arXiv:2005.02369v2 [cs.DS] 21 Jul 2020

The Expander Hierarchy
and its Applications to Dynamic Graph Algorithms

Gramoz Goranci', Harald Récke?, Thatchaphol Saranurak®, and Zihan Tan*

University of Toronto, Canada
2TU Munich, Germany
3Toyota Technological Institute at Chicago, USA
4University of Chicago, USA

Abstract

We introduce a notion for hierarchical graph clustering which we call the expander
hierarchy and show a fully dynamic algorithm for maintaining such a hierarchy on a graph
with n vertices undergoing edge insertions and deletions using n°(Y) update time. An expander
hierarchy is a tree representation of graphs that faithfully captures the cut-flow structure and
consequently our dynamic algorithm almost immediately implies several results including;:

1. The first fully dynamic algorithm with n°") worst-case update time that allows querying
n°M_approximate conductance, s-t maximum flows, and s-t minimum cuts for any given
(s,t) in O(log'/ n) time. Our results are deterministic and extend to multi-commodity
cuts and flows. All previous fully dynamic (or even decremental) algorithms for any of
these problems take Q(n) update or query time. The key idea behind these results is a
fully dynamic algorithm for maintaining a tree flow sparsifier, a notion introduced by
Récke [FOCS’02] for constructing competitive oblivious routing schemes.

2. A deterministic fully dynamic connectivity algorithm with n°") worst-case update
time. This significantly simplifies the recent algorithm by Chuzhoy et al. that uses the
framework of Nanongkai, Saranurak, and Wulff-Nilsen [FOCS’17].

3. A deterministic fully dynamic treewidth decomposition algorithm on constant-degree
graphs with n°1) worst-case update time that maintains a treewidth decomposition of
width tw(G) - n°) where tw(G) denotes the treewidth of the current graph. This is
the first non-trivial dynamic algorithm for this problem.

Our technique is based on a new stronger notion of the expander decomposition, called the
boundary-linked expander decomposition. This decomposition is more robust against updates
and better captures clustering structure of graphs. Given that the expander decomposition
has proved extremely useful in many fields, including approximation, sketching, distributed,
and dynamic algorithms, we expect that our new notion will find more future applications.

Contents

1 Introduction
1.1 Our Results: The Dynamic Expander Hierarchy
1.2 Applications e
1.3 Comparison of Techniques

2 Technical Overview
2.1 Tree Flow Sparsifiers
2.2 Robustness Against Updates

3 Preliminaries

4 Boundary-Linked Expander Decomposition and Hierarchy
4.1 The Key Subroutine
4.2 The Algorithm
4.3 The Analysis e

5 Tree Flow Sparsifier From Expander Hierarchy
6 Fully Dynamic Expander Pruning

7 Fully Dynamic Expander Hierarchy
7.1 Fully Dynamic Expander Decomposition

8 Derandomization and Deamortization
8.1 De-randomization
8.2 De-amortization e e

9 Applications
9.1 Dynamic Tree Flow Sparsifier
9.2 Dynamic Vertex Flow Sparsifiers, Maximum Flow, Multi-commodity Flow, Multi-
Way Cut and Multicut
9.3 Dynamic Sparsest Cut and Lowest Conductance Cut
9.4 Dynamic Connectivity
9.5 Treewidth decomposition

A Proof of Lemma [5.1]

1 Introduction

Computation on trees is usually significantly easier than on general graphs. Hence, one of
the universal themes in graph algorithms is to compute tree representations that faithfully
preserve fundamental properties of a given graph. Examples include spanning forests (preserv-
ing connectivity), shortest path trees (preserving distances from a source), Gomory-Hu trees
(preserving pairwise minimum cuts), low stretch spanning trees and tree embedding (preserving
average distances between pairs of vertices), and treewidth decomposition (preserving “tree-like”
structure). Among all known approaches for representing a graph with a tree, the tree flow
sparsifier introduced by Récke [Rac02] is astonishingly strong. Roughly speaking, it is a tree T'
that approximately preserves the values of all cuts of a graph G (see the formal definition in
Section . The existence of such trees, which is far from obvious, already enables competitive
oblivious routing schemes with both theoretical [Rac02l [Rac08] and practical impact [ACO3]. Its
polynomial-time construction [HHR03, BKRO03] also leads to polynomial-time approximation
algorithms for many fundamental problems including minimum bisection, min-max partitioning,
k-multicut, etc (see e.g. [AGGT09, BFK™ 14} [CKS13], Rac08| [RS14]). More recently, the almost-
linear time construction was shown [RST14] and played a key role in obtaining the celebrated
result of approximating maximum flows in near-linear time [Shel3, [KLOS14l [Pen16]. Given that
the construction for static graphs are now well understood, we raise the challenging question of
whether it is possible to maintain tree flow sparsifiers in dynamic graphs that undergo a sequence
of edge insertions and deletions without recomputing from scratch after each update.

In this paper, we answer this question in affirmative by introducing a new notion for
hierarchical graph clustering which we call the expander hierarchy. We state a precise definition
later in Section We show that the expander hierarchy is a tree representation of a graph
that is strong enough to imply tree flow sparsifiers (and much more), and yet robust against
updates in the sense that it admits fully dynamic algorithms on an n-vertex graph maintaining
the hierarchy in n°!) update time.

The fact that tree flow sparsifiers can be maintained efficiently immediately allows us to
efficiently compute approximate solutions to a wide range of flow/cut-based problems, including
max flows, multi-commodity flows, minimum cuts, multi cuts, multi-way cuts, and conductance.
Specifically, for all these problems, this gives the first sub-linear time fully dynamic algorithms
with n°(1) worst-case update and query time. The power of the expander hierarchy is not limited
to tree flow sparsifiers. It also gives an algorithm for the deterministic dynamic connectivity
with n°) worst-case update time, that significantly simplifies the recent breakthrough result in
ICGL™19, NSWT7] on this problem. Moreover, it gives the first algorithm for maintaining an
approximate treewidth decomposition, a central object in the field of fixed-parameter tractable
algorithms. We discuss these applications in detail in Section [1.2

In short, we introduce the expander hierarchy as a clean combinatorial object that is
very robust against adversarial updates, yet strong enough to imply many new results and
simplify previous important development. It is likely that future development on dynamic graph
algorithms can build on such a hierarchy.

1.1 Our Results: The Dynamic Expander Hierarchy

First, we recall definitions related to expanders. Let G = (V,E) be an n-vertex m-edge
unweighted graph. For any set S, T C V, let E¢(S,T') denote a set of edges between S and T.
The volume of S is volg(S) = >_,c5degg(u) and we write vol(G) = volg(V). The conductance
of a cut (S,V\ 5)is ®g(S) = — {VL{EGG(%S;”‘Q{Z)(‘V\S)} and the conductance of G is denoted by

Q¢ = minggcy Pa(S). We say that G is a ¢p-expander iff &g > ¢.

We need the following generalized notation for induced subgraphs in order to define our new
decomposition. Recall that G[S] denotes the subgraph of G induced by S. For any w > 0, let
G[S]"™ be obtained from G[S] by adding [w] self-loops to each vertex v € S for every boundary
edge (v,z), x ¢ S. Note that G[S]° = G[S] and vertices in G[S]' have the same degree as in the
original graph G (each self-loop contributes 1 to the degree of the node that it is incident to).

Stronger Expander Decomposition. The core of this paper is to identify a stronger notion of
the well-known ezpander decomposition [KVV04] which states that, given any graph G = (V, E)
and any parameter ¢ > 0, there is a partition U = (Uy,...,Uy) of V into clusters, such that:

L. Y |E(Us, V\ Ui)| = O(¢m).
2. For all i, G[U,] is a ¢-expander.

Basically, the decomposition says that one can remove O(qﬁ)—fraction of edges so that each con-
nected component in the remaining graph is a ¢-expander. As expanders have many algorithm-
friendly properties such as, having low diameter, small mixing time, etc., this decomposition has
found numerous applications across areas, including property testing [GRI8, [KSS18], approx-
imation algorithms [KR96, [Tre05], fast graph algorithms [ST11l [Shel3l [KLOS14], distributed
algorithms [CHKMT17, [CPZ19, [CST9, EFF™19], and dynamic algorithms [NST7, Wull7, NSWT7].

In this paper, we propose a stronger notion of the expander decomposition. For parameters
a,¢ > 0, we define an («, ¢)-boundary-linked expander decomposition of G as a partition
U= (Ui,...,Ug) of V, together with ¢1,...,¢r > ¢, such that:

L S EU;, V\U)| = O(¢pm).
2. For all i, G[U;]*/% is a ¢;-expander.
3. For all i, |E(U;, V \ U;)| < O(¢; volg(Uy)).

Compared to the the previous definition in [KVV04], we strengthen Property 2| and additionally
require Property |3l Before discussing the power of the new decomposition, we start with intuitive
observations how it more faithfully captures the clustering structure of graphs. It is instructive
to think of o = 1/ polylog(n) and ¢ = 1/n°V) <« a.

Intuitively, in a good graph clustering, vertices in a cluster are better connected to the inside
of the cluster than to its outside. Observe that the stronger form of Property [2] implies that,
for every vertex v € U;, deggyy,)(v) > o - deggp\p,(v). Without this strengthening, there could
be a vertex v € U; where deggy,(v) < deggp\p,(v), which is counter-intuitive. Moreover,
Property (3| additionally implies that deggy_y,)(v) < O(¢) - deggp,)(v) for most v € U;. That
is, most vertices also have few connection to the outside of the cluster which again matches our
intuitive understanding of a good graph clustering.

We say that the decomposition U has slack s > 1 if we relax Property [2] as follows: for all i,
G[U;]*/% is a (¢;/s)-expander. We say that U has no slack if s = 1.

The Expander Hierarchy. Let U be an (a, ¢)-boundary-linked expander decomposition
of G. Suppose that we contract each cluster U; € U into a vertex where we keep parallel
edges and removes self-loops. Let Gy denote the contracted graph. Observe that vol(Gy) =
S |Ec(Us, V\ U;)| = O(¢m). So vol(Gyy) < vol(G) for small enough ¢. Repeating the process
of decomposition and contraction leads to the following definition. A sequence of graphs
(G, ..., G is an (o, ¢)-expander decomposition sequence of G if G° = G, G has no edges, and
for each i > 0, there is an (o, ¢)-boundary-linked expander decomposition ; where G**1 = Gia

Now, observe that the sequence (GY, ..., G?) naturally corresponds to a tree T' where the
set of vertices at level i of T' corresponds to vertices of G (i.e. V;(T) = V(G?)) and if a vertex

Applications ‘ How to obtain from the expander hierarchy T

Tree flow sparsifier Return T itself.

Vertex cut sparsifier w.r.t. a Return the union of root-to-leaf paths of T" over all vertices
terminal set C u € C. Denoted it by T¢.

s-t max flow, s-t min cut, Solve the problem on T, s or T¢, i.e. the vertex cut sparsifier

multi-commodity cut/flow with | defined in the line above.
a terminal set C

Conductance and sparsest cut | Implement the Top Tree data structure on 7.

Pairwise connectivity Given u and v, check if the roots of w and of v in T" are the
same.

Treewidth decomposition on Return T itself. For each level-i node = € V;(T') that

constant degree graphs corresponds to a vertex u; € V(G?), the bag B, contains the

original endpoints in G of the edges incident to u; in G".

Table 1: Applications of an expander hierarchy T of depth dep(T'), that originates from the
expander decomposition sequence (GY, ..., Gdep(T)) of G. All problems are on unweighted graphs.

u; € V(GY) is contracted to a super-vertex u;;1 € V(G™1), then we add an edge (u;, uiy1) € T
with weight degq:(u;). We call this tree an («, ¢)-expander hierarchy, which is the central object
of this paper. We say that T has slack s if each U; from the («, ¢)-expander decomposition
sequence has slack at most s.

Our main result shows that an expander hierarchy is robust enough to be maintained under
edges updates in subpolynomial update time.

Theorem 1.1. There is an algorithm that, given an n-vertex unweighted graph G undergoing edge
insertions and deletions, explicitly maintains, with high probability, a (1/ polylog(n), 9-O(log*/t "))—
expander hierarchy of G with depth O(log1/4 n) and slack 9-000g"2n) iy 90008* n) 4 ortized

update time. The algorithm works against an adaptive adversary.

The algorithm in Theorem [I.1|can be both derandomized and deamortized with essentially the
same guarantee up to subpolynomial factors. We note however that the deamortized algorithm
does not explicitly maintain the hierarchy, but supports queries of the following form: given a
vertex u of G, return a leaf-to-root path of u in the hierarchy in O(log!/*n) time

1.2 Applications

The dynamic algorithm for maintaining an expander hierarchy in Theorem [I.Iand its derandom-
ized and deamortized counterpart immediately imply a number of applications in dynamic graph
algorithms. Table [1] shows that the high-level algorithm for each application can be described in
only one or two sentences.

Below, we discuss the contribution of each application. We say a dynamic algorithm is
fully dynamic if it handles both edge insertions and deletions. Otherwise, it is incremental or
decremental, meaning that it handles only insertions or only deletions of the edges, respectively.

Tree Flow Sparsifiers. Our first application is the first non-trivial fully-dynamic (or even
decremental) algorithm for tree flow sparsifiers, which will be used to obtain many other
applications in the paper. Intuitively, a tree flow sparsifier is a tree that approximately captures
the flow/cut structure in a graph. As the formal definition of tree flow sparsifiers is a bit hard

!This kind of guarantee is similar to the dynamic matching algorithm by [BFHI9] with worst-case update time.

to digest, here we define a simpler and an almost equivalent notion of tree cut sparsifiers. A
tree cut sparsifier T of a graph G = (V, E) with quality ¢ is a weighted rooted tree such that
(i) the leaves of T' corresponds to the vertex set V of G, and (2) for any pair A, B of disjoint
subsets of V', mincuty(A, B) < mincutg(A, B) < ¢ - mincuty (A, B) where, for any graph H,
mincutg (A, B) denotes the value of a minimum cut separating A from B in H.

Tree flow sparsifiers have been extensively studied in the static setting [BL99, Réac02, HHRO3,
BKRO03, RS14, RST14] and have found many applications in approximation algorithms [AGG™ 09,
BFK ™14, [CKS13], Rac08, RS14] and fast algorithms for computing max-flow [Shel3] [KLOST14].
Currently, the fastest algorithm for computing a tree flow sparsifier takes O(m) time to produce
a sparsifier of quality O(log* n) with high probability [RST14, Peni6]. However, only little
progress has been obtained in the dynamic setting. Very recently, Goranci, Henzinger, and
Saranurak |[GHS19] show that, by calling the static algorithm of [RST14] in a blackbox manner,
they can obtain an incremental algorith for maintaining tree flow sparsifiers with logO(e) n
quality in O(nl/ Z) worst-case update time, for any £ > 1, but their technique inherently could
not handle edge deletions. The major reason for this lack of progress in dynamic algorithms is
the fact that all existing static constructions for tree flow sparsifiers work in a top-down manner,
which is difficult to dynamize.

We show that an expander hierarchy is itself a tree flow sparsifier. In particular, this
hierarchy implies the first static tree flow sparsifier based on a bottom-up clustering algorithm
and is arguably the conceptually simplest of all known constructions. The key feature of this
construction is that it can be maintained dynamically, as summarized in the following corollary.

Corollary 1.2. There is a fully dynamic deterministic algorithm on an unweighted n-vertex
graph that explicitly maintains a tree flow sparsifier with quality n°Y in n°Y amortized update
time.

There has been recent interest in designing dynamic algorithms for maintaining trees that
preserve important features or graphs, e.g., distances. One example is the work on dynamic
low-stretch spanning trees that achieves sub-polynomial stretch [FG19,[CZ20], while in the static
there are constructions that give nearly logarithmic stretch [AN12]. Driven by this, our work
can be thought as a first step in understanding dynamic algorithms for maintaining trees that
preserve the cut/flow structure of graphs.

Flow/Cut-based Problems. Using the above theorem, we improve upon the previous results
on a wide-range of dynamic cut and flow problems whose previous fully dynamic (and even
decremental) algorithms either require Q(n) update timeﬂ or Q(n) query timeﬂ as summarized
in the following corollary.

Corollary 1.3. There is a fully dynamic deterministic algorithm on an unweighted n-vertex
graph with n°Y) update time that can return an n°M -approzimation to queries of the following
problems:

1. s-t maximum flow, s-t minimum cut;

2. lowest conductance cut, sparsest cut; and

3. multi-commodity flow, multi-cut, multi-way cut, and vertex cut sparsifiers.
For problems in andé the query time is O(logl/6 n), while for problems m@ it is O(|C log!/6 n)
where C' is the terminal set of the respective problem. For problems in[1] and[3, the update time
is worst-case, while it is amortized for problems in[3

2They also show the same trade-off for the weaker offfine fully dynamic setting where the whole sequence of
updates and queries is given from the beginning.

3This includes the incremental exact max flow algorithm by [GK18| and the dynamic conductance algorithm
by [vdBNS19].

“This is by using dynamic graph sparsifiers [ADK 16| and running static algorithms on top of the sparsifier.

Previous sub-linear time algorithms are known only for the incremental setting. There are
incremental logo(g) n-approximation algorithms with O(n!/?) update time for all the problems
in Corollary [GHS19].

Although our approximation ratio of n°1) is moderately high, we believe that our results
might serve as an efficient building block to (14¢)-approximation dynamic max flow and minimum
cut algorithms, analogous to the previous development in the static setting: A fast static n™M-
approximate (multi-commodity) max flow algorithm was first shown by Madry [Mad10], and later,
the (1 + €)-approximate algorithms were devised [Shel3, [KLLOS14, [Penl6, [Shel7] by combining
Madry’s technique with the gradient-descent-based method. Although the gradient-descent-based
method in the dynamic setting is currently unexplored, we hope that our result will motivate
further investigation in this interesting direction.

Connectivity: Bypassing the NSW Framework. Very recently, Chuzhoy et al. [CGL™19]
combine their new balanced cut algorithm with the framework of Nanongkai, Saranurak, and
Wulff-Nilsen (NSW) [NSW17], and obtain a deterministic dynamic connectivity algorithm with
n°1) worst-case update time, answering a major open problem of the field.

Here, we show a significantly simplified algorithm which completely bypasses the complicated
framework by [NSW17]. Our algorithm simply follows from the observation that a graph G
is connected iff the top level of an expander hierarchy T of G contains only one vertex. Also,
two vertices u and v are connected iff the roots of v and v in T' are the same. Interestingly,
our algorithm is the first algorithm for dynamic connectivity problem that does not explicitly
maintain a spanning forest.

Corollary 1.4. There is a fully dynamic deterministic algorithm on an n-vertex graph G
that maintains connectivity of G using n®V) worst-case update time and also supports pairwise
conmectivity in O(log"/%n) time.

Treewidth. Computing a treecwidth decomposition with approximately minimum width is a core
problem in the area of fixed-parameter tractable algorithms [RS95l Bod96, Ree92) FMO0G, [Amil0l
BDD™ 16, [FLST18]. We observe that, on constant degree graphs, an expander hierarchy itself
gives a treewidth decomposition. Hence, we obtain the first non-trivial dynamic algorithm for
this problemE] Our result is summarized in the following corollary, where tw(G) is the treewidth
of a graph G (i.e. the minimum width over all tree decomposition of G).

Corollary 1.5. There is a fully dynamic deterministic algorithm on a constant degree n-vertex
graph G that explicitly maintains a treewidth decomposition of width tw(G) - n°M jn po)
amortized update time.

1.3 Comparison of Techniques

The expander hierarchy is strictly stronger than the so-called low-diameter hierarchy appeared
in the algorithms for constructing low-stretch spanning trees in both the static [AKPW95|] and
dynamic setting [FG19, [CZ20]. The low-diameter hierarchy is similar to the expander hierarchy,
except that each cluster is only guaranteed to have low diameter. Structurally, the expander
hierarchy is strictly stronger since every ¢-expander automatically has low diameter O(l /@), but
some low-diameter graph has very bad expansion. This is why the low-diameter hierarchy could

"Dvorak, Kupec, and Tuma [DKTT13] show a fully dynamic algorithm for maintaining a treedepth decomposition,
which is closely related to a treewidth decomposition. Let td(G) denote the treedepth of a graph G. It is known that
tw(G) < td(G) < O(tw(G) logn) [BGHK95|]. However, the update time of the algorithm [DKT13]| is proportional
to a tower of height td(G), which is super-linear when td(G) = w(log® n). So this algorithm might take super-linear
time even when tw(G) = O(1).

not be applied to cut/flow-based problems. Algorithmically, previous approaches for maintaining
the low-diameter hierarchy [FG19| [CZ20] inherently have amortized update time guarantee and
assume an oblivious adversary, while our algorithm using the expander hierarchy can be made
worst-case and deterministic.

Expander decomposition has almost never been used in a hierarchical manner. Many
algorithms perform the decomposition only once [Tre05l [CKS05, [CKS13] and some recursively
decompose the graph by removing all edges inside clusters, instead of contracting each cluster
(e.g. [STTI, IACK™16, [JSTR, [CPZ19, [EFFT19] for static algorithms and [BvdBG™20, [CK19] for
dynamic ones). An exception is the sensitivity connectivity oracle by Patrascu and Thorup [PT0T],
which decomposes a graph into a certain hierarchy of expanders. Unfortunately, their hierarchy
is not robust and inherently can handle only a single batch of updates, so it does not work in
the standard dynamic setting.

The dynamic connectivity and minimum spanning forest algorithm by Nanongkai et al. [NSW17]
repeatedly applies the expander decomposition and has a bottom-up flavor as in ours, but their
underlying structure does not actually yield a hierarchy. More specifically, while each cluster in
our expander hierarchy is contracted into a single vertex in the next level, their cluster can only
be “compressed” into a smaller set, which might even be cut through in the next level. This
leads to a much more complicated structure and requires an ad hoc treatment. The similar
structure appears in the very recent work on dynamic c-edge connectivity by Jin and Sun [JS20].
We bypass such complication via the boundary-linked expander decomposition and obtain the
simplified dynamic connectivity algorithms and other applications. We expect that our clean
hierarchy will be easy to work with and lead to more interesting applications in the future.

Very recently, the concurrent work of Chen et al. [CGH™20] shows how to dynamize several
known constructions of vertex sparsifiers for various problems. One of their applications is
a fully dynamic algorithm for s-f maximum flow and minimum cuts. Their algorithm works
against an oblivious adversary, has O~(n2/ 3) amortized update time and, given a query, returns
an O(logn(loglog n)®™M)-approximation in O(n?/3) time. They also extend the algorithm to
work against an adaptive adversary while supporting updates and queries in O(m3/ 4) time.
Comparing with Item [1| from Corollary our algorithm has n°(") worst-case update time and
O(logl/ 1) query time and is deterministic, but our approximation factor is worse.

2 Technical Overview

This overview is divided into two parts. In Section [2.1I] we show that an expander hierarchy is
itself a tree flow sparsifier and faithfully captures the cut/flow structure of a graph. In Section
we show how to maintain an expander hierarchy under dynamic edge updates. Below, we will
write (a, ¢)-decomposition as a shorthand for («, ¢)-boundary-linked expander decomposition.

2.1 Tree Flow Sparsifiers

We start by showing how to construct a tree flow sparsifier for an expander, a very special case.
Along the way to generalize the idea to general graphs, we will see how expander hierarchies
arise naturally. We will also explain why the approaches based on the standard expander
decomposition or even the slightly stronger decomposition from [SW19] fail.

Tree flow sparsifiers can be informally defined as follows. Let G = (V| E) be an n-vertex
m-edge graph. Let D : V x V — R be a demand (for multi-commodity flow) between pairs of
vertices in G. We say that D can be routed with congestion 7 in G if there is a multi-commodity
flow that routes D with congestion n. If n = 1, we say that D is routable in G. A tree T is a

tree flow sparsifier of G with quality q, iff (i) any routable demand in G is routable in 7', and (ii)
any routable demand in 7" can be routed with congestion ¢ in G.

Special Case: Expanders. Suppose G is a ¢-expander. We can construct a very simple
tree flow sparsifier 7' with quality g1 = O(log(m)/¢) as follows. Let T be a star with a root r
that connects to each vertex v € V' with an edge (r,v) of capacity deg,(v). Observe that any
routable demand in G is routable in T" because of the way we set the capacities of edges in T'.
On the other hand, if a demand D is routable in 7', then the total demand on each vertex v
is at most deg(v). But it is well-known from the multi-commodity max-flow /min-cut theorem
[LR99] that, on ¢-expanders, any demand D with such a property can be routed with congestion

O(log(m)/¢).

Intermediate Case: Two Levels of Expanders. Next, we suppose that G satisfies the
following: there is a partition & = (Uy,...Uy) of V such that G[U;]! is a ¢-expander for each
U; € U and the contracted graph Gy, is also a ¢-expander. We write V(Gy) = {u1,...,ur}.
We can naturally construct a tree T' corresponding to the partition U as follows. The set of
level-0 vertices of T is Vo(T') = V(G). The set of level-1 vertices is Vi(T") = V(Gy). The level-2
contains only the root r of T'. For each pair v € Vo(T') and u; € Vi(T') such that v € U;, we
add an edge (v,u;) with capacity deg,(v). And each u; € Vi(T'), we add an edge (u;,r) with
capacity degg, (u;) = |[E(U;, V' \ Us)|. We claim that T has quality g2 = O((log(mn)/$)?).

By the choice of edge capacity in T, any routable demand in G is routable in T". For the other
direction, suppose that a demand D is routable in T', then we will show a multi-commodity flow
that route D in G with congestion O((log(m)/#)?). The idea is to first consider the projected
demand Dy where Dy(u;,uj) = erUi,yer D(z,y). Using the argument from the first case,
there is a multi-commodity flow Fj; that routes Dy in Gy with congestion ¢;. Our goal is to
extend this flow Fy; to another flow that routes D in G with congestion O((log(m)/¢)?).

For each vertex u; € V(Gyy), consider the flow paths in Fy; going through u; in Gyy. Observe
that these paths corresponds to a demand Dy, between boundary edges of U; (i.e. E(U;, V \ U;)).
Our main task now is to route Dy, within G[U;]. Once we have obtain the flow F; within G[Uj]
that routes Dy, for all U;, this would extend [, to a flow in G as desired, and we are essentially
done (some details are omitted here).

As G[U;]! is a ¢-expander, the max-flow/min-cut theorem implies that any demand D’
between the boundary edges of U; can be routed within G[U;] with congestion O(log(m)/¢) as
long as the total demand of D’ on each edge is at most 1. However, the total demand of D;
on each boundary edge of U; can be as large as ¢; (since the flow Fy; causes congestion ¢).
Therefore, D; can be routed in G[U;] with congestion q; - O(log(m)/¢) = O((log(m)/¢)?). As
this holds for all U;, the tree T has quality O((log(m)/¢)?). Note that we crucially exploit the
conductance bound on G[U;]! and not just on G[U;]. From the above discussion, the standard
expander decomposition cannot give the partition U as we need.

An important observation is that, this quality can be improved if we are further promised
that, for each U; € U, G[U;]" is a ¢-expander, for some w > 1. This promise implies that
we could route a demand D’ between the boundary edges of U; within G[U;] with congestion
O(log(m)/¢) as long as the total demand of D" on each edge is at most w (instead of 1), so

log()/ ¢) Therefore, if U is an

the demand D; can be routed in G[U;] with congestion ¢; - O(
(a,)- decomp081tlon which guarantees that G[U;]*/? is a ¢- expander the quality of T" will be
q1 - O(log ﬁ That is, we lose only a factor of O(log(m)/«) per level, instead of O(log(m)/®).
General Case. Now, we are ready to consider an arbitrary graph G. Let (G°,...,G?) be

such that (i) G° = G; (ii) E(G') = 0; and (iii) G"*' = Gj, for some (a, ¢)- decomposmon U; of

6 Actually, we have a guarantee that G[Ui]a/‘i’i is a ¢;-expander for some ¢; > ¢. This implies the same bound

qul'%:qlvO(W).

G*. Observe that if we define a tree from (GY, ..., G?) using the same idea as above, we would
exactly obtain an («, ¢)-expander hierarchy T of G. Let t be the depth of T. We can argue
inductively that T is a tree flow sparsifier of G with quality O(bim) : O(k”%)t_l.

Note that that ¢ = O(log; ;, m) by Propertyof the (a, ¢)-decomposition. From Theorem

1/2 m)
)

we can compute an («, ¢)-expander hierarchy where o = 1/ polylog(n) and ¢ = 2~
this implies that 7" has quality O(h%) . O(l(’%)t_1 = 20(og!Zmloglogm) — po(1) Note that we
need ¢ < « to obtain the quality of n°M) | For example, if o = ¢, the quality we obtain would be
(k’%)t = Q(m). This is the reason why we cannot use the expander decomposition algorithm
by [SW19], because their algorithm only returns a (weaker version of) (¢, ¢)-decomposition.

In the dynamic setting, our algorithm from Theorem maintains an («, ¢)-expander
hierarchy 7" that has small slack s where a = 1/ polylog(n), ¢ = 1/20(10g3/4 m) and s = 200og!/*m),
Following the same analysis, the final quality of T' degrades slightly to O(Sl"%)t*1 . O(Sl"%) =
2O(log3/4 m) _ no(l)_

2.2 Robustness Against Updates

In this section, we show how an («, ¢)-expander hierarchy 7" with small slack s can be maintained

in n°M) update time, where a = 1/ polylog(n), ¢ = 9-O(log?/* ") and s = 90(1og'?n) " Recall

from above that T is a tree flow sparsifier with quality 90(log**m)

Our goal is to illustrate that, because of the right kind of guarantees from the (o, ¢)-
decomposition, the algorithm for maintaining the expander hierarchy can be obtained quite
naturally, especially for people familiar with standard techniques in dynamic algorithms.

Reduction to One Level. An (a, ¢)-expander hierarchy T' corresponds to an («, ¢)-expander
decomposition sequence (GY,...,G?). In particular, for each i > 0, Gt = Gzl,- is obtained
from G’ by contracting each cluster of an (a, ¢)-decomposition ;. Therefore, the problem of
maintaining an expander hierarchy reduces to maintaining an (o, ¢)-decomposition U and Gy
on a dynamic graph G. There are two important measures:

e Update Time: The time for computing the updated U and Gy,.
e Recourse: The number of edge updates to Gy.

Suppose that there is an algorithm with 7 (amortized) update time and p (amortized) recourse.
This would imply an algorithm for maintaining an («, ¢)-expander decomposition sequence
(G ...,G") with O(p' - 7) (amortized) update time, because the number of updates can be
multiplied by p per level. We note that the depth ¢ = O(log; /, m) so we need p = (1/4)°" and

7 =n°M to conclude that the final update time is n°M).

Two Key Tools. From now, we focus on a dynamic graph G and how to maintain an (a, ¢)-
decomposition U of G with small slack. To do this, we need two algorithmic tools. First,
Theorem gives a static algorithm for computing an (o, ¢)-decomposition U of a graph G
with no slack in time O(m /®). This algorithm strengthens the previous expander decomposition
by Saranurak and Wang [SW19).

Our second tool is the new expander pruning algorithm from Theorem with the following
guarantee. Suppose G[U]Y is a ¢-expander where w < 1/(10¢). Suppose there is a sequence of
kE < ¢vol(U)/2000 edge updates to U (i.e. these edges have at least one endpoint in U). Then,
the algorithm maintains a small set P C U such that G[U \ P]¥ is still a (¢/38)-expander in
total time O(k/¢?). More precisely, after the i-th update to U, we have volg(P) = O(i/¢$) and
|Eq(P,U \ P)| = O(i). Theorem generalizes the previous expander pruning algorithm by
[SW19| that works only when w = 1.

A Simple Algorithm with Too Large Recourse. Both tools above suggest the following
simple approach. First, we compute an (a, ¢)-decomposition U = {Ui,...,Ux} of G with no
slack where each G [Ui]o‘/ % is a ¢;-expander. Next, given an edge update to U;, we maintain a
pruned set P; C U; so that G[U; \ P;]*/?% is a (¢;/38)-expander. We update U by adding the
singleton sets {{u}},ep, and replacing U; by U; \ P;.

For simplicity, we assume that all edge updates have at least one endpoint in the cluster
U; € U. Furthermore, assume that there are less than k; < ¢? volg(Uy) updates to U;. With
this assumption, the updated U is an (o, ¢)-decomposition of the updated G with slack 38.
To see this, observe that the number of new inter-cluster edges is at most volg(P;), and
so the total number of inter-cluster edges becomes O(¢m) + volg(P;) = O(¢m) satistying
Property |1l Let U/ = U; \ Pi. We have that G[U{]*/?" is a (¢;/38)-expander by the expander
pruning algorithm. This satisfies Property [2} For Property [3} observe that |Eq (U, V \ Uj)| <
|Eg(U1, %4 \ Ul)‘ -+ |Eg(P1, U1 \P1)| = O((bz VOlg(Ul)) because ’Eg(Pl, U1 \P1)| S O(k’l) Note
that all singleton clusters {{u}},cp, satisfies Properties |1| and [3| vacuously. Lastly, the recourse
on Gy is O(volg(P1)) = Ok /bv). ~

Therefore, we have that the amortized recourse and update time are O(1/¢) and O(1/¢?)
respectively. While both of them seem small for maintaining a one-level decomposition, the
recourse is in fact too large if the expander hierarchy has many levels. After composing the
algorithm for ¢ levels using the reduction in the beginning of this section, the update time is at
least Q(1/¢)t = mY) | which is too large for us.

Previous dynamic algorithms with hierarchical structure have faced the same issue. This
is why the dynamic low-stretch spanning trees algorithm of [FG19] has O(y/n) update time.
Chechik and Zhang [CZ20)] fixed this issue and improved the update time of [FGI9] to n°().
However, they only require each cluster U € U to have a small diameter of O(1/¢), which is a
much weaker guarantee than being a (¢)-expander. Unfortunately, their technique is specific
to this weaker guarantee (and is also inherently amortized). In the dynamic minimum spanning
forests algorithm by Nanongkai et al. [NSW17], they require each cluster to be an expander like
us, and can only guarantee §2(1/¢) recourse per update. As we mentioned in Section they fix
the issue using an ad-hoc and complicated tool tailored to (minimum) spanning forests. Below,
we will see how the («, ¢)-decomposition allows us to bound the recourse in a simple way.

One-batch Updates. First, let us simplify the situation even more by assuming that all k;
updates are simultaneously given to Uy in one batch. We will also need a slight generalization of
(ar, ¢)-decomposition defined on a subset of vertices here, instead of the whole graph. For a set
P CV, an (o, ¢)-decomposition of P in G is a partition U' = {Uj,...,U}.} of P that satisfies
the properties of the (a, ¢)-decomposition, except that Propertyis now Zle |[E(ULV\U)| <
O(|E(P,V \ P)|) + O(¢volg(P)). Note that the term O(¢volg(P)) = O(ém) as before when
P =V and the term O(|E(P,V \ P)|) is unavoidable.

Now, we describe the algorithm. Given the batch of k; updates, we compute the pruned
set P C U;. Then, we compute an («, ¢)-decomposition of P, in G and obtain a partition
U ={Ui,...,U},} of Pi. Finally, we replace Uy in U with {Uy\ P1,Uq,...,U.,}. It follows from
the description that the updated U is an («, ¢)-decomposition of G with slack at most 38.

The key step is to bound the total recourse, which is at most

k

Y BULV\UD| < O(E(PLV \ P1)]) + O(¢volg(P1)).

i=1
Recall that, by the pruning algorithm, volg(P1) < O(ki1/¢) and |Eq(P1,U \ P1)| < O(k1).
So it remains to bound |Eg(P1,V \ Uy)|. This is where we exploit Property [2| of the («, ¢)-

decomposition. Before any update, observe that
o
|Eq(Pr, U\ P1)| = ¢1volgase) (P1) = ¢1 - E|EG(P1’ VAT

where the first inequality is because G[U;]%/* was a ¢;-expander and we assume Vol jerer (P1) <
Vol ja/er (Up \ P1) (as ki is small enough), and the second inequality is by the definition of

G[U1]*/%1. So we have |Eg(Py,V \Uy)| < O(ky/a) after the updates, because |Eg(Py, U\ P1)| <
O(k1) and there are k; updates. This implies that the total recourse is O(k1/c) + O(ky), which
is O(1/a) amortized.

Theorem shows that the decomposition U’ of P; can be computed in O(|Eg(Py,V \
Py)|/$? +volg(P)/¢) = O(k1/(ap?)) time. Also, the total time for pruning is O(volg(P)/¢) =
O(k1/¢?). So the amortized update time is O(1/(a¢?)). Plugging these bounds into the reduction,
the update time for maintaining an (a, ¢)-expander hierarchy is O(1/a) - O(1/(ap?)) = n°M).

Removing Assumptions. In fact, in the analysis above, we did not require a strong up-
per bound on k; < ¢?volg(Uy), but we did require k1 < ¢1 volg(U1)/2000 because the ex-
pander pruning algorithm can handle that many updates and we also need VOIG[UI}Q Jor (P1) <
Vol jasen (Uy \ P1). This requirement can be removed as follows. If k1 > ¢; volg(U1),/2000,
then we just “reset” the cluster U; by computing an (a, ¢)-decomposition U’ of Uy in G. Then,
we remove U; from U and add the new clusters in U’ to U. The key point is again to bound
the recourse which is 5| |Eq(U!, V \ U))| < O(|Eg(Uy, V \ U1)]) + O(¢volg(Uy)) = O(ky).
This is where we exploit Property |3| of the (o, ¢)-decomposition, which says |Eq(U1, V \ Uy)| =
O(¢1 volg(Uy)) = O(ky). So the amortized recourse is O(1) in this case.

To remove the assumption that all updates have an endpoint in U, we simply perform the
same algorithm on each cluster U; € U. If the number of updates is larger than ¢ vol(G), we just
compute the («, ¢)-decomposition of the updated graph in O(vol(G)/¢) time so that Property
of the (a, ¢)-decomposition is satisfied. In this case, the amortized recourse and update time is

%ﬁ’gg)) = O(1) and %@@ = O(1/¢?) respectively.

From all cases above, we conclude that, given an («, ¢)-decomposition U of G with no
slack and one batch of updates, we obtain an («, ¢)-decomposition U of G with slack 38 with
p = O(1/a) amortized recourse and 7 = O(1/(a¢?)) amortized update time. This implies an

log®/* m)

algorithm for an (o, ¢)-expander hierarchy with slack 38 and O(p'r) = 29(amortized

update time.

Sequence of Updates. Lastly, we remove the final assumption that the updates are given in
one batch. The main issue arises from the expander pruning algorithms. Recall that, to bound
the recourse, it was enough to bound O(|Eg(P,V \ P)|) + O(¢volg(P)) where P is the pruned
set of some cluster. However, given a sequence of updates to Theorem the set P is a dynamic
set that changes through time. Although we can bound O(|Eg(P,V \ P)|) + O(¢volg(P)) at
any point of time, the total recourse throughout the algorithm can become much larger. To
fix this, we use the known trick from [NSW17] (Section 5.2.1) so that the resulting pruned set
changes in a much more controlled way.

At a very high level, let ¢ = 2000g"2m) and h = log, m = O(logl/2 m). Our algorithm,
called Multi-level Pruning from Section 7], will partition P = P,_1 U ---U Py into h parts such
that, for each i, volg(P;) < volg(P;+1)/v and P; can change only every ¢ updates. In words,
the bigger the part, the less often it changes. At the end, Multi-level Pruning has the amortized
recourse p = O(QO(IOgl/2 ™) /o) and update time 7 = O(QO(IOgl/2 ™) Jag?). This bound still implies
a dynamic («, ¢)-expander hierarchy with update time O(p'1) = 90(log?/*

™) However, with

this technique, the slack of the maintained («, ¢)-decomposition become s = 38h = 20(log!/? m).,

which gives Theorem

10

Derandomization & Deamortization. The only randomized component in this paper is
the cut-matching game [KRV09, RST14] that is used in our static algorithm for computing an
(a, ¢)-decomposition. By plugging in the new deterministic balanced cut algorithm by Chuzhoy
et al. [CGL™19| into our framework, this immediately derandomizes the whole algorithm.

We can also make our update time to be worst-case using the standard “building in the
background” technique (although this technique prevents us from explicitly maintaining the
expander hierarchy). The reason we are allowed to do this is as follows. The only component
that is inherently amortized is the expander pruning algorithm from Theorem However,
Theorem is only called by Multi-level Pruning, and we can apply the “building in the back-
ground” technique to each level of the algorithm, so that the input to Theorem is always
in one-batch (not a sequence of updates) and so the running time is worst-case. For other
parts of the algorithms, it is clear when the algorithm needs to spend a lot of time to reset or
re-preprocess the graph, so we can apply “building in the background” in a straight-forward
manner.

3 Preliminaries

By default, all logarithms are to the base of 2. Normally we use n to denote the number of
nodes of a graph, and use m to denote the number of edges of a graph. Even when we allow
parallel edges and self-loops, we will assume in this paper that m = poly(n). We use O(-) to
hide polylog(n) factors.

General Notation. Let G = (V, E) be an unweighted graph. For a vertex v € V, we denote
degs(v) as the number of edges incident to v in G. For two subsets A, B C V of vertices, we
denote by FEq(A, B) the set of edges with one endpoint in A and the other endpoint in B. For a
subset S C V, we denote by Eg(S) the subset of edges of E with both endpoints in S.

To reduce notational clutter we sometimes use the following shorthand notation for the
cardinality of certain edge-sets: the cardinality of edges incident to S C V is denoted with
outg(S) = |Eg(S,V \ 5)|; the border of S C U w.r.t. U is denoted with borderg (S5) =
|Eq(S,V\U)[; the cut of S CU w.r.t. U is denoted with cutg y(S) := |Eg(S,U \ S)|. We drop
the subscript G if the graph is clear from the context and we write, e.g., outg(v) instead of
outg({v}), i.e., we drop the brackets if the respective set contains just a single vertex.

For an unweighted graph G and a cluster S C V' we use G[S|" to denote the subgraph of G
induced by the vertex set S where we add [w] self-loops to a vertex v € S for every boundary
edge (v,x), x ¢ S that is incident to v in G. Note that G[S] is just the standard notion of an
induced subgraph and that in the graph G[U]' the degree of all vertices is the same as in the
original graph G (each self-loop contributes 1 to the degree of the node that it is incident to).

Let T be a tree and denote r as its root. We denote by L(T") the set of leaves of T'. For
each i > 0, we say that a node v € V(T) is at the ith level of T if the length of the unique path
connecting v to 7 in 1" is 4. So the root r is at the Oth level of T', and all its children are at the
1st level of T', and so on. For each i > 0, we let V;(T') be the set of all nodes that lie on the ith
level of the tree T

Conductance and Expander. For a weighted graph G and a subset S C V of its vertices, we
define the volume of S in G to be volg(S) = 3 ,cgdegs(v). We refer to a bi-partition (S, S)
of V by a cut of G if both S and S are not (), and we define the capacity of the cut to be

g G : _ |E(S.S)]
|E(S,S)|. The conductance of a cut (S,5) in G is defined to be & (S) = vola(S) wola G

The conductance of a graph G is defined to be ®¢ = mingcy, 549 ¢ (S5). For a real number
¢ > 0, we say that G is a ¢-expander if @5 > ¢. We will omit the subsript G in the notations
above if the graph is clear from the context.

11

Definition 3.1 (Near Expander). Given an unweighted graph G = (V, E) and a subset of
vertices A C V, we say that A is a near ¢-expander in G for some real number ¢ > 0 if for all
S C A such that vol(S) < vol(A)/2, we have |E(S,V \ S)| > ¢ - vol(S).

Contracted Graph. Given an unweighted graph G = (V, E) and a partition Y = (Uy,...,U,)
of its vertices, such that the subgraph G[U;] is connected for each 1 < i < r, we define the graph
Gy to be the contracted graph of G by contracting each cluster U; to a single vertex, while
keeping the parallel edges that connect vertices from the same pair of subsets in U.

(Single-commodity) Flow Notation. A flow problem IT = (A, T, ¢) on a graph G = (V, E)
consists of (i) a source function A : V — R=% (ii) a sink capacity function 7 : V — R=° and
(iii) an edge capacity function ¢ : E — RZY. Specifically, for each node v € V, we denote A(v) to
be the amount of mass that is placed on v, and we denote T'(v) to be the capacity of v as a sink.
For an edge e, the capacity c(e) limits how much flow can be routed along e in both directions.

Given a single-commodity flow f on G, we define its edge-formulation by a function f :
V x V — R, such that for any pair (u,v) of nodes with (u,v) € E, f(u,v) equals the total
amount of flow sent from u to v along the edge (u,v) minus the total amount of flow sent from v
to u along the edge (u,v). Note that for all pairs (u,v) such that (u,v) € E, f(u,v) = —f(v,u),
and f(u,v) = 0 for all pairs (u,v) with (u,v) ¢ E. We will also refer to an edge-formulation
f by a flow. Given a flow problem II = (A, T, ¢) and a flow f on G, for each node v € V', we
define fa(v) = A(v) + >, f(u,v) to be the amount of mass ending at v after routing the flow f
from the initial source function A. We say that f is a feasible flow of 1L if | f(u,v)| < ¢(u,v) for
each edge (u,v) € E, Y, f(v,u) < A(v) for each v € V, and 0 < fa(v) < T'(v) for each v € V.

The following subroutine is implicit in [SW19]. They use it as a key subroutine for imple-
menting expander trimming and pruning.

Lemma 3.2 (Incremental Flow). Given an m-edge graph G = (V, E), and a flow problem
(A, T,c) on G where (i) each edge has integral capacity 1 < ce < cmax, and (ii) each vertex v
can absorb T(v) = deg(v) mass of flow, there is a deterministic algorithm that maintains an
incremental, initially empty set P C V' (i.e., vertices can only join P through time) under a
sequence of source-injecting operations of the following form: given v € V, increase A(v).

At any time, as long as Y,y A(v) < vol(V)/3, the algorithm guarantees that

1. the flow problem (A',T',c) on G[V \ P]! is feasible, where A'(v) = A(v) + ¢(E({v}, P))
forallveV, and T', ¢ are T, c restricted to V' \ P, respectively, and
2. vol(P) < 25,0y A(v) and |E(P,V \ P)| < 22ecy 20,

mine{ce}
The total update time is O(cmax Y pey A(v)logm).
Let us give some intuition about this subroutine. We are given a graph G that undergoes a
sequence of “injecting” mass operations, after some time the total mass will not be routable
(i.e. the flow problem is not feasible) and get stuck, the above subroutine will maintain a growing

set P such that, the mass in the remaining part G[V \ P]! is routable. Moreover, this remains
feasible even if we inject additional mass through the cut edges E(P,V \ P) at full capacity.

4 Boundary-Linked Expander Decomposition and Hierarchy

In this section we formally introduce the notion of a boundary-linked expander decomposition,
which is the main concept of this paper.

12

Definition 4.1. (Boundary-Linkedness) For a graph G = (V, E) and parameters «, ¢ € (0,1)
we say that a cluster U C V is (a, ¢)-boundary-linked in G if the graph G[U]*/? is a ¢-expander.

Intuitively, the conductance ®gpm (i.e., when we choose o = ¢) measures how well the
edges of the cluster U (including the boundary edges I'¢(U)) are connected inside the cluster.
P > ¢ means that we can solve an all-to-all multicommodity flow problem between the edges
of Eq(U,V) (i.e. edges incident to U) inside G[U| with congestion at most O~(1/¢5) Boundary
linkedness with a parameter a > ¢, means that the boundary edges themselves have higher
connectivity. We can solve an all-to-all mutlicommodity flow problem between boundary-edges
with congestion O(1/a) inside U.

Next, we define the notion of a boundary-linked expander decomposition and that of an
expander hierarchy. These are the central definitions in this paper.

Definition 4.2 (Boundary-Linked Expander Decomposition). Let G = (V, E) be a graph and
a,¢ € (0,1) be parameters. Let U C V be a cluster in G.

An (a, ¢)-boundary-linked expander decomposition of U in G with slack s > 1 consists of a
partition U = {Uq,...,Ux} of U together with a conductance-bound ¢; > ¢ for every i € 1,...,k
such that the following holds:

1. Y8 outg(U;) < O(outg(U)) 4+ O(pvolg(U)).
2. For all i: G[U;]*/% is a (¢ /s)-expander.
3. For all i: outg(U;) < O(¢; volg(Uy)).

When we have an expander-decomposition with slack 1, we will usually not mention the
slack and just call it an («, ¢)-boundary linked expander decomposition. The notion of slack
will not be important for our static constructions but only becomes important for maintaining
boundary-linked expander decompositions dynamically. Instead of writing “(«, ¢)-boundary-
linked expander decomposition”, we sometimes write “(«, ¢)-expander decomposition” or just

“(a, ¢)-ED”. If U =V, then we say that U/ is an («, ¢)-ED of G.

Definition 4.3 (Expander Decomposition Sequence). Let G = (V, E) be a graph with m
edges and «a, ¢ € (0,1) be parameters. We say that a sequence of graphs (G°,G*,...,G") is
an (o, ¢)-expander decomposition sequence of G with slack s or (a, ¢)-ED-sequence of G if (1)
G° = G, (2) G has no edge, and (3) Gi*! = Gz{i is the contracted graph of G* w.r.t. to U*
where U" is an (a, ¢)-ED of G* with slack s.

Definition 4.4 (Expander Hierarchy). An (a, ¢)-ED sequence (G°, G, ..., G*) naturally cor-
responds to a tree T where (1) the set of nodes at level i of T is V;(T) = V(G?) and (2)
a node u; € V;(T) has a parent w41 € Vir1(T) if u; € V(G?) is contracted into the super-
vertex u; 11 € V(G'). The edge (u;,u;y1) is assigned a capacity of degqi(u;). We call T an
(a, ¢)-expander hierarchy or («, ¢)-EH (with slack s).

The next theorem is the main result in this section. Throughout this section, we define
Yomp = O(log2 m). This is a value derived from the approximation guarantee for sparsest cut of
the cut-matching-game [KRV09] on an m-edge graph.

Theorem 4.5. There is a randomized algorithm that, given a graph G = (V, E), a cluster
U C V with volg(U) = m and outg(U) = b, and parameters a, ¢, with o < 1/(4youp logy m)
computes an (a, ¢)-ED of U in O(b/¢? +m/¢) time with high probability. In particular

"In an all-to-all multicommodity flow problem between a subset of edges E' in G[U], there is a weight
w(v) := > {v} Nel assigned to every vertex v € U. Then the demand between two vertices u,v € U is

w(uw)w(v)/w(U).

13

1. 38 outg(U;) < douta(U) + O(log® m - ¢volg(U)).
2. For all i: G[U;)*/% is a ¢;-expander.
3. For all i: outg(U;) < O(logb m - ¢; volg(Uy)).

As an (a, ¢)-ED-sequence and its corresponding (a, ¢)-expander hierarchy can be naturally
computed bottom up given the above algorithm, we immediately get the following corollary.

Corollary 4.6. There is a randomized algorithm that, given a graph G with m edges and
parameters o, ¢, with a < 1/(2ycwp logy m) computes an («, ¢)-expander decomposition sequence
of G and its corresponding expander hierarchy in O(m/¢) time with high probability.

The remainder of this section is devoted to proving Theorem

4.1 The Key Subroutine

The major building block for our algorithm is the following sub-routine that when applied to a
cluster either (1) finds a sparse balanced cut, or (2) finds a sparse unbalanced cut such that the
large side of the cut forms a cluster with good expansion. The sub-routine uses the cut matching
game due to Khandekar, Rao, and Vazirani]KRV09] and adds a pruning step ([SW19]) for the
case that the cut-matching step returns a very unbalanced cut. The Pruning step is the same as
in [SW19|] but here we give a different analysis that shows a stronger guarantee.

Lemma 4.7 (Cut-Matching + Trimming). Given an unweighted graph G = (V, E) with m edges
and parameters ¢, w with w < 1/(8¢), a cut-matching+trimming step runs in time O(mlogm/¢o)
and must end in one of the following two cases:

1. We find a cut (A, A) of G with cutc(A, A) < Your - ¢ min{volg(A), volg(A)}, and volg(A),
volg(A) are both Q(m/log?m), i.e., we find a relatively balanced low conductance cut.

2. We find a cut (A, A), with cutg(A, A) < youp - ¢ min{volg(A),volg(A)}, and volg(A) =
m/10. Moreover, we conclude that G[A]"Y is a ¢-expander. This conclusion may be wrong
with probability o(m=19).

In the remainder of this section we prove the above theorem.

We use a standard adaptation by Saranurak and Wang [SW19] of the cut-matching framework,
which was originally proposed by Khandekar, Rao and Vazirani [KRV09]. The following cut-
matching step was proved in [SW19].

Lemma 4.8 (Adapted Statement of Theorem 2.2 in [SWI9]). Given an unweighted graph
G = (V, E) with m edges and a parameter ¢ > 0, the cut-matching step takes O(mlogm/¢)
time and must end with one of three cases:

1. We conclude that G has conductance ®g > 8¢p. This conclusion is wrong with probability
o(m=10).

2. We find a cut (A, A) of G with conductance ®g(A) < Yrv@, and volg(A),volg(A) are

both at least m/(100Vkgy), i-€., we find a relatively balanced low conductance cut.

3. We find a cut (A, A), such that ®c(A) < yxrvd and volg(A) < m/(100vkry). Moreover,
we conclude that A is a near 8¢-expander. This conclusion may be wrong with probability
o(m=10).

14

Here, vry = O(log2 m).

Recall the definition of near expanders from Definition We remark that this is the only
building block that is randomized in our algorithms. Once we derandomize it, all our algorithms
become deterministic. In fact, in a recent paper [CGL™19], a deterministic counterpart of the
cut-matching step was constructed. We will use their results and roughly show how to make our
algorithms deterministic in Section

In order to obtain Lemma [£.7], we proceed as follows. We run the cut-matching step from
Lemma [4.8| on the graph G. If we are in Case 1 of Lemma we obtain a valid set A for Case 2
in Lemma where A is the empty set. If we are in Case 2 we obtain valids set A, A for Case 1
in Lemma [£.7] If we are in Case 3 we perform a trimming operation on the set A to obtain a set
A’. We will need to prove that the set A’ fulfills all properties required for Lemma

The trimming operation (stated below in Lemma is algorithmically exactly the same
as in [SW19]. The only difference is in the analysis; we open their black-box and state the
guarantee about flow explicitly. Then, we give a new analysis and conclude a stronger statement
than the one in [SW19]. More precisely, we show that G[A']" is a ¢-expander while they only
show that G[A']! is a ¢-expander.

Lemma 4.9 (Trimming). We can compute a pruned set P C A in time O(logm|Eg(A, A)|/$?)
with the following properties:

1. volg(P) < 4|Ea(A, A)|
2. |Eq(A’, A")| < 2|Eg(A, A)|
where A" = A\ P. In addition the following flow problem is feasible in G[A’].
o A(v) = 2|Ba({v},V\ 4]
e T'(v) = volg(v)
e c(e) =2/¢ for every edge in G[A'].

Proof. We run the algorithm from Lemma (3.2 on G[A]' with c(e) = 2/¢ for every edge. Then
we increase A(v) by 2/¢ for every edge in Eg(A, A).
The resulting pruned set P fulfills the properties. Property [I] follows as

volgpap (P) = volg(P) < 252,A(v) = §|Ea(A, A)| . O
We have to argue that A’ = A\ P fulfills all requirements of set A in Case 2 of Lemma

o Og(A") < vourd. B B
The conductance of the cut is |[Eg(A’, A’)|/ volg(A’). We have

volg(A’) > volg(A) > |Eq(A, A")|

2v 2%krvd
Hence, setting vompr = 2Ykry = O(log2 n) is sufficient.
e volg(A’) < m/10.
volg(A") < volg(P) + volg(A) < S|Eg(A, A)| + volg(A) < Sy volg(A) + volg(A)
< BVCMP VOlG() m/lo

The final property is given by the following lemma.

15

Lemma 4.10. If w < 1/(8¢) then G[A'|" is a ¢-expander.
Proof. Directly from the guarantee of the cut-matching step from Lemma .8 we get that
|Ec(A, A)| < yxrvd volg(A) < ¢m/16 < ¢volg(A)/16. (1)

Now, consider a subset S C A’ such that volgaqw (S) < volgranw (A’)/2. We first show a helpful
claim:

Claim 4.11. volg(S) < 2 volg(4).

Proof. By the guarantee of the trimming operation from Lemmaand Equation , volg(P) <
3 1Ba(A, A)| < 4 - fvolg(A) < volg(A)/4. So volg(A') = volg(A) — volg(P) > 3volg(A) /4.

Again by Lemma {4.9/and Equation (1), we have |Eg(A4’, A’)| < 2|Eg(A, A)| < 2- Volg(A) <
%Volg(A’). We get
volg(S) < volgiane(S) < VOIG[A/]w(A’)/Q = L(volg(A) + (w — 1)|Eg(4", A")|)
< 3(volg(A) + 55 - § ¢ volg(A')) < 2volg(A') .
The equality holds because edges between A’ and A’ = V'\ A’ are turned into self-loops of weight
w in G[A']* while having weight 1 in G. Hence, the degree of a vertex in A’ incident to such an
edge increases by w — 1. The following inequality uses w —1 <1 /(8¢) and our previous bound
on |Eg(A’, A)|. O
Recall that borders/(S) := |Eq(S,V \ 4)] and cuta(S) := |Eg(S, A"\ S)|. We have to
show that cuta(S) > ¢ - volgraqe(S). From volg(S) < 2volg(A’) we get volg(A'\ S) =
volg(A') — volg(S) > 2 volg(S) — volg(S) > volg(S)/2. The fact that A is a near 8¢-expander
in G gives that
cut 4/ (S) + border 4/ (S) > 8¢ - min{volg(S), volg(A\ S)}

> 8¢ - min{volg(9), volg(A4"\ S)} (2)

> 4¢ - volg(S) .
By the feasibility of the flow problem for G[A’] we obtain

% -border/(S) < A(S) <T(S)+ %CutAr(S)
= volg(S) + %cutA/(S)
< g5 border 4/(S) + (45 + 3) cutar(S) ,

which yields border 4/ (S) < 9/7 - cut 4/(S) < 2cut4/(S). Here, the first inequality is due to the
fact that the flow problem injects 2/¢ units of flow for every border edge. The second inequality
follows because the total flow that can be absorbed at the vertices of S is at most T'(.S) and the
flow that can be send to A’ \ S is at most 2 cut4/(S) as each edge has capacity 2/¢. The final

i @
step uses Equation
Finally, we obtain

% cut 4/(.5)

v

ﬁ(cutA/(S) + 2cuta(5)) + ﬁ CutA/(S)
ﬁ(cutA/(S) + border 4/(S)) + borderA/(S)
> volg(S) + wborder 4/ (S) > VolG[A/ w(S)
as desired. O

v

Running time. The running time of the cut-matching step from Lemma |4.8/is O(mlogm/¢).
The running time of the trimming step from Lemmais O(logm|Eg(A, A)|/$?) = O(mlogm/¢)
by Equation (I)). Hence, the total running time is O(mlogm/®).

16

input :graph G = (V, E), cluster U C V, parameters «, ¢
output : partition U = (Uy, ..., U) of U, expansion bounds ¢1, ..., ¢k

define U to contain only U as an active cluster;
while 3 active sub-cluster in U do

: Zact. iout(Ui>/Zact. lVOl(UZ)) ¢}7

for U, € U do expands(U;, ¢) « false;
while 3 active cluster U; with expands(U;, ¢) = false do

1
e max { 1
¥ 8Yonmp logg m

apply cut-matching + trimming from Lemma to G[Uj] /e
case 1: replace U; by active sets A and A in U;
case 2: expands(A, @) < true; // A is p-expanding, w.h.p.

replace U; by active sets A and A in U;

end
for every active set U; € U do
if out(U;) < 80vomp log* m - pvol(U;) then // check Property
bi ¥; // set expansion bound for U;
deactivate Uj; // U; fulfills Property (w.h.p.) and
end
end

end
Algorithm 1: An algorithm to compute an («, ¢)-expander decomposition.

4.2 The Algorithm

The algorithm maintains an expansion parameter ¢ and a partitioning U that initially just
contains the set U (i.e., the cluster U C V on which we startet the algorithm) as an active
cluster. Recall that volg(U) = m. Then the algorithm proceeds in rounds, where a round is
an iteration of the outer while loop. During a round the algorithm tries to certify for all active
clusters U; in U that G[U;]*/¢ is p-expanding. For this it uses the cut-matching+trimming
algorithm from Lemma with parameter ¢ on the graph G[U;]*/¥. From Lemma there
are two possible outcomes:

Case 1. The framework finds a sparse fairly balanced cut (A, A). Then the algorithm just
replaces U; by A and A in U.

Case 2. The framework finds an unbalanced cut (A4, A) and concludes that the larger part A
forms a @-expander. Then the algorithm replaces U; by A and A and remembers the conclusion
that A is expanding, i.e., the algorithm will not work on A again during a round.

After the algorithm has determined that w.h.p. all active clusters in U are p-expanding it
checks for every cluster whether Property [3] from Definition [4.2] of the boundary-linked expander-
decomposition holds. If this is the case for a cluster U; the algorithm sets ¢; to the current value
of ¢ and deactivates the cluster.

The algorithm then proceeds to the next round (possibly increasing) and continues until
no active clusters are left. Algorithm [I] gives an overview of the algorithm.

17

4.3 The Analysis

In the following we assume that all conclusions by the algorithm that are correct with high
probability are indeed correct.

It is clear that when the algorithm terminates all clusters fulfill Property [2] and Property [3]
i.e., we only have to prove that the partition U/ fulfills Property [I| and that the algorithm indeed
terminates.

Let for a subset X ivolg(X) := >, cx out {z} denote the internal volume of the set, i.e., the
part of the volume that is due to the edges for which both endpoints are in X. In the following
the notation cuty(A), borderyr(A), and out(A) are always w.r.t. the graph G. Further we use
Z :=logy(vol(U)) as a shorthand notation. For x € V' we use cluster(x) to denote the cluster
from the partion U that x is contained in. If x ¢ U then this evaluates to undefined.

In order to derive a bound on Y%, out(U;) we proceed as follows. We distribute an initial
charge to the edges incident to vertices in U. Whenever we cut edges, i.e., we partition a subset
U; into A and A we redistribute charge to the edges in the cut. In the end we compare the charge
on edges leaving sub-clusters to the initial charge and thereby obain a bound on Y, out(U;). In
addition we will redistribute charge whenever we adjust the value of ¢ in the beginning of a
round. However, importantly we will never increase the total charge, hence, in the end we can
derive a bound on the number of cut-edges by comparing the charge on a cut-edge to the total
initial charge.

We call one iteration of the outer while-loop a round of the algorithm. Let R denote an
upper bound on the number of rounds. Later we will show that R < log, m. For any round
r < R, we maintain the following invariant concerning the distribution of charge on the edges
that have at least one end-point from the set U:

border edges

An edge (u,v) for which not both endpoints are in the same sub-cluster of U is
assigned a charge of fp(r)(Z+logy(ivol(cluster(x)))) for each end-point x € {u,v}NU.
We call a charge active if it comes from an endpoint within an active cluster. This
means that an edge could be assigned active as well as inactive charge.

internal edges

An edge (u,v) for which both endpoints are in the same sub-cluster U; of U is
assigned an active charge of fr(r)logy(ivol(U;)) if this cluster is active. Otherwise, it
is assigned a charge of 0.

We refer to the charge on border edges as border charge and to the charge on internal edges as
internal charge. The factors fr(r) and fp(r) in the above definition depend on the round and
are chosen as follows:

fB(r)=2R—r
J1(r) = 4ver Z fB(r) (7).

Recall the parameter yoyp = O(log?m) from the cut-matching + trimming algorithm in
Lemma [£.7 When we call the algorithm from Lemma [£.7] with conductance parameter ¢
then the non-empty cuts returned in have conductance at most youpp. Below, let ¢(r) denote
the value of ¢ during round r. For technical reasons we also introduce a round r = 0, which is
the beginning of the algorithm. We set ¢(0) = ¢. This gives that the total initial charge is

initial-charge = fp(0) - b+ (Z + logy(ivol(U))) 4+ 4vemp Z f5(0)(0) - ivol(U) logy (ivol(U))
<4RZ - b+ 8yempRZ? - pm.

18

The following claim gives Property [I| provided that we can establish the above charge distribution
without generating new charge during the algorithm.

Claim 4.12. Suppose that no charge is generated during the algorithm. Then at the end of the
algorithm 3, out(U;) < 4b + O(log® m) - ¢m, i.e., Property [1] holds.

Proof. Observe that in the end every inter-cluster edge will have a charge of at least fp(R)Z >
RZ. Therefore Y, out(U;) < %z’nitial-ch&rge <4b+ 8yeypZ - ¢m = 4b + O(log®m) - ¢pm . [

Observe that the number of rounds performed by our algorithm is not important for the
above claim. This is only important for the running time analysis.

No charge increase during a round. The main task of the analysis is to establish the
charging scheme and to show that we do not generate charge throughout the algorithm. We first
show that we do not generate charge during a round.

Suppose Lemma finds a cut of conductance at most yoyp - @(r) within the graph H :=
G[U;]*/#("). This means we have a set S C U; with

cuty, (S) < yomr - @(r) - min{voly (S), volg (U; \ S)} .

W.lLo.g. assume that ivol(S) < ivol(U; \ S). Then

cuty, (S) < Yomr - @(r) volg (S) = vour - (1) - (ivol(S) + ﬁ bordery, (S)) .

By performing the cut, every edge that contributes to bordery, (S) reduces its required charge
by at least fp(r) because one of its endpoints reduces the internal volume of its cluster by a
factor of 2. A similar argument holds for the edges with both endpoints in .S, which reduce their
required charge by at least fr(r). This means we obtain a charge of at least

fB(r) - bordery, (S) + fr(r) - ivol(S) (3)

that we can redistribute to the edges in the cut so that these fulfill their increased charge
requirement. The new charge for the cut edges (i.e., edges in T'¢(S,U; \ S)) is at most

fB(r)(Z +logy(ivol(5))) + fp(r)(Z + logy(ivol(U; \ 5))) < 4f5(r)Z,

where Z = logy(vol(U)). This means the new required charge is

Afp(r)Z - cuty,(S) < 4vemr fB(7)Z - (p(r) ivol(S) + abordery, (S))
< AvyowpaZ fp(r) bordery, (S) + 4vemp (1) Z fB(1) ivol(S)

< f5(r) - bordery, () + f1(r) - ivol(S) ,

where we want to ensure the last inequality so that the new charge on cut-edges is at most the
charge that we have for redistribution according to Equation [3] We ensure the last inequality by
requiring that

dyonpaZ <1

as a precondition of the theorem and by setting

J1(r) == 4vene fB(1) Zp(r).

This shows that we can redistribute enough charge to border edges and the total charge does
not increase.

19

No charge increase between rounds. Let I denote the index set of active clusters at the
start of round r. At the beginning of a round all border edges decrease their charge as fp(r)
decreases. If we choose ¢(r) = ¢ then the charge on internal edges does not increase because in
the previous round we had ¢(r — 1) > ¢ and the charge on an internal edge is increasing with .
Hence, we only need to consider the case if ¢(r) is chosen larger than ¢ and hence

r)= ——— out (U, vol(U,
4,0() 8Yemr RZ ; ;

For this case we show that the decrease in charge on active border edges is more than the
increase in charge on internal edges. This is sufficient as only active internal edges increase
their charge. Every edge in the boundary of an active cluster U; decreases its charge by at least
(fB(r —1) — fB(r))Z > Z. This means the border charge decreases by at least Z > ;. out(U;).

What is the total internal charge? Every edge inside an active cluster U; is assigned a charge
of fr(r)logs(ivol(U;)). Recall that we set internal charge of inactive cluster to be zero. Therefore,
the total internal charge is

internal-charge = fr(r ZIVOI) logs (ivol(U;))
el

< 4dveur fB(7 : Z ivol(U,

i€l (4)
< 8’}/CMPRZ 90 Z VOl

iel
=7 Z out(U;)
iel

where the last step follows by the choice of (7). This means the reduction of charge on border
edges is even lower bounded by the total internal charge (not just the increase of internal charge).
Hence, the overall charge is not increasing.

Bound on the number of rounds. In order to keep the total number of rounds small we
guarantee that the active volume, i.e., >, vol(U;) decreases by a constant factor between two
rounds. In order to guarantee this we first show that the choice of ¢(r) fulfills the following
inequality.
active-charge < 40youp R2Z? ~(r Zvol (5)
i€l
The active charge consists of the total internal charge and the active border charge. Equation
gives that
internal-charge < 8youpRZ? - ~(r Zvol
i€l

The active border charge is

active-border-charge = fp(r Z out(U;)(Z + logs (ivol(U;)))
iel

<2fp(r ZZout) < 4RZZout (6)
iel el

< 3270MPR 72 o(r ZVO]
i€l

where the last inequality follows as the algorithm chooses ¢ > W Sierout(Us) /> e vol(Uy;).
Combining both inequalities gives Inequality [f]

20

Claim 4.13. The term ;.7 vol(U;) decreases by a factor of at least 1/2 between two rounds of
the algorithm. This gives that R < log, m.

Proof. The active charge on a boundary edge is at least RZ. Since we do not generate charge
during a round and we do not redistribute inactive charge we obtain that at the end of the round

1 1
Z-GZI, out(U;) < ﬁactive—charge’ < ﬁactive—charge < 40vemp RZp(r) ; vol(Uy;)

= 40vemp RZ (1) Z vol(U;)
el

where I’ denotes the set of active cluster after the first inner while-loop (i.e., before we start
deactivating clusters). We use active-charge’ to denote the active charge at this time. The last
equation holds because the active volume does not change during the first while-loop.

Now a simple averaging argument gives that the volume in “bad” clusters (i.e. active clusters
that have 80ycwp(r)RZ vol(U;) < out(U;)) is at most half of the active volume. These are the
clusters that make it to the next round. Hence, the claim follows. O

Running time. We first derive a bound on the running time of a single round. When we apply
the cut-matching+trimming algorithm from Lemma to a subgraph G[U;]" we can charge
the running time to the edges in G[U;]". We charge O(é logm) = O(% logm) to every edge.
Whenever we charge an edge e at least one cluster U; that contains an endpoint of e changed.
We either set expands(U;, ¢) < true for this cluster (and, hence, stop processing this cluster for
this round) or volg(U;) decreases by a (1 — 1/log?m) factor. This implies that an edge can be
charged at most O(log®m) times during a round.

It remains to derive a bound on the total number of edges in active clusters. Note that we
cannot simply use m as an upper bound because the algorithm acts on sub-cluster G[U]", i.e.,
graphs where w self-loops are added for each border-edge.

The total number of border edges during a round is at most

initial-charge/ RZ < O(b + Yemp Z dm)

because every border-edge has charge at least RZ.

For each such border edge we add w = [a/¢]| < 1/(YkrvZ¢) self-loops (where we use
¢ < a < 1/(yewrZ)). Therefore there are at most O(b/¢ + m) edges in all graphs G[U;]*/?.
Hence, the cost of a single round is only O(log* m(b/¢? +m/¢)). Since, the number of rounds is
logarithmic the running time follows.

5 Tree Flow Sparsifier From Expander Hierarchy

In this section, we show that an expander hierarchy of a graph G is itself a tree flow sparsifier of
G. Usually the concept of a flow sparsifier is defined for weighted graph. In order to simplify
the notation and keep it consisten throughout the paper our definitions and proofs only consider
unweighted (multi-)graphs. However the extension to weighted graphs is straightforward.

Multicommodity Flow. Given an unweighted (multi-)graph G = (V, E), let P be the set of
all paths in G. A multicommodity flow (that is also referred to as a flow) F is an assignment
of non-negative values Fp to all paths P € P. Each path in P has one of its endpoints being
the originating vertex, and the other endpoints being the terminating vertex. When we assign
the value Fp to the path P, we are sending Fp unit of flow from its originating vertex to its
terminating vertex. For two vertices v,v" € V, we denote by P, ,» C P the set of paths that

21

originate at v and terminate at v/, and we say that the amount of flow that F' sends from v to
v'is Y pep, , Fp. The congestion of the flow F' is defined to be congq(F) = maxcep{F(e)},
where F(e) is the total amount of flow sent along the edge e. Given a flow F on G and two
subsets A, B C V(G) of vertices, we define F'(A, B) to be the total amount of flow of F' that is
sent along an edge e € E(A, B) from its endpoint in A to its endpoint in B. Note that, however,
for two vertices v,v" € V such that (v,v") € E, F({v},{v'}) can be smaller than the amount of
flow that F' sends from v to v'.

Cut and Flow Sparsifiers. Given a (multi-)graph G = (V, E) and a subset S C V of vertices,
let H = (V', E’) be a (multi-)graph with S C V(H). We say that the graph H is a cut sparsifier
of quality q for G with respect to S, if for each partition (A, B) of S such that both A and B are
not empty, we have mincutg (A4, B) < mincutg(A, B) < ¢-mincuty (A, B), where mincut (A, B)
(mincutg (A4, B), resp.) is the capacity of a minimum cut that separates the subsets A and B of
vertices in H (G, resp.). If H is a tree, then H is called a tree cut sparsifier.

Given a (multi-)graph G = (V, E) and a subset S C V of vertices, a set D of demands
on S is a function D : S x S — R>g, that specifies, for each pair u,v € V of vertices, a
demand D(u,v). We say that the set D of demands is 7y-restricted, iff for each vertex v € S,
> ues D(v,u) < yout(v) and 3, cg D(u,v) < yout(v), i.e., the demand entering or leaving v is
at most 7 times the number of edges leaving v. We call it y-boundary restricted (w.r.t. S) if
> ues D(v,u) < yborderg(v) and Y, cq D(u,v) < yborderg(v). Given a subset S C V and a
set D of demands on S, a routing of D in G is a flow F on G, where for each pair u,v € S, the
amount of flow that F' sends from u to v is D(u,v). We define the congestion n(G, D) of a set
D of demands in G to be the minimum congestion of a flow F' that is a routing of D in G. We
say that a set D of demands is routable on G if n(G, D) < 1.

We say that a graph H is a flow sparsifier of quality q for G with respect to S, if S C V(H),
and for any set D of demands on S, n(H, D) < n(G,D) < q-n(H,D). A flow sparsifier H of
G w.r.t. subset V(G) is just called a flow sparsifier for G. If H is a tree we call H a tree flow
sparsifier.

We will use the following lemma, which is a direct consequence of approximate max-flow
mincut ratios for multicommodity flows. The proof appears in Appendix [A]

Lemma 5.1. Given a graph G together with a subset S CV that is («, ¢)-linked in G. Then
the following two statements hold.

o We can route a ~y-restricted set of demands D on S with congestion O(%log m) inside

G[9).

o We can route a y-boundary restricted set of demands D on S with congestion O(Zlogm)
inside G[S].

The main theorem of this section is to show the following theorem that a («a, ¢)-EH of a
graph is automatically a tree flow sparsifier. It is well known that flow sparsifiers are a stronger
notion than cut-sparsifiers and that the quality of the two version may differ by a logarithmic
factor.

Theorem 5.2. The (a, ¢)-EH of an undirected, connected graph G with m edges forms a tree
flow sparsifier for G with quality O(slogm) - O(max{é, %}/atfl), where t denotes the depth
and s the slack of the hierarchy.

If we set ¢ = 27V1°6™ and so t = O(+/Iog m), then together with Corollary we immediately

obtain the following corollary:

22

Corollary 5.3. There is an algorithm, that, given any unweighted m-edge graph G, with high

probability, computes a tree flow sparsifier for graph G of quality O(log n)o(vlog”) in time
14o(1)

m .

Observe that stronger results than the above theorem are known because [RST14] gives a
polylogarithmic guarantee on the quality with a running time of O(m polylogm). However, our
approach here is simpler and because we are able to efficiently maintain an expander hierarchy
we also obtain a result for dynamic graphs. The main tool for proving Theorem [5.2] is the
following lemma that shows how to construct a flow sparsifier for a graph G if one is given a
flow sparsifier for some contraction Gy of G.

Lemma 5.4. Let G be an unweighted graph and U = (Uy,...,U,) be an (o, ¢)-ED of G with
slack s. Given a flow sparsifier Hy for the contracted graph Gy we can construct a flow sparsifier
H for G as follows:

1. Add vertices of V(G) to V(Hy).
2. Connect a newly added vertex v € U; to the vertex u; € V(Hy) with outg(v) parallel edges.

The quality qrr of the resulting flow sparsifier H is O((Z + é)slog m), where q denotes the quality
of the flow sparsifier Hy,.

Proof. For a given set D of demands on V(G) we use Dy to denote the projection of D to
V(Guy), i.e., for two nodes u;,u; € V(Gy) we define Dy (ui, uj) := 3 pcv, yev, D(@,y)-

We first show that for all demands D we have n(H, D) < n(G, D). Fix some demand D and
assume w.l.o.g. that the congestion n(G, D) for routing D in G is 1 (this can be obtained by
scaling).

For routing between two vertices x € U; and v € U; from H we split their demand into three
parts: © — u;, u; — uj, and u; — y. Doing this for all demand-pairs gives us three sets of
demands: the source demand D defined by Dg(z,u;) := 3 cv(q) D(2,y) (where z € U;), the
projected demand Dy and the target demand Di(uj,y) == 3 cv(q) D(x,y) (where y € U;). We
route theses demands in H as follows.

e The source and target demand can be routed in H via the edges that were added in Step
The total traffic that is generated on the edge (x,u;) is the total demand that leaves or
enters vertex x in D. However, the latter is at most outg(z) as otherwise the demand
could not be routed in G with congestion 1. Hence, the congestion caused by this step in
H is at most 1.

e The projection demand D;; can be routed only along edges belonging to Hy,. Clearly, this
demand can be routed in Gy, with congestion at most 1, and, hence, it can also be routed
in Hy; with congestion at most 1 as Hy, is a flow sparsifier for Gy,.

Observe, that the edges used for routing in the above two steps are disjoint. Hence, we can
concurrently route demands Dy, Dy, and D;; with congestion 1, and, hence, we can also route D
with this congestion.

Now, we show that n(G, D) < g -n(H, D). Fix some demand D and assume w.l.o.g. that
n(H,D) = 1. From this it follows that we can route the projected demand D;; in H;; with
congestion 1. Since, Hy, is a flow sparsifier for Gy, (with quality ¢) this implies that we can also
route Dy in Gy with congestion q.

In the following we describe how to extend a routing F for the demand D;; in Gy to a routing
of D in G. In a first step we map the non-empty flow paths of F' to G (note that the edges of
the contracted multigraph Gy, also exist in G; we simply map the flow from edges in Gy to the

23

corresponding edge in G). Consider such a flow path u; = us,, us,, ..., us, = u;. In G its edges
connect subsets Uy, Us,,...,Us, but they do not form paths. For example we could have an
edge e = (z1,z2) followed by an edge € = (a5, x3), with z1 € Us,, 2,25 € Us,, and 23 € Us,. In
order to obtain paths in G we have to connect x5 to 4. Performing this reconnection step for all
routing paths from F' induces a flow problem for every cluster U;. The total demand (incoming
and outgoing) for a vertex z € U; in this flow problem is the total value of all flow-paths that
x participates in. But this can be at most ¢ bordery, (v) as each of these flow paths uses an
edge incident to z that leaves U; and the congestion is at most ¢g. Since U; is («/s, ¢/s)-linked
and this set of demands is ¢g-boundary-restricted, by Lemma [5.1] we can route such a set of
demands in G[U;] with congestion O(Zslogm). As all clusters U; are vertex-disjoint, performing
all reconnections results in congestion O(Zslogm).

We also map the empty flow paths of F' to empty paths in G as follows. A u; — u; path
in F' is mapped to x — x paths in G with = € U; such that the total flow that starts at a
vertex = (including empty paths) is exactly 3, cy (g D(,y). This can be obtained because
>oyevia) Du(ui, y) = 3 peu, 2yev(q) P(@, y) and because F' routes demands Dy.

Let D’ denote the set of demands routed by the flow system that we have constructed so
far. Observe that D’ has the same projection as our demand D, i.e., D;, = Dy. The following
claim shows that one can extend a routing for D’ to a routing for D with a small increase in

congestion.

Claim 5.5. Suppose we are given ~y-restricted demands D and D’ that fulfill D;, = Dy and
assume that D’ can be routed with congestion C’. Then we can route D with congestion at
most O(C' + sv/¢ - logm).

Proof. Since, the projection of demands D and D" are equal we know that 3>, ,)ep, xU; D(z,y) =
Z(Z‘,y)eUiXUj D'(x,y). We successively route D using the flow-paths of the routing for D’. For
every pair (z,y) that we want to connect in D we find portals (2, y") € U; x U; that are connected
in D'. Then we add flow paths from z to 2’ and from 3’ to y. Formally, we use the following
algorithm to compute a demand R’ such that D’ together with R” can route D.

R <+ D;

R «+ D;

while 3z € U;,y € U; with R(x,y) > 0 do
choose 2’ € U;,y' € U; with R'(2/,y/) >0 ; // choose pair of portals
decrease R(z,y) and R'(2',y') by € ; // route flow € via pair (z,y)

increase R"(z,2") and R"(y',y) by ¢;
// R" stores demand for connecting to portals
end

The demands in R” are just between vertex pairs inside clusters U;, i € {1,...,s}. The total
demand that can enter or leave a vertex v (in R”) is at most 2y oute(v), because each such
demand either occurs in R” because v is used as an original source/target for demand in D or
as a portal (i.e., as a source/target of a demand in D’). Since, both D and D’ are 7-restricted
we get that R” is 2vy-restricted. Therefore, we can route R” with congestion O(sy/¢ - logm) by
Lemma using the fact that each U; is (a/s, ¢/s)-linked. O

Using the fact that demands D and D’ are O(1)-restricted we can route D with congestion
at most g = O((2 + 3)logm). This gives the bound on the quality of the sparsifier H. [

(67

Proof of Theorem Let (G°, G, ..., G") be some (o, ¢)-expander decomposition sequence
with slack s and let T' denote the associated («, ¢)-expander-hierarchy. Recall that G+ is
the contraction of G* w.r.t. some (a/s, ¢/s)-linked partition i; of G, i.e., Gl = Gia Gt

24

corresponds to the root of the tree and consists of just a single Vertexﬂ while G is identical to
G. Let T>; denote the subgraph of 7" that just contains vertices that have at least distance i to
the leaf-level, i.e., T>; is just the single root vertex and T>¢ = 7. Note that the leaf vertices in
Ts; are the vertices on level i, which correspond to the nodes in G*.

Let ¢ denote the hidden constant in Lemma and define a := ¢ logm and b := %f log m.
This means g < aq + b in Lemma We show by induction that T5; is a sparsifier for G
with quality b“ta__lfl + a'~%. This clearly holds for i = ¢ as then both graphs are identical (just a
single vertex) and, hence, T>; is a sparsifier of quality 1. Now assume that the statement holds
for i +1 > 0. We prove it for i. We want to show that T%; is a sparsifier for G*. We know that
Ts;41 is a sparsifier for Gt = Gzi/,i; in addition T%; is obtained from 7%;11 by adding vertices
of V(G*) and attaching each vertex v € V(G?) to the leaf vertex in T>;41 that corresponds to
the cluster in U; that contains v. This means we can apply Lemma and obtain that T>; is a
sparsifier for G* of quality

t—i—1 1) t—i _q)
a (ba + a“1> tb=b1 " 4alt
a—1 a—1

Hence, for i = 0 we obtain that T = T5¢ is a sparsifier for G = G. The quality is
b% + a' = O(c's' log" mmax{1, %}/at_l). This finishes the proof of Theorem O

6 Fully Dynamic Expander Pruning

In this section we prove the following theorem, which generalizes Theorem 1.3 in [SW19).

Theorem 6.1 (Fully Dynamic Expander Pruning). Let 0 < o, ¢ < 1 and o/¢p < w < 3/(5¢).
There is a deterministic algorithm that given a graph G = (V, E), a cluster U C V' such that
G[U]" is an ¢-expander, and an online sequence of k < ¢ volgyw(U)/120 edge updates, where
each update is an edge insertion or deletion for which at least one of the endpoints is contained
in U, maintains a pruned set P C U of vertices such that the following property holds. For each
1 <i<k, let G; = (V,E;) be the graph after the ith update, and denote by P; the set P after
the i-th update. We have

1. Py=10, and P, C P;y1.
2. volge (P;) < 32i/¢, and |Eq(P;,U \ P)| < 16i.
3. |Eq(P;,V\U)| < 16i/a.
4. The graph G;[U \ P;]* is an (¢/38)-expander.
Moreover, the total running time for updating Py, ..., Py is O(klogm/¢$?).

While the proof of Theorem is similar to the proof of Theorem 1.3 in [SW19], there
are subtle differences as we need to work with a cluster in a graph and not the whole graph,
and more importantly, we need to show that a stronger notion of a graph defined on a cluster
remains an expander.

Our algorithmic construction behind Theorem uses Incremental Flow algorithm from
Lemma as a subroutine. Concretely, let G = (V, E) be a graph and let U C V' be a cluster
that is G[U]" is an ¢-expander. Let II = (A, T, ¢) be a flow problem defined on G[U]" with

8For simplicity we assume that G is connected; the proof easily generalizes to graphs with several connected
components.

25

A(v) =0 for all v € U, T'(v) = deggyw(v) for all v € U and c(e) = 2/¢ for all e € E(G[U]Y).
We give G[U]" and II as inputs to the Incremental Flow algorithm of Lemma

We next show how to handle updates in G. Consider the insertion or deletion of an
edge e = (u,v) in G for which at least one of the endpoints is contained in U. For each
endpoint w € {u,v} of e such that w € U, we add 8/¢ unit of source mass at w, i.e., we set
A(w) = A(w) + 8/¢, and pass these source injecting operations to Incremental Flow. This
completes the description of an iteration and the algorithm.

We next verify that the above algorithm satisfies the properties of Theorem [6.1} To prove the
first property, note that from the Incremental Flow, it is clear that the maintained incremental
set P satisfies Py = (), and P, C P;yq for all 1 < i < k and thus P C U serves as a pruned
set in Theorem Next, observing that (i) >,y A(v) < 16i/¢ after i edge updates and (ii)
mine{c.} = 2/¢, and using the second guarantee of Incremental Flow in Lemma we get that
volgue (F) < 32i/¢ and |Eg(P;, U\ P)| = |Egjue (P, U \ P;)| < 164, thus proving the second
property of Theorem [6.1]

The third property, i.e., the bound on the connectivity between the pruned set P; and V' \ U,
is proved in the lemma below. Throughout, recall that k < ¢ volgjw (U)/120 from Theorem [6.1

Lemma 6.2. Let P; be the pruned set. Then |Eq(P;,V \U)| < 16i/c.

Proof. By the second guarantee of Incremental Flow in Lemma we have that
volgue (Fi) < 2 16k/¢ < volgw (U)/2, (7)

and
|Ec(P;, U\ B)| = |Eguye (P, U\ B)| £2-16/¢ - ¢/2 = 16i. (8)

As G[U]" is an ¢-expander, it follows that volgiw(Pi) < 1/¢ - |Eq(P;, U \ P;)|, and thus
volguyw (P;) < 16i/¢. Moreover, volgw(F;) > w - [Eq(P;, V \ U|) by definition of G[U]".
Combining these two bounds and since w > a//¢, it follows that |Eq(P;, V \ U)| < 16i/(¢w) <
167/ . O

It remains to show the fourth property, i.e., the graph G;[U \ P;]* is an (¢/38)-expander for
all1 <i < k.

Lemma 6.3. Let a/¢p < w < 3/(5¢). The graph G;[U \ P;|* is an (¢/38)-expander.

We will prove the above lemma through several steps. We start by bounding the total amount
of mass injected in any subset of the cluster U \ P;. To this end, let A := U \ P; be the cluster
after pruning the set P;. The Incremental Flow subroutine guarantees that the flow problem
(A", T',) is feasible on G[U]*[A]'f] where A(v) = A(v) +2/¢ - |{e € Eq(P;, A) | v € e}| (it
is crucial to note here that the flow problem is defined on G[U]“[A]! and not on G;[U]*[A]'),
and 7"(v) = degg)w (v) for all v € A and ¢(e) = 2/¢ for all e € E(G[U]Y[A]Y). Let A'(S) :=
> ues A(u) be the total amount of source mass in S. We next prove a proposition, which will
be instrumental in proving Lemma [6.3}

Proposition 6.4. For any set S C A, A'(S) < volgp(S) + %]E(;(S, A\ S)|.
?To explain the notation, let H = G[U]Y. We have G[U]*[A]* = H[A]".

26

Proof. Consider a feasible flow f for the flow problem (A’ T”,¢') defined on G[U]“[A]'. Recall
that f(v) = A'(v) + >, f(u,v) and f(u,v) = —f(v,u). It follows that

A(S) = Z[+quu}

vES
< Z T (v) + Z c(e)
veS eEEG[U]w (S,A\S)
= volguyw (S) + 3|Ec(S, A\ S)|. D
In order to leverage the ¢-expansion of the graph G[U]Y, the following lemma shows how

to relate the volume of a subset defined on G;[A]* with the volume of that subset defined on
GlU™.

Lemma 6.5. Let S C ACU. [fVOlGi[A}w(S) < %VOIGi[A}w(A), then VO]G[U]w(S) < gVOIG[U]w(.A).

Proof. From Equation , note that volg(yjw (A) = volgyye (U) — volgw (Pi) > volgye(U)/2,
which in turn implies that k& < ¢ volgyyw(A)/60. We also have that |Eg, (FP;, A)| < [Eg(F;, A)| +
k < 17k by Equation . It follows that

VOle[U}w(S) S VOlGi[U]w(S) + wk (| VOIG U]w() — VOIG U ()’ < wk:)
< volg, 4w (S) + wk (since A C U)
< $volg, (4 (A) + wk (by assumption of the lemma)
< 3 (volg, e (A) + w|Eg, (P;, A)|) + wk (by definition of G;[A]")
< Q(VOIG[U]M (A) + wk + 17Twk) + wk (‘ VOIG [U]w (A) — VOlg[U]w (A)’ < wk)
< 3 volgjw (A) + 10wk
S % OIG (A) 10 VOIG [U]w (A) (k S ¢VOlg[U]w(A)/60 and w S 3/(5¢))
< 3 volgjuye (4) O

Before proceeding to the proof of Lemma [6.3] we introduce some useful notation. Fix an
arbitrary subset S C A. Let a := |Eg(S, P;)| and ¢ := |Eg(S, A\ S)| be the number boundary
edges of S that cross different parts in the original graph G. Similarly, let o’ := |Eg, (S, P;)| and

= |Eg,(S, A\ S)| be the boundary edges of S that cross different parts in the current graph
Gi. Let vy 1= volgaw (), vy = volguw (S) and vy, := volg,apw (S), vy, := volg, e (S). Note
that by Proposition we have that A'(S) < v, + %c.

Proof of Lemma[6.3 Recall that A = U \ P; and consider any S C A such that volg, (A] w(S) <
volg;, (4w (A)/2. To prove that G;[A]" is an (¢ /38) expander, we need to show that |Eg, (S, A\
)| = (6/38) - volas o (S), icen ' = (6/38) -v

To this end, we first show a useful relation using the ¢-expansion of G[U]". As volg, (4= (S) <
volg;, 41w (A)/2 holds, by Lemma [6.5(we have that volge (S) < %VOIGU]]w (A). From the latter
we get VOlg[U]w (A\S) = VOlg[U]w (A) —VOlg[U]u;(S) > %Volg[U]w(S)—VOIGW]w (S) > VOlg[U} (S)

Therefore,

|Ec(S, P)| + [Eq(S, A\ S)| = [Egu« (S, U\ S)|
> ¢ - min{volgw (S), volgnw (U \ S)}
= ¢ - min{volg(y]w (S), volguw (A \ 5)}
> 2¢ - volgw (9),

27

or %a + %c > vy. The latter, together with Proposition implies that the total amount of
source mass in S is bounded by

A'(S) < v, + %c < %a + %c. (9)

Now, by construction, recall that our algorithm increases the source mass of the endpoints in U
from the inserted and deleted edges by 8/¢. Moreover, by the first property of Lemma the flow
problem (A’ T’ ¢') on G[U]*[A]! is feasible. These together imply that A’(S) > %a - %\v; — Uy,
A'(S) > %aJr %|a’ —al, and A'(S) > %aJr %|c’ — ¢|. We claim that

o, = vl la’ — al, ¢ — o] < ¢/2, (10)
for otherwise A’(S) > %a + %(0/2) = %a + %c, which contradicts Equation @ Since %a <
A'(S) < éa + %c, we get that a < 3c. It follows that

Vg = Vol (S) < volg,juw (S) + w - |Eg, (S, P)| (by definition of G;[A]")

Equation (10])
Uy < %a + %c and w < 3/(5¢))

—~~ o~

< 17?0 a<Tc)
< %c’ , Equation (10])
what we wanted to show. O

Finally, we analyse the running time. Note that over the course of the algorithm, there are
at most k = ¢ volgyyw (U)/120 iterations and thus the total amount of mass >,y A(v) injected
in the graph G[U]" is at most 16/¢ - ¢ volgjy)= (U)/120 < volgyw(U)/3. The latter implies
that the condition on the total mass of Lemma [3.2]is met and by the same lemma we get that
the running time is bounded by O(cmax > ey A(v)logm) = O(klogm/¢?). This completes the
proof of Theorem [6.1]

7 Fully Dynamic Expander Hierarchy

In this section we deal with an undirected unweighted (multi-)graph G that undergoes a sequence
of fully adaptive vertex and edge updates with the restriction that only isolated vertices may be
deleted.

We assume that at any time G contains at most n vertices and at most m = poly(n)
edges. Further, we fix the following parameters throughout this section: ¢ = 9~ 6(log®/*),
P = 90(log!?n) o — 1/ poly(logn) and we let h = log,,(m) = O(log'/?7) and p = 38" /a. The
main result of this section is the following theorem.

Theorem 7.1. There is a randomized algorithm, for maintaining an («, ¢)-expander hierarchy
of G with slack 2108 %(") 4 amortized update time 90 (log® (1)

The above theorem is based on the following theorem that shows that one can efficiently maintain
an expander-decomposition.

Theorem 7.2. There is a randomized algorithm that maintains an (o, ¢)-expander decomposition
U of G with slack 38" together with its contracted graph Gy with the following properties:

28

— update time: O(1) - 382" /$?)
— amortized recourse (number of updates to Gy): O(P) = 0(38h “Y/a) .

With the help of Theorem [7.2] we obtain Theorem [7.1] almost immediately.

Proof of Theorem[7.1. We maintain an («, ¢)-expander decompositions sequence (G, ..., G?)
with slack 38". For this we use algorithms Al, ... ,fltmx, where tax = 90(0g"/*7) jg an upper
bound on the depth of the sequence for our choice of ¢. The algorithm A; observes the updates
for graph G*~!, maintains an («, ¢)-expander decomposition /*~! with slack 38" on this graph
and generates updates for the contracted graph G' := Gy i—1. The graph G° corresponds to the
input graph G. The depth t of the maintained expander-hierarchy is determined by the first
graph G! in this sequence that does not contain any edges.

Because of the bounded recourse the number of updates that have to be performed for a
graph G* in this sequence is at most O(p)ik, where k is the length of the update sequence for

G = G°. This results in a total update time of O(k Y, p'v38%" /¢?) = j;20(log®/* 7). O

7.1 Fully Dynamic Expander Decomposition

In this section we prove Theorem [7.2] The theorem follows from the following main lemma.

Lemma 7.3 (Main Lemma). Suppose a graph G initially contains m edges and undergoes a
sequence of at most O(¢m/p) adaptive updates such that V(G) < n and E(G) < m always hold.
Then there exists an algorithm that maintains an («, ¢)-expander decomposition U with slack
38" and its contracted graph Gy with the following properties:

update time: O(1) - 382" /$?)
preprocessing time: O(m/¢)

Lo o =

initial volume of Gy (after preprocessing): O(¢m)
4. amortized recourse (number of updates to Gy): O(p) = O(38" -1 /a).

Proof of Theorem [7.2. We simply restart the algorithm from the above lemma whenever an
update appears that would exceed the update limit. This means we have to perform this after
Z = 0©(¢pm/p) + 1 updates.

We have to analyze how this increases the update time and the recourse. First observe
that before a restart the number of edges can be at most m + Z. Thus, the restart requires
preprocessing time O((m+ Z)/¢). Amortizing this against the Z updates increases the amortized
update time by O(%) =0(m/(¢Z) +1/¢) = O(p/d?) = O(¢ - 382" /$?), where the last step
follows because o = O(38").

The amortized recourse increases as follows. Observe that before the restart the total
number of edges in Gy, is at most O(qﬁm + Zp), because we only experienced Z updates and the
amortized recourse is O(p). We delete all these edges. Then we perform a preprocessing step.
Since we have at most m + Z edges in G, Property 3 from the above lemma guarantees that
this step inserts at most O(é(m 4 Z)) edges. Overall this increases the amortized recourse by
O((¢m + Zp + ém + 6Z)/Z) = Olém/Z + p) = O(p).

This means the restarts only increase the recourse to O(p). O

In the remainder of this section we define the details for the ED-process, i.e., the algorithm
from Lemma [7.3]

29

Multi-level Pruning

In order to define the details of the ED-process we first define a different process called Multi-level
Pruning. A variant of this process will serve as a sub-routine in the ED-process.

The input for the Multi-level Pruning process is a cluster U that is («, ¢')-linked for parameters
a, ¢’ that are known to the process. Then the process receives up to N < ¢/ volg(U)/p many
updates for G that are relevant for U, i.e., updates of edges for which at least one endpoint is in
U. We will refer to N as the update limit. The process maintains a collection of pruned sets
P!, .., P"such that U \ U, P* is (o/38", ¢/ /38")-linked in G. Here h = [log,(N)] < h.

The pruned sets are generated by a hierarchy of algorithms Ay, ..., A;. The algorithm Ay
maintains a set P® and from time to time it changes P*® to the current value of P*. In this
respect P* is a “snapshot” of P* from an earlier time step. In the following Pts and P} denote
the sets P* and P* right after the ¢t-th update.

The precise relationship between P* and P* is as follows. For constructing/maintaining its
sets the level s algorithm Ag partitions the update sequence into batches of length

0. = N ifs=h
7] ¥ otherwise.

each of which is partitioned into sub-batches of length ¢s_1 (¢y = 1). The i-th batch on level s
contains updates number (i — 1)¢s + 1,...,ils. The j-th sub-batch of the i-th batch contains
updates (i — 1)s + (j — 1)ls_1 +1,...,(i — 1)ls 4+ jls_1. As in general N # " we allow the last
batch for an algorithm to be incomplete and contain less than £, updates.

The algorithm A, takes a “snapshot” of P*® at the start of every sub-batch. This means we
define P? := Pft Jlo—1]by1 if t does not start a new batch; otherwise P? := () as P} is reset at the
start of a batch.

How is a set P constructed? The construction of the set P# on level s depends on the sets
P, s > s Let Qf := Us>s P? and observe that this set does not change during a batch for
algorithm A,. At the beginning of a batch A, initializes P* := () (since this is also the start of a
sub-batch it means also P® = () at this point). Then it simulates a run of the algorithm for fully
dynamic expander pruning (Theorem on subset U \ Qf for the ¢ updates of the batch. For
this run it uses parameters o, := /38"~ and ¢, := ¢//38" % and w := a/¢'.

In order for the simulation to be valid we have to make sure that the preconditions of
Theorem are met. In particular we require that U \ Q5 is (as, ¢,)-linked and that the
number of updates in a batch is at most the update limit of the expander pruning algorithm in
Theorem [6.1]

Claim 7.4 (Correctness). For s € {0,...,h} the following properties hold.
1. U\ @ is (as, ¢))-linked;
2. 4y < ¢lvolg(U \ QF)/120 < ¢l vol(G[U \ Q35]")/120;

Proof. We prove the lemma via induction. For the base case s = /i the set QI is empty. Then
the above properties directly follow from the precondition of the input cluster U and the fact
that N < ¢’ volg(U)/p.

Now, suppose that the statement holds for s + 1. We prove it for s. From the fact that
the statement holds for s + 1 we are guaranteed that the simulation of the dynamic expander
pruning that is performed by algorithm Ay is valid.

Part 1 follows because U \ Qf is the unpruned part that results from the execution of
Theorem [6.1| by As;1. This theorem guarantees that G[U \ Qf]* is a (¢ps+1/38)-expander with
w = eq1/¢),, 1. But this also means that G[U \ Qf]" is a ¢s-expander with w = a/¢.

30

Theorem also gives the following property for PtS'H:

VOIG(PS+1) ¢/ £s+1 < ¢/ ¢s+1 volg (U \ QS+1)/120 <3 VOIG(U \ QS+1))

where Step 1 is due to Theorem [6.1] and Step 2 is due to induction hypothesis. Hence,

volg (U \ Qf) = volg(U \ Q™) — volg(PFth) > 1volg(U\ Q) .

We can use this relationship to obtain a bound on ¢4, which gives the second part of the claim.
We differentiate two cases. If s =h — 1 we get

ls < N < ¢'volg(U)/p = 38¢, volg(U \ Q;*1)/p < T6¢), vola(U \ @Q7)/p
< ¢, volg (U \ Q7)/120
where the equality uses the fact that U\ Qi = U for s + 1 =h. If s < h — 1 we have

ls = Lys1 /¥ < ¢y vola(U\ Q7)/ (1209) < 389 2vola(U \ Q7)/(120)
S (bs VO]G(U \ Qt)/120 9

for sufficiently large n as ¥ = w(1). This gives Part 2 of the claim. O

Claim [7.4] guarantees that a pruned set P is generated by a valid run of the expander pruning
algorithm from Theorem on cluster U \ Qf with parameters ¢}, as. Therefore it fulfills the
following properties guaranteed by this theorem.

Claim 7.5. A set P? fulfills the following properties.

1. volg(Pf) < 3205 /¢, = O(v*/) (from Property 2a in Theorem [6.1])
2. |Eq(P?, U\ Q; \ P! <160, = O(®) (from Property 2b in Theorem [6.1)
3. |Eq(P?,V\(U\ Q)| <16ls/as = O(Y*/as) (from Property 3 in Theorem [6.1])

4. OUtG(PtS) < 32€S/O[S = O(¢S/a5)

Proof. The first three properties are directed consequences of Theorem The last one follows
from Property 2 and Property 3 because outg(P!) = |Eq(PLV \ (U\ Q)| + |Eq(PL, U\ Q3 \
Pl 0

Claim 7.6. At any time, the cluster U \ U, P = U \ QY maintained by the multilevel pruning
process fulfills the following properties:

1. U\QY is (a/38h ¢ /38")-linked in G

2. vol(U \ @QY) > 1 volg(U).

3. cuty(Q?) < 48N.

Proof. Part 1 directly follows by applylng the above Clalm [7.4] for s = 0 and using h < h. For
the remaining parts first observe that Zs 1 s = Z -1 L4yp® + N < 3N. For Part 2 we estimate

VOIG(Qt) by
volg(QY) < 3, volg(PF) < 32,320,/¢. < 32-38"/¢/ - 3N < volg(U)/10 ,

where the second step uses Property 1 from Claim and the last step uses N < ¢’ volg(U)/p.
This implies volg(U \ QY) > volg(U)/2. Part 3 follows because

cuty(QY) = [Ec(QY, U\ Q)| = |Ec(U, P, U\ Q)| = S| Ec(P, U\ QY|
< SWEq(PE,UN\ Q)| < 32,160, < 48N

where the second inequality is due to Claim (Part . O

31

Expander Decomposition and Cluster Decomposition

The Expander Decomposition process (ED-process) for maintaining the expander decomposition
is a process that uses a variant of the Multi-level Pruning process as a sub-routine. We refer to
this variant as a Cluster Decomposition process (CD-process). The ED-process gets as input
a cluster U in a graph G, parameters «, ¢’ and a sequence of updates relevant for U. It first
computes an (a, ¢')-linked expander decomposition U of U using Theorem For each U; € U
with expansion parameter ¢; it then starts a CD-process on U; with parameters a and ¢;.

A CD-process is a Multi-level Pruning process with a slight tweak. Whenever, the Multi-level
Pruning process (with parameters «, ¢') as described in the previous section changes a set P?,
the CD-process starts an ED-process on this set (with parameters «, ¢').

There is one further complication in the definition of an ED-process, which concerns the
update limits of the CD-processes. An ED-process handles CD-processes for several clusters. It
may happen that one of the CD-processes on some cluster U; reaches its update limit N—we say
the CD-process expires. In this case if another update for the cluster appears the ED-process
does the following: it uses Theorem on the cluster U; with parameters «, ¢’ and starts a
new CD-process on each generated sub-cluster U;; (with parameters o, ¢;). We call this step a
restart of cluster Uj;.

There is one subtle issue about the above definition. The CD-process is recursive. The
non-recursive case happens when volg(U) < p/¢’. Then the CD-process has an update limit
N = |¢'volg(U)/p] = 0. This means any update triggers a restart of the CD-process, which
results in computing an expander decomposition for U from scratch.

Observation 7.7. The parameter ¢' passed to a CD-process or an ED-process on any level of
the recursion is at least ¢, where ¢ is the parameter for the root ED-process.

The following claim means that an ED-process automatically fulfills Property [2]and Property [3]
of an («, ¢)-boundary-linked expander de