∞, and, moreover, it is easy to show that Eσ <∞. We say that {X̃t}t≥0
is absorbed at X̃σ ∈ {0, 1}2.

18

Observation 2. The probability that the algorithm satisfies the clause {zi, zj} equals

Pr
[
X̃σ is absorbed in {(0, 0), (0, 1), (1, 0)}

]
.

We abuse notation slightly and denote X̃t by Xt and W̃ by W for the rest of the section which
is aimed at analyzing the above probability. We also denote ρ = cos(θ).

Our next step is fixing θ and analyzing the probability of satisfying the clause for all possible
values of marginals x and y. Indeed, for different x and y but the same θ, the analysis only needs to
consider the same random process with a different starting point. Observe that not all such x, y are
necessarily feasible for the SDP: we characterize which ones are feasible for a given θ in Lemma 7.
But considering all x, y allows us to handle the probability in Observation 2 analytically.

For any 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, let u(x, y) denote the probability of starting the random walk at
the point (x, y) and ending at one of the corners (0, 0), (0, 1) or (1, 0). This captures the probability
of a clause being satisfied when the walk begins with marginals (x, y) (and angle θ). We can easily
calculate this probability exactly when either x or y are in the set {0, 1}. We obtain the following
easy lemma whose proof appears in the appendix.

Lemma 5. For φ(x, y) = 1− xy, we have
u(x) = φ(x) for all x ∈ ∂[0, 1]2 (8)

Moreover, for all x in the interior of the square [0, 1]2, u(x) = Ex[φ(Xτ)], where Ex denotes
expectation with respect to starting the process at X0 = x.

Next we use the fact that Brownian motion gives a solution to the Dirichlet boundary problem.
While Brownian motion gives a solution to Laplace’s equation ([43] chapter 3), since our random
process is a diffusion process, we need a slightly more general result8. We state the following result
from [47], specialized to our setting, that basically states that given a diffusion process in [0, 1]2 and
a function φ on the boundary, the extension of the function defined on the interior by the expected
value of the function at the first hitting point on the boundary is characterized by an elliptic partial
differential equation.

Theorem 9 ([47] Theorem 9.2.14). Let D = (0, 1)2 ⊆ R2, Σ ∈ R2×2 and let a11, a12, a21, a22 be
defined as follows (

a11 a12
a21 a22

)
=

1

2
ΣΣ>.

For any x ∈ D, consider the process Xt = X0 +ΣBt where Bt is standard Brownian motion in R2.
Let τ = inf{t : Xt 6∈ D}. Given a bounded continuous function φ : ∂D → R, define the function
u : D → R such that

u(x) = Ex [φ(Xτ)] ,

where Ex denotes the expected value when X0 = x ∈ R2. I.e., u(x) is the expected value of φ
when first hitting ∂D conditioned on starting at point x. Consider the uniformly elliptic partial
differential operator L in D defined by:

L =
2∑

i,j=1

aij
∂2

∂xi∂xj
.

8This result can also be derived from Theorem 3.12 in [43] after applying a linear transformation to the variables.

19

Then u ∈ C2(D) is the unique solution to the partial differential equation9:

Lu = 0 in D

lim
x→y
x∈D

u(x) = φ(y) for all y ∈ ∂D

We instantiate our differential equation by choosing Σ = W1/2 and thus aij are the entries of
W. It is important to note that all aijs are independent of the starting point x ∈ [0, 1]2. Thus, we
obtain that u is the unique function satisfying the following partial differential equation:

∂2u

∂x2
+
∂2u

∂y2
+ 2ρ

∂2u

∂x∂y
= 0 ∀(x, y) ∈ Int[0, 1]2

u(x, y) = (1− xy) ∀(x, y) ∈ ∂[0, 1]2

Above, and in the rest of the paper, we use IntD to denote the interior of a set D, and ∂D to
denote its boundary.

It remains to solve the above partial differential equation (PDE) that will allow us to calculate
u(x, y) and give the probability of satisfying the clause.

3.3 Maximum Principle

Finding closed form solutions general PDE’s is challenging and, there is no guarantee any solution
would be expressible in terms of simple functions. However, to find a good approximation ratio, it
suffices for us to find good lower-bounds on the probability of satisfying the clause. I.e. we need
to give a lower bound on the function u(x, y) from the previous section over those (x, y) that are
feasible. Since the PDE’s generated by our algorithm are elliptic (a particular kind of PDE), we will
use a property of elliptic PDE’s which will allow us to produce good lower-bounds on the solution
at any given point. More precisely, we use the following theorem from Gilbarg and Trudinger [28].

Let L denote the operator

L :=
∑
ij

aij
∂2

∂i∂j

and we say that L is an elliptic operator if the coefficient matrix A = [aij]i,j is positive semi-definite.

We restate a version of Theorem 3.1 in Gilbarg and Trudinger [28] that shows how the maximum
principle can be used to obtain lower bounds on u(x, y). Here D̄ denotes the closure of D.

Theorem 10 (Maximum Principle). Let L be elliptic on a bounded domain D and suppose L[g](x) ≥
0 ∀x ∈ D for some g ∈ C2(D)∩C0(D̄). Then the maximum of g on D is achieved on ∂D, that is,

sup
x∈D

g(x) = sup
x∈∂D

g(x)

Theorem 10 has the following corollary that allows us to obtain lower bounds on u(x, y).

Corollary 2. Let L be elliptic on a bounded domain D and for some u, g ∈ C2(D) ∩ C0(D̄).

9u ∈ Ck(D) means that u has a continuous kth derivative over D, and u ∈ C0(D) means that u is continuous.

20

1. L[g](x) ≥ L[u](x) ∀x ∈ D

2. g(x) ≤ u(x) ∀x ∈ ∂D

then g(x) ≤ u(x)∀x ∈ D.

We refer the reader to [28] for a formal proof. Thus, it is enough to construct candidate functions
g : [0, 1]2 → R such that

∂2g

∂x2
+
∂2g

∂y2
+ 2ρ

∂2g

∂x∂y
≥ 0 ∀(x, y) ∈ Int[0, 1]2 (9)

g(x, y) ≤ (1− xy) ∀(x, y) ∈ ∂[0, 1]2 (10)

Then we obtain that g(x, y) ≤ u(x, y) for all (x, y) ∈ [0, 1]2. In what follows we construct many
different such function each of which works for a different range of the parameter θ (equivalently,
ρ).

3.4 Candidate Functions for Maximum Principle

We now construct feasible candidates to the maximum principle as described in Corollary 2. We
define the following functions:

1. g1(x, y) = 1− xy − cos(θ)
√
x− x2

√
y − y2.

2. g2(x, y) = 1− xy − 2 cos(θ)(x− x2)(y − y2).

3. g3(x, y) = 1− xy − 1
2(1 + 5 cos(θ))(x− x2)(y − y2)(x+ y)(2− x− y).

The following lemma shows that the above functions satisfy the conditions required for the
application of the maximum principle (its proof appears in the appendix).

Lemma 6. Each of g1, g2, g3 satisfies the boundary conditions, i.e. gi(x, y) = u(x, y) for all x, y ∈
∂[0, 1]2 and for all values θ. Moreover, we have the following for each (x, y) ∈ [0, 1]2:

1. If 1 ≥ cos(θ) ≥ 0, then Lg1 ≥ 0.

2. If 0 ≥ cos(θ) ≥ −1
2 , then Lg2 ≥ 0.

3. If −1
2 ≥ cos(θ) ≥ −1, then Lg3 ≥ 0.

While some of these proofs are based on simple inequalities, proving others requires us to use
sum of squares expressions. For example, to show Lg3 ≥ 0, we consider Lg3 = p(x, y, cos(θ)) as a
polynomial in x, y and cos(θ). Replacing z = cos(θ), our aim is to show p(x, y, z) ≥ 0 if 0 ≤ x, y ≤ 1
and −1 ≤ z ≤ −1

2 . Equivalently, we need to show p(x, y, z) ≥ 0 whenever r1(x, y, z) := x− x2 ≥ 0,
r2(x, y, z) := y − y2 ≥ 0 and r3(x, y, z) := −(z + 1

2) ≥ 0 and r4(x, y, z) := (z + 1) ≥ 0. We show

21

this by obtaining polynomials qi(x, y, z) for i = 0, 1, 2, 3, 4 such that each qi is a sum of squares
polynomial of fixed degree and we have

p(x, y, z) = q0(x, y, z) +

4∑
i=1

qi(x, y, z)ri(x, y, z).

Observe that the above polynomial equality proves the desired result by evaluating the RHS for
every 0 ≤ x, y ≤ 1 and −1/2 ≥ z ≥ −1. Clearly, the RHS is non-negative: each qi is non-negative
since it is a sum of squares and each ri is non-negative in the region we care about, by construction.
We mention that we obtain these proofs via solving a semi-definite program of fixed degree (at most
6) for each of the qi polynomials (missing details appear in the appendix).

Let us now focus on the approximation guarantee that can be proved using the above func-
tions g1, g2, and g3. The following lemma compares the lower bounds on the probability of
satisfying a clause, as given by g1, g2, and g3, to the SDP objective. Recall that the contri-
bution of any clause with marginals x and y and angle θ to the SDP’s objective is given by:
1 − xy − cos(θ)

√
x− x2

√
y − y2. We denote this contribution by SDP(x, y, θ). It is important to

note that not all triples (x, y, θ) are feasible (recall that θ is the angle between wi and wj), due to
the triangle inequalities in the SDP. This is summarized in the following lemma.

Lemma 7. Let x, y, θ be as defined by a feasible pair of vectors vi and vj. Then they must satisfy
the following constraints:

1. 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ θ ≤ π.

2. cos(θ) ≥ −
√

xy
(1−x)(1−y) .

3. cos(θ) ≥ −
√

(1−x)(1−y)
xy .

Finally, we prove the following lemma which proves an approximation guarantee of 0.8749 for
Max-2SAT via the PDE and the maximum principle approach. As before, these proofs rely
on explicitly obtaining sum of squares proofs as discussed above. We remark that these proofs
essentially aim to obtain 7

8 = 0.875-approximation but errors of the order 10−5 allow us to obtain
a slightly worse bound using this methods. The details appear in the appendix.

Lemma 8. Consider any feasible triple (x, y, θ) satisfying the condition in Lemma 7. We have the
following.

1. If 1 ≥ cos(θ) ≥ 0, then g1(x, y) ≥ 1 · SDP(x, y, θ).

2. If 0 ≥ cos(θ) ≥ −1
2 , then g2(x, y) ≥0.8749·SDP(x, y, θ).

3. If −1
2 ≥ cos(θ) ≥ −1, then g3(x, y) ≥0.8749·SDP(x, y, θ).

4 Max-Cut with Side Constraints (Max-Cut-SC)

In this section we describe how to apply the Sticky Brownian Motion rounding and the framework of
Raghavendra and Tan [50] to the Max-Cut-SC problem in order to give a bi-criteria approximation
algorithm whose running time is non-trivial even when the the number of constraints is large.

22

4.1 Problem Definition and Basics

Let us recall the relevant notation and definitions. An instance of the Max-Cut-SC problem is
given by an n-vertex graph G = (V,E) with edge weights a : E → R+, as well as a collection
F = {F1, . . . , Fk} of subsets of V , and cardinality bounds b1, . . . , bk ∈ N. For ease of notation, we
will assume that V = {1, . . . , n}. Moreover, we denote the total edge weight by a(E) =

∑
e∈E a(e).

The goal in the Max-Cut-SC problem is to find a subset S ⊂ V that maximizes the weight a(δ(S))
of edges crossing the cut (S, V \S), subject to having |S ∩Fi| = bi for all i ∈ [k]. These cardinality
constraints may not be simultaneously satisfiable, and moreover, when k grows with n, checking
satisfiability is NP-hard [23]. For these reasons, we allow for approximately feasible solutions. We
will say that a set of vertices S ⊆ V is an (α, ε)-approximation to the Max-Cut-SC problem if∣∣|S ∩ Fi| − bi∣∣ ≤ εn for all i ∈ [k], and a(δ(S)) ≥ α · a(δ(T)) for all T ⊂ V such that |T ∩ Fi| = bi
for all i ∈ [k]. In the remainder of this section we assume that the instance given by G, F , and
b is satisfiable, i.e. that there exists a set of vertices T such that |T ∩ Fi| = bi for all i ∈ [k].
Our algorithm may fail if this assumption is not satisfied. If this happens, then the algorithm will
certify that the instance was not satisfiable.

We start with a simple baseline approximation algorithm, based on independent rounding. The
algorithm outputs an approximately feasible solution which cuts a constant fraction of the total
edge weight. For this reason, it achieves a good bi-criteria approximation when the value of the
optimal solution OPT is much smaller than εa(E). This allows us to focus on the case in which
OPT is bigger than εa(E) for our main rounding algorithm. The proof of the lemma, which follows
from standard arguments, appears in the appendix.

Lemma 9. Suppose that n ≥ 2 ln(8k/ε)
ε2

and ε ≤ 1
2 . There exists a polynomial time algorithm that

on input a satisfiable instance G = (V,E), F , and b1, . . . , bk, as defined above, outputs a set S ⊆ V
such that, with high probability, a(δ(S)) ≥ ε

2a(E), and
∣∣|S ∩ Fi| − bi∣∣ ≤ εn for all i ∈ [k].

4.2 Sum of Squares Relaxation

Our main approximation algorithm is based on a semidefinite relaxation, and the sticky Brownian
motion. Let us suppose that we are given the optimal objective value OPT of a feasible solution:
this assumption can be removed by doing binary search for OPT. We can then model the problem
of finding an optimal feasible solution by the quadratic program∑

e=(i,j)∈E

a(e)(xi − xj)2 ≥ OPT

s.t.
∑
j∈Fi

xj = bi ∀i = 1, . . . , k

xj(1− xj) = 0 ∀j = 1, . . . , k

Let us denote this quadratic feasibility problem by Q. The Sum of Squares (Lasserre) hierarchy
gives a semidefinite program that relaxes Q. We denote by SoS`(Q) the solutions to the level-` Sum
of Squares relaxations of Q. Any solution in SoS`(Q) can be represented as a collection of vectors
V = {vS : S ⊆ [n], 0 ≤ |S| ≤ `}. To avoid overly cluttered notation, we write vi for v{i}; we also
write v0 for v∅. We need the following properties of V, valid as long as ` ≥ 2.

23

1. v0 · v0 = 1.

2. vS ·vT = vS′ ·vT ′ for any S, S′, T, T ′ such that S∪T = S′∪T ′ and |S∪T | ≤ k. In particular,
vi · vi = vi · v0 for any i.

3. For any i and j the following inequalities hold:

1 ≥ v0 · vi + vj · v0 − vi · vj (11)

vi · v0 ≥ vi · vj (12)

vi · vj ≥ 0 (13)

4.
∑

e=(i,j)∈E a(e)‖vi − vj‖2 ≥ OPT

5. For any i, there exist two solutions V i→0 and V i→1 in SoS`−1(Q) such that, if we denote the
vectors in V i→0 by v0

S , and the vectors in V i→1 by v1
S , we have

vS · v0 = (1− vi · v0)v
0
S · v0

0 + (vi · v0)v
1
S · v1

0.

Moreover, a solution V ∈ SoS` can be computed in time polynomial in n`.

Intuitively, we think of V as describing a pseudo-distribution over solutions to Q, and we
interpret vS ·vT as the pseudo-probability that all variables in S∪T are set to one, or, equivalently, as
the pseudo-expectation of

∏
i∈S∪T xi. Usually we cannot expect that there is any true distribution

giving these probabilities. Nevertheless, the pseudo-probabilities and pseudo-expectations satisfy
some of the properties of actual probabilities. For example, the transformation from V to V i→b
corresponds to conditioning xi to b.

We will denote by xS = vS · v0 the marginal value of set S. In particular, we will work with
the single-variable marginals xi = x{i} = vi · v0, and will denote x = (x1, . . . , xn). As before,
it will be convenient to work with the component of vi which is orthogonal to v0. We define
w̃i = vi − xiv0, and wi = 1

‖w̃i‖w̃i. Note that, by the Pythagorean theorem, ‖w̃i‖2 = xi − x2i , and

vi = xiv0+
√
xi − x2iwi. We define the matrices W̃ and W by W̃i,j := w̃i ·w̃j and Wi,j := wi ·wj .

We can think of W̃ as the covariance matrix of the pseudodistribution corresponding to the SDP
solution. The following lemma, due to Barak, Raghavendra, and Steurer [17], and, independently,
to Guruswami and Sinop [32], shows that any pseudodistribution can be conditioned so that the
covariances are small on average.

Lemma 10. For any ε0 ≤ 1, and any V ∈ SoS`(Q), where ` ≥ 1
ε40

+ 2, there exists an efficiently

computable V ′ ∈ SoS`−1/ε40(Q), such that

n∑
i=1

n∑
j=1

W̃2
i,j ≤ ε40n2. (14)

In particular, V ′ can be computed by conditioning V on 1
ε40

variables.

24

4.3 Rounding Algorithm

For our algorithm, we first solve a semidefinite program to compute a solution in SoS`(Q), to which
we apply Lemma 10 with parameter ε0, which we will choose later. In order to be able to apply

the lemma, we choose ` =
⌈

1
ε40

⌉
+ 2. The rounding algorithm itself is similar to the one we used

for Max-2SAT. We perform a Sticky Brownian Motion with initial covariance W, starting at the
initial point X0 = x, i.e. at the marginals given by the SDP solution. As variables hit 0 or 1, we
freeze them, and delete the corresponding row and column of the covariance matrix. The main
difference from the Max-2SAT rounding is that we stop the process at time τ , where τ is another
parameter that we will choose later. Then, independently for each i = 1, . . . , n, we include vertex
i in the final solution S with probability (Xτ)i, and output S.

The key property of this rounding that allows us to handle a large number of global constraints
is that, for any Fi ∈ F , the value

∑
j∈Fi(Xτ)j that the fractional solution assigns to the set Fi

satisfies a sub-Gaussian concentration bound around bi. Note that
∑

j∈Fi(Xt)j is a martingale

with expectation equal to bi. Moreover, by Lemma 10, the entries of the covariance matrix W̃ are
small on average, which allows us to also bound the entries of the covariance matrix W, and, as a
consequence, bound how fast the variance of the martingale increases with time. The reason we stop
the walk at time τ is to make sure the variance doesn’t grow too large: this freedom, allowed by the
Sticky Brownian Motion rounding, is important for our analysis. The variance bound then implies
the sub-Gaussian concentration of

∑
j∈Fi(Xτ)j around its mean bi, and using this concentration

we can show that no constraint is violated by too much. This argument crucially uses the fact
that our rounding is a random walk with small increments, and we do not expect similarly strong
concentration results for the random hyperplane rounding or its variants.

The analysis of the objective function, as usual, reduces to analyzing the probability that we
cut an edge. However, because we start the Sticky Brownian Motion at x, which may not be equal
to 0, our analysis from Section 2 is not sufficient. Instead, we use the PDE based analysis from
Section 3, which easily extends to the Max-Cut objective. One detail to take care of is that,
because we stop the walk early, edges incident on vertices that have not reached 0 or 1 by time
τ may be cut with much smaller probability than their contribution to the SDP objective. To
deal with this, we choose the time τ when we stop the walk large enough, so that any vertex has
probability at least 1 − poly(ε) to have reached {0, 1} by time τ . We show that this happens for
τ = Θ(log(1/ε)). This value of τ is small enough so that we can usefully bound the variance of∑

j∈Fi(Xτ)i and prove the sub-Gaussian concentration we mentioned above.

Let us recall some notation that will be useful in our analysis. We will use τi for the first
time t that Xt hits a face of [0, 1]n of dimension n − i; then, Xτn ∈ {0, 1}n. We also use Wt

for the covariance used at time step t, which is equal to W with rows and columns indexed by
{i : (Xt)i ∈ {0, 1}} zeroed out.

As discussed, our analysis relies on a martingale concentration inequality, and the following
lemma, which is proved with the methods we used above for the Max-2SAT problem. A proof
sketch can be found in the appendix.

Lemma 11. For the SDP solution V and the Sticky Brownian Motion Xt described above, and for
any pair {i, j} of vertices

Pr[(Xτn)i 6= (Xτn)j] ≥ 0.843 · ‖vi − vj‖2.

25

The next lemma shows that the probability that any coordinate is fixed by time t drops expo-
nentially with t. We use this fact to argue that by time τ = Θ(log(1/ε)) the endpoints of any edge
have probability at least 1− poly(ε) to be fixed, and, therefore, edges are cut with approximately
the same probability as if we didn’t stop the random walk early, which allows us to use Lemma 11.
The proof of this lemma, which is likely well-known, appears in the appendix.

Lemma 12. For any i, and any integer t ≥ 0, Pr[∀s ≤ t : 0 < (Xs)i < 1] < 4−t.

The following concentration inequality is our other key lemma. The statement is complicated by
the technical issue that the concentration properties of the random walk depend on the covariance
matrix W, while Lemma 10 bounds the entries of W̃. When xi(1−xi) or xj(1−xj) is small, W̃i,j

can be much smaller than Wi,j . Because of this, we only prove our concentration bound for sets
of vertices i for which xi(1 − xi) is sufficiently large. For those i for which xi(1 − xi) is small, we
will instead use the fact that such xi are already nearly integral to prove a simpler concentration
bound.

Lemma 13. Let ε0, ε1 ∈ [0, 1], and n ≥ ε1
8τε20

. Define V>ε1 = {i : 2xi(1 − xi) > ε1}. For any set

F ⊆ V>ε1, and any t ≥ 0, the random set S output by the rounding algorithm satisfies

Pr

[∣∣∣|F ∩ S| −∑
i∈F

xi

∣∣∣ ≥ tε0n] ≤ 4 exp

(
−ε1t

2

4τ

)
.

We give the proof of Lemma 13 after we finish the proof of Theorem 3, restated below for
convenience.

Theorem 3. There exists a O(npoly(log(k)/ε))-time algorithm that on input a satisfiable instance
G = (V,E), F , and b1, . . . , bk, as defined above, outputs a (0.843 − ε, ε)-approximation with high
probability.

Proof. The algorithm outputs either the set S output by the Sticky Brownian Rounding described
above, or the one guaranteed by Lemma 9, depending on which one achieves a cut of larger total
weight. If OPT ≤ ε

2a(E), then Lemma 9 achieves the approximation we are aiming for. Therefore,
for the rest of the proof, we may assume that OPT ≥ ε

2a(E), and that the algorithm outputs the
set S computed by the Sticky Brownian Rounding. Then, it is enough to guarantee that, with high
probability,

a(δ(S)) ≥ 0.843 ·OPT− ε2

2
a(E). (15)

Let us set ε1 = ε2ε0, and define, as above, V>ε1 = {i : 2xi(1 − xi) > ε1} and let V≤ε1 =
{i : 2xi(1 − xi) ≤ ε1}. Let Y be the indicator vector of the set S output by the algorithm.
Observe that, for each i, since Yi is a Bernoulli random variable with expectation xi, we have

E
[∑

i∈V≤ε1
|Yi − xi|

]
≤ ε1n, and, therefore,

Pr

 ∑
i∈V≤ε1

|Yi − xi| ≥ 16ε0n

 ≤ ε2

16
.

26

Then, for any Fi ∈ F , by Lemma 13 applied to Fi ∩ V>ε1 , we have

Pr

∣∣|Fi ∩ V>ε1 ∩ S| − ∑
i∈F∩V>ε1

xi
∣∣ ≥√4τ

ε1
ln

32k

ε2
ε0n

 ≤ ε2

16k
.

Therefore, with probability at least 1− ε2

8 , for all i ∈ [k] we have∣∣∣∣∣|Fi ∩ S| −∑
i∈F

xi

∣∣∣∣∣ ≤
∣∣∣∣∣∣|Fi ∩ V≤ε0 ∩ S| −

∑
i∈F∩V≤ε0

xi

∣∣∣∣∣∣+

∣∣∣∣∣∣|Fi ∩ V>ε0 ∩ S| −
∑

i∈F∩V>ε0

xi

∣∣∣∣∣∣
≤

∑
i∈F∩V≤ε0

|Yi − xi|+

∣∣∣∣∣∣|Fi ∩ V>ε0 ∩ S| −
∑

i∈F∩V>ε0

xi

∣∣∣∣∣∣
≤

(
16 +

√
4τ

ε2ε0
ln

32k

ε2

)
ε0n.

This means that, with probability at least 1− ε2

8 , S satisfies all the constraints up to additive error
εn, as long as

ε0 ≤ min

{
ε

32
,

ε4

4
√
τ ln 32k

ε2

}
.

It remains to argue about the objective function. For τ ≥ log2
2
√
2
ε , Lemma 12 implies that, for

any vertex i, Pr[(Xτ)i 6∈ {0, 1}] ≤ 4−τ ≤ ε2

8 . By Lemma 11, any pair of vertices {i, j} is separated
with probability

Pr[(Xτn)i 6= (Xτn)j] ≥ 0.843 · ‖vi − vj‖2,
where we recall that, for edge e = (i, j), a(e)‖vi − vj‖2 is the contribution of e to the objective
value. Then,

Pr[(Xτ)i 6= (Xτ)j] ≥ Pr[(Xτn)i 6= (Xτn)j , (Xτ)i = (Xτn)i, (Xτ)j = (Xτn)j]

= Pr[(Xτn)i 6= (Xτn)j , (Xτ)i ∈ {0, 1}, (Xτ)j ∈ {0, 1}]

≥ Pr[(Xτn)i 6= (Xτn)j]−
ε2

4

≥ 0.843 · ‖vi − vj‖22 −
ε2

4
.

Therefore, E[a(δ(S))] ≥ 0.843 ·OPT− ε2

4 a(E). By Markov’s inequality applied to a(E)− a(δ(S)),

Pr
[
a(δ(S)] < 0.843 ·OPT− ε2

2
a(E)

]
<

1 + ε2

4

1 + ε2

2

< 1− ε2

5
.

In conclusion, we have that with probability at least 3
40ε

2, (15) is satisfied, and all global constraints
are satisfied up to an additive error of εn. The probability can be made arbitrarily close to 1 by
repeating the entire algorithm O(ε−2) times. To complete the proof of the theorem, we can verify
that the running time is dominated by the time required to find a solution in SoS`(Q), which is
polynomial in n`, where ` = O(ε−40) = poly(log(k)/ε).

27

We finish this section with the proof of Lemma 13

Proof of Lemma 13. Since each i is included in S independently with probability (Xτ)i, by Hoeffd-
ing’s inequality we have

Pr

[∣∣∣|F ∩ S| −∑
i∈F

(Xτ)i

∣∣∣ ≥ tε1n] ≤ 2e−2ε
2
1t

2n ≤ 2 exp

(
−ε1t

2

4τ

)
,

where the final inequality follows by our assumption on n. Therefore, it is enough to establish

Pr

[∣∣∣∑
i∈F

(Xτ)i − xi
∣∣∣ ≥ tε1n] ≤ 2 exp

(
−ε1t

2

4τ

)
. (16)

Suppose y ∈ {0, 1}n is the indicator vector of F so that

y>(Xτ −X0) = y>(Xτ − x) =
∑
i∈F

((Xτ)i − xi).

A standard calculation using Itô’s lemma (see Exercise 4.4. in [47]) shows that, for any λ ≥ 0, the
random process

Yt = exp

(
λy>(Xt − x)− λ2

2

∫ t

0
(y>Wsy)ds

)
is a martingale with starting state Y0 = 1. Since, for any s, Ws equals W with some rows
and columns zeroed out, we have that W −Ws is positive semidefinite, and y>Wsy ≤ y>Wy.
Therefore,

E
[
exp
(
λy>(Xτ − x)− tλ

2

2
y>Wy

)]
≤ E[Yτ] = 1.

Rearranging, this gives us that, for all λ ≥ 0,

E[eλy
>(Xτ−x)] ≤ E[eτλ

2y>Wy/2] ≤ eτλ2y>Wy/2. (17)

We can bound y>Wy using Cauchy-Schwarz, the assumption that 2xi(1 − xi) > ε1 for all i ∈ F ,
and (14):

y>Wy =
∑
i∈F

∑
j∈F

Wi,j

≤ |F |

∑
i∈F

∑
j∈F

W2
i,j

1/2

= |F |

∑
i∈F

∑
j∈F

W̃2
i,j

xixj(1− xi)(1− xj)

1/2

<
2n

ε1

∑
i∈F

∑
j∈F

W̃2
i,j

1/2

≤ 2ε20n
2

ε1
.

Plugging back into (17), we get E[eλy
>(Xτ−x)] ≤ eτλ

2ε20n
2/ε1 . The standard exponential moment

argument then implies (16).

28

5 Extensions of the Brownian Rounding

In this section, we consider two extensions of the Brownian rounding algorithm. We also present nu-
merical results for these variants showing improved performance over the sticky Brownian Rounding
analyzed in previous sections.

5.1 Brownian Rounding with Slowdown

As noted in section 2, the Sticky Brownian rounding algorithm does not achieve the optimal value
for the Max-Cut problem. A natural question is to ask if we can modify the algorithm to achieve
the optimal constant. In this section, we will show that a simple modification achieves this ratio
up to at least three decimals. Our results are computer-assisted as we solve partial differential
equations using finite element methods. These improvement indicate that variants of the Brownian
Rounding approach offer a direction to obtain optimal SDP rounding algorithms for Max-Cut
problem as well as other CSP problems.

In the sticky Brownian motion, the covariance matrix Wt is a constant, until some vertex’s
marginals (Xt)i becomes ±1. At that point, we abruptly zero the ith row and column. In this
section, we analyze the algorithm where we gradually dampen the step size of the Brownian motion
as it approaches the boundary of the hypercube, until it becomes 0 at the boundary. We call this
process a “Sticky Brownian Motion with Slowdown.”

Let (Xt)i denote the marginal value of vertex i at time t. Initially (X0)i = 0. First, we describe
the discrete algorithm which will provide intuition but will also be useful to those uncomfortable
with Brownian motion and diffusion processes. At each time step, we will take a step whose length
is scaled by a factor of (1 − (Xt)

2
i)
α for some constant α. In particular, the marginals will evolve

according to the equation:

(Xt+dt)i = (Xt)i + (1− (Xt)i)
2)α/2 ·

(
wi ·Gt

)
·
√
dt. (18)

where Gt is distributed according to an n-dimensional Gaussian and dt is a small discrete step by
which we advance the time variable. When Xt is sufficiently close to −1 or +1, we round it to
the nearest one of the two: from then on it will stay fixed because of the definition of the process,
i.e. we will have (Xs)i = (Xt)i for all s > t.

More formally, Xt is defined as an Itô diffusion process which satisfies the stochastic differential
equation

dXt = A(Xt) ·W
1/2 · dBt (19)

where Bt is the standard Brownian motion in Rn and A(Xt) is the diagonal matrix with entries
[A(Xt)]ii = (1− (Xt)

2
i)
α/2. Since this process is continuous, it becomes naturally sticky when some

coordinate (Xt)i reaches {−1, 1}.
Once again, it suffices to restrict our attention to the two dimensional case where we analyze

the probability of cutting an edge (i, j) and we will assume that

W̃ =

(
1 cos(θ)

cos(θ) 1

)
,

29

where θ is the angle between wi and wj .

Let τ be the first time when Xt hits the boundary ∂[−1, 1]2. Since the walk slows down as it
approaches the boundary, it is worth asking if E[τ] is finite. In Lemma 21, we show that E[τ] is
finite for constant α.

Let u(x, y) denote the probability of the Sticky Brownian Walk algorithm starting at (x, y)
cutting an edge, i.e. the walk is absorbed in either (+1,−1) or (−1,+1). It is easy to give a precise
formula for u at the boundary as the algorithm simplifies to a one-dimensional walk. Thus, u(x, y)
satisfies the boundary condition φ(x, y) = (1− xy)/2 for all points (x, y) ∈ bd[−1, 1]2. For a given
(x, y) ∈ Int[−1, 1]2, we can say

u(x, y) = E(x,y)[φ(X̃τ (i), X̃τ (j))],

where E(x,y) denotes the expectation of diffusion process that begins at (x, y). Informally, u(x, y) is
the expected value of φ when first hitting ∂[−1, 1]2 conditioned on starting at point (x, y). Observe
that the probability that the algorithm will cut an edge is given by u(0, 0).

The key fact about u(x, y) that we use is that it is the unique solution to a Dirichlet Problem,
formalized in Lemma 14 below.

Lemma 14. Let Lα denote the operator

Lα = (1− x2)α ∂
2

∂x2
+ 2 cos(θ)(1− x2)α/2(1− y2)α/2 ∂2

∂x∂y
+ (1− y2)α ∂

2

∂y2
,

then the function u(x, y) is the unique solution to the Dirichlet Problem:

Lα[u](x, y) = 0 ∀(x, y) ∈ Int([−1, 1]2)

lim
(x,y)→(x̃,ỹ),

(x,y)∈Int([−1,1]2)

u(x, y) = φ(x̃, ỹ) ∀(x̃, ỹ) ∈ ∂[−1, 1]2.

The proof again uses [47, Theorem 9.2.14], however, the exact application is a little subtle and
we defer the details to Appendix E.

Numerical Results The Dirichlet problem is parameterized by two variables: the slowdown
parameter α and the angle between the vectors θ. We can numerically solve the above equation
using existing solvers for any given fixed α and angle θ ∈ [0, π]. We solve these problems for a
variety of α between 0 and 2 and all values of θ in [0, π] discretized to a granularity of 0.02.10

We observe that as we increase α from 0 to 2, the approximation ratio peaks around α ≈ 1.61
for all values of θ. In particular, when α = 1.61, the approximation ratio is 0.878 which matches
the integrality gap for this relaxation up to three decimal points.

The Brownian rounding with slowdown is a well-defined algorithm for any 2-CSP. We investigate
3 different values of slowdown parameter, i.e., α, and show their relative approximation ratios. We
show that with a slowdown of 1.61 we achieve an approximation ratio of 0.929 for Max-2SAT. We
list these values below in Table 2.

10Our code, containing the details of the implementation, is available at [1].

30

For the Max-Cut problem, since we start the walk at the point (0, 0), we only need to in-
vestigate the performance of the rounding for all possible angles between two unit vectors which
range in [0, θ] (Figure 2). In particular, we are able to achieve values that are comparable to the
Goemans-Williamson bound.

α Max-Cut Max-2SAT

0 0.861 0.921
1 0.874 0.927

1.61 0.878 0.929

Table 2: Approximation ratio of Sticky Brownian Motion rounding with Slowdown for Max-Cut
and Max-2SAT.

(a) α = 0. (b) α = 1. (c) α = 1.61.

Figure 2: Comparing the performance of three values of the slowdown parameter for the Max-Cut
problem.

5.2 Higher-Dimension Brownian Rounding

Our motivating example for considering the higher-dimension Brownian rounding is the Max-
DiCut problem: given a directed graph G = (V,E) equipped with non-negative edge weights
a : E → R+ we wish to find a cut S ⊆ V that maximizes the total weight of edges going out of S.
The standard semi-definite relaxation for Max-DiCut is the following:

max
∑

e=(i→j)∈E

ae ·
(w0 + wi) · (w0 −wj)

4

s.t. wi ·wi = 1 ∀i = 0, 1, ..., n

‖wi −wj‖2 + ‖wj −wk‖2 ≥ ‖wi −wk‖2 ∀i, j, k = 0, 1, ..., n

In the above, the unit vector w0 denotes the cut S, whereas −w0 denotes S. We also include the
triangle inequalities which are valid for any valid relaxation.

The sticky Brownian rounding algorithm for Max-DiCut fails to give a good performance
guarantee. Thus we design a high-dimensional variant of the algorithm that incorporates the
inherent asymmetry of the problem. Let us now describe the high-dimensional Brownian rounding
algorithm. It is similar to the original Brownian rounding algorithm given for Max-Cut, except
that it evolves in Rn+1 with one additional dimension for w0. Let W ∈ R(n+1)×(n+1) denote

31

the positive semi-definite correlation matrix defined by the vectors w0,w1, . . . ,wn, i.e., for every
0 ≤ i, j ≤ n we have that: Wi,j = wi ·wj . The algorithm starts at the origin and perform a sticky
Brownian motion inside the [±1]n+1 hypercube whose correlations are governed by W.

As before, we achieve this by defining a random process {Xt}t≥0 as follows:

Xt = W
1/2Bt,

where {Bt}t≥0 is the standard Brownian motion in Rn+1 starting at the origin and W1/2 is the

square root matrix of W. Additionally, we force {Xt}t≥0 to stick to the boundary of the [±1]n+1

hypercube, i.e., once a coordinate of Xt equals either 1 or −1 it is fixed and remains unchanged
indefinitely. This description can be formalized the same way we did for the Max-Cut problem.
Below we use σ for the time at which Xσ ∈ {−1, 1}n+1, which has finite expectation.

Unlike the Brownian rounding algorithm for Max-Cut, we need to take into consideration the
value w0 was rounded to, i.e., (Xσ)0, since the zero coordinate indicates S. Formally, the output
S ⊆ V is defined as follows:

S = {i ∈ V : (Xσ)i = (Xσ)0} .

To simplify the rest of the presentation, let us denote Zi := (Xσ)i for every i = 0, 1, . . . , n.

The event that an edge (i → j) ∈ E is an outgoing edge from S, i.e., i ∈ S and j ∈ S,
involves three random variables: Zi, Zj , and Z0. Formally, the above event happens if and only
if Zi = Z0 and Zj 6= Z0. We now show how events on any triplet of the random variables
Z0, Z1, . . . , Zn can be precisely calculated. To simplify the presentation, denote the following for
every i, j, k = 0, 1, 2, . . . , n and α, β, γ ∈ {±1}:

pi(α) , Pr [Zi = α]

pij(α, β) , Pr [Zi = α,Zj = β]

pijk(α, β, γ) , Pr [Zi = α,Zj = β, Zk = γ]

Observation 3. The following two hold:

1. pi(α) = pi(−α), pij(α, β) = pij(−α,−β), and pijk(α, β, γ) = pijk(−α,−β,−γ) for every
i, j, k = 0, 1, 2, . . . , n and α, β, γ ∈ {±1}.

2. pi(α) = 1/2 for every i = 0, 1, 2, . . . , n and α ∈ {±1}.

The proof of Observation 3 follows immediately from symmetry.

The following lemmas proves that every conjunction event that depends on three variables from
Z0, Z1, Z2, . . . , Zn can be precisely calculated.

Lemma 15. For every i, j, k = 0, 1, 2, . . . , n and α, β, γ ∈ {±1}:

pijk(α,β,γ) =
1

2

[
pij(α, β) + pik(α, γ) + pjk(β, γ)− 1

2

]
.

32

Proof.

1− pijk(α, β, γ) = 1− pijk(−α,−β,−γ)

= Pr [Zi = α ∨ Zj = β ∨ Zk = γ]

= pi(α) + pj(β) + pk(γ)− pij(α, β)− pik(α, γ)− pjk(β, γ) + pijk(α, β, γ).

The first equality follows from property (1) of Observation 3. The second equality follows from
De-Morgan’s law. The third equality follows from the inclusion and exclusion principle. Isolating
pijk(α, β, γ) above and using property (2) of Observation 3 concludes the proof.

Let us now consider the case study problem Max-DiCut. One can verify that an edge (i→ j) ∈
E is a forward edge crossing the cut S if and only if the following event happens: {Zi = Z0 6= Zj}
(recall that Z0 indicates S). Thus, the value of the Brownian rounding algorithm, when considering
only the edge (i → j), equals p0ij(1, 1,−1) + p0ij(−1,−1, 1). Lemma 15 above shows that if one
knows the values of pij(α, β) for every i, j = 0, 1 . . . , n and α, β ∈ {±1}, then p0ij(1, 1,−1) and
p0ij(−1,−1, 1) can be calculated (thus deriving the exact probability that (i→ j) is a forward edge
crossing S).

How can we calculate pij(α, β) for every i, j = 0, 1 . . . , n and α, β ∈ {±1}? Fix some i, j, α and
β. We note that Theorem 4 can be used to calculate pij(α, β). The reason is that: (1) Theorem 4
provides the value of pij(−1, 1) + pij(1,−1); (2) pij(−1,−1) + pij(−1, 1) + pij(1,−1) + pij(1, 1) = 1;
and (3) pij(−1,−1) = pij(1, 1) and pij(−1, 1) = pij(1,−1) from symmetry. We conclude that using
Theorem 4 we can exactly calculate the probability that (i→ j) is a forward edge crossing S, and
obtain that this probability equals:

1

2
(p0j + pij − p0i),

where pij is the probability that i and j are separated as given by Theorem 4.

Similarly to Max-2SAT, not all triplets of angles {θ0i, θ0j , θij} are possible due to the triangle
inequality constraints (here θij indicates the angle between wi and wj). Let us denote by F the
collection of all possible triplet of angles for the Max-DiCut problem. Then, we can lower bound
the approximation guarantee of the Brownian rounding algorithm as follows:

min
(θ0i,θ0j ,θij)∈F

{
1
2(p0j + pij − p0i)

1
4(1− cos(θ0j) + cos(θ0i)− cos(θij))

}
.

This results in the following theorem.

Theorem 11. The high dimensional Brownian rounding algorithm achieves an approximation ratio
of 0.79 for the Max-DiCut problem.

We also remark that we can introduce slowdown (as discussed in Section 5.1 to the high dimen-
sional Brownian rounding algorithm. Numerically, we show that this improves the performance to
0.79-approximation.

33

6 Acknowledgements

The authors are grateful to Assaf Naor and Ronen Eldan for sharing their manuscript with us. SA
would like to thank Gantumur Tsogtgerel for bringing the Maximum Principle to our attention,
and Christina C. Christara for helping us compare various numerical PDE solvers. SA and AN
thank Allan Borodin for useful discussions during the initial stages of this research. GG would like
to thank Anupam Gupta and Ian Tice for useful discussion, and for also pointing out the Maximum
Principle.

SA and AN were supported by an NSERC Discovery Grant (RGPIN-2016-06333). MS was
supported by NSF grant CCF-BSF:AF1717947. Some of this work was carried out while AN and NB
were visitors at the Simons Institute program on Bridging Discrete and Continuous Optimization,
partially supported by NSF grant #CCF-1740425.

References

[1] Sepehr Abbasi-Zadeh, Nikhil Bansal, Guru Guruganesh, Aleksandar Nikolov, Roy Schwartz,
and Mohit Singh. Code for PDE Solvability and Sum of Square Proofs. https://github.

com/sabbasizadeh/brownian-rounding, 2018.

[2] Lars V. Ahlfors. Complex Analysis: An Introduction to the Theory of Analytic Functions of
One Complex Variable. McGraw-Hill Book Company, second edition, 1966.

[3] Noga Alon and Assaf Naor. Approximating the cut-norm via grothendieck’s inequality. SIAM
J. Comput., 35(4):787–803, 2006.

[4] George E Andrews, Richard Askey, and Ranjan Roy. Special Functions, volume 71 of Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1999.

[5] Sanjeev Arora, Eden Chlamtac, and Moses Charikar. New approximation guarantee for chro-
matic number. In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’06, pages 215–224, New York, NY, USA, 2006. ACM.

[6] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. J. ACM, 56(2):5:1–5:37, April 2009.

[7] Takao Asano. An improved analysis of goemans and williamson’s lp-relaxation for MAX SAT.
Theor. Comput. Sci., 354(3):339–353, 2006.

[8] Takao Asano and David P Williamson. Improved approximation algorithms for MAX SAT.
Journal of Algorithms, 42(1):173–202, 2002.

[9] Per Austrin. Balanced Max 2-SAT might not be the hardest. In STOC, pages 189–197. ACM,
2007.

[10] Per Austrin. Towards sharp inapproximability for any 2-csp. SIAM J. Comput., 39(6):2430–
2463, 2010.

34

https://github.com/sabbasizadeh/brownian-rounding
https://github.com/sabbasizadeh/brownian-rounding

[11] Per Austrin and Aleksa Stankovic. Global cardinality constraints make approximating some
Max-2-CSPs harder. In APPROX-RANDOM, volume 145 of LIPIcs, pages 24:1–24:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[12] Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better balance by being biased:
A 0.8776-approximation for Max Bisection. ACM Trans. Algorithms, 13(1):2:1–2:27, 2016.

[13] Adi Avidor, Ido Berkovitch, and Uri Zwick. Improved approximation algorithms for Max NAE-
SAT and Max SAT. In International Workshop on Approximation and Online Algorithms,
pages 27–40. Springer, 2005.

[14] Nikhil Bansal. Constructive algorithms for discrepancy minimization. In Foundations of Com-
puter Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 3–10. IEEE, 2010.

[15] Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for komlós conjecture match-
ing banaszczyk’s bound. In FOCS, pages 788–799. IEEE Computer Society, 2016.

[16] Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett. The Gram-Schmidt walk:
a cure for the banaszczyk blues. In STOC, pages 587–597. ACM, 2018.

[17] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. In FOCS, pages 472–481. IEEE Computer Society, 2011.

[18] Richard Beals and Roderick Wong. Special functions: a graduate text, volume 126. Cambridge
University Press, 2010.

[19] Ilia Binder and Mark Braverman. The rate of convergence of the walk on spheres algorithm.
Geom. Funct. Anal., 22(3):558–587, 2012. ISSN 1016-443X. doi: 10.1007/s00039-012-0161-z.
URL https://doi.org/10.1007/s00039-012-0161-z.

[20] Avrim Blum and David Karger. An Õ
(
n3/14

)
-coloring algorithm for 3-colorable graphs. In-

formation Processing Letters, 61(1):49 – 53, 1997.

[21] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending
grothendieck’s inequality. In Proceedings of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS ’04, pages 54–60, 2004.

[22] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. J. Comput. Syst. Sci., 71(3):360–383, 2005.

[23] Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight hardness results for mini-
mizing discrepancy. In SODA 2011, pages 1607–1614. SIAM, 2011.

[24] Ronen Eldan and Assaf Naor. Krivine diffusions attain the goemans-williamson approximation
ratio. CoRR, abs/1906.10615, 2019. URL http://arxiv.org/abs/1906.10615.

[25] Uriel Feige and Michel Goemans. Approximating the value of two power proof systems, with
applications to Max 2-SAT and Max DiCut. In istcs, page 0182. IEEE, 1995.

[26] Uriel Feige and Michael Langberg. The rpr2 rounding technique for semidefinite programs. In
ICALP, volume 2076 of Lecture Notes in Computer Science, pages 213–224. Springer, 2001.

35

https://doi.org/10.1007/s00039-012-0161-z
http://arxiv.org/abs/1906.10615

[27] A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT and MAX
BISECTION. Algorithmica, 18(1):67–81, May 1997.

[28] David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second order.
springer, 2015.

[29] Emmanuel Gobet. Weak approximation of killed diffusion using Euler schemes. Stochastic
Process. Appl., 87(2):167–197, 2000. ISSN 0304-4149. doi: 10.1016/S0304-4149(99)00109-X.
URL https://doi.org/10.1016/S0304-4149(99)00109-X.

[30] Emmanuel Gobet. Monte-Carlo methods and stochastic processes. CRC Press, Boca Raton,
FL, 2016. ISBN 978-1-4987-4622-9. From linear to non-linear.

[31] Michel X Goemans and David P Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the ACM
(JACM), 42(6):1115–1145, 1995.

[32] Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenvalues, and
approximation schemes for graph partitioning and quadratic integer programming with PSD
objectives. In FOCS, pages 482–491. IEEE Computer Society, 2011.

[33] Eran Halperin and Uri Zwick. Approximation algorithms for MAX 4-SAT and rounding pro-
cedures for semidefinite programs. In Proceedings of the 7th International IPCO Conference
on Integer Programming and Combinatorial Optimization, pages 202–217, 1999.

[34] Eran Halperin and Uri Zwick. A unified framework for obtaining improved approximation
algorithms for maximum graph bisection problems. Random Struct. Algorithms, 20(3):382–
402, May 2002.

[35] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.

[36] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefi-
nite programming. J. ACM, 45(2):246–265, 1998.

[37] Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for MAX 3SAT? In focs, page
406. IEEE, 1997.

[38] Subhash Khot. On the power of unique 2-prover 1-round games. In STOC, pages 767–775.
ACM, 2002.

[39] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproxima-
bility results for MAX-CUT and other 2-variable csps? SIAM J. Comput., 37(1):319–357,
2007.

[40] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the MAX 2-sat
and MAX DI-CUT problems. In IPCO, volume 2337 of Lecture Notes in Computer Science,
pages 67–82. Springer, 2002.

[41] Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on the
edges. SIAM Journal on Computing, 44(5):1573–1582, 2015.

36

https://doi.org/10.1016/S0304-4149(99)00109-X

[42] Tomomi Matsui and Shiro Matuura. 0.935-approximation randomized algorithm for Max
2-SAT and its derandomization. Department of Mathematical Engineering and Information
Physics, University of Tokyo (Technical Report METR 2001-03, 2001.

[43] Peter Mörters and Yuval Peres. Brownian Motion. Cambridge Series in Statistical and Prob-
abilistic Mathematics, 2010.

[44] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: invariance and optimality. In FOCS, pages 21–30. IEEE Computer Society,
2005.

[45] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. Optimization
Methods and Software, 9(1-3):141–160, 1998.

[46] Ryan O’Donnell and Yi Wu. An optimal sdp algorithm for Max-Cut, and equally optimal long
code tests. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
STOC ’08, pages 335–344, 2008.

[47] Bernt Øksendal. Stochastic differential equations. Universitext. Springer-Verlag, Berlin, fourth
edition, 1995. ISBN 3-540-60243-7. doi: 10.1007/978-3-662-03185-8. URL https://doi.org/

10.1007/978-3-662-03185-8. An introduction with applications.

[48] Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In
STOC, pages 245–254. ACM, 2008.

[49] Prasad Raghavendra and David Steurer. How to round any CSP. In FOCS, pages 586–594.
IEEE Computer Society, 2009.

[50] Prasad Raghavendra and Ning Tan. Approximating csps with global cardinality constraints
using SDP hierarchies. In SODA, pages 373–387. SIAM, 2012.

[51] Chaitanya Swamy. Correlation clustering: Maximizing agreements via semidefinite program-
ming. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’04, pages 526–527, 2004.

[52] Norbert Wiener. Differential-space. Journal of Mathematics and Physics, 2(1-4):131–174,
1923. doi: 10.1002/sapm192321131.

[53] Yinyu Ye. A .699-approximation algorithm for Max-Bisection. Mathematical Programming,
90(1):101–111, Mar 2001.

[54] Uri Zwick. Approximation algorithms for constraint satisfaction problems involving at most
three variables per constraint. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’98, pages 201–210, 1998.

[55] Uri Zwick. Outward rotations: a tool for rounding solutions of semidefinite programming
relaxations, with applications to MAX CUT and other problems. In Proceedings of the thirty-
first annual ACM symposium on Theory of computing, pages 679–687. ACM, 1999.

37

https://doi.org/10.1007/978-3-662-03185-8
https://doi.org/10.1007/978-3-662-03185-8

A Definition of Brownian Motion

For completeness, we recall the definition of standard Brownian motion.

Definition 1. A stochastic process {Bt}t≥0 taking values in Rn is called an n-dimensional Brow-
nian motion started at x ∈ Rn if

• B0 = x,

• the process has independent increments, i.e. for all N and all times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tN ,
the increments BtN−BtN−1, BtN−1−BtN−2, . . ., Bt2−Bt1 are independent random variables,

• for all t ≥ 0 and all h > 0, the increment Bt+h − Bt is distributed as a Gaussian random
variable with mean 0 and covariance matrix equal to the identity In,

• the function f(t) = Bt is almost surely continuous.

The process {Bt}t≥0 is called standard Brownian motion if x = 0.

The fact that this definition is not empty, i.e. that such a stochastic process exists, is non-trivial.
The first rigorous proof of this fact was given by Wiener [52]. We refer the reader to the book [43]
for a thorough introduction to Brownian motion and its properties.

B Omitted Proofs from Section 2

We start with a brief primer about special functions with an emphasis on the lemmas and identities
that will be useful for our analysis. We recommend the excellent introductions in Andrews et al.
[4], Beals and Wong [18] for a thorough introduction.

B.1 Special Functions: A Primer

While there is no common definition of special functions, three basic functions, Γ, β and the
hypergeometric functions pFq show up in nearly all treatments of the subject. We will define them
and some useful relationships between them.

Definition 2 (Gamma Function). The gamma function is defined as

Γ(z) :=

∫ ∞
0

xz−1e−xdx.

for all complex numbers z with non-negative real part, and analytically extended to all z 6= 0,−1,−2,

Fact 1. Recall that the gamma function satisfies the recurrence Γ(z + 1) = zΓ(z) and it follows
easily from the definition that Γ(1) = 1. In particular, when n is a positive integer, Γ(n+ 1) = n!

Definition 3 (Beta Function). The beta function β(a, b) is defined for complex numbers a and b
with Re(a) > 0,Re(b) > 0 by

β(a, b) =

∫ 1

0
sa−1(1− s)b−1ds.

38

Clearly, β(a, b) = β(b, a). Setting s = u/(u+ 1) gives the following alternate form.

β(a, b) =

∫ ∞
0

ua−1
(

1

1 + u

)a+b
du

Lemma 16. (Theorem 1.1.4 in [4]) The beta function can be expressed in terms of the gamma
function using the following identity:

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

We will use the following very useful fact.

Lemma 17. (Exercise 2.2 in [18])∫ π/2

0
sina−1 θ cosb−1 θdθ =

1

2
β(a/2, b/2)

The next family of functions we utilize are the hypergeometric functions.

Definition 4 (Hypergeometric Function). The hypergeometric function pFq

[
a1, ..., ap
b1, ..., bq

; z
]

is defined
as

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
:=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · (bq)n

zn

n!

where the Pochhammer symbol (rising factorial) is defined inductively as

(a)n := a(a+ 1) · · · (a+ n− 1) and (a)0 = 1.

A very simple but useful way to write the binomial theorem using the Pochhammer symbol is

(1− x)−a =

∞∑
n=0

(a)n
n!

xn.

The Pochhammer symbol also satisfies the formula (a)n = Γ(a+ n)/Γ(a).

A useful connection between the hypergoemetric function 2F1 and the gamma function is given
in the following lemma.

Lemma 18 (Euler’s Integral Representation). [Theorem 2.2.1 in [4]] If Re(c) > Re(b) > 0 then

2F1

[
a, b

c
;x

]
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− s)c−b−1(1− xs)−ads

where we assume that (1− xs)−a takes its principal value.

Definition 5. The incomplete beta integral is defined as

βx(a, b) =

∫ x

0
ta−1(1− t)b−1dt,

and is well-defined for Re(a) > 0 and x /∈ [1,∞).

39

Lemma 17 easily extends to the incomplete beta integral too, as captured in the following
lemma.

Lemma 19. ∫ φ

0
sina−1 θ cosb−1 θdθ =

1

2
βsin2 φ(a/2, b/2)

Proof. Let sin θ = t, then cos θ =
√

1− t2 and (cos θ)dθ = dt, and we get∫ φ

0
sina−1 θ cosb−1 θdθ =

∫ sin(φ)

0
ta−1(1− t2)(b−2)/2dt.

Setting s = t2 gives∫ sin2(φ)

0
(1/2)s(a−2)/2(1− s)(b−2)/2ds = (1/2)βsin2 φ(a/2, b/2).

This completes the proof.

The following identity relates the incomplete beta integral to hypergeometric functions.

Lemma 20 (Gauss’s Identity). [Exercise 8.7 in [18]]

βx(a, b) =

∫ x

0
ta−1(1− t)b−1dt =

xa

a
· 2F1

[
a, 1− b
a+ 1

;x

]
Proof. It is natural to substitute t = sx, as we can now integrate from s = 0 to 1. This gives∫ 1

0
xa−1sa−1(1− sx)b−1xds = xa

∫ 1

0
sa−1(1− sx)b−1ds

Using the integral form given in Lemma 18 with 1 − b in the place of a, a in the place of b, and
a+ 1 in the place of c, we get that the integral equals

xa
Γ(a)Γ(1)

Γ(a+ 1)
· 2F1

[
1− b, a
a+ 1

;x

]
=
xa

a
· 2F1

[
1− b, a
a+ 1

;x

]
By the symmetry in the definition of 2F1 with respect to the first two arguments, the result
follows.

B.2 Proof of Theorem 4

First, we will prove the claim, which expresses the function r(φ) in terms of the incomplete beta
function.

Claim 1.

r(φ) =
1

4
βsin2 φ(a/2, b/2)

when φ ∈ [0, π/2].

40

Proof. Recall r(φ) = |Fθ(eiφ)− Fθ(1)|. Furthermore, from Lemma 3, we know that the conformal
map maps the arc from 1 to i to an edge on the rhombus S. Hence we can write r(φ) as an integral

r(φ) =

∫ φ

0
|F ′θ(eiφ)|dφ =

∫ φ

0
|fθ(eiφ)|dφ.

Expanding fθ, and substituting a = θ
π and b = 1− a, we have

=

∫ φ

0
|(1− e2iφ)a−1 · (1 + e2iφ)b−1|dφ.

Expanding this in terms of trigonometric functions, and simplifying using double angle formulas,
we get

=

∫ φ

0
|(2 · eiφ · sinφ)a−1 · (2 · e−iφ · cosφ)b−1|dφ

=

∫ φ

0
|2a+b−2| · |eiφ(a−1)| · | sinφa−1| · |e−iφ(b−1)| · | cosφb−1|dφ.

Since |eiφ(a−1)| = |eiφ(b−1)| = 1 and the remaining terms are positive, we drop the norms.

=

∫ φ

0

1

2
(sinφ)a−1(cosφ)b−1dφ

=
1

4
βsin2 φ(a/2, b/2) by Lemma 19.

By substituting φ = π/2 we immediately get the following corollary:

Corollary 3. The length of the side of rhombus is given by r = r(π/2) = 1/4 · β(a/2, b/2).

The claim below will characterize the integral of the incomplete beta function which will be
important for us later.

Claim 2.

4 ·
∫ π/2

0
r(φ)dφ =

β(a/2 + 1/2, 1/2)

2a
· 3F2

[1+a
2 , 1+a

2 , a
2

a
2 ,

a
2 + 1

; 1

]
Proof. By Lemma 19, the left hand side equals∫ π/2

0
βsin2 φ

(
a

2
,
b

2

)
dφ

=

∫ π/2

0

2
(
sin2 φ

)a/2
a

2F1

[a
2 , 1− b

2
a
2 + 1

; sin2 φ

]
dφ By Lemma 20

=

∫ π/2

0

2(sinφ)a

a
2F1

[a
2 ,

a+1
2

a
2 + 1

; sin2 φ

]
dφ Substituting b = 1− a

=
2

a

∫ π/2

0

(∞∑
n=0

(a/2)n(a/2 + 1/2)n
(a/2 + 1)n

(sinφ)2n+a

n!

)
dφ Expand using Definition 4

=
2

a

∞∑
n=0

(∫ π/2

0
(sinφ)2n+adφ

)(a/2)n(a/2 + 1/2)n
(a/2 + 1)n · n!

(*)

41

We take a brief interlude to analyze the integral in the parenthesis above:∫ π/2

0
(sinφ)2n+a dφ =

1

2
β(n+ a/2 + 1/2, 1/2) By Lemma 17

=
Γ(1/2)

2

Γ(n+ a/2 + 1/2)

Γ(n+ a/2 + 1)
By Lemma 16

=
Γ(1/2)

2

(a+ 1/2)nΓ(a/2 + 1/2)

(a/2 + 1)nΓ(a+ 1)

=
β(a/2 + 1/2, 1/2)

2

(a/2 + 1/2)n
(a/2 + 1)n

.

Going back and substituting the above result into the Equation (*), we get

=
β(a/2 + 1/2, 1/2)

a

(∞∑
n=0

(a/2)n(a/2 + 1/2)n(a/2 + 1/2)n
n!(a/2 + 1)n(a+ 1)n

)

=
β(a/2 + 1/2, 1/2)

a
· 3F2

[1+a
2 , 1+a

2 , a
2

a
2 + 1, a

2 + 1
; 1

]

Armed with Claim 2 and Corollary 3, we can prove Theorem 4.

Theorem 4. The probability that the Sticky Brownian Motion rounding algorithm will separate a
pair {i, j} of vertices for which θ = cos−1(wi ·wj) equals

1−
Γ(a+1

2)

Γ(1−a2)Γ(a2 + 1)2
· 3F2

[1+a
2 , 1+a

2 , a
2

a
2 ,

a
2 + 1

; 1

]
where a = θ/π, Γ is the gamma function, and 3F2 is the hypergeometric function.

Proof. Substituting r = r(π/2) below, by Lemma 4 we have that the probability of separating the
vertices is

2

π

∫ π/2

φ=0
1− r(φ)

r
dφ,

or equivalently, the probability of not separating them is

2

π

∫ π/2

φ=0

r(φ)

r
dφ

Expanding the above using Claim 1, we get that this equals

2

π

4

β(a/2, b/2)

∫ π/2

φ=0

1

4
βsin2 ψ(a/2, (1− a)/2)dψ.

42

Expanding the right hand side integral using Claim 2, we get

=
2

π

1

β(a/2, b/2)
· β(a/2 + 1/2, 1/2)

a
· 3F2(1/2 + a/2, 1/2 + a/2, a/2; a/2 + 1, a+ 1; 1).

Using Lemma 16 and the fact that Γ(1/2)2 = π we can simplify this to

=
Γ(a+ 1/2)

Γ(1/2− a/2)Γ(a/2 + 1)2
· 3F2(1/2 + a, 1/2 + a/2, a/2; a/2 + 1, a+ 1; 1).

B.3 Proof of Theorem 7

First, we rewrite r in a form that will be useful later.

Claim 3.

2

∫ π/2

0
r(φ)dφ =

∫ π/2

0
φ(sinφ)b−1(cosφ)a−1dφ

Proof. The left hand side equation can be written as

2

∫ π/2

0
r(φ)dφ =

∫ π/2

0

1

2
βsin2 φ(a/2, b/2)dφ =

∫ π/2

0

(∫ φ

0
(sinψ)a−1(cosψ)b−1dψ

)
dφ

Applying integration by parts:
∫
pdq = [pq]−

∫
qdp with q = π/2−φ and p =

∫ φ
0 (sinψa−1)(cosψ)b−1dψ

gives

[
(π/2− φ)

∫ φ

0
(sinψa−1)(cosψ)b−1dψ

]π/2
0

+

∫ π/2

0
(π/2− φ)

d

dφ

∫ φ

0
(sinψa−1)(cosψ)b−1dψ

The first term is 0, and using Fundamental Theorem of Calculus, the second term is∫ π/2

0
(π/2− φ)(sinφ)a−1(cosφ)b−1dφ

Substituting φ for π/2− φ gives ∫ π/2

0
φ(sinφ)b−1(cosφ)a−1dφ.

Next, we claim that

Claim 4. When θ = (1− ε)π, we can say

2

∫ π/2

0
r(φ)dφ ≤ 2 ·

(
1 +O(ε log(1/ε))

)
.

43

Proof. Using Claim 3, we can write

2

∫ π/2

0
r(φ)dφ =

∫ π/2

0
φ(sinφ)b−1(cosφ)a−1dφ

=

∫ π/2

0

φ

sinφ
(tanφ)εdφ

Since x
sin(x) ≤ 2 for 0 ≤ x ≤ π/2, to prove the claim it suffices to show that

∫ π/2

0
((tanφ)ε − 1) dφ = O(ε log(1/ε)).

Let φ0 = arctan(1/ε). We will break the above integral into two parts and deal with each separately:

∫ π/2

0
((tanφ)ε − 1) dφ =

∫ φ0

0
((tanφ)ε − 1) +

∫ π/2

φ0

((tanφ)ε − 1) .

Case 1 for φ ≤ φ0,

(tanφ)ε ≤
(

1

ε

)ε
= exp(ε ln(1/ε)) = 1 +O(ε log(1/ε)),

so ∫ φ0

0
((tanφ)ε − 1) dφ = O(ε log(1/ε)).

Case 2 For φ > φ0,

∫ π/2

φ0

((tanφ)ε − 1) dφ ≤
∫ π/2

φ0

1/(cosφ)εdφ

=

∫ π/2−φ0

0
(1/ sinφ)εdφ Since sin(x) = cos(π/2− x)

≤
∫ π/2−φ0

0
(2/φ)εdφ Since 1 ≤ x/sin(x) ≤ 2

≤ 2ε
(π/2− φ0)1−ε

1− ε
≤ (π/2− φ0)(1 +O(ε)).

Finally, we note that π/2− φ0 ≤ tan(π/2− φ0) = 1/ tan(φ0) = ε.

Theorem 7. Given an edge {i, j} with cos−1(wT
i wj) = θ = (1− ε)π, the Sticky Brownian Motion

rounding will cut the edge with probability at least 1−
(
4
π ε+O(ε2)

)
.

Proof. Let a = 1− ε and b = ε.

44

As discussed in Lemma 4, the non-separation probability is

2

πr

∫ π/2

0
r(φ)dφ

where r = r(π/2). So we will compute the asymptotics of r := r(π/2) and
∫ π/2
0 2 · r(φ)dφ as ε→ 0.

First we compute the asymptotics of r as ε→ 0. Recall that

r = (1/4)β(a/2, b/2) By Corollary 3

=
Γ((1− ε)/2)Γ(ε/2)

4Γ(1/2)
By Lemma 16

=
Γ((1− ε)/2)Γ(1 + ε/2)

2εΓ(1/2)
Using Γ(

ε

2
) =

2

ε
Γ(1 +

ε

2
)

Using the standard fact that Γ(z + ε) = Γ(z)(1 +O(ε)) for fixed z > 0

=
1

2εΓ(1/2)
(Γ(1/2) +O(ε))(Γ(1) +O(ε))

=
1

(2ε)
+O(1)

which implies that
1/r = 2ε+O(ε)2

Using Claim 4, we know that
∫ π/2
0 2 · r(φ)dφ is at most 2 ·

(
1 + O(ε log(1/ε)

)
. Combining the

two, we get the probability of non-separation is ε 4π +O(ε2) ≈ 1.27ε+O(ε2).

B.4 Other Missing Proofs

Lemma 1. Applying the transformation OW−1/2 to {Xt}t≥0 we get a new random process {Yt}t≥0
which has the following properties:

1. If Xt is in the interior/boundary/vertex of [−1, 1]2 then Yt is in the interior/boundary/vertex
of S, respectively.

2. S is a rhombus whose internal angles at b1 and b3 are θ, and at b2 and b4 are π − θ. The
vertex b1 lies on the positive x-axis, and b2, b3, b4 are arranged counter-clockwise.

3. The probability that the algorithm will separate the pair {i, j} is exactly Pr[Yt is absorbed in b1 or b3].

Proof. Part 1 is immediate from the continuity and linearity of the map O ·W−1/2.

To prove part 2, observe that the W 1/2 is given explicitly by the matrix

W
1
2 =

1√
2
·
[
cos(θ2) + sin(θ2) cos(θ2)− sin(θ2)

cos(θ2)− sin(θ2) cos(θ2) + sin(θ2)

]
.

45

Taking, its inverse, we get the matrix

W− 1
2 =

1√
8
·
[
sec(θ2) + csc(θ2) sec(θ2)− csc(θ2)

sec(θ2)− csc(θ2) sec(θ2) + csc(θ2)

]
.

Since W− 1
2 [−1, 1]2 is the image of a parallelogram, it must also be a parallelogram. Moreover, one

can directly check that the diagonals are orthogonal to each other, so it must be a rhombus. It is
easy to calculate the angle between the sides and see that it is exactly θ at the image of (1,−1)
and π − θ at the image of (1, 1).

Then part 3 follows from the previous parts: if Xt is one a side or a vertex of [−1, 1], then Yt

is on the corresponding side or vertex of S.

C Omitted Proofs from Section 3

Recall that, for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, the function u(x, y) denotes the probability the probability
of a clause being satisfied when the random walk walk begins with marginals (x, y) and angle θ.
Equivalently, u(x, y) is the probability that the walk, started at (x, y), ends at one of the corners
(0, 0), (0, 1) or (1, 0).

Lemma 5. For φ(x, y) = 1− xy, we have

u(x) = φ(x) for all x ∈ ∂[0, 1]2 (8)

Moreover, for all x in the interior of the square [0, 1]2, u(x) = Ex[φ(Xτ)], where Ex denotes
expectation with respect to starting the process at X0 = x.

Proof. Recall that τ is the first time when Xt hits the boundary of [0, 1]2, and σ is the first time
when Xt hits a vertex of [0, 1]2. The function φ evaluates to 1 at the vertices (0, 0), (0, 1), and
(1, 0), and to 0 at (1, 1). Therefore, by definition, u(x) = Ex[φ(Xσ)].

Let us first consider the case when x is on the boundary of [0, 1]2. Then one of the coordinates
of Xt remains fixed for the entire process. Since φ is affine in each of its arguments, and Xt is a
martingale,

∀x ∈ ∂[0, 1]2 : u(x) = Ex[φ(Xσ)] = φ(Ex[Xσ]) = φ(x).

When x is in the interior of [0, 1]2, we have, by the law of total expectation,

∀x ∈ Int[0, 1]2 : u(x) = Ex[φ(Xσ)] = Ex[EXτ [φ(Xσ)]] = Ex[φ(Xτ)].

The final equality follows by the special case when the starting point of the random walk is on the
boundary of [0, 1]2. This proves the lemma.

Before we give an outline of the proofs of Lemma 6 and Lemma 8, we prove Lemma 7. This
will allow us to give a completely analytic proof of 3

4 .

Lemma 7. Let x, y, θ be as defined by a feasible pair of vectors vi and vj. Then they must satisfy
the following constraints:

1. 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ θ ≤ π.

46

2. cos(θ) ≥ −
√

xy
(1−x)(1−y) .

3. cos(θ) ≥ −
√

(1−x)(1−y)
xy .

Proof. Clearly, the first set of the constraints are obvious. We focus on the second and the third
constraint. Recall that vi = xv0 +

√
x− x2wi and vj = yv0 +

√
y − y2wj where wi and wj are

unit vectors orthogonal to v0 with cos(θ) = wj ·wj . Thus we have

vi · vj = xy + cos(θ)
√
x− x2

√
y − y2

But then we have the following valid constraint from the SDP:

vi · vj ≥ 0

which implies that

cos(θ) ≥ −
√

xy

(1− x)(1− y)

proving the second inequality.

For the other inequality, observe that we have v−i = (1 − x)v0 −
√
x− x2wi and v−j =

(1− y)v0 −
√
y − y2wj . Then we have

v−i · v−j = (1− x)(1− y) + cos(θ)
√
x− x2

√
y − y2

But then we have the following valid constraint from the SDP:

v−i · v−j ≥ 0

which implies that

cos(θ) ≥ −

√
(1− x)(1− y)

xy

proving the third inequality.

To ease the remainder of the presentation we first prove that the Brownian rounding algorithm
achieves an approximation of 3/4 for Max-2SAT via the maximum principle. In order to achieve
that we use the following two functions for different ranges of θ.

• g1(x, y) = 1− xy − cos(θ)
√
x− x2

√
y − y2.

• f(x, y) = 1− xy.

47

First consider the case when 0 ≤ θ ≤ π
2 . In this case, we show g1 satisfies the requirement of the

Corollary 2 as well as give an approximation factor of 1. The last fact is trivially true since g1 is
exactly the SDP objective.

For conditions of the Corollary 2, we need to show that

∂2g1
∂x2

+
∂2g1
∂y2

+ 2 cos(θ)
∂2g1
∂x∂y

≥ 0 ∀(x, y) ∈ Int[0, 1]2

g1(x, y) ≤ (1− xy) ∀(x, y) ∈ ∂[0, 1]2

Since (x − x2)(y − y2) = 0 on ∂[0, 1]2, we obtain that g1(x, y) = 1 − xy on ∂[0, 1]2 as required. It
remains to show that

∂2

∂x2
g1(x, y) +

∂2

∂y2
g1(x, y) + 2 cos θ

∂2

∂x∂y
g1(x, y) ≥ 0

for all (x, y) ∈ (0, 1)2. Consider

h(x, y) :=
∂2

∂x2
g1(x, y) +

∂2

∂y2
g1(x, y) + 2 cos θ

∂2

∂x∂y
g1(x, y).

To show h is non-negative, we do the following change of variables in x = (1+sin(a))
2 and y = (1+sin(b))

2
for some |a|, |b| ≤ π

2 . Such a and b exist since 0 ≤ x, y ≤ 1. Now simplifying, we obtain:

h

(
1 + sin(a)

2
,
1 + sin(b)

2

)
= 2 cos(θ) sec3(a) sec3(b)

[(
cos2(a)− cos2(b)

)2
+2 cos2(a) cos2(b) (1− cos(θ) sin(a) sin(b)− cos(a) cos(b))

]
Since |a|, |b| ≤ π

2 and 0 ≤ θ ≤ π
2 , we have that sec(a), sec(b), cos(θ) ≥ 0. Thus, it enough to show

that
1− cos(θ) sin(a) sin(b)− cos(a) cos(b) ≥ 0.

Since the above expression is linear in cos(θ), it is enough to check for extreme values of cos(θ)
which takes value between 0 and 1. It is clearly true when cos(θ) = 0. For cos(θ) = 1, it equals
1− cos(a− b) and is thus non-negative.

Now consider −1 ≤ cos(θ) ≤ 0. We show that f(x, y) = 1 − xy satisfies the condition of
Corollary 2 and is at least 3

4 the value of the SDP objective for all feasible (x, y, θ). First let us
focus on the condition of Corollary 2. Clearly, the boundary conditions are satisfied by construction.

Note that ∂2f(x,y)
∂x2

= 0, ∂2f(x,y)
∂y2

= 0, and that ∂2f(x,y)
∂x∂y = 1. Thus

Lf = − cos(θ) ≥ 0

since cos(θ) ≤ 0 as desired.

It remains to show that f provides an approximation guarantee of 3/4 in case cos(θ) < 0.
Recall that SDP (x, y, θ) = 1 − xy − cos(θ)

√
x− x2

√
y − y2 is the contribution of a clause to the

SDP’s objective whose two variables zi and zj have marginal values of x and y respectively and that
cos(θ) = wi·wj . We prove the following claim which would imply that we obtain a 3

4 -approximation.

48

Claim 5. For any x, y, θ that satisfy the feasibility conditions in Lemma 7 and cos(θ) < 0, we have

g(x, y) ≥ 3

4
SDP (x, y, θ).

Proof. From Lemma 7, we have

− cos(θ) ≤ min

{√
xy

(1− x)(1− y)
,

√
(1− x)(1− y)

xy

}
.

Observe that we have g(x, y) ≥ 3
4SDP (x, y, θ), if

(1− xy) ≥ −3 cos(θ)
√

(x− x2)(y − y2).

First, suppose xy ≤ 1
4 . Then

−3 cos(θ)
√

(x− x2)(y − y2) ≤ 3

√
xy

(1− x)(1− y)
·
√

(x− x2)(y − y2) = 3xy

≤ 1− xy

Else, if xy ≥ 1
4 , then we have

1− xy + 3 cos(θ)
√

(x− x2)(y − y2) ≥ 1− xy − 3

√
(1− x)(1− y)

xy
·
√

(x− x2)(y − y2)

= −2 + 3x+ 3y − 4xy

Over all 1 ≥ x ≥ 0, 1 ≥ y ≥ 0 with fixed xy, the quantity 2+3x+3y−4xy is minimized when x = y.
Since xy ≥ 1

4 , we must have x ≥ 1
2 . But then it becomes −2(1− 3x+ 2x2) = −2(1− 2x)(1−x) ≥ 0

since 1
2 ≤ x ≤ 1. This proves the 3

4 -approximation.

We now give a brief outline of the proof of Lemma 6 and Lemma 8. The complete proofs involve
long sum of square expression that are available at [1].

Lemma 6. Each of g1, g2, g3 satisfies the boundary conditions, i.e. gi(x, y) = u(x, y) for all x, y ∈
∂[0, 1]2 and for all values θ. Moreover, we have the following for each (x, y) ∈ [0, 1]2:

1. If 1 ≥ cos(θ) ≥ 0, then Lg1 ≥ 0.

2. If 0 ≥ cos(θ) ≥ −1
2 , then Lg2 ≥ 0.

3. If −1
2 ≥ cos(θ) ≥ −1, then Lg3 ≥ 0.

Proof.
Feasibility of g1(x, y). We already showed in the above proof of 3

4 -approximation.

49

Feasibility of g2(x, y). Now we consider g2(x, y) = 1 − xy − 2 cos(θ)(x − x2)(y − y2). Since
(x− x2)(y− y2) = 0 on ∂[0, 1]2, we obtain that g2(x, y) = 1− xy on ∂[0, 1]2 as required. It remains
to show that

Lg2 =
∂2

∂x2
g2(x, y) +

∂2

∂y2
g2(x, y) + 2 cos θ

∂2

∂x∂y
g2(x, y) ≥ 0

for all (x, y) ∈ (0, 1)2 for any 0 ≥ cos(θ) ≥ −1
2 . A simple calculation allows us to obtain that

Lg2 = −2 cos(θ)
(
1 + 2x2 + 2y2 + 2 cos(θ)− 2x− 2y − 4y cos(θ)− 4x cos(θ) + 8xy cos(θ)

)
.

Since −2 cos(θ) > 0, it is enough to show that for any 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

h(x, y) = 1 + 2x2 + 2y2 + 2 cos(θ)− 2x− 2y − 4y cos(θ)− 4x cos(θ) + 8xy cos(θ) ≥ 0.

We now prove the above inequality. Since the above expression is linear in cos(θ), for any fixed
x, y the minimum appears at either cos(θ) = 0 or cos(θ) = −1

2 . First consider cos(θ) = 0. In this
case, we obtain

h(x, y) = 1 + 2x2 + 2y2 − 2x− 2y =
1

2
(1− 2x)2 +

1

2
(1− 2y)2 ≥ 0

as required.

Now if cos(θ) = −1
2 , we obtain

h(x, y) = 2x2 + 2y2 − 4xy = 2(x− y)2 ≥ 0

as required. This proves Lg2 ≥ 0.

Feasibility of g3(x, y). Now we consider g3(x, y) = 1 − xy − 1
2(1 + 5 cos(θ))(x − x2)(y − y2)(x +

y)(2 − x − y) on ∂[0, 1]2, we obtain that g2(x, y) = 1 − xy on ∂[0, 1]2 as required. It remains to
show that

Lg3 =
∂2

∂x2
g3(x, y) +

∂2

∂y2
g3(x, y) + 2 cos θ

∂2

∂x∂y
g3(x, y) ≥ 0

for all (x, y) ∈ (0, 1)2 for any −1
2 ≥ cos(θ) ≥ −1.

To show Lg3 ≥ 0, we consider Lg3 = p(x, y, cos(θ)) as a polynomial in x, y and cos(θ). Replacing
z = cos(θ), our aim is to show p(x, y, z) ≥ 0 if 0 ≤ x, y ≤ 1 and −1

2 ≤ z ≤ −1. Equivalently, we
need to show p(x, y, z) ≥ 0 whenever r1(x, y, z) := x − x2 ≥ 0, r2(x, y, z) := y − y2 ≥ 0 and
r3(x, y, z) := −(z + 1

2) ≥ 0 and r4(x, y, z) := (z + 1) ≥ 0. This we show by obtaining polynomials
qi(x, y, z) for i = 0, 1, 2, 3, 4 such that qi is a sum of square polynomial of fixed degree and we have

p(x, y, z) = q0(x, y, z) +

4∑
i=1

qi(x, y, z)ri(x, y, z).

Observe that above polynomial inequality shows the desired inequality. Indeed evaluate the above
identity for any 0 ≤ x, y ≤ 1 and −1

2 ≥ z ≥ −1. Clearly, the RHS is non-negative. Each qi is

50

non-negative since it is a SoS and each ri is non-negative by construction. We mention that we
obtain these proofs via solving a semi-definite program of fixed degree (4) for each of q′is. We
also remark that these SoS expressions are obtained with a small error of order δ < 10−5. This,
formally, implies that the approximation factors of slightly worse than 7

8 .

Lemma 8. Consider any feasible triple (x, y, θ) satisfying the condition in Lemma 7. We have the
following.

1. If 1 ≥ cos(θ) ≥ 0, then g1(x, y) ≥ 1 · SDP(x, y, θ).

2. If 0 ≥ cos(θ) ≥ −1
2 , then g2(x, y) ≥0.8749·SDP(x, y, θ).

3. If −1
2 ≥ cos(θ) ≥ −1, then g3(x, y) ≥0.8749·SDP(x, y, θ).

Proof. We prove the three inequalities. We also remark that the SoS expressions below are obtained
with a small error of order δ < 10−5. This, formally, implies that the approximation factors of
slightly worse than 7

8 .

1. If 1 ≥ cos(θ) ≥ 0, then g1(x, y) ≥ 1 · SDP (x, y, θ). Observe that g1(x, y) = SDP (x, y, θ) and
inequality holds.

2. If 0 ≥ cos(θ) ≥ −1
2 , then g2(x, y) ≥ 7/8 · SDP (x, y, θ). We need to show that

1− xy − 2 cos(θ)(x− x2)(y − y2) ≥ 0.8749 ·
(

1− xy − cos(θ)
√
x− x2

√
y − y2

)
which holds if

1− xy − 16 cos(θ)(x− x2)(y − y2) ≥ −7 cos(θ)
√
x− x2

√
y − y2

Since both sides are non-negative (1− xy ≥ 0 and cos(θ) ≤ 0), it is enough to show(
1− xy − 16 cos(θ)(x− x2)(y − y2)

)2 − 49 cos2(θ)(x− x2)(y − y2) ≥ 0

subject to r1(x, y, cos(θ)) := x − x2 ≥ 0, r2(x, y, cos(θ)) := y − y2 ≥ 0, r3(x, y, cos(θ)) :=
− cos(θ) ≥ 0, ,r4(x, y, cos(θ)) := xy− (1−x)(1− y) cos2(θ) ≥ 0, r5(x, y, cos(θ)) := (1−x)(1−
y) − xy cos2(θ) ≥ 0 where the last two constraints follow from Lemma 7. Thus again, we
construct sum of squares polynomials qi(x, y, cos(θ)) for 0 ≤ i ≤ 5 such that

(
1− xy − 16 cos(θ)(x− x2)(y − y2)

)2 − 49 cos2(θ)(x− x2)(y − y2)

= q0(x, y, cos(θ)) +

5∑
i=1

qi(x, y, cos(θ))ri(x, y, cos(θ))

3. If −1
2 ≥ cos(θ) ≥ −1, then g3(x, y) ≥ 7

8SDP (x, y, θ). The similar argument as above allows
us to obtain SoS proofs. We omit the details.

51

D Omitted Proofs from Section 4

Baseline Approximation

Lemma 9. Suppose that n ≥ 2 ln(8k/ε)
ε2

and ε ≤ 1
2 . There exists a polynomial time algorithm that

on input a satisfiable instance G = (V,E), F , and b1, . . . , bk, as defined above, outputs a set S ⊆ V
such that, with high probability, a(δ(S)) ≥ ε

2a(E), and
∣∣|S ∩ Fi| − bi∣∣ ≤ εn for all i ∈ [k].

Proof. If the constraints specified by F and b are satisfiable, then surely the following linear
program also has a solution.∑

j∈Fi

xj = bi ∀i = 1, . . . , k

0 ≤ xj ≤ 1 ∀j = 1, . . . , k

We compute a solution x ∈ Rn to the program, and form a vector y ∈ Rn by defining yj =
(1 − ε)xj + ε

2 for all j ∈ [n]. The vector y still satisfies the constraints approximately, i.e. for all
i ∈ [k] we have ∣∣∣∣∣∣

∑
j∈Fi

xj − bi

∣∣∣∣∣∣ ≤ εn

2
. (20)

We now apply standard randomized rounding to y: we form a set S by independently including
any j ∈ [n] in S with probability yj . By (20), and a Hoeffding and a union bound,

Pr

[
∃i :

∣∣∣∑
j∈Fi

xj − bi
∣∣∣ > εn

]
≤ 2ke−ε

2n/2.

By the assumption we made on n, the right hand side is at most ε
4 .

Next we analyze the weight of the cut edges a(δ(S)). Any edge e = (i, j) has probability

yi + yj − yiyj ≥ 2ε(1− ε) ≥ ε.

to be cut. Therefore, E[a(δ(S))] ≥ εa(E). By Markov’s inequality applied to a(E)− a(δ(S)),

Pr
[
a(δ(S)) <

ε

2

]
<

1− ε
1− ε

2

≤ 1− ε

2
.

Therefore, the probability that S satisfies every constraint up to an additive error of εn, and
a(δ(S)) ≥ ε

2a(E) is at least ε
4 . We get the high probability guarantee by repeating the entire

rounding procedure a sufficient number of times.

Approximation Ratio Analysis

Lemma 11. For the SDP solution V and the Sticky Brownian Motion Xt described above, and for
any pair {i, j} of vertices

Pr[(Xτn)i 6= (Xτn)j] ≥ 0.843 · ‖vi − vj‖2.

52

Proof. Let us denote by θij the angle between the unit vectors wi and wj , i.e. θij = arccos(〈wi,wj〉).
Recall that, for any i, ‖vi‖2 = xi, and vi = xiv0 +

√
x2i − xiwi, where v0 and wi are orthogonal to

each other. Therefore, for any pair {i, j}, ‖vi−vj‖ is characterized entirely by the triple (xi, xj , θ),
and is equal to

‖vi − vj‖2 = xi + xj − 2 cos(θij)
√
xi(1− xi)xj(1− xj). (21)

We will refer to triples (x, y, θ) as configurations, and will denote the expression on the right hand
side of (21) with xi = x, xj = y, and θij = θ by SDP(x, y, θ).

To calculate Pr[(Xτn)i 6= (Xτn)j)], we use the techniques introduced in section 3. More con-
cretely, let

uθ(x, y) = Pr
[
(Xτn)i 6= (Xτn)j) | ((X0)i, (X0)j) = (x, y)

]
.

As shown in Section 3, the function uθ is the unique solution to the partial differential equations

∂2uθ
∂x2

+
∂2uθ
∂y2

+ 2 cos(θ)
∂2uθ
∂x∂y

= 0 ∀(x, y) ∈ Int[0, 1]2 (22)

uθ(x, y) = x+ y − 2xy ∀(x, y) ∈ ∂[0, 1]2 (23)

The above system is a Dirichlet problem and can be solved numerically for any configuration
(x, y, θ).

To calculate the worst case approximation ratio of the Sticky Brownian Motion algorithm,
it suffices to evaluate minx,y,θ

uθ(x,y)
SDP(x,y,θ) . However, just taking a minimum over all (x, y, θ) ∈

[0, 1]2 × [0, π] is too pessimistic, since there are many configurations (x, y, θ) which never arise as
solutions to SoS` for any ` ≥ 2. It is therefore necessary to consider only configurations that may
arise as solutions to some instance. In particular, we know that any vectors v0,vi,vj in the SDP
solution satisfy the triangle inequalities (11)–(13). Translating these inequalities to inequalities
involving xi, xj and θij gives

cos(θ) ≥ max

(
−

√
(1− xi) · (1− xj)

xi · xj
,−

√
(xi · xj)

(1− xi)(1− xj)

)

cos(θ) ≤ min

(√
xi · (1− xj)
(1− xi) · xj

,

√
(1− xi) · xj)
xi · (1− xj)

)
To compute the worst case approximation ratio, we use numerical methods. In particular, we solve
the Dirichlet problem (22)–(23) for all configurations (x, y, θ) satisfying the inequalities above, with

a granularity of 0.02 in each coordinate. This numerical computation shows that the ratio uθ(x,y)
SDP(x,y,θ)

is at least 0.843 for all valid configurations.

Hitting Time Analysis

Lemma 12. For any i, and any integer t ≥ 0, Pr[∀s ≤ t : 0 < (Xs)i < 1] < 4−t.

Proof. We first make some observations about Brownian motion in R. Let Zt be a standard one-
dimensional Brownian motion started in Z0 = z ∈ [0, 1], and let σ = inf{t : Zt ∈ {0, 1}} be the
first time Zt exits the interval [0, 1]. By Theorem 2.49. in [43], E[σ] = z(1 − z) ≤ 1

4 . Therefore,

53

by Markov’s inequality, Pr[σ > 1] < 1
4 . Now observe that, by the Markov property of Brownian

motion, for any integer t ≥ 0 we have

Pr[σ > t] =
t−1∏
r=0

Pr
[
∀s ∈ [r, r + 1] : 0 < Zs < 1 | 0 < Zr < 1

]
.

But, conditional on Zr, the process {Zs}s≥r is a Brownian motion started at Zr, and, as we observed
above, each of the conditional probabilities on the right hand side above is bounded by 1

4 . Therefore,
we have Pr[σ > t] < 4−t.

To prove the lemma, we just notice that, until the first time σi when (Xt)i reaches {0, 1},
it is distributed like a one-dimensional Brownian motion started at xi. This follows because, at
any t < σi, the variance per step of (Xt)i is (Wt)i,i = Wi,i = 1. Then, by observations above,
Pr[σi > t] ≤ 4−t.

E Omitted Proofs from Section 5

Hitting Times Analysis

Lemma 21. The expected hitting time E[τ] for the diffusion process defined for Brownian Walk
Algorithm with Slowdown when the starting point X0 ∈ [−1 + δ, 1− δ]n and α is a constant.

While the hitting time is only defined for the points away from the boundary, this is the region
where the discrete algorithm runs. Therefore, this is sufficient for the analysis of our algorithm.

Proof Sketch. Without loss of generality, we assume the number of dimensions is 1. In the one
dimensional walk, the diffusion process satisfies the stochastic differential equation:

dXt = (1−X2
t)
α/2dBt (24)

To show this we use Dynkin’s equation to compute stopping times which we present below spe-
cialised to the diffusion process at Equation (24).

Dynkin’s Equation (Theorem 7.4.1 in [47]) Let f ∈ C2 ([−1 + δ, 1− δ]). Suppose µ is a finite
stopping time, then

Ex[f(Xµ)] = f(x) + Ex
[∫ µ

0

(
(1− x2)α · ∂

2

∂x2
f(Xs)

)
ds

]
Let f(x) denote the function

f(x) = x2 · 2F1

[
1
2 , α
3
2

;x2

]
− 1− (1− x2)1−α

2(α− 1)
+ C1 · x+ C2

where C1 and C2 are chosen so that f(1 − δ) = f(−1 + δ) = 1. Observe that for a fixed δ > 0, f
is well-defined and finite in the domain [−1 + δ, 1 + δ] and satisfies −Kδ ≤ f(x) ≤ Kδ where Kδ.

Furthermore, f satisfies the differential equation11 (1− x2)α ∂
2f
∂x2

= 1.

11We verify this using Mathematica.

54

Let µj = min(j, τ) and applying Dynkin’s equation we get that

Ex[f(Xµj)] = f(x) + Ex
[∫ µj

0
1ds

]
= f(x) + Ex[µj]

Simplifying the above we get that 2Kδ ≥ Ex[µj] for all j. Since we know that Ex[τ] = limj→∞ Ex[µj]
almost surely, we can bound 2Kδ ≥ E[τ]

Observe that the proof does not work when α = 1. For this case, we simply change

f(x) = C1 · x+ C2 +
1

2
[(1 + x) log(1 + x) + (1− x) log(1− x)]

and the argument goes through verbatim.

Remark about Lemma 14 The proof is largely similar to the one described in Lemma 5
and Theorem 9 with two caveats:

1. Theorem 9 is stated with a fixed Σ. However we can handle the general case, where Σ
is allowed to depend on the diffusion prcoess(i.e. Σ(Xt)), by appealing to general Theorem
9.2.14 in [47].

2. To apply Theorem 9.2.14 from [47], we need the resulting matrix Σ(Xt)Σ(Xt)
>to have eigen-

values bounded away from zero. In our case, Σ(Xt)Σ(Xt)
> can have zero rows and columns

on the boundary. To avoid this, we simply restrict our domain to be the hypercube scaled by
a small value [−1 + δ, 1 − δ]. This is sufficient since our discrete algorithm will only run in
this region.

55

	1 Introduction
	1.1 Our Results and Techniques.
	1.2 Overview
	1.2.1 The Sticky Brownian Motion Algorithm.
	1.2.2 Overview of the Analysis for Max-Cut
	1.2.3 Overview of the Analysis for Max-2SAT
	1.2.4 Extensions of Sticky Brownian Motion.
	1.2.5 Overview of the Analysis for Max-Cut-SC.

	1.3 Related Work

	2 Brownian Rounding for Max-Cut via Conformal Mappings
	2.1 SDP Relaxation and Sticky Brownian Rounding Algorithm
	2.2 Analysis of the Algorithm
	2.3 Conformal Mapping
	2.4 Asymptotic Calculation for theta close to pi.

	3 Brownian Rounding for Max-2SAT via Partial Differential Equations
	3.1 Semi-definite Relaxation and Brownian Rounding Algorithm
	3.2 Analysis of the Algorithm
	3.2.1 Analysis via Partial Differential Equations and Maximum Principle

	3.3 Maximum Principle
	3.4 Candidate Functions for Maximum Principle

	4 Max-Cut with Side Constraints (Max-Cut-SC)
	4.1 Problem Definition and Basics
	4.2 Sum of Squares Relaxation
	4.3 Rounding Algorithm

	5 Extensions of the Brownian Rounding
	5.1 Brownian Rounding with Slowdown
	5.2 Higher-Dimension Brownian Rounding

	6 Acknowledgements
	A Definition of Brownian Motion
	B Omitted Proofs from Section ??
	B.1 Special Functions: A Primer
	B.2 Proof of
	B.3 Proof ofTheorem 5
	B.4 Other Missing Proofs

	C Omitted Proofs from Section ??
	D Omitted Proofs from Section ??
	E Omitted Proofs from Section ??

