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We present new results on approximate colourings of graphs and, more gener-
ally, approximate H-colourings and promise constraint satisfaction problems.

First, we show NP-hardness of colouring k-colourable graphs with
(

k
bk/2c

)
−1

colours for every k ≥ 4. This improves the result of Buĺın, Krokhin, and Opršal
[STOC’19], who gave NP-hardness of colouring k-colourable graphs with 2k−1
colours for k ≥ 3, and the result of Huang [APPROX-RANDOM’13], who

gave NP-hardness of colouring k-colourable graphs with 2Ω(k1/3) colours for
sufficiently large k. Thus, for k ≥ 4, we improve from known linear/sub-
exponential gaps to exponential gaps.

Second, we show that the topology of the box complex of H alone determines
whether H-colouring of G-colourable graphs is NP-hard for all (non-bipartite,
H-colourable) G. This formalises the topological intuition behind the result
of Krokhin and Opršal [FOCS’19] that 3-colouring of G-colourable graphs
is NP-hard for all (3-colourable, non-bipartite) G. We use this technique
to establish NP-hardness of H-colouring of G-colourable graphs for H that
include but go beyond K3, including square-free graphs and circular cliques
(leaving K4 and larger cliques open).

Underlying all of our proofs is a very general observation that adjoint
functors give reductions between promise constraint satisfaction problems.

1. Introduction

Graph colouring is one of the most fundamental and studied problems in combinatorics
and computer science. A graph G is called k-colourable if there is an assignment of
colours {1, 2, . . . , k} to the vertices of G so that any two adjacent vertices are assigned
different colours. The chromatic number of G, denoted by χ(G), is the smallest integer
k for which G is k-colourable. Deciding whether χ(G) ≤ k appeared on Karp’s original
list of 21 NP-complete problems [Kar72], and is NP-hard for every k ≥ 3. In particular,
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it is NP-hard to decide whether χ(G) ≤ 3 or χ(G) > 3. Put differently (thanks to
self-reducibility of graph colouring), it is NP-hard to find a 3-colouring of G even if G is
promised to be 3-colourable.

In the approximate graph colouring problem, we are allowed to use more colours
than needed. For instance, given a 3-colourable graph G on n vertices, can we find a
colouring of G using significantly fewer than n colours? On the positive side, the currently
best polynomial-time algorithm of Kawarabayashi and Thorup [KT17] finds a colouring
using O(n0.19996) colours. Their work continues a long line of research and is based on a
semidefinite relaxation. On the negative side, it is believed that finding a c-colouring of a
k-colourable graph is NP-hard for all constants 3 ≤ k ≤ c. Already in this regime (let
alone for non-constant c) our understanding remains rather limited, despite lots of work
and the development of complex techniques, as we will survey in Section 1.1.

A natural and studied generalisation of graph colourings is that of graph homomor-
phisms and, more generally, constraint satisfaction problems [HN08].

Given two graphs G and H, a map h : V (G)→ V (H) is a homomorphism from G to
H if h preserves edges; that is, if {h(u), h(v)} ∈ E(H) whenever {u, v} ∈ E(G) [HN04].
A celebrated result of Hell and Nešetřil established a dichotomy for the homomorphism
problem with a fixed target graph H, also known as the H-colouring problem: deciding
whether an input graph G has a homomorphism to H is solvable in polynomial time if
H is bipartite or if H has a loop; for all other H this problem is NP-hard [HN90]. Note
that the H-colouring problem for H = Kk, the complete graph on k vertices, is precisely
the graph colouring problem with k colours.

The constraint satisfaction problem (CSP) is a generalisation of the graph homomor-
phism problem from graphs to arbitrary relational structures. One type of CSP that has
attracted a lot of attention is the one with a fixed target structure, also known as the
non-uniform CSP; see, e.g., the work of Jeavons, Cohen, and Gyssens [JCG97], Bula-
tov [Bul06; Bul11], and Barto and Kozik [BK14; BK16]. Following the above mentioned
dichotomy of Hell and Nešetřil for the H-colouring [HN90] and a dichotomy result of
Schaefer for Boolean CSPs [Sch78], Feder and Vardi famously conjectured a dichotomy
for all non-uniform CSPs [FV98]. The Feder-Vardi conjecture was recently confirmed
independently by Bulatov [Bul17] and Zhuk [Zhu17]. In fact, both proofs establish the
so-called “algebraic dichotomy”, conjectured by Bulatov, Jeavons, and Krokhin [BJK05],
which delineates the tractability boundary in algebraic terms. A high-level idea of the
tractability boundary is that of higher-order symmetries, called polymorphisms, which
allow to combine several solutions to a CSP instance into a new solution. The lack
of non-trivial1 polymorphisms guarantees NP-hardness, as shown already in [BJK05].
The work of Bulatov and Zhuk show that any non-trivial polymorphism guarantees
tractability. We refer the reader to a recent accessible survey by Barto, Krokhin, and
Willard on the algebraic approach to CSPs [BKW17].

Given two graphs G an H such that G is H-colourable (i.e., there is a homomorphism
from G to H), the promise constraint satisfaction problem parametrised by G and H,
denoted by PCSP(G,H), is the following computational problem: given a G-colourable
graph, find an H-colouring of this graph.2 More generally, G and H do not have to be

1We note that projections/dictators are not the only trivial polymorphims, cf. [BKW17, Example 41].
2What we described is the “search version” of PCSPs. In the “decision version”, the goal is to say YES

if the input graph is G-colourable and NO if the input graph is not H-colourable. The decision PCSP
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graphs but arbitrary relational structures. Note that if G = H then we obtain the (search
version of the) standard H-colouring and constraint satisfaction problem.

PCSPs have been studied as early as in the classic work of Garey and Johnson [GJ76]
on approximate graph colouring but a systematic study originated in the paper of Austrin,
Guruswami, and H̊astad [AGH17], who studied a promise version of (2k + 1)-SAT, called
(2 + ε)-SAT. In a series of papers [BG16; BG18; BG19], Brakensiek and Guruswami
linked PCSPs to the universal-algebraic methods developed for the study of non-uniform
CSPs [BKW17]. In particular, the notion of weak polymorphisms, identified in [AGH17],
allowed for some ideas developed for CSPs to be be used in the context of PCSPs.
The algebraic theory of PCSPs was then lifted to an abstract level by Buĺın, Krokhin,
and Opršal in [BKO19]. Consequently, this theory was used by Ficak, Kozik, Oľsák,
and Stankiewicz to obtain a dichotomy for symmetric Boolean PCSPs [Fic+19], thus
improving on an earlier result from [BG18], which gave a dichotomy for symmetric
Boolean PCSP with folding (negations allowed).

1.1. Prior and related work

While the NP-hardness of finding a 3-colouring of a 3-colourable graph was obtained by
Karp [Kar72] in 1972, the NP-hardness of finding a 4-colouring of a 3-colourable graph
was only proved in 2000 by Khanna, Linial, and Safra [KLS00] (see also the work of
Guruswami and Khanna for a different proof [GK04]). This result implied NP-hardness
of finding a (k + 2bk/3c − 1)-colouring of a k-colourable graph for k ≥ 3 [KLS00]. Early
work of Garey and Johnson established NP-hardness of finding a (2k − 5)-colouring
of a k-colourable graph for k ≥ 6 [GJ76]. In 2016, Brakensiek and Guruswami proved
NP-hardness of a (2k − 2)-colouring of a k-colourable graph for k ≥ 3 [BG16]. Only very
recently, Buĺın, Krokhin, and Opršal showed that finding a 5-colouring of a 3-colourable
graph, and more generally, finding a (2k − 1)-colouring of a k-colourable graph for any
k ≥ 3, is NP-hard [BKO19].

In 2001, Khot gave an asymptotic result – he showed that for sufficiently large k,
finding a k

1
25

(log k)-colouring of a k-colourable graph is NP-hard [Kho01]. In 2013, Huang

improved the gap. For sufficiently large k, he showed that finding a 2Ω(k1/3)-colouring of
a k-colourable graph is NP-hard [Hua13].

The NP-hardness of colouring (k-colourable graphs) with (2k − 1) colours for k ≥ 3

from [BKO19] and with 2Ω(k1/3) colours for sufficiently large k from [Hua13] constitute
the currently strongest known NP-hardness results for approximate graph colouring.

Under stronger assumptions (Khot’s 2-to-1 Conjecture [Kho02] for k ≥ 4 and its non-
standard variant for k = 3), Dinur, Mossel, and Regev showed that finding a c-colouring
of a k-colourable graph is NP-hard for all constants 3 ≤ k ≤ c [DMR09] A variant of
Khot’s 2-to-1 Conjecture with imperfect completeness has recently been proved [Din+18;
KMS18], which implies hardness for approximate colouring variants where most but not
all of the graph is guaranteed to be k-colourable.

Hypergraphs colourings, a special case of PCSPs, is another line of work intensively
studied. A k-colouring of a hypergraph is an assignment of colours {1, 2, . . . , k} to its

reduces to the search PCSP but they are not known to be equivalent in general. However, as far as we
know, all known positive results are for the search version, while all known negative results, including
the new results from this paper, are for the decision version.
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vertices that leaves no hyperedge monochromatic. Dinur, Regev, and Smyth showed
that for any constants 2 ≤ k ≤ c, it is NP-hard to find a c-colouring of given 3-uniform
k-colourable hypergraph [DRS05]. Other notions of colourings (such as different types of
rainbow colourings) for hypergraphs were studied by Brakensiek and Guruswami [BG16;
BG17], Guruswami and Lee [GL18], and Austrin, Bhangale, and Potukuchi [ABP20].

Some results are also known for colourings with a super-constant number of colours. For
graphs, conditional hardness was obtained by Dinur and Shinkar [DS10]. For hypergraphs,
NP-hardness results were obtained in recent work of Bhangale [Bha18] and Austrin,
Bhangale, and Potukuchi [ABP19].

2. Results

For two graphs or digraphs G, H, we write G→ H if there exists a homomorphism from
G to H.3 We are interested in the following computational problem.

Definition 2.1. Fix two graphs G and H with G → H. The (decision variant of the)
PCSP(G,H) is, given an input graph I, output YES if I → G, and NO if I 6→ H.

To state our results it will be convenient to use the following definition.

Definition 2.2. A graph H is left-hard if for every non-bipartite graph G with G→ H,
PCSP(G,H) is NP-hard. A graph G is right-hard if for every loop-less graph H with
G→ H, PCSP(G,H) is NP-hard.

If G→ G′ and H ′ → H, then PCSP(G,H) trivially reduces to PCSP(G′, H ′) (this is
called homomorphic relaxation [BKO19]; intuitively, increasing the promise gap makes
the problem easier). Therefore, if H is a left-hard graph, then all graphs left of H (that
is, H ′ such that H ′ → H) are trivially left-hard.4 If G is right-hard, then all graphs right
of G are right-hard.

For the same reason, since every non-bipartite graph admits a homomorphism from an
odd cycle, to show that H is left-hard it suffices to show that PCSP(Cn, H) is NP-hard
for arbitrarily large odd n, where Cn denotes the cycle on n vertices. Dually, since every
loop-less graph admits a homomorphism to a clique, to show that G is right-hard it
suffices to show that PCSP(G,Kk) is NP-hard for arbitrarily large k.

It is conjectured that all non-trivial PCSPs for (undirected) graphs are NP-hard,
greatly extending Hell and Nešetřil’s theorem:

Conjecture 2.3 (Brakensiek and Guruswami [BG18]). PCSP(G,H) is NP-hard for every
non-bipartite loop-less G,H. Equivalently, every loop-less graph is left-hard. Equivalently,
every non-bipartite graph is right-hard.

In addition to the results on classical colourings discussed above (the case where G
and H are cliques), the following result was recently obtained in a novel application of
topological ideas.

Theorem 2.4 (Krokhin and Opršal [KO19]). K3 is left-hard.

3In this paper, we allow graphs to have loops: the existence of homomorphisms for such graphs is trivial,
but this allows us to make statements about graph constructions that will work without exceptions.

4Note that by our definition, bipartite graphs are vacuously left-hard.
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2.1. Improved hardness of classical colouring

In Section 3, we focus on right-hardness. We use a simple construction called the arc
digraph or line digraph, which decreases the chromatic number of a graph in a controlled
way. The construction allows to conclude the following, in a surprisingly simple way:

Proposition 2.5. There exists a right-hard graph if and only if K4 is right-hard.5

More concretely, we show in particular that PCSP(K6,K2k) log-space reduces to
PCSP(K4,Kk), for all k ≥ 4. This contrasts with [Bar+19, Proposition 10.3],6 where it
is shown to be impossible to obtain such a reduction with minion homomorphisms: an
algebraic reduction, described briefly in Section 4.3, central to the framework of [BKO19;
Bar+19] (in particular, there exists a k such that PCSP(K4,Kk) admits no minion
homomorphism to any PCSP(Kn′ ,Kk′) for 4 < n′ ≤ k′).

Furthermore, we strengthen the best known asymptotic hardness: Huang [Hua13]
showed that for all sufficiently large n, PCSP(Kn,K2n

1/3 ) is NP-hard. We improve this
in two ways, using Huang’s result as a black-box. First, we improve the asymptotics from
sub-exponential 2n

1/3
to single-exponential

(
n
bn/2c

)
∼ 2n√

πn/2
. Second, we show the claim

holds for n as low as 4.

Theorem 2.6 (Main Result #1). For all n ≥ 4, PCSP(Kn,K( n
bn/2c

)
−1

) is NP-hard.

In comparison, the previous best result relevant for all integers n was proved by Buĺın,
Krokhin, and Opršal [BKO19]: PCSP(Kn,K2n−1) is NP-hard for all n ≥ 3. For n = 3 we
are unable to obtain any results; for n = 4 the new bound

(
n
bn/2c

)
− 1 = 5 is worse than

2n− 1 = 7, while for n = 5 the two bounds coincide at 9. However, already for n = 6 we
improve the bound from 2n− 1 = 11 to

(
n
bn/2c

)
− 1 = 19.

2.2. Left-hardness and topology

In Section 4, we focus on left-hardness. The main idea behind Krokhin and Opršal’s [KO19]
proof that K3 is left-hard is simple to state. To prove that PCSP(Cn, H) is NP-hard
for all odd n, the algebraic framework of [BKO19] shows that it is sufficient to establish
certain properties of polymorphisms : homomorphisms f : CLn → H for L ∈ N (where GL =
G×· · ·×G is the L-fold tensor product7). For large n the graph CLn looks like an L-torus:
an L-fold product of circles, so the pertinent information about f seems to be subsumed by
its topological properties (such as winding numbers, when H is a cycle). We refer to [KO19]
for further details, but this general principle applies to any H and in fact we prove (in
Theorem 2.7 below) that whether H is left-hard or not depends only on its topology.

The topology we associate with a graph is its box complex. See Appendix A for formal
definitions and statements. Intuitively, the box complex |Box(H)| is a topological space
built from H by taking the tensor product H×K2 and then gluing faces to each four-cycle

5Jakub Opršal and Andrei Krokhin realised that in this Proposition, 4 can be improved to 3 by using
the fact that δ(δ(K4)) is 3-colourable, as proved by Rorabaugh, Tardif, Wehlau, and Zaguia [Ror+16].
Details will appear in a future journal version.

6[Bar+19] is a full version of [BKO19]. Proposition 10.3 in [Bar+19] is Proposition 5.31 in the previous
two versions of [Bar+19].

7 The tensor (or categorical) product G×H of graphs G,H has pairs (g, h) ∈ V (G)× V (H) as vertices
and (g, h) is adjacent to (g′, h′) whenever g is adjacent to g′ (in G) and h is adjacent to h′ (in H).
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and more generally, gluing higher-dimensional faces to complete bipartite subgraphs.
The added faces ensure that the box complex of a product of graphs is the same as the
product space of their box complexes: thanks to this,

∣∣Box(CLn )
∣∣ is indeed equivalent to

the L-torus. The product with K2 equips the box complex with a symmetry that swaps
the two sides of H ×K2. This make the resulting space a Z2-space: a topological space
together with a continuous involution from the space to itself, which we denote simply
as −. A Z2-map between two Z2-spaces is a continuous function which preserves this
symmetry: f(−x) = −f(x). This allows to concisely state that a given map is “non-trivial”
(in contrast, there is always some continuous function from one space to another: just
map everything to a single point). The main use of the box complex is then the statement
that every graph homomorphism G→ H induces a Z2-map from |Box(G)| to |Box(H)|.
Graph homomorphisms can thus be studied with tools from algebraic topology.

The classical example of this is an application of the Borsuk-Ulam theorem: there is
no Z2-map from Sn to Sm for n > m, where Sn denotes the n-dimensional sphere with
antipodal symmetry. Hence if G and H are graphs such that |Box(G)| and |Box(H)|
are equivalent to Sn and Sm, respectively, then there can be no graph homomorphism
G→ H. See Figure 1.

This is essentially the idea in Lovász’ proof [Lov78] of Kneser’s conjecture that the
chromatic number of Kneser graphs KG(n, k) is n − 2k + 2. In the language of box
complexes, the proof amounts to showing that the box complex of a clique Kc is equivalent
to Sc−2, while the box complex of a Kneser graph contains Sn−2k. We refer to [Mat08]
for an in-depth, yet accessible reference.

We show that the left-hardness of a graph depends only on the topology of its box
complex (in fact, it is only important what Z2-maps it admits, which is significantly
coarser than Z2-homotopy equivalence):

Theorem 2.7 (Main Result #2). If H is left-hard and H ′ is a graph such that
|Box(H ′)| admits a Z2-map to |Box(H)|, then H ′ is left-hard.

Using Krokhin and Opršal’s result that K3 is left-hard (Theorem 2.4), since |Box(K3)|
is the circle S1 (up to Z2-homotopy equivalence), we immediately obtain the following:

Corollary 2.8. Every graph H for which |Box(H)| admits a Z2-map to S1 is left-hard.

Two examples of such graphs (other than 3-colourable graphs) are loop-less square-free
graphs and circular cliques Kp/q with 2 < p

q < 4 (see Lemma A.1 for proofs), which
we introduce next. Square-free graphs are graphs with no cycle of length exactly 4. In
particular, this includes all graphs of girth at least 5 and hence graphs of arbitrarily
high chromatic number (but incomparable to K4 and larger cliques, in terms of the
homomorphism → relation). The circular clique Kp/q (for p, q ∈ N, pq > 2) is the graph
with vertex set Zp and an edge from i to every integer at least q apart: i + q, i + q +
1, . . . , i+ p− q. They generalise cliques Kn = Kn/1 and odd cycles C2n+1 ' K(2k+1)/k.

Their basic property is that Kp/q → Kp′/q′ if and only if p
q ≤

p′

q′ . Thus circular cliques
refine the chain of cliques and odd cycles, corresponding to rational numbers between
integers. For example:

· · · → C7 → C5 → C3 = K3 → K7/2 → K4 → K9/2 → K5 → . . .

The circular chromatic number χc(G) is the infimum over p
q such that G → Kp/q.

Therefore:
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34
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Figure 1: The box complex of K4 is the hollow cube (informally speaking; the drawing
skips some irrelevant faces). It is equivalent (Z2-homotopy equivalent) to the
sphere. The box complex of the circular clique K7/2 is equivalent to the circle.
Thus there cannot be a homomorphism from K4 to K7/2 (of course in this case

it is easier to show this directly).

Corollary 2.9. For every 2 < r ≤ r′ < 4, it is NP-hard to distinguish graphs G with
χc(G) ≤ r from those with χc(G) > r′.

In this sense, we conclude that K4−ε is left-hard, thus extending the result for K3.
However, the closeness to K4 is only deceptive and no conclusions on 4-colourings follow.
For K4, since the box complex is equivalent to the standard 2-dimensional sphere, we
can at least conclude that to prove left-hardness of K4 it would be enough to prove
left-hardness of any other graph with the same topology: these include all non-bipartite
quadrangulations of the projective plane, in particular the Grötzsch graph, 4-chromatic
generalised Mycielskians, and 4-chromatic Schrijver graphs [Mat08; BL03]. In this sense,
the exact geometry of K4 is irrelevant. However, the fact that it is a finite graph, with
only finitely many possible maps from CLn for any fixed n,L should still be relevant, as it
is for K3. It is also quite probable that any proof for a “spherical” graph would apply
just as well to K4, where the proof could be just notationally much simpler.

Finally, in Appendix A we rephrase Krokhin and Opršal’s [KO19] proof of Theorem 2.4
in terms of the box complex. In particular, left-hardness of K3 follows from some general
principles and the fact that |Box(K3)| is a circle. The proof also extends to all graphs H
such that |Box(H)| admits a Z2-map to S1, giving an independent, self-contained proof
of Corollary 2.8 (and Theorem 2.4 in particular).

The general principle is that a homomorphism CLn → H induces a Z2-map (S1)L →
|Box(H)|, in a way that preserves minors (identifications within the L variables) and
automorphisms. (In the language of category theory, the box complex is a functor from
the category of graphs to that of Z2-spaces, and the functor preserves products). In turn,

7



the Z2-map induces a group homomorphism between the fundamental group of (S1)L,
which is just ZL, and that of |Box(H)|. This is essentially the map ZL → Z obtained
in [KO19]. While this rephrasing requires a bit more technical definitions, the main
advantage is that it allows to replace a tedious combinatorial argument (about winding
numbers preserving minors) with straightforward statements about preserving products.

2.3. Methodology – adjoint functors

While the proof of the first main result is given elementarily in Section 3, it fits together
with the second main result in a much more general pattern. The underlying principle is
that pairs of graph constructions satisfying a simple duality condition give reductions
between PCSPs. To introduce them, let us consider a concrete example. For a graph G
and an odd integer k, ΛkG is the graph obtained by subdividing each edge into a path of
k edges; ΓkG is the graph obtained by taking the k-th power of the adjacency matrix
(with zeroes on the diagonal); equivalently, the vertex set remains unchanged and two
vertices are adjacent if and only if there is a walk of length exactly k in G. (For example
Γ3G has loops if G has triangles).

We say a graph construction Λ (a function from graphs to graphs) is a thin (graph)
functor if G→ H implies ΛG→ ΛH (for all G,H). A pair of thin functors (Λ,Γ) is a
thin adjoint pair if

ΛG→ H if and only if G→ ΓH.

We call Λ the left adjoint of Γ and Γ the right adjoint of Λ.
For all odd k, (Λk,Γk) are a thin adjoint pair. For example, since Γ3C5 = K5, we have

G→ K5 if and only if ΛkG→ C5. This is a basic reduction that shows the NP-hardness
of C5-colouring; in fact adjointness of various graph construction is the principal tool
behind the original proof of Hell and Nešetřil’s theorem (characterising the complexity of
H-colouring) [HN90].

In category theory, there is a stronger and more technical notion of (non-thin) functors
and adjoint pairs. A thin graph functor is in fact a functor in the thin category of graphs,
that is, the category whose objects are graphs, and with at most one morphism from one
graph to another, indicating whether a homomorphism exists or not. In other words, we
are only interested in the existence of homomorphisms, and not in their identity and how
they compose. Equivalently, we look only at the preorder of graphs by the G→ H relation
(we can also make this a poset by considering graphs up to homomorphic equivalence). In
order-theoretic language, thin functors are just order-preserving maps, while thin adjoint
functors are known as Galois connections. We prefer the categorical language as most of
the constructions we consider are in fact functors (in the non-thin category of graphs),
which is important for connections to the algebraic framework of [BKO19], as we discuss
in Section 4.3. While unnecessary for our main results, we believe it may be important
to understand these deeper connections to resolve the conjectures completely.

Thin adjoint functors give us a way to reduce one PCSP to another. We say that a
graph functor Γ is log-space computable if, given a graph G, ΓG can be computed in
logarithmic space in the size of G.

Observation 2.10. Let Λ,Γ be thin adjoint graph functors and let Λ be log-space com-
putable. Then PCSP(G,ΓH) reduces to PCSP(ΛG,H) in log-space, for all graphs G,H.

8



Proof. Let F be an instance of PCSP(G,ΓH). Then ΛF is an appropriate instance of
PCSP(ΛG,H). Indeed, if F → G, then ΛF → ΛG (because Λ is a thin functor). If
ΛF → H, then F → ΓH by adjointness.

In some cases, a thin functor Γ that is a thin right adjoint in a pair (Λ,Γ) is also a
thin left adjoint in a pair (Γ,Ω). This allows to get a reduction in the opposite direction:

Observation 2.11. Let (Λ,Γ) and (Γ,Ω) be thin adjoint pairs of functors. Then
PCSP(ΓG,H) and PCSP(G,ΩH) are log-space equivalent (assuming Λ and Γ are log-
space computable).

Proof. The previous observation gives a reduction from PCSP(G,ΩH) to PCSP(ΓG,H).
For the other direction, let F be an instance of PCSP(ΓG,H). Then ΛF is an appropriate
instance of PCSP(G,ΩH). Indeed, if F → ΓG, then ΛF → G. If ΛF → ΩH, then
F → ΓΩH → H. The last arrow follows from the trivial ΩH → ΩH.

The proofs of Observations 2.10 and 2.11 of course extend to digraphs and general
relational structures. Note that the above proofs reduce decision problems; they work just
as well for search problems: all the thin adjoint pairs (Λ,Γ) we consider with Λ log-space
computable also have the property that a homomorphism ΛF → H can be computed
from a homomorphism F → ΓH and vice versa, in space logarithmic in the size of F .

As we discuss in Section 4, all of our results follow from reductions that are either
trivial (homomorphic relaxations) or instantiations of Observation 2.10. While for the first
main result we prefer to first give a direct proof that avoids this formalism (in Section 3),
it will be significantly more convenient for the second main result (in Section 4.1), where
we use a certain right adjoint Ωk to the k-th power Γk.

2.4. Hedetniemi’s conjecture

Another leitmotif of this paper is the application of various tools developed in research
around Hedetniemi’s conjecture. A graph K is multiplicative if G × H → K implies
G → K or H → K. The conjecture states that all cliques K = Kn are multiplicative.
Equivalently, χ(G×H) = min(χ(G), χ(H)); see [Zhu98; Sau01; Tar08] for surveys. In a
very recent breakthrough, Shitov [Shi19] proved that the conjecture is false (for large n).

The arc digraph construction, which we will use in Section 3 to prove Theorem 2.6,
was originally used by Poljak and Rödl [PR81] to show certain asymptotic bounds on
chromatic numbers of products. The functors Λk,Γk,Ωk were applied by Tardif [Tar05]
to show that colourings to circular cliques Kp/q (2 < p

q < 4) satisfy the conjecture.
Matsushita [Mat19] used the box complex to show that Hedetniemi’s conjecture would
imply an analogous conjecture in topology. This was independently proved by the first
author [Wro19] using Ωk functors, while the box complex was used to show that square-
free graphs are multiplicative [Wro17]. See [FT18] for a survey on applications of adjoint
functors to the conjecture.

The refutation of Hedetniemi’s conjecture and the fact that methods for proving the
multiplicativity of K3 extend to K4−ε and square-free graphs, but fail to extend to K4,
might suggest that the Conjecture 2.3 is doomed to the same fate. However, it now seems
clear that proving multiplicativity requires more than just topology [TW19]: known
methods do not even extend to all graphs H such that |Box(H)| is a circle. This contrasts
with Theorem 2.7: topological tools work much more gracefully in the setting of PCSPs.
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3. The arc digraph construction

Let D be a digraph. The arc digraph (or line digraph) of D, denoted δD , is the digraph
whose vertices are arcs (directed edges) of D and whose arcs are pairs of the form
((u, v), (v, w)). We think of undirected graphs as symmetric relations: digraphs in which
for every arc (u, v) there is an arc (v, u). So for an undirected graph G, δ(G) has 2|E(G)|
vertices and is a directed graph: the directions will not be important in this section, but
will be in Section 4.2. The chromatic number of a digraph is the chromatic number of
the underlying undirected graph (obtained by symmetrising each arc; so χ(D) ≤ n if and
only if D → Kn).

The crucial property of the arc digraph construction is that it decreases the chromatic
number in a controlled way (even though it is computable in log-space!). We include a
short proof for completeness. We denote by [n] the set {1, 2, . . . , n}.

Lemma 3.1 (Harner and Entringer [HE72]). For any graph G:

• if χ(δ(G)) ≤ n, then χ(G) ≤ 2n;

• if χ(G) ≤
(

n
bn/2c

)
, then χ(δ(G)) ≤ n.

Proof. Suppose δG has an n-colouring. Recall that we think of G as a digraph with two
arcs (u, v) and (v, u) for each edge {u, v} ∈ E(G); thus δG contains two vertices (u, v)
and (v, u), as well as (by definition of δ) two arcs from one pair to the other. In particular,
an n-colouring of δG gives distinct colours to (u, v) and (v, u). Define a 2n-colouring φ of
G by assigning to each vertex v the set φ(v) of colours of incoming arcs. For any edge
{u, v} of G, φ(v) contains the colour c of the arc (u, v). Since every arc incoming to u
gets a different colour from (u, v), the set φ(u) does not contain c. Hence φ(u) 6= φ(v), so
φ is a proper colouring.

Suppose G has a
(

n
bn/2c

)
-colouring φ. We interpret colours φ(v) as bn/2c-element sub-

sets of [n]. Define an n-colouring of δG by assigning to each arc (u, v) an arbitrary colour
in φ(u) \ φ(v) (the minimum, say). Such a colour exists because φ(u) 6= φ(v). For arcs
(u, v), (v, w) clearly φ(u) \ φ(v) is disjoint from φ(v) \ φ(w), so this is a proper colouring
of δ(G).

The proofs in fact works for digraphs as well. For graphs, it is not much harder to
show an exact correspondence (we note however that most conclusions only require the
above approximate correspondence). Let us denote b(n) :=

(
n
bn/2c

)
.

Lemma 3.2 (Poljak and Rödl [PR81]). For a (symmetric) graph G,

χ(δ(G)) = min{n | χ(G) ≤ b(n)}.

In other words, δG→ Kn if and only if G→ Kb(n).

This immediately gives the following implication for approximate colouring:

Lemma 3.3. PCSP(Kb(n),Kb(k)) log-space reduces to PCSP(Kn,Kk), for all n, k ∈ N.

Proof. Let G be an instance of the first problem. Then δG is a suitable instance of
PCSP(Kn,Kk): if G→ Kb(n), then δG→ Kn. If δG→ Kk, then G→ Kb(k).

10



Remark 3.4. As a side note, adding a universal vertex gives the following obvious
reduction: PCSP(Kn,Kk) log-space reduces to PCSP(Kn+1,Kk+1), for n, k ∈ N.

Recall also that if n ≤ n′ ≤ k′ ≤ k, then PCSP(Kn,Kk) trivially reduces to
PCSP(Kn′ ,Kk′). One corollary of Lemma 3.3 is that if any clique of size at least 4
is right-hard, then all of them are:

Proposition 3.5. For all integers n, n′ ≥ 4, PCSP(Kn,Kk) is NP-hard for all k ≥ n if
and only if PCSP(Kn′ ,Kk′) is NP-hard for all k′ ≥ n′.

Proof. Let n ≤ n′. For one direction, right-hardness of Kn trivially implies right-hardness
of Kn′ .

On the other hand, we claim that if Kb(n) is right-hard, then so is Kn. Indeed, suppose
PCSP(Kb(n),Kk) is hard for all k ≥ b(n). In particular it is hard for all k of the form
k = b(k′) for an integer k′ ≥ n. Hence by Lemma 3.3, PCSP(Kn,Kk′) is hard for all
k′ ≥ n.

Suppose Kn is not right-hard. Then Kb(n) is not right-hard, Kb(b(n)) is not right-hard
and so on. Since starting with n ≥ 4, the sequence b(b(. . . n . . . )) grows to infinity, we
conclude that Kn′′ is not right-hard for some n′′ ≥ n′. Therefore, trivially Kn′ is not
right-hard.

In other words if any loop-less graph H is right-hard, then trivially some large enough
clique Kχ(H) is right-hard; by the above, K4 and all graphs right of it are right-hard.

This proves Proposition 2.5. The proof fails to extend to K3 because b(3) =
(

3
b3/2c

)
is not

strictly greater than 3.

The other consequence we derive from Lemma 3.3 is a strengthening of Huang’s result:

Theorem 3.6 (Huang [Hua13]). For all sufficiently large n, PCSP(Kn,K2Ω(n1/3)) is
NP-hard.

Theorem 2.6 (Main Result #1). For all n ≥ 4, PCSP(Kn,K( n
bn/2c

)
−1

) is NP-hard.

We thus improve the asymptotics from sub-exponential f(n) := 2n
1/3

to single-
exponential b(n) =

(
n
bn/2c

)
∼ 2n√

πn/2
. The informal idea of the proof is that any f(n) can

be improved to b−1(f(b(n))). Since b(n) is roughly exponential and b−1(n) is roughly
logarithmic, starting from a function f(n) of order exp(i+1)(α · log(i)(n)) with i-fold com-

positions and a constant α > 0, such as f(n) = 2n
1/3

= 22
1
3 log n

from Huang’s hardness,
results in

b−1(f(b(n))) ≈ log
(

exp(i+1)
(
α · log(i)(exp(n))

))
= exp(i)(α · log(i−1)(n)),

so a similar composition but with i decreased. In a constant number of steps, this results
in a single-exponential function. In fact using one more step, but without approximating
the function b(n), this results in exactly b(n)− 1. We note it would not be sufficient to
start from a quasi-polynomial f(n), like nΘ(logn) in Khot’s [Kho01] result.

Proof of Theorem 2.6. By Lemma 3.3:

11



PCSP(Kb(n),Kb(m)) log-space reduces to PCSP(Kn,Km), for all n,m ∈ N.

For any k ∈ N, let m = blog kc (all logarithms are base-2); then b(m) ≤ 2m ≤ k, hence
PCSP(Kb(n),Kk) trivially reduces to PCSP(Kb(n),Kb(m)).

Therefore, composing the two reductions:

PCSP(Kb(n),Kk) reduces to PCSP(Kn,Kblog kc), for any n, k ∈ N.

Starting from Theorem 3.6 we have a constant C such that:

PCSP(Kn,K2bC·n
1/3c) is NP-hard, for sufficiently large n.

Hence, substituting n = b(k):

PCSP(Kb(k),K2bC·b(k)1/3c) is NP-hard, for sufficiently large k.

Applying the above reduction, since blog 2bC·b(k)1/3cc = bC · b(k)1/3c ≥ (2k

k )1/3 ≥ 2k/4 for
sufficiently large k, we conclude:

PCSP(Kk,K2k/4) is NP-hard, for sufficiently large k.

We repeat this process to bring the constant further “down”. That is, we substitute b(k)
for k and apply the above reduction again. Since blog 2b(k)/4c = bb(k)/4c ≥ 2k/4k for
sufficiently large k, we conclude:

PCSP(Kk,K2k/4k) is NP-hard, for sufficiently large k.

To apply the reduction one more time, notice that for large k, b(k) ≥ 3
2b(k − 1) (because

b(2k) =
(

2k
k

)
=
(

2k−1
k−1

)
2k
k = 2 · b(2k−1) ≥ 3

2b(2k−1) and b(2k+1) =
(

2k+1
k

)
=
(

2k
k

)
2k+1
k+1 =

b(2k)(2− 1
k+1) ≥ 3

2b(2k)). Therefore blog(2b(k)/4b(k))c ≥ b(k)−log b(k) ≥ 2
3b(k) ≥ b(k−1)

for sufficiently large k, hence:

PCSP(Kk,Kb(k−1)) is NP-hard, for sufficiently large k.

Substituting b(k) for k one last time:

PCSP(Kb(k),Kb(b(k)−1)) is NP-hard, for sufficiently large k.

Composing with Lemma 3.3 one last time:

PCSP(Kk,Kb(k)−1) is NP-hard, for sufficiently large k.

This concludes the improvement in asymptotics. Moreover, one can notice that the
requirements on “sufficiently large k” gets relaxed whenever we substitute b(k) for k.
Formally, let k be maximum such that PCSP(Kk,Kb(k)−1) is not NP-hard. Then because
of Lemma 3.3, PCSP(Kb(k),Kb(b(k)−1)) is not NP-hard, and because b(b(k)−1) ≤ b(b(k))−
1, trivially PCSP(Kb(k),Kb(b(k))−1) is not NP-hard either. That is, PCSP(Kn,Kb(n)−1)
is not NP-hard for n = b(k). By maximality of k, k ≥ n. But k ≥ b(k) is only possible
when k < 4. Hence hardness holds for all k ≥ 4.
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4. Adjoint functors and topology

4.1. Thin functors Λk,Γk,Ωk

Recall that Λk denotes k-subdivision and Γk denotes the k-th power of a graph. For all
odd k, they are thin adjoint graph functors:

ΛkG→ H if and only if G→ ΓkH.

More surprisingly, Γk is itself the thin left adjoint of a certain thin functor Ωk:

ΓkG→ H if and only if G→ ΩkH.

This characterizes ΩkG up to homomorphic equivalence. The exact definition is irrelevant,
but we state it for completeness: for k = 2`+ 1, the vertices of Ωk are tuples (A0, . . . , A`)
of vertex subsets Ai ⊆ V (G) such that A0 contains exactly one vertex. Two such tuples
(A0, . . . , A`) and (B0, . . . , B`) are adjacent if Ai ⊆ Bi+1, Bi ⊆ Ai+1 (for i = 0 . . . ` − 1)
and A` is fully adjacent to B` (meaning a is adjacent to b in G, for a ∈ Ak, b ∈ Bk). We
note that Λk and Γk are log-space computable, for all odd k; however, Ωk is not: ΩkG is
exponentially larger than G. See [Wro19] for more discussion about the thin functors
Λk,Γk,Ωk and their properties.

Observation 2.10 tells us that PCSP(G,ΩkH) log-space reduces to PCSP(ΓkG,H) (in
fact, by Observation 2.11, they are equivalent). To give conclusions on left-hardness, we
will need to observe only two more facts about the functors Λk,Γk,Ωk. First, ΩkG→ G
for all G (it suffices to map (A0, . . . , Al−1, A`) ∈ V (Ω2`+1G) to the unique vertex in A0).
Second, it is not hard to check that ΓkΛkG→ G and hence by adjointness ΛkG→ ΩkG
for all G and odd k (see Lemma 2.3 in [Wro19]).

Lemma 4.1. For every odd k, ΩkH is left-hard if and only if H is left-hard.

Proof. If H is left-hard, then trivially so is ΩkH because ΩkH → H. For the other
implication, suppose ΩkH is left-hard, that is, PCSP(G,ΩkH) is hard for every non-
bipartite G such that G → ΩkH. By Observation 2.10, this implies PCSP(ΓkG,H) is
hard. Let G′ be any non-bipartite graph such that G′ → H. We want to show that
PCSP(G′, H) is hard. Observe that ΩkG

′ is non-bipartite, because ΛkG
′ → ΩkG

′ and
Λk subdivides each edge of G′ an odd number of times. Since ΩkG

′ → ΩkH, using
G := ΩkG

′ we conclude that PCSP(ΓkΩkG
′, H) is hard. Since ΓkΩkG

′ → G′, this implies
PCSP(G′, H) is hard.

As an example, consider the circular clique K7/2 (we have K3 → K7/2 → K4). Knowing
that K3 is left-hard, one could check that Ω3(K7/2) is 3-colorable and hence left-hard as
well; the above lemma then allows to conclude that K7/2 is left-hard.

What other graphs could one use in place of K7/2? The answer turns out to be
topological. Intuitively, while the operation Γk gives a “thicker” graph, the operation
Ωk gives a “thinner” one. In fact, Ωk behaves like barycentric subdivision in topology: it
preserves the topology of a graph (formally: its box complex is Z2-homotopy equivalent
to the original graph’s box complex) but refines its geometry. With increasing k, this
eventually allows to model any continuous map with a graph homomorphism; in particular:

Theorem 4.2 ([Wro19]). There exists a Z2-map |Box(G)| →Z2 |Box(H)| if and only if
for some odd k, ΩkG→ H.
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This concludes our second main result:

Proof of Theorem 2.7. Let H be left-hard and let H ′ be a graph such that |Box(H ′)|
admits a Z2-map to |Box(H)|. By Theorem 4.2, ΩkH

′ → H for some odd k. Trivially
then, ΩkH

′ is left-hard. By Lemma 4.1, H ′ is left-hard.

4.2. Other examples of adjoint functors

The arc construction δ is also an example of a digraph functor which admits both a thin
left adjoint δL and a thin right adjoint δR;8 this adjointness essentially gives a proof
of Lemma 3.1, see [FT18, Proposition 3.3]. In fact, Lemma 3.3, and hence all results
of Section 3, can be deduced as instantiations of Observation 2.10 and homomorphic
relaxations as follows. Let sym(D) be the symmetric closure of a digraph D and let
sub(D) be the maximal symmetric subgraph of D; note sub(D)→ D → sym(D). Observe
that they are thin adjoint functors: sym(D) → D′ if and only if D → sub(D′), for all
digraphs D,D′.9 Poljak and Rödl [PR81] showed that sub(δR(Kk)) → Kb(k) (the sub
is essential here); recall also that δ(sym(Kb(n))) → Kn. Therefore, PCSP(Kb(n),Kb(k))
trivially reduces to PCSP(Kb(n), sub(δR(Kk))), which by Observation 2.10 log-space
reduces to PCSP(δ(sym(Kb(n))),Kk), which trivially reduces to PCSP(Kn,Kk), proving
Lemma 3.3. From Observation 2.11 we also have:

Corollary 4.3. PCSP(δ(G), H) is log-space equivalent to PCSP(G, δR(H)), for all di-
graphs G,H.

Another example of a thin adjoint pair (but not triple) of functors is given by products
and exponential graphs (see e.g. [FT13] for definitions): for any graphs F,G,H, we have
F ×G→ H if and only if G→ HF . That is, for any graph F , the operations G 7→ F ×G
and H 7→ HF are left and right adjoints, respectively. By Observation 2.10:

Corollary 4.4. PCSP(G,HF ) reduces to PCSP(F ×G,H) in log-space.

Here × is the tensor (or categorical) product, in particular G → H1 × H2 if and
only if G → H1 and G → H2. Nevertheless, a few other products have an associated
exponentiation as well. These and other examples fall into a pattern known as Pultr
functors – see [FT13] for an extended discussion (we note here that central Pultr functors,
like Γk or δ, are a kind of pp-interpretation). Foniok and Tardif [FT15] studied which
digraph functors admit both thin left and right adjoints.

The box complex also admits a left adjoint, though they involve two categories. More
precisely, the functor G 7→ Hom(K2, G) (see definitions in Appendix A) gives a Z2-
simplicial complex that is Z2-homotopy equivalent to the box complex. As proved by
Matsushita [Mat19], it admits a left adjoint A from the category of Z2-simplicial complexes
(with Z2-simplicial maps as morphisms) to the category of graphs.

8For the interested reader: δLD is obtained by making a new arc (sv, tv) for each vertex of D and then
for each arc (u, v) of D, gluing tu with sv (which results in many transitive gluings); δRD has a vertex
for each pair S, T ⊆ V (D) such that S × T ⊆ E(D), and an arc from (S, T ) to (S′, T ′) iff T ∩ S′ 6= ∅.

9As Jakub Opršal observed, this is in fact the composition of two adjoint pairs: taking sym and sub
as functors from digraphs to graphs and the inclusion functor ι from graphs to digraphs, we have
sym(D)→ G iff D → ι(G) and ι(G)→ D iff G→ sub(D).
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4.3. Relation to the algebraic framework

We will need basic concepts from the algebraic approach to (P)CSPs, such as polymor-
phisms [AGH17; BG18], minions, and minion homomorphisms [BKO19]. We shall define
them only for graphs as we do not need them for relational structures. We refer the
reader to [BKW17; BKO19] for more details, examples, and general definitions.

An n-ary polymorphism of two graphs G and H is a homomorphism from Gn to H;
that is, a map f : V (G)n → V (H) such that, for all edges (u1, v1), . . . , (un, vn) in G,
(f(u1, . . . , un), f(v1, . . . , vn)) is an edge in H. We denote by Pol(G,H) the set of all
polymorphisms of G and H.

Given an n-ary function f : An → B, the, say, first coordinate is called essential
if there exist a, a′ ∈ A and ~a ∈ An−1 such that f(a,~a) 6= f(a′,~a); otherwise, the first
coordinate is called inessential or dummy. Analogously, one defines the i-th coordinate
to be (in)essential. The essential arity of f is the number of essential coordinates.

Let f : An → B and g : Am → B be n-ary and m-ary functions, respectively. We call
f a minor of g if f can be obtained from g by identifying variables, permuting variables,
and introducing inessential variables. More formally, f is a minor of g given by a map
π : [m]→ [n] if f(x1, . . . , xn) = g(xπ(1), . . . , xπ(m)).

A minion on a pair of sets (A,B) is a non-empty set of functions (of possibly different
arities) from A to B that is closed under taking minors. A minion is said to have bounded
essential arity if there is some k such that every function from the minion has essential
arity at most k.

Let M and N be two minions, not necessarily on the same pairs of sets. A map
ξ : M → N is called a minion homomorphism if (1) it preserves arities; i.e., maps n-ary
functions to n-ary functions, for all n; and (2) it preserves taking minors; i.e., for each π :
[m]→ [n] and each m-ary g ∈M , we have ξ(g)(xπ(1), . . . , xπ(m)) = ξ(g(xπ(1), . . . , xπ(m))).
Minion homomorphisms provide an algebraic way to give reductions between PCSPs.

Theorem 4.5 ([BKO19]). If there is a minion homomorphism ξ : Pol(G1, H1) →
Pol(G2, H2), then PCSP(G2, H2) is log-space reducible to PCSP(G1, H1).

The following hardness result is a special case of a result obtained in [BKO19] via a
reduction from Gap Label Cover. It gives an algebraic tool to prove hardness for PCSPs.

Theorem 4.6 ([BKO19]). Let G and H be two graphs with G→ H. Assume that there
exists a minion homomorphism ξ : Pol(G,H) → M for some minion M on a pair of
(possibly infinite) sets such that M has bounded essential arity and does not contain
a constant function (i.e., a function without essential variables). Then PCSP(G,H) is
NP-hard.

Our methods do not give minion homomorphisms in general: while Observation 2.10
gives a reduction from PCSP(G,ΓH) to PCSP(ΛG,H), it does not give a minion ho-
momorphism from which the reduction would follow (from Pol(ΛG,H) to Pol(G,ΓH)).
Indeed it cannot, as discussed below Proposition 2.5. However, adjoint functors in the
(non-thin) category of graphs do imply such a minion homomorphism.

In the remainder of this section, we assume knowledge of basic definitions in category
theory. One can define minions in any Cartesian category C (i.e. a category with all finite
products), using morphisms of C in place of functions. For objects G,H ∈ C, PolC(G,H) is
the minion of morphisms from GL (the L-fold categorical product of G) to H. A function
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π : [L]→ [L′] induces a morphism πG : GL
′ → GL. For a graph G, it maps (v1, . . . , vL′) to

(vπ(1), . . . , vπ(L)). In general, it can be defined as the product morphism 〈pπ(1), . . . , pπ(L)〉
of appropriate projections pi : G

L → G. For a polymorphism f : GL → H, the minor of f
by π is then simply f ◦ πG : GL

′ → H.
For objects G and H of a category, we denote by hom(G,H) the set of morphisms

from G to H.

Lemma 4.7. Let Γ: C → D and Ω: D → C be adjoint functors between Cartesian
categories C,D. Then for all objects G in C and H in D, there is a minion homomorphism
from PolD(ΓG,H) to PolC(G,ΩH). If, moreover, Γ preserves products then this is a
minion isomorphism.

Proof. This essentially amounts to checking definitions. We have a natural morphism
ψL : Γ(GL) → (ΓG)L defined as the product morphism 〈Γp1, . . . ,ΓpL〉 for projections
pi : G

L → G. It is natural in the following sense: for every function π : [L] → [L′], the
following diagram commutes:

Γ(GL
′
) (ΓG)L

′

Γ(GL) (ΓG)L

ΓπG

ψL′

πΓG

ψL

Indeed, ψL ◦ ΓπG = πΓG ◦ ψL′ , because it is the unique morphism whose composi-
tion with p′i : (ΓG)L → ΓG is Γpπ(i) (in other words, it is the product morphism
〈Γpπ(1), . . . ,Γpπ(L)〉).

Let Ω be a right adjoint of Γ. Let ΦGL,H : hom(Γ(GL), H) → hom(GL,ΩH) be the
natural isomorphism given by definition of adjunction. Naturality here means that in
particular the right square in the following diagram commutes:

hom((ΓG)L, H) hom(Γ(GL), H) hom(GL,ΩH)

hom((ΓG)L
′
, H) hom(Γ(GL

′
), H) hom(GL

′
,ΩH)

−◦πΓG

−◦ψL

−◦ΓπG

Φ
GL,H

−◦πG
−◦ψL′

Φ
GL′,H

That is, for f : Γ(GL)→ ΩH, we have ΦGL,H(f) ◦ πG = ΦGL′,H(f ◦ ΓπG). The left square
also commutes because of the previously discussed commutation. Therefore, we can define
a minion homomorphism ξ : hom((ΓG)L, H)→ hom(GL,ΩH) as ξ(f) := ΦGL,H(f ◦ ψL).
Indeed, ξ preserves minors, because ξ(f ◦ πΓG) = ξ(f) ◦ πG as seen on the perimeter of
the above diagram.

If Γ preserves products, then ψL is an isomorphism. Since ΦGL,H is a bijection, this
means ξ is a minion isomorphism.

A basic lemma in category theory says that if a functor Γ admits a left adjoint, then it
preserves products (indeed, all limits). So a pair of adjoint pairs (Λ,Γ), (Γ,Ω) implies a
minion isomorphism. Hence the first part of Lemma 4.7 is analogous to Observation 2.10,
while the second part is analogous to Observation 2.11. We can also derive the second
direction as a corollary to the following lemma.

Lemma 4.8. Let Γ: C → D be a functor which preserves products. Then there is a
minion homomorphism PolC(G,H)→ PolD(ΓG,ΓH), for all G,H ∈ C.
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Proof. Recall from the proof of Lemma 4.7 the following diagram, for G ∈ C, L,L′ ∈ N,
and π : [L]→ [L′]:

Γ(GL
′
) (ΓG)L

′

Γ(GL) (ΓG)L

ΓπG

ψL′

πΓG

ψL

Since Γ preserves products, ψL is an isomorphism, so we can define a minion homomor-
phism ξ : PolC(G,H) → PolD(ΓG,ΓH) as follows: ξ(f) := Γ(f) ◦ ψ−1

L , for f : GL → H.
This preserves minors, because from the diagram’s commutation we have:

ξ(f ◦ πG) = Γ(f ◦ πG) ◦ ψ−1
L′ = Γ(f) ◦ Γ(πG) ◦ ψ−1

L′ = Γ(f) ◦ ψ−1
L ◦ πΓG = ξ(f) ◦ πΓG.

Corollary 4.9. Let Γ: C → D be a functor which preserves products. Let Ω be a thin
right adjoint to Γ. Then there is a minion homomorphism PolC(G,ΩH)→ PolD(ΓG,H)
for all G ∈ C, H ∈ D.

Proof. Since Γ has a thin right adjoint Ω, there exists a morphism εH : ΓΩH → H for
all H (we don’t need it to be natural in any way). Hence we can compose the minion
homomorphism PolC(G,ΩH)→ PolD(ΓG,ΓΩH) from Lemma 4.8 with the trivial minion
homomorphism PolD(ΓG,ΓΩH)→ PolD(ΓG,H) obtained by composing with εH .

If we have adjoint functors in the (non-thin) category of graphs (or multigraphs),
then Lemma 4.7 implies a minion homomorphism between the standard polymorphism
minions (because a morphism is associated with a function between vertex sets). One
could also apply Lemma 4.7 to the thin category of graphs, but the conclusion is then
about minions of polymorphisms in that thin category, which is useless, since it does not
distinguish between different projections GL → G.

All the thin functors we have considered are in fact functors in the category of graphs
or digraphs: in particular Λk,Γk,Ωk, δL, δ, δR. The definitions can also be extended to give
functors in the category of multi(di)graphs. The pairs (Λk,Γk) and (δL, δ) are adjoint pairs
in the categories of multi(di)graphs (this fails in the category of (di)graphs; e.g. the number
of homomorphisms Λ3G → H is not always equal to the number of homomorphisms
G → Γ3H). This implies minion homomorphisms Pol(ΛkG,H) → Pol(G,ΓkH) and
Pol(δLG,H)→ Pol(G, δH).

In contrast, the pairs (Γk,Ωk) and (δ, δR) are not adjoint pairs; they are only thin
adjoints. Since Γk and δ are right adjoints (of Λk and δL), they preserve products. Applying
Corollary 4.9 hence at least gives minion homomorphisms Pol(G,ΩkH)→ Pol(ΓkG,H)
and Pol(G, δRH)→ Pol(δG,H). However, our results would only follow from the opposite

direction. This is impossible to obtain in general: a minion homomorphism Pol(δG,H)
?−→

Pol(G, δRH) would imply the following minion homomorphism

Pol(K4,Kk)→ Pol(δK6,Kk)
?−→ Pol(K6, δRKk)→ Pol(K6,K2k)

(trivially from δK6 → K4 and δRKk → K2k), which is impossible by [Bar+19, Proposi-
tion 10.3]. Thus the seemingly technical difference between adjoints and thin adjoints
turns out to be crucial.
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As proved by Matsushita [Mat19], the hom complex Hom(K2,−) has a left adjoint
from the category of Z2-simplicial complexes with Z2-simplicial maps to the category of
graphs; the left adjoint preserves products.

5. Conclusions

The reduction in Lemma 3.3, on which our first main result relies, does not have a
corresponding minion homomorphism. Given the simplicity of the reduction itself, this
contrasts with the success of minion homomorphism in explaining other reductions
between promise constraint satisfaction problems. It is to been seen whether this notion
can be extended to a more general relation between polymorphism sets in a way that
would imply Lemma 3.3.

The question of whether K4 is left-hard stands open. In principle, it may be possible
to extend the proof in Appendix A using more tools from algebraic topology to analyse
Z2-maps (S1)L → S2 and deduce an appropriate minion homomorphism. It could also be
interesting to consider how δ or δR affect the topology of a graph, cliques in particular.

Another direction could be to look at Huang’s Theorem 3.6 not as a black-box: could
constructions like δ be useful to say something directly about PCPs?

A. Left-hardness using the box complex

Basic definitions in topology

For topological spaces X,Y , we call a continuous function f : X → Y a map, for short.
Two maps f, g : X → Y are homotopic if they can be continuously transformed into one
another; formally: there is a family of maps φt : X → Y for t ∈ [0, 1] (called a homotopy)
such that φ0 = f , φ1 = g and such that the function (t, x) 7→ φt(x) from [0, 1]×X to Y
is continuous. Two spaces X,Y are homotopy equivalent if there are maps f : X → Y
and g : Y → X such that g ◦ f and f ◦ g are homotopic to identity maps on X and on Y .

We shall only consider topological spaces described in the following simple combinatorial
way. A (simplicial) complex K is a family of non-empty finite sets that is downward
closed, in the sense that ∅ 6= σ′ ⊆ σ ∈ K implies σ′ ∈ K. The sets in K are called faces (or
simplices) of the complex, while their elements V (K) :=

⋃
σ∈K σ are the vertices of the

complex. The geometric realisation |σ| of a face σ ∈ K is the subset of RV (K) defined as the
convex hull of {ev | v ∈ σ}, where ev is the standard basis vector corresponding to the v
coordinate in RV (K). The geometric realisation |K| of K is the topological space obtained
as the subspace

⋃
σ∈K |σ| ⊆ RV (K). We represent the points of |K| as linear combinations

of vertices λ1v1 + . . . λnvn such that {v1, . . . , vn} ∈ K and λi are non-negative reals
summing to 1. We often refer to K itself as a topological space, meaning |K|. A simplicial
map K → K ′ is a function f : V (K) → V (K ′) such that f(σ) := {f(v) | v ∈ σ} is a
face of K ′ whenever σ is a face of K. It induces a map |f | : |K| → |K ′| by extending it
linearly from vertices on each face: |f |(

∑
i λivi) :=

∑
λif(vi).

For example, the circle may be represented as the triangle K = {{1}, {2}, {3},
{1, 2}, {2, 3}, {3, 1}}, meaning that |K|, which is the sum of three intervals in R3, is
homotopy equivalent to the unit circle S1 in R2. Adding the face {1, 2, 3} to K would
make |K| contractible, that is, homotopy equivalent to the one-point space.
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Equivariant topology – topology with symmetries

Rather than asking about “non-trivial maps” (maps not homotopic to a constant map) it
is easier to work with equivariant topology, that is, considering topological spaces together
with their symmetries and symmetry-preserving maps. A Z2-space is a topological space
X equipped with a map − : X → X, called a Z2-action on X, satisfying −(−x) = x (for
all x ∈ X). We will call −x the antipode of x. The main example is the n-dimensional
sphere: the Z2-space defined as the unit sphere in Rn+1 with Z2-action x 7→ −x as vectors.
A Z2-map from (X,−X) to (Y,−Y ) is a map f : X → Y that preserves the symmetry:
f(−X x) = −Y f(x) (this is also called an equivariant map). We write X →Z2 Y if such
a map exists (the Z2-actions being clear from context).

Standard notions extend in a fairly straightforward way to equivariant notions. A Z2-
complex is a simplicial complex K together with a function − : V (K)→ V (K) such that
−(−v) = v and −σ := {−v | v ∈ σ} ∈ K for σ ∈ K; this induces a Z2-action on |K|. The
product of two Z2-spaces X,Y is X×Y with “simultaneous” Z2-action (x, y) 7→ (−x,−y).
A homotopy φt between Z2-maps f, g : X → Y is called a Z2-homotopy if φt is a Z2-map
for all t ∈ [0, 1]. We say that two Z2-spaces X,Y are Z2-homotopy equivalent, denoted
X 'Z2 Y , if there are Z2-maps f : X →Z2 Y and g : Y →Z2 X such that g ◦ f and f ◦ g
are Z2-homotopic to the identity. Note this is stronger than just requiring X →Z2 Y
and Y →Z2 X; homotopy equivalence is more similar to graph isomorphism than to
homomorphic equivalence of graphs.

The box complex – the topology of a graph

The box complex Box(G) of a graph G is a Z2-complex defined as the family of vertex
sets of complete bipartite subgraphs of G×K2 (with both sides non-empty) and their
subsets. In particular it contains all edges of G×K2 and every K2,2 = C4 subgraph. The
topology of box complexes of the following graphs is folklore.

Lemma A.1. The following spaces are Z2-homotopy equivalent:

(i) |Box(Kn)| 'Z2 Sn−2 for n ≥ 2,

(ii) |Box(Cn)| 'Z2 S1 for odd n ≥ 3,

(iii)
∣∣Box(Kp/q)

∣∣ 'Z2 S1 for 2 < p
q < 4,

(iv) for every loop-less square-free graph K, |Box(K)| is Z2-homotopy-equivalent to a
1-dimensional complex (a complex in which every face has at most 2 vertices).

Proof. For (i), see Proposition 19.8 in [Koz08], Proposition 4.3 in [BK06], or Lemma 5.9.2
in [Mat08]. Informally, the vertices of Box(Kn) can be mapped bijectively to points in Rn
of the form ±ei := (0, . . . , 0,±1, 0, . . . , 0). These are vertices of the cross-polytope in Rn
(the n-dimensional counterpart of the octahedron). Faces of Box(Kn) are exactly those
subsets of {±e1, . . . ,±en} that do not contain repeated indices (+ei and −ei for any i),
except for the two sets {+e1, . . . ,+en} and {−e1, . . . ,−en} (since a bipartite complete
graph containing all n vertices on one side cannot contain any vertex on the other side).
The complex is thus isomorphic to the cross-polytope (the n-dimensional counterpart
to the octahedron) in Rn, but with the interior and two opposite facets removed. The
cross-polytope after removing the interior is Z2-homotopy equivalent to Sn−1 and after
removing two opposite facets it is Z2-homotopy equivalent to Sn−2.
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For (iv), let use denote the two vertices of Box(K) corresponding to v ∈ V (K) as v◦

and v•. Observe that Box(K) would be isomorphic to K×K2 (meaning the 1-dimensional
simplicial complex with V (K ×K2) as vertices and with E(K ×K2) and their subsets
as faces), except that it also contains N [v◦] := {v◦} ∪ {w• : w ∈ N(v)} and N [v•] for
each v ∈ V (K) (except those with empty neighbourhood). However, these additional
faces can be collapsed. Formally, every face not in E(K × K2) is either of the form
{v◦, w1

•, . . . , wn
•} or {w1

•, . . . , wn
•} for some wi ∈ N(v) and n ≥ 2, or the same with ◦

and • swapped. Since K is square-free, even in the second case v is uniquely determined
by the wi. Hence we can match these faces in pairs. This matching is easily checked to
satisfy the definitions of a so-called acyclic Z2-matching in Discrete Morse Theory, which
allows to show that removing these faces gives a Z2-homotopy equivalent complex: see
Section 3 in [Wro19] for definitions and details.

For (ii), observe that by the above, Box(Cn) is Z2-homotopy equivalent to Cn ×K2 =
C2n as a simplicial complex (for odd n). It is straightforward to give a Z2-homotopy
equivalence (in fact a homeomorphism) to S1.

For (iii), we first consider the case when p is odd. Then, Kp/q×K2 is isomorphic to the
Caley graph K ′ of Z2p with generators {±1,±3, . . . ,±p − 2q} (the isomorphism maps
(i, 0) to 2i and (i, 1) to 2i+ p). In particular, K ′ includes a cycle C2p on 0, 1, . . . , 2p− 1
and the Z2-action on Kp/q ×K2 correspond to point reflection on C2p. We thus have an
inclusion map ι : |C2p| → |K ′| (where |K ′| is is shorthand for

∣∣Box(Kp/q ×K2)
∣∣ and C2p

is meant as a subcomplex). Note that p
q < 4 is equivalent to p− 2q < p

2 , so two adjacent

vertices of K ′ are at distance at < p
2 in C2p. Therefore, every face of the box complex (a

complete bipartite subgraph of K ′) is contained in an interval of length < p in Z2p. Every
point in the geometric realization of such a face can be unambiguously mapped by linear
extension in the interval to a point in the geometric realization of C2p, giving a Z2-map
f : |K ′| → |C2p|. The maps ι, f give a Z2-homotopy equivalence (f ◦ ι : |C2p| → |C2p|
is equal to the identity, while ι ◦ f is Z2-homotopic to the identity, since one can also
linearly extrapolate between the definition of f and the identity map). The proof for
even p is similar, the main difference being that K ′ should be the graph on Zp × {0, 1}
with (i, a) adjacent to (j, b) if a 6= b and i, j are at distance ≤ p−2q

2 .

Note that for a loop-less graph K, Box(K) is a free Z2-complex, which means every
face σ is disjoint from −σ. This in turn implies that |Box(K)| is a free Z2-space, which
means that a point is never its own antipode. Proposition 5.3.2.(v) in [Mat08] shows that
a free Z2-complex of dimension n admits a Z2-map to Sn. Hence for loop-less, square-free
graphs K, we have |Box(K)| →Z2 S1.

The hom complex – preserving products

Instead, we will use the Hom complex Hom(K2, G), which is Z2-homotopy equivalent to
Box(G), as proved by Csorba [Cso08]. Its vertices are homomorphisms K2 → G, that is,
oriented edges (u, v) of G. For every U, V ⊆ V (G) such that U × V ⊆ E(G), U × V and
its subsets are faces of Hom(K2, G). In other words, a set σ of oriented edges is a face
if for every two (u, v), (u′, v′) ∈ σ, (u, v′) is an oriented edge of G. The Z2-action swaps
(u, v) to (v, u).

This definition has the advantage that it respects products trivially (and exactly, not
just up to homotopy equivalence): Hom(K2, G × H) is isomorphic to Hom(K2, G) ×
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Hom(K2, H) (as Z2-simplicial complexes). The isomorphism simply maps the oriented
edge between pairs (g1, h1) and (g2, h2) ∈ V (G) × V (H) to the pair of oriented edges
((g1, h1), (g2, h2)). In the same way, Hom(K2, G

L) is isomorphic Hom(K2, G)L, mapping
pairs of L-tuples to L-tuples of pairs.

Lemma A.2. Let f : GL → H be a graph homomorphism. Let f ′ : Hom(K2, G)L →
Hom(K2, H) be the induced simplical Z2-map, defined as:

f ′((u1, v1), . . . , (uL, vL)) := (f(u1, . . . , uL), f(v1, . . . , vL)).

Then the transformation f 7→ f ′ preserves minors and composition.

This is straightforward from the definitions. Here by compositions we mean functions of
the form h(f(g1(x1), . . . , gL(xL))) for gi : G

′ → G and h : H → H ′; the graph homomor-
phisms gi and h induce simplicial maps just as above for L = 1. Preserving compositions
means in particular that if µ is an automorphism of G and µ′ is the automorphism of
Hom(K2, G) it induces, then f(x1, . . . , µ(xi), . . . , xL) induces f ′(x1, . . . , µ

′(xi), . . . , xL)).
In the geometric realisation, the above-mentioned isomorphism induces (by linear

extension) an isomorphism from |Hom(K2, G×H)| to |Hom(K2, G)×Hom(K2, H)|. The
latter has a natural Z2-homotopy equivalence to |Hom(K2, G)| × |Hom(K2, H)|, implicit
in the following claim:

Lemma A.3. Let f : XL → Y be a Z2-simplicial map and let x0 ∈ V (X). Let |f | : |X|L →
|Y | be the induced Z2-map, defined as:

|f |(
∑

i λ
(1)
i v

(1)
i , . . . ,

∑
i λ

(L)
i v

(L)
i ) :=

∑
i1,...,iL

λi1 · · ·λiLf(v
(1)
i1
, . . . , v

(L)
iL

)

for faces {v(1)
i | i}, . . . , {v

(L)
i | i} ∈ X. Then the transformation f 7→ |f | preserves minors

up to Z2-homotopy rel x0 and preserves composition exactly.

Proof. Preservation of composition is again straightforward.
To see that the transformation preserves minors, consider for example the contraction

(identification) of two coordinates. The general case is entirely analogous. Let f : X2 → Y
and let f/2 : X → Y be the minor obtained by contracting the two coordinates. Then

|f/2|(
∑

i λivi) =
∑

i λif/2(vi) =
∑

i λif(vi, vi).

On the other hand, if we take the induced map first and only then contract, we obtain:

|f |/2(
∑

i λivi) = |f |(
∑

i λivi,
∑

i λivi) =
∑

i,j λiλjf(vi, vj).

The first point is in the face {f(vi, vi) | i} of Y , the second is in the face {f(vi, vj) | i, j}
of Y which contains the former. We can thus continuously move from one to the other.
Formally, let µi,j := λi if i = j and 0 otherwise. Then the functions (for t ∈ [0, 1])

ft(
∑

i λivi) := (t · µi,j + (1− t) · λiλj) f(vi, vj)

are always well-defined and give a Z2-homotopy between |f/2| and |f |/2. For any vertex
x0 (i.e. λ1 = 1) ft(x0) is constantly equal to f(x0).

We thus have a minion homomorphism from Pol(G,H) to the minion of maps-up-to-
homotopy |Hom(K2, G)|L → |Hom(K2, H)|, which preserves automorphisms of G. This,
as well as the minion homomorphism in the following subsection, can be interpreted as
an instance of Lemma 4.8.
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The fundamental group

For a topological space |X| and a point x0 ∈ |X|, two maps from |X| to some topological
space are homotopic rel x0 if there are homotopies that do not move the image of x0. In
the fundamental group π1(|X|, x0), the elements are equivalence classes of loops at x0

(maps [0, 1]→ |X| mapping 0 and 1 to x0) under homotopy rel x0, the group operation is
concatenation. We skip x0 when it is not important, since π1(|X|, x0) is always isomorphic
to π1(|X|, x′0) if |X| is path-connected10 which we implicitly assume throughout.

Including information about the Z2-symmetry in the fundamental group is a bit less
obvious. For a Z2-space |X| we can look at the fundamental group of |X| but also
the fundamental group of the quotient |X|/Z2

(where every point is identified with its
antipode; a.k.a. the orbit space or base space; we denote the equivalence class of x by ±x).
One way to think of elements of π1(|X|/Z2

,±x0) is as paths from x0 to either x0 or −x0,
with concatenation defined using the Z2-action if necessary. Observe that π1(|X|/Z2

)
contains π1(|X|) as a subgroup, consisting of paths from x0 to x0.

Another way to describe the subgroup is by a group homomorphism to νX : π1(|X|/Z2
)→

Z2 mapping the subgroup (paths x0 to x0) to 0 and everything else (paths x0 to −x0)
to 1. Thus π1(|X|) is the subgroup given by the kernel of νX .11

For example, consider S1. The quotient S1
/Z2

is again a circle, so π1(S1
/Z2

) is isomorphic

to Z (a loop in the quotient is represented by its winding number); ν is the remainder
mod 2 (loops with odd winding number in the quotient correspond to paths from a point
to its antipode in S1) and π1(S1) is the subgroup 2Z of even integers. In contrast, the
quotient S2

/Z2
is the projective plane, so π1(S2

/Z2
) is isomorphic to Z2; ν is the identity

and the subgroup π1(S2) is the trivial group.
A map f : |X| → |Y | induces a group homomorphism f∗ : π1(|X|/Z2

) → π1(|Y |/Z2
),

simply by composing a loop with f . This homomorphism preserves the subgroup:
νY (f∗(x)) = νX(x). Equivalently, f −1

∗ (π1(|Y |)) = π1(|X|).
The fundamental group of a product π1(|X| × |Y |, (x0, y0)) is isomorphic to the direct

product of fundamental groups π1(|X|, x0)× π1(|Y |, y0). The isomorphism just maps a
loop S1 → |X| × |Y | to the pair of loops obtained by composing with projections; the
inverse maps a pair of loops p : S1 → |X| and q : S1 → |Y | to the “simultaneous” loop
(p, q) : t 7→ (p(t), q(t)).

However, π1((|X| × |Y |)/Z2
) is not isomorphic to π1(|X|/Z2

)× π1(|Y |/Z2
), but to the

subgroup of it given by elements (x, y) such that νX(x) = νY (y). Indeed, it contains
paths from (x0, y0) to either (x0, y0) or (−x0,−y0) but not to (x0,−y0).

In other words, to a Z2-space |X| we assign a group π1(|X|/Z2
) together with a

group homomorphism νX to Z2. Consider the category whose objects are such pairs
(G, ν) (a group with a homomorphism to Z2), while morphisms (G, νG) → (H, νH)
are group homomorphisms G → H preserving ν. The categorical product of (G, νG)
and (H, νH) is {(g, h) ∈ G × H : νG(g) = νH(h)} with coordinate-wise multiplication
and the homomorphism to Z2 defined in an obvious way (ν(g, h) := νG(g) = νH(h)).

10All the spaces we consider come from finite simplicial complexes, so connectivity in the topological sense
is equivalent to path-connectivity (every two points being connected by a path) and to connectivity of
the complex (as in a graph).

11In group theory, one would say π1(|X|) is a normal subgroup of index 2, or that π1(|X|)→ π1(|X|/|Z2|)→
Z2 is a short exact sequence. In topology, one would say that |X| is a degree-2 covering, or double
cover, of |X|/Z2

; the group homomorphism νX is the monodromy action, acting on the set {x0,−x0}.
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Let us denote this product as ? for clarity12 and the L-fold product of (G, νG) as
G?L. Then a Z2-map f : |X|L → |Y | mapping a point x0 to y0 induces a morphism
f∗ : π1(|X|/Z2

,±x0)?L → π1(|Y |/Z2
,±y0) (a group homomorphism preserving ν):

f∗([p1], . . . , [pL]) := [t 7→ f(p1(t), . . . , pL(t))]

(where [p] denotes the equivalence class of a loop S1 → |X|/Z2
under homotopy rel ±x0).

The following is straightforward to check from the definition of f∗:

Lemma A.4. Let f : |X|L → |Y | be Z2-map, let x0 ∈ |X| be an arbitrary point and
let f(x0) = y0. Let f∗ : π1(|X|/Z2

)?L → π1(|Y |/Z2
) be the induced group homomorphism.

Then the transformation f 7→ f∗ preserves minors and preserves automorphisms of |X|
that fix x0.13

Wrapping it up

Let us denote π1(|Hom(K2, G)|) and π1(|Hom(K2, G)|/Z2) as respectively π1(G) and
π1(G/Z2

), for short.

Consider a graph homomorphism f : CLn → H (n odd). We have |Hom(K2, Cn)| 'Z2 S1

and hence π1(Cn/Z2
) is Z with a group homomorphism νCn : i 7→ (i mod 2). In particular

Z?L is the subgroup of ZL given by L-tuples in which the integers are all even or all odd
and π1(Cn) is the subgroup 2Z of even integers in Z. For an arbitrarily fixed edge e0 of
Cn, the automorphism µCn that mirrors the graph and fixes e0 induces the automorphism
of Z which maps i to −i.

Therefore, composing the transformations from Lemmas A.2, A.3, and A.4, we obtain
a group homomorphism f∗ : Z?L → π1(H/Z2

) which preserves the homomorphism to Z2

and the mirror automorphism on each coordinate.
Suppose that |Hom(K2, H)| 'Z2 S1, so again π1(H/Z2

) = Z with the same homomor-
phism to Z2 (i mod 2) and the same mirror automorphism (−i). Since f∗ preserves
the homomorphism to Z2, d := f∗(1, 1, . . . , 1) ∈ Z is an odd number, which means
f∗(2, 2, . . . , 2) = 2d is non-zero. This is why we needed the Z2-action: to conclude that f∗
is non-trivial. We can now focus on what f∗ does on the subgroup of even integers.

Let a` := f∗(0, . . . , 0, 2, 0, . . . , 0) ∈ Z with a 2 in the `-th coordinate. Then f∗ on
even numbers is completely determined by these elements: f∗(2i1, . . . , 2iL) = a1 · i1 +
· · · + aL · iL (because it is a group homomorphism). By the above,

∑L
`=1 a` is non-

zero. Since f 7→ f∗ preserves minors, we know that the minor i 7→ f∗(i, i, . . . , i) is a
group homomorphism induced by some graph homomorphism Cn → H (namely by the
corresponding minor v 7→ f(v, . . . , v)), hence the integer f∗(2, 2, . . . , 2) belongs to a set of
at most |H|n possibilities. The same holds for compositions with mirror symmetries: the
group homomorphism i 7→ f∗(i, . . . ,−i, . . . , i) with a minus on any subset of coordinates
is induced by the graph homomorphism Cn → H defined as f(v, . . . , µCn(v), . . . , v)
with µCn on the same set of coordinates. Hence for i1, . . . , iL ∈ {+1,−1}, the values
f∗(2i1, 2i2, . . . , 2iL) = a1 ·i1 + · · ·+aL ·iL belong to a set of at most |H|n possibilities. This
implies less than |H|n of the integers a` are non-zero. Indeed, if there are L′ coordinates

12In category theory, (G, νG) ? (H, νH) is called the pullback of νG and νH , and may be denoted G×Z2 H.
13More generally, one could consider pointed spaces (pairs (|X|, x0)) and pointed Z2-maps (|X|, x0)→

(|Y |, y0) (maps that map x0 to y0). Then f 7→ f∗ preserves composition with pointed maps; automor-
phisms fixing x0 are a special case.
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` for which a` is non-zero, then one can set the corresponding i` to make a` · i` positive,
and then swap i` one-by-one in any order, resulting in a strictly decreasing sequence of
values a1 · i1 + · · · aL · iL, hence in L′ + 1 distinct values. Hence L′ + 1 ≤ |H|n.

Therefore, the group homomorphism (2i1, . . . , 2iL) 7→ f∗(2i1, . . . , 2iL) : (2Z)L → (2Z)
has bounded (but non-zero) essential arity. Note that this is exactly the homomorphism
f∗|π1(Cn)L , from the subgroup π1(Cn)L to the subgroup π1(H). Therefore, the transforma-
tion f 7→ f∗|π1(Cn)L is a minion homomorphism from Pol(Cn, H) to a minion of functions
of bounded essential arity.

The same argument would work if instead of |Hom(K2, H)| 'Z2 S1 we only assumed
we had a Z2-map g : |Hom(K2, H)| → S1, since it would induce a group homomorphism
g∗ : π1(H/Z2

) → Z which preserves the homomorphism to Z2, in a way that preserves
mirror automorphisms of S1; it then suffices to compose g∗ with f∗ and continue as above.

This concludes the proof of the following:

Theorem A.5. Let H be a graph such that |Hom(K2, H)| →Z2 S1. Then for all odd n,
Pol(Cn, H) admits a minion homomorphism to a minion of bounded essential arity with
no constant functions.

By Theorem 4.6, this concludes the direct proof that PCSP(Cn, H) is NP-hard for all
odd n:

Corollary A.6. Let H be a graph such that |Hom(K2, H)| →Z2 S1. Then H is left-hard.

Since |Hom(K2, H)| is Z2-homotopy equivalent to |Box(H)| (hence they admit the same
Z2-maps), this is exactly equivalent to Corollary 2.8; in particular it gives a proof of
Theorem 2.4.

Further remarks

In the case of S1, the fact that a Z2-map g : |Hom(K2, H)| → S1 induces a group
homomorphism g∗ : π1(H/Z2

)→ Z which preserves the homomorphism to Z2 is in fact
an exact characterisation. That is, as stated by Matsushita [Mat19], standard covering
space theory yields the following:

Lemma A.7. A connected Z2-space |X| admits a Z2-map to S1 if and only if there
exists a group homomorphism f : π1(|X|/Z2

) → Z which preserves the action (that is,
f−1(2Z) = π1(X)).

In the above proof, one could go directly from graphs to fundamental groups, avoiding
simplicial complexes and topological spaces (though they remain the simplest way to prove
that these fundamental groups preserve products). A direct definition of the fundamental
group of the quotient space |Box(H)|/Z2

is as follows. We consider closed walks (cycles
that are allowed to self-intersect) from an arbitrary fixed vertex v0 ∈ V (H). Two such
walks are consider equivalent if one can be obtained from the other by adding/removing
backtracks (a pair of consecutive edges going back and forth on the same edge of H) and
4-cycles (subwalks around a cycle of length 4). The elements of the group are equivalence
classes of walks, with concatenation as multiplication. The resulting group is isomorphic
to π1(H/K2

) (this combinatorial definition is known as the edge-path group; see [Mat17]
or Section 3.6 and 3.7 in [Spa66]). Considering walks in H ×K2 instead would yield a
group isomorphic to π1(H).
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For example, for odd cycles and more generally circular cliques < 4 the group is just
Z (Lemma 4.1 in [Wro17] has a direct but technical proof), for square-free graphs the
group is a free (non-Abelian) group. For K4, the resulting group is just Z2 (all walks
of the same parity are equivalent), which corresponds to the fact that |Box(K4)| is the
2-sphere and |Box(K4)|/Z2

is the projective plane.
Unfortunately, this makes the fundamental group useless for the question of whether K4

is left-hard. Indeed, there is only one possible induced group homomorphism f∗ : Z?L →
π1(K4/Z2

) = π1(RP2) = Z2: it maps L-tuples of even integers to 0 and L-tuples of odd
integers to 1 (because it has to preserve the homomorphism to Z2, which is the identity).
Whether other tools of algebraic topology can be useful remains to be seen.
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