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Abstract

The convex body chasing problem, introduced by Friedman and Linial [FL93], is a compet-
itive analysis problem on any normed vector space. In convex body chasing, for each timestep
t ∈ N, a convex body Kt ⊆ Rd is given as a request, and the player picks a point xt ∈ Kt. The
player aims to ensure that the total distance moved

∑T−1

t=0
||xt−xt+1|| is within a bounded ratio

of the smallest possible offline solution.
In this work, we consider the nested version of the problem, in which the sequence (Kt)

must be decreasing. For Euclidean spaces, we consider a memoryless algorithm which moves to
the so-called Steiner point, and show that in an appropriate sense it is exactly optimal among
memoryless algorithms. For general finite dimensional normed spaces, we combine the Steiner
point and our recent algorithm in [ABC+18] to obtain a new algorithm which is nearly optimal
for all ℓpd spaces with p ≥ 1, closing a polynomial gap.

1 Introduction

We study a version of the convex body chasing problem. In this problem, a sequence of T requests
K1, . . . ,KT , each a convex body in a d-dimensional normed space R

d, is given. The algorithm
starts at a given position x0, and each round it sees the request Kt and must give a point xt ∈ Kt.
The online algorithm aims to minimize the total movement cost

T−1∑

t=0

||xt+1 − xt||.

More precisely, we take the viewpoint of competitive analysis, in which the algorithm aims to
minimize the competitive ratio of its cost and the optimal in-hindsight sequence yt ∈ Kt.

Our companion paper [BLLS18] establishes the first finite upper bound for the competitive ratio
of convex body chasing. Our upper bound is exponential in the dimension d, while the best known
lower bound is Ω(

√
d) in Euclidean space, which comes from chasing faces of a hypercube.

In this paper we consider a restricted variant of the problem, nested convex body chasing, in
which the bodies must be decreasing:

K1 ⊇ K2 ⊇ · · · ⊇ KT .
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This problem was first considered as a potentially more tractable version of the full problem in
[BBE+18], where it was shown to have a finite competitive ratio. In our previous work [ABC+18]
we gave an algorithm with nearly linear O(d log d) competitive ratio for any normed space. This
upper bound is nearly optimal for ℓ∞ but for most normed spaces there is still a gap. For example
for ℓ2, the best lower bound is Ω(

√
d).

1.1 Notation and a Reduction

We denote by B1 a unit ball B(0, 1) centered at the origin in R
d. We denote by K the space of

convex bodies in R
d. We often refer to the Hausdorff metric on K, defined by

dH(K,K ′) ≡ max
k∈K,k′∈K ′

max(d(k,K ′), d(k′,K)).

In other words, it is the maximum distance from a point in one of the sets to the other set. Note
that for K1 ⊇ K2, we have dH(K1,K2) ≤ 1 iff K2 + B1 ⊇ K1.

We denote by s(K) the Steiner point of K, defined at the start of section 2. We denote by
cg(K) the centroid of K.

For nested chasing, it turns out we can simplify the problem to make it significantly easier to
think about. The following reduction is taken from [ABC+18], except that we add in a dependence
on the number T of requests. The proof is essentially unchanged.

Lemma 1.1 ([ABC+18]). For some function f(d, T ) ≥ 1, the following three propositions are
equivalent:

(i) (General) There exists a f(d, T )-competitive algorithm for nested convex body chasing.

(ii) (Bounded) Assuming that K1 ⊆ B1 and x0 = 0, there exists an algorithm for nested convex
body chasing with total movement O(f(d, T )).

(iii) (Tightening) Assuming that K1 ⊆ B1 and x0 = 0, there exists an algorithm for nested convex
body chasing that incurs total movement cost O(f(d, T )) until the first time t at which Kt is
contained in some ball of radius 1

2 .

1.2 Our Results

This paper has two essentially independent parts. In the first part, we consider the algorithm which
moves to the newly requested body’s Steiner point, a geometrical center which is defined for convex
subsets of Euclidean spaces. We show that for the Bounded version of nested chasing, it achieves a
competitive ratio O(min(d,

√
d log T )) which is nearly optimal for sub-exponentially many requests.

We also consider the problem of finding the best memoryless algorithm, meaning that xt ∈ Kt must
be a deterministic function of only Kt. In this case, we compare the competitive ratio against the
Hausdorff distance between K1 and KT , or equivalently the in-hindsight optimum starting from
the worst possible x1. We show that the Steiner point achieves the exact optimal competitive ratio
for any (d, T ) by adapting an argument from [PO89].

In the second part of this paper, we give a different algorithm which is nearly optimal even
for exponentially many requests. Our previous algorithm from [ABC+18] achieved a O(d log d)
competitive ratio by moving to the centroid and recursing on short dimensions; like that algorithm,
our new algorithm is most naturally viewed in terms of Tightening. Inspired by Steiner point, we
improve that algorithm by adding a small ball Br to Kt and taking the centroid with respect to
a log-concave measure which depends on the normed space. Using this procedure, we obtain a
general algorithm for any normed space. For Euclidean spaces, our new algorithm is O(

√
d log d)

competitive. For ℓp spaces with p ≥ 1, our new algorithm is optimal up to a O(log d) factor.
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2 The Steiner Point and Competitive Ratio d

Here we define the Steiner point and explain why it achieves competitive ratio d (in the Bounded
formulation (ii) of Lemma 1.1).

Definition 1. For a convex body K ⊂ R
d, its Steiner point s(K) is defined in the following two

equivalent ways:

1. For any direction θ ∈ S
d−1 ⊂ R

d, let fK(θ) = arg maxx∈K(θ · x) be the extremal point in K
in direction θ. Then compute the average of this extremal point for a random direction:

s(K) =

∫

θ∈Sd−1

fK(θ)dθ.

Here we integrate over the uniform (isometry invariant) probability measure on S
d−1.

2. For any direction θ ∈ S
d−1 ⊂ R

d, let hK(θ) = maxx∈K(θ · x) be the support function for K
in direction θ, and compute

s(K) = d

∫

θ∈Sd−1

hK(θ)θdθ.

The equivalence of the two definitions follows from∇hK(θ) = fK(θ) and the divergence theorem.
The first definition makes it evident that s(K) ∈ K. We will use the second definition to control
the movement. Behold:

Theorem 2.1. Let B1 = K1 ⊇ K2 ⊇ K3 ⊇ · · · ⊇ KT be a sequence of nested convex bodies. Then

T−1∑

t=1

||s(Kt)− s(Kt+1)||2 ≤ d.

More generally, for any sequence of nested convex bodies

K1 ⊇ K2 ⊇ · · · ⊇ KT

we have the estimate

T−1∑

t=1

||s(Kt)− s(Kt+1)||2 ≤
d

2
· (w(K1)− w(KT )).

where ω(·) denotes the mean width, the average length of a random 1-dimensional projection.

Proof. The idea is simply that for each fixed θ, the integrand decreases by a total of at most 2
over all the requests, so the total budget for movement is 2d. To save the factor 2 we combine ±θ,
noting that they can change by at most 2 in total. Writing it out:

T−1∑

t=1

||s(Kt)− s(Kt+1)||2 ≤ d

∫

θ∈Sd−1

T−1∑

t=1

|hKt(θ)− hKt+1(θ)|dθ.

Now, as Kt ⊇ Kt+1 we have hKt(θ) ≥ hKt+1(θ) and so

∫

θ∈Sd−1

T−1∑

t=1

|hKt(θ)− hKt+1(θ)|dθ =

∫

θ∈Sd−1

T−1∑

t=1

(hKt(θ)− hKt+1(θ))dθ

≤
(∫

θ∈Sd−1

hK1(θ)dθ

)
−

(∫

θ∈Sd−1

hKT
(θ)dθ

)
.
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The first integral is at most 1 because KT ⊆ B1. As hK(θ) + hK(−θ) ≥ 0 for any convex body
K, the second integral is non-negative. So we conclude that

T−1∑

t=1

||s(Kt)− s(Kt+1)||2 ≤ d

which proves the theorem. The proof of the more general statement is identical.

3 Better Competitive Ratio for Subexponentially Many Queries

Here we refine the argument from the previous section to show that with T rounds, we obtain a
competitive ratio O(

√
d log T ). Hence, for subexponentially many queries, the Steiner point is a

nearly optimal algorithm.
The intuition for this improved estimate is the following. We think of hK as a budgeted resource

with amount d
∫
θ hKt(θ)− hKT

(θ)dθ at time t. Our goal is to turn this budget into Steiner point
movement. In order to have a lot of movement after a modest number of time-steps, we must use a
significant amount of this budget in a typical time-step. So, suppose that a lot of the budget is used
in going from Kt → Kt+1. Then because only a tiny subset of the sphere correlates significantly
with any fixed direction, the values of θ contributing to the movement

s(Kt)− s(Kt+1) = d

∫

θ∈Sd−1

(hKt(θ)− hKt+1(θ))θdθ

must include a wide range of directions θ. As a result, the different θ values contribute to the
Steiner point movement in very different directions and cancel out a lot, which means that the
Steiner point’s movement was actually much less than the amount of budget used up. In other
words, the starting budget d ·hK0(θ) can only be used efficiently if it is used very slowly. Below we
make this argument precise using concentration of measure on the sphere.

Lemma 3.1 (Concentration of Measure [Bal97, Lemma 2.2]). For any 0 ≤ ε < 1, the cap

{x ∈ S
d−1 : xi ≥ ε}

has measure at most e−dε2/2.

Lemma 3.2. For any convex bodies K ′ + B1 ⊇ K ⊇ K ′, setting λ = w(K)−w(K ′)
2

||s(K)− s(K ′)||2 ≤ λ
√

d log(λ−1).

Proof. We have

s(K)− s(K ′) = d

∫

θ
(hK(θ)− hK ′(θ)) θdθ.

Since
‖s(K)− s(K ′)‖2 = sup

v∈Sd−1

v⊤(s(K)− s(K ′)),

it suffices to estimate v⊤(s(K)− s(K ′)) for arbitrary unit v. Without loss of generality we can just
take v = e1 := (1, 0, . . . , 0). And now we have

v⊤(s(K)− s(K ′)) = d

∫

θ
(hK(θ)− hK ′(θ)) θ1dθ.
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Because K ′ + B1 ⊇ K ⊇ K ′, we have

0 ≤ hK(θ)− hK ′(θ) ≤ 1.

Given this constraint that hK − hK ′ ∈ [0, 1] and has total mass λ, the maximum possible value of
the integral is easily seen to be achieved when the λ-fraction of θ values with largest possible θ1
coordinate have hK(θ)− hK ′(θ) = 1, and the rest have hK(θ)− hK ′(θ) = 0.

Therefore we are reduced to bounding the largest average θ1 coordinate over a subset of size λ.
Concentration on the sphere shows that 1−e−t2/2 fraction of the sphere lies in the set {θ1 ≤ t/

√
d}.

Therefore, the average of θ1 over a subset of size λ is at most O

(√
log(λ−1)

d

)
.

Theorem 3.3. Following the Steiner point, starting from B1, gives total movement

O(min(d,
√

d log T ))

after T requests. More generally, the same upper bound holds for any sequence of nested convex
bodies

K1 ⊇ K2 ⊇ · · · ⊇ KT

with KT + B1 ⊇ K1.

Remark. The condition KT +B1 ⊇ K1 means that OPT will always be 1 from any starting point.
Hence this is a statement about the competitive ratio.

Proof. We have established an upper bound of O(d) so we prove only the O(
√
d log T ) estimate.

Say the requests are
B1 = K1 ⊇ K2 ⊇ · · · ⊇ KT ,

with KT being a singleton. Setting λt = w(Kt)−w(Kt+1)
2 , Lemma 3.2 shows that

T−1∑

t=1

|s(Kt)− s(Kt+1)| ≤ O(d1/2)

T−1∑

t=1

(
λt

√
log(λ−1

t )

)
.

By concavity of
√

log(λ−1) on λ ∈ [0, 1], and the constraints λt ≥ 0 and
∑T−1

t=1 λt = 1, we have the
upper bound

T−1∑

t=1

(
λt

√
log(λ−1

t )

)
≤

√
log T .

Therefore
T−1∑

t=1

|s(Kt)− s(Kt+1)| = O(
√

d log T ).

The proof of the more general statement is identical.

It is natural to wonder whether exponentially large T actually results in d movement. The next
theorem establishes that this is indeed the case. We defer the proof to the appendix.

Theorem 3.4. For T ≥ 100d, there is a sequence of T convex bodies starting from a unit ball which
results in Ω(d) movement of the Steiner point.
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4 Optimal Memoryless Chasing

In the chasing nested convex bodies problem, the optimal strategy potentially depends on the
new request Kt and the initial/current points x0 and xt−1. However, our Steiner point algorithm
achieved a good guarantee while using only Kt to choose xt. It is natural to ask how well such a
memoryless strategy with xt a function of only Kt can do. Hence in this section we restrict our
attention to such algorithms, or equivalently to selector functions, and formulate a precise question.
We then show the Steiner point is the exact optimal solution to this question.

Definition 2. A selector is a function f : K → R
d such that f(K) ∈ K for all K.

We formulate the memoryless nested convex body chasing problem as follows. We aim to define
a selector f which keeps the movement cost

∑T−1
t=1 ||f(Kt)−f(Kt+1)||2 within a small constant factor

of the Hausdorff distance dH(K1,KT ) between K1,KT , for all sequences of T convex bodies. Note
that now we do not begin at a given x0 point, and are instead free to choose the starting point at
no cost.

The theorem below shows that with the above formulation, the Steiner point achieves the exact
optimum competitive ratio. The result and proof are inspired by a similar result from the work
[PO89] which proves that the Steiner point achieves the exact optimum Lipschitz constant among
all selectors, where K is metrized by the Hausdorff metric. This is similar to the T = 2 case of
our problem, and as we remark below, our proof specializes to give their result as well; the nested
condition is not crucial.

Theorem 4.1. For any d and T , the Steiner point achieves the exact optimum competitive ratio
for the memoryless nested convex body chasing problem. That is, among all selectors f , the Steiner
point yields the minimum constant C(d, T ) such that the following holds: for any sequence

K1 ⊇ K2 ⊇ · · · ⊇ KT

of nested bodies with KT + B1 ⊇ K1, the total movement is

T−1∑

t=1

||f(Kt)− f(Kt+1)||2 ≤ C(d, T ).

Description of Proof. The proof idea is as following: given a selector f , we symmetrize it to obtain
a new function f̃ with at most the competitive ratio of f , which has some new symmetry. More
precisely, f̃ is equivariant under the isometry group of R

d and commutes with addition, where
addition of convex sets is Minkowski sum as usual. These symmetry properties are strong enough
to force f̃ to coincide with the Steiner point. Since f̃ = s has a smaller Lipschitz constant than f
by construction, and f was arbitrary, the result follows.

The way we symmetrize f is to take

“f̃(K) = E[g−1(f(g(K) + K ′)− f(K ′))]”

where g is a random isometry of Rd and K ′ is a random convex set. We require that the probability
measures for g,K ′ be invariant under composition with isometries and Minkowski addition of a fixed
convex set, respectively; these invariance properties ensure that f̃ is isometry invariant and additive.
The issue is that such probability measures do not actually exist. But by using the concept of an
invariant mean instead of a probability measure, we get a translation-invariant average that does
the same job, though it cannot be written down without the axiom of choice. See the appendix for
the precise argument and some references.
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Remark. The theorem above would still hold with the same proof if the sequence (K1,K2, . . . ,KT )
were not required to be nested but were simply constrained to satisfy, for all θ,

T−1∑

t=1

|hKt(θ)− hKt+1(θ)| ≤ 1.

For this generalization, the T = 2 case is exactly the aforementioned result from [PO89] that the
Steiner point attains the minimum Lipschitz constant among all selectors. This optimal Lipschitz

constant is asymptotically

(√
2d
π

)
; the reason is similar to the proof of Theorem 2.1.

5 Time-independent Nearly Optimal Algorithm with Mirror Map

In this section, we give a new algorithm which combines the Steiner point and our method from
[ABC+18]. This algorithm is nearly optimal for any ℓp norm with p ≥ 1, and we conjecture the
result to be nearly tight in a general normed space.

Our first observation is inspired by an alternative formula for the Steiner point from e.g. [Prz96]:

s(K) = lim
r→+∞

cg(K + Br)

where cg denotes the centroid and Br is a ℓ2 ball centered at 0 with radius r.
Since both Steiner point and centroid (with some modification proposed in [ABC+18]) give a

competitive algorithm for nested convex body chasing, it is natural to conjecture that cg(K + Br)
works for any r ≥ 0 (maybe with some modification). In this section, we show that it is indeed
true for a certain range of r. The benefit of this variant of the Steiner point (or centroid) is that it
is easier to modify the definition to fit our needs for other normed spaces.

The second observation is that the centroid of a Gaussian measure restricted to any convex set
moves with ℓ2 distance proportional to its standard deviation when the measure is cut through
its centroid. This is due to some concentration properties of Gaussian measure. Therefore, for ℓ2

nested chasing bodies, it is more natural to use Gaussian measure instead of uniform measure to
define the centroid.

For a general normed space, we assume there is a 1-strongly convex1 function φ on the space
such that 0 ≤ φ(x) ≤ D for all ‖x‖ ≤ 1. We will use φ to construct an algorithm with competitive
ratio O(

√
dD · log d). For ℓ2 space, we can use φ(x) = ‖x‖22 to get competitive ratio O(

√
d · log d).

In general, the minimum D among all 1-strongly convex functions ranges from 1
2 to d

2 . The 1
2 lower

bound follows from applying the strong convexity to (x, 0,−x) for |x| = 1, while a linear upper
bound follows from John’s theorem. This minimum D measures the complexity of the normed
space for online learning [SST11].

Now, we define the weighted centroid as follows:

Definition 3. We define the centroid and the volume of K with respect to e−φ(x)dx by

cgφ(K) =

∫
K e−φ(x)xdx∫
K e−φ(x)dx

and volφ(K) =

∫

K
e−φ(x)dx.

Algorithm 1 is based on cgφ(K + Br) and we measure the progress by volφ(K + Br). The
key lemma we show is that this mixture of Steiner point and centroid is stable under cutting and

1A function is α-strongly convex on a normed space ‖ · ‖ if φ(y) ≥ φ(x) + 〈∇φ(x), y − x〉+ α
2
‖y − x‖2 for all x, y.
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Algorithm 1: ChasingNormedSpace

1 input: a normed space ‖ · ‖ such that ‖x‖2 ≤ ‖x‖ ≤
√
d · ‖x‖2 for all x,

2 φ is a α-strongly convex function on ‖ · ‖ such that 0 ≤ φ(x) ≤ D for all ‖x‖ ≤ 2,
3 a C-competitive ℓ2 nested chasing convex algorithm (used for narrow directions),
4 padded radius r ≤ 1√

d
.

5 Let the localized set Ω = {x : ‖x‖ ≤ 1} and K be the current convex set.

6 Take the initial point x = cgφ(Ω + Br) where cgφ(K) :=
∫
K

x·e−φ(x)dx∫
K

e−φ(x)dx
and Br is a ℓ2 ball

centered at 0 with radius r.
7 loop

8 Let A be the covariance matrix of the distribution e−φ(y)1y∈Ω+Br .
9 Let V be the span of eigenvectors of A with eigenvalues less than (2e · r)2.

10 if V = {0} then
11 Receive a new convex set K such that x /∈ K.
12 else

13 Run the nested chasing algorithm on Ω ∩ (x + V ) until the new K satisfies
(x + V ) ∩K = ∅.

14 end

15 Let H be a half space containing the convex set K such that x + V ⊂ ∂H, namely, a
half space touching x and parallel to V .

16 Ω← Ω ∩H.
17 x← cgφ(Ω + Br). // If x /∈ Ω, pay extra 2r movement to Ω and back.

18 end

that the volume volφ(K + Br) decreases by a constant factor every iteration. Unlike the standard
volume volφ(K), this volume has a lower bound, which is related to the volume of the ball Br.
Therefore, the algorithm terminates without the trick of projecting the body from [ABC+18]. We
note that the projection trick in that paper does not work because the total movement of cg during
the projection is already Ω(d).

Theorem 5.1. Let φ be an α-strongly convex function on the normed space ‖ · ‖ and scalar r > 0.
Let K be a convex set and v be an unit vector. Let H be the half space with normal v through
cgφ(K + Br):

H = {x ∈ R
d : v⊤x ≥ v⊤cgφ(K + Br)}.

Suppose that Varxv
⊤x ≥ (2e · r)2 where x is sampled from e−φ(y)1y∈K+Br/volφ(K + Br). Then

1

e
· volφ(K + Br) ≤ volφ((K ∩H) + Br) ≤ (1− 1

2e
) · volφ(K + Br)

and that ‖cgφ((K ∩H) + Br)− cgφ(K + Br)‖ . α− 1
2 .

Using this geometric statement, one can readily prove the following statement by choosing
appropriate parameters.

Theorem 5.2. For any normed space ‖ · ‖ on R
d equipped with a 1-strongly convex φ such that

0 ≤ φ(x) ≤ D for all ‖x‖ ≤ 1, there is an O(
√
dD · log d)-competitive nested chasing convex body

algorithm.

8



For p ≥ 2, the function φ(x) = 1
2‖x‖22 is 1-strongly convex in the ℓp norm with D ≤ 1

2n
1− 2

p .
For p ∈ (1, 2], the function φ(x) = 1

2(p−1)‖x‖2p is 1-strongly convex in the ℓp norm with D ≤ 1
2(p−1)

(See for instance [SS07, Lemma 17]). For p < 1 + 1
log d , we can use the same function above with

p = 1 + 1
log d . Hence, we have the following bound:

Corollary 5.3. For 1 ≤ p ≤ ∞, the competitive ratio for chasing nested convex bodies in the ℓp

norm is at most 



O(d
1− 1

p
√

log d) if p ≥ 2

O
(√

d log d
p−1

)
if 1 + 1

log(d) ≤ p ≤ 2

O(
√
d log d) if p < 1 + 1

log(d)

.

Now, we prove that this bound is tight up to a O(log d) factor.

Lemma 5.4. The competitive ratio in ℓp norm is at least Ω(max(
√
d, d

1− 1
p )) for any p ≥ 1.

Proof. In [FL93], Friedman and Linial used the family Kt = Kt−1∩{xt = ±1} to conclude that the
competitive ratio is at least

√
d for the ℓ2 norm because the offline optimum can directly go to the

singleton Kd using
√
d movement in the ℓ2 norm while the online algorithm must move d distance

in the ℓ2 norm. We note that this proof also gives d1−
1
p competitive ratio lower bound for the ℓp

norm.
Now, we prove the

√
d lower bound for any ℓp norm. In this lower bound, we assume without

loss of generality that the dimension d is a power of 2. Consider the initial point is 0 and the initial
convex body K0 = R

d. Let H be the d× d Hadamard matrix and ht be the i-th row of H.
We construct the adaptive adversary sequence as follows: Let xt ∈ Kt be the response of the

algorithm. If h⊤t xt ≥ 0, we define

Kt+1 = Kt ∩ {y ∈ R
d : h⊤t y = −1}

else, we define it by
Kt+1 = Kt ∩ {y ∈ R

d : h⊤t y = +1}.
Due to the construction, we have that

∣∣h⊤t (xt+1 − xt)
∣∣ ≥ 1. Since each entry of ht is ±1, the

movement in the ℓp norm is at least

min
|h⊤

t δ|≥1
‖δ‖p = min∑d

i=1 δi=1
‖δ‖p = d

1
p
−1.

Hence, the algorithm must move d
1
p
−1

in the ℓp norm each step. After d iterations, the algorithm

must move d
1
p in the ℓp norm. On the other hand, Since H is invertible, Kd consists exactly one

point x∗. The offline optimum can simply move from 0 to x∗ at the first iteration. Note that

Hx∗ = s

for some ±1 vector s. Since the minimum spectral value of H is exactly
√
d, we have that

‖x∗‖2 ≤ d−
1
2 ‖s‖2 ≤ 1

and hence ‖x∗‖p ≤ d
1
p
− 1

2 . Therefore, the competitive ratio is at least d
1
p

‖x∗‖p ≥
√
d.
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[BLLS18] Sébastien Bubeck, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Competitively chasing
convex bodies. 2018.

[BV04] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks.
Journal of the ACM (JACM), 51(4):540–556, 2004.

[Edw94] RE Edwards. Functional analysis: Theory and applications, holt, rinehart and winston,
new york, 1965. MR, 36:4308, 1994.
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A Appendix

A.1 Lower Bounds for Steiner Point and Variants

A.1.1 Steiner Point Has Ω(d) Movement with Exponentially Many Requests

Here we verify that the Steiner point can in fact saturate the upper bound O(min(d,
√
d log T ))

when T is exponentially large.

Theorem 3.4. For T ≥ 100d, there is a sequence of T convex bodies starting from a unit ball which
results in Ω(d) movement of the Steiner point.

Proof. Pick a 1
20 -net {v1, . . . , vT } on the sphere. We know that for large d, the net has T ≤ 100d

points. Define the half-space
Ht = {x ∈ B1|x⊤vt ≤ 0.9}

and take Kt = Kt−1 ∩ Ht. We claim that this sequence results in Ω(d) movement of the Steiner
point.

To show that this works, first note that B0.9 ⊆ KT ⊆ B0.95. The first inclusion is obvious.

To see the second, note that if 1 ≥ ‖x‖2 > 0.95, then for t with
∣∣∣ x
|x| − vt

∣∣∣ < 0.05 we have v⊤t x >

‖x‖2 − 1
20 ≥ 0.95 so x /∈ Ht.

The fact that KT ⊆ B0.95 means that for all θ, we have hKT
(θ) ≤ 0.95 which means the total

budget decrease is large:

d

∫

θ
1− hKm(θ)dθ ≥ d

20
.

On the other hand, we claim that we use our budget at constant efficiency:

‖s(Kt)− s(Kt+1)‖2 ≥
d

10

∫

θ
hKt(θ)− hKt+1(θ)dθ. (1)

Once we establish this claimed inequality, the theorem is proved: we used up a constant amount of
the budget at constant efficiency, so we achieved Ω(d) movement. Below, we establish inequality
(1). The point is that since we only cut off a small part each time, we only change the support
function hKt(θ) for a small-diameter set of directions θ, which cannot have much cancellation. More
precisely, we show below that any θt for which hKt(θt) 6= hKt+1(θt) must satisfy v⊤t+1θt ≥ 1

10 , so
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that all θt contributions point significantly in the direction of vt+1. From this, inequality (1) follows
easily.

To see this last claim, we first observe that for any point yt 6∈ Ht+1 which is removed, since
v⊤t+1yt ≥ 0.9 we know yt is close to vt+1:

‖y − vt+1‖2 =
√
‖y‖2 + ‖vt+1‖2 − 2v⊤t+1yt ≤

√
2− 2v⊤t+1yt ≤

1√
5
≤ 0.45.

We also observe that if θt ∈ S
d−1 is such that hKt(θt) > hKt+1(θt), then taking yt = arg maxy∈Kt(θt ·

y) we must have yt 6∈ Ht+1 and y⊤t θt ≥ 0.9. So for this choice of yt we also have ‖yt − θt‖2 ≤ 0.45.
As a result, any such θt must be within 0.45 + 0.45 = 0.9 of vt+1. Hence, this θt must satisfy

v⊤t+1θt ≥ 0.1. Since all the affected θt vectors are correlated with a common vector vt+1, we get

‖s(Kt)− s(Kt+1)‖2 = d

∥∥∥∥
∫

θ

(
hKt(θ)− hKt+1(θ)

)
θdθ

∥∥∥∥
2

≥ d

∫

θ

(
hKt(θ)− hKt+1(θ)

)
(v⊤t+1θt)dθ

≥ d

10

∫

θ

(
hKt(θ)− hKt+1(θ)

)
dθ.

This verifies the claimed inequality (1).

A.1.2 Simple Optimizations to the Steiner Point Algorithm Do Not Help

It is natural to suggest that the Steiner point algorithm often moves unnecessarily. For example, in
the Ω(d)-movement example from Theorem 3.4, the original Steiner point is in every single convex
body request, so 0 movement is trivially attainable. Here we consider two natural improvements
to the Steiner point algorithm. The first moves to the new Steiner point only when it is forced to
move, while the second moves towards the new Steiner point until it reaches the boundary of the
newly requested set, and then stops. In both cases, we show that we can turn any hard instance
for the ordinary Steiner point algorithm in d dimensions into a hard instance for the modified
algorithm in d + 1 dimensions.

Proposition A.1. Suppose the Steiner point starting from a unit ball in R
d has movement C(d, T )

movement after some sequence of T requests. Then there is a sequence of T requests in R
d+1 which

give Ω(C(d, T )) movement for each of the following two algorithms:

1. If xt ∈ Kt+1, do not move. If xt 6∈ Kt+1, move to the Steiner point: xt+1 = s(Kt+1).

2. If xt ∈ Kt+1, again do not move. If xt 6∈ Kt+1, move in a straight line towards s(Kt+1) until
reaching Kt+1, then stop.

Proof. Suppose B1 = K0 ⊇ K1 ⊇ · · · ⊇ KT is an example which forces the Steiner point to move
distance Ω(C(d, T )). Then we go up to d + 1 dimensions and take, for some small ε > 0,

K̂t = Kt × [0, εt],

Then because of this extra coordinate, the first algorithm moves every round as long as ε < 1
2 . The

movement induced by K̂t is at least that of Kt, so we still obtain Ω(d) movement and every move
is forced. Also, we only slightly increased the diameter by going up 1 dimension, so we lose only a
constant factor from this.
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For the second algorithm, note that xt must move to be within O(ε) of s(Kt). Indeed, because
of the fast decay of the last coordinate, we move (1−O(ε))-fraction of the way from xt−1 to s(Kt),
and the total distance to move is O(1). Because d(xt, s(Kt)) = O(ε), the change in the total
movement cost is O(Tε). Hence by taking ε small we achieve essentially the same movement.

A.2 Invariant Means and the Proof of Theorem 4.1

A.2.1 Definition of Invariant Mean

Here we define invariant means and state the result we need. Some references aside from the article
[PO89] are the book [Edw94] and the blog post [Tao09].

Definition 4. A locally compact Hausdorff semigroup G is amenable if G admits a (right) invariant
mean, i.e. a linear map

Λ : L∞(G)→ R

such that:

1. Λ has operator norm 1, and f ≥ 0 everywhere implies Λ(f) ≥ 0.

2. We have Λ(g ◦ f) = Λ(f) for all g ∈ G, where g ◦ f(x) = f(xg).

Theorem A.2 ([Edw94, Section 3.5], [PO89, Proposition 1.2]). Any compact group or abelian
semigroup is amenable.

For a compact group, Λ is just the average with respect to Haar measure. For general abelian
semigroups it is more complicated.

Corollary A.3. The following semigroups are amenable:

1. (Rd,+)

2. The orthogonal group O(n)

3. The semigroup Kd of convex bodies in R
d, with Minkowski sum.

To denote the translation-invariant averaging operator Λ we use integral notation following
[PO89]. So for instance ∫

K∈K
f(K)dK := Λ(f)

is an average of f with respect to the invariant mean Λ on K.

A.2.2 Proof of Theorem 4.1

We use invariant means to symmetrize any function into the Steiner point. We first give the
axiomatic characterization due to Rolf Schneider of the Steiner point, which we will use after
symmetrizing to show that we ended up with the Steiner point.

Lemma A.4 ([Sch71]). Let s : K → R
d be a function from convex sets to R

d such that:

1. f(K1) + f(K2) = f(K1 + K2)

2. f(gK) = gf(K) for any isometry g : Rd → R
d
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3. f is uniformly continuous with respect to the Hausdorff metric.

Then f(K) = s(K) is the Steiner point.

Now we prove that the Steiner point has the lowest movement among all selectors.

Theorem 4.1. For any d and T , the Steiner point achieves the exact optimum competitive ratio
for the memoryless nested convex body chasing problem. That is, among all selectors f , the Steiner
point yields the minimum constant C(d, T ) such that the following holds: for any sequence

K1 ⊇ K2 ⊇ · · · ⊇ KT

of nested bodies with KT + B1 ⊇ K1, the total movement is

T−1∑

t=1

||f(Kt)− f(Kt+1)||2 ≤ C(d, T ).

Proof. Suppose f : K → R
d is an arbitrary selector which achieves the above movement estimate

with constant C(d, T ). We first claim that f has to be 2C(d, T )-Lipschitz. Indeed, suppose we are
given K,K ′. We show that

||f(K)− f(K ′)||2 ≤ 2C(d, T )dH(K,K ′).

Indeed let K ′′ be the convex hull of K ∪K ′, so that

hK ′′(θ) = max(hK(θ), hK ′(θ)).

Since Hausdorff distance dH is the same as L∞ norm of the support function, we know that
dH(K,K ′′) ≤ dH(K,K ′) and dH(K ′,K ′′) ≤ dH(K,K ′). Since K ′′ contains both K,K ′, the assumed
movement estimate for f tells us that f(K ′′) is within distance C(d, T )dH(K,K ′) from both f(K)
and f(K ′). Now the claim follows from the triangle inequality.

Now we introduce symmetry to f to obtain the Steiner point. For ease of understanding, we go
in three steps.

First we make f translation invariant:

f (1)(A) =

∫

x∈Rd

f(A + x)− xdx.

This is well-defined because f(A + x) ∈ A + x so the integrand ‖f(A + x)− x‖2 ≤ maxa∈A ‖a‖2 is
bounded depending only on A.

f (1) is translation invariant because

f (1)(A + y) =

∫

x∈Rd

f(A + y + x)− xdx

= y +

∫

x∈Rd

f(A + (x + y))− (x + y)dx

= y + f (1)(A).

Second, we introduce additivity:

f (2)(A) =

∫

K∈K
f (1)(A + K)− f (1)(K)dK.
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We again note that d(A + K,K) ≤ maxa∈A ‖a‖2, so the integrand is an L∞ function on K. As
above, we now have additivity:

f (2)(A + K ′) =

∫

K∈K
f (1)(A + K ′ + K)− f (1)(K)dK

=

∫

K∈K
f (1)(A + (K ′ + K))− f (1)(K ′ + K) + f (1)(K ′ + K)− f (1)(K)dK

= f (2)(A) + f (2)(K ′)

Furthermore we preserve translation invariance; in fact it is a special case of additivity where we
take K ′ to be a single point. Finally, we introduce O(n) invariance, this time using an actual
integral:

f (3)(A) =

∫

g∈O(n)
g−1f (2)(g(A))dg.

This preserves additivity because the O(n)-action consists of linear maps, and similarly to above
it results in f (3) additionally being O(n)-invariant. Since this f̃ = f (3) is isometry invariant and
additive under Minkowski sum, and is also still Lipschitz since f was, we conclude from Lemma A.4
that f̃(K) = s(K).

Finally, we want to argue that by doing these symmetrizations, we preserve the movement upper
bound C(d, T ). The point is that if we evaluate the movement of f̃ on a sequence of nested bodies

KT + B1 ⊇ K1 ⊇ · · · ⊇ KT

the movement is expressible as an “average” of the movement of f over a sequence of bodies which
are isometries of Kt + K ′. For any K ′, we still have

KT + K ′ + B1 ⊇ K1 + K ′ ⊇ · · · ⊇ KT + K ′.

Hence the sequence (f̃(Kt))t≤T is an average of isometries applied to sequences (f(Kt + K ′))t≤T ,
which can only shrink the distances. So we get that the Steiner point f̃ also has at most C(d, T )
movement since f does.

We remark that in the proof above, we did not know that f̃ was a selector until we deduced
from Lemma A.4 that f̃ is exactly the Steiner point. Indeed, the selector property is not obviously
preserved through the symmetrizations we did. We needed f to be a selector in the proof so that
e.g. f(A + x)− x would be bounded only depending on A.

B Analysis of ChasingNormedSpace

B.1 Notations and basic facts about log-concave distribution

For any convex set K and any convex function φ, we use x ∼ (φ,K) to denote that x is sampled
from the distribution e−φ(x)1x∈K/volφ(K). In particular, we have

Ex∼(φ,K)f(x) =

∫
K f(x)e−φ(x)dx∫

K e−φ(x)dx
and Varx∼(φ,K)f(x) = Ex∼(φ,K)

(
f(x)− Ey∼(φ,K)f(y)

)2
.

Now, we list some facts that we will use in this section. This lemma shows that any log-concave
distribution concentrates around any subset of constant measure.
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Lemma B.1 (Borell’s Lemma [BGVV14, Lemma 2.4.5]). For any log-concave distribution p on
R
d, any symmetric convex set A with p(A) = α ∈ (0, 1), and any t > 1, we have

1− p(tA) ≤ α

(
1− α

α

) t+1
2

.

In particular, it concentrates around intervals centered at the center of gravity.

Lemma B.2 (Tail bound of log-concave distribution). For any log-concave distribution p on R
d

and any unit vector v, we have that

Py∼p

(∣∣∣v⊤(y − x)
∣∣∣ ≥ tσ

)
= e−Ω(t)

where x = Ey∼py and σ = Vary∼pv
⊤y.

The localization lemma shows that one can prove a statement about high dimensional log-
concave distributions via a 1 dimensional statement.

Theorem B.3 (Localization Lemma [KLS95, FG04]). Suppose p is a log-concave distribution in
R
d, g and h are continuous function such that

∫

Rd

g(x)p(x)dx > 0 and

∫

Rd

h(x)p(x)dx = 0.

Then, there is an interval [a, b] ⊂ R
d and scalars α, β such that

∫

[a,b]
g(x) · eαx+βdx > 0 and

∫

[a,b]
h(x) · eαx+βdx = 0.

This lemma relates the deviation and width of a convex set.

Lemma B.4 ([KLS95, Theorem 4.1]). For any convex set K ⊂ R
d and any unit vector v, we have

widthK(v)2 ≤ 4d · (d + 2) ·Varx∼Kv⊤x.

where widthK(v) = maxx∈K v⊤x−minx∈K v⊤x.

Grunbaum’s Theorem shows that for any log concave distribution, any half space containing the
centroid has at least 1

e fraction of the mass. The following theorem shows that a similar statement
holds as long as the centroid is close to the half space. [BV04, Theorem 3] proved this theorem for
convex sets. For completeness, we include the proof for log-concave distribution.

Theorem B.5 (Grunbaum’s Theorem [Gru60]). Let f be any log-concave distribution on R
d and

H be any half space H = {x ∈ R
d : v⊤x ≥ b} for some vector v. Let c be the centroid of f . Then

∫

H
f(x)dx ≥ 1

e
− t+

where t = b−v⊤c√
Ex∼f (v⊤(x−c))2

is the distance of the centroid and the half space divided by the deviation

on the normal direction v.

Proof. Since the marginal of a log-concave distribution is log-concave, by taking marginals and
rescaling, it suffices to prove that

∫
x≥t f(x)dx ≥ 1

e − t+ for isotropic log-concave distribution on R.
The case for t ≤ 0 follows from the classical Grunbaum Theorem. The case for t ≥ 0 follows from
the case t = 0 and the fact that f(x) ≤ 1 for all x [LV07, Lemma 5.5a].
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Finally, we will need this statement about strongly log-concave distribution, namely, a log-
concave distribution multiplied by a Gaussian distribution.

Theorem B.6 (Brascamp-Lieb inequality [BL76]). Let γ be any Gaussian distribution on R
d and

f be any log-concave function on R
d. Define the density function h as follows:

h(x) =
f(x)γ(x)∫

Rd f(y)γ(y) dy
.

For any vector v ∈ R
d and any α ≥ 1, Eh|vT (x− Ehx)|α ≤ Eγ |vTx|α.

B.2 Cutting along cgφ(Ω)

The goal of this section is to prove Theorem 5.1. This theorem shows that a cutting plane passing
through cgφ(Ω + Br) behaves very similar to cgφ(Ω) as long as we do not cut along a narrow
direction of Ω+Br. In particular, we show that it decreases the volume volφ(Ω+Br) by a constant
factor and that cgφ(Ω + Br) does not move a lot when we cut Ω.

We will first prove cgφ(Ω) is stable when a constant fraction of Ω is removed.

Lemma B.7. Let φ be an α-strongly convex function on the normed space ‖ · ‖. Let Ω̃ ⊆ Ω be two
convex sets. Then, we have that

‖cgφ(Ω̃)− cgφ(Ω)‖ .
√

volφ(Ω)

volφ(Ω̃)
· α− 1

2 .

Proof. For any h, we have that

Varx∼(φ,Ω)x
⊤h =

volφ(Ω̃)

volφ(Ω)

∫
Ω((x− cgφ(Ω))⊤h)2e−φ(x)dx∫

Ω̃
e−φ(x)dx

≥ volφ(Ω̃)

volφ(Ω)
Ex∼(φ,Ω̃)((x− cgφ(Ω))⊤h)2

≥ volφ(Ω̃)

volφ(Ω)
(Ex∼(φ,Ω̃)(x− cgφ(Ω))⊤h)2

=
volφ(Ω̃)

volφ(Ω)
((cgφ(Ω̃)− cgφ(Ω))⊤h)2

where the first inequality follows from Ω̃ ⊂ Ω, the second inequality follows from Cauchy Schwarz.
To bound the movement of cg, this calculation shows that it suffices to upper bound the variance.

We claim that for any ‖h‖∗ = 1, we have

Varx∼(φ,Ω)x
⊤h . α−1. (2)

First, assuming this claim is true, we have that ((cgφ(Ω̃)−cgφ(Ω))⊤h)2 .
volφ(Ω)

volφ(Ω̃)
·α−1. Taking h so

that (cgφ(Ω̃)− cgφ(Ω))⊤h = ‖(cgφ(Ω̃)− cgφ(Ω)‖, we have that the result that ‖cg(Ω̃)− cg(Ω)‖2 .
volφ(Ω)

volφ(Ω̃)
· α−1. So to prove the lemma we just need to prove this claim.

Now, we prove the claim using the localization lemma. Consider the integral problem

max
log-concave distribution p

∫
(x⊤h)2 · e−φ(x)p(x)dx subject to

∫
x⊤h · e−φ(x)p(x)dx = t.
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To prove our claim, it suffices to upper bound the maximum of the integral problem by t2 +O(α−1)
for all t. The localization lemma shows that it suffices to consider the case that p is log-affine. This
is same as proving

Varx∼q(x
⊤h)2 . α−1

for any distribution q of the form q(x) ∝ eα
⊤x−φ(x) restricted to an interval [a, b] ⊂ R

d. We can
parameterize the distribution q(s) by s = x⊤h. (Similarly for φ). Using the assumption that φ is
α-strongly convex in ‖ · ‖, we have that

φ(s) ≥ φ(t) + 〈∇φ(t), s − t〉+
α

2

∥∥∥∥
a− b

(a− b)⊤h

∥∥∥∥
2

(s− t)2.

Hence, φ(s) is α‖a−b‖2
((a−b)⊤h)2

-strongly convex in R. The Brascamp-Lieb inequality shows that

Varx∼q(x
⊤h)2 .

((a− b)⊤h)2

α‖a − b‖2 .

Since ‖h‖∗ = 1, we have that (a− b)⊤h ≤ ‖a− b‖. Therefore, we proved the claim (2).

Now, we are ready to prove the main theorem of this section:

Theorem 5.1. Let φ be an α-strongly convex function on the normed space ‖ · ‖ and scalar r > 0.
Let K be a convex set and v be an unit vector. Let H be the half space with normal v through
cgφ(K + Br):

H = {x ∈ R
d : v⊤x ≥ v⊤cgφ(K + Br)}.

Suppose that Varxv
⊤x ≥ (2e · r)2 where x is sampled from e−φ(y)1y∈K+Br/volφ(K + Br). Then

1

e
· volφ(K + Br) ≤ volφ((K ∩H) + Br) ≤ (1− 1

2e
) · volφ(K + Br)

and that ‖cgφ((K ∩H) + Br)− cgφ(K + Br)‖ . α− 1
2 .

Proof. Let Ω = K + Br and that Ω̃ = (K ∩H) + Br. Define the half space H̃ = H + Br, namely,
H̃ = {x : v⊤x ≥ v⊤cgφ(Ω)− r}. Using that v is an unit vector, we have that

Ω ∩H ⊆ Ω̃ ⊆ Ω ∩ H̃.

Now, we apply Grunbaum’s Theorem and the inclusion above to prove that volφ(Ω̃) ∼ volφ(Ω).
Upper bound: By the generalized Grunbaum Theorem (Theorem B.5), since the distance of

H̃c and cgφ(Ω) is less than 1
2e times the deviation, we have that volφ(Ω∩ H̃c) ≥ 1

2evolφ(Ω). Hence,

we have volφ(Ω̃) ≤ volφ(Ω ∩ H̃) ≤ (1− 1
2e) · volφ(Ω).

Lower bound: By the standard Grunbaum Theorem, since H is a half space through the
cgφ(Ω), we have that volφ(Ω ∩H) ≥ 1

evolφ(Ω). Hence, we have volφ(Ω̃) ≥ 1
evolφ(Ω).

The movement of cgφ follows from this volume lower bound and Lemma B.7.
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B.3 Main Result

Now, we are ready to upper bound the movement per step.

Lemma B.8. Each step x moves by at most O(C · dD · r + α− 1
2 ).

Proof. Movement of cg:
The half space H satisfies x+ V ⊂ ∂H. Hence, this half space passes through x = cgφ(Ω +Br)

and has normal vector v ∈ V ⊥. From the definition of V , we have that Vary∼(φ,Ω+Br)v
⊤y ≥ (2e·r)2.

This satisfies the assumption in Theorem 5.1 and hence, we have that the movement of cgφ is

bounded by O(α− 1
2 ).

Movement of the nested subroutine:

For any v ∈ V , we have that Vary∼(φ,Ω+Br)v
⊤y < (2e · r)2 from the definition of V . Lemma

B.2 shows that only 1
2e

−D fraction of the distribution e−φ(y)1y∈Ω+Br lies outside the interval I :={∣∣v⊤(y − x)
∣∣ ≤ c · (1 + D) · r

}
for some universal constant c. Since 0 ≤ φ(x) ≤ D for all x ∈ Ω+Br,

this implies that at least half of the distribution 1y∈Ω+Br lies in this interval I.
Now, Borell’s Lemma (Lemma B.1) shows that the distribution 1y∈Ω+Br concentrates around

this interval and hence the deviation of Ω+Br on direction v is bounded by O((1+D)·r) = O(D ·r).
(It is elementary to see D ≥ 1

2 always holds.) Now, Lemma B.4 shows that widthΩ+Br(v) = O(dD·r)
for all v ∈ V . Since K ⊂ Ω, (x + V ) ∩ K has diameter O(dD · r). Therefore, the C-competitive
algorithm can induce at most O(C · dD · r) movement.

Combining both parts, the movement per step is at most O(C · dD · r + α− 1
2 ).

Lemma B.9. There are at most O(D + d log d
r ) iterations.

Proof. We measure the progress by volφ(Ω +Br). As we discussed in the proof of Lemma B.8, the
assumption in Theorem 5.1 is satisfied. Hence, volφ(Ω + Br) is decreased by 1 − 1

2e factor every
step.

Since φ ≥ 0, the initial volume is upper bounded by

volφ({‖x‖ ≤ 1 +
√
d · r}) ≤ vol({‖x‖ ≤ 2}) ≤ vol({‖x‖2 ≤ 2

√
d}).

Next, we note that φ ≤ D and hence

volφ(Ω + Br) ≥ volφ(Br) ≥ e−D · vol({‖x‖ ≤ r}) ≥ e−D · vol({‖x‖2 ≤ r}).

Therefore, the volφ(Ω + Br) can at most decreased by a factor of eD(2
√
d

r )d during the whole
algorithm. Since each iteration the volume is decreased by a constant factor, the algorithm ends in
O(D + d log d

r ) steps.

Theorem 5.2. For any normed space ‖ · ‖ on R
d equipped with a 1-strongly convex φ such that

0 ≤ φ(x) ≤ D for all ‖x‖ ≤ 1, there is an O(
√
dD · log d)-competitive nested chasing convex body

algorithm.

Proof. Lemma 1.1 shows that it suffices to give an online algorithm with total movement O(
√

dD · log d)
for the case the body is bounded in a unit norm ball.

As we proved using Steiner point, there is a O(d)-competitive algorithm for ℓ2 nested chasing
convex bodies. Hence, we can take C = O(d) in the algorithm ChasingNormedSpace. Also, we can
do a change of variable for the normed space using the John ellipsoid to satisfy the assumption
‖x‖2 ≤ ‖x‖ ≤

√
d · ‖x‖2.
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Lemma B.8 and Lemma B.9 show that the algorithm ChasingNormedSpace is

O(1) · (Dα + d log
d

r
) · (d2Dα · r + α− 1

2 )

competitive if there is an α-strongly convex φα on the normed space with 0 ≤ φα(x) ≤ Dα for all
‖x‖ ≤ 2.

Using the assumption of this theorem, we can rescale φ and the domain to construct φα such
that it is α-strongly convex φ with Dα = O(α ·D). Hence, we have the competitive ratio

O(1) · (αD + d log
d

r
) · (d2αD · r + α− 1

2 ).

Taking α = d
D (1 + log 1

r ) and r = 1

d2α
3
2D

, we have the competitive ratio

O(1) ·
√

dD · (1 + log d2α
3
2D).

Finally, we note that D ≥ 1
2 (using the definition of strong convexity) and D ≤ d

2 (otherwise, we
can use ‖x‖2 as φ). Therefore, r ≤ 1√

d
and that the competitive ratio is simply O(

√
dD · log d).
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