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On the Performance of Reed-Muller Codes with respect to Random

Errors and Erasures

Ori Sberlo∗ Amir Shpilka∗

Abstract

This work proves new results on the ability of binary Reed-Muller codes to decode from
random errors and erasures. We obtain these results by proving improved bounds on the weight
distribution of Reed-Muller codes of high degrees.

Specifically, given weight β ∈ (0, 1) we prove an upper bound on the number of codewords of
relative weight at most β. We obtain new results in two different settings: for weights β < 1/2
and for weights that are close to 1/2. Our results for weights close to 1/2 also answer an open
problem posed by Beame et al. [BGY18].

Our new bounds on the weight distribution imply that RM codes with m variables and
degree γm, for some explicit constant γ, achieve capacity for random erasures (i.e. for the
binary erasure channel) and for random errors (for the binary symmetric channel). Earlier,
it was known that RM codes achieve capacity for the binary symmetric channel for degrees
r = o(m). For the binary erasure channel it was known that RM codes achieve capacity for
degree o(m) or r ∈ [m/2 ± O(

√
m)]. Thus, our result provide a new range of parameters for

which RM achieve capacity for these two well studied channels.

In addition, our results imply that for every ǫ > 0 (in fact we can get up to ǫ = Ω
(

√

logm
√

m

)

)

RM codes of degree r < (1/2− ǫ)m can correct a fraction of 1− o(1) random erasures with high
probability. We also show that, information theoretically, such codes can handle a fraction of
1
2
− o(1) random errors with high probability. Thus, for example, given noisy evaluations of a

degree 0.499m polynomial, it is possible to interpolate it even if a random 0.499 fraction of the
evaluations were corrupted, with high probability. While the o(1) terms are not the correct ones
to ensure capacity, these results show that RM codes of such degrees are in some sense close to
achieving capacity.
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1 Introduction

1.1 Overview

Reed-Muller (RM) codes were introduced by Muller [Mul54] and rediscovered shortly after by Reed
[Ree54], who also gave a decoding algorithm for them, and with time became one of the most well
studied family of algebraic error correcting codes. Roughly, codewords of the RM code RM(m, r)F
correspond to evaluation vectors of polynomials in m variables of degree r over a finite field F.
That is, a message is interpreted as the coefficient vector of an m-variate polynomial f , of degree at
most r, over F, and its encoding is the vector of evaluations (f(a))a∈Fm . The well known Hadamard
code is simply RM(m, 1)F2 and the family of Reed-Solomon codes corresponds to RM(1, k)Fn (for
k < n).1 In this work we only consider the case F = F2

2 and so we drop the subscript F and simply
denote the m-variate degree-r code as RM(m, r). RM codes have been extensively studied both in
coding theory and in theoretical computer science, yet some of their basic and important properties
are still unknown. One such important property is their weight-distribution. Another fundamental
question for which the answer is unknown is how well can RM codes handle random erasures or
random errors. In this work we make progress on those two important questions showing that for
a wide range of parameters RM codes are nearly optimal.

There are many motivating reasons to study RM codes. They are (arguably) the most natural
family of linear error correcting codes, and indeed, they have been under investigation for over
half a century. In addition, RM codes play a major role in a flora of applications in theoretical
computer science. For example, in cryptography RM codes were used for constructing secret sharing
schemes [Sha79], instance hiding schemes and private information retrieval protocols [CGKS95,
BF90, Gas04]. In the theory of pseudorandomness they were used for constructing pseudorandom
generators and randomness extractors [BV10]. Similarly, they have found applications in hardness
amplification, in probabilistic proof systems and in many more areas. See e.g. [ASW15] for more
applications.

Before discussing the coding theoretic questions we study here, we shall need some basic ter-
minology concerning linear error correcting codes. A linear code over F2 can be viewed as a linear
mapping C : Fk

2 → F
n
2 that maps messages of length k to codewords of length n. It is convenient

to abuse notation and identify the encoding map C with its image C(Fk
2), which is a k-dimensional

subspace. The rate of C is the ratio R(C) = k/n, which, intuitively, captures the average amount
of information each bit of the codeword contains. Alternatively, one can think of the rate of the
code as a measure of the redundancy in the encoding - the smaller the rate is the more redundant
the code is. As multilinear monomials form a basis to the space of multilinear polynomials, the
rate of RM(m, r) is

(m
≤r

)

/2m where
(m
≤r

)

,
∑r

i=0

(m
i

)

.
Another important property of a code C is its weight distribution. Given a codeword w ∈ C

its (normalized) weight is the fraction of its nonzero coordinates. E.g., in the case of RM codes,
the weight of a codeword f ∈ RM(m, r) equals the (relative) number of its nonzero evaluations:
wt(f) = Prx∈Fm

2
[f(x) 6= 0]. The weight distribution of a code is the function counting the number

of codewords of any given weight in the code (see Definition 1.1). Besides being a natural property
to study, the weight distribution of a code plays an important role when analyzing its resilience to
errors.

A major problem of coding theory is to construct efficient and optimal codes that can handle
as many errors as possible. I.e., that given a corrupted encoding of a message there is an algorithm
for recovering the message. To understand what optimal means we heed to discuss the model of

1
Fq denotes the field with q elements

2We only consider RM codes over F2 as this is the most difficult and interesting case for the questions we study.
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corruptions. In this work we study the two most well known models of corruption - that of erasing
a symbol and that of flipping a symbol. But another important characteristic of the corruption
model is whether the errors are random or worst case. These two models were introduced in the
seminal works of Shannon [Sha48] and Hamming [Ham50].

In the worst-case (or adversarial) setting, introduced by Hamming [Ham50], we allow an adver-
sary to corrupt a fraction δ of the coordinates. Decoding in this setting is possible if the minimal
(normalized) Hamming distance between any two codewords is larger than 2δ. This quantity is
also known as the (relative) minimum distance of the code. Assuming the code is linear, it is not
hard to see that its minimum distance equals the minimal weight of a nonzero codeword. Hence,
the performance of a linear code in Hamming’s model is completely determined by its weight dis-
tribution. It is not hard to see that the (relative) minimum distance of RM(m, r) is 2−r. Thus,
RM(m, r) can tolerate only a small amount of adversarial errors for large r.

The model of random corruptions, which is the one we focus on in this paper, was introduced
by Shannon in his influential work [Sha48]. In this setting we assume that each coordinate is
randomly and independently mapped to a symbol from a fixed alphabet (not necessarily binary)
according to some fixed probability distribution. Every such probability distribution gives rise to
a random corruption model, which is called a channel. The simplest and most classical examples
of channels for binary codes are the Binary Erasure Channel (BEC) and the Binary Symmetric
Channel (BSC). In the BECp, each coordinate is replaced with a question mark ‘?’ with probability
p. This can be thought of as erasing the coordinate. In the BSCp, each coordinate is flipped with
probability p. We sometimes abbreviate and just say random errors instead of BSCp or random
erasures instead of BECp, when p is either clear from the context or immaterial. Note that the
crucial difference between the BEC and the BSC is that in the BEC we know where the errors
are (these are all coordinates with a question mark) whereas in the BSC model we do not know
which coordinates were corrupted. Unlike the worst case model, here we can only require decoding
with high probability as it may be the case that with some tiny probability the entire codeword
is erased (i.e. all coordinates are replaced with question marks) or that the errors are such that
they take us from one codeword to another. In his original work Shannon also asked what is the
maximal rate of a code that (with high probability) can recover from random errors introduced by
a given channel. This maximal rate is called the capacity of the channel. Shannon proved that the
capacity of the BSCp is R = 1− h (p), where h (·) is the binary entropy function and p ≤ 1/2.3 In
other words, for every rate R < 1−h (p) there is a code that can recover any message from random
errors introduce by the channel, with high probability, and no code of rate R > 1−h (p) can do so.
For the BECp it was shown by Elias [Eli55] that the capacity is R = 1− p. Families of codes whose
rate approach the capacity (in the limit as the block length goes to infinity) are called capacity
achieving codes. Unfortunately, Shannon only showed the existence of codes that achieve capacity
without presenting an explicit construction. Thus, constructing capacity achieving codes that are
easy to encode and decode has been a major problem in coding theory. A breakthrough was made
by Arikan [Ari09] with the introduction of polar codes. Arikan’s construction achieves capacity
for a wide variety of channels including the BEC and BSC. Due to their similarity to RM codes,
the introduction of polar codes brought back to the spotlight the classical question of whether RM
codes also achieve capacity for the BEC and the BSC. Indeed, despite of their poor performance in
the adversarial error model, it is believed that RM codes achieve capacity for both the BEC and
the BSC. This belief is also supported by empirical studies suggesting that RM codes perform even
better than polar codes [AKM+09]. In fact, for some setting of parameters it was recently proved
that RM codes achieve capacity. Abbe et al. [ASW15] proved that RM codes achieve capacity for

3h (p) = −p log p− (1− p) log(1− p), for p ∈ (0, 1), and h (0) = h (1) = 0.
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the BEC for rates going to 0 or to 1 and for the BSC for rates going to 0. A beautiful work of
Kumar et al. showed that RM codes with constant rate (the most interesting range of parameters
in coding theory) achieve capacity for the BEC [KKM+17]. However, both works leave open a wide
range of parameters, especially for the BSC. See Table 1 on page 6 for a summary of known results.

Another intriguing question is even if RM codes do not achieve capacity, what is the amount
of random errors or erasure from which they can successfully decode? One of the difficulties in
answering this question and in showing that a family of codes achieves capacity for the BEC or the
BSC is that for these two important channels there is no one parameter that governs the ability of
the code to recover from errors. That being said, it is clear that the weight distribution of a code
is intimately related to recovering from errors, and this holds even in Shannon’s model. In order to
exemplify this statement consider the case of random erasures. It is not hard to see that a linear
code can recover from an erasure pattern if and only if there does not exist a codeword supported
on the erasure locations (for details see Lemma 4.1). Therefore, if a code has many codewords
with small support, or equivalently low weight, then most likely it will not be able recover from
random erasures. This observation can be used to analyze the probability of recovering from random
erasures and a similar analysis can be made in the case of random errors (e.g, See [Pol94, ASW15]).
Thus, from this point of view, to understand whether RM codes achieve capacity for the BEC and
the BSC it is important to understand their weight distribution.

Computing the weight distribution of RM codes is a well known problem that is open in most
ranges of parameters. In 1970 Kasami and Tokura [KT70] characterized all codewords of weight up
to twice the minimum distance. This was later improved in [KTA76] to all words of weight up to 2.5
times the minimal distance. No progress was made for over thirty years until a breakthrough result
of Kaufman, Lovett and Porat [KLP12] gave, for any constant degree r = O(1), asymptotically
tight bounds on the weight distribution of RM codes of degree r. Unfortunately, as the degree
gets larger, their estimate becomes less and less tight. Abbe, Shpilka and Wigderson [ASW15]
managed to get better bounds for degrees up to m/4, which they used to show that RM codes
achieve capacity for the BEC and the BSC for degrees r = o(m). Recently Samorodnitsky proved
new bounds on the weight distribution of codes whose duals are capacity achieving for the BEC
[Sam]. When combined with the result of [KKM+17] this implies bounds on the weight distribution
of RM codes of constant rate (i.e. degrees r ∈ [m/2 ±O(

√
m)]).

While the results of [KLP12, ASW15, Sam] mostly give non trivial bounds for constant weights
β < 1/2, it is an intriguing question to better understand the weight distribution for weights
closer to 1/2. When studying weights close to 1/2 it is more convenient to consider the bias of a
polynomial, rather than its weight. The bias of a polynomial is the difference between the fraction
of its zero evaluations to the fraction of its nonzero evaluations. Thus, having bias at most ǫ
corresponds to having weight at least 1−ǫ

2 . It is easy to see (due to symmetry) that the expected
bias of a random polynomial is zero, and, Intuitively, we expect a random polynomial to have
bias close to zero, in the same way that a random function is nearly unbiased. It is therefore
natural to ask how concentrated around zero is the bias of a random polynomial. To the best of
our knowledge, besides what is implied by [KLP12, ASW15, Sam], the other known result on the
weight distribution in this regime, over F2, is due to Ben Eliezer, Hod and Lovett who gave an upper
bound on the number of m-variate, degree r polynomials of bias at least 2−c·m

r , where c is some
positive constant depending on the ratio r/m [BEHL12] (this result was later extended to other
prime fields in [BGY18]). Thus, prior to this work no strong bounds were known for linear degrees
and sub-constant bias. Besides being a natural question, our proofs demonstrate that improving
the bound on the weight distribution in this regime leads to improved results on the performance
of RM codes.
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1.2 Our results

1.2.1 Weight distribution

We prove new results on the weight distribution of RM codes. Specifically, we prove new upper
bounds on the number of polynomials of weight at most β, for β < 1/2, and on the number of
polynomials that have bias at least ǫ (this result only holds for degrees r < m/2). We complement
this result by proving a lower bound on the number of polynomials that have bias at least ǫ.

To state our results we shall need the following notation.

Definition 1.1. We denote wt(f) = Ex[f(x)] = Prx[f(x) = 1] and bias(f) = Ex[(−1)f(x)]. For
any β ∈ [0, 1] we let, Wm,r (β) , |{f ∈ RM(m, r) : wt(f) ≤ β}|.

Our first result is an upper bound on the weight distribution for weights smaller than 1/2.

Theorem 1.2. Let r,m, ℓ ∈ N such that r ≤ m and write γ = r/m. Then,

Wm,r(2
−ℓ) ≤ exp2

(

O(m4) + 17(cγℓ+ dγ)γ
ℓ−1

(

m

≤ r

))

,

where cγ = 1
1−γ and dγ = 2−γ

(1−γ)2
.

This bound improves an earlier result by Abbe et. al. [ASW15] in two aspects. First, our result
applies to any degree r, while their result only holds for r < m/4. Second, the leading term in

the exponent in our result is O
(

ℓγℓ−1
(

m
≤r

)

)

as opposed to O
(

ℓ4γℓ−1
(

m
≤r

)

)

in [ASW15] (to see this

compare Theorem 1.2 to Theorem 3.3 in [ASW15]).
Recently [Sam] proved new results on the weight distribution of codes whose duals achieve

capacity.4

Theorem 1.3 (Proposition 1.6 in [Sam]). Let C be the dual of a linear code C⊥, of length n,
achieving BEC capacity. Let R = R(C) be the rate of C. Let (b0, ..., bn) be the distance distribution
of C.5 Then for all 0 ≤ i ≤ n it holds that

bi ≤ 2o(n) ·
(

1

1−R

)i·2 ln 2

.

As RM(m/2,m) achieves capacity for the BEC and is (more or less) its own dual we get that

Wm,m/2

(

2−ℓ
)

≤ exp2

(

2−ℓ+1 ln 2 · 2m
)

= exp2

(

2−ℓ+2 ln 2 ·
(

m

≤ m/2

))

.

This result is better than what Theorem 1.2 gives for r = m/2 (i.e. γ = 1/2). Nevertheless we note
that even if it was the case that RM codes achieve capacity for the BEC for every degree, then for
degrees r = γm, for γ < 1/2, the bound in Theorem 1.2 will be better than the one in Theorem 1.3
as the leading term in the exponent in Theorem 1.2 is O(ℓγℓ−1

(m
≤r

)

) whereas Theorem 1.3 gives

O(2−ℓ
(

m
≤r

)

) as leading term.
Next, we state our upper bounds on the number of polynomials of bias at least ǫ. We first state

our result for the case that r < m/2.

4We shall use log x to denote the base 2 logarithm and ln x for the natural logarithm.
5i.e. bi is the number of codewords of weight i/n.
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Theorem 1.4. Let ℓ,m,∈ N and let 0 < γ(m) < 1/2 − Ω

(

√

logm
m

)

be a parameter (which may

be constant or depend on m) such that
ℓ+log 1

1−2γ

(1−2γ)2 = o(m). Then,

Wm,γm

(

1− 2−ℓ

2

)

≤ exp2

(

O(m4) +
(

1− 2−c(γ,ℓ)
)

(

m

≤ r

))

,

where c(γ, ℓ) = O
(

γ2ℓ+γ log(1/1−2γ)
1−2γ + γ

)

.

Remark 1.5. To make better sense of the parameters in the theorem we note the following.

• When γ < 1/2 is a constant, c(γ, ℓ) = O(ℓ).

• The bound is meaningful up to degrees
(

1
2 −Ω

(√
logm√
m

))

m, but falls short of working for

constant rate RM codes.

• For γ which is a constant the upper bound is applicable to ℓ = o(m) (in fact it is possible to
push it all the way to some ℓ = Ω(m)). For γ approaching 1/2, i.e γ = 1/2− o(1), there is a
trade-off between how small the o(1) is and the largest ℓ for which the bound is applicable to.

Nevertheless, even if γ = 1/2 − Ω

(

√

logm
m

)

the lemma still holds for ℓ = Ω(logm) (i.e, for

a polynomially small bias).

To the best of our knowledge, besides the work of [KLP12] that speaks of constant degrees and
[ASW15, Sam] that do not say much when the bias is smaller than 1/2, the only other relevant
result is the following bound of of Ben Eliezer, Hod and Lovett [BEHL12].

Theorem (Lemma 2 in [BEHL12]). Let m, r ∈ N and ǫ > 0 such that r ≤ (1 − δ)m. Then there
exist positive constants c1, c2 (which depends solely on δ) such that,

Prf

[

|bias(f)| ≥ 2−c1
m
r

]

≤ exp2

(

−c2

(

m

≤ r

))

,

where the probability is over a uniformly random polynomial with m variables and degree ≤ r.

We see that for linear degrees (r = Ω(m)) this result gives a bound on the number of polynomials
(or codewords) that have at least some constant bias, whereas Theorem 1.4 holds for a wider range
of parameters and in particular can handle bias which is nearly exponentially small. We now state
our upper bound for arbitrary degrees.

Theorem 1.6. Let r ≤ m ∈ N and ǫ > 0. Then,

Prf∼RM(m,r) [|bias(f)| > ǫ] ≤ 2 exp

(

−2rǫ2

2

)

.

Compared to the result of [BEHL12] this gives a weaker estimate as the upper bound does
not show that the number of codewords is at most the size of the code to some constant power
smaller than 1. On the other hand our result holds for sub-constant bias as well, and in fact it
gives meaningful bounds also for exponentially small bias.

Finally we note that our results answer a question posed by Beame, Oveis Gharan and Yang
[BGY18]. They asked whether it is possible to obtain similar bounds to those of [BEHL12] where
the bias does not have m

r in the exponent. The results stated in Theorem 1.4 and Theorem 1.6
provide such bounds.

We next state our lower bound on the number of polynomials of bias at least ǫ.
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Theorem 1.7. Let 20 ≤ r ≤ m,∈ N. Then for any integer ℓ < r/3 and sufficiently large m it
holds that

∣

∣

∣f ∈ RM(m, r) : bias(f) ≥ 2−ℓ
∣

∣

∣ ≥ 1

2
· exp2





ℓ−1
∑

j=1

(

m− j

≤ r − 1

)



 .

Comparing the upper bound in Theorem 1.4 to Theorem 1.7 we see that there is a gap between
the two bounds. Roughly, the lower bound on number of polynomials that have bias at least ǫ
matches the upper bound corresponding to bias at least

√
ǫ. This may be a bit difficult to see when

looking at Theorem 1.4 but see Remark 3.16 for a qualitative comparison.

1.2.2 Capacity results for Reed-Muller codes

There are three settings of parameters for which RM codes were known to achieve capacity6 in the
BEC: Degrees r(m) = o(m) (See Theorem 1.2 in [ASW15]); Constant rate, i.e., when the degree
is r(m) = m

2 ± O(
√
m) (See [KKM+17]); Degrees r(m) = m − o(

√

m/ logm) (See Theorem 1.4
in [ASW15]). Perhaps surprisingly, these results are obtained via very different approaches. As
for errors, the situation is even worse and prior to this work the only setting for which it was
known that RM codes achieves capacity was the low degree setting, r(m) = o(m) (Theorem 1.7 of
[ASW15]).

Using our new upper bounds on the weight distribution of RM codes we obtain the following
improvements on the low degree regime.

Theorem 1.8. For any γ ≤ 1/50 the RM code RM(m,γm) achieves capacity for the BEC.

Theorem 1.9. For any γ ≤ 1/70 the RM code RM(m,γm) achieves capacity for the BSC.

The next table summarizes the range of parameters for which RM codes achieve capacity. Our
results for each channel appear in the right most column.

r = o(m) r ∈ [m/2 ±O(
√
m)] r = m− o(

√

m/ logm) This Work

BEC [ASW15] [KKM+17] [ASW15] r ≤ m/50

BSC [ASW15] ? ? r ≤ m/70

Table 1: Capacity results for RM codes

1.3 Reed-Muller codes under random noise

Finally, we show that although we do not know whether RM codes of higher degrees achieve
capacity they can nevertheless handle a large fraction of random errors and erasures up to rates
polylogarithmic in the length of the code.

Theorem 1.10. For any γ < 1/2 − Ω
(√

logm√
m

)

, RM(m,γm) can efficiently decode a fraction of

1− o(1) random erasures.
6We formally define the notion of achieving capacity in Section 2.
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Theorem 1.11. For any γ < 1/2 − Ω
(√

logm√
m

)

the maximum likelihood decoder for RM(m,γm)

can decode from a fraction of 1/2 − o(1) random errors.

Observe that the only difference between these results and what we would have achieved had
we known that RM codes achieve capacity for such degrees, is the o(1) term. The o(1) term in
Theorem 1.10 and Theorem 1.11 is larger than the corresponding term in capacity achieving codes.
Similarly, the work of Saptharishi, Shpilka and Volk [SSV17] (and the improved version in [KP18])
that gave an efficient decoding algorithm for RM(m,O(

√
m)) was able to decode from a fraction of

1/2 − o(1) random errors and here too the o(1) term is not the one guaranteed from the fact that
these codes achieve capacity.

Finally, we note that a result similar to Theorem 1.10 could have been obtained by the authors
of [ASW15] (although they did not study this problem), using their results on weight distribution,
albeit for degrees up to m/4. The reason we are able to push this to all degrees up to (roughly)
m/2 is that our bounds on the weight distribution hold for such degrees as well. For the BSC, we
needed a stronger bound on the error of the maximum likelihood decoder than the one in [ASW15]
(See lemma 5.1), in addition to our new results on the weight distribution.

1.4 Proof strategy

We first explain how we approach the problem of proving that RM codes achieve capacity for the
BEC and the BSC. We basically follow the same general strategy that Abbe et. al. [ASW15]
applied in their proof for the low degree regime (which is similar to the approach of [Pol94]). For
simplicity, let us focus on the case of random erasures. In [ASW15] the authors used the well known
fact that the following is an upper bound on the probability that RM(m, r) cannot recover from s
random erasures

∑

β

(1− β)2
m−s ·Wm,r (β) . (1)

Thus, proving that RM codes achieve capacity for random erasures reduces to showing that the
above tends to zero as m tends to infinity. Intuitively, we want to show that Wm,r (β) decays faster
than (1 − β)2

m−s so that the sum remains very small. In order to estimate the sum, the authors
of [ASW15] partition the summation over β to the dyadic intervals [2−k−1, 2−k] and show that
each such interval sums to a small quantity. To show this they use the following elementary upper
bound,

∑

2−k−1≤β≤2−k

(1− β)2
m−s ·Wm,r (β) ≤ (1− 2−k−1)2

m−sWm,r

(

2−k
)

.

Inspecting their argument, we learn that the problem in extending it to larger degrees lies in the
regime of weights which are very close to 1/2. Roughly, the leap from small bias (i.e, weight roughly
1/2) to weight 1/4 is too crude and loses too much information. To overcome this, we partition
the interval [1/4, 1/2] further to smaller dyadic intervals. Specifically, we start with polynomials of
bias δ, for some subconstant δ, and double the bias until we reach bias 1/2 (equivalently, weight
1/4). Finally, we use Theorem 1.4 to estimate the sum over these intervals. For the case of BSC we
need to strengthen the upper bound on the decoding error of [ASW15]. This turns to be a rather
delicate task and in particular we end up using the infinite Taylor expansion of the binary entropy
function and we cannot just take the first few terms in it. See Lemma 5.1.

The proofs of Theorems 1.10 and 1.11 are similar in spirit. They are based on estimating the
relevant sums. The main point being that by not insisting on the exact probability of errors or
erasures coming from the capacity calculations, but rather altering it by subtracting from it a o(1)
term, is sufficient to show that the probability of error in the recovery algorithms tend to zero.
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We now explain how we get our improved bounds on the weight distribution. Although not
stated explicitly in this way before, the main idea in [KLP12] and [ASW15], and in this work as
well, is that in order to bound the number of polynomials of certain weight we would like to find a
relatively small δ-net, in the space of all functions Fm

2 → F2, with respect to the Hamming distance,
such that all low weight polynomials are contained in small balls around the elements of the δ-net.
Similar to [KLP12, ASW15] the elements of our δ-net are not going to be low degree polynomials
themselves. To get effective bounds on the number of low weight/bias polynomials we would like
the δ-net to be as “efficient” as possible. This means that we would like the δ-net to be relatively
small, that no ball around an element of the δ-net should contain too many polynomials, and
that the union of the balls cover all low weight/bias polynomials. We shall therefore focus on the
following two important parameters of the δ-net: the size of the δ-net and the maximum number
of polynomials from our set that are contained in each ball. Intuitively, these two quantities are
inversely correlated – the larger the δ-net is the better it approximates our set.

Adopting this point of view, [KLP12] constructed a δ-net such that each ball contains at most
one low weight polynomial. Their beautiful observation was that centers for the δ-net, for degree-r
polynomials, can be described as explicit functions of some number of polynomials of lower degree.
Counting the number of such possible representations they obtained a bound on the size of the
δ-net. However, since they insisted on having at most one low weight polynomial in every ball this
resulted in a relatively large net. In [ASW15] the net was constructed in such a way that balls
contained many low weight polynomials (though not too many). This allowed Abbe et al. to have a
smaller net and consequently they obtained a significant improvement over [KLP12]. The primary
observation in [ASW15] is that the maximum number of low weight polynomials that are contained
in each ball, is related to the weight distribution and so a recursive approach can be taken. That is,
if we consider balls of radius δ then the number of polynomials in such a ball is at most the number
of polynomials of weight at most 2δ. The centers of the balls were constructed in a similar fashion
to [KLP12], taking into account that we allow balls to contains several polynomials, and [ASW15]
further improved over [KLP12] by making a tighter analysis of the number of possible centers.

In this work we take a similar approach but we improve upon [ASW15] in several ways. First,
we show that the counting argument of [ASW15] is not tight for low weight polynomials and give a
tighter analysis. We then focus on low bias polynomials. [KLP12, ASW15] did not give good bounds
in this regime and obtaining improved results for such polynomials was essential for proving the
results on the capacity (this should be clear from the explanation above). To analyze polynomials
having low bias we give yet a tighter analysis of the possible number of possible elements in the
δ-net. Very roughly, each element of the net can be represented as an explicit function of several
derivatives of one of the low bias polynomials (this is true not just for low bias polynomials).
One idea in the improvement of [ASW15] over [KLP12] is that derivatives of polynomials can be
represented as polynomials in fewer variables. This allowed some saving in the counting argument.
We make further improvement by noting that different derivatives contain information about each
other. This allows us to get a better control of the amount of information encoded in the list
of derivatives and as a result obtain a better bound on the size of the net. Furthermore, in this
regime of parameters, both [KLP12, ASW15] essentially picked a net that has at most one low bias
polynomial in each ball. We show that by allowing several polynomials per ball we can get another
significant improvement in the size of the net.

1.5 Organization

We start by describing the model of random erasures and random errors (Shannon’s model), and
the notion of capacity achieving codes (see Section 2). In Section 3 we prove our main results
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on weight distribution of RM codes, which are Theorem 1.2 , Theorem 1.4 and Theorem 1.7. In
Section 4.1 we prove that for any γ ≤ 1/50 the RM code RM(m,γm) achieves capacity for the
BEC and in Section 4.2 we prove that RM codes of degree (1/2− o(1))m can recover from 1− o(1)
random erasures.

In Section 5 we prove Lemma 5.1. In Section 5.1 we prove that for any γ ≤ 1/70 the RM code
RM(m,γm) achieve capacity for the BSC and in Section 5.2 we show that RM codes of degrees
(1/2 − o(1))m can recover from 1/2 − o(1) random erasures.

In Section 6 we discuss the result and some open problems.

2 Preliminaries

2.1 Reed-Muller codes

Recall that a linear binary code of block length n and dimension k is a linear subspace C of Fn
2

with dimension k.

Definition 2.1. The code RM(m, r) ⊆ F
2m
2 is defined as all evaluation vectors of multi-variate

polynomials over F2 with m variables and degree at most r. That is, for every such polynomial f
there is a corresponding codeword (f(a))a∈Fm

2
.

It is clear that RM(m, r) is a linear code with blocklength is 2m and rate R = 2−m
(m
≤r

)

.

When r(m) is a fixed integer function, e.g r(m) = 3, r(m) = ⌈√m⌉, r(m) = ⌈m/10⌉, rather
than looking at specific values of r, and m we will be thinking about the family of codes RM(m, r)
as m goes to infinity. In particular, we will be mostly interested in the setting r(m) = ⌈γm⌉ where
γ is either a positive constant or a fixed function of m. To keep the notation simple, we often write
r(m) = γm instead of r(m) = ⌈γm⌉. Note that when γ is a constant, the rate tends to zero if
γ < 1/2, equals 1/2 if γ = 1/2, and tends to 1 if γ > 1/2.

2.2 Shannon’s noise model

We now formally define the BECp and the BSCp, and formalize the task of recovering from random
erasures and random errors.

Definition 2.2. Given p ∈ [0, 1] and y ∈ {0, 1}n define the following two distributions BECp(y),
BSCp(y) as follows:

• BECp(y): Every bit of y is replace with ‘?’ with probability p independently and remains
unchanged otherwise.

• BSCp(y): Every bit of y is flipped with probability p independently and remains unchanged
otherwise.

Note that BECp(y) is a distribution over {0, 1, ?}n while BSCp(y) is over {0, 1}n.

We now explain the tasks of recovering from random errors or erasures. We start with erasures:
given z ∼ BECp(y) recover y. A necessary condition for this to be possible is that there exists a
unique codeword y that agrees with z on its non-erased coordinates, i.e either zi = yi or zi =?.
In fact, for linear codes (in particular RM code), assuming there exists a unique codeword y that
agrees with z on its non-erased coordinates, recovering y from z can be done efficiently by solving a
system of linear equations. Recovering from errors is more subtle. Suppose z ∼ BSCp(y) then y is
possibly any string (though some strings are more likely than others). Therefore, to formally define
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recovering from random errors we need to specify the decoding procedure. One possible choice is
the minimum distance decoder which decodes y to the closest codeword,

MD(z) = argmin
y∈C

{dist (y, z)} .

Another possible choice is the maximal-likelihood decoder in which we decode y to the most probable
codeword,

ML(z) = argmax
y∈C

Pr[y is the original codeword given z] .

In the BSC, it is not hard to see that the ML decoder and the MD decoder are equivalent. We
note though that unlike the case of erasures, both algorithms are not efficient and in general it
is not clear how to get efficient decoding algorithms for RM codes under random errors. This is
quite ordinary in this are and this is also the kind of results obtained in [ASW15]. Thus, the MK
(or MD) decoder can be seen as providing information theoretic decoding rather than an efficient
algorithm and recovering y given z ∼ BSCp(y) is interpreted as ML(z) = y.

We note that the best result in this area is [SSV17] (see also [KP18] for an improved algorithm
in the same setting of parameters) that gave efficient decoding algorithms for RM codes of degree
O(

√
m) from a fraction of 1/2− o(1) random errors. In particular, no efficient algorithm is known

for higher degrees.
As remarked earlier, the task of recovering y from z (either in the BEC or in the BSC) is

a probabilistic task as one cannot expect to be always correct but only with some probability.
Therefore, we are interested in the probability of recovering correctly y from z ∼ BECp(y). This
probability depends solely on the code’s structure and p.

Definition 2.3. Let {Cm} family of binary linear codes. We say that {Cm} can recover from
random erasures with parameter p = p(m) if,

Prz∼BECp(y)[we can uniquely recover y from z] = 1− o(1) ,

where the o(1) means that it is a function of m that tends to zero as m tends to infinity. Similarly,
we say that {Cm} can recover from random errors with parameter p if,

Prz∼BSCp(y)[ML(z) = y] = 1− o(1) .

We now formally define the notion of capacity achieving codes for the BEC and the BSC.
This becomes subtle when considering rates which are either sub-constant or approaching 1. The
following definition, which also appears in [ASW15], captures the notion of achieving capacity for
codes with sub-constant rates and also constant rates (but not rates approaching 1 which we do
not study in this work).

Definition 2.4. Let {Cm} be a family of binary linear codes with rate {Rm} and block length {nm}.

1. We say {Cm} achieves capacity for random erasures if for any δ > 0 and sufficiently large
m, the code Cm can recover from random erasures with parameter pm = 1 − Rm(1 + δ).
Equivalently, Cm can recover from random erasures with parameter pm = 1 − Rm(1 + o(1))
where the o(1) term is a function that tends to zero with m.

2. We say {Cm} achieves capacity for random errors if for any δ > 0 and sufficiently large m, the
code Cm can recover from random errors with parameter pm satisfying h (pm) = 1−Rm(1+δ).
Equivalently, Cm can recover from random errors with parameter pm satisfying h (pm) =
1−Rm(1 + o(1)) where the o(1) term is a function that tends to zero with m.
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2.3 Discrete derivatives

An important tool in our estimate of the weight distribution of RM codes is discrete derivatives.

Definition 2.5. Let f : Fm
2 → F2 a function and y ∈ F

m
2 . Define the derivative of f in direction y

by,
∆yf(x) = f(x+ y) + f(x) .

Also, define the order k derivative of f in direction Y = (y1, . . . , yk) by,

∆Y f(x) = ∆y1∆y2 · · ·∆ykf(x) .

Proposition 2.6. The following is true for discrete derivatives over F2.

1. Degree Decrease: For any f : Fm
2 → F2 and y ∈ F

m
2 it holds that deg(∆yf) ≤ deg(f)− 1.

2. The derivative is a linear operator.

3. Commutative: High order derivative is independent in the order of differentiation. That is,
for any y1, y2 ∈ F

m
2 and f : Fm

2 → F2 it holds that ∆y1∆y2f = ∆y2∆y1f .

4. Let {ei}mi=1 ⊆ F
m
2 be the standard basis for F

m
2 then ∆eif is just the formal derivative of f

with respect to the variable xi.

5. Let Y = (y1, . . . , yk) and ∆Y f the k’th order discrete derivative of some function. If Y
contains linearly dependent vectors then ∆Y f ≡ 0 is the zero function. Otherwise, ∆Y f
depends only on span {y1, . . . , yk}. This shows that the derivative in direction Y actually
depends only on the subspace it spans rather than the specific vectors in Y .

6. Let y1, . . . , yt ∈ F
m
2 and I = {j1, . . . , js} ⊆ {1, 2, . . . , t} non-empty. Then,

∆∑

i∈I yi
f(x) =

s
∑

ℓ=1

∆yjℓ
f

(

x+

ℓ−1
∑

i=1

yji

)

.

2.4 Useful inequalities

Throughout the paper we will rely on the following well known inequalities.

Theorem 2.7 (Hoeffding’s Inequality). Let X1, . . . ,Xt independent random variables where each
Xi is supported on the interval [ai, bi]. Then,

Pr

[

1

t

t
∑

i=1

Xi − µ ≥ ǫ

]

≤ exp

(

2ǫ2t2
∑t

i=1(bi − ai)2

)

,

with µ = E
[

1
t

∑t
i=1 Xi

]

.

Theorem 2.8 (Chernoff’s inequality). Let X1, . . . ,Xn ∈ {0, 1} independent random variables such
that Pr[Xi = 1] = p. Then, for 0 < ǫ < 1

Pr

[

∑

i

Xi ≤ (1− ǫ)pn

]

≤ exp
(

−pnǫ2/2
)

.
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Although similar to Hoeffding’s inequality, Chernoff’s gives a better bound when p is small. For
proofs see e.g. [MU05].

Another concentration inequality we shall use is McDiarmid’s inequality [McD89]. Before stat-
ing the inequality, we need to define L-Lipschitz functions. We say that a function F : {0, 1}n → R

is L-Lipschitz if for all 1 ≤ i ≤ n and any choice of x1, . . . , xi, x
′
i, . . . , xn ∈ {0, 1} it holds that

∣

∣F (x1, . . . , xi, . . . , xn)− F (x1, . . . , x
′
i, . . . , xn)

∣

∣ ≤ L .

Theorem 2.9 (McDiarmid’s Inequality). Let X1, . . . ,Xn ∈ {0, 1} be independent random variables.
Let F : {0, 1}n → R be L-Lipschitz. Then,

PrX1,...,Xn [|F (X1, . . . ,Xn)− E[F (X1, . . . ,Xn)]| ≥ ǫ] ≤ exp

(

− 2ǫ2

nL2

)

.

Another useful inequality gives an estimate on the size of balls in the hamming metric.

Lemma 2.10. For any n, k ∈ N such that k
n ≤ 1

2 we have,

2nh(k/n)−O(logn) ≤
(

n

k

)

≤
(

n

≤ k

)

≤ 2nh(k/n) .

A proof for the upper bound can be found in section 3.3 of [GRS12] and the lower bound easily
follows from Stirling’s approximation n! ≈

√
2πn

(

n
e

)n
(for proof see e.g [Rob55]).

3 Weight Distribution

In this section we prove our main results on the weight distribution of RM codes. On the way we
explain the results of [KLP12] and [ASW15] as we will be building upon their results. In the rest
of this section we shall think of the number of variables m as growing to infinity and the degree r
will always be γ ·m for some constant 0 < γ < 1. In some results we will need to restrict γ to be
less than 1/2 but in some it will be unrestricted.

3.1 General technique of [KLP12, ASW15]

We start by describing the idea behind the results of [KLP12] and the improvements made in
[ASW15].

Definition 3.1. Let S ⊆ RM(m, r) be a subset of polynomials. We say A ⊆ {f : Fm
2 → F

m
2 } is

a δ-net for S if it satisfies the following property: For every f ∈ S there exists g ∈ A such that
dist (f, g) ≤ δ. We stress that A need not to be a subset of RM(m, r).

Plainly speaking, a δ-net for a set S is a collection of balls with radius δ, in the space of functions
f : Fm

2 → F2 (i.e, all functions and not just low-degree polynomials), that covers all of S. The
following lemma from [KLP12] guarantees the existence of a small δ-net for the set of polynomials
f ∈ RM(m, r) of weight at most β = 2−k.

Lemma 3.2 (Lemma 2.2 in [KLP12]). Let f : Fm
2 → F2 be a function such that wt(f) ≤ 2−k for

k ≥ 2 and let δ > 0. Then, there exist directions Y1, . . . , Yt ∈ (Fm
2 )k−1 such that

Prx [f(x) 6= Maj (∆Y1f(x), . . . ,∆Ytf(x))] ≤ δ ,

where t = ⌈17 log(1/δ)⌉.
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We note that [KLP12] only gave the bound t = O(log(1/δ)) but to get our results we need the
exact constants. We give the proof of the lemma in Appendix B.

Corollary 3.3. For any k, t ∈ N define,

Ak,t =
{

Maj (∆Y1f, . . . ,∆Ytf) : Y1, . . . , Yt ∈ (Fm
2 )k , f ∈ RM(m, r)

}

.

Then Ak−1,t is a δ-net for
{

f ∈ RM(m, r) : wt(f) ≤ 2−k
}

where t = ⌈17 log(1/δ)⌉.

The approach in [KLP12] is to consider δ smaller than half the minimum distance of the RM
code so that A obtained via Corollary 3.3 uniquely decodes f ∈ RM(m, r). Along with a simple
counting argument this gives,

Wm,r

(

2−k
)

≤ |Ak−1,t| ,

where t = O(r). To bound |Ak−1,t|, they observe that taking a discrete derivative reduces the
degree hence |Ak−1,t| is bounded by the number of t-tuples of degree r − k + 1 polynomials. This
yields,

Wm,r

(

2−ℓ
)

≤ exp2

(

O(r) ·
(

γ

1− γ

)ℓ−1( m

≤ r

)

)

. (2)

In [ASW15] the authors used the following observation in order to obtain a recurrence relation for
Wm,r

(

2−k
)

.

Proposition 3.4. Let S ⊆ RM(m, r) be a subset of polynomials with a δ-net A. Then,

|S| ≤ |A| ·Wm,r (2δ) .

Proof. By a simple counting argument, it suffices to show that every ball with radius δ in the net
contains at most Wm,r (2δ) points from S. To see this, let f ∈ A and denote,

{g ∈ S : dist (f, g) ≤ δ} = {g1, . . . , gj} .

We need to prove that j ≤ Wm,r (2δ). Note that by the triangle inequality,

dist (g1, gi) ≤ 2δ ∀i = 1, 2, . . . , j .

Therefore, the set {g1 + gi : i = 1, . . . , j} contains j distinct degree r polynomials of weight at most
2δ and so j ≤ Wm,r (2δ).

Corollary 3.5. Let r,m, ℓ ∈ N such that r ≤ m. Then,

Wm,r

(

2−ℓ
)

≤ |Aℓ−1,t| ·Wm,r

(

2−ℓ−1
)

,

where t = 17(ℓ+ 2).

Proof. Apply Proposition 3.4 with S =
{

f ∈ RM(m, r) : wt(f) ≤ 2−ℓ
}

, δ = 2−ℓ−2 and the net
Aℓ−1,t from Corollary 3.3.

The next corollary, which follows easily from Corollary 3.5, was not stated before and relying
on it simplifies some of the calculations of [ASW15].
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Corollary 3.6. Let m, ℓ ∈ N, 0 < γ < 1 and set r = γm. Then,

Wm,r

(

2−ℓ
)

≤
r
∏

j=ℓ

∣

∣Aj−1,17(j+2)

∣

∣ .

Proof. Repeatedly apply Corollary 3.5 with parameter ℓ′ starting at ℓ′ = ℓ up to ℓ′ = r+1. When

ℓ′ = r + 1 we have Wm,r

(

2−ℓ′
)

= Wm,r

(

2−r−1
)

= 1, as the only polynomial f ∈ RM(m, r) of

weight less than 2−r is the zero polynomial.

In [ASW15] this recursive approach was combined with a sharper estimate on |Ak,t| (compared
to the one given in [KLP12]) to obtain the following improvement of eq. (2) (Theorem 1.5 in
[ASW15]),

Wm,r

(

2−ℓ
)

≤ exp2

(

(

O(ℓ4γℓ−1) + o(1)
)

(

m

≤ r

))

. (3)

We shall later give a better analysis (based on Corollary 3.5) and show that one can replace
O(ℓ4γℓ−1) with O(ℓγℓ−1) in eq. (3).

3.2 Bounding |Ak,t|
In this section we improve the bounds of [KLP12, ASW15] on the size of Ak,t (as defined in
Corollary 3.3). A naive estimate, which is the one used in [KLP12], relies on the basic observation
that taking an order k derivative decreases the degree by at least k. Therefore, one can estimate
|Ak,t| by the number of all possible sequences of polynomials in m variables of degree r − k,

|Ak,t| ≤ exp2

(

t

(

m

≤ r − k

))

.

However, this estimate is far from being tight (especially for polynomials of high degrees). That
is, there are much fewer polynomials of degree r − k that are a derivative of order k of a degree r
polynomial, than general degree r− k polynomials. The following estimate appears in the proof of
Theorem 3.3 in [ASW15]. As we rely on it later we shall give the proof.

Proposition 3.7 (Implicit in the proof of Theorem 3.3 of [ASW15]). For any k, t ∈ N we have,

|Ak,t| ≤ exp2

(

mtk + t

(

m− k

≤ r − k

))

.

Proof. Recall that

Ak,t =
{

Maj (∆Y1f, . . . ,∆Ytf) : Y1, . . . , Yt ∈ (Fm
2 )k , f ∈ RM(m, r)

}

.

Consider an order k derivative in a fixed direction Y ∈ (Fm
2 )k. Without loss of generality, we may

assume that Y = (e1, . . . , ek) where ei is the standard basis vector, i.e ∆Y f is simply the formal
derivative according to the variables x1, . . . , xk. It is not hard to see that ∆Y f is a degree r − k

polynomial in the m−k variables xk+1, . . . , xm. Hence, there are at most 2(
m−k
≤r−k) such polynomials.

As there are at most 2mk possible directions Y ∈ (Fm
2 )k, there are at most 2

mk+(m−k
≤r−k) polynomials of

the form ∆Y f . In particular, the number of sequences (∆Y1f, . . . ,∆Ytf) is at most
(

2
mk+(m−k

≤r−k)
)t

.

Clearly, this is also an upper bound on |Ak,t|.
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We shall now present an additional saving which applies to A1,t and is essential for the analysis
in Section 3.4. Any F ∈ A1,t is a function of the following form,

F = Maj {∆y1f(x),∆y2f(x), . . . ,∆ytf(x)}

for some f ∈ RM(m, r) and y1, . . . , yt ∈ F
m
2 . Therefore, F is completely determined by specifying

the directions y1, . . . , yt and the derivatives (∆y1f,∆y2f, . . . ,∆ytf). The key observation is that
specifying ∆y1f already provides a lot of information about f and in particular about its derivatives.
Intuitively, given ∆y1f there are significantly fewer possible values for ∆y2f than in the case where
we do not know ∆y1f . While Proposition 3.7 is proved by estimating the number of distinct possible
functions ∆yf (for a fixed y), the proof of our next proposition upper bounds the number of distinct
possible sequences,

(∆y1f,∆y2f, . . . ,∆ytf)

for fixed y1, . . . , yt ∈ F
m
2 .

Proposition 3.8. Let m, r, t ∈ N such that t, r ≤ m and write γ = r/m. Then,

|A1,t| ≤ exp2



mt+
t
∑

j=1

(

m− j

≤ r − 1

)



 ≤ exp2

(

mt+
(

1− (1− γ̃)t
)

(

m

≤ r

))

,

where γ̃ = γ
(

1 + t
m−t

)

.

Proof. Fix some directions y1, . . . , yt ∈ F
m
2 . First note that we may assume y1, . . . , yt are linearly in-

dependent as if yj is some combination of {yi}i∈I then ∆yjf is completely determined by {∆yif}i∈I
(See Proposition 2.6). For simplicity, after applying a linear transformation, we may also assume
without loss of generality that yi = ei and so ∆yif is just the formal derivative with respect to xi.
Therefore the sequence,

(∆y1f,∆y2f, . . . ,∆ytf)

is determined only by the monomials of f containing xi for some i = 1, . . . , t. Thus, if we count the
number of monomials containing x1, then those that contain x2 but not x1 etc. we get that there
are exactly,

t
∑

j=1

(

m− j

≤ r − 1

)

such monomials. Hence, there are at most exp2

(

∑t
j=1

(m−j
≤r−1

)

)

such distinct sequences. This

estimate holds for fixed directions y1, . . . , yt ∈ F
m
2 . In order to get an upper bound on |A1,t|, we

need to take the union over all directions which gives another factor of 2mt.
To get the upper bound estimate observe the following combinatorial identity,

t
∑

j=1

(

m− j

≤ r − 1

)

=

(

m

≤ r

)

−
(

m− t

≤ r

)

.

A combinatorial explanation to this identity is that both sides count all degree r monomials that
contains some xi for i = 1, 2, . . . , t (an algebraic proof can be obtained using the identity

( n
≤k

)

=
( n−1
≤k−1

)

+
(n−1
≤k

)

). We shall also need the following inequality whose proof is given in Appendix A.
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Lemma 3.9. Let t, r ≤ m ∈ N. and write γ = r/m. Then, for γ̃ = γ
(

1 + t
m−t

)

it holds that

(

m− t

≤ r

)

≥ (1− γ̃)t
(

m

≤ r

)

.

Combining the two identities we get

t
∑

j=1

(

m− j

≤ r − 1

)

=

(

m

≤ r

)

−
(

m− t

≤ r

)

≤
(

m

≤ r

)

−
(

m

≤ r

)

(1− γ̃)t =

(

m

≤ r

)

(

1− (1− γ̃)t
)

,

and the upper bound follows.

Remark 3.10. One can try to make a similar argument also for sequences of higher order deriva-
tives. However, this is less easy than in the case of order-1 derivatives. The main issue is that in
the proof of Proposition 3.8 we used one basis and it was clear how different derivatives contribute
to one another. In contrast, higher order derivatives may be with respect to very different subspaces
that do not necessarily exhibit any apparent structure that can be used to quantify the mutual con-
tributions. We note however that even if a similar calculation could be obtained then the best bound
one can hope to get from such an argument is

|Ak,t| ≤ exp2

(

(1− (1− γk)t)

(

m

≤ r

))

.

Indeed, assuming kt ≤ m, the following sequence of derivatives for j = 1 . . . t:

Yj = (ejk+1, . . . , e(j+1)k) ,

would give that bound on |Ak,t| We note though that even assuming that this is the extremal case,
one will not obtain a significant improvement to Theorem 1.2.

3.3 Weight distribution for small weights

This section includes a new upper bound on Wm,r (ǫ). It is obtained by following the approach of
[ASW15] using the upper bound on Ak,t given in Proposition 3.7.

Theorem 1.2. Let r,m, ℓ ∈ N such that r ≤ m and write γ = r/m. Then,

Wm,r(2
−ℓ) ≤ exp2

(

O(m4) + 17(cγℓ+ dγ)γ
ℓ−1

(

m

≤ r

))

,

where cγ = 1
1−γ and dγ = 2−γ

(1−γ)2
.
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Proof. Apply Corollary 3.6 and the bound on |Ak,t| in Proposition 3.7 to obtain,

Wm,r(2
−ℓ) ≤

r
∏

j=ℓ

∣

∣Aj−1,17(j+2)

∣

∣

≤ exp2





r
∑

j=ℓ

17m(j − 1)(j + 2) + 17(j + 2)

(

m− (j − 1)

≤ r − (j − 1)

)





≤(∗) exp2



O(m4) + 17
r
∑

j=ℓ

(j + 2)γj−1

(

m

≤ r

)





= exp2



O(m4) + 17

r−ℓ
∑

j=0

(ℓ+ j + 2)γℓ+j−1

(

m

≤ r

)





≤ exp2



O(m4) + 17γℓ−1

(

m

≤ r

)



ℓ
∞
∑

j=0

γj +
∞
∑

j=0

(j + 2)γj









≤ exp2

(

O(m4) + 17(cγℓ+ dγ)γ
ℓ−1

(

m

≤ r

))

,

where cγ = 1
1−γ and dγ = 2−γ

(1−γ)2
. Inequality (*) follows from the inequality

(

m−j
≤r−j

)

≤
(

r
m

)j (m
≤r

)

(see Lemma A.1 in the appendix).

3.4 Weight distribution for small bias

This section includes two upper bounds on the number of polynomials f ∈ RM(m, r) with bias(f) ≥
ǫ. The first upper bound follows the ideas used to prove Theorem 1.2. Unfortunately it only applies
to degrees r = γm where γ < 1/2. The second upper bound is obtained using an elementary
concentration inequality known as McDiarmid’s inequality and holds for any γ > 0. We remark
that the second upper bound is much weaker than the first and it is instructive to compare the two.

3.4.1 Upper bound using derivatives

The starting point is Lemma 2.4 in [KLP12], which is analogous to Lemma 3.2 for low bias poly-
nomials, and guarantees the existence of a small δ-net for low-bias polynomials.

Lemma 3.11 (Lemma 2.4 in [KLP12]). Let f : Fn
2 → F2 be a function such that bias(f) ≥ ǫ > 0

and let δ > 0. Then, for t = ⌈2 log(1/ǫ) + log(1/δ) + 1⌉, there exist directions y1, . . . , yt ∈ F
m
2 such

that,

Prx

[

f(x) = Maj
(

∆∑

i∈I yi
f(x) : ∅ 6= I ⊆ [t]

)]

≥ 1− δ .

We give the proof of the lemma in Appendix B.

Corollary 3.12. For any t ∈ N define,

Bt =
{

Maj
(

∆∑

i∈I yi
f(x) : ∅ 6= I ⊆ [t]

)

: f ∈ RM(m, r) , y1, . . . , yt ∈ F
m
2

}

.

Then, for t = ⌈2 log(1/ǫ) + log(1/δ) + 1⌉, Bt is a δ-net for {f ∈ RM(m, r) : bias(f) ≥ ǫ}.
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Corollary 3.13. Let r,m, s, ℓ ∈ N such that r ≤ m. Set t = 2ℓ+ s+ 1. Then,

Wm,r

(

1− 2−ℓ

2

)

≤ |Bt| ·Wm,r

(

2−s+1
)

.

Proof. This follows from combining Proposition 3.4 with Corollary 3.12 for ǫ = 2−ℓ and δ = 2−s.

Proposition 3.14. Let t, r ≤ m ∈ N, Bt as in Corollary 3.12 and set γ = r/m. Then,

|Bt| ≤ exp2



mt+
t
∑

j=1

(

m− j

≤ r − 1

)



 ≤ exp2

(

mt+ (1− (1− γ̃)t)

(

m

≤ r

))

,

where γ̃ = γ
(

1 + t
m−t

)

.

Proof. By Proposition 2.6 first order derivatives in directions y1, . . . , yt determines the derivatives
in every direction within span {y1, . . . , yt}. Hence, |Bt| ≤ |A1,t| and the bound follows from Propo-
sition 3.8.

Proposition 3.15. Let m, r, s, ℓ ∈ N such that r ≤ m and write γ = r/m. Then,

Wm,r

(

1− 2−ℓ

2

)

≤ exp2

(

O(m4) +
(

1− (1− γ̃)2ℓ+s+1 + 17(cγ(s− 1) + dγ)γ
s−2
)

·
(

m

≤ r

))

,

where γ̃ = γ
(

1 + 2ℓ+s+1
m−(2ℓ+s+1)

)

, cγ = 1
1−γ , dγ = 2−γ

(1−γ)2
.

Proof. The proof follows from combining Corollary 3.13 with the estimates in Proposition 3.14 and
Theorem 1.2.

We are now ready to prove our main estimate on the weight distribution of RM codes.

Theorem 1.4. Let ℓ,m,∈ N and let 0 < γ(m) < 1/2 − Ω

(

√

logm
m

)

be a parameter (which may

be constant or depend on m) such that
ℓ+log 1

1−2γ

(1−2γ)2
= o(m). Then,

Wm,γm

(

1− 2−ℓ

2

)

≤ exp2

(

O(m4) +
(

1− 2−c(γ,ℓ)
)

(

m

≤ r

))

,

where c(γ, ℓ) = O
(

γ2ℓ+γ log(1/1−2γ)
1−2γ + γ

)

.

Proof. Let s = s(γ, ℓ) be the smallest natural number for which the following holds,

17(2s + 4)γs−2 ≤ 1

2

(

1− γ

(

1 +
2ℓ+ s+ 1

m− (2ℓ+ s+ 1)

))2ℓ+s+1

.

It is not hard to see that7 s = s(γ, ℓ) = O
(

γℓ+log(1/1−2γ)
1−2γ

)

. A short calculation that justifies this

estimate appears in Appendix C. We remark that the requirement
ℓ+log 1

1−2γ

(1−2γ)2
= o(m) enables us to

7It is possible to get more accurate bounds on s but since it does not play a major role in our proofs we settle for
the more rough estimate.

18



effectively replace γ̃ by γ (See Appendix C for details). Let t = 2ℓ+s+1. Applying Proposition 3.15

we get, for γ̃ = γ
(

1 + 2ℓ+s+1
m−(2ℓ+s+1)

)

, that

Wm,γm

(

1− ǫ

2

)

≤ exp2

(

O(m4) +

(

1− (1− γ̃)2ℓ+s+1 + 17

(

s− 1

1− γ
+

2− γ

(1− γ)2

)

γs−2

)

·
(

m

≤ γm

))

≤(∗) exp2

(

O(m4) +
(

1− (1− γ̃)2ℓ+s+1 + 17(2s + 4)γs−2
)

·
(

m

≤ γm

))

≤(†) exp2

(

O(m4) +
(

1− 1/2(1 − γ̃)2ℓ+s+1
)

·
(

m

≤ γm

))

≤ exp2

(

O(m4) +
(

1− 2−c(γ,ℓ)
)

(

m

≤ γm

))

,

where c(γ, ℓ) = log(1/(1 − γ̃)) · (2ℓ+ s+ 1) = O
(

γ2ℓ+γ log(1/1−2γ)
1−2γ

)

. Note that inequality (∗) holds
since γ < 1/2 and inequality (†) is due to the choice of s.

We note that the proof crucially relied on γ < 1/2 as otherwise we have that

(

1− (1− γ̃)2ℓ+s+1 + 17

(

s− 1

1− γ
+

2− γ

(1− γ)2

)

γs−2

)

> 1

and we do not get a meaningful upper bound on Wm,r

(

1−ǫ
2

)

.

3.4.2 Upper bound for high degrees

Theorem 1.4 proved upper bound on the number of polynomials having small bias for γ < 1/2.

In this section we given an upper bound on Wm,r

(

1−2−ℓ

2

)

for any r. The estimate that we get is

weaker than the one in Theorem 1.4, but its advantage is that it works for all degrees.
We are now ready to prove Theorem 1.6. To ease the reading we repeat its statement.

Theorem 1.6. Let r ≤ m ∈ N and ǫ > 0. Then,

Prf∼RM(m,r) [|bias(f)| > ǫ] ≤ 2 exp

(

−2rǫ2

2

)

.

Proof. First note that Ef∈RM(m,r)[bias(f)] = 0. Althought this is simple, for a reason that will soon
be clear, we show this using the following symmetry argument: The mapping f → 1+f is a bijection
from RM(m, r) to itself and bias(1 + f) = − bias(f). Hence, every contribution of f ∈ RM(m, r)
to the expectation Ef∈RM(m,r)[bias(f)] is cancelled by 1 + f and so Ef∈RM(m,r)[bias(f)] = 0.

In order to avoid cumbersome notation set M =
(

m
≤r

)

. We would like to think of the bias as

a function from the boolean hypercube {0, 1}M to R. Formally, let B = {hi(x)}Mi=1 be a basis to

RM(m, r) and define, F : {0, 1}M → R as

F (a1, . . . , aM ) = bias

(

M
∑

i=1

aihi(x)

)

.

Note that,
Prai∼{0,1} [F (a1, . . . , aM ) > ǫ] = Prf∼RM(m,r) [bias(f) > ǫ] .
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We would like to apply McDiarmid’s inequality (Theorem 2.9) for F . Thus, we would like to show
that F is a Lipschitz functions. This is not clear however and in fact, the question of whether F is
Lipschitz depends on the chosen basis. We next exhibit a basis for which F satisfies the Lipschitz
condition.

Let

S =

{

r
∏

i=1

(xi + bi) : bi ∈ {0, 1}
}

⊂ RM(m, r) .

Clearly |S| = 2r. Also, note that
∑

h∈S h ≡ 1 the constant function. It is not hard to see that the
elements of S are linearly independent and hence can be completed to a basis of RM(m, r). Denote
this basis by B = {hi(x)}Mi=1 and assume S = {hM−2r+1, . . . , hM}, i.e. we order the elements in B
in such a way that the elements of S are the last 2r basis elements.

Given f ∈ RM(m, r), let f =
∑M

i=1 ci(f)hi(x) where ci(f) ∈ {0, 1} are the coefficients of f with
respect to the basis B. Partition RM(m, r) to subsets as follows,

Zt1,...,tM−2γm
= {f ∈ RM(m, r) : ci(f) = ti ∀1 ≤ i ≤ M − 2r} .

Namely, we fix all coefficients of basis elements that do not belong to S to some values. By the law
of total probability,

Prf [|bias(f)| > ǫ] =
∑

t1,...,tM−2r

2−(M−2r)Prf
[

|bias(f)| > ǫ | f ∈ Zt1,...,tM−2r

]

.

Thus, it suffices to prove that for every t1, . . . , tM−2r it holds that,

Prf
[

|bias(f)| > ǫ | f ∈ Zt1,...,tM−2r

]

≤ 2 exp

(

−2rǫ2

2

)

Fix t1, . . . , tM−2r ∈ {0, 1} and set Z = Zt1,...,tM−2r
. We first note that the restriction of F to Z,

denoted F
∣

∣

Z
, is 21−r-Lipschitz. To see this notice that wt(hi) = 2−r. Thus, the difference in the

bias of a function f and f + hi is at most twice the weight of hi which is at most 21−r. Since
∑

h∈S h ≡ 1 the mapping f → 1 + f is a bijection from Z to itself. Using the same symmetry
argument used to show that Ef [bias(f)] = 0 we deduce that E[F

∣

∣

Z
] = 0. Applying McDiarmid’s

inequality we get that

Prai∼{0,1}
[∣

∣F
∣

∣

Z
(aM−2r+1, . . . , aM )

∣

∣ ≥ ǫ
]

≤ 2 exp

(

− 2ǫ2

2r · 22(1−r)

)

= 2exp

(

−2rǫ2

2

)

,

and since Prai∼{0,1}
[∣

∣F
∣

∣

Z
(aM−2r+1, . . . , aM )

∣

∣ ≥ ǫ
]

= Prf [|bias(f)| ≥ ǫ | f ∈ Z] the claim follows.

3.5 Lower bound on the weight distribution

In this section we prove a lower bound on the number of polynomials that have bias at least ǫ. To
avoid the use of ceilings and floors we shall prove the result for bias of the form ǫ = 2−ℓ.

Theorem 1.7. Let 20 ≤ r ≤ m,∈ N. Then for any integer ℓ < r/3 and sufficiently large m it
holds that

∣

∣

∣f ∈ RM(m, r) : bias(f) ≥ 2−ℓ
∣

∣

∣ ≥ 1

2
· exp2





ℓ−1
∑

j=1

(

m− j

≤ r − 1

)



 .
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Proof. Consider the following random polynomial,

g(x1, . . . , xm) =

ℓ
∑

i=1

xifi(xi+1, . . . , xm) ,

where fi ∼ RM(m, r) uniformly at random. It is not hard to see that different choices of (f1, . . . , fℓ)
yield different polynomials g(x) ∈ RM(m, r). We will show that with probability at least 1/2, over

the choice of g, it holds that bias(g) ≥ 2−ℓ+1. As there are exp2

(

∑ℓ
j=1

(m−j
≤r−1

)

)

such different

polynomials g, the lower bound follows. For (a1, . . . , aℓ) ∈ F
ℓ
2 define

g
∣

∣

(a1,...,aℓ)
(xℓ+1, . . . , xm) =

ℓ
∑

i=1

aifi(ai+1, . . . , aℓ, xℓ+1, . . . , xm) .

Note that

bias(g) = 2−ℓ + E(a1,...,aℓ)6=(0,...,0)[bias(g
∣

∣

(a1,...,aℓ)
)] , (4)

where the 2−ℓ term comes from the probability that (a1, . . . , aℓ) = (0, . . . , 0). Next we show that
with good probability the second term in the RHS is at least −2ℓ+1.

Fix some (a1, . . . , aℓ) 6= (0, . . . , 0) and observe that g
∣

∣

(a1,...,aℓ)
is a uniformly random polynomial,

over the variables xℓ+1, . . . , xm, of degree at most r − 1. Indeed, let k be such that ak = 1. Then,
as

g
∣

∣

(a1,...,aℓ)
(xℓ+1, . . . , xm) = fk(ak+1, . . . , aℓ, xℓ+1, . . . , xm) +

ℓ
∑

i=1,i 6=k

aifi(ai+1, . . . , aℓ, xℓ+1, . . . , xm)

and fk(ak+1, . . . , aℓ, xℓ+1, . . . , xm) is a uniformly random polynomial of degree r − 1 in
(xℓ+1, . . . , xm), we get that so is g

∣

∣

(a1,...,aℓ)
. Using Theorem 1.6 we have

Pr
[∣

∣

∣bias(g
∣

∣

(a1,...,aℓ)
)
∣

∣

∣ ≥ 2−ℓ−1
]

≤ 2 exp

(

−2r−12−2ℓ−2

2

)

.

By union bound we get that with probability at least

1− 2ℓ · 2 exp
(

−2r−12−2ℓ−2

2

)

> 1/2 ,

it holds that bias(g
∣

∣

(a1,...,aℓ)
) > −2−ℓ−1 for every (a1, . . . , at) 6= (0, . . . , 0). Hence,

Pr
[

bias(g) ≥ 2−ℓ−1
]

≥ Pr
[

bias(g
∣

∣

(a1,...,aℓ)
) ≤ −2−ℓ−1 ∀(a1, . . . , aℓ) 6= (0, . . . , 0)

]

> 1/2 .

This completes the proof.

Remark 3.16. We would like to compare the lower bound in Theorem 1.7 with the upper bound
in Theorem 1.4. These two estimates seem very different, but diving into the proof of Theorem 1.4
we see that the lower bound is obtained via Corollary 3.13. The upper bound on |Bt| is given in
Proposition 3.14. Thus, the lower bound in Theorem 1.4 has the leading term

ℓ−1
∑

j=1

(

m− j

≤ r − 1

)
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in the exponent whereas the upper bound has as leading term the sum

t
∑

j=1

(

m− j

≤ r − 1

)

,

where t as calculated in the proof of Theorem 1.4 is at least 2ℓ. Thus, there is at least a gap of a
quadratic factor between the lower and upper bounds. That is, our lower bound on the number of
polynomials that have bias at least ǫ has roughly the same leading term as the upper bound on the
number of polynomials that have bias at least

√
ǫ.

4 Reed-Muller codes under random erasures

In this section we study the behavior of RM codes under random erasures. In Section 4.1 we prove
Theorem 1.8 showing that RM codes achieve capacity for the BEC for degrees at most m/50. In
Section 4.2 we prove Theorem 1.10 showing that for degrees up to (1/2− o(1))m (for some explicit
o(1) function) RM codes can recover from 1− o(1) random erasures.

Throughout this section we denote r = γm where γ(m) ∈ (0, 1/2) < 1/2 is some parameter that
can be a constant or a function of m. We denote the probability that the family RM(m,γm) cannot
recover from random erasures with parameter p = p(m,γ) with λBEC(p, γ) (See Definition 2.3).

We start by proving an upper bound on λBEC(p, γ) that we shall use in both proofs. Recall
that the BECp erases every coordinate with probability p independently. I.e. every coordinate
is replaced with the symbol ‘?’ with probability p. Since codewords of the RM code correspond
to evaluation vectors, we can view corrupted codewords as evaluation vectors where some of the
evaluations were erased. We shall refer to the set of evaluation points erased from the codeword as
the erasure pattern. Thus, given a codeword f ∈ RM(m, r) and an erasure pattern S ⊆ F

m
2 , the

corresponding corrupted codeword is the evaluation vector of f with the evaluations over the set
S erased. The following well known lemma states exactly when can an erasure pattern be fixed.
In particular, this property only depends on the erasure pattern and not on the codeword whose
evaluations were erased.

Lemma 4.1. Let f ∈ RM(m, r) be a codeword and suppose we erase the evaluations on a set S ⊆
F
m
2 . Then, we can uniquely recover f iff there is no nonzero g ∈ RM(m, r) satisfying supp (g) ⊆ S,

where supp (g) = {x ∈ F
m
2 : g(x) 6= 0}.

Proof. We cannot uniquely decode f iff there exists h 6= f such that f
∣

∣

S
= h

∣

∣

S
or equivalently

(f − h)
∣

∣

S
= 0. By linearity of the code RM(m, r) the lemma follows.

Next, we use Lemma 4.1 to give an upper bound on λBEC(p, γ).

Lemma 4.2. For m ∈ N. Let γ = γ(m) ∈ (0, 1/2) be some parameter. Set r = γm and denote
R the rate of the RM code RM(m, r)). For a parameter c = c(m) ≥ 1 which may be constant or a
function of m let pc = 1− c ·R. Then for large enough m it holds that,

λBEC(pc, γ) ≤ µ(m,γ, c) +
∑

06=f∈RM(m,r)

(1− wt(f))
c(1−o(1))(m

≤r) ,

where µ(m,γ, c) = exp (−Ω (c · h (γ)m−O(logm))).
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Proof. Since c is fixed throughout the proof we drop the subscript c and denote p = pc. Let
y ∈ RM(m, r) and z ∼ BECp(y). Also, to avoid cumbersome notation we shall write c instead of
c(m). Denote by S = S(y, z) ⊆ F

m
2 the corresponding erasure pattern of z and so zi = yi for i 6∈ S

and zi = ‘?′ for i ∈ S. Note that S is chosen at random such that i ∈ S with probability p and
i 6∈ S with probability 1− p independently for every i ∈ F

m
2 . In order to keep the notation simple,

we shall denote the bad event in which we cannot recover from the erasure pattern S by B. Thus
we need to show that,

λBEC(p, γ) = PrS [B] ≤ µ(m,γ, c) +
∑

06=f∈RM(m,r)

(1− wt(f))
c(1−o(1))(m

≤r) .

It is more convenient to consider the set of non-erased points, that is S. Typically, there are (1−p)
fraction of non-erased points (i.e,

∣

∣S
∣

∣ ≈ (1 − p)2m). We first show, using Chrenoff’s bound, that
with high probability the number of erasures is not much larger than p2m. We then bound the
error in when there are not too many erasures. Let ǫ > 0 be a parameter which we shall determine
later and consider the following two events:

• The number of non-erased points is not typical, namely
∣

∣S
∣

∣ < (1 − ǫ)(1 − p)2m. Denote this
event by A1.

• The number of non-erased points is typical, namely
∣

∣S
∣

∣ ≥ (1 − ǫ)(1 − p)2m but we cannot
recover from the erasure pattern S. Denote this event by A2.

By union bound,
PrS [B] ≤ Pr [A1] + Pr [A2] .

We start by handling the event A1. By Chernoff’s inequality (Theorem 2.8) we get that

Pr[A1] ≤ exp

(

−1

2
ǫ2(1− p)2m

)

= exp
(

−Ω
(

cǫ22h(γ)m−O(logm)
))

,

where the last equality holds as 1 − p = c · R and by Lemma 2.10 R ≥ 2(h(γ)−1)m−O(logm). This
alone imposes a “largeness” condition on ǫ, namely, we must have ǫ = ω(2−h(γ)m/2+O(logm)) to get

Pr[A1] = o(1). Set ǫ = 2−
h(γ)
4

m then ǫ = o(1) and

exp
(

−Ω
(

cǫ22h(γ)m−O(logm)
))

= µ(m,γ, c) .

We next bound A2. We start by conditioning on the number of non-erasures. It will be convenient
to represent the fraction of non-erasure with ν. I.e

∣

∣S
∣

∣ = ν2m. Since we are in the case where there
were not too many erasures we have that ν ≥ (1− ǫ)(1 − p)2m.

Pr [A2] =
∑

ν≥(1−ǫ)(1−p)2m

Pr [|S| = ν2m] · Pr
[

B|
∣

∣S
∣

∣ = ν2m
]

.

Clearly, the probability Pr
[

B | |S| = ν2m
]

gets larger as ν gets smaller hence,

Pr [A2] =
∑

ν≥(1−ǫ)(1−p)2m

PrS
[

|S| = ν2m
]

· Pr
[

B||S| = ν2m
]

≤
∑

ν≥(1−ǫ)(1−p)2m

Pr
[

|S| = ν2m
]

· Pr
[

B | |S| = (1− p)(1− ǫ)2m
]

≤ PrS
[

B | |S| = (1− p)(1− ǫ)2m
]

.
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We are left to bound Pr
[

B | |S| = (1− p)(1− ǫ)2m
]

. Note that (1 − p)(1 − ǫ)2m = c(1 − ǫ)
(m
≤r

)

and denote this quantity by s. By Lemma 4.1 the probability that we cannot recover from 2m − s
random erasures equals

PrS⊆Fm
2 ,|S|=2m−s [∃f ∈ RM(m, r) supp (f) ⊆ S] ,

where S ⊆ F
m
2 is a random erasure pattern of size exactly 2m − s. Calculating we get that

PrS [A2] ≤ PrS
[

B | |S| = (1− p)(1− ǫ)2m
]

= PrS
[

∃f ∈ RM(m, r) , f 6= 0 , supp (f) ⊆ S | |S| = s
]

= PrS

[

∃f ∈ RM(m, r) , f 6= 0 , S ⊆ supp (f) | |S| = s
]

≤
∑

06=f∈RM(m,r)

PrS⊆Fm
2

[

S ⊆ supp (f) | |S| = s
]

=
∑

06=f∈RM(m,r)

((1−wt(f))2m

s

)

(

2m

s

)

=
∑

06=f∈RM(m,r)

(1− wt(f))2m · · · ((1− wt(f))2m − s+ 1)

2m · (2m − 1) · · · (2m − s+ 1)

≤
∑

06=f∈RM(m,r)

(1− wt(f))s .

Since s = c(1 − ǫ)
(m
≤r

)

and ǫ = o(1) we get the claimed bound.

4.1 Reed-Muller code achieves capacity for the BEC

In this section we show that for any r ≤ m/50 the family of RM codes RM(m, r) achieve capacity
for random erasures.

Theorem 1.8. For any γ ≤ 1/50 the RM code RM(m,γm) achieves capacity for random erasures.

Proof. We start by proving the theorem while assuming that γ is sufficiently small and then show
that γ = 1/50 suffices. Consider the RM code RM(m, r) where r = γm and γ is some positive
constant to be determined later. We need to show that for any δ > 0 it holds that λBEC (p, γ) = o(1)
where R is the rate of RM(m,γm) and p = 1− (1 + δ)R. Applying Lemma 4.2 with c = (1 + δ) it
suffices to prove that for any δ > 0 it holds that,

∑

06=f∈RM(m,r)

(1− wt(f))
(1+δ−o(1))(m

≤r) ≤
∑

06=f∈RM(m,r)

(1− wt(f))
(1+δ/2)(m

≤r) = o(1) . (5)

Let δ > 0 and without the loss of generality assume δ < 1/100. We shall partition the summands
in eq. (5) to three sets:

• Typical: Polynomials with extremely small bias (including negative bias), i.e. all polynomials
f satisfying bias(f) ≤ δ/8.

• Relatively small bias: Polynomials with not too large bias: δ/8 ≤ bias(f) ≤ 3
4 .

• Low weight: Polynomials of weight wt(f) ≤ 1
8 .

Next we show that in all three cases the sum in eq. (5) is o(1), which implies the claim.
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Typical case: In this case, we bound the number of typical polynomials by the number of all
degree r polynomials. This is a crude bound (though from theorem 1.4 we know that this estimate is
not too far from the truth) but it suffices for our needs. Since the weight of each typical polynomial
is at least (1− δ/8)/2 it follows that

∑

bias(f)≤δ/8

(1− wt(f))
(1+δ/2)(m

≤r) ≤ 2(
m
≤r) ·

(

1− 1− δ/8

2

)(1+δ/2)(m
≤r)

= 2(
m
≤r) ·

(

1 + δ/8

2

)(1+δ/2)(m
≤r)

=

(

(1 + δ/8)2/δ ·
(

1 + δ/8

2

)) δ
2(

m
≤r)

≤
(

e1/4 ·
(

1 + δ/8

2

))
δ
2(

m
≤r)

≤ e
− δ

6(
m
≤r) .

Note that in the last inequality we used that for δ < 1/3 we have,

e1/4
(

1 + δ/8

2

)

≤ e−1/3 .

This concludes the typical case.

Low weight case: Partition the polynomials of weight ≤ 1
8 to dyadic intervals by considering,

Pℓ =
{

f ∈ RM(m, r) : 2−ℓ−1 ≤ wt(f) ≤ 2−ℓ
}

for ℓ = 3, 4, . . . , r. Every polynomial in Pℓ has weight at least 2−ℓ−1 and there are at most
Wm,r

(

2−ℓ
)

such polynomials. Using Theorem 1.2 we get,

Wm,r(2
−ℓ) ≤ exp2

(

O(m4) + 17(cγℓ+ dγ)γ
ℓ−1

(

m

≤ r

))

,

where cγ = 1
1−γ , dγ = 2−γ

(1−γ)2
. For sufficiently small γ it holds that for any ℓ ≥ 3,

17(cγℓ+ dγ)γ
ℓ−1 ≤ log

(

1

1− 2−ℓ−1

)

. (6)
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Therefore,

∑

wt(f)≤1/8

(1− wt(f))
(1+δ/2)(m

≤r) =

r
∑

ℓ=3

∑

f∈Pℓ

(1− wt(f))
(1+δ/2)(m

≤r)

≤
r
∑

ℓ=3

Wm,r

(

2−ℓ
)

· (1− 2−ℓ−1)
(1+δ/2)(m

≤r)

≤
r
∑

ℓ=3

exp2

(

O(m4) + 17(cγℓ+ dγ)γ
ℓ−1

(

m

≤ r

)

− log

(

1

1− 2−ℓ−1

)

(1 + δ/2)

(

m

≤ r

))

≤(∗)
r
∑

ℓ=3

exp2

(

O(m4)− log

(

1

1− 2−ℓ−1

)

δ/2

(

m

≤ r

))

(7)

≤(†)
r
∑

ℓ=3

exp2

(

O(m4)− δ/ ln(4) · 2−ℓ−1

(

m

≤ r

))

≤ r exp

(

−
(

m

≤ r

)

· (δ/2 − o(1))2−r−1

)

= o(1) ,

where inequality (∗) follows eq. (6), inequality (†) follows from the fact that,

log

(

1

1− x

)

≥ x/ ln(2)

and the last inequality holds since 2−r
(m
≤r

)

≥ m2−(h(γ)−γ−o(1))m and h (γ) ≥ 2γ for 0 ≤ γ ≤ 1/2,

Relatively small bias case: Recall that here we handle polynomials with δ/8 ≤ bias(f) ≤ 3
4 .

We first deal with the case δ/8 ≤ bias(f) ≤ 1
2 which leaves out the range 1/8 ≤ wt(f) ≤ 1/4 (that

will be analyzed shortly after). The purpose of this distinction is solely to optimize γ for which
we obtain capacity. Without the loss of generality assume that δ is some integer power of 1/2.
Similarly to the low weight case, we are going to consider dyadic intervals. Define,

Lk =
{

f ∈ RM(m, r) : 2−k ≤ bias(f) ≤ 2−k+1
}

for k = 2, 3, . . . , log 1
δ + 3. Every polynomial in Lk has weight at least (1− 2−k+1)/2 and there are

at most Wm,r

(

1−2−k

2

)

such polynomials. Apply Proposition 3.15 with ℓ = k and s = k + 2,

Wm,r

(

1− 2−k

2

)

≤ exp2

(

(

1− (1− γ̃)3k+3 + 17(cγk + cγ + dγ)γ
k
)

·
(

m

≤ r

)

+O(m4)

)

,

where γ̃ = γ
(

1 + 3k+3
m−3k−3

)

. For sufficiently small γ and large enoguh m it holds that for k ≥ 2,

(1− γ̃)3k+3 ≥ 17(cγk + cγ + dγ)γ
k + (1 + δ/2) log(1 + 2−k+1) . (8)
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Therefore,

∑

δ/8≤bias(f)≤1/2

(1−wt(f))
(1+δ/2)(m

≤r) =

log 1
δ
+3

∑

k=2

∑

f∈Lk

(1− wt(f))
(1+δ/2)(m

≤r)

≤
log 1

δ
+3

∑

k=2

Wm,r

(

1− 2−k

2

)

·
(

1 + 2−k+1

2

)(1+δ/2)(m
≤r)

=

log 1
δ
+3

∑

k=2

Wm,r

(

1− 2−k

2

)

· 2
log

(

1+2−k+1

2

)

·(1+δ/2)(m
≤r)

≤
log 1

δ
+3

∑

k=2

exp2

(

O(m4) +

(

1− (1− γ̃)3k+3 + 17(cγk + cγ + dγ)γ
k

+ (1 + δ/2) log
1 + 2−k+1

2

)(

m

≤ r

))

≤(∗)
log 1

δ
+3

∑

k=2

exp2

(

O(m4)− δ/2

(

m

≤ r

))

= o(1) ,

where inequality (∗) holds due to eq. (8). To complete the “relatively small bias” case we need to
show that,

∑

1/8≤wt(f)≤1/4

(1− wt(f))
(1+δ/2)(m

≤r) = o(1) .

Apply Proposition 3.15 with ℓ = 1 and s = 6. Thus,

Wm,r (1/4) ≤ exp2

(

O(m4) +
(

1− (1− γ̃)9 + 17(5cγ + dγ)γ
4
)

·
(

m

≤ r

))

,

where γ̃ = γ(1 + 9
m−9 ), cγ = 1

1−γ and dγ = 2−γ
(1−γ)2

. For sufficiently small γ we may assume that,

(1− γ̃)9 ≥ 17(5cγ + dγ)γ
4 + log(7/4) . (9)

Therefore as we did in the low weight cases,

∑

1/8≤wt(f)≤1/4

(1−wt(f))
(1+δ/2)(m

≤r) ≤ Wm,r (1/4) ·
(

1− 1

8

)(1+δ)(m
≤r)

≤ exp2

(

O(m4) +
(

1− (1− γ̃)9 + 17(5cγ + dγ)γ
4 + log(7/8)(1 + δ/2)

)

·
(

m

≤ r

))

≤(†) exp2

(

O(m4)− δ/2

(

m

≤ r

))

= o(1) ,

where as before, inequality (†) follows from eq. (9). This finalizes the proof in the “relatively small
bias” case and so the entire proof is complete for small enough γ.

We next show that γ = 1/50 suffices for the argument to work. Going over the proof we see
that γ has to satisfy the constraints in eq. (6), eq. (8), eq. (9). Note that in eq. (8) and eq. (9) we
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have γ̃ as well, but since γ̃ = γ + o(1) let us first consider those equations with γ alone:

log

(

1

1− 2−ℓ−1

)

≥ 17(cγℓ+ dγ)γ
ℓ−1 ℓ ≥ 3 ,

(1− γ)3k+3 ≥ 17(cγk + cγ + dγ)γ
k + (1 + δ) log(1 + 2−k+1) k ≥ 2 ,

(1− γ)9 ≥ 17(5cγ + dγ)γ
4 + log(7/4) ,

where cγ = 1
1−γ , dγ = 2−γ

(1−γ)2
. It is straightforward to verify that the above inequalities holds for

all γ ≤ 1/50. Now, since in both eq. (8) and eq. (9) we have that, say, γ̃ = γ + o(1) and we can
pick δ not too small, we get that the original inequalities are satisfied for every γ ≤ 1/50.

4.2 Reed-Muller codes of degrees (1/2− o(1))m

We now prove that if we relax a bit the requirement that p = 1 − (1 + o(1))R then we can show
that RM codes of degrees (1/2 − ǫ)m can handle a fraction of 1− o(1) random erasures.

Theorem 1.10. For any γ < 1/2 − Ω
(√

logm√
m

)

, RM(m,γm) can efficiently decode a fraction of

1− o(1) random erasures.

Proof. Let γ < 1/2 − Ω
(√

logm√
m

)

and set p = 1 −DγR where R is rate of RM(m,γm) and Dγ is

a positive constant we shall determine later (which depends on γ). Applying Lemma 4.2 with Dγ

we get,

λBEC(p, γ) ≤ exp
(

−Θ
(

2
h(γ)
2

m
))

+
∑

06=f∈RM(m,r)

(1− wt(f))
Dγ(1−o(1))(m

≤r) .

We proceed just as we did in the proof of 1.8 by partitioning the summands to three sets: typical,
small bias and low weight. In fact, it suffices to break the sum to two sets: polynomials with
weight at least 1/4 and polynomials with weight at most 1/4. Using the trivial upper bound on
the number of polynomials with weight at least 1/4, which is simply the number of all degree r
polynomials, we conclude that,

∑

wt(f)≥1/4

(1− wt(f))
Dγ(1−o(1))(m

≤r) ≤ 2(
m
≤r) · (3/4)Dγ (1−o(1))(m

≤r) = o(1).

assuming Dγ > 3. To deal with the set of polynomials with weight smaller than 1/4 we do exactly
as in the proof of Theorem 1.8 and partition it further to dyadic intervals. Going over the analysis
reveals that we just need the following inequality to hold (see equations 6 and 7),

18(cγℓ+ dγ)γ
ℓ−1 < log

(

1

1− 2−ℓ−1

)

Dγ(1− o(1)) ,

for all ℓ ≥ 2. Using that log
(

1
1−2−ℓ−1

)

= O(2−ℓ) we conclude that this clearly holds for large

enough Dγ . In fact, it is not hard to see that Dγ = O
(

1
1−2γ

)

suffices.

Observe that when γ = 1/2 − Ω
(√

logm√
m

)

we have that

R = exp2 ((h(γ) − 1)m−Θ(logm)) = exp2 (−Ω(logm)) =
1

poly(m)

and hence 1−Dγ ·R = 1−O
( √

m√
logm

)

· 1
poly(m) = 1− o(1).
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5 Reed-Muller codes under random errors

In this section we study the behavior of RM codes under random errors. In Section 5.1 we prove
Theorem 1.9 showing that RM codes achieve capacity for the BSC for degrees at most m/70 (with
respect to the maximum likelihood decoder). In section Section 5.2 we prove Theorem 1.11 showing
that for degrees up to (1/2 − o(1))m (for some explicit o(1) function) RM codes can recover from
1/2 − o(1) random errors (with respect to the maximum likelihood decoder).

Throughout this section we denote r = γm where 0 < γ < 1 is some parameter that can be a
constant or a function of m. We denote the probability that the family RM(m,γm) cannot recover
from random erasures with parameter p = p(m,γ) with λBSC(p, γ) (See Definition 2.3).

An important relation that we shall constantly use is the Taylor expansion of the binary entropy
function around 1/2. Given p ∈ (0, 1/2) write p = 1−ξ

2 then

h (p) = 1− 1

2 ln(2)

∞
∑

k=1

ξ2k

k(2k − 1)
. (10)

Also, denote the probability that the RM code RM(m,γm) cannot recover from random errors
with parameter p by λBSC(p, γ) (See Definition 2.3) and note that λBSC(p, γ) = Prz [ML(z) 6= y]
where z ∼ BSCp(y) (this quantity is independent of y according to Lemma 5.1 which we shall soon
prove).

In the BSC, every bit is flipped with probability p and remains unchanged otherwise. It is
convenient to write z ∼ BSCp(y) as z = y + v where v ∼ {0, 1}2m is a random binary vector such
that vi = 1 with probability p and vi = 0 with probability 1−p independently for every coordinate.
We shall refer to v as the error pattern. Suppose we are given z ∼ BSCp(y) and use the ML decoder
to decode z. Every possible decoding y′ ∈ RM(m, r) defines an error pattern vy′ = z + y′ and so y
defines a collections of possible errors patterns

{

vy′ : y
′ ∈ RM(m, r)

}

. The ML decoder inspects all
possible decodings and decodes z to y′ where vy′ has minimal weight (in our case this is the most
likely outcome of the decoder). Thus, we need to prove that w.h.p wt(vy) < wt(vy′) for any y′ 6= y.

We now give an upper bound on λBSC(p, γ) that expresses it in terms of the weight distribution
of RM(m, r).

Lemma 5.1. Let γ = γ(m) ∈ (0, 1/2) be some parameter for any m ∈ N. Let r = γm and denote
R the rate of the RM code RM(m, r). For a parameter c = c(m) ≥ 1 let pc satisfy h (pc) = 1− c ·R.
Let ξ be such that pc =

1−ξ
2 . Then for large enough m it holds that

λBSC(p, γ) ≤ o(1) +
∑

0,16=f∈RM(m,r)

exp2

(

−
(

m

≤ γm

)(

c · wt(f)

1− wt(f)
(1− o(1)

))

.

The proof is similar in spirit to the proof of Lemma 4.2 except that the calculations are a bit
more complicated.

Proof. Since c is fixed throughout the proof we drop the subscript c and denote p = pc. Let
ǫ = 2−(1/2−h(γ)/5)m. We first show that

ǫ = o(ξ) . (11)

From the Taylor expansion in eq. (10) we have

cR =
ξ2

2 ln(2)
+ Θ(ξ4) =

ξ2

2 ln(2)
(1 + o(1)) (12)
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so ξ = Θ(
√
cR). Since c ≥ 1 we get

ξ = Ω
(√

R
)

= Ω
(

2−(1/2−h(γ)/2)m−O(logm)
)

= ω
(

2−(1/2−h(γ)/5)m
)

= ω (ǫ) .

Let y ∈ RM(m, r) and z ∼ BSCp(y). Let v = z− y. Then v is a random error pattern such that
vi = 1 with probability p and vi = 0 with probability 1 − p, for every coordinate, independently.
Typically, an error pattern v has roughly p fraction of errors. Consider the following two bad events:

• The error pattern v is not typical, namely |wt(v) − p| > ǫ. Denote this event by A1

• The error pattern v is typical, namely |wt(v)− p| ≤ ǫ, but we make an error on it. Denote
this event by A2.

By the union bound,
Prz [ML(z) 6= y] ≤ Pr [A1] + Pr [A2] .

We start by bounding the probability that A1 occurs. By Hoeffding’s inequality (Theorem 2.7) we
get that,

Pr[A1] ≤ 2 exp
(

−2ǫ22m
)

2 exp
(

−2 · 22h(γ)/5m
)

= o(1) .

Next we bound Pr[A2]. We start by conditioning on the number of errors,

Pr[A2] =

(1+ǫ)p
∑

ν=(1−ǫ)p

Prv [wt(v) = ν] · Prv [ML(y + v) 6= y|wt(v) = ν] .

Clearly, the function Prv [ML(y + v) 6= y|wt(v) = ν] is non decreasing as a function of ν. I.e., the
more errors there are the less likely y is the closest word to z = y + v. Hence,

Pr [A2] =

(1+ǫ)p
∑

ν=(1−ǫ)p

Prv [wt(v) = ν] · Prv [ML(y + v) 6= y|wt(v) = ν]

≤
(1+ǫ)p
∑

ν=(1−ǫ)p

Prv [wt(v) = ν] · Prv [ML(y + v) 6= y|wt(v) = p(1 + ǫ)]

≤ Prv [ML(y + v) 6= y|wt(v) = p(1 + ǫ)] .

We are left to bound Prv [ML(y + v) 6= y|wt(v) = p(1 + ǫ)]. Denote p̃ = p(1 + ǫ). Let ξ̃ be such

that p̃ = 1−ξ̃
2 . Then ξ̃ = (ξ + ξǫ− ǫ).

The ML decoder will fail to decode correctly if there exists another codeword in the ball at
radius p̃2m around z. I.e. if there is another error pattern v′ 6= v of weight at most p̃ such that
v′ + z is also a codeword. Hence, we say that v is “bad” if there exists v′ 6= v such that v′ + z is
a codeword and wt(v′) ≤ wt(v) = p̃. Equivalently, v is “bad” if v + v′ is a nonzero codeword and
wt(v′) ≤ wt(v) = p̃. We claim that given a codeword f ∈ RM(m,γm) with weight β = wt(f) we
have that,

∣

∣

{

(v, v′) : v′ + v = f and wt(v′) ≤ wt(v) = p̃
}∣

∣ ≤ 2β2
m

(

2m(1− β)

≤ 2m(p̃− β/2)

)

. (13)
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To see this, observe that v, v′ must partition supp (f), and must coincide outside supp (f) (i.e,
vi 6= v′i if and only if i ∈ supp (f)). There are at most 2β2

m
possibilities to choose the coordi-

nates of v on supp (f). Also, as wt(v′) ≤ wt(v) and v, v′ must coincide outside supp (f) then
|vi = 1 : i ∈ supp (f)| ≥ 2m · β/2 and hence

|{vi = 1 : i 6∈ supp (f)}| ≤ 2m(p̃− β/2) .

Thus there are at most
( 2m(1−β)
≤2m(p̃−β/2)

)

possibilities to choose the coordinates of v on supp (f). Since

v completely determines v′ we deduce eq. (13). Next observe that,

Prz [ML(z) 6= y|wt(z − y) = p̃] =
|{v : v is “bad”,wt(v) = p̃}|

( 2m

p̃2m

)

≤ |{(v, v′) : v + v′ is a nonzero codeword and wt(v′) ≤ wt(v) = p̃ }|
( 2m

p̃2m

)

≤
∑

06=f∈RM(m,r)

|{(v, v′) : v + v′ = f and wt(v′) ≤ wt(v) = p̃ }|
( 2m

p̃2m

) .

(14)

Substituting eq. (13) to eq. (14) and applying the upper bound on wt(f) gives

Prz [ML(z) 6= y] ≤
∑

06=f∈RM(m,r)
wt(f)≤1−Ω(ξ)

22
mwt(f)

( 2m−2mwt(f)
≤(p̃2m−2mwt(f)/2)

)

(

2m

p̃2m

) . (15)

We bound each summand separately. Fix f ∈ RM(m, r) such that f 6= 0 and set β = wt(f),
w = β2m. Using lemma 2.10 we have,

2β2
m( 2m(1−β)

≤2m(p̃−β/2)

)

( 2m

p̃2m

) ≤
exp2

(

β2m + 2m(1− β)h
(

p̃−β/2
1−β

))

exp2 (2
mh (p̃)−O(m))

≤ exp2

(

2m
(

β + (1− β)h

(

p̃− β/2

1− β

)

− h (p̃) + 2−mO(m)

))

= exp2

(

2m
(

1− h (p̃)− (1− β)

(

1− h

(

p̃− β/2

1− β

))

+ 2−mO(m)

))

. (16)

As p̃ = 1−ξ̃
2 we get from eq. (10) that

1− h (p̃) =
1

2 ln(2)

∞
∑

k=1

ξ̃2k

k(2k − 1)
. (17)

Similarly,

1− h

(

p̃− β/2

1− β

)

= 1− h

(

1

2
− ξ̃

2(1 − β)

)

=
1

2 ln(2)

∞
∑

k=1

ξ̃2k

k(2k − 1)(1− β)2k
. (18)
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Substituting equations (17) and (18) to (16) we thus obtain,

(16) ≤ exp2

(

2m
(

1

2 ln(2)

∞
∑

k=1

(

ξ̃2k

k(2k − 1)
− (1− β)

ξ̃2k

k(2k − 1)(1 − β)2k

)

+ 2−mO(m)

))

= exp2

(

2m
(

1

2 ln(2)

∞
∑

k=1

(

ξ̃2k

k(2k − 1)

(

1− 1

(1− β)2k−1

)

)

+ 2−mO(m)

))

≤ exp2

(

2m
(

− βξ̃2

2 ln(2)(1 − β)
+ 2−mO(m)

))

= exp2

(

2m
(

− βξ̃2

2 ln(2)(1 − β)
(1− o(1))

))

. (19)

Equation (12) gives

ξ̃2

2 ln 2
=

(ξ + ξǫ− ǫ)2

2 ln 2
=

ξ2(1 + ǫ− ǫ/ξ)2

2 ln 2
=

ξ2(1− o(1))

2 ln 2
= cR(1− o(1)) . (20)

Thus,

(19) = exp2

(

2m
(

− βcR

1− β
(1− o(1))

))

= exp2

(

−
(

m

γm

)(

c
β

1− β
(1− o(1))

))

.

Combining this inequality with eq. (15) completes the proof. Note that we sum over all f 6= 0, 1
rather than all 0 6= f ∈ RM(m,γm) with weight at most 1−Ω(ξ) simply to ease notation.

5.1 Reed-Muller code achieves capacity for the BSC

In this section we show that for any r ≤ m/70 then family of RM codes RM(m, r) achieve capacity
for random errors.

Theorem 1.9. For any γ ≤ 1/70 the family RM(m,γm) achieves capacity for random errors.

Proof. We start by proving the theorem while assuming that γ is sufficiently small and then show
that γ = 1/70 suffices. Consider the RM code RM(m, r) where r = γm and γ is some positive
constant to be determined later. We need to show that for every δ > 0, if we let p be such that
1−h (p) = (1+δ)R, where R is the rate of RM(m,γ), then λBSC (p, γ) = o(1). Applying Lemma 5.1
for c = (1 + δ) we see that it suffices to prove that,

∑

0,16=f∈RM(m,r)

exp2

(

−
(

m

≤ r

)

wt(f)

1− wt(f)
(1 + δ − o(1))

)

= o(1) ,

for every δ > 0. Using eq. (10) we get that 1−h (p) = ξ2

2 ln(2) +Θ(ξ4) and since 1−h (p) = (1+ δ)R

we get that ξ2 = Θ(R). Assuming m is large enough we may settle for,

∑

0,16=f∈RM(m,r)

exp2

(

−
(

m

≤ r

)

(wt(f) · (1 + δ/2))

)

= o(1) . (21)

Let δ > 0 and without the loss of generality assume δ < 1/100. We shall partition the summands
in eq. (21) to three sets:
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• Typical: Polynomials with extremely small bias (including negative bias), i.e. all polynomials
f satisfying bias(f) ≤ δ/16.

• Relatively small bias: Polynomials with not too large bias: δ/16 ≤ bias(f) ≤ 3
4 .

• Low weight: Polynomials of weight wt(f) ≤ 1
8 .

Next we show that in all three cases the sum in eq. (21) is o(1), which implies the claim.

Typical case: In this case, we bound the number of typical polynomials by the number of all
degree r polynomials. This is a crude bound (though from theorem 1.4 we know that this estimate is
not too far from the truth) but it suffices for our needs. Since the weight of each typical polynomial
is at least (1− δ/16)/2 it follows that

∑

bias(f)≤δ/8

exp2

(

−
(

m

≤ r

)(

wt(f)

1− wt(f)
· (1 + δ/2)

))

≤ exp2

(

−
(

m

≤ r

)(

1/2− δ/16

1/2 + δ/16
· (1 + δ/2) − 1

))

= exp2

(

−
(

m

≤ r

)

δ(4 − δ)

2(δ + 8)

)

.

This concludes the typical case.

Low weight case: Partition the polynomials of weight ≤ 1
8 to dyadic intervals by considering,

Pℓ =
{

f ∈ RM(m, r) : 2−ℓ−1 ≤ wt(f) ≤ 2−ℓ
}

for ℓ = 3, 4, . . . , r. Every polynomial in Pℓ has weight at least 2−ℓ−1 and there are at most
Wm,r

(

2−ℓ
)

such polynomials. Using Theorem 1.2 we get,

Wm,r(2
−ℓ) ≤ exp2

(

O(m4) + 17(cγℓ+ dγ)γ
ℓ−1

(

m

≤ r

))

,

where cγ = 1
1−γ , dγ = 2−γ

(1−γ)2
. For sufficiently small γ it holds that for ℓ ≥ 3,

2−ℓ−1

1− 2−ℓ−1
≥ 17(cγℓ+ dγ)γ

ℓ−1 . (22)
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Therefore,

∑

wt(f)≤1/8

exp2

(

−
(

m

≤ r

)(

wt(f)

1− wt(f)
· (1 + δ/2)

))

=

r
∑

ℓ=3

∑

f∈Pℓ

exp2

(

−
(

m

≤ r

)(

wt(f)

1− wt(f)
· (1 + δ/2)

))

≤
r
∑

ℓ=3

Wm,r

(

2−ℓ−1
)

· exp2
(

−
(

m

≤ r

)(

2−ℓ−1

1− 2−ℓ−1
· (1 + δ/2)

))

≤(∗)
r
∑

ℓ=3

exp2

(

−
(

m

≤ r

)(

2−ℓ−1

1− 2−ℓ−1
· (1 + δ/2) − 17(cγℓ+ dγ)γ

ℓ−1

))

(23)

≤(†)
r
∑

ℓ=3

exp2

(

−
(

m

≤ r

)

· Ω(δ2−ℓ)

)

≤ r exp2

(

−
(

m

≤ r

)

· Ω(δ2−r)

)

= o(1) .

Inequality (∗) is due to Theorem 1.2 and Lemma 2.10 and inequality (†) is due to eq. (22). This
concludes the low weight case.

Relatively small bias case: Recall that here we handle polynomials with δ
16 ≤ bias(f) ≤ 3

4 .
We first deal with the case δ/16 ≤ bias(f) ≤ 1

2 which leaves out the range 1/16 ≤ wt(f) ≤ 1/4
(that will be analyzed shortly after). The purpose of this distinction is solely to optimize γ for
which we obtain capacity. Without the loss of generality assume that δ is some integeral power of
1/2. Similarly to the low weight case, we are going to consider dyadic intervals. Define,

Lk =
{

f ∈ RM(m, r) : 2−k ≤ bias(f) ≤ 2−k+1
}

for k = 2, 3, . . . , log 16
δ . Every polynomial in Lk has weight at least (1− 2−k+1)/2 and there are at

most Wm,r

(

1−2−k

2

)

such polynomials. From Proposition 3.15, with ℓ = k and s = k + 2, we get

that for γ̃ = γ
(

1 + 3k+3
m−3k−3

)

it holds that

Wm,r

(

1− 2−k

2

)

≤ exp2

(

(

1− (1− γ̃)3k+3 + 17(cγk + cγ + dγ)γ
k
)

·
(

m

≤ r

)

+O(m4)

)

.

For sufficiently small γ and large enoguh m it holds that for 2 ≤ k ≤ log(16/δ),

(1− γ̃)3k+3 ≥ 17(cγk + cγ + dγ)γ
k +

2−k+2

1 + 2−k+1
. (24)
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Therefore,

∑

δ/16≤bias(f)≤1/2

exp2

(

−
(

m

≤ r

)(

wt(f)

1− wt(f)
· (1 + δ/2)

))

=

log 16
δ

∑

k=2

∑

f∈Lk

exp2

(

−
(

m

≤ r

)(

wt(f)

1− wt(f)
· (1 + δ/2)

))

≤
log 16

δ
∑

k=2

Wm,r

(

1− 2−k

2

)

· exp2
(

−
(

m

≤ r

)

· 1/2− 2−k

1/2 + 2−k
· (1 + δ/2)

)

≤
log 16

δ
∑

k=2

exp2

(

−
(

m

≤ r

)(

− 1 + (1− γ̃)3k+3 − 17(cγk + cγ + dγ)γ
k

+

(

1− 2−k+2

1 + 2−k+1

)

· (1 + δ/2)

)

+O(m4)

)

≤
log 16

δ
∑

k=2

exp2

(

−
(

m

≤ r

)(

(1− γ̃)3k+3 − 17(cγk + cγ + dγ)γ
k − 2−k+2

1 + 2−k+1
· (1 + δ/2) (25)

+ δ/2 − o(1)

))

≤
log 16

δ
∑

k=2

exp2

(

−
(

m

≤ r

)

δ/4

)

(26)

≤
(

log
1

δ
+ 3

)

· exp2
(

−
(

m

≤ r

)

δ/4

)

= o(1) .

Inequality (25) holds for sufficiently large m, and inequality (26) holds due to eq. (24) and suffi-
ciently large m. To complete the “relatively small bias” case we need to handle the case 1/8 ≤
wt(f) ≤ 1/4. I.e., we have to show that

∑

1/8≤wt(f)≤1/4

exp2

(

−
(

m

≤ r

)(

wt(f)

1− wt(f)
· (1 + δ/2)

))

= o(1) .

Apply Proposition 3.15 with ℓ = 1 and s = 6. Thus,

Wm,r (1/4) ≤ exp2

(

(

1− (1− γ̃)9 + 17(5cγ + dγ)γ
4
)

·
(

m

≤ r

)

+O(m4)

)

,

where γ̃ = γ (1 +O(1/m)), cγ = 1
1−γ and dγ = 2−γ

(1−γ)2 . For sufficiently small γ we may assume that,

(1− γ̃)9 ≥ 17(5cγ + dγ)γ
4 + 6/7 . (27)
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Therefore as we did in the low weight cases,

∑

1/8≤wt(f)≤1/4

exp2

(

−
(

m

≤ r

)(

wt(f)

1− wt(f)
· (1 + δ/2)

))

≤ Wm,r (1/4) · exp2
(

−
(

m

≤ r

)(

1/8

1− 1/8

)

(1 + δ/2)

)

≤ exp2

(

−
(

m

≤ r

)(

1

7
(1 + δ/2) − 1 + (1− γ̃)9 − 17(5cγ + dγ)γ

4

)

− o(1)

)

≤(†) exp2

(

−
(

m

≤ r

)

δ

14

)

= o(1) ,

where as before, inequality (†) follows from eq. (27). This finalizes the proof in the “relatively small
bias” case and so the entire proof is complete for small enough γ.

We next show that γ = 1/70 suffices for the argument to work. Going over the proof we see
that γ has to satisfy the constraints in eq. (22), eq. (24), eq. (27). Similar to the argument in the
proof of Theorem 1.8 we note that equations (24), (27) involve both γ and γ̃ but as γ̃ = γ(1+ o(1))
we may consider these equations with γ in place of γ̃:

2−ℓ−1

1− 2−ℓ−1
≥ 17(cγℓ+ dγ)γ

ℓ−1 ℓ ≥ 3 ,

(1− γ)3k+3 ≥ 17(cγk + cγ + dγ)γ
k +

2−k+2

1 + 2−k+1
k ≥ 2 ,

(1− γ)9 ≥ 17(5cγ + dγ)γ
4 + 6/7 ,

where cγ = 1
1−γ , dγ = 2−γ

(1−γ)2
. It is straightforward to verify that the above inequalities hold for

all γ ≤ 1/70, with some constant gap. Hence, for a sufficiently large m and small enough δ the
inequalities also hold for γ̃ = γ(1 + o(1)).

5.2 Reed-Muller codes of degrees (1/2− o(1))m

We now prove that if we relax a bit the requirement that p = 1 − (1 + o(1))R then we can show
that RM codes of degrees (1/2− ǫ)m can handle a fraction of 1/2−o(1) errors (using the maximum
likelihood decoder).

Theorem 1.11. Let m ∈ N and γ(m) < 1/2−Ω
( √

m√
logm

)

a positive parameter (which may depend

on m). Let r = γm. Then, the RM(m, r) can decode from a fraction of 1/2− o(1) random errors.

Proof. Let Bγ(m) be a positive parameter to be determined later (it will depend on γ(m)). For
brevity we write Bγ and not Bγ(m). Let p be such that 1 − h (p) = BγR where R is the rate of
RM(m,γm). Applying Lemma 5.1 with Bγ we get,

λBSC(p, γ) ≤ o(1) +
∑

0,16=f∈RM(m,r)

exp2

(

−
(

m

≤ r

)(

wt(f)

1− wt(f)
·Bγ(1− o(1))

))

.

We proceed just as we did in the proof of Theorem 1.8 and partition the summands two sets:
polynomials with weight at least 1/4 and polynomials with weight at most 1/4. Using the trivial
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upper bound on the number of polynomials with weight at least 1/4, which is simply the number
of all degree γm polynomials, we conclude that,

∑

wt(f)≥1/4

exp2

(

−
(

m

≤ r

)(

wt(f) · Bγ(1− o(1))

1− wt(f)

))

≤ 2(
m
≤r) · exp2

(

−Bγ(1− o(1))

3

(

m

≤ r

))

= o(1),

which holds assuming Bγ > 3. To deal with the set of polynomials with weight smaller than 1/4
we do exactly as in the proof of Theorem 1.9 and partition it further to dyadic intervals. Going
over the analysis reveals that we need the following inequality to hold (see equations (23) , (22)),

2−ℓ−1

1− 2−ℓ−1
· Bγ(1− o(1)) > 18(cγℓ+ dγ)γ

ℓ−1 ,

for all ℓ ≥ 2. This clearly holds for large enough Bγ (depending on γ) and in fact it is not hard to

see that Bγ = O
(

1
1−2γ

)

suffices.

Observe that when γ = 1/2 − Ω
(√

logm√
m

)

we have that

R = exp2 ((h(γ) − 1)m−O(logm)) = exp2 (−Ω(logm)) =
1

poly(m)

and hence 1−Bγ · R = 1−O
( √

m√
logm

)

· 1
poly(m) = 1− o(1).

6 Discussion

In this work we proved new upper bounds on the weight distribution of Reed-Muller codes. As
a result of these bounds we were able to prove that RM codes achieve capacity for the BEC and
the BSC for degrees which are linear in the number of variables. While this significantly improved
the range of degrees for which RM codes achieve capacity it still leaves several intriguing questions
open.

For the BEC we know that RM codes achieve capacity for degrees up to m/50 (this work),
degrees around m/2 ([KKM+17]) and very high degrees ([ASW15]). See Table 1 on page 6. This
leaves a wide range of degrees open. It seems unlikely that there would be a gap in the degrees
for which RM codes achieve capacity. One possible approach for closing the current gap may be
to find a unified way of proving the results in the three different regimes. Currently the proofs
are very different from each other. Another possible approach is by strengthening Theorem 1.10.
Recall that this theorem shows that RM codes up to degree nearly m/2 can recover from a fraction
of 1 − o(1) random erasures. This is “almost” like showing capacity for all such degrees, but not
quite so as the o(1) term is not the correct one. Can this result be pushed to obtaining capacity
for such high degrees?

In the case of the BSC the situation is even worse. This work provides the best known results
on the range of degrees for which RM codes achieve capacity for the BSC. As in the case of BEC,
Theorem 1.11 can be seen as a strong evidence that RM codes achieve capacity for degrees up to

m/2 − Ω
(√

logm√
m

)

. Unlike in the case of the BEC we do not have any similar result for the BSC

for constant rate. Can a result in the spirit of Theorem 1.11 be proved, showing that RM codes of
degree, say, m/2 can tolerate a constant fraction of random errors? It does not necessarily have to
be the “correct” fraction for getting capacity but rather any constant fraction.

Another interesting question is improving the weight distribution results. Theorem 1.3 of
Samorodnitsky [Sam] is proved via a very different approach than ours. Is it possible to extend it
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and improve our weight distribution results for all degrees? Theorem 1.3 also falls short of provid-
ing meaningful information when the bias is small. Can it be improved to speak about this regime
of parameters as well?
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A Combinatorial lemmas

Lemma A.1. Let ℓ ≤ r ≤ m ∈ N. Let 0 < γ < 1 be such that r = γm. Then,

(

m− ℓ

≤ r − ℓ

)

≤ γℓ
(

m

≤ r

)

.

Proof. Note that for any ℓ ≤ s ≤ m we have,

(m−ℓ
s−ℓ

)

(m
s

) =

ℓ−1
∏

j=0

s− j

m− j
≤
( s

m

)ℓ
.

It follows that
(

m− ℓ

≤ r − ℓ

)

=

(

m− ℓ

0

)

+

(

m− ℓ

1

)

+

(

m− ℓ

2

)

+ . . .+

(

m− ℓ

r − ℓ

)

≤
(

(

ℓ

m

)ℓ

·
(

m

ℓ

)

+

(

ℓ+ 1

m

)ℓ

·
(

m

ℓ+ 1

)

+

(

m

ℓ+ 2

)

+ . . .+
( r

m

)ℓ
·
(

m

r

)

)

≤
( r

m

)ℓ
((

m

ℓ

)

+

(

m

ℓ+ 1

)

+

(

m

ℓ+ 2

)

+ . . .+

(

m

r

))

≤
( r

m

)ℓ
((

m

0

)

+

(

m

1

)

+

(

m

2

)

+ . . . +

(

m

r

))

=
( r

m

)ℓ
(

m

≤ r

)

.

We next proof Lemma 3.9. To ease the reading we repeat its statement.

Lemma 3.9. Let t, r ≤ m ∈ N. Denote r = γm. Then, for γ̃ = γ
(

1 + t
m−t

)

it holds that

(

m− t

≤ r

)

≥ (1− γ̃)t
(

m

≤ r

)

.

Proof. First note that for k ≤ r,

(

m− t

k

)

=

(

m

k

)

·
t−1
∏

j=0

m− k − j

m− j
≥
(

m

k

)

·
(

1− k

m− t+ 1

)t

≥
(

m

k

)

·
(

1− r

m− t

)t

=

(

m

k

)

·
(

1− γ

(

1 +
t

m− t

))t

=

(

m

k

)

· (1− γ̃)t .

It follows that

(

m− t

≤ r

)

=
r
∑

k=0

(

m− t

k

)

≥ (1− γ̃)t ·
r
∑

k=0

(

m

k

)

= (1− γ̃)t ·
(

m

≤ r

)

. (28)
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B Proof of main lemmas of [KLP12]

We briefly sketch the analysis of Lemma 3.2 and Lemma 3.11 as in the original paper [KLP12] and
try to unfold the constants hiding within the asymptotic notation.

To ease the reading we repeat the statements of the lemmas.

Lemma 3.2. Let f : Fm
2 → F2 be a function such that wt(f) ≤ 2−k for k ≥ 2 and let δ > 0. Then,

there exist directions Y1, . . . , Yt ∈ (Fm
2 )k−1 such that

Prx [f(x) 6= Maj (∆Y1f(x), . . . ,∆Ytf(x))] ≤ δ ,

where t = ⌈17 log(1/δ)⌉.

The starting point of Lemma 3.2 is the following simple proposition.

Proposition B.1. Let f : Fn
2 → F

n
2 be a function with bias(f) 6= 0. Then,

(−1)f(x) =
1

bias(f)
Ey∈Fn

2

[

(−1)∆yf(x)
]

.

This suggests that by sampling (−1)∆yf(x) we can evaluate f(x) with high probability. Essen-
tially, the proof of Lemma 3.2 is by generalizing this lemma for high order derivatives while showing
(via suitable concentration bound) that a similar sampling works in this case.

Proof of Lemma 3.2. The following proposition is just a repeated application of Proposition B.1.

Proposition B.2. Let f : Fn
2 → F

n
2 be a function with bias(f) ≤ 2−k. Then,

(−1)f(x) = EY ∈(Fm
2 )k−1

[

αY · (−1)∆Y f(x)
]

, (29)

where,

αY =
1

bias(f) · bias(∆y1f) · · · bias(∆yk−2
· · ·∆y1f)

.

This implies a simple approximation scheme for f – sample from the distribution αY ·(−1)∆Y f(x)

independently and take the sign of the average. Without the loss of generality assume f(x) =
1. Then, for independent random variables Xi = αYi

· (−1)∆Yi
f(x), sampled independently from

{αY · (−1)∆Y f(x)} we get

Pr

[

f(x) 6= Sgn

(

1

t

t
∑

i=1

Xi

)]

= Pr

[

1

t

t
∑

i=1

Xi − (−1)f(x) ≥ 1

]

. (30)

To analyze this we shall use Hoeffding’s Inequality [Hoe63].

Theorem B.3 (Hoeffding’s Inequality). Let X1, . . . ,Xt independent random variables where each
Xi is supported on the interval [ai, bi]. Then,

Pr

[

1

t

t
∑

i=1

Xi − µ ≥ ǫ

]

≤ exp

(

2ǫ2t2
∑t

i=1(bi − ai)2

)

,

with µ = E
[

1
t

∑t
i=1 Xi

]

.
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Let M = maxY αY . Then, the random variables Xi in Equation (30) are supported on the
interval [−M,M ]. From Hoeffding’s Inequality we get that

Pr

[

f(x) 6= Sgn

(

1

t

t
∑

i=1

Xi

)]

= Pr

[

1

t

t
∑

i=1

Xi − (−1)f(x) ≥ 1

]

≤ exp

(

− t

2M2

)

,

We thus see that for
t =

⌈

2 ln(1/δ)M2
⌉

,

it holds that

Prx

[

f(x) 6= Sgn

(

1

t

t
∑

i=1

αYi
∆Yi

f(x)

)]

≤ δ ,

where αYi
· (−1)∆Yi

f(x) are independent random samples from {αY · (−1)∆Y f(x)}. It remains to
upper bound M = maxY αY .

Lemma B.4. Let Y ∈ (Fm
2 )k−1 then,

αY ≤ 1
∏k

j=1(1− 2−j)
≤ 3.5 .

Proof. The left inequality follows since derivative may only double the weight hence if wt(f) ≤ 2−k

then bias(∆Y f) ≥ 1 − 21+t−k for any direction Y of order t. For the second inequality, note that
it suffices to bound

∏∞
j=1

1
1−2−j . One can easily verify that 1

∏100
j=1(1−2−j)

≤ 3.47. Using that for all

x < 1/2 we have 1
1−x ≤ e2x we have,

1
∏∞

j=101(1− 2−j)
≤

∞
∏

j=101

e2
∑∞

j=101 2
−j ≤ e2

−99
.

Also, it is not hard to verify that e2
−99 · 3.47 < 3.5.

Thus,
t =

⌈

2 ln(1/δ)M2
⌉

≤ 17 log(1/δ) ,

This completes the proof of Lemma 3.2.

We now state and prove Lemma 3.11 (which is Lemma 2.4 in [KLP12]).

Lemma 3.11. Let f : Fn
2 → F2 be a function such that bias(f) ≥ ǫ > 0 and let δ > 0. Then there

exists directions y1, . . . , yt ∈ F
m
2 such that,

Prx

[

f(x) = Maj
(

∆∑

i∈I yi
f(x) : ∅ 6= I ⊆ [t]

)]

≥ 1− δ ,

where t = ⌈2 log(1/ǫ) + log(1/δ) + 1⌉.

Proof. The starting point is again Proposition B.1. As before we can sample y1, . . . , yt indepen-
dently and using Hoeffding’s inequality argue that

Sgn

(

1

t

t
∑

i=1

(−1)∆yi
f(x)

)
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approximates f . This however does not yield the dependence we are looking for and so we shall
use Chebyshev’s inequality. The main observation is that from the derivatives {∆yif(x)} we can
computed all the derivatives in {∆yf : y ∈ span {y1, . . . , yt} (x)}, and that this set is pairwise inde-
pendent. Let

S(x, y1, . . . , yt) =
∑

∅6=I⊆[t]

(−1)f(x)+∆∑
i∈I yi

f(x) .

It is not hard to see that for x, y1, . . . , yt ∈ F
m
2 sampled uniformly at random the above summands

are pairwise independent and that S ≥ 0 iff f(x) = Maj
{

∆∑

i∈I yi
f(x)

}

. Simple application of

Chebyshev’s inequality yields,

Pr[f(x) 6= Maj
{

∆∑

i∈I yi
f(x) : ∅ 6= I ⊆ [t]

}

] = Pr[S < 0]

≤ Pr|S − E[S]| > E[S]]

<
Var(S)

(2t − 1)2 bias(f)2

≤ 1

(2t − 1) bias(f)2
.

Thus, for t = log 1
δ + 2 log 1

ǫ + 1 we get that the above probability is at most δ.

C Missing calculations from the proof of Theorem 1.4

In the proof of Theorem 1.4 we claimed that the smallest natural number s for which

17(2s + 4)γs−2 ≤ 1

2

(

1− γ

(

1 +
2ℓ+ s+ 1

m− (2ℓ+ s+ 1)

))2ℓ+s+1

satisfies s = s(γ, ℓ) = O
(

γℓ+log(1/1−2γ)
1−2γ + 1

)

. We now prove this upper bound on s.

We first deal with the case in which γ is very close to 1/2 as this is the most interesting case.

Lemma C.1. Let m, ℓ ∈ N and ρ < 1/4 be a positive parameter, which may be constant or function

of m. Let γ = 1/2−ρ and let γ̃ be such that γ ≤ γ̃ ≤ 1
2 −

ρ
2 . Then, for s = O

(

γℓ+log(1/1−2γ)
1−2γ + 1

)

=

O

(

ℓ+log 1
ρ

ρ

)

we have,

17(2s + 4)γs−2 ≤ 1

2
(1− γ̃)2ℓ+s+1 .

Proof. Define,

s′ =
8 + log

(

1
1−γ̃

)

(2ℓ+ 1) + 2 log 1
γ

log 1−γ̃
γ

and ∆ =

log s′ + log

(

1 + 2
log 1−γ̃

γ

)

log 1−γ̃
γ

; .

and set s = s′ +∆.
As s ≥ 1 it suffices to prove that,

2 · 17 · 6sγs−2 = 204sγs−2 ≤ (1− γ̃)2ℓ+s+1 . (31)
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We claim that since,

s′ ≥
8 + log

(

1
1−γ̃

)

(2ℓ+ 1) + 2 log 1
γ

log 1−γ̃
γ

(32)

we have,
204γs

′−2 ≤ (1− γ̃)2ℓ+s′+1 .

To see this re-write the inequality as,

204γ−2(1− γ̃)−1(1− γ̃)−2ℓ ≤
(

1− γ̃

γ

)s′

.

By taking the logarithm on both sides the above is equivalent to,

log(204) + 2 log
1

γ
+ log

1

1− γ̃
+ 2ℓ log

1

1− γ̃
≤ s′ log

1− γ̃

γ
.

Since log(204) < 8 this is indeed a consequence of eq. (32). Recall that s = ∆+s′ then by cancelling
this inequality from eq. (31) we get that it suffices to prove,

(s′ +∆) ≤
(

1− γ̃

γ

)∆

.

Substituting ∆ we get that the above is equivalent to,

s′ +
log s′

log 1−γ̃
γ

+

log

(

1 + 2
log 1−γ̃

γ

)

log 1−γ̃
γ

≤ s′ ·
(

1 +
2

log 1−γ̃
γ

)

.

This inequality is equivalent to,

log s′ + log

(

1 +
2

log 1−γ̃
γ

)

≤ 2s′ .

Clearly log s′ ≤ s′ and log

(

1 + 2
log 1−γ̃

γ

)

≤ s′.

To complete the proof we thus have to show that s = O
(

γℓ+log(1/1−2γ)
1−2γ

)

= O

(

ℓ+log 1
ρ

ρ

)

. I.e.

that

8 + log
(

1
1−γ̃

)

(2ℓ+ 1) + 2 log 1
γ

log 1−γ̃
γ

+

log s′ + log

(

1 + 2
log 1−γ̃

γ

)

log 1−γ̃
γ

= O

(

ℓ+ log 1
ρ

ρ

)

.

As γ, γ̃ are bounded away from 1 and 0 we have that log 1
γ , log

(

1
1−γ̃

)

= O(1). In addition,

log
1− γ̃

γ
≥ log

1+ρ
2

1
2 − ρ

= log
1 + ρ

1− 2ρ
= log

(

1 +
3ρ

1− 2ρ

)

≥ ρ

1− 2ρ
.

We thus see that s′ = O (ℓ/ρ) and that ∆ = O
(

log s′+log(O(1/ρ))
ρ

)

. Hence, s = O

(

ℓ+log 1
ρ

ρ

)

.
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Recall that in the case of Theorem 1.4 γ̃ = γ
(

1 + t
m−t

)

where t = 2ℓ+ s+1 and γ = 1
2 − ρ. A

simple calculation reveals that if t ≤ ρ
1−ρm then γ̃ ≤ 1

2−
ρ
2 . Thus, for the assumption in Lemma C.1

to hold it suffices that
ℓ+ log 1

ρ

ρ2
= o(m) .

We now consider the case γ ≤ 1/4. As before it is enough to prove that

204sγ−2(1− γ̃)−1(1− γ̃)−2ℓ ≤
(

1− γ̃

γ

)s

.

Let us assume that γ̃ ≤ 2γ ≤ 1/2. We thus have that 1− γ̃ ≥ 2γ,
√
γ and 1

1−γ̃ ≤ exp(2γ̃). We thus
get

204sγ−2(1− γ̃)−1(1− γ̃)−2ℓ ≤ 204s

(

1− γ̃

γ

)4

exp (6γ̃ℓ) ≤ 204s

(

1− γ̃

γ

)4

exp (12γℓ) .

In addition for s ≥ 24γℓ+ 256 we have

(

1− γ̃

γ

)s

≥
(

1− γ̃

γ

)4

exp2 (24γℓ + 252) .

It therefore suffices to prove that 204s ≤ exp2 (12γℓ+ 252). This follows as for all s ≥ 256 we have
that 256s ≤ exp2 (s/2), and for our choice of s it holds that s/2 < 12γℓ + 252. All that is left to

prove is that when γ ≤ 1/4 for some s = O
(

γℓ+log(1/1−2γ)
1−2γ + 1

)

it holds that s ≥ 24γℓ+ 256. This

clearly holds as 1
1−2γ > 1.

Recall that we assumed that γ̃ ≤ 2γ. For this to hold it suffices to require in Theorem 1.4 that
ℓ = o(m).
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