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Abstract. Indexing strings via prefix (or suffix) sorting is, arguably, one of the most successful algo-
rithmic techniques developed in the last decades. Can indexing be extended to languages? The main
contribution of this paper is to initiate the study of the sub-class of regular languages accepted by an
automaton whose states can be prefix-sorted. Starting from the recent notion of Wheeler graph [Gagie
et al., TCS 2017]—which extends naturally the concept of prefix sorting to labeled graphs—we inves-
tigate the properties of Wheeler languages, that is, regular languages admitting an accepting Wheeler
finite automaton. Interestingly, we characterize this family as the natural extension of regular languages
endowed with the co-lexicographic ordering: when sorted, the strings belonging to a Wheeler language
are partitioned into a finite number of co-lexicographic intervals, each formed by elements from a single
Myhill-Nerode equivalence class. We proceed by proving several results related to Wheeler automata:
(i) We show that every Wheeler NFA (WNFA) with n states admits an equivalent Wheeler DFA

(WDFA) with at most 2n− 1− |Σ| states (Σ being the alphabet) that can be computed in O(n3)
time. This is in sharp contrast with general NFAs (where the blow-up could be exponential).

(ii) We describe a quadratic algorithm to prefix-sort a proper superset of the WDFAs, a O(n logn)-
time online algorithm to sort acyclic WDFAs, and an optimal linear-time offline algorithm to sort
general WDFAs. By contribution (i), our algorithms can also be used to index any WNFA at the
moderate price of doubling the automaton’s size.

(iii) We provide a minimization theorem that characterizes the smallest WDFA recognizing the same
language of any input WDFA. The corresponding constructive algorithm runs in optimal linear
time in the acyclic case, and in O(n logn) time in the general case.

(iv) We show how to compute the smallest WDFA equivalent to any acyclic DFA in nearly-optimal
time.

Our contributions imply new results of independent interest. Contributions (i-iii) extend the universe
of known regular languages for which membership can be tested efficiently [Backurs and Indyk, FOCS
2016] and provide a new class of NFAs for which the minimization problem can be approximated
within constant factor in polynomial time. In general, the NFA minimization problem does not admit
a polynomial-time o(n)-approximation unless P=PSPACE. Contribution (iv) is a big step towards a
complete solution to the well-studied problem of indexing graphs for linear-time pattern matching
queries: our algorithm provides a provably minimum-size solution for the deterministic-acyclic case.
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1 Introduction

Prefix-sorting is the process of ordering the positions of a string in the co-lexicographic order of their
corresponding prefixes4. Once this step has been performed, several problems on strings become
much easier to solve: for example, substrings can be located efficiently in the string without the
need to read all of its characters. Given the versatility of this tool, it is natural trying to generalize
it to more complex objects such as edge-labeled trees and graphs. For example, a procedure for
lexicographically-sorting the states of a finite-state automaton could be useful to speed up sub-
sequent membership queries in its accepting language or its substring/suffix closure; as shown by
Backurs and Indyk [2], membership and pattern matching problems on regular languages are hard
in the general case. The newborn theory of Wheeler graphs [11] provides such a generalization.
Intuitively, a labeled graph is Wheeler if and only if its nodes can be co-lexicographically sorted in
a total order, i.e. pairwise-distinct nodes are ordered according to (i) their incoming labels or (when
the labels are equal), according to (ii) their predecessors. As a consequence, Wheeler graphs admit
indexes for linear-time exact pattern matching queries (also known as path queries). Wheeler graphs
generalize several lexicographically-sorted structures studied throughout the past decades: indexes
on strings [10, 23, 32], sets of strings [25], trees [9], de Bruijn graphs [5], variable-order de Bruijn
graphs [30], wavelet trees [15], wavelet matrices [4]. These efforts are part of a more general wave
of interest (dating as far back as 27 years ago [24]) towards techniques aimed at solving pattern
matching on labeled graphs [1,6,7,9,11,19,24,28,30,31]. As discussed above, existing graph-indexing
solutions can only deal with simple labeled graphs. The problem of indexing general (or even just
acyclic) graphs with a solution of provably-minimum size remains unsolved. Unfortunately, not
all graphs are Wheeler and, as Gibney and Thankachan [13] have recently shown, the problem of
recognizing (and sorting) them turns out to be NP-complete even when the graph is acyclic (this
includes, in particular, acyclic NFAs). Even worse, not all regular languages admit an accepting
Wheeler finite automaton: the set of Wheeler languages is a proper superset of the finite languages
and a proper subset of the regular languages [11]. Even when an index is not used, exact pattern
matching on graphs is hard: Equi et al. [6,7] have recently shown that any solution to the problem
requires at least quadratic time (under the Orthogonal Vectors hypothesis), even on acyclic DFAs.
In particular, this implies that converting an acyclic DFA into an equivalent Wheeler DFA cannot
be done in less than quadratic time in the worst case.

The remaining open questions, therefore, are: what are the properties of Wheeler languages?
which class of automata admits polynomial-time prefix-sorting procedures? Can we efficiently build
the smallest (that is, with the minimum number of states) prefix-sortable finite-state automaton
that accepts a given regular language? These questions are also of practical relevance: as shown
in [30], acyclic DFAs recognizing pan-genomes (i.e. known variations in the reference genome of a
population) can be turned into equivalent WDFAs of the same expected asymptotic size. While the
authors do not find the minimum such automaton, their theoretical analysis (as well as experimental
evaluation) suggests that the graph-indexing problem is tractable in some real-case scenarios.

1.1 Our Contributions

In this paper we provide the following contributions:

4 Usually, the lexicographic order is used to sort string suffixes. In this paper, we use the symmetric co-lexicographic
order of the string’s prefixes, and extend the concept to labeled graphs.
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1. We show that Wheeler languages are the natural version of regular languages endowed with
the co-lexicographic ordering: when sorted, the strings belonging to a Wheeler language are
partitioned into a finite number of intervals, each formed by elements from a single Myhill-
Nerode equivalence class. In regular languages, those intervals are replaced with general sets.

2. We show that every Wheeler NFA (WNFA) with n states admits an equivalent Wheeler DFA
(WDFA) with at most 2n−1−|Σ| states (Σ being the alphabet) that can be computed in O(n3)
time. This is in sharp contrast with general NFAs (where the blow-up could be exponential).

3. Let d-NFA denote the class of NFAs with at most d equally-labeled edges leaving any state. We
show that the problem of recognizing and sorting Wheeler d-NFAs is in P for d ≤ 2. A recent
result from Gibney and Thankachan [13] shows that the problem is NP-complete for d ≥ 5. Our
result almost completes the picture, the remaining open cases being d = 3 and d = 4.

4. We provide an online incremental algorithm that, when fed with an acyclic Wheeler DFA’s
nodes in any topological order, can dynamically compute the co-lexicographic rank of each new
incoming node among those already processed with just logarithmic delay.

5. We improve the running time of (4) to linear in the offline setting for arbitrary WDFAs.

6. Given a Wheeler DFA A of size n, we show how to compute, in O(n log n) time, the smallest
Wheeler DFA recognizing the same language as A. If A is acyclic, running time drops to O(n).

7. Given any acyclic DFA A of size n, we show how to compute, in O(n + m logm) time, the
smallest Wheeler DFA A′, of size m, recognizing the same language as A.

The paper is structured in a top-down fashion to make it accessible also to non-experts. We
provide the main theorems and proof sketches within the first ten pages. We start in Section 2
with results 1 and 2: a Myhill-Nerode theorem for Wheeler languages and a linear conversion from
WNFAs to WDFAs. Result 1 shows that Wheeler languages are precisely those admitting a “finite
interplay” between the co-lexicographic ordering and the Myhill-Nerode equivalence relation (i.e.
the relation characterizing general DFAs). Result 2 implies that the WNFA minimization problem
admits a polynomial-time 2-approximation. We remark that the NFA minimization problem is
notoriously hard (even to approximate within o(n)-factor) in the general case [14,16,22]. In Section
3 we describe results 3-5: polynomial-time algorithms for recognizing and sorting Wheeler 2-NFAs.
These results generalize to labeled graphs existing prefix-sorting algorithms on strings [26] and
labeled trees [9] that have been previously described in the literature. Combined with contribution
2, our algorithms can be used to index any Wheeler NFA at the price of a moderate linear blow-up
in the number of states. This result expands the universe of known regular languages for which
membership and pattern matching problems can be solved efficiently [2]. Contributions 6 and 7
(Section 4) combine our sorting algorithms 3-5 with DFA minimization techniques to solve the
following problem: to compute, given a finite language represented either explicitly by a set of
strings or implicitly by an acyclic DFA, the smallest accepting WDFA. Note that this can be
interpreted as a technique to index arbitrary deterministic acyclic graphs using the smallest prefix-
sortable equivalent automaton. While we do not provide a lower bound stating that the space of
our index is minimum, we note that all known fast indexes on strings, sets of strings, trees, and
variable-order de Bruijn graphs are Wheeler graphs [11]. In this sense, any index on acyclic graphs
improving our solution would probably require techniques radically different than those developed
in the last decades to solve the indexing problem (virtually any known full-text index uses prefix
sorting, including those based on LZ77 [21], run-length BWT [12], and grammars [3]).
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1.2 Definitions

We start by giving a definition of finite-state automata that captures, to some extent, the amount
of nondeterminism of the automaton. A d-NFA is a nondeterministic finite state automaton that
has at most d transitions with the same label leaving each state. Note that 1-NFAs correspond to
DFAs, while ∞-NFAs correspond to NFAs.

Definition 1. A d-NFA is a quintuple A = (V,E, F, s,Σ), where V is a set of states (or vertices),
Σ is the alphabet (or set of labels), E ⊆ V × V × Σ is a set of directed labeled edges, F ⊆ V is a
set of accepting states, and s ∈ V is a start state (or source). We moreover require that s ∈ V is
the only node with in-degree zero and that for each u ∈ V and a ∈ Σ, |{(u, v, a) ∈ E}| ≤ d.

We denote σ = |Σ|. The notation L(A) indicates the language accepted by A, i.e. the set of
all strings labeling paths from s to an accepting state. We assume that each state either is s or
is reachable from s. Otherwise, any state that cannot be reached from s can be removed without
changing L(A). Note that we allow states with incomplete transition function, i.e. such that the set
of labels of their outgoing edges does not coincide with Σ. If state s misses outgoing label a, then any
computation following label a from s is considered as non-accepting. In a standard NFA definition,
this would be equivalent to having an outgoing edge labeled a to a universal non-accepting node (a
sink). We call a d-NFA acyclic when the graph (V,E) does not have cycles. We say that a d-NFA
is input-consistent if, for every v ∈ V , all incoming edges of v have the same label. If the d-NFA is
input-consistent, we indicate with λ(v), v ∈ V , the label of the incoming edges of v. For the source,
we take λ(s) = # /∈ Σ. We will assume that characters in Σ are totally ordered by ≺ and that #
is minimum. We extend ≺ to Σ∗ co-lexicographically, still denoting it by ≺. On DFAs, we denote
by succa(u), with u ∈ V and a ∈ Σ, the unique successor of v by label a, when it exists. We define
the size of an automaton to be the number of its edges. The notion of Wheeler graph generalizes
in a natural way the concept of co-lexicographic sorting to labeled graphs:

Definition 2 (Wheeler Graph). A triple G = (V,E,Σ), where V is a set of vertices and E ⊆
V × V × Σ is a set of labeled edges, is called a Wheeler graph if there is a total ordering < on
V such that vertices with in-degree 0 precede those with positive in-degree and for any two edges
(u1, v1, a1), (u2, v2, a2) we have (i) a1 ≺ a2 → v1 < v2, and (ii) (a1 = a2) ∧ (u1 < u2)→ v1 ≤ v2.

Note that the above definition generalizes naturally the concept of prefix-sorting from strings
to graphs: two nodes (resp. string prefixes) can be ordered either looking at their incoming labels
(resp. last characters) or, if the labels are equal, by looking at their predecessors (resp. previous
prefixes). Considering that, differently from strings and trees, a graph’s node can have multiple
predecessors, it should be clear that there could exist graphs whose nodes cannot be sorted due
to conflicting predecessors: not all labeled graphs enjoy the Wheeler properties. We call a total
order of nodes satisfying Definition 2 a Wheeler order of the nodes and we write WDFA,WNFA
as a shortcut for Wheeler DFA, Wheeler NFA. By property (i), input-consistence is a necessary
condition for a graph to be Wheeler. An important property of Wheeler graphs is path coherence:

Definition 3 (Path coherence [11]). An edge-labeled directed graph G is path coherent if there is
a total order of the nodes such that for any consecutive range [i, j] of nodes and string α, the nodes
reachable from those in [i, j] in |α| steps by following edges whose labels form α when concatenated,
themselves form a consecutive range.

A Wheeler graph is path coherent with respect to any Wheeler order of the nodes [11].
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2 Wheeler Languages

In this section we collect our basic results on regular languages accepted by automata whose tran-
sition relation is a Wheeler graph: Wheeler languages.

Definition 4. Let Σ be a finite set. A language L is Wheeler if L = L(A) for a Wheeler NFA A.

Let us begin with some basic notation. Given a language L ⊆ Σ∗ we denote by Pref(L),Suff(L),
and Fact(L) the set of prefixes, suffixes, and factors of strings in L, respectively. More formally:
Pref(L) = {α : ∃β ∈ Σ∗ αβ ∈ L}, Suff(L) = {β : ∃α ∈ Σ∗ αβ ∈ L}, Fact(L) = {α : ∃β, γ ∈
Σ∗ γαβ ∈ L}. Given two states u, v of an NFA A, we denote by u v a path from u to v in A.

Definition 5. If A = (V,E, F, s,Σ) is an NFA, u ∈ V , and α ∈ Pref(L(A)), we define:

1. Vα = {v | α labels s v},
2. Pref(L(A))u := {α ∈ Pref(L(A)) : α labels s u} .

Clearly, from the above definition it follows that (i) Vα ⊆ V , (ii) Pref(L(A))u ⊆ Pref(L(A)), and
(iii) u ∈ Vα if and only if α ∈ Pref(L(A))u.

The prefix/suffix property introduced below is going to be crucial to determine the Wheeler
ordering among states—when such an ordering exists.

Definition 6. Consider a linear order (L,<).

1. An interval in (L,<) is a I ⊆ L such that (∀x, x′ ∈ I)(∀y ∈ L)(x < y < x′ → y ∈ I).

2. Given I, J intervals in (L,<) and I ⊆ J , then:

- I is a prefix of J if (∀x ∈ I)(∀y ∈ J \ I)(x < y);

- I is a suffix of J if (∀y ∈ J \ I)(∀x ∈ I)(y < x).

3. A family C of non-empty intervals in (L,<) is said to have the prefix/suffix property if, for all
I, J ∈ C such that I ⊆ J , I is either a prefix or a suffix of J .

The following lemma will allow us to bound (linearly) the blow-up of the number of states
taking place when moving from a WNFA to a WDFA.

Lemma 1. Let (L,<) be a finite linear order of cardinality |L| = n, let C be a prefix/suffix family
of non-empty intervals in (L,<). Then:

1. |C| ≤ 2n− 1.

2. The upper bound is tight: for every n, there exists a prefix/suffix family of size 2n− 1.

Definition 7. Let C be a family of non-empty intervals of a linear order (L,<) having the pre-
fix/suffix property. Let <i (or simply <) the binary relation over C defined by

I <i J if and only if (∃x ∈ I)(∀y ∈ J)(x < y) ∨ (∃y ∈ J)(∀x ∈ I)(x < y).

The following lemma is easily proved.

Lemma 2. Let C be a family of non-empty intervals of a linear order (L,<) having the prefix/suffix
property, then (C, <i) is a linear order.
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Note that whenever the linear order (L,<) is finite, any non-empty interval I has minimum mI

and maximum MI . In this special case, the above order <i can be equivalently described on a family
having the prefix/suffix property, by: I <i J if and only if (mI < mJ)∨ [(mI = mJ)∧ (MI < MJ)].

We now have the basics to start our study of Wheeler languages. In this section, we use
V,E, F, s,Σ,< to denote the set of states, edges, final states, initial state, alphabet, and Wheeler
order of a generic WNFA. The key property of path-coherence will be re-proved below—in Lemma
4—, together with what we may call a sort of its “dual”, that is, the the set of strings read while
reaching a given state is an interval. More precisely, if A is a WNFA, u ∈ V , and α ∈ Σ∗, we have
that Vα is an interval in (V,<) (Iα, from now on), Pref(L(A))u is an interval in (Pref(L(A)),≺)
(Iu, from now on), and

α ∈ Iu if and only if u ∈ Iα.

Preliminary to our result are the following lemmas, exploiting the interval-structure of both
Wheeler languages and automata.

Lemma 3. If A is a WNFA, u, v ∈ V are states, and α, β ∈ Pref(L(A)), then:

1. if α ∈ Iu, β ∈ Iv, and {α, β} 6⊆ Iv ∩ Iu, then α ≺ β if and only if u < v;
2. if u ∈ Iα, v ∈ Iβ, and {u, v} 6⊆ Iβ ∩ Iα, then α ≺ β if and only if u < v.

Let IV = {Iu : u ∈ V } and IPref(L(A)) = {Iα : α ∈ Pref(L(A))}.

Lemma 4. If A is a WNFA and L = L(A), then:

1. for all u ∈ V , the set Iu is an interval in (Pref(L(A)),≺);
2. IV is a prefix/suffix family of intervals in (Pref(L(A)),≺);
3. for all α ∈ Pref(L(A)), the set Iα is an interval in (V,<);
4. IPref(L(A)) is a prefix/suffix family of intervals in (V,<).

From Lemma 2 it follows that both (Iv,≺i) and (IPref(L(A)), <
i) are linear orders. The link

between such orders is made explicit below.

Lemma 5. Consider Iu, Iv ∈ IV and Iα, Iβ ∈ IPref(L(A)).

1. Iu ≺i Iv implies that u < v and u < v implies that Iu �i Iv
2. Iα <

i Iβ implies that α ≺ β and α ≺ β implies that Iα ≤i Iβ

If A is a WNFA we can prove that the following interval construction—which is the analogous
of the power-set construction for NFAs—allows determinization.

Definition 8. If A is a WNFA we define its (Wheeler) determinization as the automaton Ad =
(V d, Ed, F dsd, <d, Σ), where:

- V d = I Pref(L(A));

- sd = Iε = {s}
- F d = {Iα | α ∈ L(A)};
- Ed is the set of triples (Iα, Iαe, e), for all e ∈ Σ and αe ∈ Pref(L(A));
- <d=<i.

The bound proved in Lemma 1 can be sligthly improved in the special case of prefix/suffix
families corresponding to WNFA intervals.
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Lemma 6 (Determinization of a Wheeler NFA). If A is a WNFA with n states over an
alphabet Σ, then Ad is a WDFA with at most 2n− 1− |Σ| states, and L(Ad) = L(A).

Lemma 7 (Computing the determinization). If A is a WNFA with n states, then Ad can be
computed in O(n3) time.

Lemma 6 above— saying that we can restrict the automata recognizing Wheeler Languages to
deterministic ones without an exponential blow up—marks a difference between the standard and
the Wheeler case for regular languages and can be seen as the first step in the study of Wheeler
Languages. Further differences can be observed. For example, the reader can check that the language
L(A) = L = b+a is accepted by incomplete WDFAs only.

The subsequent step to take in a theory of Wheeler Languages is a Myhill-Nerode like theorem
for this class. To this end, we define:

Definition 9. Given a language L ⊆ Σ∗, an equivalence relation ∼ over Pref(L) is:

- right invariant, when for all α, β ∈ Pref(L) and γ ∈ Σ∗: if α ∼ β and αγ ∈ Pref(L), then
βγ ∈ Pref(L) and αγ ∼ βγ;

- convex if ∼-classes are intervals of (Pref(L),≺);

- input consistent if all words belonging to the same ∼-class end with the same letter.

Consider a language L ⊆ Σ∗. The Myhill-Nerode equivalence ≡L among words in Pref(L) is
defined as

α ≡L β if and only if (∀γ ∈ Σ∗)(αγ ∈ L ⇔ βγ ∈ L).

Definition 10. The input consistent, convex refinement of ≡L is defined as follows.

For all α, β ∈ Pref(L):

α ≡cL β if and only if α ≡L β ∧ end(α) = end(β) ∧ (∀γ ∈ Pref(L))(α ≺ γ ≺ β → γ ≡L α),

where end(α) is the final character of α when α 6= ε, and ε otherwise.

Using the above results in this section we can prove:

Theorem 1 (Myhill-Nerode for Wheeler Languages). Given a language L ⊆ Σ∗, the follow-
ing are equivalent:

1. L is a Wheeler language (i.e. L is recognized by a WNFA).

2. ≡cL has finite index.

3. L is a union of classes of a convex, input consistent, right invariant equivalence over Pref(L)
of finite index.

4. L is recognized by a WDFA.

This theorem and other results on Wheeler Languages are going to be part of a companion
paper of this one.
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3 Sorting Wheeler Finite Automata

In this section we provide efficient algorithms to sort a relevant sub-class of the Wheeler automata.
Combined with the results of the previous section, our algorithms can be used to index any WNFA.
We start with a reduction from the problem of recognizing Wheeler 2-NFAs to 2-SAT. The reduction
introduces only a polynomial number of boolean variables and can be computed in polynomial time;
since 2-SAT is in P, this implies that Wheeler 2-NFA recognition is in P.

Theorem 2. Let A = (V,E, F, s,Σ) be a 2-NFA. In O(|E|2) time we can:

1. Decide whether A is a Wheeler graph, and
2. If A is a Wheeler graph, return a node ordering satisfying the Wheeler graph definition.

Proof (Sketch). It is easy to express the Wheeler properties (i)-(ii) and antisymmetry/connex of the
Wheeler order with 2-SAT clauses. Transitivity, however, requires 3-SAT clauses on general graphs.
The core of the full proof in Appendix D is to show that, on 2-NFAs, transitivity automatically
“propagates” from the source to all nodes and does not require additional clauses. ut

Gibney and Thankachan [13] have recently shown that the problem of recognizing Wheeler d-
NFAs is NP-complete for d ≥ 5. Theorem 2 almost completes the picture, the remaining open cases
being d = 3 and d = 4. We note that Theorem 2 combined with our determinization result of Section
2 does not break the problem’s NP-completeness: in principle, our determinization algorithm could
turn a non-Wheeler NFA into a WDFA.

We now describe more efficient algorithms for the deterministic case. The first, Theorem 3, is an
online algorithm that solves the problem considered in Theorem 2 in O(|E| log |V |) time when the
graph is an acyclic DFA. The algorithm is online in the following sense. We assume that the nodes,
together with their incoming labeled edges, are provided to the algorithm in any valid topological
ordering. At any step, we maintain a prefix-sorted list of the current nodes, which is updated
when a new node is added. When a new node v arrives together with its incoming labeled edges
(u1, v, a), . . . , (uk, v, a), then u1, . . . , uk have already been seen in the past node sequence and can
be used to decide the co-lexicographic rank of v. If v falsifies the Wheeler properties, we detect
this event, report it, and stop the computation. Our algorithm is an extension of an existing one
that builds online the Burrows-Wheeler transform of a string [26]. In Section 4 we will modify this
algorithm so that, instead of failing on non-Wheeler graphs, it computes the smallest Wheeler DFA
equivalent to the input acyclic DFA.

First, note that Lemma 3 implies that Wheeler DFAs admit a unique admissible ordering (this
follows from the fact that, on WDFAs, {α, β} 6⊆ Iv ∩ Iu always holds):

Corollary 1. Let A be a Wheeler DFA, < be the node ordering satisfying the Wheeler properties,
and ≺ be the co-lexicographic order among strings. For any two nodes u 6= v, the following holds:
αu ≺ αv for all string pairs αu, αv labeling paths s u and s v if and only if u < v.

Corollary 1 has two important consequences: on DFAs, (i) we can use any paths connecting s
with two nodes u 6= v to decide their co-lexicographic order, and (ii) if it exists, the total ordering
of the nodes is unique. The corollary is crucial in proving the following (as well as others) result:

Theorem 3. Let A = (V,E, F, s,Σ) be an acyclic DFA. There exists an algorithm that either
prefix-sorts the nodes of A or returns FAIL if such an ordering does not exist online with O(log |V |)
delay per input edge.
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All details of our algorithm (description, pseudocode and data structures) and the proof of its
correctness are reported in in Appendices D.1 and D.2.

To conclude the section, we show that in the offline setting we can improve upon the previous
result. We first need the following lemma (see Appendix D.3 for the full proof):

Lemma 8. Given an input-consistent edge-labeled graph G = (V,E,Σ) and a permutation of V
sorted by a total order < on V , we can check whether < satisfies the Wheeler properties in optimal
O(|V |+ |E|) time.

Theorem 4. Let A = (V,E, F, s,Σ) be a DFA. In O(|V |+ |E|) time we can:

1. Decide whether A is a Wheeler graph, and
2. If A is a Wheeler graph, return a node ordering satisfying the Wheeler graph definition.

Proof (Sketch). By Corollary 1, if A is a Wheeler graph then we can use the strings labeling any
paths s u and s v to decide the order of any two nodes u and v. We build a spanning tree of
A rooted in s and prefix-sort it using [9, Thm 2]. Finally, we verify correctness using Lemma 8. ut

We note that the above strategy cannot be used to sort Wheeler NFAs, since the spanning tree
could connect s with several distinct nodes using the same labeled path: this would prevent us to
find the order of those nodes using the spanning tree as support.

4 Wheeler DFA Minimization

We are now ready to use the algorithms of the previous sections to prove our main algorithmic
results: (i) a minimization algorithm for WDFAs (Theorem 5) and (ii) a near-optimal algorithm
generating the minimum acyclic WDFA equivalent to any input acyclic DFA (Theorem 7).

Let ≡ be an equivalence relation over the states V of an automaton A = (V,E, F, s,Σ). The
quotient automaton is defined as A/≡ = (V/≡, E/≡, F/≡, [s]≡, Σ), where E/≡ = {([u]≡, [v]≡, c) :
(u, v, c) ∈ E}. The symbol ≈ denotes the Myhill-Nerode equivalence among states [27]: u ≈ v, with
u, v ∈ V , if and only if, for any string α, we reach a final state by following the path labeled α from
u if and only if the same holds for v. Note that this is the “state” version of the relation ≡L given
in Section 2 (which instead is defined among strings). The goal of any DFA-minimization algorithm
is to find ≈, which is the, provably existing and unique, coarsest (i.e. largest classes) equivalence
relation stable with respect to the initial partition in final/non-final states. To abbreviate, we will
simply say “coarsest equivalence relation” instead of “coarsest equivalence relation stable with
respect to an initial partition”.

In our case, assuming that A is Wheeler, we want to find the (unique as proved below) coarsest
equivalence relation≡w finer than≈, such thatA/≡w is Wheeler. Our Algorithm 1 achieves precisely
this goal: we start with ≈ and then refine it preserving stability with respect to characters, while
also ensuring that the resulting equivalence classes can be ordered consistently with the Wheeler
constraints. Again, it can be proved that ≡w is the “state” version of the relation ≡cL given in Section
2. For the purposes of the following results, we do not need to prove the connection between the two
relations and we keep a distinct notation to avoid confusion. We show (formal proof in Appendix
E):

Theorem 5. Let A be a WDFA. The automaton A/≡w returned by Algorithm 1 is the minimum
WDFA recognizing L(A).
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Algorithm 1: WheelerMinimization(A)

input : Wheeler DFA A
output: Minimum Wheeler DFA A′ such that L(A) = L(A′)
1. Compute the Myhill-Nerode equivalence ≈ among states of A.
2. Prefix-sort A’s states, obtaining the ordering v1 < · · · < vn.
3. Compute a new relation ≡w defined as follows. Insert in the same equivalence class all maximal runs

vi < vi+1 < · · · < vi+t such that:
(a) vi ≈ vi+1 ≈ · · · ≈ vi+t

(b) λ(vi) = λ(vi+1) = · · · = λ(vi+t).
4. Return A/≡w .

Note that uniqueness of the minimum WDFA follows from Corollary 1 (uniqueness of the
Wheeler order) and Algorithm 1. Note also that, in the automaton output by Algorithm 1, adjacent
states in co-lexicographic order are distinct by the relation ≈ unless their incoming labels are
different (in which case they might be equivalent). It follows that if a sorted Wheeler DFA does not
have this property, then it is not minimum (otherwise Algorithm 1 would collapse some of its states).
Conversely, If a Wheeler DFA has this property, then Algorithm 1 does not collapse any state, i.e.
the automaton is already of minimum size. We therefore obtain the following characterization:

Theorem 6 (Minimum WDFA). Let A be a Wheeler DFA, let v1 < v2 < · · · < vt be its co-
lexicographically ordered states, and let ≈ be the Myhill-Nerode equivalence among them. A is the
minimum Wheeler DFA recognizing L(A) if and only if the following holds: for every 1 ≤ i < t, if
vi ≈ vi+1 then λ(vi) 6= λ(vi+1).

Theorem 5 implies the following corollaries.

Corollary 2. Given a WDFA A of size n, in O(n log n) time we can build the minimum WDFA
recognizing L(A).

Proof. We run Algorithm 1 computing ≈ with Hopcroft’s algorithm [17] (O(n log n) time), and
prefix-sorting A with Theorem 4 (O(n) time). Note that we can check u ≈ v in constant time by
representing the equivalence relation as a vector EQ[v] = [v]≈, where we choose V = {1, . . . , |V |}
and where [v]≈ is any representative of the equivalence class of v (e.g., the smallest one, which we can
identify in linear time by radix-sorting equivalent states). Then, u ≈ v if and only if EQ[u] = EQ[v].
Using this structure, the runs of Algorithm 1 can easily be identified in linear time. ut

Corollary 3. Given an acyclic WDFA A of size n, in O(n) time we can build the minimum acyclic
WDFA recognizing L(A).

Proof. We run Algorithm 1 computing ≈ with Revuz’s algorithm [29] (O(n) time), prefix-sorting
A with Theorem 4 (O(n) time), and testing u ≈ v in constant time as done in Corollary 2. ut

Note that Corollary 3 implies that we can, in optimal linear time, build the minimum WDFA
A/≡w recognizing any input finite language L represented as a set of strings: we build the tree DFA
accepting L and apply Corollary 3. The corollary can be applied since trees are always Wheeler [9,
11]. In the next subsection we treat the (more interesting) case where L is represented by a DFA.
Note that this result could already be achieved by unraveling the DFA into a tree and minimizing
it using Corollary 3. However, the intermediate tree could be exponentially larger than the output.
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4.1 Acyclic DFAs to Smallest Equivalent WDFAs

We show how to build the smallest acyclic Wheeler DFA equivalent to any acyclic DFA in output-
sensitive time. Let A = (V,E, F, s,Σ) be an acyclic DFA. We first minimize A using Revuz’s
algorithm [29] and obtain the equivalent minimum acyclic DFA A1 = A/≈ = (V1, E1, F1, s1, Σ).
Let us denote |V1| = t. The idea is to run a modified version of the online Algorithm 3 on A1.
The difference is that now we will solve (not just detect) violations to the Wheeler properties
without changing the accepting language. The next step is to topologically-sort A1’s states (e.g.
using Kahn’s algorithm [20]). At this point, we modify A1 in t steps by processing its states in
topological order. This defines a sequence of automata A1,A1, . . . ,At. At each step, the states of
Ai are partitioned in two sets:

– those not yet processed: Ni = {vi+1, vi+2, . . . , vt}, and

– the remaining states Vi −Ni, sorted by a total ordering < in a sequence LEXi.

At the beginning, N1 = {v2, . . . , vt} and LEX1 = s. Note that Nt = ∅ (i.e. at the end we will have
processed all states). At each step i, we maintain the following invariants:

1. L(Ai) = L(A1).

2. States in LEXi are sorted by a total order < that does not violate the Wheeler properties among
states in LEXi itself: in Definition 2, we require u1, u2, v1, v2 ∈ LEXi.

3. for each j = 1, . . . , |LEXi| − 1, if LEXi[j] ≈ LEXi[j + 1] then λ(LEXi[j]) 6= λ(LEXi[j + 1]).

Invariant 1 implies L(At) = L(A). Since Nt = ∅ and LEXt contains all At’s states, invariant 2
implies that At is Wheeler (note that intermediate automata Ai, with 1 < i < t might be non-
Wheeler). Finally, invariant 3 and Theorem 6 imply that At is the minimum WDFA accepting
L(At). As a result, At = A/≡w . We describe all the details of our algorithm in Appendix E.1
for space constraints; here we give an overview of the procedure. The idea is to process states in
topological order as done in Theorem 3. This time, however, we also solve inconsistencies of type 1
and 2 among nodes in LEXi∪{vi+1} by splitting nodes in ≈-equivalent copies. Here, splitting means
creating two or more copies of a state v in such a way that (i) each copy duplicates all v’s outgoing
edges, (ii) v’s incoming edges are distributed (not duplicated) among the copies, and (iii) each copy
is a final state if and only if v is a final state. Our splitting process creates ≈-equivalent nodes,
therefore the accepted language never changes (invariant 1 stays true). Moreover, since the states of
A have already been collapsed by the equivalence ≈, after inserting nodes (or their copies) in LEXi
we never create runs of length greater than one of ≈-equivalent states with equal incoming labels
(invariant 3 stays true). As a result, we incrementally build the minimum WDFA A/≡w recognizing
L(A). Since our algorithm never deletes edges, the running time is bounded by the output’s size
(which could nevertheless be much larger — or smaller — than A). In Appendix E.1 we show:

Theorem 7. Given an acyclic DFA A of size n, we can build and prefix-sort the minimum acyclic
WDFA, of size m, recognizing L(A) in O(n+m logm) time.

Theorem 7 solves the problem of indexing deterministic DAGs for linear-time pattern matching
queries in nearly-optimal time with a solution of minimum size. Note that the hardness result of
Equi et al. [7] implies that, under the Orthogonal Vectors hypothesis, in the worst case the minimum
WDFA has size Ω(n2−ε) for any constant ε > 0. We can do better: in Appendix F we show that,
in the worst case, the minimum WDFA can be of size Ω(2n/4).
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A Indexing Wheeler Automata

We show that any Wheeler NFA can be efficiently indexed in order to support fast membership
queries in its accepting language or in its substring/suffix closure. Let A be any Wheeler NFA. We
first remove all states that do not lead to a final state. This preserves the accepted language, the
total ordering, and the Wheeler properties. We then use our algorithms to convert the automaton
to a WDFA, prefix-sort it in polynomial time, and build a (generalized) FM-index on the graph
as described in [11]. We mark in a bitvector B[1..|V |] supporting constant-time rank queries [18]
all accepting states of the Wheeler NFA in our array LEX containing the states in co-lexicographic
order. To check membership of a word w, we search the word #w and get a range LEX[L,R] of all
states reachable from the root by a path labeled w. At this point, w is accepted if and only if B[L,R]
contains at least one bit set (constant time using rank on B). Note that this procedure works in
O(w log σ) time also if the original automaton is nondeterministic (this, in general, is not possible
for general NFAs). If we search for w instead of #w, then we get the range of states reachable by a
path labeled uw, for any u ∈ Σ∗. This range is non-empty if and only if w belongs to the substring
closure of L(A). Finally, if we search a word w and get a range LEX[L,R], then w is in the suffix
closure of L(A) if and only if B[L,R] contains at least one bit set.

B Conclusions and Future Extensions

In this paper, we have initiated the study of Wheeler languages, that is, regular languages that can
be indexed via prefix-sorting techniques. On our way, we provided new results of independent inter-
est: (i) we provided a new class of NFAs for which the minimization problem can be approximated up
to multiplicative factor 2 in polynomial time and that admit fast membership and pattern matching
algorithms, and (ii) we solved the problem of indexing finite languages with prefix-sortable DFAs of
minimum size. Our work leaves several intriguing lines of research (some of which will be explored
in future extensions of this paper). First of all, is the problem of recognizing Wheeler languages
(encoded, e.g. as regular expressions) decidable? We believe that the answer to this question is
positive: the Wheelerness of a regular language seems to translate into particular constraints (that
can be verified in bounded time) on the topology of its minimum accepting DFA. Once a regular
language has been classified as Wheeler, can we build the minimum accepting Wheeler DFA? Also
in this case, we believe that the task can be solved by iterating conflict-resolution (Section 4.1)
from the minimum DFA until the process converges to the minimum Wheeler DFA.

C Proofs of Section 2

Proof. (of Lemma 1)
Let us order the elements of L by the relation <, and let us denote by L[i] the i-th element in

the ordering. The notation L[i, j], with j ≥ i, denotes the interval {L[k] : i ≤ k ≤ j}. In particular,
L[1, n] = L.

We say that an interval I ∈ C is maximal if I is not the prefix nor the suffix of any other
interval in C. We say that an interval I ∈ C is prefix (resp. suffix ) if I is the proper prefix (resp.
suffix) of a maximal interval of C. Note that, by this definition, intervals of C are either maximal
or prefix/suffix. Note also that there could be elements of C being both prefix and suffix intervals.

(1) We first prove that (1.i) C contains at most n prefix intervals, then (1.ii) slightly improve
this bound to n − 1, and finally (1.iii) show that the sum between the number of maximal and
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suffix intervals is at most n. To prove (1.i), we show that every L[j], 1 ≤ j ≤ n, can be the largest
element of at most one prefix interval. In turn, this is shown by considering the prefixes of any two
pairwise distinct maximal intervals of C. Consider two distinct maximal intervals I = L[i, j] and
J = L[i′, j′]. If I and J do not overlap (i.e. j < i′ or j′ < i), then the property is trivially true: if I ′

and J ′ are prefixes of I and J , respectively, then max(I ′) 6= max(J ′). Consider now the case where
I and J overlap. Without loss of generality, we can assume i < i′ ≤ j < j′ (the strict inequalities
follow from the fact that, by maximality, it cannot be i = i′ or j = j′). Assume, for contradiction,
that C contains two intervals L[i, j′′] and L[i′, j′′] such that i′ ≤ j′′ < j, i.e. L[i, j′′] and L[i′, j′′]
are (proper) prefixes of I and J , respectively, that share their largest element j′′. Then, we have
i < i′ ≤ j′′ < j: interval L[i′, j′′] is strictly contained inside L[i, j] ∈ C (i.e. L[i′, j′′] ⊂ L[i, j]) and it
is not a prefix nor a suffix of it. This is forbidden by the definition of prefix/suffix family. From this
contradiction we deduce that any two distinct prefix intervals I ′, J ′ ∈ C satisfy max(I ′) 6= max(J ′),
which implies that C contains at most n prefix intervals.

To improve the above bound to n− 1 and prove (1.ii), consider the rightmost maximal interval
I = L[i, j], i.e. the one having largest j. We show that j cannot be the maximum element of any
prefix interval. Assume, for contradiction, that such a prefix interval K = L[i′, j] exists. Then, the
corresponding maximal interval J = L[i′, j′] of which K is a proper prefix satisfies j′ > j. This
contradicts the fact that I is the rightmost maximal interval.

The next step is to prove (1.iii), i.e. that the sum between the number of maximal and suffix
intervals is at most n. We proceed by induction on the number M of maximal intervals. If M = 1,
then the unique maximal interval I = L[i, j] contains at most j − i suffix intervals. In total, C
contains at most 1 + (j − i) ≤ n maximal and suffix intervals. For M > 1, consider the maximal
interval I = L[i, j] with minimum j (call it the “leftmost”). Now, consider the immediate maximal
“successor” J = L[i′, j′] of I, i.e. the maximal interval with the smallest endpoint j′ ≥ j. Clearly,
such j′ satisfies j′ > j, otherwise J would be a suffix of I (contradicting maximality of J). Note
that it must also be the case that i′ > i: if i = i′, then I would be a prefix of J (contradicting
maximality of I); on the other hand, if i′ < i then I would be strictly contained in J , contradicting
the definition of prefix/suffix family. We are left with two cases:

(a) i ≤ j < i′ ≤ j′. In this case, I and J are disjoint. As seen above, I contributes to at most
one maximal interval (I itself) and j − i suffix intervals. In total, I contributes to at most j − i+ 1
maximal and suffix intervals. We are left to count the number of maximal and suffix intervals in
the remaining portion of the linear order L[i′, ..., n]. Note that there are no other intervals to be
considered: if L[i′′, j′′] is a maximal interval in C, different from I, J , then j′′ > j′ and hence i′′ > i′

or L[i′′, j′′] would contain J . The portion L[i′, ..., n] contains M − 1 maximal intervals, so we can
apply the inductive hypothesis and obtain that this segment contains at most n − i′ + 1 maximal
and suffix intervals. In total, we have that L[1, ..., n] contains at most (j − i + 1) + (n − i′ + 1)
maximal and suffix intervals. Since i′ > j and i ≥ 1, this quantity is at most n.

(b) i < i′ ≤ j < j′. Denote by k = i′− i the number of L’s elements belonging to I \ J . Then, C
can contain at most k proper suffixes of I: L[i+ 1, j], L[i+ 2, j], ..., L[i′, j]. All other suffixes of I
are strictly contained inside J , and cannot belong to C due to the prefix/suffix property. Actually,
one of those suffixes, L[i′, j], is a prefix of J so it has already been counted above in points (1.i) and
(1.ii). We are left with k−1 suffixes to take into account, plus the maximal interval I itself: in total,
k = i′ − i maximal and suffix intervals. As noted above, all remaining maximal and suffix intervals
of C to take into account are those contained in L[i′, n]. Since L[i′, n] contains M − 1 maximal
intervals, we can apply the inductive hypothesis and deduce that it contains at most n − i′ + 1
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maximal and suffix intervals. In total, L[1, n] contains therefore at most (i′ − i) + (n− i′ + 1) ≤ n
maximal and suffix intervals. This concludes the proof of the upper bound |C| ≤ 2n− 1.

(2) Consider the prefix/suffix family containing just one maximal interval and all its proper
prefixes and suffixes: C = {L[1, n], L[1, 1], . . . , L[1, n − 1], L[2, n], . . . , L[n, n]}. This family satisfies
|C| = 2n− 1. ut

Proof. (of Lemma 2) We just prove transitivity when I <i J and J <i K are witnessed by x0 ∈ I
satisfying (∀y ∈ J)(x0 < y), and z0 ∈ K satisfying (∀y ∈ J)(y < z0), respectively (the other cases
are similar). We claim that z0 > x, for all x ∈ I. Suppose, for contradiction, that there exists x1 ∈ I
with z0 ≤ x1; then, from x0 < y < z0 ≤ x1 for all y ∈ J and the fact that I is an interval, it follows
that z0 ∈ I, J ⊆ I, so that, by prefix/suffix property of C, J is either a prefix or a suffix of I. Since
x0 < y for all y ∈ J , we see that J must be a suffix of I and this, knowing that z0 ∈ I, implies
z0 ∈ J . A contradiction.

In the following proofs, we always refer to a WNFA A = (V,E, F, s,Σ,<).

Proof. (of Lemma 3)

(1) Suppose α ∈ Iu, β ∈ Iv and {α, β} 6⊆ Iv ∩ Iu. From this we have that α ∈ Iu \ Iv or β ∈ Iv \ Iu,
hence u 6= v and α 6= β follows.

If u = s or v = s, either α or β is the empty string ε and the result follows easily. Hence, we
suppose u 6= s 6= v and (hence) α 6= ε 6= β.

To see the left-to-right implication, assume α ≺ β: we prove that u < v by induction on the
maximum betwewn |α| and |β|. If |α| = |β| = 1, then the property follows from the Wheeler-(i).
If max(|α|, |β|) > 1 and α and β end with different letters, then again the property follows from
Wheeler-(i). Hence, we are just left with the case in which α = α′e and β = β′e, with e ∈ Σ. If
α ≺ β, then α′ ≺ β′. Consider states u′, v′ such that α′ ∈ Iu′ , β′ ∈ Iv′ , and (u′, u, e), (v′, v, e) ∈ E.
Then α′ ∈ Iu′ \ Iv′ or β′ ∈ Iv′ \ Iu′ because otherwise we would have α′ ∈ Iv′ and β′ ∈ Iu′ which
imply respectively α ∈ Iv and β ∈ Iu. By induction we have u′ < v′ and therefore, by Wheeler-
(ii), u ≤ v. From u 6= v it follows u < v.

Conversely, for the right-to-left implication, suppose u < v. Since α 6= β, if it were β ≺ α then,
by the above, we would have v < u: a contradiction. Hence, α ≺ β holds.

(2) Recall that, by definition, α ∈ Iu if and only if u ∈ Iα and β ∈ Iv if and only if v ∈ Iβ. Hence,
the hypothesis that u ∈ Iα, v ∈ Iβ and {u, v} 6⊆ Iβ ∩ Iα, is equivalent to say that α ∈ Iu, β ∈ Iv
and {α, β} 6⊆ Iv ∩ Iu. Therefore, (2) follows from (1).

Proof. (of Lemma 4)

1. Suppose α ≺ β ≺ γ with α, γ ∈ Iu and β ∈ Pref(L(A)); we want to prove that β ∈ Iu. From
β ∈ Pref(L(A)) it follows that there exists a state v such that β ∈ Iv. Suppose, for contradiction,
that β 6∈ Iu. Then β ∈ Iv \Iu and from α ≺ β and Lemma 3, it follows u < v. Similarly, applying
again Lemma 3, from β ≺ γ we have v < u, which is a contradiction.

2. Suppose, for contradiction, that Iu, Iv ∈ IV are such that Iu ( Iv and Iu is neither a prefix
nor a suffix of Iv. In these hypotheses there must exist α, α′ ∈ Iv \ Iu and β ∈ Iu such that
α ≺ β ≺ α′. Lemma 3 implies v < u < v, which is a contradiction.

Points (3), (4) follow similarly from Lemma 3.
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Proof. (of Lemma 6)
The verification that L(Ad) = L(A) follows the same lines of the proof in the classical regular

case. We prove that <d is a Wheeler order on the states of the automaton Ad. By Lemma 4, the set
V d = IPref(L(A)) of states of Ad is a prefix/suffix family of intervals, so that, by Lemma 2, <d is a

linear order on V d. Next, we check the Wheeler properties. The only vertex with in-degree 0 is Iε,
and it clearly precedes those with positive in-degree. For any two edges (Iα, Iαa1 , a1), (Iβ, Iβa2 , a2)
we have:

(i) if a1 ≺ a2 then αa1 ≺ βa2, and from Lemma 5 it follows Iαa1 ≤d Iβa2 . Moreover, by the
input consistency of A, states in Iαa1 are a1-states, while states in Iβa2 are a2-states; hence
Iαa1 6= Iβa2 , so that Iαa1 <

d Iβa2 follows.
(ii) If a = a1 = a2 and Iα < Iβ, from Lemma 5 it follows α ≺ β, so that αa ≺ βa and, using again

Lemma 5, we obtain I = Iαa ≤i I = Iβa.

Finally, we prove that |V d| ≤ 2n − 1 − |Σ|. By the Wheeler properties, we know that the only
interval in IPref(L(A)) containing the initial state s of the automaton A is {s} and that the remaining
intervals can be partitioned into |Σ|-classes, by looking at the letter labelling incoming edges. If
Σ = {a1, . . . , ak}, and, for every i = 1, . . . , k, we denote bymi the number of states of the automaton
A whose incoming edges are labeled ai, we have

∑k
i=1mi = n− 1. Using Lemma 1 we see that the

intervals in V d composed by ai states are at most 2mi − 1, so that the total number of intervals in
V d is at most

1 +
k∑
i=1

(2mi − 1) = 1 + 2(
∑
i=1

mi)− k = 1 + 2(n− 1)− k = 2n− 1− k = 2n− 1− |Σ|.

Proof (of Lemma 7).
We apply the standard powerset construction algorithm starting from the original WNFA A.

By Lemma 6, the powerset algorithm does not generate more than 2n − 1 − |Σ| distinct sets of
states. Remember that such algorithm starts from the set {s} containing the NFA’s source and
simulates a visit of the final DFA, whose states are represented as sets of states of the original
NFA. At each step, the successor with label a ∈ Σ of a set K is computed by calculating all the
a-successors of states in K, and taking their union. In the worst case, |K| = O(n) and each state
in K has O(n) a-successors. After having obtained the a-successor K ′ of K, we need to check if
K ′ had already been visited. Since K ′’s cardinality is at most n, this operation takes O(n) time
using a standard dictionary (e.g. a hash table). Overall, we spend O(n2) time to simulate an edge
traversal of the final DFA. By Lemma 6, we visit at most O(n) distinct sets of states. Overall, the
powerset algorithm’s complexity is O(n3). ut

Proof. (of Theorem 1)

(1)⇒ (2) If A is a Wheeler NFA such that L = L(A), consider the following equivalence relation
∼A over Pref(L):

α ∼A β ⇔ Iα = Iβ.

Using the fact that the Iα are intervals (see Lemma 4), and other properties of Wheeler au-
tomata, one can easily prove that the equivalence ∼A is a refinement of ≡cL, so that each ≡cL-class
is a union of ∼A-classes. Moreover, the equivalence ∼A has finite index, bounded by the number
of intervals Iα, hence ≡cL has finite index as well.
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(2)⇒ (3) We prove that the relation≡cL is a convex, input consistent, right invariant equivalence,
and that L is a union of ≡cL-classes; this last property is true simply because L is a union of ≡L-
classes and ≡cL is a refinement of ≡L. The fact that ≡cL is convex and input consistent follows
directly from its definition. We prove that ≡cL is right invariant. Suppose α, α′, γ ∈ Pref(L)
and α ≡cL α′. Note that if αγ ∈ Pref(L) then there exists ν ∈ Σ∗ such that αγν ∈ L, so that
α′γ ∈ Pref(L) follows from α ≡L α′. Hence, we are left to prove that αγ ≡cL α′γ. We easily
prove the following:

- αγ ≡L α′γ (it follows from α ≡L α′).
- If αγ ≺ β′ ≺ α′γ, for β′ ∈ Pref(L), then β′ ≡L αγ: from αγ ≺ β′ ≺ α′γ it follows that
β′ = βγ, for some β ∈ Pref(L), and α ≺ β ≺ α′. Since α, α′ belong to the same ≡cL class,
then β ≡L α, and βγ ≡L αγ follows from the right invariance of ≡L.

Since αγ, βγ end with the same letter, the previous points imply that αγ ≡cL α′γ and ≡cL is
right invariant.
(3)⇒ (4) Suppose L is a union of classes of a convex, input consistent, right invariant equivalence
relation ∼ of finite index. We build a WDFA A∼ = (V∼, E∼, F∼, s∼, Σ,<∼) such that L = L(A)
as follows:

- V∼ = {[α]∼ | α ∈ Pref(L)};
- s∼ = [ε]∼ (note that, by input consistency, [ε]∼ = {ε});
- (I, J, e) ∈ E∼ if and only if Ie ∩ Pref(L) 6= ∅ and Ie ⊆ J , where Ie = {αe | α ∈ I} (note

that J , if existing, is unique by right invariancy);
- F∼ = {I | I ⊆ L};
- <∼=≺i (being pairwise disjoint and convex, the classes in V∼ form a prefix/suffix family of

intervals of (Pref(L),≺)).

Note that all words in Pref(L) label a computation in A∼. We claim that, for all ∼-class I and
α ∈ Pref(L):

α ∈ I ⇔ s∼  I in A∼ reading α.

We prove the implication from right to left by induction on the length of α ∈ Pref(L).
If α = ε then the claim follows from the definition of s∼.
If α = α′e ∈ Pref(L) with e ∈ Σ, then α′ ∈ Pref(L). Then, if K ∈ V∼ is such that s∼  
K reading α′ in A∼, by induction we know that α′ ∈ K. Since α = α′e ∈ Ke, we have
Ke ∩ Pref(L) 6= ∅; by right invariance of ∼ there exists a unique J such that Ke ⊆ J . From
α = α′e ∈ Ke ⊆ J it follows α ∈ J , and also J = I, because A∼ is a deterministic automaton
and s∼  I, s∼  J , both by reading α.
In order to prove the implication from left to right of the claim, suppose α ∈ I, and J ∈ V∼
is such that s∼  J in A∼ reading α. Then, by the first part of the proof of the claim we
obtain α ∈ J ; since J and I are equivalence classes and α ∈ I ∩ J , it follows that I = J and
s∼  I in A∼ reading α.

From the above claim and the definition of F∼, it easily follows that L is the language recognised
by A∼.

We conclude by checking that A∼ is Wheeler, proving the two Wheeler properties (i) and (ii)
with respect to the linear order (V∼, <∼).

To see Wheeler-(i) assume e ≺ e′ with e, e′ ∈ Σ. Consider I, J ∈ V∼ such that (I,H, e) ∈ E∼
and (J,K, e′) ∈ E∼. We want to prove that H <∼ K (i.e. H ≺i K). By definition of E∼, in our
hypotheses there are α ∈ I, α′ ∈ J with αe ∈ H and α′e′ ∈ K. From e ≺ e′ it follows αe ≺ α′e′
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and hence H �i K. To conclude observe that H ≺i K since all words in H end with e, while
all words in K end with e′.
To see Wheeler-(ii) assume I <∼ J (i.e. I ≺i J), e ∈ Σ, (I,H, e) ∈ E∼, and (J,K, e) ∈ E∼. In
these hypotheses there are α ∈ I, α′ ∈ J , with αe ∈ H and α′e ∈ K. From I ≺i J and the fact
that different classes are disjoint it follows α ≺ α′; therefore, αe ≺ α′e and hence H �i K.
This ends the proof of the implication (3)⇒ (4).

(4) ⇒ (1) Trivial.

D Proofs of Section 3

Proof. (of Theorem 2)
We can assume, without loss of generality, that A is input-consistent, since checking this prop-

erty takes linear time. If A is not input-consistent, then it is not Wheeler. We show a reduction of
problem 1 to 2-SAT, which can be solved in linear time using Aspvall, Plass, and Tarjan’s (APT)
algorithm based on strongly connected components computation. The reduction introduces O(|V |2)
variables and O(|E|2) clauses, hence the final running time will be O(|E|2). Moreover, since a sat-
isfying assignment to our boolean variables will be sufficient to define a total order of the nodes,
APT will essentially solve also problem 2.

For every pair u 6= v of nodes we introduce a variable xu<v which, if true, indicates that u must
precede v in the ordering. We now describe a 2-SAT CNF formula whose clauses are divided in two
types: clauses of the former type ensure that the Wheeler graph property is satisfied, while clauses
of the second type ensure that the order of nodes induced by the variables is total.

The following formulas ensure that the Wheeler properties are satisfied:

(a) For each u, v, if λ(u) ≺ λ(v) then we add the unary clause xu<v.
(b) For each u 6= v, if λ(u) = λ(v) = a, then for every pair u′ 6= v′ such that (u′, u, a) ∈ E and

(v′, v, a) ∈ E we add the clause xu′<v′ → xu<v.

There are at most |V |2 ≤ |E|2 clauses of type (a) and at most |E|2 clauses of type (b).
The following formulas guarantee that the order is total. Note that we omit transitivity which,

on a general graph, would require a 3-literals clause (xu<v ∧ xv<w)→ xu<w for each triple u, v, w.
We will show that, if the graph is an input-consistent 2-NFA, then transitivity is satisfied “for free”.

(1) Antisymmetry. For every pair u 6= v, add the clause xu<v → ¬xv<u.
(2) Completeness. For every pair u 6= v, add the clause xu<v ∨ xv<u.

There are at most O(|V |2) = O(|E|2) clauses of types (1) and (2).
We now show that on input-consistent 2-NFAs transitivity propagates from the source to all

nodes. Consider a variable assignment that satisfies clauses (a),(b),(1), and (2) (if A is a Wheeler
2-NFA, then such an assignment exists by definition). Assume, moreover, that xu<v and xv<w are
set true by the assignment, for three pairwise distinct nodes u, v, w. We want to show that also
xu<w must be true.

Consider a directed shortest-path tree T with root s of A. Since we assume that each state is
reachable from s, T must exist and must contain all nodes of A. Let dv be the length of a shortest
directed path connecting s to v. By definition of T , the path connecting s to v in T has length
dv, with ds = 0. We proceed by induction on k = max{du, dv, dw}. The case k = 0 is trivial, since
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there are no triples of pairwise distinct nodes in {u : du ≤ 0} (this set contains just s). Take now
a general k > 0. We consider two main cases:

(i) |{λ(u), λ(v), λ(w)}| > 1. Then, since xu<v and xv<w, for some a < b < c ∈ Σ either: (i.1)
λ(u) = a, λ(v) = b, λ(w) = c, or (i.2) λ(u) = a, λ(v) = a, λ(w) = b, or (i.3) λ(u) = a, λ(v) =
b, λ(w) = b. Any other choice would force one of the variables xv<u, xw<v to be true (by an (a)-
clause), forcing a contradiction by a (1)-clause. In all cases (i.1)-(i.3) we have that λ(u) < λ(w),
therefore xu<w must be true by (a).

(ii) λ(u) = λ(v) = λ(w) = a for some a ∈ Σ (note that a 6= # since the NFA has only one
source and u, v, w are distinct by assumption). Let u′, v′, w′ be the parents of u, v, w, respectively,
in T . Note that u′, v′, w′ cannot be the same vertex, since u, v, w are distinct and every node has
at most two outgoing edges with the same label. We therefore consider two sub-cases.

(ii.1) |{u′, v′, w′}| = 2. We first show that u′ = w′ 6= v′ generates a contradiction. Since xu<v
and xv<w are true and u′ 6= v′ and v′ 6= w′ hold, xu′<v′ and xv′<w′ must be true: otherwise, by (b),
would imply that xv<u and xw<v are true, which generates a contradiction. Now, u′ = w′ means
that xv′<w′ and xv′<u′ have the same truth value; since xu′<v′ and xv′<u′ cannot be both true, we
have a contradiction. We are therefore left with the case u′ = v′ 6= w′ (u′ 6= v′ = w′ is symmetric).
Remember that we assumed xu<v and xv<w are true. Hence, xv′<w′ must be true: otherwise, by
(b), the truth of xw′<v′ would imply that xw<v is true, which generates a contradiction. Since
xv′<w′ = xu′<w′ is true, by (b) we conclude that also xu<w must be true.

(ii.2) u′, v′, w′ are pairwise distinct. We show that xu′<v′ and xv′<w′ must be true. Suppose, for
contradiction, that xu′<v′ is false (the proof is symmetric for xv′<w′). Then, by (2), xv′<u′ is true.
But then, by (b) it must be the case that xv<u is true. Since we are assuming that xu<v is true,
this introduces a contradiction by (1). Therefore, we conclude that xu′<v′ and xv′<w′ are true for
the (pairwise distinct) parents u′, v′, w′ of u, v, w in T . Now, by definition of the shortest-path tree
T it must be the case that du′ = du − 1, dv′ = dv − 1, and dw′ = dw − 1 as u′, v′, w′ are the parents
of u, v, w in T . As a consequence, max{du′ , dv′ , dw′} = k − 1. We can therefore apply the inductive
hypothesis and conclude that xu′<w′ is true. But then, by (b) we conclude that xu<w must also be
true.

From the above proof correctness follows: if A is an input-consistent 2-NFA and there exists
a truth assignment satisfying the formula, then the assignment induces a total ordering of the
nodes satisfying the Wheeler properties. Conversely, the algorithm is clearly complete: if A is a
Wheeler 2-NFA, then there exists a total ordering of the nodes satisfying the Wheeler properties.
This defines a truth assignment of the variables that satisfies our 2-SAT formula. ut

We note that it is tempting to try to generalize the above solution to general NFAs by simulating
arbitrary degree-d nondeterminism using binary trees: a node with d equally-labeled outgoing edges
could be expanded to a binary tree with d leaves (bringing down the degree of nondeterminism to 2).
Unfortunately, while this solution works for transitivity (which is successfully propagated from the
source), it could make the graph non-Wheeler: the topology of those trees cannot be arbitrary and
must satisfy the co-lexicographic ordering of the nodes, i.e. the solution we are trying to compute.

D.1 Sorting WDFAs Online

Algorithm 2 initializes all variables used by our procedure and implements Kahn’s topological-
sorting algorithm [20]. Every time a new node is appended to the topological ordering, we call
Algorithm 3—our actual online algorithm—to update also the co-lexicographic ordering. This step
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also checks if the new node and its incoming edges falsify the Wheeler properties. We use the
following structures (indices start from 1):

– LEX is a dynamic sequence of distinct nodes v1, . . . , vk ∈ V supporting the following operations:

1. LEX[i] returns vi.

2. LEX−1[v], with v ∈ LEX, returns the index i such that LEX[i] = v.

3. LEX.insert(v, i) inserts node v between LEX[i− 1] and LEX[i]. If i = 1, v is inserted at the
beginning of the sequence. This operation increases the sequence’s length by one.

– IN and OUT are dynamic sequences of strings, i.e. sequences α1, . . . , αk, where αi ∈ Σ∗ (note
that αi could be the empty string ε). To make our pseudocode more readable, we index IN and
OUT by nodes of LEX (these three arrays will be synchronized). Let T = α1, α2, . . . , αk, with
T ∈ {IN, OUT}. Both arrays support the following operation:

4. T.insert(α, v), where α ∈ Σ∗ and v ∈ LEX: insert α between αLEX−1[v]−1 and αLEX−1[v]. If
LEX−1[v] = 1, then α is inserted at the beginning of T. This operation increases the sequence’s
length by one.

Sequence OUT supports these additional operations:

5. OUT[v], with v ∈ LEX, returns αLEX−1[v].

6. OUT.append(α, v), where α ∈ Σ∗ and v ∈ LEX: append the string α at the end of the string
OUT[v], i.e. replace OUT[v] ← OUT[v] · α. Note that this operation does not increase OUT’s
length.

7. OUT.rank(c, u), with u ∈ LEX and c ∈ Σ: return the number of characters equal to c in all
strings OUT[v], with v = LEX[1], LEX[2], . . . , LEX[LEX−1[u]].

8. OUT.reserve(u, v, c), with u, v ∈ LEX and c ∈ Σ: from the moment this operation is called,
the sequence αLEX−1[u], . . . , αLEX−1[v] is marked with label c. Note that inserting new elements
inside αLEX−1[u], . . . , αLEX−1[v] will increase the length of the reserved sequence.

9. OUT.is reserved(v, c), with v ∈ LEX and c ∈ Σ: return TRUE iff αLEX−1(v) falls inside a
sequence that has been marked (reserved) with character c.

In our algorithm, sequence IN will always be partitioned in at most t ≤ σ + 1 sub-sequences
IN = αc11 , . . . , α

c1
kc1
, αc21 , . . . , α

c2
kc2
, . . . , αct1 , . . . , α

ct
kct

, where each αci contains only character c and

c1 ≺ c2 ≺ · · · ≺ ct. We define an additional operation on IN:

10. IN.start(c), with c ∈ Σ, returns the largest integer j ≥ 1 such that all characters in IN[v]
are strictly smaller than c, for all v = LEX[1], . . . , LEX[j − 1].

Figure 1 shows how our dynamic structures evolve while processing states in topological order.
In Appendix D.2 we discuss data structures implementing the above operations in O(log k) time, k
being the sequence’s length. Intuitively, these three dynamic sequences have the following meaning:
LEX will contain the co-lexicographically-ordered sequence of nodes. IN[v] and OUT[v], with v ∈ LEX,
will contain the labels of the incoming and outgoing edges of v, respectively. To keep the three
sequences synchronized, when inserting v in LEX we will also need to update the other two sequences
so that IN[v] = ct, where t is the number of incoming edges, labeled c, of v, and OUT[v] = ε, since
v does not have yet outgoing edges. OUT[v] will (possibly) be updated later, when new nodes
adjacent to v will arrive in the topological order. Our representation is equivalent to that used
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in [30] to represent the GCSA data structure. Intuitively, OUT is a generalized version of the well-
known Burrows-Wheeler transform (except that we sort prefixes in co-lexicographic order instead
of suffixes in lexicographic order). If the graph is a path (i.e. a string) then OUT is precisely the
BWT of the reversed path.

We proceed with a discussion of the pseudocode. In Lines 2-12 of Algorithm 2 we initialize all
variables and data structures. Let u ∈ V . The variable u.in memorizes the number of incoming
edges in u; we will use this counter to implement Kahn’s topological sorting procedure. u.label
is the label of all incoming edges of u, or # if u = s. IN, LEX, and OUT are initialized as empty
dynamic sequences. Lines 13-22 implement Kahn’s topological sorting algorithm [20]. Each time
a new node u is appended to the order, we call our online procedure update(u), implemented in
Algorithm 3. Algorithm 3 works as follows. Assume that we have already sorted v1, . . . , vk, that
LEX contains the nodes’ permutation reflecting their co-lexicographic order, and that IN[vi] and
OUT[vi] contain the incoming and outgoing labels for each i = 1, . . . , k in the sub-graph induced by
v1, . . . , vk. When a new node u arrives in topological order, all its t predecessors are in LEX. Let
b = u.label be the incoming label of u. We find the co-lexicographically smallest vmin and largest
vmax predecessors of u (using function LEX−1 on all u’s predecessors). In our pseudocode, if u = s
then vmin = vmax = NULL. To keep the Wheeler properties true, note that there cannot be b’s in
the range OUT[vmin..vmax]: if there are, since we will append b to OUT[vmin] and OUT[vmax], there will
be three nodes vmin < v′ < vmax such that (vmin, u, b), (v

′, u′, b), (vmax, u, b) ∈ E for some u′. Then,
by Wheeler property (ii), this would imply that u < u′ < u, a contradiction. We therefore check
this event using function contains (note: this function can be easily implemented using two calls
to rank). If b’s are present, then the graph is no longer Wheeler: such an event is shown in Figure
1, left-hand side (where u = v5). Otherwise, the number j of b’s before vmin (which is equal to
the number of b’s before vmax) tells us the co-lexicographic rank i of u (similarly to the standard
string-BWT, we obtain this number by adding j to the starting position of b’s in IN), and we can
mark (reserve) range OUT[vmin..vmax] with letter b using function reserve. Such an event is shown
in Figure 1, left-hand side, when inserting, e.g., node v3. At this point, we may have an additional
inconsistency falsifying the Wheeler properties in the case that one of the predecessors vi of u falls
inside a reserved range for b (reserved by a node other than u): this happens, for example, when
inserting v6 in Figure 1, right-hand side. This check requires calling function is reserved. If all
tests succeed, we insert u in position i of LEX and we update IN and OUT by inserting bt at the i-th
position in IN (i.e. the position corresponding to u) and by appending b at the end of each OUT[vi]
for each predecessor vi of u.

D.2 Data Structure Details

In this section we show how to implement operations 1-10 used by Algorithms 2 and 3 using state-
of-the-art data structures. At the core of LEX and OUT stands the dynamic sequence representation
of Navarro and Nekrich [26]. This structure supports insertions, access, rank, and select in O(log n)
worst-case time, n being the sequence’s length. The space usage is bounded by nH0 + o(n log σ) +
O(σ log n) bits, where H0 is the zero-th order entropy of the sequence. Sequence IN will instead be
represented using a dynamic partial sum data structure, e.g. a balanced binary tree or a Fenwick
tree [8], and a dynamic bitvector. All details follow.

Sequence LEX is stored with Navarro and Nekrich’s dynamic sequence representation [26]. Op-
erations 1-3 are directly supported on the representation. Operation 2 is simply a selectv(1) (i.e.
the position of the first v).
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Algorithm 2: sort(G)
input : Labeled DAG G = (V,E, s,Σ)
output: A permutation of V reflecting the co-lexicographic ordering of the nodes, or FAIL if such an ordering

does not exist.

1 for u ∈ V do

2 u.in← 0;
3 u.label← NULL;

4 s.label← #;

5 for (u, v, a) ∈ E do

6 v.in← v.in + 1;

7 if v.label 6= NULL and v.label 6= a then
8 return FAIL; /* Cannot be Wheeler graph */

9 v.label← a;

10 IN← new dyn sequence(Σ∗); /* Sequence of strings */

11 LEX← new dyn sequence(V); /* Sequence of nodes */

12 OUT← new dyn sequence(Σ∗); /* Sequence of strings */

13 S ← {s}; /* Set of nodes with no incoming edges */

14 while S 6= ∅ do
15 u← S.pop(); /* Extract any u ∈ S */

16 update(u); /* Call to Algorithm 3. If this fails, return FAIL. */

17 for (u, v, a) ∈ E do

18 v.in← v.in− 1;
19 if v.in = 0 then
20 S ← S ∪ {v};

21 if ∃ v ∈ V : v.in > 0 then
22 return FAIL; /* cycle found! */

23 return LEX;

Sequence OUT is stored using a dynamic sequence out and a bitvector, both represented with
Navarro and Nekrich’s dynamic sequence. The idea is to store all the strings OUT[1], . . . , OUT[|OUT|]
concatenated in a single sequence out, and mark the beginning of those strings with a bit set in a
dynamic bitvector Bout[1..n], were n = |out|. Clearly, operations 4-7 on OUT can be simulated with
a constant number of operations (insert, access, rank, select) on out and Bout.

Operations 8-9 require an additional dynamic sequence of parentheses PAR[1..n] on alphabet
{(c : c ∈ Σ} ∪ {)c : c ∈ Σ} ∪ {�}. Every time a new character is inserted at position i in out,
we also insert � at position i in PAR. When OUT.reserve(u, v, c) is called (i.e. operation 8), let iv
and iu be the positions in out corresponding to the two occurrences of character c in OUT[u] and
OUT[u], respectively (remember that the automaton is deterministic, so these positions are unique).
These positions can easily be computed in O(log n) time using select and rank operations on out

and Bout. Then, we replace PAR[iu] and PAR[iv] with characters (c and )c, respectively (replacing
a character requires a deletion followed by an insertion). Note that reserved intervals for a fixed
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Algorithm 3: update(u)
input : Node u
behavior: Inserts u at the right place in the co-lexicographic ordering LEX of the nodes already processed, or

returns FAIL if a conflict is detected.

1 vmin ← min pred(u); /* co-lexicographically-smallest predecessor */

2 vmax ← max pred(u); /* co-lexicographically-largest predecessor */

3 if u 6= s then

4 if OUT[vmin, . . . , vmax].contains(u.label) then

5 return FAIL; /* Inconsistency of type 1 */

6 else

7 for (v, u, a) ∈ E do

8 if OUT.is reserved(v, u.label) then
9 return FAIL; /* Inconsistency of type 2 */

10 else
11 OUT[v].append(u.label);

12 OUT.reserve(vmin, vmax, u.label); /* Reserve [vmin, vmax] with u.label */

13 i← IN.start(u.label) + OUT.rank(u.label, vmin);
14 LEX.insert(u, i);
15 p← |pred(u)|; /* Number of predecessors of u */

16 else

17 LEX.insert(u, 1);
18 p← 1; /* Number of predecessors of u */

19 IN.insert(u.labelp, u); /* Insert p times u.label */

20 OUT.insert(ε, u); /* u does not have successors yet */

character do not overlap, so this parentheses representation permits to unambiguously reconstruct
the structure of the intervals. At this point, operation 9 is implemented as follows. Let iv be the
position in out corresponding to the first character in OUT[v]. This position can be computed in
O(log n) time with two select operations on LEX and Bout. Then, OUT.is reserved(v, c) returns
true if and only if PAR.rank(c(iv) > PAR.rank)c(iv), i.e. if we did not close all opening parentheses
(c before position iv (note that does not make any difference if iv is the first or last position in
OUT[v], since when we call this operation OUT[v] does not contain characters equal to c).

To conclude, IN is represented with a dynamic bitvector BIN[1..n] and a partial sum PS[1..σ + 1]
supporting the following operations in O(log σ) time:

– partial sum: PS.ps(i) =
∑i

j=1 PS[j].

– update: PS[i]← PS[i] + δ.

Fenwick trees [8] support the above operations within this time bound. Bitvector BIN[1..n] con-
tains the bit sequence 110tv2−110tv3−1 . . . 10tvk−1, where tvi is the number of predecessors of vi in
the current sequence LEX = v1, . . . , vk of sorted nodes (note that v1 is always the source s). Assume,
for simplicity, that Σ = [1, σ+ 1], where # corresponds to 1 (this is not restrictive, as we can map
the alphabet to this range at the beginning of the computation). At the beginning, the partial
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Fig. 1. Left: Inconsistency of type 1. The five tables show how arrays IN, LEX, and OUT evolve during insertions of
nodes v1, . . . , v5 in topological order. Up to node v4, the Directed Acyclic Graph (DAG) is Wheeler. When inserting
node v3, we successfully reserve the interval [v1, v2] with label ’a’ (shown in red). From this point, no ’a’s can
be inserted inside the reserved interval. When inserting node v5 (with incoming label ’b’), the co-lexicographically
smallest and largest predecessors of v5 are v3 and v4, respectively. This means we have to reserve the interval [v3, v4]
with label ’b’ (shown in blue dashed line); however, this is not possible since there already is a ’b’ (highlighted in
blue) in OUT[v3, . . . , v4]. Right: Inconsistency of type 2. Up to node v5, the DAG is Wheeler. Note that we successfully
reserve two intervals: [v1, v2] (with letter ’a’, red interval), and [v3, v4] (with letter ’b’, blue interval). When inserting
node v4 we do not need to reserve any interval since the node has only one predecessor. The confict arises when
inserting node v6 (with incoming label ’b’). Since v5 is a predecessor of v6, we need to append ’b’ in OUT[v5]. However,
this ’b’ (underlined in the picture) falls inside a reserved interval for ’b’ (in blue).

sum is initialized as IN[c] = 0 for all c. Operation 10, IN.start(c), with c 6= #, is implemented
as PS.ps(c− 1) + 1. If c = #, the operation returns 1. Operation 4, IN.insert(cp, u), is imple-
mented as PS[c]← PS[c]+p followed by BIN.insert(10p−1, iu) (i.e. p calls to insert on the dynamic
bitvector at position iu), where iu is the position of the j-th bit set in BIN (a select operation) and
j = LEX−1[u], or iu = n+ 1 if BIN has j − 1 bits set (note that, when we call IN.insert(cp, u), node
u has already been inserted in LEX).

D.3 Proof of Theorem 3

In Appendix D.2 we show that all operations on the dynamic sequences can be implemented in
logarithmic time. Correctness follows from the fact that we always check that the Wheeler properties
are maintained true. To prove completeness, note that at each step we place u between two nodes v1
and v2 in array LEX only if the smallest u’s predecessor is larger than the largest v1’s predecessor,
and if the largest u’s predecessor is smaller than the smallest v2’s predecessor. This is the only
possible choice we can make in order to satisfy wv1 ≺ wu ≺ wv2 for all strings labeling paths
s  v1, s  u, and s  v2 and to obtain, by Corollary 1, the only possible correct ordering of
the nodes. It follows that, if the new node v does not falsify the Wheeler properties, then we are
computing its co-lexicographic rank correctly.

Proof. (of Lemma 8)
First, we sort edges by label, with ties broken by origin, and further ties broken by destination.

This can be achieved in time O(|E|+ |V |) by radix sorting the edges represented as triples (a, u, v),
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where a is the label, and u and v respectively are the ranks of the source and destination nodes in
the given order <.

Let L denote the sorted list of edges. We claim that the given order < satisfies the Wheeler
properties (Definition 2) if and only if for all pairs of consecutive edges (ai, ui, vi), (ai+1, ui+1, vi+1)
in L, we have (ai = ai+1)→ vi ≤ vi+1 and (ai 6= ai+1)→ vi < vi+1. Clearly this can be checked in
time O(|E|) with one scan over L. We now argue the correctness of this algorithm.

Wheeler property (ii) is equivalent to the condition that when all edges labeled by some char-
acter a ∈ Σ are sorted by source with ties broken by destination, the sequence of destinations is
monotonically increasing, which is expressed by the condition (ai = ai+1)→ vi ≤ vi+1.

Wheeler property (i) is equivalent to the condition that for all pairs of characters a, b ∈ Σ such
that b is a successor of a in the order of Σ, denoting by va the largest node with an incoming a-edge,
and by vb the smallest node with an incoming b-edge, we have va < vb. If Wheeler property (ii) holds,
then destinations va and vb are consecutive in L because the list is sorted primarily by label and
destinations are monotonically increasing for each label. Hence checking for (ai 6= ai+1)→ vi < vi+1

verifies Wheeler property (i) given that Wheeler property (ii) holds. ut

Proof. (of Theorem 4)

In O(|V | + |E|) time we build a directed spanning tree T of A with root s (e.g. its directed
shortest-path tree with root s). Note that this is always possible since we assume that all states
are reachable from s.

By Corollary 1, if A is a Wheeler graph then we can use the strings that label any two paths
s u and s v to decide the order of any two nodes u and v. We can therefore sort V according
to the paths spelled by T ; by Corollary 1, if A is Wheeler then we obtain the correct (unique)
ordering. To prefix-sort T , we compute its XBW transform 5 in O(|V |) time [9, Thm 2]. The array
containing the lexicographically-sorted nodes (i.e. the prefix array of T ) can easily be obtained
from the XBW transform using, e.g. the partial rank counters defined in the proof of Lemma 8 to
navigate the tree (this is analogous to repeatedly applying function LF on the BWT in order to
obtain the suffix array). At this point, we check that the resulting node order satisfies the Wheeler
properties using Lemma 8. If this is this case, then the above-computed prefix array contains the
prefix-sorted nodes of A. ut

E Proofs of Section 4

Proof. (of Theorem 5)

Let A = (V,E, F, s,Σ). Consider the (possibly infinite) deterministic automaton T that is a tree
and that is equivalent to A in the following sense: T is the (unique) tree obtained by “unraveling”
A, i.e. the tree containing all words in L(A) such that each path labeled with such a word leads to
an accepting state. Clearly, T is a (possibly infinite) deterministic automaton recognizing L(A): a
string α leads to a final state in A if and only if it does in T .

Let Lu = {u1, u2, . . . , uku} be the (possibly infinite) set of nodes of T reached by following,
from its root, all the paths labeled α for each α labeling a path s  u connecting s with u in A.
Note that each state u of A can be identified by the set Lu of states of T ; this allows us to extend

5 note: this requires mapping the labels of T to alphabet Σ′ ⊆ [1, |V |] while preserving their lexicographic ordering.
Since we assume that the original alphabet’s size does not exceed |E|O(1) = |V |O(1), this step can be performed in
linear time by radix-sorting the labels.
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≡w to the states of T as follows: ui ≡w uj for all ui, uj ∈ Lu, u ∈ V , and ui ≡w vj for ui ∈ Lu,
vj ∈ Lv if and only if u ≡w v.

Consider now the process of minimizing T by collapsing states in equivalence classes in such a
way that (i) the quotient automaton is finite, (ii) the accepting language of the quotient DFA is the
same as that of T and (iii) the quotient DFA is Wheeler. By the existence of A, there exists such a
partition (not necessarily the coarsest): the one putting ui and uj in the same equivalence class if
and only if ui, uj ∈ Lu, for some u ∈ V (in this case, A itself is the resulting quotient automaton).
Call ≡ the relation among states of T yielding the smallest such WDFA A/≡. By definition, A/≡
is the smallest WDFA recognizing L(A). Our claim is that ≡ = ≡w, i.e. that Algorithm 1 returns
this automaton.

We observe that:

1. ui ≈ uj for any ui, uj ∈ Lu and all u ∈ V . Otherwise, assume for a contradiction that there
exists a string α leading to an accepting state from ui but not from uj . By construction of T ,
ui and uj are ≈-equivalent to u: this leads to a contradiction, since the state reached from u
with label α cannot be both accepting and not accepting.

2. Since A is a Wheeler DFA, Corollary 1 applied to A tells us that, for any two nodes u < v ∈ V ,
all strings labeling paths from the root of T to nodes in Lu are co-lexicographically smaller than
those labeling paths from the root of T to nodes in Lv. We express this fact using the notation
Lu < Lv.

3. Since A is Wheeler, then each u ∈ V has only one distinct incoming label and λ(uj) = λ(u) for
all uj ∈ Lu.

By the above properties, ui ≡ uj for all ui, uj ∈ Lu, u ∈ V . To see this, note that, by property
1, those states are all equivalent by relation ≈. Moreover, properties 2-3 combined with Corollary
1 imply that, by grouping states in each Lu, we cannot break any Wheeler property. It follows that
≡ must group those states, being the coarsest partition finer than ≈ with these two properties. Let
us indicate with Lu ≡ Lv the fact that ui ≡ vj for all ui ∈ Lu, vj ∈ Lv.

Suppose now, for a contradiction, that there exist Lu < Lv < Lw with Lu ≡ Lw 6≡ Lv. Then,
by Corollary 1, Lu < Lv implies that, in the quotient automaton, states [Lw]≡ = [Lu]≡ and
[Lv]≡ are reachable from the source by two paths α and β, respectively, with α ≺ β. Conversely,
Lv < Lw implies that states [Lv]≡ and [Lw]≡ are reachable from the source by two paths α′ and
β′, respectively, with α′ ≺ β′. Then, by Corollary 1 we cannot define a total order on A/≡’s states,
i.e. A/≡ is not Wheeler.

By all the above observations, we conclude that ≡ must (i) group only equivalent states by ≈,
(ii) group only states with the same incoming label, (iii) group all states inside each Lu, and (iv)
group only states in adjacent sets Lu, Lv in the co-lexicographic order. By its definition, the relation
≡w induces the coarsest partition that satisfies (i)-(iv), therefore we conclude that ≡ = ≡w. ut

E.1 Converting DFAs to minimum WDFAs

We describe an online step of our algorithm. Assume we successfully built Ai, with i < t, and we are
about to process vi+1 in order to build Ai+1. Let {c1, . . . , ck} be the labels of incoming vi+1’s edges.
We first replace (split) vi+1 by k equivalent states vc1i+1 ≈ · · · ≈ v

ck
i+1: each vcki+1 (i) is accepting if and

only if vi+1 is accepting, (ii) keeps only the incoming edges of vi+1 labeled ci, and (iii) it duplicates all
its outgoing edges: we replace each (vi+1, u, c) with the edges (vc1i+1, u, c), . . . , (v

ck
i+1, u, c). Note that
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all the newly-created edges must be present in the final automaton At since the states vc1i+1, . . . , v
ck
i+1

cannot be collapsed back by ≡w (as they have different incoming labels); it follows that in this step
we are not creating more edges than necessary.

We now insert separately vc1i+1, . . . , v
ck
i+1 in LEXi in any order as follows. The procedure is the

same for all those vertices, therefore we may simply assume we are about to process a node v with
all incoming edges labeled with the same character a. Let u1 < · · · < uk be the predecessors of v in
the graph; note that those nodes must belong to LEXi (since we are processing states in topological
order), therefore their order < is well-defined. We now must detect and solve inconsistencies of type
1 and 2 as defined in the proof of Theorem 3 (see also Figure 1).

We start with inconsistencies of type 1: there already are nodes wi /∈ {u1, . . . , uk} with outgoing
edges labeled a inside the range [u1, uk]. This breaks the sequence u1 < · · · < uk into q sub-
intervals [uij , u

′
ij

], j = 1, . . . , q, that do not contain nodes with outgoing label a different than those

in {u1, . . . , uk}. The range has therefore the following form, where we denote with wi and w′i all
nodes not in {u1, . . . , uk} with outgoing edges labeled a and we highlight in bold the runs [uij , u

′
ij

]:

w1 < ui1 ≤ · · · ≤ u′i1 < w2 ≤ · · · ≤ w′2 < ui2 ≤ · · · ≤ u′i2 < · · · < uiq ≤ · · · ≤ u′iq < wq+1 ,

where ui1 = u1, u
′
iq

= uk, and w1 < u1, wq+1 > uk are the rightmost and leftmost states with an
outgoing edge labeled a, respectively (if they exist). The top part of Figure 2 depicts this situation,
where k = 4 and u1, . . . , u4 are clustered in q = 3 runs: w1 < u1 < w2 < w3 < u2 < u3 < w4 <
u4 < w5. We solve the inconsistencies of type 1 by splitting v in (i.e. replacing it with) q equivalent
nodes: v1 ≈ · · · ≈ vq. Each vj is final if and only if v is final, duplicates all v’s outgoing edges
(as seen above), and keeps only incoming edges from v’s predecessors inside the corresponding run
[uij , u

′
ij

]. This is depicted in the bottom part of Figure 2: v has been split into the three equivalent
nodes v1 ≈ v2 ≈ v3.

Inconsistencies of type 2 are solved similarly by splitting a-successors of w1, . . . , wq+1 that
belong to LEXi when necessary. Let LEXi ∩ {succa(w1), . . . , succa(wq+1)} = {z1 < · · · < zq′} be the
a-successors of w1, . . . , wq+1 in LEXi. Note that it might be the case that q′ < q + 1. Note also that
some of the nodes zi might belong to {u1, . . . , uk} ∪ {w1, . . . , wq+1}. We have an inconsistency of
type 2 (among nodes in LEXi) whenever succa(wi) = succa(wi+1) = ze, for some 1 ≤ e ≤ q′, and
there exist some uj such that wi < uj < wi+1. In this case, we split ze = succa(wi) = succa(wi+1) in
two equivalent nodes z′e ≈ z′′e ordered as z′e < succa(uj) < z′′e . This cannot contradict the Wheeler
properties (even if zi ∈ {u1, . . . , uk}∪{w1, . . . , wq+1}), since succa(uj) is one of the copies of v (or v
itself if v has not been splitted in the previous step) and has therefore no successors in the current
automaton. The process of fixing inconsistencies of type 2 is shown in Figure 2: nodes w3 and w4

are separated by u2, u3 as w3 < u2 < u3 < w4. In this case, succa(w3) = succa(w4) = z3, and we
split z3 in the two equivalent nodes z′3 and z′′3 . Note also that we only need to check those wi that
immediately precede or follow a predecessor of v (i.e. w1, w2, w

′
2, . . . , wq+1): those nodes are at most

O(k), where k is the number of v’s predecessors.
As shown in Figure 2 (bottom), after solving the inconsistencies of type 1 and 2 the nodes in

LEXi+1 are again range-consistent: the a-successors of any (sorted) range of nodes form themselves
a (sorted) range. Moreover, the splitting process defines unambiguously a total ordering of the new
nodes among those already in LEXi, which can be therefore updated to LEXi+1 by inserting those
nodes at the right place: to insert a node v′ in LEXi, let u′ be its a-predecessor: succa(u

′) = v′. Let
moreover u′′ < u′ be the rightmost node preceding u′ (in LEXi) having an outgoing edge labeled
a, and let v′′ be its a-successor: succa(u

′′) = v′′. By range-consistency, node v′ has to be inserted
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immediately after v′′ in LEXi. If such a node u′′ does not exist (i.e. u′ is the leftmost node in LEXi
having an outgoing edge labeled a), then v′ has to be inserted in LEXi so that it becomes the first
node with incoming edges labeled a (i.e. in the position immediately following the rightmost node
v′′ with incoming label a′, where a′ is the lexicographically-largest character such that a′ ≺ a, or
at the first position in LEXi if such a character a′ does not exist). This shows that invariant 2 is
maintained: the Wheeler properties are kept true among nodes in LEXi+1. It is also clear that we do
not insert ≈-equivalent adjacent states with the same incoming label (see Figure 2: by construction,
the newly-inserted nodes v1, z

′
3, v2, z

′′
3 , v3 are non-equivalent to their neighbors), i.e. invariant 3 is

maintained. Finally, the accepted language does not change since the splitting process generates
≈-equivalent nodes: also invariant 1 stays true.

Note that the minimization process on the original acyclic DFA A takes linear time. After
that, we only insert edges/nodes in the minimum output WDFA: never delete. It follows that the
number of performed operations is equal to the output’s size. The final automaton could be either
smaller or exponentially-larger than A. We note that all the discussed operations can be easily
implemented in logarithmic time using the data structures discussed in Section D.2: finding the q
runs of states [uij , u

′
ij

], as well as finding the O(k) states wi, requires executing a constant number
of rank operations on sequence OUT and start operations on IN for each predecessor of v. Nodes can
be inserted at the right position in sequence LEX exactly as done in Algorithm 3 (by also updating
IN and OUT). Finally, the graph can be dynamically updated (i.e. splitting nodes) and queried (i.e.
navigation) by keeping it as a dynamic adjacency list: since we can spend logarithmic time per
edge, we can store the graph as a self-balancing tree associating nodes to their predecessors and
successors (also kept as self-balancing trees). This structure supports all updates and queries on
the graph in logarithmic time. It follows that the overall procedure terminates in O(n + m logm)
time, n and m being the input and output’s sizes, respectively.

w1 z1u1 w2 w3 z2 z3 z4 u2 u3 w4 u4 w5

v

w1 z1u1 w2 w3 z2 z’3 z4 u2 u3 w4 u4 w5v1 z’’3v2 v3

LEXi

LEXi+1

a a a

aa

a a

a

a

aaa

a a

a
a

a
a

Fig. 2. Inconsistency resolution. Nodes are ordered left-to-right by the total ordering < (except v in the top part of
the figure). Top: we are trying to insert v in LEXi, but this violates the Wheeler properties (edges’ destinations are
not ordered as the sources, no matter where we insert v). Bottom: we solve the inconsistencies by splitting v in three
equivalent nodes v1 ≈ v2 ≈ v3 and z3 in two equivalent nodes z′3 ≈ z′′3 . Note that (i) the splitting procedure induces
naturally an ordering of the nodes that satisfies the Wheeler properties, and (ii) after splitting, no two adjacent
states with the same incoming label are equivalent by ≈. By Theorem 6, this is the minimum way of splitting nodes.
For simplicity, in the figure nodes z1, . . . , z4 do not coincide with any node w1, . . . , w5 or u1, . . . , u4. This may not
necessarily be the case. In our full proof in Appendix E.1 we show that our procedure is correct even when this
happens.
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F Worst case blowup from an acyclic DFA to the minimum equivalent WDFA

In this section we show that the running time of the conflict resolution algorithm in Section 4.1 is
exponential in the worst case, i.e. there exists a family of regular languages where the size of the
smallest WDFA is exponential in the size of the smallest DFA. We now show that one such family
the sequence of languages L1, L2, . . ., where Lm = {cαe | α ∈ {a, b}m} ∪ {dαf | α ∈ {a, b}m}.

For an example, Figure 3 shows a DFA and the smallest WDFA for the language L3. In general,
we can build a DFA for Lm by generalizing the construction in the figure: the source node has
outgoing edges labeled with c and d, followed by simple linear size ”universal gadgets” capable of
generating all binary strings of length m, with one gadget followed by an e and the other by an f .
The two sink states are the only accepting states.

The smallest WDFA for Lm is an unraveling of the described DFA, such that all paths up to
(but not including) the sinks end up in distinct nodes, i.e. the universal gadgets are replaced by
full binary trees (see Figure 3). It is easy to see that the automaton is Wheeler as the only nodes
that have multiple incoming paths are the sinks, and the sinks have unique labels.

To prove that this is the minimal WDFA, we need to check the condition of Theorem 6, i.e.
that all colexicographically consecutive pairs of nodes with the same incoming label are Myhill-
Nerode inequivalent. As labels c, d, e and f occur only once, it is enough to focus on nodes that
have label a or b. Let B1, B2, B2m+1−1 be the colexicographically sorted sequence of all possible
binary strings with lengths 1 ≤ |Bi| ≤ m from the alphabet {a, b}. Observe that the nodes with
incoming label a and b correspond to path labels of the form cBi and dBi for all 1 ≤ i ≤ 2m+1− 1.
The colexicographically sorted order of these path labels is:

cB1 < dB1 < cB2 < dB2 < . . . < cB2m+1−1 < dB2m+1−1

Here we can see that all consecutive pairs have a different first character, and therefore they lead
to a different sink in the construction, and hence they are not Myhill-Nerode equivalent. Therefore
the automaton is the minimum WDFA.

The DFA has n = 4m + 5 states and the WDFA has 1 + 2m+2 = 1 + 2(n−5)/4+2 states, so we
obtain the following result:

Theorem 8. The minimal WDFA equivalent to an acyclic DFA with n states has Ω(2n/4) states
in the worst case.
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