
COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

ELIZABETH HARTUNG, HUNG P. HOANG, TORSTEN MÜTZE, AND AARON WILLIAMS

Abstract. In this work we present a general and versatile algorithmic framework for exhaustively
generating a large variety of different combinatorial objects, based on encoding them as permutations.
This approach provides a unified view on many known results and allows us to prove many new
ones. In particular, we obtain the following four classical Gray codes as special cases: the Steinhaus-
Johnson-Trotter algorithm to generate all permutations of an n-element set by adjacent transpositions;
the binary reflected Gray code to generate all n-bit strings by flipping a single bit in each step; the
Gray code for generating all n-vertex binary trees by rotations due to Lucas, van Baronaigien, and
Ruskey; the Gray code for generating all partitions of an n-element ground set by element exchanges
due to Kaye.

We present two distinct applications for our new framework: The first main application is
the generation of pattern-avoiding permutations, yielding new Gray codes for different families
of permutations that are characterized by the avoidance of certain classical patterns, (bi)vincular
patterns, barred patterns, Bruhat-restricted patterns, mesh patterns, monotone and geometric grid
classes, and many others. We thus also obtain new Gray code algorithms for the combinatorial
objects that are in bijection to these permutations, in particular for five different types of geometric
rectangulations, also known as floorplans, which are divisions of a square into n rectangles subject
to certain restrictions.

The second main application of our framework are lattice congruences of the weak order on the
symmetric group Sn. Recently, Pilaud and Santos realized all those lattice congruences as (n − 1)-
dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra
etc. Our algorithm generates the equivalence classes of each of those lattice congruences, by producing
a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof
that each of these highly symmetric graphs is Hamiltonian. We thus also obtain a provable notion
of optimality for the Gray codes obtained from our framework: They translate into walks along the
edges of a polytope.

(Elizabeth Hartung) Massachusetts College of Liberal Arts, United States
(Hung P. Hoang) Department of Computer Science, ETH Zürich, Switzerland
(Torsten Mütze) Department of Computer Science, University of Warwick, United Kingdom
(Aaron Williams) Bard College at Simon’s Rock, United States
E-mail addresses: e.hartung@mcla.edu, hung.hoang@inf.ethz.ch, torsten.mutze@warwick.ac.uk,

awilliams@simons-rock.edu.
Key words and phrases. Exhaustive generation algorithm, Gray code, pattern-avoiding permutation, weak order,

lattice congruence, quotientope, Hamilton path, rectangulation.
Torsten Mütze is also affiliated with Charles University, Faculty of Mathematics and Physics, and was supported

by GACR grant GA 19-08554S, and by DFG grant 413902284.

COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES 1

1. Introduction

In computer science we frequently encounter different kinds of combinatorial objects, such as
permutations, binary strings, binary trees, set partitions, spanning trees of a graph, and so forth.
There are three recurring fundamental algorithmic tasks that we want to perform with such objects:
counting, random generation, and exhaustive generation. For the first two tasks, there are powerful
general methods available, such as generating functions [FS09] and Markov chains [Jer03], solving
both problems for a large variety of different objects. For the third task, namely exhaustive
generation, however, we are lacking such a powerful and unifying theory, even though some first
steps in this direction have been made (see Section 1.2 below). Nonetheless, the literature contains
a vast number of algorithms that solve the exhaustive generation problem for specific classes of
objects, and many of these algorithms are covered in depth in the most recent volume of Knuth’s
seminal series ‘The Art of Computer Programming’ [Knu11].

1.1. Overview of our results. The main contribution of this paper is a general and versatile
algorithmic framework for exhaustively generating a large variety of different combinatorial objects,
which provides a unified view on many known results and allows us to prove many new ones. The
basic idea is to encode a particular set of objects as a set of permutations Ln ⊆ Sn, where Sn denotes
the set of all permutations of [n] := {1, 2, . . . , n}, and to use a simple greedy algorithm to generate
those permutations by cyclic rotations of substrings, an operation we call a jump. This works under
very mild assumptions on the set Ln, and allows us to generate more than double-exponentially
(in n) many distinct sets Ln. Moreover, the jump orderings obtained from our algorithm translate
into listings of combinatorial objects where consecutive objects differ by small changes, i.e., we
obtain Gray code algorithms [Sav97], and those changes are smallest possible in a provable sense.
The main tools of our framework are Algorithm J and Theorem 1 in Section 2. In particular, we
obtain the following four classical Gray codes as special cases: (1) the Steinhaus-Johnson-Trotter
algorithm to generate all permutations of [n] by adjacent transpositions, also known as plain change
order [Tro62, Joh63]; (2) the binary reflected Gray code (BRGC) to generate all binary strings of
length n by flipping a single bit in each step [Gra53]; (3) the Gray code for generating all n-vertex
binary trees by rotations due to Lucas, van Baronaigien, and Ruskey [LvBR93]; (4) the Gray code
for generating all set partitions of [n] by exchanging an element in each step due to Kaye [Kay76].

We present two distinct applications for our new framework: The first main application is
the generation of pattern-avoiding permutations, yielding new Gray codes for different families of
permutations characterized by the avoidance of certain classical patterns, (bi)vincular patterns [BS00,
BMCDK10], barred patterns [Wes90], Bruhat-restricted patterns [WY06], mesh patterns [BC11],
monotone and geometric grid classes [HV06, AAB+13], and many others. We thus also obtain new
Gray code algorithms for the combinatorial objects that are in bijection to these permutations,
in particular for five different types of geometric rectangulations/floorplans [ABP06, Rea12b,
ABBM+13, CSS18], which are divisions of a square into n rectangles subject to different restrictions;
see Figure 2. Our results in this area are summarized in Theorem 4, Remark 5, and Table 1 in
Section 3.

The second main application of our framework are lattice congruences of the weak order on the
symmetric group Sn. This area has beautiful ramifications into groups, posets, polytopes, geometry,
and combinatorics [Rea12a, Rea16a, Rea16b]. There are double-exponentially many distinct such

2 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

lattice congruences, and they generalize many known lattices such as the Boolean lattice, the Tamari
lattice [Tam62], and certain Cambrian lattices [Rea06, CP17]. Recently, Pilaud and Santos [PS19]
realized all those lattice congruences as (n− 1)-dimensional polytopes, called quotientopes, which
generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates the equivalence
classes of each of those lattice congruences, by producing a Hamilton path on the skeleton of the
corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs
is Hamiltonian; see Figure 6. We thus also obtain a provable notion of optimality for the Gray codes
obtained from Algorithm J: Jump operations translate into walks along the edges of a polytope. Our
results in this area are summarized in Theorem 6 and Corollary 7 in Section 4. In this extended
abstract, many formal proofs are omitted due to length constraints; for details see [HHMW19]
and [HM19].

1.2. Related work. Avis and Fukuda’s [AF96] reverse-search is a general technique for exhaustive
generation. They consider the objects to be generated as nodes of a graph, and connect them by edges
that model local modifications. This flip graph is equipped with an objective function and traversed
backwards by a local search algorithm. Reverse-search is complementary to our permutation based
approach, as it uses a fundamentally different encoding of objects. The permutation encoding seems
to allow for more fine-grained control (optimal Gray codes) and even faster algorithms.

Another method for combinatorial counting and exhaustive generation is the ECO framework by
Barcucci, Del Lungo, Pergola, and Pinzani [BDLPP99]. It uses an infinite tree with integer node
labels, and a set of production rules for creating the children of a node based on its label. Bacchelli,
Barcucci, Grazzini, and Pergola [BBGP04] also used ECO for exhaustive generation. Dukes,
Flanagan, Mansour, and Vajnovszki [DFMV08], Baril [Bar09], and Do, Tran and Vajnovszki [DTV19]
used ECO for deriving Gray codes for different classes of pattern-avoiding permutations, which works
under certain regularity assumptions on the production rules. The main difference between ECO and
our framework is that the change operations on the label sequences of the ECO tree do not necessarily
correspond to Gray-code like changes on the corresponding combinatorial objects. Minimal jumps
in a permutation, on the other hand, correspond to minimal changes on the combinatorial objects
in a provable sense, even though they may involve several entries of the permutation.

Li and Sawada [LS09] considered another tree-based approach for generating so-called reflectable
languages, yielding Gray codes for k-ary strings and trees, restricted growth strings, and open
meandric systems (see also [XCU10]). Ruskey, Sawada, and Williams [RSW12, SW12] proposed a
generation framework based on binary strings with a fixed numbers of 1s, called bubble languages,
which allows to generate e.g. combinations, necklaces, Dyck words, and Lyndon words. In the
resulting cool-lex Gray codes, any two consecutive words differ by a cyclic prefix rotation.

Pattern avoidance is central in combinatorics, as illustrated by the books [Kit11, Bón12], and
by the conference ‘Permutation Patterns’, held annually since 2003. Many fundamental classes of
combinatorial objects are in bijection with pattern-avoiding permutations (see Table 1 and [Ten18]).
For instance, Knuth [Knu98] proved that all 123-avoiding or 132-avoiding permutations are counted
by the Catalan numbers. Concerning counting and generation, a few tree-based algorithms for
pattern-avoiding permutations have been proposed [Eli07, DFMV08, Bar08, Bar09]. The problem
has also been studied extensively from an algorithmic point of view. E.g., testing whether a
permutation π contains a pattern τ is NP-complete in general [BBL98]. Jelínek and Kynčl [JK17]
proved that the problem remains hard even if π and τ have no decreasing subsequence of length 4

COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES 3

and 3, respectively, which is best possible. On the other hand, Guillemot and Marx [GM14] showed
that the problem can be solved in time 2O(k2 log k)n logn, where n is the length of π and k is the
length of τ , a considerable improvement over the obvious O(nk) algorithm (see also [Koz19]).

2. Generating permutations by jumps

In this section we present a simple greedy algorithm, Algorithm J, for exhaustively generating a
given set Ln ⊆ Sn of permutations, and we show that the algorithm works successfully under very
mild assumptions on the set Ln (Theorem 1).

2.1. Preliminaries. We use Sn to denote the set of all permutations of [n] := {1, . . . , n}, and we
write π ∈ Sn in one-line notation as π = π(1)π(2) . . . π(n) = a1a2 . . . an. We use idn = 12 . . . n to
denote the identity permutation, and ε ∈ S0 to denote the empty permutation. For any π ∈ Sn−1 and
any 1 ≤ i ≤ n, we write ci(π) ∈ Sn for the permutation obtained from π by inserting the new largest
value n at position i of π, i.e., if π = a1 . . . an−1 then ci(π) = a1 . . . ai−1 nai . . . an−1. Moreover,
for π ∈ Sn, we write p(π) ∈ Sn−1 for the permutation obtained from π by removing the largest
entry n. Here, ci and p stand for the child and parent of a node in the tree of permutations discussed
shortly. Given a permutation π = a1 . . . an with a substring ai . . . aj with ai > ai+1, . . . , aj , a right
jump of ai by j − i steps is a cyclic left rotation of this substring by one position to ai+1 . . . ajai.
Similarly, given a substring ai . . . aj with aj > ai, . . . , aj−1, a left jump of aj by j − i steps is
a cyclic right rotation of this substring to ajai . . . aj−1. For example, a right jump of 5 in the
permutation 265134 by 2 steps yields 261354.

2.2. The basic algorithm. Our approach starts with the following simple greedy algorithm to
generate a set of permutations Ln ⊆ Sn. We say that a jump is minimal (w.r.t. Ln), if a jump of
the same value in the same direction by fewer steps creates a permutation that is not in Ln.

Algorithm J (Greedy minimal jumps). This algorithm attempts to greedily generate a set of
permutations Ln ⊆ Sn using minimal jumps starting from an initial permutation π0 ∈ Ln.
J1. [Initialize] Visit the initial permutation π0.
J2. [Jump] Generate an unvisited permutation from Ln by performing a minimal jump of the

largest possible value in the most recently visited permutation. If no such jump exists, or the
jump direction is ambiguous, then terminate. Otherwise visit this permutation and repeat J2.

Put differently, in step J2 we consider the entries n, n− 1, . . . , 2 of the current permutation in
decreasing order, and for each of them we check whether it allows a minimal left or right jump
that creates a previously unvisited permutation, and we perform the first such jump we find, unless
the same entry also allows a jump in the opposite direction, in which case we terminate. If no
minimal jump creates an unvisited permutation, we also terminate the algorithm prematurely. For
example, consider L4 = {1243, 1423, 4123, 4213, 2134}. Starting with π0 = 1243, the algorithm
generates π1 = 1423 (obtained from π0 by a left jump of 4 by 1 step), then π2 = 4123, then π3 = 4213
(in π2, 4 cannot jump, as π0 and π1 have been visited before; 3 cannot jump either to create any
permutation from L4, so 2 jumps left by 1 step), then π4 = 2134, successfully generating L4. If
instead we initialize with π0 = 4213, then the algorithm generates π1 = 2134, and then stops, as no
further jump is possible. If we choose π0 = 1423, then we may jump 4 to the left or right (by 1 step),
but as the direction is ambiguous, the algorithm stops immediately. As mentioned before, the

4 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

algorithm may stop prematurely only either because no minimal jump leading to a new permutation
from Ln is possible, or because the direction of jump is ambiguous in some step. By the definition
of step J2, the algorithm will never visit any permutation twice.

The following main result of our paper provides a sufficient condition on the set Ln to guarantee
that Algorithm J is successful. This condition is captured by the following closure property of the
set Ln. A set of permutations Ln ⊆ Sn is called a zigzag language, if either n = 0 and L0 = {ε}, or
if n ≥ 1 and Ln−1 := {p(π) | π ∈ Ln} is a zigzag language satisfying the following condition:
(z1) For every π ∈ Ln−1 we have c1(π) ∈ Ln and cn(π) ∈ Ln.

Theorem 1. Given any zigzag language of permutations Ln and initial permutation π0 = idn,
Algorithm J visits every permutation from Ln exactly once.

Remark 2. The number of zigzag languages is at least 2(n−1)!(n−2) = 22Θ(n log n) , i.e., more than double-
exponential in n. We will see that many of these languages do in fact encode interesting combinatorial
objects. Moreover, minimal jumps as performed by Algorithm J always translate to small changes
on those objects in a provable sense, i.e., our algorithm defines Gray codes for a large variety of
combinatorial objects, and Hamilton paths/cycles on the corresponding flip graphs and polytopes.

1

2112

. . .

ε

π

c1(π) c4(π)

. . .

123 132 312 213 231 321

2.3. The tree of permutations. There is an intuitive
characterization of zigzag languages via the tree of permutations.
This is an infinite (unordered) rooted tree which has as nodes
all permutations from Sn at distance n from the root; see the
figure on the right. Specifically, the empty permutation ε is at
the root, and the children of any node π ∈ Sn−1 are exactly the
permutations ci(π), 1 ≤ i ≤ n, i.e., the permutations obtained
by inserting the new largest value n in all possible positions.
Consequently, the parent of any node π′ ∈ Sn is exactly the
permutation p(π′) obtained by removing the largest value n.
In the figure, for any node π ∈ Sn−1, the nodes representing the children c1(π) and cn(π) are drawn
black, whereas the other children are drawn white. Any zigzag language of permutations can be
obtained from this full tree by pruning subtrees, where by condition (z1) a subtree may be pruned
only if its root π′ ∈ Sn is neither the child c1(π) nor the child cn(π) of its parent π = p(π′) ∈ Sn−1,
i.e., only subtrees rooted at white nodes may be pruned. For any subtree obtained by pruning
according to this rule and for any n ≥ 1, the remaining permutations of length n form a zigzag
language Ln; see Figure 1.

Consider all nodes in the tree for which the entire path to the root consists only of black nodes.
Those nodes never get pruned and are therefore contained in any zigzag language. These are
exactly all permutations without peaks. A peak in a permutation a1 . . . an is a triple ai−1aiai+1 with
ai−1 < ai > ai+1, and the language of permutations without peaks is generated by the recurrence
P0 := {ε} and Pn := {c1(π), cn(π) | π ∈ Pn−1} for n ≥ 1. It follows that we have |Pn| = 2n−1

and Pn ⊆ Ln ⊆ Sn for any zigzag language Ln, i.e., Ln is sandwiched between the language of
permutations without peaks and between the language of all permutations.

2.4. Proof idea of Theorem 1. Given a zigzag language Ln, we define a sequence J(Ln) of all
permutations from Ln and prove that Algorithm J generates the permutations of Ln exactly in

COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES 5

1

2112

ε

123 312 321231

#„c (123) #„c (312) #„c (321)#„c (213)

1
2
3
4

4
1
2
3

4
3
1
2

3
1
4
2

3
1
2
4

3
2
1
4

3
2
4
1

3
4
2
1

4
3
2
1

4
2
3
1

2
3
1
4

1

2112

ε

123 312 321 213132

#„c (123) #„c (321)#„c (312)#„c (132) #„c (231)

1
2
3
4

1
2
4
3

1
4
2
3

4
1
2
3

4
3
1
2

3
1
4
2

3
1
2
4

3
2
1
4

3
2
4
1

3
4
2
1

4
3
2
1

4
1
3
2

1
3
2
4

2
1
3
4

2
4
1
3

4
2
1
3

J(L3)

J(L4)

J(L2)

J(L1)
J(L0)

#„c (213)

213

2
1
3
4

4
2
1
3

L4 (S4 M4 (L4

J(M3)

J(M4)

J(M2)

J(M1)
J(M0)

Figure 1. Ordered tree representation of two zigzag languages L4 and M4 with
M4 (L4. Both trees contain the same permutations in the highlighted subtrees, but
in different order due to the node 132, which was pruned from the right tree.

this order. For any π ∈ Ln−1 we let #„c (π) be the sequence of all ci(π) ∈ Ln for i = 1, 2, . . . , n,
starting with c1(π) and ending with cn(π), and we let #„c (π) denote the reverse sequence, i.e.,
it starts with cn(π) and ends with c1(π). In words, those sequences are obtained by inserting
into π the new largest value n in all possible positions from left to right, or from right to left,
respectively. The sequence J(Ln) is defined recursively as follows: If n = 0 then J(L0) := ε,
and if n ≥ 1 then we consider the finite sequence J(Ln−1) =: π1, π2, . . . and define J(Ln) :=

#„c (π1), #„c (π2), #„c (π3), #„c (π4), . . ., i.e., this sequence is obtained from the previous sequence by inserting
the new largest value n in all possible positions alternatingly from right to left, or from left to right, in
a zigzag fashion; see Figure 1. The proof of Theorem 1 proceeds by induction on n; see [HHMW19].

Algorithm J thus defines a left-to-right ordering of the nodes at distance n of the root in the tree
representation of the zigzag language Ln described before, and this ordering is captured by the
sequence J(Ln); see Figure 1. Clearly, the same is true for all the zigzag languages L0, L1, . . . , Ln−1
that are induced by Ln through the rule Lk−1 := {p(π) | π ∈ Lk} for k = n, n − 1, . . . , 1. The
unordered tree of permutations is thus turned into an ordered tree, and it is important to realize
that pruning operations change the ordering. Specifically, given two zigzag languages Ln and Mn

with Mn ⊆ Ln, the tree for Mn is obtained from the tree for Ln by pruning, but in general J(Mn)
is not a subsequence of J(Ln), as shown by the example in Figure 1. This shows that our approach
is quite different from the one presented by Vajnovszki and Vernay [VV11], which considers only
subsequences of the Steinhaus-Johnson-Trotter order J(Sn).

2.5. Further properties of Algorithm J. From our proof of Theorem 1 we can easily deduce
under which conditions the algorithm generates a cyclic listing of permutations:

Lemma 3. In the ordering of permutations J(Ln) generated by Algorithm J, the first and last
permutation are related by a minimal jump if and only if |Lk| is even for all 2 ≤ k ≤ n− 1.

It also follows from the proof of Theorem 1 that instead of initializing the algorithm with the
identity permutation π0 = idn, we may use any permutation without peaks as a seed π0.

2.6. Efficiency considerations. Let us make it very clear that in its stated form, Algorithm J
is not an efficient algorithm to actually generate a particular zigzag language of permutations.
The reason is that it requires storing the list of all previously visited permutations in order to

6 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

decide which one to generate next. However, by introducing a few additional arrays, the algorithm
can be made memoryless, so that such lookup operations are not needed anymore, and hence
no permutations need to be stored at all. The efficiency of the resulting algorithm is then only
determined by the efficiency with which we are able to compute minimal jumps with respect to
the input zigzag language Ln for a given entry of the permutation. This leads to an algorithm
that computes the next permutation to be visited in polynomial time. In many cases, this can be
improved to a loopless algorithm that generates each new permutation in constant worst-case time.
The key insight here is that any jump changes the inversion table of a permutation only in a single
entry. By maintaining only the inversion table, jumps can thus be performed efficiently, even if the
number of steps is big. This extensive and important discussion, however, is not the focus of this
paper, and is hence deferred to future parts of the series [HHMW19, HM19].Still need to

update Arxiv
ref for second
papers

2.7. A general recipe. Here is a step-by-step approach to apply our framework to the generation
of a given family Xn of combinatorial objects. The first step is to establish a bijection f that
encodes the objects from Xn as permutations Ln ⊆ Sn. If Ln is a zigzag language, which can
be checked by verifying the closure property, then we may run Algorithm J with input Ln, and
interpret the resulting ordering J(Ln) in terms of the combinatorial objects, by applying f−1 to
each permutations in J(Ln), yielding an ordering on Xn. We may also apply f−1 to Algorithm J
directly, which will yield a simple greedy algorithm for generating Xn. The final step is to make
these algorithms efficient, by introducing additional data structures that allow the change operations
on Xn (which are the preimages of minimal jumps under f) as efficiently as possible.

Let us illustrate these steps for the set Xn of binary strings of length n − 1. We map any
binary string x = x2 . . . xn to a permutation f(x) ∈ Sn by setting f(ε) := 1 and f(x2 . . . xn) :=
cn

(
f(x2 . . . xn−1)

)
if xn = 0, and f(x2 . . . xn) := c1

(
f(x2 . . . xn−1)

)
if xn = 1, i.e., we build the

permutation f(x) by inserting the values i = 2, . . . , n one by one, either at the leftmost or rightmost
position, depending on the bit xi. Observe that f(Xn) is exactly the set of permutations without
peaks Pn ⊆ Sn discussed in Section 2.3 before, and a jump of the entry i in the permutation
translates to flipping the bit xi. Moreover, f−1(J(Pn)) is exactly the well-known reflected Gray code
BRGC for binary strings of length n− 1 [Gra53], which can be implemented efficiently [BER76].
Applying f−1 to Algorithm J yields the following simple greedy algorithm for generating the BRGC
(see [Wil13]): J1. Visit the initial all-zero string. J2. Repeatedly flip the rightmost bit that yields
a previously unvisited string.

3. Pattern-avoiding permutations

The first main application of our framework is the generation of pattern-avoiding permutations.
As mentioned before, many combinatorial objects are in bijection to pattern-avoiding permutations,
and we will see that generating the permutations with Algorithm J yields Gray codes for those
objects. Our main results in this section are summarized in Theorem 4, Remark 5, and Table 1.

3.1. Preliminaries. Given two permutations π ∈ Sn and τ ∈ Sk, we say that π contains the
pattern τ , if and only if π = a1 . . . an contains a subpermutation ai1 . . . aik

, i1 < · · · < ik, whose
elements appear in the same relative order as in τ . If π does not contain the pattern τ , then we say
that π avoids τ . For example, π = 635412 contains the pattern τ = 231 at the highlighted positions.
On the other hand, π = 654123 avoids τ = 231. We refer to this notion of pattern-containment as

COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES 7

Table 1. Tame permutation patterns and corresponding combinatorial objects and
orderings generated by Algorithm J. See also the extended table in [HHMW19].

Tame patterns Combinatorial objects and ordering References/OEIS [oei19]
none permutations by adjacent [Joh63, Tro62], A000142

transpositions → plain change order
231 = 231 Catalan families A000108

• binary trees by rotations → Lucas- [LvBR93]
-van Baronaigien-Ruskey order

• triangulations by edge flips
• Dyck paths by hill flips

231 Bell families A000110
• set partitions by element [Kay76, Wil13]

exchanges → Kaye’s order
132 ∧ 231 = 132 ∧ 231: binary strings by bitflips [Gra53], A011782
permutations without peaks → reflected Gray code order (BRGC)
2143: vexillary permutations [LS85], A005802
conjunction of vk tame patterns with v2 = 35, v3 = 91, v4 = 2346 [BP14], A224318,
(see [Bil13]): k-vexillary permutations (k ≥ 1) A223034, A223905
2143 ∧ 3412: skew-merged permutations [Sta94, Atk98], A029759
2143 ∧ 2413 ∧ 3142 [DMR10, SV14], A033321
2143 ∧ 2413 ∧ 3142 ∧ 3412: X-shaped permutations [Wat07, Eli11], A006012
2413 ∧ 3142: Schröder families A006318
separable permutations • slicing floorplans [AN81, BBL98, ABP06]

• topological drawings of K2,n [CF18]
2413 ∧ 3142: Baxter mosaic floorplans (=diagonal [YCCG03, ABP06]
2413 ∧ 3412: twisted Baxter rectangulations=R-equivalent [LR12, CSS18]
2143 ∧ 3142 rectangulations) A001181
2143 ∧ 3412 S-equivalent rectangulations [ABBM+13], A214358
2143 ∧ 3412 ∧ 2413 ∧ 3142 S-equivalent guillotine rectangulations [ABBM+13], A078482
35124 ∧ 35142 ∧ 24513 ∧ 42513: generic rectangulations [Rea12b]
2-clumped permutations (=rectangular drawings)
conjunction of ck tame patterns with ck = 2(k/2)!(k/2 + 1)! for k even [Rea12b]
and ck = 2((k + 1)/2)!2 for k odd: k-clumped permutations
conjunction of 12 tame patterns: perm. with 0-1 Schubert polynomial [FMSD19]
2143 ∧ 2413 ∧ 3412 ∧ 314562 ∧ 412563 ∧ 415632 ∧ 431562 ∧ 512364 [BEV18]
∧ 512643 ∧ 516432 ∧ 541263 ∧ 541632 ∧ 543162: widdershins permut.

a classical pattern. This notion can been generalized in many ways, allowing us to encode even
more families of combinatorial objects. Some of these more general types of patterns are listed in
Remark 5 below. In this extended abstract we formally define only one additional type, namely
vincular patterns, introduced by Babson and Steingrímsson [BS00]. In a vincular pattern τ , there
is exactly one underlined pair of consecutive entries, with the interpretation that an occurence
of τ in π requires that the underlined entries appear at adjacent positions in π. For instance, the
permutation π = 314 2 contains the pattern τ = 231, but it avoids the vincular pattern τ = 231.

For any permutation τ , we let Sn(τ) denote all permutations from Sn avoiding the (classical or
vincular) pattern τ . For propositional formulas F and G consisting of logical ANDs ∧, ORs ∨, and
patterns as variables, we define Sn(F ∧G) := Sn(F)∩ Sn(G) and Sn(F ∨G) := Sn(F)∪ Sn(G). For

8 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

12 # „34 13 # „42 3 # „421 42 # „31

1 # „243 # „1324 32 # „41 # „4213

„1423 31 # „24 # „3214 21 # „43

41 # „23 # „3142 23 # „14 2134

„4132 43 # „12 2 # „341

1 # „432 # „4321 # „2431

Figure 2. Twisted Baxter permutations (2413∧ 3412-avoiding) for n = 4 generated
by Algorithm J, with jumps highlighted by arrows, and the resulting Gray code for
diagonal rectangulations. Read the figure column by column, from left to right.

instance, Sn(τ1 ∧ · · · ∧ τ`) is the set of permutations avoiding each of the patterns τ1, . . . , τ`, and
Sn(τ1 ∨ · · · ∨ τ`) is the set of permutations avoiding at least one of the patterns τ1, . . . , τ`.

3.2. Tame patterns. The following theorem describes some mild conditions on the patterns in
the formula F which ensure that we can generate Sn(F) with Algorithm J.

Theorem 4. Let F be a propositional formula consisting of logical ANDs ∧, ORs ∨, and patterns
that satisfy one of the following conditions:
(i) classical patterns that do not have the largest value at the leftmost or rightmost position,
(ii) vincular patterns that do not have the largest value at the leftmost of rightmost position, and

the largest value is part of the vincular pair.
Then Sn(F), n ≥ 0, is a zigzag language of permutations, and hence can be generated by Algorithm J.

We say that a pattern satisfying (i) or (ii) is tame. Table 1 lists several tame classical and vincular
patterns and the combinatorial objects encoded by the corresponding zigzag languages. The bijections
between those permutations and the combinatorial objects are well-known and are described in the
listed papers (recall also Section 2.7). Some patterns are interesting in their own right and have no
‘natural’ associated combinatorial objects (empty second column). The resulting ordering for twisted
Baxter permutations of length n = 4, and the resulting Gray code for diagonal rectangulations, is
shown in Figure 2. See also Figures 3 and 4 for the resulting Gray codes for three different Catalan
objects (231-avoiding permutations) and for set partitions (231-avoiding permutations), respectively.

Remark 5. In addition to classical and vincular patterns, the literature knows a large number of
additional types of permutation patterns. Algorithm J works successfully for almost all of them, i.e.,

COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES 9

12 # „34 # „3124

1 # „243 43 # „12

„1423 # „4321

41 # „23 # „3214

„4132 21 # „34

1 # „432 # „2143

„1324 4213

Figure 3. 231-avoiding permutations of length n = 4 generated by Algorithm J
and resulting Gray codes for Catalan families (binary trees, triangulations, Dyck
paths).

12 # „34 1|2|3|4 # „3142 13|24
1 # „243 1|2|34 43 # „12 134|2

„1423 1|24|3 # „4321 1234
41 # „23 14|2|3 # „3214 123|4
„4132 14|23 21 # „34 12|3|4
1 # „432 1|234 # „2143 12|34

„1324 1|23|4 4213 124|3
31 # „24 13|2|4

Figure 4. 231-avoiding permutations of length n = 4 generated by Algorithm J
and resulting Gray code for set partitions.

the list of pattern types started in Theorem 4 can be extended considerably, by formulating suitable
(still very mild) conditions for each of the following pattern types: (iii) bivincular patterns, introduced
by Bousquet-Mélou, Claesson, Dukes, and Kitaev [BMCDK10]; (iv) barred patterns, introduced by
West [Wes90]; (v) patterns with Bruhat restrictions, introduced by Woo and Yong [WY06]; (vi) mesh
patterns, introduced by Brändén and Claesson [BC11]; (vii) partially ordered patterns, introduced
by Kitaev [Kit05]; (viii) monotone grid classes, introduced by Huczynska and Vatter [HV06];

10 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

(ix) geometric grid classes, introduced by Albert, Atkinson, Bouvel, Ruškuc, and Vatter [AAB+13].
See [HHMW19] for more details.

3.3. Patterns with multiplicities. All the aforementioned results generalize to bounding the
number of appearances of any tame pattern. Formally, a counted pattern is a pair σ = (τ, c), where
τ is a pattern of any of the types discussed before, and c is a non-negative integer. Moreover, Sn(σ)
denotes the set of all permutations from Sn that contain at most c occurences of the pattern τ ,
where the special case c = 0 is pattern-avoidance. We can now form propositional formulas F
consisting of logical ANDs ∧, ORs ∨, and counted patterns (τi, ci) with tame τi as variables, yielding
a zigzag language Sn(F) that can be generated by Algorithm J. A somewhat contrived example for
such a language would be F =

(
(231, 3) ∧ (2143, 5)

)
∨ (3142, 2), the language of permutations that

contain at most 3 occurences of the pattern 231 AND at most 5 occurences of the pattern 2143, OR
at most 2 occurences of the vincular pattern 3142.

4. Lattice congruences of the weak order

The second main application of our framework are lattice congruences of the weak order on the
symmetric group Sn. With lattice congruences, we obtain a provable notion of optimality for the Gray
codes obtained from Algorithm J: Jump operations translate into walks along the edges of a polytope;
see Figure 6. The main results in this section are summarized in Theorems 6 and Corollary 7.

4.1. Preliminaries. We begin recalling a few basic notion from poset theory. The weak order on
the symmetric group Sn is the poset obtained by considering the inversion set of a permutation,
defined as inv(π) := {(π(i), π(j)) | 1 ≤ i < j ≤ n and π(i) > π(j)}, and by defining π < ρ if and
only if inv(π) ⊆ inv(ρ); see the left hand side of Figure 5. The cover relations in this poset, drawn
as edges in the cover graph shown in the figure, are exactly adjacent transpositions between the two
involved permutations. Moreover, the weak order is a lattice, i.e., for any two π, ρ ∈ Sn there is a
unique smallest element σ, called the join π ∨ ρ of π and ρ, such that σ > π and σ > ρ, and there
is unique largest element σ, called the meet π ∧ ρ of π and ρ, satisfying σ < π and σ < ρ. A lattice
congruence of the weak order is an equivalence relation ≡ on Sn that is compatible with taking joins
and meets, i.e., π ≡ π′ and ρ ≡ ρ′ implies that π ∨ ρ ≡ π′ ∨ ρ′ and π ∧ ρ ≡ π′ ∧ ρ′. Given any lattice
congruence ≡, we obtain the lattice quotient Sn/ ≡ by taking the equivalence classes as elements,
and ordering them by X < Y if and only if there is a π ∈ X and a ρ ∈ Y such that π < ρ in Sn.
See Figure 5 for an example of a lattice congruence (left) and the resulting lattice quotient (right).

It turns out that there are double-exponentially many distinct lattice congruences of the weak
order on Sn, and they generalize many known lattices, such as the Boolean lattice, the Tamari
lattice [Tam62] (shown on the right hand side of Figure 5), and certain Cambrian lattices [Rea06,
CP17]. This area of study has beautiful ramifications into groups, posets, polytopes, geometry, and
combinatorics, and has been developed considerably in recent years, in particular thanks to Nathan
Reading’s works, summarized in [Rea12a, Rea16a, Rea16b].

4.2. Jumping through lattice congruences. For any lattice congruence ≡ of the weak order
on Sn, a set of representatives for the equivalence classes Sn/ ≡ is a subset Rn ⊆ Sn such that for
every equivalence class X ∈ Sn/ ≡, exactly one permutation is contained in Rn, i.e., |X ∩Rn| = 1.
We let X(π), π ∈ Sn, denote the equivalence class from Sn/ ≡ containing π. A meaningful definition
of ‘generating the lattice congruence’ is to generate a set of representatives for its equivalence

COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES 11

1234

4312

4321

4231 3421

41324213

4123

2431 3412 3241

2413 1432 3142 3214

1423 2143 1342 2314 3124

1243 2134 1324

2341

Figure 5. Hasse diagrams of the weak order on S4 (left), with the lattice congruence
for 231-avoiding permutations (bold edges), and of the resulting lattice quotient Sn/ ≡
(right), which is the well-known Tamari lattice (with corresponding binary trees).

classes. We also require that any two successive representatives form a cover relation in the lattice
quotient Sn/ ≡. This is what we achieve with the help of Algorithm J.

Theorem 6. For every lattice congruence ≡ of the weak order on Sn, there is a set of representatives
Rn ⊆ Sn, such that Algorithm J generates a sequence J(Rn) = π1, π2, . . . of all permutations from Rn

for which the equivalence classes X(π1), X(π2), . . . form a Hamilton path in the cover graph of the
lattice quotient Sn/ ≡.

For every lattice congruence ≡, Pilaud and Santos [PS19] defined a polytope, called the quotientope
for ≡, whose skeleton is exactly the cover graph of the lattice quotient Sn/ ≡. These polytopes
generalize many known polytopes, such as hypercubes, associahedra, permutahedra etc. The
following result is an immediate corollary of Theorem 6, and it is illustrated in Figure 6.

Corollary 7. For every lattice congruence ≡ of the weak order on Sn, Algorithm J generates a
Hamilton path on the skeleton of the corresponding quotientope.

5. Acknowledgments

We thank Michael Albert, Mathilde Bouvel, Sergi Elizalde, Vít Jelínek, Sergey Kitaev, Vincent
Vajnovszki, and Vincent Vatter for very insightful feedback on this work, for pointing out relevant
references, and for sharing their knowledge about pattern-avoiding permutations. We also thank
Jean Cardinal and Vincent Pilaud for several stimulating discussions about lattice congruences of
the weak order on the symmetric group. Figure 6 in this paper was obtained by modifying and
augmenting Figure 9 from [PS19], and the original source code for this figure was provided to us by
Vincent Pilaud.

12 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

Figure 6. Lattice congruences of the weak order on S4, ordered by refinement
and realized as polytopes (only full-dimensional polytopes shown). Hamilton paths
generated by Algorithm J are highlighted, with start vertex (triangle) and end vertex
(diamond). Permutahedron, associahedron (one of four isomorphic variants) and
hypercube are framed.

COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES 13

References
[AAB+13] M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and V. Vatter. Geometric grid classes of

permutations. Trans. Amer. Math. Soc., 365(11):5859–5881, 2013.
[ABBM+13] A. Asinowski, G. Barequet, M. Bousquet-Mélou, T. Mansour, and R. Y. Pinter. Orders induced by

segments in floorplans and (2-14-3, 3-41-2)-avoiding permutations. Electron. J. Combin., 20(2):Paper 35,
43, 2013.

[ABP06] E. Ackerman, G. Barequet, and R. Y. Pinter. A bijection between permutations and floorplans, and its
applications. Discrete Appl. Math., 154(12):1674–1684, 2006.

[AF96] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math., 65(1-3):21–46, 1996. First
International Colloquium on Graphs and Optimization (GOI), 1992 (Grimentz).

[AN81] D. Avis and M. Newborn. On pop-stacks in series. Utilitas Math., 19:129–140, 1981.
[Atk98] M. D. Atkinson. Permutations which are the union of an increasing and a decreasing subsequence.

Electron. J. Combin., 5:Research paper 6, 13, 1998.
[Bar08] J.-L. Baril. Efficient generating algorithm for permutations with a fixed number of excedances. Pure

Math. Appl. (PU.M.A.), 19(2-3):61–69, 2008.
[Bar09] J.-L. Baril. More restrictive Gray codes for some classes of pattern avoiding permutations. Inform.

Process. Lett., 109(14):799–804, 2009.
[BBGP04] S. Bacchelli, E. Barcucci, E. Grazzini, and E. Pergola. Exhaustive generation of combinatorial objects

by ECO. Acta Inform., 40(8):585–602, 2004.
[BBL98] P. Bose, J. F. Buss, and A. Lubiw. Pattern matching for permutations. Inform. Process. Lett., 65(5):277–

283, 1998.
[BC11] P. Brändén and A. Claesson. Mesh patterns and the expansion of permutation statistics as sums of

permutation patterns. Electron. J. Combin., 18(2):Paper 5, 14, 2011.
[BDLPP99] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. ECO: a methodology for the enumeration of

combinatorial objects. J. Differ. Equations Appl., 5(4-5):435–490, 1999.
[BER76] J. R. Bitner, G. Ehrlich, and E. M. Reingold. Efficient generation of the binary reflected Gray code and

its applications. Comm. ACM, 19(9):517–521, 1976.
[BEV18] R. Brignall, M. Engen, and V. Vatter. A counterexample regarding labelled well-quasi-ordering. Graphs

Combin., 34(6):1395–1409, 2018.
[Bil13] S. Billey. Permutation patterns for k-vexillary permutations, 2013. https://sites.math.washington.

edu/~billey/papers/k.vex.html.
[BMCDK10] M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev. (2 + 2)-free posets, ascent sequences and

pattern avoiding permutations. J. Combin. Theory Ser. A, 117(7):884–909, 2010.
[Bón12] M. Bóna. Combinatorics of permutations. Discrete Mathematics and its Applications (Boca Raton).

CRC Press, Boca Raton, FL, second edition, 2012. With a foreword by Richard Stanley.
[BP14] S. Billey and B. Pawlowski. Permutation patterns, Stanley symmetric functions, and generalized Specht

modules. J. Combin. Theory Ser. A, 127:85–120, 2014.
[BS00] E. Babson and E. Steingrímsson. Generalized permutation patterns and a classification of the Mahonian

statistics. Sém. Lothar. Combin., 44:Art. B44b, 18, 2000.
[CF18] J. Cardinal and S. Felsner. Topological drawings of complete bipartite graphs. J. Comput. Geom.,

9(1):213–246, 2018.
[CP17] G. Chatel and V. Pilaud. Cambrian Hopf algebras. Adv. Math., 311:598–633, 2017.
[CSS18] J. Cardinal, V. Sacristán, and R. I. Silveira. A note on flips in diagonal rectangulations. Discrete Math.

Theor. Comput. Sci., 20(2):Paper No. 14, 22, 2018.
[DFMV08] W. M. B. Dukes, M. F. Flanagan, T. Mansour, and V. Vajnovszki. Combinatorial Gray codes for classes

of pattern avoiding permutations. Theoret. Comput. Sci., 396(1-3):35–49, 2008.
[DMR10] E. Deutsch, E. Munarini, and S. Rinaldi. Skew Dyck paths. J. Statist. Plann. Inference, 140(8):2191–

2203, 2010.
[DTV19] P. T. Do, T. T. H. Tran, and V. Vajnovszki. Exhaustive generation for permutations avoiding (colored)

regular sets of patterns. Discrete Applied Mathematics, 2019.

https://sites.math.washington.edu/~billey/papers/k.vex.html
https://sites.math.washington.edu/~billey/papers/k.vex.html

14 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

[Eli07] S. Elizalde. Generating trees for permutations avoiding generalized patterns. Ann. Comb., 11(3-4):435–
458, 2007.

[Eli11] S. Elizalde. The X-class and almost-increasing permutations. Ann. Comb., 15(1):51–68, 2011.
[FMSD19] A. Fink, K. Mészáros, and A. St. Dizier. Zero-one Schubert polynomials. https://arxiv.org/abs/1903.

10332, 2019.
[FS09] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009.
[GM14] S. Guillemot and D. Marx. Finding small patterns in permutations in linear time. In Proceedings of the

Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 82–101. ACM, New York,
2014.

[Gra53] F. Gray. Pulse code communication, 1953. March 17, 1953 (filed Nov. 1947). U.S. Patent 2,632,058.
[HHMW19] E. Hartung, H. P. Hoang, T. Mütze, and A. Williams. Combinatorial generation via permutation

languages. I. Fundamentals. https://arxiv.org/abs/1906.06069, 2019.
[HM19] H. P. Hoang and T. Mütze. Combinatorial generation via permutation languages. II. Lattice congruences.

https://arxiv.org/abs/xxxx.xxxxx, 2019.
[HV06] S. Huczynska and V. Vatter. Grid classes and the Fibonacci dichotomy for restricted permutations.

Electron. J. Combin., 13(1):Research Paper 54, 14, 2006.
[Jer03] M. Jerrum. Counting, sampling and integrating: algorithms and complexity. Lectures in Mathematics

ETH Zürich. Birkhäuser Verlag, Basel, 2003.
[JK17] V. Jelínek and J. Kynčl. Hardness of permutation pattern matching. In Proceedings of the Twenty-Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 378–396. SIAM, Philadelphia, PA, 2017.
[Joh63] S. Johnson. Generation of permutations by adjacent transposition. Math. Comp., 17:282–285, 1963.
[Kay76] R. Kaye. A Gray code for set partitions. Information Processing Lett., 5(6):171–173, 1976.
[Kit05] S. Kitaev. Partially ordered generalized patterns. Discrete Math., 298(1-3):212–229, 2005.
[Kit11] S. Kitaev. Patterns in permutations and words. Monographs in Theoretical Computer Science. An

EATCS Series. Springer, Heidelberg, 2011. With a foreword by Jeffrey B. Remmel.
[Knu98] D. E. Knuth. The art of computer programming. Vol. 3. Addison-Wesley, Reading, MA, 1998. Sorting

and searching, Second edition [of MR0445948].
[Knu11] D. E. Knuth. The art of computer programming. Vol. 4A. Combinatorial algorithms. Part 1. Addison-

Wesley, Upper Saddle River, NJ, 2011.
[Koz19] L. Kozma. Faster and simpler algorithms for finding large patterns in permutations. https://arxiv.

org/abs/1902.08809, 2019.
[LR12] S. Law and N. Reading. The Hopf algebra of diagonal rectangulations. J. Combin. Theory Ser. A,

119(3):788–824, 2012.
[LS85] A. Lascoux and M.-P. Schützenberger. Schubert polynomials and the Littlewood-Richardson rule. Lett.

Math. Phys., 10(2-3):111–124, 1985.
[LS09] Y. Li and J. Sawada. Gray codes for reflectable languages. Inform. Process. Lett., 109(5):296–300, 2009.
[LvBR93] J. M. Lucas, D. R. van Baronaigien, and F. Ruskey. On rotations and the generation of binary trees. J.

Algorithms, 15(3):343–366, 1993.
[oei19] OEIS Foundation Inc. The on-line encyclopedia of integer sequences, 2019. http://oeis.org.
[PS19] V. Pilaud and F. Santos. Quotientopes. Bull. Lond. Math. Soc., 51:406–420, 2019.
[Rea06] N. Reading. Cambrian lattices. Adv. Math., 205(2):313–353, 2006.
[Rea12a] N. Reading. From the Tamari lattice to Cambrian lattices and beyond. In Associahedra, Tamari lattices

and related structures, volume 299 of Prog. Math. Phys., pages 293–322. Birkhäuser/Springer, Basel, 2012.
[Rea12b] N. Reading. Generic rectangulations. European J. Combin., 33(4):610–623, 2012.
[Rea16a] N. Reading. Finite Coxeter groups and the weak order. In Lattice theory: special topics and applications.

Vol. 2, pages 489–561. Birkhäuser/Springer, Cham, 2016.
[Rea16b] N. Reading. Lattice theory of the poset of regions. In Lattice theory: special topics and applications. Vol.

2, pages 399–487. Birkhäuser/Springer, Cham, 2016.
[RSW12] F. Ruskey, J. Sawada, and A. Williams. Binary bubble languages and cool-lex order. J. Combin. Theory

Ser. A, 119(1):155–169, 2012.
[Sav97] C. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605–629, 1997.

https://arxiv.org/abs/1903.10332
https://arxiv.org/abs/1903.10332
https://arxiv.org/abs/1906.06069
https://arxiv.org/abs/xxxx.xxxxx
https://arxiv.org/abs/1902.08809
https://arxiv.org/abs/1902.08809
http://oeis.org

COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES 15

[Sta94] Z. E. Stankova. Forbidden subsequences. Discrete Math., 132(1-3):291–316, 1994.
[SV14] R. Smith and V. Vatter. A stack and a pop stack in series. Australas. J. Combin., 58:157–171, 2014.
[SW12] J. Sawada and A. Williams. Efficient oracles for generating binary bubble languages. Electron. J. Combin.,

19(1):Paper 42, 20, 2012.
[Tam62] D. Tamari. The algebra of bracketings and their enumeration. Nieuw Arch. Wisk. (3), 10:131–146, 1962.
[Ten18] B. Tenner. Database of permutation pattern avoidance, 2018. https://math.depaul.edu/bridget/

patterns.html.
[Tro62] H. F. Trotter. Algorithm 115: Perm. Commun. ACM, 5(8):434–435, 1962.
[VV11] V. Vajnovszki and R. Vernay. Restricted compositions and permutations: from old to new Gray codes.

Inform. Process. Lett., 111(13):650–655, 2011.
[Wat07] S. D. Waton. On permutation classes defined by token passing networks, gridding matrices and pictures:

three flavours of involvement. PhD thesis, University of St Andrews, 2007.
[Wes90] J. West. Permutations with forbidden subsequences and stack-sortable permutations. ProQuest LLC, Ann

Arbor, MI, 1990. Thesis (Ph.D.)–Massachusetts Institute of Technology.
[Wil13] A. Williams. The greedy Gray code algorithm. In Algorithms and Data Structures - 13th International

Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings, pages 525–536, 2013.
[WY06] A. Woo and A. Yong. When is a Schubert variety Gorenstein? Adv. Math., 207(1):205–220, 2006.
[XCU10] L. Xiang, K. Cheng, and K. Ushijima. Efficient generation of Gray codes for reflectable languages. In

Computational Science and Its Applications - ICCSA 2010, International Conference, Fukuoka, Japan,
March 23-26, 2010, Proceedings, Part IV, pages 418–426, 2010.

[YCCG03] B. Yao, H. Chen, C.-K. Cheng, and R. L. Graham. Floorplan representations: Complexity and connections.
ACM Trans. Design Autom. Electr. Syst., 8(1):55–80, 2003.

https://math.depaul.edu/bridget/patterns.html
https://math.depaul.edu/bridget/patterns.html

	1. Introduction
	1.1. Overview of our results
	1.2. Related work

	2. Generating permutations by jumps
	2.1. Preliminaries
	2.2. The basic algorithm
	2.3. The tree of permutations
	2.4. Proof idea of Theorem 1
	2.5. Further properties of Algorithm J
	2.6. Efficiency considerations
	2.7. A general recipe

	3. Pattern-avoiding permutations
	3.1. Preliminaries
	3.2. Tame patterns
	3.3. Patterns with multiplicities

	4. Lattice congruences of the weak order
	4.1. Preliminaries
	4.2. Jumping through lattice congruences

	5. Acknowledgments
	References

