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Abstract. The recently introduced twin-width of a graph G is the minimum integer d such
that G has a d-contraction sequence, that is, a sequence of |V (G)| − 1 iterated vertex iden-
tifications for which the overall maximum number of red edges incident to a single vertex
is at most d, where a red edge appears between two sets of identified vertices if they are
not homogeneous in G (not fully adjacent nor fully non-adjacent). We show that if a graph
admits a d-contraction sequence, then it also has a linear-arity tree of f(d)-contractions, for
some function f . Informally if we accept to worsen the twin-width bound, we can choose
the next contraction from a set of Θ(|V (G)|) pairwise disjoint pairs of vertices. This has
two main consequences. First it permits to show that every bounded twin-width class is
small, i.e., has at most n!cn graphs labeled by [n], for some constant c. This unifies and ex-
tends the same result for bounded treewidth graphs [Beineke and Pippert, JCT ’69], proper
subclasses of permutations graphs [Marcus and Tardos, JCTA ’04], and proper minor-free
classes [Norine et al., JCTB ’06]. It implies in turn that bounded-degree graphs, interval
graphs, and unit disk graphs have unbounded twin-width. The second consequence is an
O(logn)-adjacency labeling scheme for bounded twin-width graphs, confirming several
cases of the implicit graph conjecture.

We then explore the small conjecture that, conversely, every small hereditary class has
bounded twin-width. The conjecture passes many tests. Inspired by sorting networks of
logarithmic depth, we show that logΘ(log log d) n-subdivisions ofKn (a small class when d is
constant) have twin-width at most d. We obtain a rather sharp converse with a surprisingly
direct proof: the logd+1 n-subdivision of Kn has twin-width at least d. Secondly graphs
with bounded stack or queue number (also small classes) have bounded twin-width. These
sparse classes are surprisingly rich since they contain certain (small) classes of expanders.
Thirdly we show that cubic expanders obtained by iterated random 2-lifts from K4 [Bilu
and Linial, Combinatorica ’06] also have bounded twin-width. These graphs are related
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to so-called separable permutations and also form a small class. We suggest a promising
connection between the small conjecture and group theory.

Finally we define a robust notion of sparse twin-width. We show that for a hereditary
class C of bounded twin-width the five following conditions are equivalent: every graph
in C (1) has noKt,t subgraph for some fixed t, (2) has an adjacency matrix without a d-by-d
division with a 1 entry in each of the d2 cells for some fixed d, (3) has at most linearly
many edges, (4) the subgraph closure of C has bounded twin-width, and (5) C has bounded
expansion. We discuss how sparse classes with similar behavior with respect to clique sub-
divisions compare to bounded sparse twin-width.
Keywords. Twin-width, small classes, expanders, clique subdivisions, sparsity
Mathematics Subject Classifications. 68R10, 05C30, 05C48

1. Introduction

We continue to develop the theory of twin-width, a novel graph and matrix invariant introduced
in the first paper of the series [BKTW20]. In a nutshell, classes of bounded twin-width are
quite broad, including all classes with bounded clique-width, proper minor-closed classes, posets
with antichains of bounded size. Despite the generality of classes of bounded twin-width, they
yield, whenO(1)-contraction sequences are given, linear fixed-parameterized algorithms for any
problem definable by a first-order sentence [BKTW20, BGK+21]. Furthermore these classes are
preserved by first-order transductions [BKTW20], and are χ-bounded [BGK+21].

We start with a bird’s eye view of our new results. The exact definitions of some objects and
concepts will be deferred to the next section, but this introduction can be read by taking them
as black boxes. Furthermore Section 2 includes a summary of the first paper, so that the current
paper is self-contained.

A trigraph is a graph with two disjoint edge sets: black edges (regular edges) and red edges
(error edges). The graph induced by the red edges (resp. black edges) is called the red graph
(resp. black graph). A d-trigraph has a red graph with maximum degree at most d. A contraction
in a trigraph identifies two (non-necessarily adjacent) vertices, and puts black edges towards
shared neighbors in the black graph, and red edges towards the other (non-necessarily shared)
neighbors (see Figure 2.1). A d-contraction sequence, or d-sequence, of an n-vertex graph G is
a sequence of d-trigraphs G = Gn, Gn−1, . . . , G2, G1 such that Gi is obtained by performing a
single contraction in Gi+1. In particular G1 is the one-vertex graphK1. The twin-width of G is
the minimum d such that it admits a d-sequence.

A contraction sequence ofGmay be seen as a path with at the left endG, at the right endK1,
and the current trigraph gets smaller and smaller when we walk from left to right. We show that
this path can be made a tree of large arity. Now G is at the root of the tree, all the leaves contain
the graphK1, and every child is obtained by performing a single contraction in the parent node.
A d-contraction tree is such a tree with a d-trigraph at every node. More precisely, we show that
if a graphG has a d-contraction sequence, then it has aDd-contraction tree with linear arity. By
linear arity, we mean that every non-leaf node H has Θ(|V (H)|) distinct children.

Denoting the class of graphs with twin-width at most d by Cd, the first consequence is that
the number of graphs in Cd on the vertex set [n] is at most n!f(d)n. Intuitively the large-arity
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tree tells us that many n− 1-vertex graphs of Cd can be obtained from the same n-vertex graph
of Cd. By inverting the process, there are not so many distinct n-vertex graphs in Cd, obtained
by splitting a vertex in n − 1-vertex graphs of Cd. This crucial fact makes the inductive proof
works. Our result generalizes several similar theorems in enumerative combinatorics.

The first one is an over 50-year old result that bounded treewidth graphs on vertex set [n] have
a similar growth in O(n!cn) [BP69]. Graph classes with such a growth are called small. The
second one is comparatively much more recent, it is the celebrated answer to the Stanley–Wilf
conjecture, now the Marcus–Tardos theorem. Marcus and Tardos [MT04] showed that there
are at most cnσ permutations over [n] avoiding a fixed permutation pattern σ. In other words,
every proper subclass of permutations (where a class of permutations is closed under taking
subpermutations) has at most single-exponential growth, much below n!, the growth of the full
class. Expressed in the language of graph classes, proper subclasses of permutation graphs are
small. The third one, due to Norine et al. [NSTW06], is that the number of graphs on vertex
set [n] not containing a fixed minor H is at most n!cnH . Thus proper minor-closed classes are
small.

It was previously shown [BKTW20] that bounded treewidth (even rank-width) graphs, proper
subclasses of permutation graphs, and proper minor-closed classes have bounded twin-width.
Thus the fact that bounded twin-width classes are small unifies and extends all the above-men-
tioned theorems. We then explore the converse statement. Could it be that every small hereditary
class has bounded twin-width? We do not answer this question, dubbed the small conjecture, but
instead we give some evidences it may be true. This comes in the form of showing that many
potential counterexamples, that is, seemingly complex small hereditary classes, actually have
bounded twin-width. If the conjecture is true, it gives a universal explanation for the single-
exponential growth (up to isomorphism) of combinatorial classes: Translate the objects into
graphs or matrices, a bound or lack thereof in the twin-width of the class decides the existence
of such a bound in the growth.

Another by-product of the contraction tree is that we can always contract in parallel a linear
number of disjoint pairs of vertices. This gives rise to so-called parallel d-sequences of loga-
rithmic length. This will be instrumental in showing that bounded twin-width classes admit an
O(log n)-adjacency labeling scheme. This verifies a variety of particular cases of the implicit
graph conjecture which posits that such labeling schemes exist for every factorial hereditary
class, i.e., hereditary class with growth n!O(1).

Finally we show that five different ways of restricting twin-width to sparse classes actually
lead to the same notion. For example, bounded sparse twin-width classes can be equivalently
defined as hereditary classes with bounded twin-width that do not admitKt,t subgraph (for some
finite t) or where every graph has at most linearly many edges. A first but challenging step to-
wards the small conjecture is to show that small sparse classes have bounded (sparse) twin-width.
For instance, do classes with polynomial expansion have bounded twin-width? We discuss (pos-
sible) containments and strict containments of established sparse classes with respect to bounded
sparse twin-width.
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2. Preliminaries and outline

In this section we recall the relevant notations and definitions, summarize the important bits of
the first paper, and outline our new results.

2.1. Notations and definitions

We denote by [i, j] the set of integers {i, i+ 1, . . . , j − 1, j}, and by [i] the set of integers [1, i].
IfX is a set of sets, we denote by∪X their union. Unless stated otherwise, all graphs are assumed
undirected and simple, that is, they do not have parallel edges or self-loops. We denote by V (G)
and E(G), the set of vertices and edges, respectively, of a graph G. For S ⊆ V (G), we denote
the open neighborhood (or simply neighborhood) of S by NG(S), i.e., the set of neighbors
of S deprived of S, and the closed neighborhood of S by NG[S], i.e., the set NG(S) ∪ S. We
simplify NG({v}) into NG(v), and NG[{v}] into NG[v]. We denote by G[S] the subgraph of G
induced by S, andG−S := G[V (G)\S]. For two disjoint setsA,B ⊆ V (G),E(A,B) denotes
the set of edges inE(G)with one endpoint inA and the other one inB. Two distinct vertices u, v
such that N(u) = N(v) are called false twins, and true twins if N [u] = N [v]. Two vertices are
twins if they are false twins or true twins. For two vertices u, v ∈ V (G), the distance dG(u, v) is
the number of edges in a shortest path from u to v, and∞ if u and v are in two distinct connected
components ofG. In all the notations with a graph subscript, we may omit it if the graph is clear
from the context.

A graph class is a family of graphs closed under isomorphism (i.e., under renaming the
vertices). Since we will be interested in the “size” of a class, we will further impose that the
vertex set of n-vertex graphs is precisely1 [n]. With that requirement the number of n-vertex
graphs in a class C is a well-defined (finite) number. Observe that every single n-vertex graph
without a non-trivial automorphism in a class C implies that at least n! graphs are in C, namely
all its relabelings. A graph class is said hereditary if it is closed under taking induced subgraphs.
It is said monotone or subgraph-closed if it is even closed under taking subgraphs.

A graph is H-free if it does not contain H as an induced subgraph. However we make an
exception for H = Kt,t. A Kt,t-free graph is a graph with no biclique Kt,t as a subgraph.
A class is H-free if all its graphs are H-free. When t is not yet defined, we may say that a
class C is Kt-free (resp. Kt,t-free) to mean that there exists a finite integer t such that C is Kt-
free (resp. Kt,t-free).

We denote by ∆(G) the maximum degree of a vertex in G, and ∆(C) := supG∈C∆(G).
A class C has bounded degree if ∆(C) < ∞. More generally, for any graph invariant ι, we
say that C has bounded ι if ι(C) := supG∈C ι(G) < ∞. The strong product G � H of two
graphs G and H has vertex set V (G) × V (H) and (u, v)(u′, v′) ∈ E(G � H) if and only
if [u = u′ or uu′ ∈ E(G)] and [v = v′ or vv′ ∈ E(H)]. We denote by G � H the class
{G�H |G ∈ G, H ∈ H}, where G andH are two sets of graphs. Given a class C, we denote by
Sub(C) the class of all subgraphs of members of C. The class Sub(C) is by definition subgraph-
closed, and is called the subgraph closure of C. Similarly the hereditary closure of a class C

1If it is sometimes more convenient to use a different vertex set for the class definition, this will implicitly come
with a canonical mapping from this vertex set to [n].
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consists of all the induced subgraphs of members of C, and is hereditary by design.
An edge contraction of two adjacent vertices u, v consists of merging u and v into a sin-

gle vertex adjacent to N({u, v}) (and deleting u and v). A graph H is a minor of a graph G
ifH can be obtained from G by a sequence of vertex and edge deletions, and edge contractions.
Equivalently aminorH with vertex set say, {v1, . . . , vV (H)}, ofG can be defined as a vertex parti-
tionB1, . . . , B|V (H)| of a subgraph ofG, such that everyG[Bi] is connected andEG(Bi, Bj) 6= ∅
whenever vivj ∈ E(H). Indeed after contracting each Bi into a single vertex (which is possi-
ble since they induce connected subgraphs), H appears as a subgraph. The set Bi is called the
branch set of vi ∈ V (H). A graphG is saidH-minor free ifH is not a minor ofG. A class is said
minor-closed if every minor of a member of the class is in the class, and proper minor-closed if
further the class is not the set of all graphs.

The radius rad(G) of a graph G is defined as minu∈V (G) maxv∈V (G) dG(u, v). The radius
radG(S) of a subset of vertices S ⊆ V (G) is simply defined as rad(G[S]). Note that two
vertices can be further away inG[S] than inG. An r-shallow minor H ofG is a minor ofGwith
branch sets B1, . . . , B|V (H)| satisfying radG(Bi) 6 r for every i ∈ [|V (H)|]. We denote that by
H 4r G. In particular 0-shallow minors correspond to subgraphs. The theory of graph sparsity
pioneered by Nešetřil and Ossona de Mendez [NdM12] introduces the following invariants for
a graph G and a class C:

∇r(G) := sup
H4rG

|E(H)|
|V (H)| , and ∇r(C) := sup

G∈C
∇r(G).

Note that∇0(G) is tied to the maximum average degree of G.
A class C of graphs is said to have bounded expansion if ∇r(C) < ∞ for every r ∈ N.

More generally C has expansion f if ∇r(C) 6 f(r) for every r ∈ N. A class has polynomial
expansion if it has expansion f for a polynomial function f . Proper minor-closed classes even
have constant expansion, i.e., expansion f for a constant function f .

2.2. Summary of the previous paper

In [BKTW20] a new graph and matrix invariant dubbed twin-width was introduced, inspired by
the work of Guillemot and Marx on permutations [GM14]. It was proved in the same paper that
many classes such as, bounded rank-width graphs, proper minor-free classes, proper subclasses
of permutation graphs, and posets with antichains of bounded size have bounded twin-width.
For all these classes, it was showed how to find in polynomial-time a so-called d-sequence,
witnessing that the twin-width is at most a constant d. Finally given a d-sequence of a binary
structure G on n elements and a first-order (FO) formula ϕ of quantifier-depth `, an FO model
checking algorithm deciding G |= ϕ in time f(d, `)n was provided.

We start by recalling the definition of twin-width, and then we summarize the milestones
of [BKTW20] that will also be useful in the current paper.

2.2.1 Trigraphs, contraction sequences, and twin-width of a graph

A trigraph G has vertex set V (G), (black) edge set E(G), and red edge set R(G) (the error
edges), with E(G) and R(G) being disjoint. The set of neighbors NG(v) of a vertex v in a tri-
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u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

u v w

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

Figure 2.1: Contraction of vertices u and v, and how the edges of the trigraph are updated.

graph G consists of all the vertices adjacent to v by a black or red edge. A d-trigraph is a tri-
graphG such that the red graph (V (G), R(G)) has degree at most d. In that case, we also say that
the trigraph has red degree at most d. In the context of trigraphs and twin-width, we will some-
what overload the term “contraction”. A contraction or identification in a trigraph G consists
of merging two (non-necessarily adjacent) vertices u and v into a single vertex w, and updating
the edges of G in the following way. Every vertex of the symmetric difference NG(u)4NG(v)
is linked to w by a red edge. Every vertex x of the intersection NG(u) ∩ NG(v) is linked to w
by a black edge if both ux ∈ E(G) and vx ∈ E(G), and by a red edge otherwise. The rest
of the edges (not incident to u or v) remain unchanged. We insist that the vertices u and v (to-
gether with the edges incident to these vertices) are removed from the trigraph. See Figure 2.1
for an illustration.

A sequence of d-contractions or d-sequence is a sequence of d-trigraphs Gn, Gn−1, . . . , G1,
where Gn = G, G1 = K1 is the graph on a single vertex, and Gi−1 is obtained from Gi by
performing a single contraction of two (non-necessarily adjacent) vertices. We observe that Gi

has precisely i vertices, for every i ∈ [n]. The twin-width of G, denoted by tww(G), is the
minimum integer d such that G admits a d-sequence. Going back to the overload of the word
“contraction”, in case we actually refer to the classical (edge) contraction, either we will use the
term “edge contraction”, or it will be clear from the context what is meant.

2.2.2 Partitions, divisions, red number, and twin-width of a matrix

We now give two equivalent definitions for the twin-width of a matrix. The first is based on a
contraction sequence where we progressively reduce the size of the matrix, and introduce error
symbols r. The second (equivalent) definition is based on a coarsening sequence where we
progressively coarsen a partition of the rows and columns of the matrix.

The red number of a matrix is the maximum number of r entries (error entry, the r stands
for red) in a single row or column. Given an n × m matrix M and two columns Ci and Cj
(resp. two rows Ri and Rj), the contraction of Ci and Cj (resp. Ri and Rj) is obtained by delet-
ing Cj (resp. Rj) and replacing every entrymk,i of Ci (resp. every entrymi,k of Ri) by r when-
ever mk,i 6= mk,j (resp. mi,k 6= mj,k). A d-contraction sequence of matrix M is sequence of
successive contractions starting atM , ending at some 1× 1 matrix, such that all matrices of the
sequence have red number at most d. The twin-width of a matrix M is the smallest integer d
such thatM admits a d-contraction sequence.

We observe that whenM has twin-width at most d, one can reorder its rows and columns such
that every contraction is on two consecutive rows or two consecutive columns. The reordered
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matrix is then called d-twin-ordered. The symmetric twin-width of an n×nmatrixM is defined
similarly, except that the contraction of rows i and j (resp. columns i and j) is immediately
followed by the contraction of columns i and j (resp. rows i and j). The symmetric twin-width
of the adjacency matrix of a graph G corresponds to the twin-width of G.

For the second definition of the twin-width of a matrix, we need to introduce a bit of vo-
cabulary on partitions. We say that a partition P of a set S refines a partition P ′ of S if every
part of P is contained in a part of P ′. Conversely we say that P ′ is a coarsening of P . We will
further assume that a coarsening is proper, that is, P ′ and P are distinct. Given a partition P
and two distinct parts P, P ′ of P , the elementary coarsening of P and P ′ yields the coarsening
P \ {P, P ′} ∪ {P ∪ P ′}. Informally an elementary coarsening is the merge of two parts.

Given an n×m matrix M , we call row-partition (resp. column-partition) a partition of
the rows (resp. columns) ofM . A (k, `)-partition, or simply partition, of a matrixM is a pair
(R = {R1, . . . , Rk}, C = {C1, . . . , C`}) whereR is a row-partition and C is a column-partition.
In a matrix partition (R, C), each partR ∈ R is called a row-part, and each part C ∈ C is called
a column-part. An elementary coarsening of a partition (R, C) of a matrix M is obtained by
performing one elementary coarsening inR or in C. We distinguish two canonical partitions of
an n ×m matrixM : the finest partition where (R, C) have size n and m, respectively, and the
coarsest partition where |R| = |C| = 1.

A coarsening sequence of an n × m matrix M is a sequence of partitions (R1, C1), . . . ,
(Rn+m−1, Cn+m−1) where

• (R1, C1) is the finest partition,
• (Rn+m−1, Cn+m−1) is the coarsest partition, and
• for every i ∈ [n+m− 2], (Ri+1, Ci+1) is an elementary coarsening of (Ri, Ci).
Given a subset R of rows and a subset C of columns in a matrix M , the zone R ∩ C de-

notes the submatrix of all entries of M at the intersection between a row of R and a column
of C. A zone of a matrix partitioned by (R, C) = ({R1, . . . , Rk}, {C1, . . . , C`}) is any Ri ∩ Cj
for i ∈ [k] and j ∈ [`]. A zone is constant if all its entries are identical. The error value of
a row-part Ri (resp. a column-part Cj) is the number of non-constant zones among all zones
in {Ri∩C1, . . . , Ri∩C`} (resp. {R1∩Cj, . . . , Rk∩Cj}). The error value of (R, C) is the max-
imum error value of a part, taken over all parts Ri and Cj . Now the twin-width of a matrixM
can be equivalently defined as the minimum d for which M admits a coarsening sequence in
which all partitions have error value at most d.

We will work with particular partitions, called divisions, where every part consists of a set
of consecutive rows, or a set of consecutive columns. If the matrix is d-twin-ordered, there is
a coarsening sequence with error value at most d, in which all the partitions are divisions. We
call such a coarsening a division sequence.

2.2.3 Grid minor theorem for twin-width

A (t, t)-division is a division (R, C) such that |R| = |C| = t. A t-grid minor is a (t, t)-division
whose t2 zones contains a non-zero entry. As for the Permutation Pattern breakthrough algo-
rithm of Guillemot andMarx [GM14], a crucial engine of twin-width is the following celebrated
theorem by Marcus and Tardos.
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Theorem 2.1 ([MT04]). For every integer t, there is some ct such that every n×m 0, 1-matrixM
with at least ct max(n,m) entries 1 has a t-grid minor.

Informally, if a matrix has sufficiently many entries 1, then there is a large grid structure
where each cell is “complicated”. The current best bound for ct, due to Cibulka and
Kynčl [CK17], is 8/3(t+ 1)224t.

To leverage the Marcus–Tardos theorem in the dense regime, too, we modify the definition
of “complicated” from “containing a 1” to “being mixed”. A zone is horizontal if all its columns
are equal (restricted to the zone), and vertical if all the rows are equal. Equivalently each row
(resp. column) within a horizontal zone (resp. vertical zone) consists of a repeated same entry.
Note that a zone is constant (consists of a same entry repeated) if it is horizontal and vertical.
A zone is mixed if it is not horizontal nor vertical.

We can now introduce the notions of t-mixed minors and t-mixed freeness. A t-mixed minor
of a matrixM is a (t, t)-division ofM such that every zone is mixed. A matrix is t-mixed free
if it does not admit a t-mixed minor. It was showed that having small twin-width and admitting
no large mixed minors are equivalent in the following sense.

Theorem 2.2 ([BKTW20]). Letα bound the number of distinct entries, and ct := 8/3(t+1)224t.
• Every t-twin-ordered matrix is 2t+ 2-mixed free.
• Every t-mixed free matrix has twin-width at most 4ctα4ct+2 = 22O(t) .

The first item is a relatively simple observation. The difficulty lies in the second item. In a
nutshell, if the matrix is t-mixed free, we find, using the Marcus–Tardos theorem, a sequence
of divisions with small numbers of mixed zones per column and per row. From this favorable
sequence of divisions, we are able to extract an f(t)-contraction sequence.

One simple but important ingredient is a local characterization of mixedness by means of a
corner. A corner in a matrix M = (mi,j)i,j is a mixed zone made by four contiguous entries
mi,j,mi+1,j,mi,j+1,mi+1,j+1. A 0,1-corner is a corner where each entry is in {0, 1}.
Lemma 2.3 ([BKTW20]). A matrix is mixed if and only if it contains a corner.

In Section 3 we will work with specifically divided 0, 1, r-matrices, respecting the following
invariants. Every zone is filled with r entries, or is non-mixed (that is, horizontal or vertical)
and has only 0 and 1 entries. In this context, we will redefine the mixed zones as those filled
with r entries. The coarsenings will be followed by updating the entries of the matrix to keep
the invariants. Namely every zone with a 0, 1-corner is filled with r entries. This new viewpoint
mixes contraction sequence and coarsening sequence. It will turn out useful to find, in a t-mixed
free matrix, not just one “good contraction” (as in Theorem 2.2) but a linear number of disjoint
pairs of “good contractions”. This will have two main consequences. It will enable us to show
that bounded twin-width classes are small (see Section 2.3 for a formal definition). This will also
be used to find O(log n)-bits adjacency labeling schemes (see Section 2.4) for n-vertex graphs
in classes of bounded twin-width.

2.2.4 Closure by FO transduction

Bounded twin-width behaves surprisingly well with respect to first-order logic. In addition to the
fixed-parameter tractable algorithm running in time f(d, |φ|)n for model checking a first-order
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sentence φ on an n-vertex graph given with a d-contraction sequence, it was shown that bounded
twin-width is preserved by first-order (FO) transductions.

Theorem 2.4 ([BKTW20]). Every transduction of a bounded twin-width class has bounded
twin-width.

A formal definition of FO transductions can be found in several papers (see for
instance [BC10, GKN+20]). As this definition is somewhat technical and we will only use The-
orem 2.4 in a black-box fashion, we refer the interested reader to these paper. Informally an FO
transduction of a graphG defines several new graphs. A (non-copying) FO transduction consists
of2 a non-deterministic “coloring” of V (G) by a constant number of unary relations, followed
by a redefinition of the edges by means of a fixed FO formula using the former edge predicate as
well as these new unary relations. The unary relations are then discarded, and we here further
allow to take any induced subgraph of the obtained graph (to preserve the class heredity). An
FO transduction of a class C is simply the union of the graphs obtained by FO transduction ofG,
for every G ∈ C.

2.3. Small classes and the small conjecture

We recall that a hereditary class is a class closed under taking induced subgraphs. Formally ifG
is in a hereditary class C, then for every induced subgraph H of G, it also holds that H is in C.
The overwhelming majority of the usually considered classes of graphs are hereditary.3

A class of graph C is said small (resp. factorial), if there exists a constant c, such that the
number of n-vertex graphs of C is at most n!cn (resp. n!c = 2O(n logn)), for every n ∈ N. Recall
that our n-vertex graphs are all assumed to be on the vertex set [n], and that we count up to
equality and not up to isomorphism. Norine et al. [NSTW06] show that the number of Kt-
minor free graphs on [n] is at most n!cn, for some integer c depending only on t. In other words,
proper minor-closed classes are small. The Marcus–Tardos theorem [MT04], combined with
an argument due to Klazar [Kla00], implies that the number of n × n 0, 1-matrices avoiding
a fixed permutation submatrix is at most cn, for some constant c. In particular, the number of
permutations on n elements avoiding a fixed permutation grows in 2O(n). A translation of this
result to graphs is that proper subclasses of permutation graphs are small.

We say that a class C has bounded twin-width if there exists an integer dC such that every
member of C has twin-width at most dC . Thus tww(C) := sup

G∈C
tww(G) <∞.

One of the main contributions of the paper is the following.

Theorem 2.5. Every class with bounded twin-width is small.

This generalizes the smallness of proper minor-closed classes [NSTW06], proper subclasses
of permutation graphs [MT04, Kla00], and graphs with bounded treewidth [BP69], as it was
previously shown that all these classes have bounded twin-width [BKTW20]. We then explore

2The more general (copying) definition allows first to duplicate the graph G into constantly many copies of G,
and adds to the relations a binary relation that says that two vertices are the copy of the same original vertex, and
unary relations that locate the precise copy of a given vertex.

3Notable exceptions include regular graphs, connected graphs, and visibility graphs of a point set.
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a possible converse for Theorem 2.5. Of course it is easy to artificially build an unbounded
twin-width class with only n! graphs of size n. For example, by taking in the class a single
(up to isomorphism) n-vertex graph among the n-vertex graphs with maximum twin-width, for
every n. However this is not a satisfactory counterexample. In combinatorics, classes of objects
are often required to be closed under substructures. For instance, a class of permutations is by
definition closed under taking subpermutations. Same goes for graphs: Hereditary classes have
richer properties than non-hereditary ones. Many interesting questions on hereditary classes
have trivial answers or are not even well-defined on general classes.

We provocatively conjecture the following converse of Theorem 2.5.

Conjecture 2.6 (small conjecture). Every small hereditary class has bounded twin-width.

It may seem ambitious to expect that the converse of Theorem 2.5 holds for hereditary classes.
Why would the mere limited number of graphs guarantee anything close to a d-contraction se-
quence? A typical example of a class with unbounded twin-width contains an infinite sequence
of graphs G1, G2, . . . where every distinct pair u, v ∈ V (Gi) satisfies |NGi(u)4NGi(v)| > i.
Indeed any first contraction in Gi creates a vertex with red degree at least i. A class is said
to have unbounded symmetric difference if it contains such a sequence, and bounded symmet-
ric difference, otherwise. So for every class C with bounded symmetric difference, there is an
integer d such that for every graph G ∈ C, there exist two distinct vertices u, v ∈ V (G) satisfy-
ing |N(u)4N(v)| 6 d. For example, the i× i rook graphs (with vertex set [i]× [i] and an edge
between (a, b) and (c, d) if a = c or b = d), with i > 3, is a class with unbounded symmetric
difference. However the hereditary closure of this class is not small.

Having bounded symmetric difference is a prerequisite to having bounded twin-width. A first
step towards Conjecture 2.6 would be to show that small hereditary classes have bounded sym-
metric difference. Even that is unclear. For K2,2-free classes or classes with girth at least 5,
bounded symmetric difference simply implies bounded minimum degree. Thus a very particular
case of Conjecture 2.6 is that there every smallK2,2-free hereditary class has bounded minimum
degree.

Let us present some elements supporting the conjecture. First and foremost, bounded twin-
width seems to “stop at the right place” in the sparse and dense realms. Unit interval graphs
(a small class) have bounded twin-width while interval graphs (a non-small class) do not. Simi-
larly among sparse classes, proper minor-closed classes (small) have bounded twin-width,
whereas subcubic graphs (non-small) have unbounded twin-width. We will also see that some
expander classes have bounded twin-width (and are small), unlike random cubic graphs.

An interesting test is the case of the s-subdivisions (where each edge of a graph is subdi-
vided s > 1 times). Since the number of subcubic graphs on [n] is n3n/2+O(n/ logn), the o(log n)-
subdivisions of subcubic graphs is still a non-small class. Thus by Theorem 2.5, they have
unbounded twin-width. We show a more fine-grained version of that fact by a direct proof. We
also build in polynomial time O(1)-sequences for Ω(log n)-subdivisions of Kn, which yields
the following.

Theorem 2.7. The s-subdivision of Kn has bounded twin-width if and only if s = Ω(log n).
More precisely, for every integer d, there are `d < ud such that the bc log nc-subdivision of Kn

has twin-width at least d for every 1 6 c 6 `d, and at most d for every c > ud.
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The hereditary closure of Ω(log n)-subdivisions of Kn is indeed a small class. But Theo-
rem 2.7 in particular implies that this class does have bounded twin-width. Dvořák and Norin
[DN10] show that, for any constants c, ε > 0, classes with expansion r 7→ cr

1/3−ε are small,
while the class of all graphs with expansion r 7→ 6 · 3

√
r log (r+e) is not small. If the small

conjecture is true, then bounded twin-width contains polynomial expansion (actually even ex-
pansion r 7→ 2r0.33). Thus another possible first step to Conjecture 2.6 is to show that classes
with polynomial expansion have bounded twin-width.

A supplementary motivation for the small conjecture appears if its proof is algorithmic, that
is, yields on any small hereditary class a polytime algorithm which takes any graph of the class
and outputs a (non-necessarily optimal)O(1)-sequence. In light of Theorem 2.5 and considering
that ω(1)-sequences are not as algorithmically useful, that would be almost as good as a constant
approximation of twin-width in general graphs.

2.4. Implicit representations

A class C has an f(n)-bits adjacency labeling scheme (or simply labeling scheme, for short)
if there is a decoding function A : {0, 1}∗ × {0, 1}∗ → {0, 1} such that for every n-vertex
graph G ∈ C there is a labeling function ` : V (G) → {0, 1}∗, satisfying |`(u)| 6 f(n) for
every u ∈ V (G), and A(`(u), `(v)) = 1 if and only if uv ∈ E(G). Here we will further
impose that the labeling function ` is injective. For example trees now have log n + O(1)-bits
adjacency labeling scheme [ADK17], which up to the constant term, is optimal. It is known that
a class C has a c log n-bits4 adjacency labeling scheme if and only if, for every integer n, there is
a universal graph graph Un (not necessarily in C) on at most nc vertices such that every n-vertex
graph of C is an induced subgraph of Un (see for instance [Spi03]). This becomes apparent when
one considers the possible labels as the vertex set of the universal graph.

Several classes, such as interval graphs and Kt-minor free graphs, are known to have
O(log n)-bits labeling schemes. By a direct counting argument, only factorial classes can expect
to admitO(log n)-bits labeling scheme. Indeed the number of distinct labels is 2O(logn) = nO(1).
Thus the number of n-vertex graphs that can be induced subgraphs of the universal graph is only(
nO(1)

n

)
= nO(n). The implicit graph conjecture asserts that every factorial hereditary class has

an O(log n)-bits labeling scheme [KNR92]. We show the conjecture in the particular case of
bounded twin-width classes.

Theorem 2.8. Every bounded twin-width class admits an O(log n)-bits labeling scheme.

This result is at the same time quite strong and quite weak. Its strength lies in its broad
generality. We produce a unified labeling scheme for very different sparse and dense classes.
However there are two caveats, both linked to its generality. The first one is that we still do
not know if the labeling function can be computed in polynomial time. Indeed it requires a d-
sequence (even a so-called parallel D-sequence of logarithmic length). Even though we know
how to compute this sequence in many bounded twin-width classes, we do not know how to
compute it in full generality of all the graphs with twin-width at most d. In general, we currently
need exponential time to find the sequence, and then to compute the labeling. The decoding

4All our logs are in base 2.
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function, that is the adjacency test, runs in time O(log n) in the RAM model with unit-cost
arithmetic operations over words of logarithmic length. The second caveat is that when restricted
to particular classes, themultiplicative constant preceding log n given by our proof is much larger
than in the shortest known labeling schemes. For instance, the current best labeling scheme for
Kt-minor free graphs requires 2 log n+o(log n) bits per vertex [GL07], while our multiplicative
constant is double-exponential in t.

Improving the constant c of existing (c + o(1)) log n-bits labeling schemes is topical in im-
plicit representations. Recently planar graphs were shown to admit a (1 + o(1)) log n-bits ad-
jacency labeling scheme [DEG+20]. It is optimal up to the second-order term. The labeling
scheme is actually more general, and works for all subgraphs of strong productsH�P whereH
is a bounded-treewidth chordal graph (or k-tree, for some fixed k), and P is a path. A class C
is said flat if there is an integer k such that C ⊆ Sub(H � P) where P is the set of all paths,
and H is a set of graphs with treewidth at most k. An ongoing program (not specific to adja-
cency labeling schemes), dubbed graph product structure theorem, established that many small
and sparse classes are flat. This was initiated by Dujmović et al. [DJM+20], building up on a
paper by Pilipczuk and Siebertz [PS19], which shows a similar result for planar graphs. This
property was extended to apex-minor free [DJM+20], bounded-degree minor-free [DEM+21],
and k-planar classes [DMW19]. Hence they all enjoy a (1 + o(1)) log n-bits adjacency label-
ing scheme. Interestingly all these classes have bounded twin-width (minor-free classes and
k-planar graphs have bounded twin-width [BKTW20]). This is no coincidence. We will see
that the strong product of two bounded twin-width graphs, one of which has bounded degree,
has bounded twin-width.

Theorem 2.9. Let G and H be two graphs. Then

tww(G�H) 6 max{tww(G)(∆(H) + 1) + 2∆(H), tww(H) +∆(H)}.

As cliques have twin-width 0, taking subgraphs does in general not preserve twin-width at
all. Nevertheless on “sparse” classes, bounded twin-width is subgraph-closed. We show that if
the strong product of a bounded twin-width class G with a bounded-degree bounded twin-width
classH is Kt,t-free, then the subgraphs of G �H have bounded twin-width.

Theorem 2.10. There is a function f : (N ∪ {∞})4 → N ∪ {∞}, with f(n1, n2, n3, n4) = ∞
implying max(n1, n2, n3, n4) = ∞, such that if G and H are two classes satisfying that G �H
is Kt,t-free, then tww(Sub(G �H)) 6 f(tww(G), tww(H), ∆(H), t).

In particular flat classes have bounded twin-width (since graphs with bounded treewidth
have bounded twin-width, and flat classes areKt,t-free). By essence, the “flat class” approach to
(1 + o(1)) log n-bits labeling scheme is limited to classes that are Kt-free. Another interesting
limit case is minor-free classes that are not apex-minor free, like all the K6-minor free graphs
for example. Dujmović et al. [DJM+20] show that these classes are not flat.

We hope that the versatile tree of contractions (see Lemma 3.8) or the short parallel contrac-
tion sequence (see Lemma 4.2) may help for small dense classes andKt-minor free graphs. We
optimistically conjecture that our Theorem 2.8 can be improved to an optimal labeling scheme
up to the second-order term.

Conjecture 2.11. Every bounded twin-width class has a (1 + o(1)) log n-bits labeling scheme.
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2.5. Sparse twin-width

The trace of bounded twin-width on sparse classes is also an interesting and potentially new class.
There are five natural ways of forcing a bounded twin-width class to be “sparse”: forbiddingKt,t

as a subgraph, forbidding a d-grid minor in its adjacency matrix (and not a mere d-mixed minor),
requiring that every graph has bounded average degree, requiring that the subgraphs also have
bounded twin-width, and requiring that the class has bounded expansion. Let Aσ(G) denote the
adjacency matrix of G when V (G) is ordered by σ. We say that a class C is d-grid free if for
every G ∈ C there is an ordering σ of V (G) such that Aσ(G) is d-grid free.

We show that all five definitions are actually equivalent.

Theorem 2.12. If C is a hereditary class of bounded twin-width, the following are equivalent.
• (i) There is an integer t such that no graph of C contains Kt,t as a subgraph.
• (ii) There is an integer d such that C is d-grid free.
• (iii) There is an integer g such that every n-vertex graph G ∈ C has at most gn edges.
• (iv) The subgraph closure Sub(C) has bounded twin-width.
• (v) There is a function f such that∇r(C) 6 f(r) for every r.

Ignoring item (iv), a compact version of this theorem reads: For a hereditary class of boun-
ded twin-width having bounded grid minors, bicliques, average degree, or expansion are all
equivalent.

Thus we say that a hereditary class has bounded sparse twin-width if it has bounded twin-
width and satisfies any of the five items (that is, satisfies all five). One may wonder whether
bounded sparse twin-width coincides with some existing sparse class. More generally it is inter-
esting to see how bounded sparse twin-width compares to the established sparse classes. A few
candidates come to mind: polynomial expansion, bounded expansion, bounded queue number,
bounded stack number, bounded nonrepetitive coloring classes. Although we do not prove it
for bounded queue or stack number, we argue that these classes do not coincide with bounded
sparse twin-width.

As cubic graphs have unbounded twin-width, bounded expansion is strictly more general
than bounded sparse twin-width. For the same reason, bounded nonrepetitive coloring does not
imply bounded sparse twin-width. It is possible however that bounded sparse twin-width classes
have bounded nonrepetitive coloring. The existence of an infinite family of cubic expanders with
bounded twin-width implies that bounded sparse twin-width classes do not necessarily have
polynomial expansion. If the small conjecture is true, polynomial expansion would be a strict
subset of bounded sparse twin-width. We will show that classes with bounded queue number or
bounded stack number have bounded (sparse) twin-width. We believe that this inclusion is strict
and that the expanders based on random 2-lifts have unbounded queue and stack numbers.

2.6. Organization of the rest of paper

In Section 3we showTheorem 2.5, that every class of bounded twin-width is small. From this we
conclude that non-small classes such as subcubic graphs, interval graphs, and triangle-free unit
segment graphs have unbounded twin-width. This can be respectively put in perspective with
the fact that some cubic expanders (as we see in Section 5), unit interval graphs, and Kt-free
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unit d-dimensional ball graphs, have bounded twin-width [BKTW20]. In Section 4 we lever-
age the results from the previous section to present O(log n)-bits adjacency labeling schemes
on bounded twin-width classes. We then explore the converse of Theorem 2.5 for hereditary
classes. In Section 5 we show that the small class of cubic expanders obtained by iterated 2-
lifts from K4 has indeed bounded twin-width. In Section 6 we prove that the s-subdivision of
the clique Kn, with s > 0, has bounded twin-width if and only if s = Ω(log n). In Section 7
we prove Theorem 2.12, the list of characterizations of bounded sparse twin-width. We then
show that flat classes, and classes with bounded queue or stack number have bounded (sparse)
twin-width. In Section 8 we investigate the twin-width of the finite induced subgraphs of a fixed
Cayley graph. We show that such classes are small for every finitely generated group. This is a
rare example of a small class for which we still do not know if the twin-width is bounded.

3. Bounded twin-width classes are small

In this section we show that graphs of bounded twin-width have bounded versatile twin-width.
Informally it says that whenever we can find a sequence (or path) of d-contractions, we can even
find a tree of D-contractions with linear arity, for some D bounded by a function of d. This
result is fairly technical but shares some ideas and arguments with Section 5 of our previous
paper [BKTW20]. We made the current section self-contained. We nevertheless mention some
frequent parallels with [BKTW20]. Finally we can follow the end of the proof of Norine et
al. [NSTW06] –that proper minor-closed classes are small– to extend the result to bounded twin-
width.

3.1. The proof for proper minor-closed classes and how (not) to tune it

Let us first give a brief sketch of Norine et al.’s proof, which works by induction on n. They say
that a vertex is d-good if it has degree at most d and either has a twin or has a neighbor with
degree at most d. They show the following technical lemma: Kt-minor free n-vertex graphs
have at least n/d d-good vertices, for some d function of t only. Let In,t be the set of Kt-minor
free graphs on [n], andKn,t be the subset of all those graphs of In,t where vertex n is d-good. By
their lemma n/d·|In,t| 6 n|Kn,t|, hence |In,t| 6 d|Kn,t|. Furthermore, any graph ofKn,t admits
an index i ∈ [n− 1] such that either i and n are false twins, or i and n are adjacent and have at
most d − 1 other neighbors each. Therefore any G ∈ Kn,t can be obtained from a G′ ∈ In−1,t
and i ∈ [n− 1] by either introducing a new vertex n false twin of i (one graph), or by splitting i
into i and a new vertex n adjacent to i, and by distributing in G the at most 2(d− 1) neighbors
of i inG′ into: neighbors of i only, neighbors of n only, and common neighbors (at most 32(d−1)

graphs). Hence |In,t| 6 d(1+32(d−1))(n−1)|In−1,t| 6 (1+32(d−1))(n−1)·(n−1)!cn−1 6 n!cn,
by taking c := d(1 + 32(d−1)).

We need to redefine the notion of being d-good for bounded twin-width classes. A very
natural candidate for that would be to say that a vertex is d-good if it admits a d-contraction
with another vertex. After all, there is always such a vertex (or such a pair of vertices) in a d-
trigraph. However, we cannot expect d-trigraphs to have linearly many such vertices. Think for
instance of a path on n vertices. It has twin-width 1, but only four vertices (the two endpoints
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and their neighbor) that can be contracted to yield a 1-sequence. Surely we could allow mere
D-contractions, for some D � d, but then we would leave the class of d-trigraphs. So it would
be unclear which class we are bounding the size of. It is indeed noteworthy in the above sketch
that by deleting a vertex or contracting adjacent vertices, one remains in the class of Kt-minor
free graphs.

To overcome that issue, we introduce a more robust notion of bounded twin-width. A tree of
d-contractions of a d-trigraph G is a rooted tree, whose root is labeled by G, and whose leaves
are all labeled by 1-vertex graphs K1, and such that one can go from any parent to any child
by a d-contraction. With this new definition, d-sequences coincide with trees of d-contractions
that are in fact paths. We say that a trigraph G has versatile twin-width d if there exists some p,
function of d only, such that G admits a tree of d-contractions in which every internal node has
at least |V (·)|/p children with distinct labels (where |V (·)| denotes the number of vertices of the
corresponding node label). Such a tree is then called a versatile tree of d-contractions.

Let us say that a contraction is d-correct (or simply correct when we precise that it is a
d-contraction) if the obtained graph has twin-width at most d. The inductive nature of ver-
satile twin-width provides us the desired stability. Not only G admits linearly many correct d-
contractions, but it admits linearly many d-contractions towards graphs of versatile twin-width d.
This is indeed witnessed by the subtrees rooted at each child of the root labeled by G. We now
focus on proving that every trigraph with twin-width d has a versatile tree ofD-contractions, for
a largerD function of d only. This is a bit technical, but once it is done, we will be able to mimic
the end of Norine et al.’s proof.

3.2. Neatly divided symmetric 0, 1, r-matrices

Recall that r (for red) is the error symbol. It will now be convenient to tune some of the notions
developed in our previous paper specifically for 0, 1, r-matrices with particular divisions. The
notions introduced without a definition are all formalized in Section 2 of the present paper, as
well as in [BKTW20, Section 5]. Reading first [BKTW20, Section 5] does not harm, but it is
not necessary to understand the current section.

We will manipulate divisions of 0, 1, r-matrices such that every zone either contains only r
entries or contains no r entry and is horizontal or vertical (or both). Let us call such a divi-
sion neat. Zones filled with r entries are now called mixed. A neatly divided matrix is a pair
(M, (R, C)) where M is a 0, 1, r-matrix and (R, C) is a neat division of M . A t-mixed minor
in a neatly divided matrix is a (t, t)-division that coarsens the neat subdivision, and contains in
each of its t2 zones at least one mixed zone (filled with r entries) or a 0,1-corner. See Figure 3.1
for an illustration. A neatly divided matrix is said t-mixed free if it does not admit a t-mixed
minor.

A mixed cut of a row-part R ∈ R of a neat division (R, C = {C1, C2, . . .}) is an index i
such that both R ∩ Ci and R ∩ Ci+1 are non-mixed, and there is a 0, 1-corner in the 2-by-|R|
zone defined by the last column of Ci, the first column of Ci+1, and R. Importantly, a mixed
cut cannot border a mixed zone of R. (This is a difference with the definition of [BKTW20,
Section 5].) The mixed value of a row-part R ∈ R of a neat division (R, C = {C1, C2, . . .}) is
the number of mixed zones R ∩ Cj plus the number of mixed cuts between two (adjacent non-
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mixed) zonesR∩Cj andR∩Cj+1. Note that a mixed cut counts for one unit in the mixed value,
regardless of the number of corners overlapping the two adjacent zones. We similarly define the
mixed value of a column-partC ∈ C. Themixed value of a neat division of a 0, 1, r-matrix is the
maximum of the mixed values taken over every part. The part size of a division (resp. partition)
(R, C) is defined as max(maxR∈R |R|,maxC∈C |C|). A division is symmetric if the largest row
index of each row-part and the largest column index of each column-part define the same set of
integers, that is informally, if the horizontal separations are symmetric of the vertical separations
about themain diagonal. For instance the division depicted on Figure 3.1 is symmetric since both
the largest row indices of the row-parts and the largest column indices of the column-parts define
the set {2, 3, 4, 6}. Given a symmetric division (R, C), we call the fusion of two consecutive
parts in C and of the two corresponding parts inR, a symmetric fusion. A symmetric fusion on a
symmetric division yields another symmetric division. A matrixA := (ai,j)i,j is said symmetric
in the usual sense, namely, for every entry ai,j of A, ai,j = aj,i.
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Figure 3.1: To the left, a neat division: each zone is horizontal, or vertical, or full with r entries
(mixed zone). Note that the division is symmetric but not the matrix. To the right, in bold, a
3-mixed minor of the neat division. Observe that it coarsens the neat division and contains in
each of its 9 zones either a 0,1-corner or a mixed zone (framed by red dashed boxes).

The following definition is crucial. It lists the invariants that we want to keep in our neatly
divided matrices in order to build a versatile tree of contractions.

Definition 3.1. LetMn,d be the class of the neatly divided n × n symmetric 0, 1, r-matrices
(M, (R, C)), such that (R, C) is symmetric and has:

• mixed value at most 4cd,

• part size at most 24cd+2, and

• no d-mixed minor.

In the previous definition, cd := 8/3(d+1)224d as defined in the improvement of theMarcus–
Tardos bound [CK17]. The conditions of the first and second bullets are enough to bound the
red number of a neatly divided matrix ofMn,d.

Lemma 3.2. Let (M, (R, C)) be inMn,d. The red number ofM is at most 4cd · 24cd+2.
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Proof. Any row or column intersects at most 4cd mixed zones (filled with r entries). Each mixed
zone has width and length bounded by the part size 24cd+2. Hence the maximum total number
of r entries on a single row or column is at most 4cd · 24cd+2.

3.3. Finding invariant-preserving coarsenings

A coarsening of a neatly divided matrix (M, (R, C)) is a neatly divided matrix (M ′, (R′, C ′))
such that (R′, C ′) is a coarsening of (R, C), and M ′ is obtained from M by setting to r all
entries that lie, inM divided by (R′, C ′), in a zone with at least one r entry or a 0,1-corner. We
also refer to the process of going from (M, (R, C)) to (M ′, (R′, C ′)) as coarsening operation
(or simply coarsening). A coarsening operation from (M, (R, C)) ∈ Mn,d to (M ′, (R′, C ′))
is said invariant-preserving if (M ′, (R′, C ′)) ∈ Mn,d, and elementary if it consists of a single
symmetric fusion. The following lemma shows that not having a t-mixed minor is preserved for
free in coarsenings of neatly divided matrices.

Lemma 3.3. Every coarsening (M ′, (R′, C ′)) of a neatly divided t-mixed free matrix (M, (R, C))
is t-mixed free itself.

Proof. Assume there is a t-mixed minor (R∗, C∗) of (M ′, (R′, C ′)). Let us consider the (t, t)-
division (R∗, C∗) in (M, (R, C)). By transitivity, (R∗, C∗) coarsens (R, C).

There are two possibilities for a zoneZ of (R∗, C∗) in (M ′, (R′, C ′)). Either it contains a 0, 1-
corner, but then, Z contains the same 0, 1-corner in (M, (R, C)). This is because the coarsening
operation of a neatly divided matrix never replaces entries by 0 or 1 entries (we may only add r
entries). Or Z contains an r entry, or more precisely a zone Z ′ ⊆ Z of (M ′, (R′, C ′)) filled
with r entries. Either one of these r entries was already present in (M, (R, C)), or the r entries
of Z ′ appear after the fusion of a zone Z1 ⊆ Z ′ adjacent to a zone Z2 ⊆ Z ′ such that Z1 ∪ Z2
contained a 0, 1-corner (and Z1 ∪ Z2 ⊆ Z ′ ⊆ Z).

Therefore, in any case, Z in (M, (R, C)) contains an 0, 1-corner or an r entry. We conclude
that (R∗, C∗) is a t-mixed minor of (M, (R, C)).

The previous lemma will in particular give us some control on the average mixed value
among the parts of a coarsening of a neatly divided matrix inMn,d. This turns out crucial to
find a coarsening which preserves the imposed upper bound on the overall mixed value.

Lemma 3.4. Let (M, (R, C)) be inMn,d, and (M ′, (R, C ′)) be a coarsening of (M, (R, C))
with |C ′| > d|C|/2e.

Proof. Note that in the coarsening operation of the lemma statement, we made only fusions in C.
Naturally the same would symmetrically work if only fusions inR were made.

Let us assume towards a contradiction that the average mixed value γ, taken among ev-
ery part C ∈ C ′ on (M ′, (R, C ′)) is strictly greater than 2cd. We consider two coarsenings of
(M ′, (R = {R1, . . . , Rh}, C ′)): (M ′

1, (R1 = {R1 ∪ R2, R3 ∪ R4, . . .}, C ′)) and (M ′
2, (R2 =

{R1, R2 ∪R3, R4 ∪R5, . . .}, C ′)). Let C ∈ C ′ be any part with a mixed zones and b mixed cuts
on (M ′, (R, C ′)). Let a1, respectively a2, be the number of mixed zones of C on (M ′, (R1, C ′)),
respectively on (M ′, (R2, C ′)). We claim that a+ b 6 a1 + a2.
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Figure 3.2: Illustration of the injection from the mixed zones and cuts of C on (M ′, (R, C ′)) to
the mixed zones of C on (M ′, (R1, C ′)) and (M ′, (R2, C ′)). The mixed cuts are represented by
red solid lines, and an arbitrary choice of an overlapping 0, 1-corner.

Indeed we can design the following injection from the mixed zones and cuts of C on
(M ′, (R, C ′)) to the mixed zones of C on (M ′, (R1, C ′)) and on (M ′, (R2, C ′)). We order the
mixed zones and cuts of C on (M ′, (R, C ′)) from top to bottom, say, x1, x2, . . . , xa+b. For i
going from 1 to a + b, we attribute xi to (R1, C ′) or to (R2, C ′) based on the following rules.
If xi is a mixed cut, there is a unique j ∈ {1, 2} such that xi is contained in a mixed zone
of C on (M ′, (Rj, C ′)), so we map xi to this mixed zone. If xi is a mixed zone, we map it
to the mixed zone containing xi in (M ′, (R3−j, C ′)), where xi−1 was mapped to a mixed zone
in (M ′, (Rj, C ′)). This is possible since there is a zone containing xi in both (M ′, (R1, C ′))
and (M ′, (R2, C ′)). For x1 to be well-defined, we can imagine that there is a fictitious x0 at-
tributed to (R2, C ′). To see that this is indeed an injection we first need to recall that there is
no mixed cut bordering a mixed zone. Suppose on the contrary that a same mixed zone Z of C
on, say, (M ′, (R1, C ′)) has two preimages xi and xi′ , with i < i′. If xi and xi′ are mixed zones,
they need to be consecutive to both be in Z, hence i′ = i + 1. But then xi′ should have been
attributed to (M ′, (R2, C ′)) according to our rules. As Z contains at most one mixed cut of C
on (M ′, (R, C ′)), xi and xi′ cannot be both mixed cuts. Finally it is impossible that exactly one
of xi, xi′ is a mixed zone (and the other a mixed cut), since it would imply a mixed cut incident
to a mixed zone. See Figure 3.2 for an illustration.

Letα1, respectivelyα2, be the average, taken among allC ∈ C ′, of the number ofmixed zones
on (M ′, (R1, C ′)), respectively (M ′, (R2, C ′)). Summing up the last inequality for all C ∈ C ′,
it holds that γ 6 α1 + α2. Thus α1 + α2 > 2cd. Without loss of generality, we assume
that α1 > cd. An important point is that |R1| 6 d|C|/2e 6 |C ′|. So by the Marcus–Tardos
theorem (Theorem 2.1) applied to the 0, 1-matrix with as many entries as zones of (R1, C ′),
and a 1 in a mixed zone and a 0 otherwise, we obtain a d-mixed minor in a coarsening of
(M, (R, C)) ∈ Mn,d. This contradicts Lemma 3.3, since neatly divided matrices of Mn,d are
d-mixed free.

The previous lemma implies that the average mixed value among all the parts of C ′ on
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(M ′, (R, C ′)) is at most 2cd. Finally we check again, with our slightly different definition of
mixed value (compared to that of [BKTW20, Section 5]), that the column-part fusions can only
decrease the mixed value of row-parts (and vice versa).

Lemma 3.5. Let (M ′, (R, C ′)) be the coarsening of a neatly divided matrix (M, (R, C)) result-
ing from the fusion of a single pair of consecutive parts C,C ′ ∈ C, with C ∪ C ′ = C∗.

Proof. Again this symmetrically works if we switch the role of R and C. (The proof of that
statement follows as in [BKTW20, Lemma 11].) If the zoneR∩C∗ is not mixed in (M ′, (R, C ′)),
then the mixed value of R has not changed after the fusion of C and C ′. If, on the contrary, the
zoneR∩C∗ is mixed in (M ′, (R, C ′)), then at least one of the three following propositions holds:
zoneR∩C is mixed in (M, (R, C)), zoneR∩C ′ is mixed in (M, (R, C)), the border between C
and C ′ is a mixed cut for R. Thus we can charge the contribution of R ∩ C∗ to the mixed value
in (M ′, (R, C ′)) to a unit of mixed value in (M, (R, C)). Besides, the borders of R ∩C∗ cannot
contribute mixed cuts for R, since the zone is mixed (recall the definition of a mixed cut for
neatly divided 0, 1, r-matrices). Finally the remaining mixed zones and mixed cuts of R stayed
unchanged between (M, (R, C)) and (M ′, (R, C ′)).

This implies that for every part R ∈ R, the mixed value of R on (M ′, (R, C ′)) is at most the
mixed value ofR on (M, (R, C)). We are now equipped to find invariant-preserving coarsenings.

Lemma 3.6. We set ` := 24cd+1 and s := 8`. Every neatly divided matrix (M, (R, C)) ∈ Mn,d

has an invariant-preserving coarsening (M ′, (R′, C ′)) ∈Mn,d with at least bn/sc disjoint pairs
of identical columns.

Proof. We maintain a set B of parts of size at least 24cd+1 + 1, and refer to these parts as large.
Note that a large part has more than ` elements, and every part of a neatly divided matrix of
Mn,d has at most 2` elements. A part with at most ` elements is called a small part. The general
plan is to coarsen (R, C) by successive invariant-preserving symmetric fusions (i.e., elementary
coarsenings) of pairs of small parts, until |B| > bn/sc. At that point, we will be able to find a
pair of identical columns in each large part. The crux of the current lemma is to show that we can
always perform a symmetric fusion and remain in the classMn,d (mainly, keep the mixed value
below 4cd), even when a small fraction of the parts can no longer be merged (mainly, because
they are large).

As an important rule for the fusion, we never merge a large part with another part. We set
h := |R| = |C|, and greedily find z := h− 2n/s disjoint pairs of small consecutive parts in C,
say, (C1, C

′
1), . . . , (Cz, C ′z). As n 6 2`h, it holds that z > n/(2`)− 2n/s = 2n/s. We call any

part of C which is not among (C1, C
′
1), . . . , (Cz, C ′z) frozen (because it is large or next to a large

part).
Let (R, C∗) be the division resulting from the fusion of the pair of consecutive parts (Ci, C ′i)

into say, C∗i , for every i ∈ [z]. As h 6 2|C∗|, the average mixed value among the parts of C∗ is,
by Lemma 3.4, at most 2cd. Since z > 2n/s there are more parts C∗i than frozen parts. Hence
the average mixed value among the non-frozen parts of C∗ on (R, C∗) is at most 4cd. This means
that there is a merged partC∗i whose mixed value on (R, C∗), hence on (R, C∪{C∗i }\{Ci, C ′i}),
is at most 4cd. We perform this fusion. Every zone of C∗i which is mixed is filled with r entries.
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This may come from the fusion of a mixed zone with any other zone, or two zones whose union
has a 0, 1-corner. Immediately afterwards we perform the fusion of the corresponding two parts
inR, and the similar update of the entries. If C∗i is large, we add it to B.

Let us show that this elementary fusion (i.e., single symmetric fusion) is invariant-preser-
ving. We already established that the mixed value of C∗i is at most 4cd. By Lemma 3.5, the
other mixed values have not increased, so they still do not exceed 4cd. The same applies after
the symmetric fusion of two parts of R. After that elementary coarsening, the matrix and the
division are still symmetric. By Lemma 3.3, the new neatly divided matrix is still d-mixed
free. Finally because we merged two small parts in C and two small parts in R, still no part
exceeds 2` = 24cd+2. Hence the new neatly divided matrix is indeed still inMn,d.

We proceed with these invariant-preserving elementary fusions until B contains at
least bn/sc parts. Let (M ′, (R′, C ′)) ∈ Mn,d be the neatly subdivided matrix that we even-
tually reach. We claim that there is a pair of identical column in each part C of B. Since the
mixed value of C on (R′, C ′) is at most 4cd, we claim that the number of different columns
is at most 24cd+1 = `. (This part of the proof follows the second paragraph of the proof
of [BKTW20, Theorem 9].) Indeed let us consider maximal blocks of consecutive (non-mixed)
vertical zones C ∩ Ri not separated by a mixed cut. A block ends at a mixed cut or just before
a mixed zone, so there are at most 4cd + 1 such blocks. Observe that a block, seen as a single
zone, is vertical (otherwise there would be a 0, 1-corner, hence a mixed cut). We also notice that
outside of these blocks all the columns of C are equal, since they traverse mixed zones (filled
with r entries) and horizontal zones. Finally there are only two columns within a block: all 0
entries or all 1 entries. Therefore there are at most 24cd+1 pairwise-distinct columns.

By definition of a large part, |C| > 24cd+1 + 1. Thus we find two equal columns in C.

Now it will become apparent why we are filling the mixed zones with r entries. This allows
to simulate a contraction as a simple deletion of an equal row (and a symmetric equal column).
The following lemma is straightforward and states that this operation is invariant-preserving
inM·,d.

Lemma 3.7. Let (M, (R, C)) ∈ Mn,d be a neatly divided matrix with two equal rows ρ, ρ′ in
a part R ∈ R, hence symmetrically two equal columns γ, γ′ in a part C ∈ C. Then removing
row ρ′ and the symmetric column γ′ yields a neatly divided matrix ofMn−1,d.

Proof. By design the new matrix and division are symmetric. The new neatly divided matrix
remains d-mixed free. The part size can only decrease, as well as the mixed value.

3.4. Bounded twin-width classes have bounded versatile twin-width

We can now use Lemma 3.6 to find linearly many pairs of vertices that can be contracted, and
Lemma 3.7 to recurse. This will be our scheme to find a versatile tree of contractions.

Lemma 3.8. Every trigraph of twin-width d has versatile twin-width at most 4c2d+224c2d+2+2.

Proof. Let G be an n-vertex graph of twin-width d, and let A := Aσ(G) be its adjacency ma-
trix in an order σ compatible with a d-sequence of G. By definition A is d-twin-ordered, so
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by Theorem 2.2 it is 2d + 2-mixed free. We set d′ := 2d + 2, ` := 24cd′+1, s := 8`, and
D := 4cd′ ·2` = 4cd′24cd′+2. We initialize (R, C) to the finest division ofA, that is, |R|= |C|= n.
Then (A, (R, C)) is a neatly divided matrix ofMn,d′ . Indeed the mixed value is 0.

We apply Lemma 3.6 to (A, (R, C)) and find a coarsening (A′, (R′, C ′)) ∈Mn,d′ with bn/sc
disjoint pairs of identical columns (γ1, γ

′
1), . . . , (γbn/sc, γ′bn/sc). These pairs of columns corre-

spond to the pairs of vertices (a1, b1), . . . , (abn/sc, bbn/sc). We now argue that, for
every i ∈ [bn/sc], the contraction of ai and bi, resulting in abi, is D-correct. First let us jus-
tify that it is a D-contraction. The red degree of abi is bounded by the number of red en-
tries of γi (since we filled the mixed zones with r entries). So by Lemma 3.2, it is bounded
by 4cd′24cd′+2 = D. The red degree of the other vertices can increase by one, but again by
Lemma 3.2, it does not exceed D. The contraction is D-correct. Indeed applying repeatedly
Lemma 3.6 followed by Lemma 3.7 gives a sequence of D-contractions. This stops when
“bn/sc = 0”, that is n < s < D. At that point, finishing the contraction sequence in any
way builds a complete D-sequence. Thus every element ofM·,d′ has twin-width D.

Therefore we have found bn/sc D-correct contractions on disjoint pairs of vertices. They
constitute the children of the root labeled by G in a versatile tree of D-contractions. For
each i ∈ [bn/sc], by Lemma 3.7, we build the subtree whose root is labeled byG/ai, bi with the
neatly divided matrix ofMn−1,d′ obtained by removing to (A′, (R′, C ′)) the column γ′i and its
symmetric row. Thus G has versatile twin-width D.

3.5. Finishing the proof

Lemma 3.8 is all we need to mimic Norine et al.’s proof for Kt-minor free graphs [NSTW06],
as described in Section 3.1.

Theorem 3.9. There is a triple-exponential function f : N→ N such that the number of n-vertex
trigraphs with twin-width at most d is at most n!f(d)n.

Proof. LetG = (V = [n], E,R) be a trigraph with twin-width at most d. By Lemma 3.8,G has
versatile twin-width at mostD := 4c2d+124c2d+2+2, and admits a versatile tree ofD-contractions.
We now say that a vertex u is D-good if there is another vertex v such that the contraction of u
and v is D-correct. The versatile tree of D-contractions offers bn/sc of D-good vertices, with
s := 8 · 24c2d+2+1 = 24(c2d+2+1).

Let In,D be the class of trigraphs with twin-width at most D on vertex set [n] and Ln,D
the subset of In,D consisting of trigraphs such that vertex n is D-good. Since
bn/sc|In,D| 6 n|Ln,D|, it holds that |In,D| 6 (s+ 1)|Ln,D|.

Any graph of Ln,D admits an index i ∈ [n − 1] such that the contraction of vertex n
and vertex i is D-correct. Therefore any H ∈ Ln,D can be obtained from a H ′ ∈ In−1,D
and i ∈ [n − 1] by splitting i into i and a new vertex n, and by linking them to the rest
of H observing the following rules. Every black edge between i and j in H ′ forces two black
edges ij and nj in H . Every red edge between i and j in H ′ forces one of the five alterna-
tives in H: a red edge between i and j and anything between n and j (3 alternatives: non-
edge, black edge, red edge), a red edge between n and j and a black edge or a non-edge be-
tween i and j (2 alternatives). Additionally, there might be a non-edge, black edge, or red
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edge between i and n. In total, the number of possible graphs H is bounded by 3 · 5D. Hence
|In,t| 6 (s+ 1) · 3 · 5D(n− 1)|In−1,t| 6 3 · 5D(s+ 1)(n− 1) · (n− 1)!f(d)n−1 6 n!f(d)n, by
setting f(d) := 3 · 5D(s+ 1) = 222O(d)

.

3.6. Showing that a class has unbounded twin-width by counting

We have shown that bounded twin-width classes are small. This may be used to establish
that the twin-width of some graphs is unbounded, namely if these graphs do not form a small
class. It is not so easy to show that cubic graphs have unbounded twin-width by direct ar-
guments. Theorem 3.9 implies this fact by a simple counting argument. A bipartite cubic
graph is the disjoint union of three perfect matchings. Each matching can be defined in (n/2)!
different ways, leading to at least (n/2)!3/33n/2 = n3n/2+o(n) graphs on vertex set [n], well
above n!cn = nn+o(n). Similarly, two arbitrary total orders on [n] can be defined in (n!)2 ways,
hence cannot have bounded twin-width.

We will now define a simple class of graphs capturing two arbitrary orders. Then we will
show that these graphs are representable by intervals and by unit disks, and conclude that in-
terval graphs and unit disk graphs have unbounded twin-width. Of course we did not expect
these classes to have bounded twin-width5, since FO model checking is W[1]-hard on inter-
val graphs [MS13], while the mere Maximum Independent Set is W[1]-hard on unit disk
graphs [Mar05]. We give a more satisfactory proof of that fact, not using the complexity-
theoretic assumption FPT 6= W[1].

We define the (non-hereditary) class B by its slices Bn of graphs on vertex set [3n]. Each
graph of Bn has its vertex set partitioned into three cliques of size n, say, (A,B,C). There is no
edge between A and C. There are two arbitrary half-graphs between A and B, and between B
and C. To build a half-graph between A and B, we first choose an order for the vertices of A,
say, a1, a2, . . . , an, and an order for B, b1, b2, . . . , bn. Then we put an edge between ai and bj if
and only if i < j. The half-graph between B and C is built similarly. We choose another order
for the vertices of B, say, b′1, b′2, . . . , b′n, and an order for C, c1, c2, . . . , cn. Then we put an edge
between b′i and cj if and only if i < j. It is important that the choice of the orders b1, . . . , bn and
b′1, . . . , b

′
n are independent.

Let us estimate the number of graphs in Bn, ignoring the single-exponential factors such as
the one required to fix the partition (A,B,C). The half-graph between A and B is defined by
choosing a total order for A and a total order for B. There are n!2 such pairs of orders. Defining
the half-graph between B and C requires an additional total order for B (recall that this second
ordering of B is independent of its order for the half-graph on A ∪ B) and a total order for C.
Again this amounts to n!2. Overall there are more than n!4 graphs in Bn. Thus |Bn| grows
like n4n+o(n), while the number of bounded twin-width graphs with vertices labeled by [3n] is
only at most (3n)!c3n = n3n+o(n).

One can describe an unlabeled graph of Bn with a single permutation σ over [n] such
that b′σ(i) = bi. Figure 3.3 shows how to realize a graph of Bn as the intersection graph of
intervals or as the intersection graph of unit disks, for any given permutation σ.

5In [BKTW20] it is shown that FO model checking is FPT on bounded twin-width graphs given with a d-
sequence.
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Figure 3.3: To the left, a representation of a graph of B5 by intervals. All intervals are obvi-
ously stacked up on a single real line, by projection on the x-axis. To the right, the same graph
represented with unit disks. The permutation σ associated to the graph is 41532. In both repre-
sentations, one can read out the permutation matrix of 41532, where the first row is the bottom
one, not the top one. For the intervals, this permutation matrix appears in the small gaps between
the intervals of B and C, while for the unit disks the matrix appears in the centers of the disks
of B.

Unit d-dimensional ball intersection graphs with bounded clique number have bounded twin-
width [BKTW20]. One could wonder if Kt-free string graphs have bounded twin-width. Fig-
ure 3.4 shows that even triangle-free unit segment graphs have unbounded twin-width. Indeed it
shows how to represent any graph of B′n with axis-parallel triangle-free unit segments, where B′n
is defined analogously to Bn but the sets A,B,C induce now independent sets, and not cliques.
The same argument establishes that the growth of B′n is not the one of a small class.

Let us say that a class C is t-bounded if there is a function fC such that everyKt-free graphG
of C have twin-width at most fC(t). The previous remark shows that there are classes that are χ-
bounded but not t-bounded, since unit segment graphs are χ-bounded [Suk14]. In a subsequent
paper [BGK+21], we show that classes of bounded twin-width are χ-bounded. This implies in
particular that every t-bounded class is χ-bounded, hence the set of t-bounded classes is a proper
subset of the set of χ-bounded classes.

A

B

C

Figure 3.4: A representation of the graph of Figure 3.3, where the cliques induced byA,B,C are
replaced by independent sets, with axis-parallel triangle-free unit segments. The upside-down
permutation matrix of σ = 41532 is still visible as the right endpoints of the red segments.
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4. Short parallel d-sequences and adjacency labeling schemes

Every d-contraction sequence of an n-vertex graph has length exactly n−1, since each of its steps
contracts exactly one pair of vertices. What if we allow parallel contractionswhere disjoint pairs
of vertices may be contracted in a single step? In this section we adapt the results of Section 3
on versatile twin-width to prove the existence of parallel contraction sequences of logarithmic
length. We then use them to provide an f(d) log n-adjacency labeling scheme for graphs of
twin-width at most d.

A parallel contraction in a trigraph G consists of the successive contractions of any number
of pairs of vertices {a1, b1}, . . . , {a`, b`}, where a1, . . . , a`, b1, . . . , b` are all distinct. One can
check that the resulting trigraph does not depend on the order in which the pairs are contracted.
Thus instead of the contraction of a sequence of pairs, we may as well speak of the parallel con-
traction of a set of disjoint pairs. A sequence of parallel d-contractions, or parallel d-sequence
of a trigraph G is a sequence of d-trigraphs Gk, . . . , G1 where Gk = G, G1 = K1 is the one-
vertex (tri)graph, and Gi−1 is obtained from Gi by a parallel contraction (of disjoint pairs of
vertices). It is noteworthy that the existence of a parallel contraction sequence is equivalent to
the existence of a (regular) contraction sequence, up to a multiplicative factor in the red degree.

Proposition 4.1. Let G be a trigraph, and d ∈ N.
• If G admits a d-sequence, then G also admits a parallel d-sequence.
• If G admits a parallel d-sequence, then G also admits a (2d+ 1)-sequence.

Proof. The first item is clear since parallel contractions generalize mere contractions.
We now show the second item. Let G and G′ be d-trigraphs, with G′ obtained from G by

the parallel contraction of {a1, b1}, . . . , {a`, b`}. This parallel contraction can be sequentialized
as G0, . . . , G` where G0 = G, and Gi is obtained from Gi−1 by contracting {ai, bi} into abi, so
that G` = G′. We claim that Gi is a (2d+ 1)-trigraph for any i ∈ [0, `].

Consider x ∈ V (Gi), and let BR
Gi

(x) ⊆ V (Gi) be composed of x and all its red neighbors
in Gi. There is a natural embedding e : V (Gi) → V (G′) through contraction, namely e(aj) =
e(bj) = abj for i < j 6 `, and e(x) = x for any other vertex. By definition of trigraph
contractions, if xy is a red edge in Gi, then either e(x) = e(y), or e(x)e(y) is a red edge in G′.
Hence e

(
BR
Gi

(x)
)
⊆ BR

G′ (e(x)). Furthermore, because e corresponds to the contraction of
disjoint pairs, any X ⊆ V (Gi) satisfies |X| 6 2 |e(X)|. Finally, we have

∣∣∣BR
G′(e(x))

∣∣∣ 6 d + 1
because G′ is a d-trigraph. Combining these three claims, we get∣∣∣BR

Gi
(x)
∣∣∣ 6 2

∣∣∣e (BR
Gi

(x)
)∣∣∣ 6 2

∣∣∣BR
G′ (e(x))

∣∣∣ 6 2(d+ 1).

Hence the red degree of x in Gi is
∣∣∣BR

Gi
(x)
∣∣∣− 1 6 2d+ 1.

Thus ifG andG′ are d-trigraphs andG′ is obtained fromG by a parallel contraction, then any
sequentialization of the parallel contraction produces a sequence of (2d+1)-trigraphs. Applying
this result to every step of a parallel d-sequence yields a 2d+ 1-sequence.

Our main result on parallel contraction sequences is that one can always find a parallel se-
quence of logarithmic length, at the cost of an increase in the red degree. This is a variant of the
versatile twin-width theorem presented in Section 3 (Lemma 3.8).
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Lemma 4.2. Any n-vertex graph G with twin-width at most d admits a parallel D-sequence of
length O(s · log n) where s,D are double exponential functions of d.

Proof. The proof is very similar to the one of Lemma 3.8. Let G be an n-vertex graph with
twin-width at most d, and let A be a d-twin-ordered adjacency matrix of G. By Theorem 2.2,
A is 2d + 2-mixed free. We set d′ := 2d + 2, ` := 24cd′+1, s := 8` and D := 4cd′ · 2`.
Applying Lemma 3.6 to the finest division of A yields a coarsening (A′, (R′, C ′)) ∈Mn,d′ with
bn/sc disjoint pairs of identical columns (γ1, γ

′
1), . . . , (γbn/sc, γ′bn/sc), corresponding to pairs of

vertices (a1, b1), . . . , (abn/sc, bbn/sc).
The difference with Lemma 3.8 is that we want to prove that the parallel contraction of

these pairs of vertices is D-correct. Nonetheless, the arguments remain the same. For any i,
since γi = γ′i, the contraction of (ai, bi) can be done by simply deleting γ′i. This yields a neat
division of the contracted graph. Lemma 3.7 readily generalizes to parallel contractions, hence
this new division is still inM·,d′ . By Lemma 3.2, the red number of this new division is at
mostD. This in turn bounds the red degree of the contracted graph (since mixed zones are filled
with r entries). Hence the parallelD-contraction preserves the membership inM·,d′ . Applying
repeatedly Lemmas 3.6 and 3.7 gives a sequence of parallel D-contractions until reaching a
graph of size n with n < s < D, at which point the D-sequence can be completed in any way.

This gives a parallel D-sequence G = Gk, . . . , G1 = K1 for G. Furthermore, for
s 6 i 6 k, it satisfies |V (Gi−1)| 6 d(1 − 1

s
) |V (Gi)|e. It follows that the length of the se-

quence is O(s · log n).

We now use these short parallel contraction sequences to design adjacency labeling schemes
for bounded twin-width graphs.

Lemma 4.3. For any d ∈ N, there exists a function A : ({0, 1}∗)2 → {0, 1, r1, . . . , rd} such
that any trigraph G with a parallel d-sequence of length k has a labeling ` : V (G) → {0, 1}∗
satisfying the following:

1. for any x ∈ V (G), |`(x)| = k · d1 + (2d+ 1) log 3e,

2. ` is injective on V (G),

3. for any distinct x, y ∈ V (G),
A(`(x), `(y)) = 0 if xy 6∈ E(G) ∪R(G) (i.e., xy is a non-edge)
A(`(x), `(y)) = 1 if xy ∈ E(G) (i.e., xy is a black edge)
A(`(x), `(y)) ∈ {r1, . . . , rd} if xy ∈ R(G) (i.e., xy is a red edge).

4. for any distinct x, y, z ∈ V (G), if A(`(x), `(y)) = ri and A(`(x), `(z)) = rj , then i 6= j.

Note that we do not requireA to be symmetric: one may haveA(w1, w2)=rj andA(w2, w1)=rj′
with j 6= j′. In particular, condition 4 need not properly d-color the red edges.
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Proof. We proceed by induction on the length of the parallel d-sequence. The base caseG = K1
is trivial, with the unique label being empty.

Let G be a trigraph, and let G′ be obtained from G by parallel contraction of the pairs
{a1, b1}, . . . , {ah, bh}. By induction, let us consider a labeling `′ : V (G′) → {0, 1}∗ for G′
satisfying conditions 2 to 4. Before defining a labeling on G, let us introduce some notations.
For i ∈ [h], let abi ∈ V (G′) be the vertex obtained from the contraction of {ai, bi}. We define
two partial functions p0, p1 : V (G′) → V (G), corresponding to the predecessors with respect
to contraction:{

p0(abi) = ai and p1(abi) = bi for 1 6 i 6 h
p0(x) = x and p1(x) is undefined for any other x ∈ V (G′).

Note that any y ∈ V (G) can be uniquely written as pc(x) for some x ∈ V (G′) and c ∈ {0, 1}.
Next, for x ∈ V (G′) and j ∈ [d], let us define the j-th red neighbor of x, denoted by nrj(x).
By condition 4, there can be at most one y ∈ V (G′) \ {x} such that A(`′(x), `′(y)) = rj . We
define nrj(x) to be this unique y if it exists, and to be undefined otherwise.

Finally for a trigraph H and any two distinct vertices x, y ∈ V (H), the color of xy is

colH(x, y) =


1 if xy ∈ E(H)
r if xy ∈ R(H)
0 otherwise.

We can now define the labeling ` : V (G) → {0, 1}∗. Given y ∈ V (G), let c ∈ {0, 1},
x ∈ V (G′) be such that y = pc(x). Then, `(y) consists of the following fields:

1. `′(x)

2. c

3. colG(p0(x), p1(x))

4. For every j ∈ [d] and c′ ∈ {0, 1}, colG(y, pc′(nrj(x))).

The fields 3 and 4 call partial functions (namely p0, p1, and nrj ). If any of these functions
is undefined on the relevant values, we use the convention to set the color to 0 (1 would also be
acceptable, but r must be avoided).

Let us now explain howA is defined to inductively decode these labels. Note first that fields 2
to 4 have fixed size. Thus distinguishing the different fields is not an issue. Let y1, y2 ∈ V (G)
be two distinct vertices, with y1 = pc1(x1) and y2 = pc2(x2). As a first step, we want to retrieve
colG(y1, y2) from `(y1), `(y2). There are several cases.

• If x1 = x2, i.e., y1 and y2 are contracted together, then colG(y1, y2) is given by field 3.
Furthermore, we are able to test if x1 = x2 using `′(x1) and `′(x2) (field 1), since `′ is
injective (condition 2).

• Otherwise, if colG′(x1, x2) ∈ {0, 1}, then necessarily colG(y1, y2) = colG′(x1, x2) by
definition of a trigraph contraction. Furthermore we can compute colG′(x1, x2) from
`′(x1), `′(x2) since `′ correctly encodes the colors in G′ (condition 3).
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• Otherwise, we have colG′(x1, x2) = r. Then let j ∈ [d] be such thatA(`′(x1), `′(x2)) = rj .
By definition of nrj , we have x2 = nrj(x1), hence

col(y1, y2) = col(pc1(x1), pc2(nrj(x1)))

is given in field 4 of `(y1). The position of this information in field 4 is given by j (obtained
from `′(x1), `′(x2) via A) and c2 (field 2 in `(y2)).

As a second step, when col(y1, y2) = r, we need to define the numbered red label rj such
that A(`(y1), `(y2)) = rj , with j unique among the red edges incident to y1. Here we use the
fact that all the red edges incident to y1 appear in fields 3 and 4 of `(y1). Thus, given `(y1),
we can enumerate the red edges incident to y1, and we fix the numbers on red labels according
to this enumeration order. Since G has red degree at most d by hypothesis, labels r1, . . . , rd
are sufficient (here, it is important that the color of “undefined” fields avoids r). Therefore
conditions 3 and 4 are maintained.

The equality `(y1) = `(y2) implies that c1 = c2, since their field 2 should match, and that
x1 = x2, as `′ is injective. Thus it implies that y1 = pc1(x1) = pc2(x2) = y2, hence ` is injective.
Finally, let us analyze the size of the labels. Field 2 uses 1 bit. Fields 3 and 4 contain 2d + 1
colors, with 3 possible values. This can be encoded on d(2d+1) log 3e bits. Thus, the label sizes
for ` increase by exactly d1 + (2d+ 1) log 3e compared to `′, and condition 1 is preserved.

From Lemmas 4.2 and 4.3, we immediately conclude the following.

Theorem 4.4. The class of graphs with twin-width at most d admits a g(d) log n-bits adjacency
labeling scheme, where n is the number of vertices and g is a double-exponential function.

The labeling scheme can in particular be used to encode an n-vertex graph of twin-width
at most d on 22γ(d+1)

n log n bits, for some constant γ. This offers a significant compression
over adjacency lists, since cliques for instance have twin-width 0. Now if the aim is only to
globally compress the whole graph, and not to balance the lengths of the vertex labels, there is a
simpler encoding with a better dependency in d. It basically consists of “reading” the d-sequence
G = Gn, . . . , G1 = K1 backwards. The encoding ofK1 is an identifier on dlog ne bits. Then to
go from Gi to Gi+1, we write 3dlog ne + 2 bits corresponding to the “split vertex” w, in which
two vertices u, v vertex w is split, and whether there is a non-edge, a black edge, or a red edge
between u and v, followed by d(dlog ne + 4) bits corresponding to the edges between u, v and
the at most d vertices adjacent to w in the red graph of Gi. The latter part is carried by writing
down the identifier of each red neighbor z of w followed by two pairs of bits encoding if there
is a non-edge, a black edge, or a red edge between u and z, and between v and z. This permits
to reconstruct G, and store it on only (d+ 3)ndlog ne+ (4d+ 2)n bits.

5. Expanders with bounded twin-width

A 2-lift of a graph G is a graph G′ on twice as many vertices, built by duplicating every vertex
v ∈ V (G) into two copies, say, v1 and v2, and for every edge vw ∈ E(G), adding to E(G′)
either the edges v1w1 and v2w2 (parallel) or the edges v1w2 and v2w1 (crossing). The choice,
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for each edge of G, of having two parallel edges or two crossing edges is called the signing
of the edges. See Figure 5.1 for an example of a 2-lift. Observe that G has 2|E(G)| possible 2-
lifts or signings. For instance, the all-parallel signing gives two disjoint copies of G, while the
all-crossing signing gives the bipartite adjacency graph of G.

Figure 5.1: An example of a 2-lift ofK4.

For n a power of 2, performing a sequence of log n − 2 randomly-signed 2-lifts starting
on K4 yields an n-vertex expander almost surely [BL06]. Observe that the obtained graph is
necessary cubic since the 2-lift operation preserves the degree. Bilu and Linial [BL06] even
exhibit a deterministic polytime procedure to actually find the signings leading from K4 to a
cubic expander. The next result shows that cubic expanders can have bounded twin-width.

Lemma 5.1. Every graph obtained fromK4 by performing a sequence of 2-lifts has twin-width
at most 6.

Proof. We show that ifG is a cubic graph andG′ is a 2-lift ofG, thenG can be obtained fromG′

by a sequence of contractions in which the maximum degree never goes above 6. It is enough
to conclude since K4 is obviously 6-collapsible, and we can assume that the cubic trigraph we
start from has all its edges red.

Let v1, v2, . . . , vn be the vertices of G, and vi1, vi2 be the duplicates of vi in G′. For each i
running from 1 to n, we contract vi1 and vi2. By definition of a 2-lift, after these n contractions,
the graph obtained is G. We contracted disjoint pairs of vertices of degree 3, so we could not
create vertices of degree more than 6.

This surprising result teaches us the following lessons. First, bounded twin-width appears
more general than expected. Also, by Theorem 2.4, not only there are some expanders with
bounded twin-width but there are some FO transductions of expanders with that property. Sec-
ond, it tells us that even among bounded-degree graphs, bounded twin-width is a novel class.
Indeed bounded twin-width could have coincided with polynomial expansion within the class
of bounded-degree graphs. Now we know that it is not the case. There are cubic graphs with
bounded twin-width but no strongly sublinear (i.e., of size at most n1−ε for some ε > 0) bal-
anced separators. Expanders have treewidth Θ(n) and therefore no strongly sublinear balanced
separators, the latter being equivalent to polynomial expansion [PRS94, DN16].

The third lesson is that designing good approximation algorithms in bounded twin-width
classes promises to be challenging. It is perfectly fitting and propitious to ask for other algo-
rithmic applications of twin-width. Before we understand enough to approximate in general
bounded twin-width classes, an interesting first step is to approximate optimization problems
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such as Maximum Independent Set (MIS for short) on graphs with bounded degree and twin-
width. MIS is APX-hard in general cubic graphs, so we may ask for a polynomial-time approxi-
mation scheme (PTAS) when we add the condition of bounded twin-width. A natural approach
for that would be to show that these graphs have strongly sublinear balanced separators (this is
how PTASes are obtained for planar, H-minor free graphs, etc.). This approach is now ruled
out. Therefore, if MIS indeed admits a PTAS in bounded twin-width cubic graphs, this cannot
be directly based on small balanced separators. The simplest toy-problem in that direction is to
explore PTASes for iterated 2-lifts of K4.

6. Subdivisions of cliques

For any non-negative integer k, the k-subdivision of a graph G, denoted by G(k), is the graph
obtained by subdividing every edge ofG exactly k times. For any f : N→ N, let Gf be the class
formed by the f(|V (G)|)-subdivision of every graph G.
Theorem 6.1. For every positive and non-decreasing f , Gf has bounded twin-width if and only
if f(n) = Ω(log n).

Let us first observe that for any integer k > 0 and n-vertex graph G, G(k) is an induced
subgraph ofK(k)

n . Thus the class Gf is contained in the hereditary closure of the graphsK(f(n))
n

for n > 0. Since twin-width never increases when taking induced subgraphs, it suffices to
consider graphs of the form K(f(n))

n . As hinted at in Section 2.3, the forward implication of
Theorem 6.1 could be derived from Theorem 3.9 and the fact that o(log n)-subdivisions does
not form a small class. We give a direct proof of a stronger statement.

Proposition 6.2. For d > 0 and k > 0 integers, if K(k)
n has twin-width at most d, then

k > logd+1(n− 1)− 1.
Proof. Let G be K(k)

n , for some positive integer k. Assuming that G has twin-width at most d,
we show that k > logd+1(n − 1) − 1. Note that the assumption k > 0 is required because
K(0)
n = Kn has twin-width 0.
In a d-contraction sequence of G, let us consider the first step in which two vertices x, y of

the original Kn are contracted. Let P the partition of V (G) at this step, and P0 ∈ P the part
containing x and y. In G, consider the n − 1 paths, on k + 1 edges each, resulting from the
subdivided edges starting at x. We partition the vertices of these paths as V1, . . . , Vk+1, where Vi
contains all the vertices at distance i of x. Then Vk+1 contains all the vertices of the originalKn

except x. In particular, no two vertices of Vk+1 are in the same part of P .
All the vertices of V1 are neighbors of x but not of y, thus for any part P ∈ P \ {P0}

intersecting V1, PP0 is a red edge in GP . Thus at most d + 1 parts of P intersect V1, and there
exists P1 ∈ P such that |P1 ∩ V1| > n−1

d+1 . Observe that P1 may well be equal to P0. Similarly
the vertices in P1 ∩ V1 have pairwise-disjoint neighborhoods in V2, hence V2 ∩NG(P1 ∩ V1), of
size at least n−1

d+1 , is split in at most d+ 1 parts in P . Thus there is a part P2 ∈ P (that may be P0

or P1) that contains at least n−1
(d+1)2 vertices of V2. It follows by induction that for every i ∈ [k+1],

there exists a part of P containing at least n−1
(d+1)i vertices of Vi. However no part of P contains

more than one vertex of Vk+1. Hence n−1
(d+1)k+1 6 1, and k > logd+1(n− 1)− 1.
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The converses relies on some results on decompositions of permutations. We now encode
a permutation σ in the usual way, as the sparse matrix with entry 1 at position (i, σ(i)), and 0
elsewhere. (This is unlike the more cumbersome but technically-motivated dense encodings
used in Section 3.6 and [BKTW20, Section 6.1].)

A permutation σ is a t-merge if its domain can be partitioned into t possibly-empty discrete
intervals I1, . . . , It such that the restriction of σ to Ii is increasing. Merging t sorted lists can
be expressed as the application of some well chosen t-merge to the concatenation of the lists.
A permutation σ is a parallel t-merge if its domain can be partitioned into an arbitrary number
of intervals J1, . . . , Jr such that σ operates independently on each Ji (i.e., σ(Ji) = Ji), and the
restriction σ|Ji is a t-merge. See Figure 6.1 for an example of a parallel 2-merge.

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

1
0 1
1 0

Figure 6.1: A parallel 2-merge matrix, corresponding to the permutation 23514687. Note that
the first row is at the bottom, as is common with permutation matrices. It is composed of three
blocks, each of which can be partitioned in two increasing subsequences, indicated by the dashes.
Empty areas are filled with 0.

Lemma 6.3. For any t, ` ∈ N, any permutation on t` elements can be decomposed as a product
of at most ` parallel t-merges.

Proof. The case t = 2 corresponds to a merge sort. In the recursion tree of a merge sort, each
level of inductive calls can be expressed as a single parallel 2-merge. To sort up to 2` elements, a
merge sort with recursion depth limited to ` suffices, and this can be expressed as the composition
of ` parallel 2-merges. This generalizes easily to t-merges, and composing ` parallel t-merges
allows to sort up to t` elements.

The previous lemma is reminiscent of the theory of sorting networks, in that we decompose
arbitrary permutations as a product of few base permutations—in our case parallel t-merges.
However, sorting networks consider more restricted base permutations (e.g., separable permu-
tations), whereas we merely need the base permutations to have bounded twin-width.

Lemma 6.4. Matrices of parallel t-merges are (t+ 1)-grid free.

Proof. Let σ a parallel t-merge, with its domain partitioned into intervals J1, . . . , Jr such that
σ(Ji) = Ji, and every σ|Ji is a t-merge. Assume for a contradiction that σ contains a (t+1)-grid.
Then it contains a decreasing subsequence of length t+ 1.
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0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 1

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

Figure 6.2: Left: the permutation τ to sort. Center: the 2-merge permutation σ to use on τ .
Right: the composition σ−1 ◦ τ , one may inductively sort the two blocks by applying further
parallel 2-merges.

For any i < j, x ∈ Ji and y ∈ Jj , one has x < y and σ(x) < σ(y) because Ji, Jj are
disjoint intervals, with σ(Ji) = Ji and σ(Jj) = Jj . It follows that any decreasing subsequence
is contained entirely in one of the Jk. Thus, there exist a t-merge σ|Jk which contains a decreasing
subsequence of length t+ 1.

Since σ|Jk is a t-merge, Jk is itself partitioned into intervals I1, . . . , It such that σ is increasing
on Ii. Hence each Ii can contain at most one element of a decreasing subsequence, and σ|Jk
contains no decreasing subsequence of length more than t, a contradiction.

Proposition 6.5. For any c > 0, the class of cliques Kn subdivided at least logn
c

times has
twin-width at most f(c) for some triple-exponential function f .

Proof. Let k > logn
c
, and let G beK(k)

n . We want to order V (G) such that the adjacency matrix
of G in that order is r-grid free, for some r depending only on c. This implies the desired
twin-width bound by Theorem 2.2.

Choose an arbitrary orientation of the edges of Kn. In G, the edges of Kn become directed
paths on k + 1 edges. Then, for 0 6 i 6 k, let Vi ⊂ V (G) contain every i-th vertex along these
directed paths. In particular, V0 corresponds to the vertices of Kn, while V1, . . . , Vk are all the
vertices created by the subdivision. Thus, V0, . . . , Vk is a partition of V (G).

Let us now define an order within each Vi. Choose x1, . . . , xn an arbitrary order on V0. The
extremal set V1 is ordered according to the neighbors in V0, i.e., with first the neighbors of x1
in any order, then the neighbors of x2, etc. We proceed similarly for Vk. The disjoint paths in
G − V0 define a bijection between V1 and Vk, which can be interpreted as a permutation σ on
n(n−1)

2 elements according to the previous orderings. Then, choosing orderings for V2, . . . , Vk−1
is equivalent to decomposing σ as a product σ1 ◦ · · · ◦ σk−1. By Lemma 6.3, we may choose
σ1, . . . , σk−1 to be parallel t-merges for any t such that tlog(n)/c > n(n−1)

2 . This is satisfied by
t = d22ce, which crucially is independent of n. With this choice of decomposition for σ, we
have ordered V2, . . . , Vk−1. Finally, V (G) is ordered as V0 < · · · < Vk, where Vi is ordered as
previously defined.

Let M be the adjacency matrix of G respecting this ordering. Let R0, . . . , Rk

(resp. C0, . . . , Ck) the partition of the rows (resp. columns) of M induced by the partition
V0, . . . , Vk of V (G). Then (R, C) = ({R0, . . . , Rk}, {C0, . . . , Ck}) is a division of M . For
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i, j ∈ [0, k], letMi,j be the zone Ri ∩ Cj , which corresponds to the adjacency matrix between
Vi and Vj . The zone Mi,j is non-zero if and only if i = j ± 1 modulo k + 1. Thus, there are
2k + 2 non-zero zones, forming a double diagonal with corners (see Figure 6.3).

M1,0

M0,1

Mk,0

M0,k

M1,2

M2,1 M2,3

M3,2 . . .

. . . Mk−1,k

Mk,k−1

C0

R0

C1

R1

C2

R2

C3

R3

· · ·

...

Ck

Rk

Figure 6.3: The adjacency matrixM of G, with the appropriate ordering of the vertices.

Claim 6.6. Every zone of the division (R, C) ofM is (t+ 1)-grid free.
Proof of the Claim: For 1 6 i < k, the zones Mi,i+1 and Mi+1,i are parallel t-merges or
transposes thereof, hence are t+1-grid free by Lemma 6.4. The zonesM0,1,M1,0,M0,k, andMk,0
are composed of a single monotone sequence, hence are 2-grid free. ♦

Let us now consider an `-grid minor (R′, C ′) = ({R′1, . . . , R′`}, {C ′1, . . . , C ′`}) of M , i.e.,
every zone R′i ∩ C ′j contains at least one entry 1.

Claim 6.7. There is a set A ⊂ C of at most 5 column-parts such that every C ′ ∈ C ′ satisfies
C ′ ∩ ⋃A 6= ∅.

Proof of the Claim: Let i beminimal such thatR′1 ⊆ R0∪· · ·∪Ri. Then for i+1 < j < k, one
may verify from the structure ofM thatR′1∩Cj is full 0. Thus anyC ′ ∈ C ′ must intersect one of
C0, . . . , Ci+1 or Ck. Symmetrically, let i′ be maximal such that R′` ⊆ Ri′ ∪ · · · ∪ Rk. Then any
C ′ ∈ C ′ must intersect one of C0 or Ci′−1, . . . , Ck. Define A := {Ci′−1, . . . , Ci+1} ∪ {C0, Ck}.
The above implies that any C ′ ∈ C ′ must intersect some C ∈ A. Finally we have i 6 i′, which
implies |A| 6 5. ♦

Claim 6.8. There exists C ∈ C such that at least `−10
5 parts of C ′ are subsets of C.

Proof of the Claim: Consider an arbitrary C ′ ∈ C ′. By Claim 6.7, there is some C ∈ A such
that C ′ ∩ C 6= ∅. We consider two cases, depending on whether or not C ′ ⊆ C:
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• If C ′ 6⊆ C, it means that C ′ contains one of the two boundaries of C. For a given C ∈ A,
there can only be two C ′ ∈ C ′ for which it is the case. Thus this case applies to at most
2 |A| 6 10 elements of C ′.

• Otherwise—and this applies to at least `− 10 elements of C ′—we have C ′ ⊆ C for some
C ∈ A. Since |A| 6 5, by pigeonhole principle, there exist C ∈ A such that at least `−10

5
elements of C ′ are subsets of C. This proves the claim.

♦

Of course, Claims 6.7 and 6.8 still hold when inverting the roles of rows and columns. Thus,
there are R ∈ R, C ∈ C such that R (resp. C) contains at least `−10

5 parts of R′ (resp C ′) as
subsets. Hence the zone R ∩ C contains an `−10

5 -grid induced by the corresponding parts ofR′
and C ′. By Claim 6.6, it follows that `−10

5 6 t, or ` 6 5t + 10. Recall that t was chosen
as t = d22ce. Hence we have proved thatM is g(c)-grid free for g(c) = 5d22ce+ 11.

A fortioriM is g(c)-mixed free, and by Theorem 2.2 the twin-width of G is at most f(c) for
some f(c) double-exponential in g(c), hence triple-exponential in c.

In the next section, we will show that graphs with queue number t have twin-width 22O(t)

(see Theorem 7.4). This can be used to get an alternative proof to Proposition 6.5, albeit not
self-contained. Indeed it was shown that the 2dlogd bn/2ce+ 1-subdivision ofKn (see [DW05,
Theorem 4]) has queue number at most d.

7. Sparse twin-width

We start this section by showing the list of equivalences of Theorem 2.12.

7.1. Characterizations

We recall thatAσ(G) is the adjacency matrix ofGwhen V (G) is ordered by σ, and that a class C
is said d-grid free if for every G ∈ C there is an ordering σ of V (G) such that Aσ(G) is d-grid
free.

Theorem 2.12. If C is a hereditary class of bounded twin-width, the following are equivalent.
• (i) There is an integer t such that no graph of C contains Kt,t as a subgraph.
• (ii) There is an integer d such that C is d-grid free.
• (iii) There is an integer g such that every n-vertex graph G ∈ C has at most gn edges.
• (iv) The subgraph closure Sub(C) has bounded twin-width.
• (v) There is a function f such that∇r(C) 6 f(r) for every r.

Proof. We start by showing that (i) and (ii) are equivalent. Then we will show that both (iii)
and (iv) are implied by (ii), and imply (i).

(i) ⇒ (ii). Assume that C is Kt,t-free, for some integer t. Let A be a d′-twin-ordered ad-
jacency matrix of G ∈ C, where d′ = tww(G). By Theorem 2.2, A is 2d′ + 2-mixed free.
Let (R, C) := ({R1, . . . , Rd}, {C1, . . . , Cd}) be a d-grid minor of A, i.e., such that every zone
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Ri∩Cj contains a 1. To conclude, we will upper bound d by (2d′+ 2)t−1. For the sake of con-
tradiction, suppose that d = (2d′ + 2)t. Let (R′, C ′) := ({R′1, . . . , R′2d′+2}, {C ′1, . . . , C ′2d′+2})
be the division obtained by merging groups of t consecutive parts of (R, C). Since A is 2d′+ 2-
mixed free, there is a zone R′i ∩ C ′j of (R′, C ′) which is horizontal or vertical. Without loss of
generality, let us assume that R′i ∩C ′j is horizontal. Now consider the (t, t)-division (R∗, C∗) =
({R(i−1)t+1, . . . , Rit}, {C(j−1)t+1, . . . , Cjt}) induced by (R, C) on R′i ∩ C ′j . Since (R, C) is a
grid minor and R′i ∩C ′j is horizontal, there is at least one row of 1 in each row-part of (R∗, C∗).
The corresponding t vertices, together with exactly one vertex per column-part, form a biclique
Kt,t in G.

(ii)⇒ (i). The contrapositive is immediate since a bicliqueKt,t yields a t-grid minor in the
adjacency matrix regardless of the vertex ordering.

(ii) ⇒ (iii). Assume that there is an integer d such that C is d-grid free. Then by the
Marcus–Tardos theorem (Theorem 2.1), there is a constant cd such that every graph of C has at
most cdn/2 edges.

(iii)⇒ (i). We show the contrapositive, and the heredity of C is crucial here. Observe that
a hereditary class that is not Kt,t-free contains, for every integer n, a graph on 2n vertices with
a (spanning) Kn,n. Thus the average degree of the class is unbounded.

(ii) ⇒ (iv). If C is d-grid free, so is every subgraph of every G ∈ C. Hence the subgraph
closure Sub(C) of C is d-grid free, hence d-mixed free. By Theorem 2.2, Sub(C) has twin-width
bounded by 22O(d) .

(iv) ⇒ (i). If C is not Kt,t-free, Sub(C) contains every bipartite graph. Thus Sub(C) has
unbounded twin-width (for instance it contains the 1-subdivision of every clique).

(v)⇒ (i). If C has expansion bounded by f , in particular ∇0(C) 6 f(0). Thus there exists
t := df(0)e such that C is Kt,t-free.

At this point, we have shown that (i), (ii), (iii), (iv) are all equivalent, and implied by (v).
(i), (ii), (iii), (iv)⇒ (v). Finally, we assume that the first four conditions hold for a class C

of bounded twin-width. Using all these assumptions, we want to bound the expansion of C. The
class B of binary structures obtained from Sub(C) by coloring the edge sets with two colors, in
all possible ways, also has bounded twin-width. Indeed it is d-grid free, so by Theorem 2.2 it
has bounded twin-width.

We first show that, for any fixed r, the class of r-shallow minors of C has bounded twin-
width. Indeed there is an FO transduction of B which contains all the r-shallow minors of
C, and we conclude by Theorem 2.4 (which works for graphs but more generally for binary
structures with a constant number of binary relations). To specify the transduction, we explain
how every fixed r-shallow minor H is obtained. Let G ∈ B be an edge-bicolored graph con-
taining H as a spanning and induced r-shallow minor, where each contracted set induces a
tree in G. More precisely, the colors on E(G) are such that every “edge of H” is colored 2,
while every contracted edge (that is, other edge) is colored 1. Let us recall that an FO trans-
duction consists of adding a set of O(1) non-deterministic unary relations (or coloring of the
vertices with O(1) colors), defining the new vertices and edges by means of FO formulas, and
deleting all colors and potentially some vertices. Here we only need one unary relation, say,
U , and we focus on such a coloring where U(v) holds for exactly one vertex v in every con-
tracted set. The new vertices are simply defined by the formula U(x). Then we can define the
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edges by the formula φ(x, y) = U(x) ∧ U(y) ∧ ∃x′∃y′ d2r
1 (x, x′) ∧ d2r

1 (y, y′) ∧ E2(x′, y′), with
d2r

1 (z, z′) = ∨
i∈[2r] ∃z1 · · · ∃zi z1 = z ∧ zi = z′ ∧∧j∈[i−1] E1(zj, zj+1), where E1 is the edge set

colored 1, andE2 is the edge set colored 2. The edge interpretation φ(x, y) links two vertices u, v
if they are “reference vertices” for their contracted set, and there is an edge colored 2 between
two vertices u′, v′ where there is a path of edges colored 1 of length at most 2r between u and u′,
and between v and v′. Such paths always exist within a contracted set since the radius is at
most r, hence the diameter is at most 2r. Finally the graph obtained by this (U, φ)-interpretation
is exactly H .

We now want to bound the average degree of the r-shallow minors in ∇r(C) by some
value f(r). Since ∇r(C) is subgraph-closed (every subgraph of an r-shallow minor is an r-
shallow minor), Sub(∇r(C)) = ∇r(C) has bounded twin-width. Thus (iv) implies (iii) for the
class ∇r(C). Therefore ∇r(C) has bounded average degree, and C has bounded expansion.

In the previous proof the heredity of C is only used to show that (iii) implies (i). It is not an
artifact of the proof since {Kt,t ] t2K1}t∈N is a class of bounded twin-width where all graphs
have linearly many edges, but admits arbitrary large bicliques. The equivalences (i) ⇔ (ii) ⇔
(iv) ⇔ (v) hold for every (possibly non-hereditary) class of bounded twin-width. Bounded
sparse twin-width classes remain surprisingly diverse. They for instance contain Kt-minor free
graphs and bounded-degree bounded twin-width graphs, which in turn contain some expander
classes. In particular bounded sparse twin-width graphs do not have polynomial expansion.

7.2. Flat classes

For any graph invariant ι, we say that a class C is ι flat if it is included in Sub(G �H) with G
and H two classes of bounded ι, and H also has bounded degree. Recalling the definition in
Section 2, a class is flat if it is treewidth flat. We will see that twin-width flat classes have
bounded twin-width. It will imply that (treewidth) flat classes are other examples of bounded
sparse twin-width classes.

We say that G is a trigraph over a graph H if (V (G), E(G) ∪ R(G)) is isomorphic to H .
Thus G is obtained from the graph H by coloring red some of its edges. More generally G is
a trigraph over a trigraph H if there is a graph isomorphism from (V (G), E(G) ∪ R(G)) to
(V (H), E(H)∪R(H)) such that every black edge of G is mapped to a black edge ofH . Again
G is obtained from the trigraphH by coloring red some of its black edges. We start by bounding
the twin-width of trigraphs over graphs with bounded degree and bounded twin-width.

Lemma 7.1. Every trigraph over a graph H has twin-width at most tww(H) +∆(H).
Proof. Consider a tww(H)-sequence ofH . A simple but important observation is that the black
degree of a vertex never increases in a contraction sequence. Thus each trigraph of the sequence
has total degree at most∆(H) + tww(H). Therefore, when the same sequence is applied to any
trigraph over H , the overall maximum (red) degree is also bounded by ∆(H) + tww(H).

We can now show the following.

Theorem 2.9. Let G and H be two graphs. Then

tww(G�H) 6 max{tww(G)(∆(H) + 1) + 2∆(H), tww(H) +∆(H)}.
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Proof. We set dG := tww(G), dH := tww(H), and ∆ := ∆(H), i.e., the maximum degree
of H . Let G = Gn, . . . , G1 = K1 be a sequence of dG-contraction, and let [h] be the vertex set
of H , hence h = |V (H)|. We set d := max{(dG + 2)∆, dH + ∆}, and present a d-sequence
for G � H . For a fixed j ∈ [h], we call j-th copy of G, the vertices (v, j) of G � H for
every v ∈ V (G).

First we contract G � H to a trigraph over H by a sequence containing as intermediate
steps trigraphs overGn�H,Gn−1�H, · · · , G1�H . SayGi is obtained fromGi+1 by contract-
ing u, v ∈ V (Gi+1), into vertexw, then the part of the d-sequence from a trigraph overGi+1�H
to one over Gi �H consists of contracting, in any order, the vertices (u, j) and (v, j), into ver-
tex (w, j), for every j ∈ [h]. As the red degree of w ∈ V (Gi) is at most dG, vertex (w, j) has red
degree at most dG(∆ + 1) + 2∆. This is because the j-th copy of G is linked to the j′-th copy
only if j′ ∈ NH [j]. This explains the dG(∆+ 1) term. The additional 2∆ accounts for possible
red edges between (w, j) and (?, j′), where ? ∈ {u, v, w} and j′ 6= j.

We can now finish the d-sequence from the obtained trigraph overK1�H , which is isomor-
phic to H , using the dH-sequence of H . Indeed by Lemma 7.1 this trigraph admits a dH + ∆-
sequence.

Theorem 2.10. There is a function f : (N ∪ {∞})4 → N ∪ {∞}, with f(n1, n2, n3, n4) = ∞
implying max(n1, n2, n3, n4) = ∞, such that if G and H are two classes satisfying that G �H
is Kt,t-free, then tww(Sub(G �H)) 6 f(tww(G), tww(H), ∆(H), t).

Proof. By Theorem 2.9, G � H has twin-width bounded by a function of tww(G), tww(H),
and ∆(H). The implication (i) ⇒ (iv) (via (ii)) in Theorem 2.12 does not require that the
bounded twin-width class C is hereditary. Thus, G � H being Kt,t-free, the subgraph closure
Sub(G �H) has twin-width bounded by a function of tww(G), tww(H), ∆(H), and t.

Lemma 7.2. If G is Kt,t-free, then G�H is Ks,s-free where s = 2t(∆(H) + 1).

Proof. Assume, for the sake of contradiction, that there exist disjoint vertex sets
A,B ⊆ V (G�H) such that |A| = |B| = 2t(∆(H) + 1) and A,B are fully adjacent. Let
V (H) := [h] and, let a ∈ A be the vertex (v, j) for some v ∈ V (G) and j ∈ V (H). Since j
is adjacent with at most ∆(H) vertices of H , and (u, i) is adjacent with (v, j) only if i = j or
ij ∈ E(H), B is contained in the union of at most ∆(H) + 1 copies of G. This means that
there exists some j∗ ∈ [h] such that the j∗-th copy of G contains a set B′ of at least 2t vertices
of B. Likewise, there is an i∗ ∈ [h] such that the i∗-th copy of G contains a set A′ of at least 2t
of A. Let A′′ ⊆ A′ and B′′ ⊆ B′ be vertex sets of size t such that the first coordinates of the
vertices in A′′ ∪B′′ are pairwise distinct. Then the vertex subset of V (G) which appears as the
first coordinates in A′′ ∪B′′ form a Kt,t, a contradiction.

Theorem 2.10 and Lemma 7.2 imply that flat classes have bounded twin-width, since boun-
ded treewidth classes have bounded sparse twin-width (they are Kt,t-free and have bounded
twin-width). In particular, it provides an alternative proof that planar graphs have bounded
twin-width (see [BKTW20, Section 6]). The obtained bound remains bad since we still need to
use Theorem 2.2 to justify that the subgraph closure of aKt,t-free bounded twin-width class has
bounded twin-width.
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7.3. Classes with bounded queue or stack number

A pair of edges uv and xy is said independent if u, v, x, y are four distinct vertices. An inde-
pendent pair of edges uv and xy is nested with respect to a linear ordering σ of the vertex set, if
u 4σ x 4σ y 4σ v, and overlaps if u 4σ x 4σ v 4σ y. A queue (resp. stack) layout of a graph
G is a linear ordering σ of V (G) and a partition ofE(G) into t parts, called queues (resp. stacks),
such that no independent pair of edges within the same part is nested (resp. overlaps) with re-
spect to σ. The queue number (resp. stack number) is defined as the minimum integer t such
that such a queue layout (resp. stack layout) exists.

Lemma 7.3. Let σ be a linear ordering on the vertex set of a graph G. If G admits an edge
partition into t parts such that each part forms a queue (resp. a stack) with respect to σ, then the
adjacency matrix Aσ(G) is 2(t+ 1)-grid free.

Proof. Assume, for the sake of contradiction, that Aσ(G) has a 2(t + 1)-grid minor (R, C) :=
({R1, . . . , R2t+2}, {C1, . . . , C2t+2}), i.e., each zoneRi∩Cj contains an entry 1. Let us consider
the 2× 2 coarsening of (R, C) where each part contains the first/last t+ 1 row/column parts of
(R, C). At least one of the two off-diagonal zones of this coarsening does not cross the main
diagonal ofAσ(G). Without loss of generality, let us assume that all the vertices ofR1, . . . , Rt+1
precedes all the vertices of Ct+2, . . . , C2t+2 in the order σ. Now for each i ∈ [t+ 1], choose one
edge uivi from the zoneRt+2−i∩Ct+1+i. From the previous observation, we know that ui 4σ vi
for each i. With respect to σ, the vertices ui (for i going from 1 to t + 1) form a decreasing
sequence in σ while the vertices vi form an increasing sequence. Therefore the chosen t+1 edges
are pairwise nested, contradicting thatG admits an edge partition into t queues with respect to σ.

For the stack number, we choose t+ 1 edges uivi from the zones Ri ∩Ct+1+i for i ∈ [t+ 1].
They pairwise overlap, and thus contradict that there is a partition into t stacks with that vertex
ordering.

The following is a direct consequence of Theorem 2.2 and Lemma 7.3.

Theorem 7.4. Classes with queue or stack number t have twin-width bounded by 22O(t) .

8. Twin-width of finitely generated groups

We investigate here an algebraic approach to constructing small graph classes. Let Γ be a (mul-
tiplicative) countable group where the identity is denoted by ε. We assume that Γ is generated
by a finite set S. We form the Cayley graph Cay(Γ, S) which has vertex set Γ and edge set all
pairs {x, x · s} where x ∈ Γ and s ∈ S.

For example when Γ is the free group generated by S = {a, b}, the graph Cay(Γ, S) is the
infinite tree where all the vertices have degree 4. Furthermore, if we quotient Γ by the relation
aba−1b−1 = ε, we obtain the infinite two-dimensional grid. Both trees and grids are examples
of classes with bounded twin-width. Thus a natural question is whether this could hold for all
finitely generated groups. Let us denote by F (Γ, S) the set of all finite induced subgraphs of
Cay(Γ, S). Our main question in this section is the following.
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Conjecture 8.1. For every group Γ generated by a finite set S, the class F (Γ, S) has bounded
twin-width.

This is a far-reaching generalization of the case of trees and grids. It could provide some
insights on both the structure of finite induced subgraphs of Cay(Γ, S), but also in the global
(infinite) structure of Cay(Γ, S) as illustrated by the following result.

Proposition 8.2. If all the finite induced subgraphs of an infinite (possibly uncountable) graph
G have twin-width at most t, then there is a linear order L on V (G) such that the adjacency
matrix of G, ordered by L, has no f(t)-mixed minor.

Proof. Let F (G) the class of finite non-empty induced subgraphs of G. We assume that graphs
in F (G) have twin-width at most t, hence there exists an integer f(t) such that any H ∈ F (G)
has a linear order LH such that the adjacency matrix of H has no f(t)-mixed minor. LetMH

be the logical structure formed by H equipped with the order LH . The proof proceeds in two
parts. First, we will build an ultraproduct of (MH)H∈F (G), following a standard construction
used, for example, to prove the compactness theorem. We will then show that G is an induced
subgraph of this ultraproduct. The order L on V (G) is then obtained by restriction of the order
on the ultraproduct.

For H ∈ F (G), let ↑H = {H ′ ∈ F (G) | V (H) ⊆ V (H ′)} be its upward closure in F (G).
The family of all ↑H generates a proper filter on F (G), which is contained in some ultrafilter U .
LetM′ = ∏

H∈F (G)MH/U be the corresponding ultraproduct. By Łoś’s theorem, any first-
order formula satisfied by everyMH is also satisfied byM′. Being a linear order, and being
f(t)-mixed free with respect to that order can both be expressed in first-order logic, henceM′

is an infinite graph equipped with a linear order for which it is f(t)-mixed free.
Let us show thatG is an induced subgraph ofM′. For v ∈ V (G), choose v̄ ∈ ∏H∈F (G)MH

to be a tuple “equal to v when possible”, that is v̄(H) = v when V (H) 3 v (and unconstrained
if V (H) 63 v). We then map v to the equivalence class of v̄, which is a vertex inM′. This
mapping is injective: If u 6= v, then ū(H) 6= v̄(H) for any H such that u, v ∈ V (H), i.e.,
whenever H ∈↑G[{u, v}]. Since ↑G[{u, v}] is an element of U , by Łoś’s theorem, ū and v̄ are
not equated inM′. The same arguments show that this mapping preserves edges and non-edges.
Hence G is an induced subgraph ofM′, and it follows that G is f(t)-mixed free for the linear
order onM′ restricted to G.

We suspect that bounded-degree Cayley graphs have bounded twin-width since they form a
small class.

Lemma 8.3. The class F (Γ, S) is small.

Proof. Let us consider a finite induced subgraph G of F (Γ, S). We first assume that G is con-
nected. To describe G, it suffices to give a rooted spanning oriented tree T in G where each
oriented edge uv of T is labeled by the generator s in S such that u · s = v. To retrieve G
from T , one just has to fix the root of T as ε and deduce the set V (G) of all the vertices by
following the edges of T . The graphG is then isomorphic to the subgraph of Cay(Γ, S) induced
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by V (G). Indeed, observe that this does not depend on the choice of ε, as any choice for map-
ping the root would be equivalent via multiplying to the left by some factor, which constitutes
an automorphism of Cay(Γ, S).

If G is not connected, we consider each connected component separately. In particular, the
number of labeled graphs on vertex set [n] that belong to the class F (Γ, S) is at most the num-
ber of rooted forests whose edges are oriented and labeled by |S| colors. By Cayley’s formula
there are (n + 1)n−1 labeled rooted forests on n vertices [Cay89]. Thus F (Γ, S) has size at
most (2|S|(n+ 1))n−1, hence this class is small.

Should the small conjecture be true, F (Γ, S) would have bounded twin-width. We finally
observe that having bounded twin-width is a group invariant, i.e., does not depend on the choice
of the finite generating set S.

Lemma 8.4. If S and S ′ are two finite generating sets of the group Γ , then F (Γ, S) has bounded
twin-width if and only if F (Γ, S ′) has bounded twin-width.

Proof. Let us assume that F (Γ, S) has bounded twin-width. The first step is to show that a more
general object has bounded twin-width. Namely, let us consider the oriented labeled Cayley
graph OLCay(Γ, S) where every edge {x, x · s} is furthermore oriented from x to x · s and
labeled by s. Note that the class OLF(Γ, S) of all finite induced restrictions of OLCay(Γ, S)
is contained is the (more general) class C of all orientations of graphs of F (Γ, S) which are
edge-labeled by S. The key fact is that C has bounded twin-width. Indeed, given any class of
graphs G with degree at most d and twin-width at most t, the class Gs consisting of {1, . . . , s}
edge-labeled orientations of graphs of G also has bounded twin-width. To see this, let us consider
an elementO of Gs which is an oriented edge-labeled graphG of G. We just have to show that we
can interpret O in terms of G. To start with, we consider for G a linear order LG of its vertices,
such that the adjacency matrix of G, ordered by LG, has twin-width at most f(t). When closed
under induced restrictions, the class of birelations (G,LG) has bounded twin-width. Since the
order LG provides for every vertex an order on its incident edges, we can furthermore label the
vertices of (G,LG) using 2d colors in order to code for every vertex v how the (at most) d edges
incident to it are oriented. Therefore the class of orientations of G can be interpreted from the
class of (G,LG) vertex-labeled by 2d colors, and thus has bounded twin-width. For the edge-
labeled version, we just have to label the vertices with 2d|S|d colors. To conclude the proof,
we observe that since every generator s′ ∈ S ′ can be expressed with S, the class OLF(Γ, S ′) is
contained in an FO transduction of OLF(Γ, S). Therefore, by Theorem 2.4, OLF(Γ, S ′), and
thus F (Γ, S ′), has bounded twin-width.

Therefore, if the small conjecture does not hold, the class of finitely generated groups splits
into bounded twin-width groups and unbounded twin-width groups. This could reflect a known
dichotomy for groups. A natural candidate for a finitely generated group of unbounded twin-
width, would be a group with no finite presentation. For instance the lamplighter group is an
interesting test case, but its associated class of graphs has indeed bounded twin-width. A first
step towards Conjecture 8.1 is to show that finitely presented groups have bounded twin-width.
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