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Abstract

Over the past decade, many results have focused on the design of parameterized approximation algorithms
for W[1]-hard problems. However, there are fundamental problems within the class FPT for which the best
known algorithms have seen no progress over the course of the decade; some of them have even been proved not
to admit algorithms that run in time 2O(k)nO(1) under the Exponential Time Hypothesis (ETH) or (c− ε)knO(1)

under the Strong ETH (SETH). In this paper, we expand the study of FPT-approximation and initiate a
systematic study of FPT-approximation for problems that are FPT. We design FPT-approximation algorithms
for problems that are FPT, with running times that are significantly faster than the corresponding best known
FPT-algorithm, and while achieving approximation ratios that are significantly better than what is possible in
polynomial time.
• We present a general scheme to design 2O(k)nO(1)-time 2-approximation algorithms for cut problems.

In particular, we exemplify it for Directed Feedback Vertex Set, Directed Subset Feedback
Vertex Set, Directed Odd Cycle Transversal and Undirected Multicut.

• Further, we extend our scheme to obtain FPT-time O(1)-approximation algorithms for weighted cut
problems, where the objective is to obtain a solution of size at most k and of minimum weight. Here, we
present two approaches. The first approach achieves 2O(k)nO(1)-time constant-factor approximation, which
we exemplify for all problems mentioned in the first bullet. The other leads to an FPT-approximation
Scheme (FPT-AS) for Weighted Directed Feedback Vertex Set.

• Additionally, we present a combinatorial lemma that yields a partition of the vertex set of a graph to
roughly equal sized sets so that the removal of each set reduces its treewidth substantially, which may
be of independent interest. For several graph problems, use this lemma to design cwnO(1)-time (1 + ε)-
approximation algorithms that are faster than known SETH lower bounds, where w is the treewidth of the
input graph. Examples of such problems include Vertex Cover, Component Order Connectivity,
Bounded-Degree Vertex Deletion and F-Packing for any family F of bounded sized graphs.

• Lastly, we present a general reduction of problems parameterized by treewidth to their versions
parameterized by solution size. Combined with our first scheme, we exemplify it to obtain cwnO(1)-time
bi-criteria approximation algorithms for all problems mentioned in the first bullet.

1 Introduction
Two algorithmic paradigms that have seen immense success in dealing with NP-hard problems are approximation
algorithms and parameterized complexity. In approximation algorithms, we design algorithms that run in
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polynomial time and output a solution with a provable guarantee on its quality. There is also a well-developed
theory of hardness of approximation, which allows us to trace the boundaries of tractability for approximation
algorithms.

On the other hand, the goal of parameterized complexity is to find ways of solving NP-hard problems more
efficiently than by brute force: here the aim is to restrict the combinatorial explosion to a parameter that is
hopefully much smaller than the input size. Formally, a parameterization of a problem is the assignment of an
integer k to each input instance, and we say that a parameterized problem is fixed-parameter tractable (FPT)
if there is an algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the size of the input and f
is an arbitrary computable function. Just as NP-hardness is used as evidence that a problem probably is not
polynomial-time solvable or polynomial-time approximable, there exists a hierarchy of complexity classes above
FPT, and showing that a parameterized problem is hard for one of these classes gives evidence that the problem is
unlikely to be FPT. In fact, assuming well-known assumptions such as Exponential Time Hypothesis (ETH) or
Strong Exponential Time Hypothesis (SETH), we can obtain qualitative lower bounds for FPT algorithms, that is,
lower bounds on f(k) in the running time of any FPT algorithm for some specific problem. For more background
on approximation algorithms and parameterized complexity, the reader is referred to the monographs and books
[17, 19, 25, 58, 64, 66, 26].

There is a plethora of problems for which, simultaneously, the non-existence of polynomial-time algorithms
with certain approximation ratios, as well as intractability within parameterized complexity, are known. These
intractabilities together motivate the desire for algorithms that runs in FPT-time, for the parameter in which the
problem is intractable, and at the same time beat the lower bounds on hardness of approximation that are proven
for polynomial-time algorithms. This leads to the world of FPT-approximation, which has been an extremely
active area of research in the last five years. For a minimization problem parameterized by the solution size
k, a factor-α FPT-approximation algorithm is an algorithm that runs in time f(k) · nO(1), and either correctly
concludes that there is no solution of size at most k or returns a solution of size at most αk. One can similarly
define the notion of parameterized approximation for maximization problems. When the parameter is structural
(e.g., the treewidth of the input graph), a factor-α approximation FPT-algorithm is just a factor-α approximation
algorithm that runs in FPT-time rather than in polynomial time.

Some of the notable problems that have been shown to admit FPT-approximation algorithms include Vertex
Minimum Bisection [22], k-Path Deletion [43], Max k-Vertex Cover in d-uniform hypergraphs [62, 53],
k-Way Cut [28, 29, 34, 52] and Steiner Tree parameterized by the number of non-terminals [20]. These
are just representative examples [16, 18, 20, 2, 22, 27, 28, 29, 34, 36, 42, 43, 53, 54, 55, 52, 59, 62, 65]. On
the other hand, several basic problems are shown to be even hard in terms of FPT-approximation. The
main ones include Set Cover, Dominating Set, Independent Set, Clique, Biclique and Steiner
Orientation [11, 33, 67, 14, 45, 46, 3]. For a comprehensive overview of the state of the art on Parameterized
Approximation, we refer to the recent survey by Feldmann et al. [23], and the surveys by Kortsarz [36] and by
Marx [55].

1.1 Our Context and Questions For all the parameterized problems mentioned above for which FPT-
approximation algorithms were developed, the parameter used to measure the running time of the algorithm is
one with respect to which the problem is known to be W-hard. In other words, most known FPT-approximation
algorithms are for problems that are intractable within parameterized complexity. A natural question is: What
about FPT-approximation for problems that are FPT?

Indeed, these problems hold a lot of promise and remain hitherto unexplored from the perspective of FPT-
approximation, with exceptions that are few and far between [8, 9, 24, 40, 56] (this list is not exhaustive). Our
guiding example in this regard is Treewidth. From as early as 1990, it is well known that given a graph G and an
integer k, we can test whether the graph has treewidth at most k in time 2O(k3)n [4]. While this algorithm has stood
the test of time and remains the best-known algorithm for the problem, several faster parameterized algorithms
have been designed that either return that the treewidth of G is more than k or return a tree decomposition of
width O(k) [61, 41, 60, 1]. In fact, in 2013, the first constant-factor FPT-approximation with running time 2O(k)n
was obtained [5]. The main idea of the paper is to replicate this success of Treewidth for other combinatorial
problems.

With this goal in mind, in this paper, we expand the study of FPT-approximation and initiate a systematic
study of FPT-approximation for problems that are FPT. We design FPT-approximation algorithms for problems



that are FPT, with a running time that is significantly faster than the corresponding FPT-algorithm (for an exact
decision version of the problem), and that achieves approximation ratios that are better than one can provably
achieve in polynomial time.

Since we plan to design FPT-approximations for FPT problems, two important questions that we need to
address are: (a) which problems within FPT are interesting to study from this perspective; and (b) for which
running times and factors of approximation should one aim?

1.1.1 Which Problems Within FPT? A central problem in parameterized algorithms is to obtain algorithms
with running time f(k)nO(1), such that f is a computable function of the parameter k that grows as slowly as
possible. In the last three decades, several problems have been shown to admit such algorithms or shown that no
such algorithms can exist under a plausible assumption. Moreover, several problems have been shown to admit
algorithms with running time of the form cknO(1); however, still, there is a plethora of problems for which the best
known algorithms run in time 2poly(k)nO(1), and have seen no progress over more than a decade. Also, there are
problems for which we can show lower bounds on f(k) under ETH or SETH (or other plausible conjectures). In
our opinion, these problems are the most natural candidates for designing FPT-approximation algorithms

For illustration, consider Directed Feedback Vertex Set (DFVS) parameterized by the solution size.
It is well known that it admits an algorithm with running time 2O(k log k)nO(1), and the parameter dependence
has not been improved since 2007, when Chen et al. [13] resolved this longstanding open question in the area
of parameterized complexity, although the dependence on the input size has been improved [50]. Similarly, a
decade ago Marx and Razgon [57] and Bousquet et al. [7], independently, settled the parameterized complexity of
Multicut on undirected graphs parameterized by the solution size, by designing an algorithm with running time
2O(k3)nO(1) (this is the running time of the algorithm given in [57]). However, there has been no improvement over
the function f(k) = 2O(k3) in the last ten years. These are examples of problems for which there has been little
to no progress in a long time. Other examples are those problems for which we have lower bounds on f(k)—for
example, DFVS and Vertex Cover parameterized by the treewidth w of the input graph (in case of a directed
graph, the treewidth of its underlying undirected graph). Indeed, Bonamy et al. [6] showed that assuming ETH,
DFVS does not admit an algorithm with running time 2o(w logw)nO(1). Moreover, Lokshtanov et al. [47] showed
that assuming SETH, there is no algorithm for Vertex Cover running in time (2 − δ)wnO(1), for any fixed
constant δ > 0. The field of Parameterized Algorithms is full of such examples [10, 32, 38, 47, 48].

We believe that studying the aforementioned central problems in parameterized complexity in the realm of
FPT-approximation will lead to the development of new algorithm design methodologies.

1.1.2 What Approximation Ratios and Running Times? As stated above, we must aim to design an
FPT-approximation algorithm that achieves an approximation factor that is not possible (under a plausible
complexity theoretic assumption) in polynomial time, and the function f(k) in the running time should be
asymptotically better than the best known bound to solve the exact decision version of the problem. For example,
DFVS parameterized by the solution size admits an algorithm with running time 2O(k log k)nO(1) [13], and the best
known polynomial-time approximation algorithm has factor O(logn log logn) [21]. Furthermore, under Unique
Games Conjecture (UGC), the problem does not admit any constant-factor approximation algorithm [30, 63, 31].
Similarly, Multicut on undirected graphs [57], parameterized by the solution size admits an algorithm with
running time 2O(k3)nO(1), and an approximation algorithm with factor O(logn) [44]. Assuming UGC, Chawla et
al. [12] showed that the problem does not admit any constant-factor approximation algorithm. A stronger version
of UGC leads to a lower bound of Ω(

√
log logn) [12]. Thus, for DFVS and Multicut on undirected graphs, a

desirable outcome will be a constant-factor FPT-approximation algorithm running in time 2O(k)nO(1).
For Vertex Cover parameterized by treewidth (w), an FPT-algorithm with running time O(2wn) is known;

on the other hand, assuming SETH, there is no algorithm running in time (2− δ)wnO(1), for any fixed constant
δ > 0 [47]. In the realm of polynomial-time approximation algorithms, the problem admits a simple factor-2
approximation, and assuming UGC, this approximation factor cannot be improved to 2−η, for any fixed η > 0 [35].
For this problem, a desirable FPT-approximation algorithm will be an FPT-AS (FPT-approximation scheme).
That is, for every ε > 0, a factor-(1 + ε) approximation algorithm running in time (2 − g(ε))wnO(1), for some
function g.



1.2 Our Results and Methods We classify our algorithmic results into following three classes based on the
methods involved in solving each of them.

• Basic cut problems such as DFVS, Subset DFVS, Directed Odd Cycle Transversal, and Multicut.
• Problems parameterized by the treewidth (denoted by w) of the input graph, including all aforementioned

problems, as well as Vertex Cover, Triangle Packing (or, more generally, F-Packing), and more.
• Weighted versions of cut problems such as Weighted DFVS and Weighted Multicut.

1.2.1 Two-extremal Separator Technique and Cut Problems Our main technical results for cut problems
are single-exponential-time factor-2 FPT-approximation algorithms for basic cut-problems such as DFVS, Subset
DFVS, Directed Odd Cycle Transversal (DOCT) and Multicut. In particular, we prove the following
results.

Theorem 1.1. Directed Feedback Vertex Set, Subset Directed Feedback Vertex Set, Directed
Odd Cycle Transversal (DOCT), and Multicut have 2O(k)nO(1)-time factor-2 approximation algorithms.

Lokshtanov et al. [51] gave the first factor-2 FPT-approximation for DOCT. However, the running time of their
algorithm is 2O(k2)nO(1), which we improve to a single-exponential FPT running time.

To obtain our results, we give a general technique for FPT-approximating cut problems that could be applicable
to further problems. Here, we illustrate this technique by describing its application to the DFVS problem. Recall
that in the optimization version of DFVS, one is given a digraph D and the goal is to find a vertex set S of smallest
size such that D − S is acyclic. A factor-2 FPT-approximation for DFVS is an algorithm that, given the pair
(D, k), runs in time f(k)nO(1) for some computable f and if D has a solution of size at most k, then it outputs a
solution of size at most 2k.

Our starting point is the well-known iterative compression method [17] which guarantees that in order to
obtain our result for DFVS, it is sufficient for us to give an algorithm that, given the pair (D, k) and a vertex set
W that is a solution of size at most 2k + 1, runs in time 2O(k+|W |)nO(1) and if D has a solution of size at most
k disjoint from W , then it outputs a solution of size at most 2k. In the base case, when |W | = 1, this can be
solved trivially in polynomial time. Hence, suppose that |W | > 1 and let S? be a smallest solution (with size at
most k) in D that is disjoint from W . Then, it is straightforward to see that there is an ordering w1, . . . , wr of
the vertices in W such that in the graph D − S?, there is no directed path from wi to wj for every j < i. Let
W2 = {w1, . . . , wbr/2c} and W1 = {wbr/2c+1, . . . , wr}. Then, S? is a W1-W2 separator1 of size at most k in D. In
particular, there is a minimal subset S?1 ⊆ S? that is a W1-W2 separator in D. Now, let Xpre and Xpost be W1-W2
separators in D such that Xpre is “closer” than S?1 is to W1 and Xpost is “closer” than S?1 is to W2. Formally,
the set of vertices reachable from W1 after deleting Xpre is a subset of that reachable from W1 after deleting S?1 .
Similarly, the set of vertices reachable from W1 after deleting Xpost is a superset of that reachable from W1 after
deleting S?1 . Then, we show that deleting Xpre ∪Xpost from D makes S?1 irrelevant, i.e., S? \ S?1 is a solution for
D − (Xpre ∪Xpost). In other words, we can reduce the size of an optimal solution by |S?1 | by paying a cost of at
most |Xpre ∪Xpost|. This raises the question – “Can we come up with small enough Xpre, Xpost, say of size at
most |S?1 | each?”. We observe that indeed, this is possible by considering these separators to be important W1-W2
separators (see Section 3 for the formal definition), out of which one is pushed as close as possible to W1 and
the other is pushed as close as possible to W2. It is well-known that the number of such extremal separators of
size at most k pushed closest to each side is at most 4k, and hence we have 16k choices for Xpre and Xpost, which
can therefore be guessed in FPT-time. Once these are guessed, we delete both separators from the input, in the
process decreasing the size of the optimal solution by at least 1/2 · |Xpre ∪Xpost|, and then recurse independently
on two subinstances – one induced by the vertices in the strong components containing W1 and the other induced
by the vertices in the strong components containing W2. This division of the problem can be done since no cycle
can intersect both these instances once a W1-W2 separator has been removed. Now, we recursively solve the
same problem on two inputs, each of which has at most half the number of vertices of W from the original input.
Analysing the resulting recurrence gives us the required running time bound.

We apply the same high level “two-extremal” separator approach to the other cut problems we consider. In
fact, this approach works for any problem where the goal is to hit a family of strongly connected subgraphs. However,

1That is, a set of vertices that hits all paths that start at a vertex in W1 and end at a vertex in W2.



a major difference between DFVS and the other problems is the following. We know that the strongly connected
components of D−S? (in the above example) are singletons, implying that we can continue the divide-and-conquer
approach till we hit the base case. However, for the other problems, two issues crop up: (i) It may very well be the
case that there is a unique strongly connected component containing the set W (a given solution for the respective
problem) after removing the hypothetical solution S?. (ii) The vertices of W could be broken up across the
strong components of S? in a very imbalanced way. We overcome Issue (i) by designing a subroutine to efficiently
2-approximate the solution in cases where there is a unique strongly connected component containing W in D−S?.
This subroutine is problem-specific and can take different forms for different problems. For instance, in the case of
Subset DFVS, we solve this special case using branching on important separators, in the case of Multicut
(which we phrase as a directed cut problem by moving to bidirected graphs), this case is solved by a reduction to
the Digraph Pair Cut problem [39] and in the case of DOCT, the special case can be 2-approximated by solving
max-flow in a bounded number of auxiliary graphs. In order to overcome Issue (ii), we devise a 3-way divide and
conquer where, in each of the (at most) three subinstances that are generated in each step, either the number of
vertices of W drops by a constant fraction or we can directly use the subroutine designed for the aforementioned
special case, avoiding the need for further recursion on this instance. A careful analysis of the recurrence relation
give us the required time bound for these problems.

Before proceeding, we briefly remark on the main similarities and differences between the factor-2 approximation
for DOCT in this paper and that of Lokshtanov et al. [51]. Lokshtanov et al. also begin with the iterative
compression method and assume that the input is a pair (D, k) and a set W ⊆ V (D) of size at most 2k + 1 which
intersects all directed odd cycles in D. However, in order to test for the existence of a solution S of size at most k
disjoint from W (and compute a factor-2 approximation thereof), they guess the partition of W into the strongly
connected components of D − S and guess an ordering between these specific strongly connected components.
Following this, they use an FPT algorithm for the Skew Multicut problem [13] to compute a set of size at most
|S| that hits all cycles in D that intersect at least two of these distinct strongly connected components of D − S.
The residual problem is a disjoint union of several instances of the special case where one may assume the existence
of a solution whose deletion keeps the vertices in each guessed partition of W in the same strongly connected
component. However, since they have already spend a cost of |S| at this point, they need an exact algorithm for
the residual problem, for which they use the shadow-removal technique [15]. Their running time of 2O(k2)nO(1) is
dominated by the time required to implement the shadow-removal technique, which we sidestep in this paper.

1.2.2 Results for Parameterization by Treewidth For parameterization by the treewidth w of the input
graph, we present three general theorems, and derive a host of results for specific problems as corollaries. The
first two theorems, derived from a new combinatorial lemma that may be of independent interest (described
below) “break” SETH-based bounds at an (arguably) negligible cost of an ε factor in approximation. The third
theorem allows us to combine the results given in Section 3 to obtain constant-factor single-exponential (in w)
time approximation algorithms for the problems studied in that section—such as Directed Feedback Vertex
Set—which do not admit single-exponential (in w) time exact algorithms under the ETH. Notice that here we
consider these problems when the parameter is w rather than k, yet the algorithms for the parameterization by k
will come in handy. Briefly, the idea of the proof is to identify “not too many” bags (so that their removal is not
costly), such that the subinstances derived by their removal have optimum that is “not too large” compared to the
treewidth w (so that they can be efficiently solved) yet “not too small” (as to compensate for the cost of the bags
removed). So, as consequences of a more general (our third) theorem, we have the following.

Theorem 1.2. For every fixed constant ε > 0, each of the following problems admits a (4 + ε)-approximation
algorithm that runs in time 2O(w) ·nO(1): Directed (Subset) Feedback Vertex Set, Directed Odd Cycle
Transversal, Undirected Multicut.

Roughly speaking, our first theorem states that any vertex deletion problem that admits an α-approximate
ck-vertex kernel and which can be solved in time O(bwnp), admits an α(1 + ε)-approximation algorithm that runs
in time O(b(1−

ε
c−1 )w+o(w)np + nO(1)). Moreover, the second theorem essentially states that for any fixed graph

family F (where the maximum size of a graph in F is d) such that the corresponding F-Packing problem can be
solved in time O(bwnp), the F-Packing problem also admits a (1 + ε)-approximation algorithm that runs in time
O(b(1− εd )w+o(w)np + nO(1)). It is known that each of the following problems admits an O(bwn)-time algorithm:
Vertex Cover where b = 2; Component Order Connectivity where b = `; Bounded-Degree Vertex



Deletion where b = (d+ 2); Triangle Packing where b = 2. Moreover, all of these constants b are known to be
tight under the SETH for their respective problems. As consequences of our two theorems, we derive the following.
Theorem 1.3. For every fixed constant ε > 0, each of the following problems admits a (1 + ε)-approximation
algorithm that runs in time bw+o(w)n+nO(1): Vertex Cover where b = 21−ε Component Order Connectivity
where b = `1−

ε
2`−1 ; Bounded-Degree Vertex Deletion where b = (d+ 2)1− ε

d3+4d2+5d+1 ; F-Packing for every
graph family F that consists of graphs on at most d vertices where b = b

1− εd
F , where bF is the best known constant

such that F-Packing is solvable in time O(bwFn). For example, for Triangle Packing bF = 2.
So, for example, we can approximate Vertex Cover within factor 1 1

3 in time 1.588wn+ nO(1).
The proof of both theorems is based on a combinatorial lemma that yields a partition of the vertex set of a

graph to roughly equal sized sets that the removal of each reduces its treewidth substantially, which may be of
independent interest. When being applied, for vertex deletion problems, we note that there exists a part that has
“large” intersection with an (unknown) optimal solution, and furthermore that part is small (as all parts are, being
disjoint and of equal size, and considered after applying a linear-vertex kernel), and hence we can just take it into
our solution at modest cost. For packing problems, we note that there exists a part that has “small” intersection
with an (unknown) optimal solution, and hence we can just be discard it at modest cost. Very briefly, the proof of
the combinatorial lemma itself is based on a greedy computation of a proper coloring of the graph when each bag
of its tree decomposition is turned into a clique. By using more colors than “necessary”, we are able to argue that
no color is used “too many” times. Then, having computed this coloring, a packing argument concerning its color
classes yields the combinatorial lemma.

1.2.3 FPT-approximations for Weighted Problems In the above discussions, the focus was primarily on
unweighted problems. However, it is often the case that a problem instance is presented with certain costs or weight
function, and the objective is to find a solution of minimum (or maximum) weight. Such types of optimization
problems are a central object of study in approximation algorithms. However, parameterized complexity has so far
primarily focused on unweighted problems, although FPT algorithms are known for several weighted problems such
as Weighted Steiner Tree. The parameterized complexity of many other problems such as Weighted DFVS
and Weighted Multicut remain longstanding open problems [17], even though their unweighted variants have
been known to be FPT for a long time.

In this paper, we present methods and techniques to develop approximation algorithms for weighted graph
problems, that we exemplify via Weighted (Subset) DFVS, Weighted DOCT, and Weighted Multicut.
We remark that our methods may also be applicable to other weighted problems for which the unweighted version
admits an FPT (approximation) algorithm. Moreover, they yield approximation algorithms that essentially have
the same running time as the algorithm for the unweighted problem, and only a slightly worse approximation ratio.

To describe our results in more detail, let us focus on the example of Weighted DFVS. Here we are given
a directed graph G, a weight function w : V (G)→ Q, and the objective is to find a subset S ⊆ V (G) such that
w(S) =

∑
v∈S w(v) is minimized and G − S is a directed acyclic graph (DAG). Let us begin by discussing the

parameterization of weighted problems.
Parameterization for Weighted Problems. A natural way to parameterize Weighted DFVS is to select
a non-negative value k, and ask for a solution S such that w(S) ≤ k. This, however, is not interesting since we
can reduce DFVS to Weighted DFVS by assigning every vertex a weight of 1

k , and ask for a solution of weight
at most 1. Clearly, unless P 6=NP, we do not expect an FPT algorithm for this problem. Thus, parameterizing
Weighted DFVS by the value of the weight is not meaningful. A more suitable choice is the cardinality of the
solution, i.e. the number of vertices in it. That is, given a directed graph D, a weight function w : V (G)→ Q and
a non-negative integer k, we seek a set S ⊆ V (G), such that D − S is a DAG, |S| ≤ k and w(S) is minimized. We
remark that it is a longstanding open problem whether Weighted DFVS is FPT parameterized by the solution
cardinality k. Furthermore, this problem does not admit a constant-factor approximation algorithm in polynomial
time, even in the unweighted setting [30, 63, 31]. We present algorithms that are substantial improvements on
both fronts.

Let Optk denote the weight w(SOPTk ), where SOPTk is a minimum weight solution of cardinality at most
k. Note that Optk could be much larger than OPT = mink∈N Optk, and conversely any solution of weight OPT
could have much larger cardinality than k. In a parameterized algorithm, we are only interested in solutions
whose cardinality is bounded by k, while in an approximation algorithm our objective is to approximate OPT



irrespective of the solution cardinality. Taking our cue from both these approaches, we define a notion of bi-criteria
FPT-approximation. To state it formally, we require a few additional definitions. A problem Π on graphs is
associated with a predicate φΠ(G,S) (also called a graph property). We interpret φ as a characterization of the
space of all feasible solutions for an input graph G. That is, for a graph G and a vertex (or edge) subset S of G,
φΠ(G,S) returns true if S is a feasible solution and false otherwise. Then let Hk be the collection of those subsets
X ⊆ V (G) (or X ⊆ E(G)), such that |X| ≤ k, and φΠ(G,X) is true. Further, let w : V (G) → R+ be a weight
function on the vertices (similarly for edges). Then, we define Optk = minX∈Hk w(X), and OPT = mink∈[n] Optk.

Definition 1.1. Let Π be a weighted parameterized graph minimization problem. For α, β > 0, we say that Π
admits an (α, β)-FPT-approximation algorithm, if given an instance (G,w, k) of Π, there exists an algorithm
running in time f(k) ·nO(1) such that, if Hk is non-empty, then it returns a set S of size at most αk (i.e. S ∈ Hαk),
such that φΠ(G,S) is true and w(S) ≤ β · Optk, otherwise the output is arbitrary.

Our FPT-approximation algorithms are guaranteed to output a solution that is (α, β)-approximate should the
given instance admit a solution of cardinality k; otherwise the output is arbitrary. We prove the following.

Theorem 1.4. For every ε > 0, Weighted DFVS, Weighted Multicut and Weighted DOCT admit a
(4, 8(1 + ε))-FPT-approximation algorithm running in time 1

ε · 2
O(k)nO(1).

These algorithms build upon a novel scheme to reduce the weighted problem to an unweighted instance and
then invoke the FPT (approximation) algorithm for the unweighted problem on it. Let us discuss our methods
via the example of DFVS. Consider an instance (D,w, k), and suppose that it admits a solution of cardinality
k. A trivial reduction to the unweighted version of the problem is as follows: create w(v) copies for each vertex
v ∈ V (D) (assuming for now that the weights are integral). This reduction however is not very helpful since the
value of OPT (and Optk) might not be a function of k, and hence the unweighted instance is not amenable to an
FPT (approximation) algorithm. We present a more nuanced reduction that avoids this issue, at a small cost to
the approximation factor and it is essentially independent of the weights themselves.

The first step of our reduction is to consider weighted instances where the weights are integral and upper-
bounded by an integer M . Given such an instance (D,w, k), suppose that we know the value of Optk, and let
γ = dOptk

k e. Note that, we do not actually need to know the value of Optk and γ, since we know γ ∈ [M ] and we
can iterate over all choices for γ. Next, we consider a new weight function wγ that is obtained by rounding up the
weight w(v) of each vertex v to the nearest integral multiple of γ. We prove that the instance (D,wγ , k) admits
a solution of cost at most 2Optk. Then, from D and wγ we construct an unweighted instance where for every
vertex v we have wγ(v)

γ copies (note that this is an integer); we refer to the subset of copies of v as the vertex
bundle for v, denoted by Zv. Our key observation is that any minimal feedback vertex set for H, the digraph
obtained from D by making these copies, must respect the vertex bundles. That is either it includes all of Zv or it
is disjoint from Zv. From this we infer that if D admits a solution of cardinality k, then H admits a solution of
cardinality 2k. This means the unweighted instance (H, 2k) may be approximated using an FPT algorithm that
we discussed earlier. Further, we show that given a solution S′ of cardinality 4k to this instance, we can map it
back to a solution S of (D,w) such that w(S) ≤ 8Optk and |S| = |S′|. Thus, for bounded weight instances we
obtain a (4, 8) FPT-approximation in single exponential FPT time.

The second step is to reduce from the general weighted instances to bounded weight instances. Here we
make use of a knapsack like rounding procedure, that given an ε > 0, at a multiplicative cost of (1 + ε) to the
approximation factor, produces weighted instances of DFVS where the weights are integral and upper-bounded by
dkε e. Then, combined with the previous step, we obtain a (4, 8(1 + ε)) FPT-approximation in single exponential
time. Our methods easily extend to Weighted Multicut and Weighted DOCT, and we believe they can be
applied to several other problem.

Finally, we present another FPT-approximation for Weighted DFVS that is able to achieve a (1, 1 + ε)
FPT-approximation, but at the cost of a higher running time. This algorithm builds upon an algorithm for
MultiBudgeted DFVS. In this problem, the vertex set V (D) of the input digraph is partitioned into a number
of classes V1 ] V2 . . . V`, and the objective is to find a solution S such that for each i ∈ [`] |S ∩ Vi| ≤ ki, where the
numbers k1, k2, . . . , k` are also a part of the input. An FPT algorithm for this problem was presented by Kratsch
et.al. [37] that runs in time 2O(k3 log k)nO(1) where k =

∑`
i=1 ki. We combine this algorithm with the knapsack

like rounding procedure to obtain the following theorem.



Theorem 1.5. For every ε > 0, Minimum Weight DFVS admits a (1, 1 + ε)-FPT-approximation algorithm
running in time kk/ε · 2O(k3 log k)nO(1)

The above theorem is an FPT-approximation Scheme (FPT-AS) for Weighted DFVS. Further, the above
technique can be applied to any problem for which a “multi-budgeted” algorithm can be designed. In the rest
of this paper, we present the details of our single-exponential-time factor-2 approximation algorithms for the
unweighted cut problems.

2 Preliminaries
Let w : A→ R be a “weight” function. For any subset A′ ⊆ A, we define the weight of A′ as w(A′) =

∑
a∈A′ w(a).

2.1 Graph Notation When the (di)graph G is clear from the context, we let n = |V (G)| and m = |E(G)|. A
subset S ⊆ V (G) is a connected set if G[S] is a connected graph. The contraction of an edge {u, v} ∈ E(G) yields the
graph on vertex set V (G−{u, v})∪{r} for some new vertex r and edge set E(G−{u, v})∪{{r, w} : {u,w} ∈ E(G)
or {v, w} ∈ E(G) (or both)}. A family F of graphs is hereditary if for every graph G ∈ F and subset S ⊆ V (G),
G− S ∈ F . Given a rooted tree T and a vertex v ∈ V (T ), we let Tv denote the subtree of T rooted at v. We say
that a graph H is a minor of a graph G if there exists a sequence of vertex deletions, edges deletions and edge
contractions in G that yields a graph isomorphic to H.

A digraph D is bidirected if for every arc (u, v) ∈ A(D), the arc (v, u) is also present in D. The operation of
identifying a vertex set X in a digraph D is defined as follows. We create a new vertex x′ and define a function f
as follows: for every v ∈ V (D) \X, f(v) = v and for every v ∈ X, f(v) = x′. Now, for every arc (x, y) ∈ A(D), we
add the arc (f(x), f(y)) (if it is not already present in D). Finally, we delete X. The resulting digraph is said to
be obtained from D by identifying the vertices in X. Notice that in general, the identification operation could
lead to self-loops and parallel edges. For a pair of vertices a, b ∈ V (D), an a-b walk denotes a directed walk in D
that starts at a and ends in b.

2.2 Optimization and Parameterized Complexity

Definition 2.1. An NP-optimisation problem is defined as a tuple (I, sol, cost, goal) where: (i) I is the set of
instances. (ii) For an instance x ∈ I, sol(x) is the set of feasible solutions for x, the length of each y ∈ sol(x) is
polynomially bounded in |x|, and it can be decided in time polynomial in |x| whether y ∈ sol(x) holds for given
x and y. (iii) Given an instance x and a feasible solution y, cost(x, y) is a polynomial-time computable positive
integer. (iv) goal ∈ {max,min}.

The objective of an optimization problem is to find an optimal solution z for a given instance x, that is a
solution z with cost(x, z) = opt(x) := goal{cost(x, y) | y ∈ sol(x)}.

If y is a solution for the instance x then the performance ratio of y is defined as R(x, y) = cost(x, y)/opt(x) (if
goal = min) and opt(x)/cost(x, y) (if goal = max). For a real number c > 1 (or a function c : N→ N), we say that
an algorithm is a c-approximation algorithm if it always produces a solution with performance ratio at most c
(respectively, c(x)).

Let Π be an NP-hard problem. In the framework of parameterized complexity, each instance of Π is associated
with a parameter k. Here, the goal is to confine the combinatorial explosion in the running time of an algorithm
for Π to depend only on k. Formally, we say that Π is fixed-parameter tractable (FPT) if any instance (I, k) of Π
is solvable in time f(k) · |I|O(1), where f is an arbitrary function of k. Parameterized complexity also provides
methods to show that a problem is unlikely to be FPT. The main technique is the one of parameterized reductions
analogous to those employed in classical complexity. Here, the concept of W[1]-hardness replaces the one of
NP-hardness. Parameterization by solution size (or value) means that we seek a solution of size (or value) at most
(for minimization) or at least (for maximization) k where k, the parameter, is given as part of the input. We note
that with respect to graph problems parameterized by the treewidth of the input graph, w, we assume that every
input instance is given to us along with a tree decomposition of width w. We remark that for other structural
parameterizations, when the parameter is computable in polynomial time (e.g., the size of a maximum matching
in the graph), the input instance does not have additional arguments, and the parameter is thus implicit.

When the parameter k is structural (e.g., treewidth), a factor-c(k) FPT-approximation algorithm for X
is an algorithm that, given input (x, k) (where k can be implicit), runs in time f(k) · |x|O(1) and computes a



y ∈ sol(x) such that cost(x, y) ≤ opt(x) · c(k). The definition for maximization problems is symmetric. When the
parameterization is by solution size or value, we define FPT-approximation as follows.

Definition 2.2. Let X = (I, sol, cost, goal) be a minimization problem. A standard factor-c(k) FPT-
approximation algorithm for X (where the parameterization is by solution size or value) is an algorithm that, given
input (x, k) satisfying opt(x) ≤ k, runs in time f(k)·|x|O(1) and computes a y ∈ sol(x) such that cost(x, y) ≤ k ·c(k).
For inputs not satisfying opt(x) ≤ k, the output can be arbitrary.

The definition for maximization problems is symmetric. In this paper, we will refer to standard FPT-
approximation algorithms as simply FPT-approximation algorithms when the parameterization by solution size is
clear. Moreover, for all unweighted graph minimization problems we consider, feasible solutions will be vertex or
edge subsets and the cost of a solution will be the size of the set.

To obtain (essentially) tight conditional lower bounds for the running times of algorithms, we rely on the
well-known Exponential-Time Hypothesis (ETH) and Strong Exponential-Time Hypothesis (SETH). To formalize
the statements of ETH and SETH, first recall that given a formula ϕ in conjuctive normal form (CNF) with n
variables and m clauses, the task of CNF-SAT is to decide whether there is a truth assignment to the variables
that satisfies ϕ. In the p-CNF-SAT problem, each clause is restricted to have at most p literals. First, ETH
asserts that 3-CNF-SAT cannot be solved in time O(2o(n)). Second, SETH asserts that for every fixed ε < 1,
there exists a (large) integer p = p(ε) such that p-CNF-SAT cannot be solved in time O((2− ε)n). We remark
that ETH implies FPT6=W[1], and that SETH implies ETH.

A companion notion to that of FPT is the one of a kernel. Formally, a decision parameterized problem Π is
said to admit a compression if there exists a (not necessarily parameterized) problem Π′ and a polynomial-time
algorithm that given an instance (I, k) of Π, outputs an equivalent instance I ′ of Π′ (that is, (I, k) is a yes-instance
of Π if and only if I ′ is a yes-instance of Π′) such that |I ′| ≤ p(k) where p is some computable function that
depends only on k. In case Π′ = Π, we further say that Π admits a kernel. More broadly, to accommodate
optimization and approximation, we rely on the more general notion of lossy kernelization. We define the notion
of lossy kernelization in a more restricted way than [49] that will suffice for our purposes.

Definition 2.3. Let Π be a parameterized minimization problem, parameterized by the solution size. Let α ≥ 1.
An α-approximate kernelization algorithm for Π consists of two polynomial-time procedures: reduce and lift.
Given an instance I of Π with parameter k, reduce outputs another instance I ′ of Π with parameter k′ such that
|I ′| ≤ f(k′, α), k′ ≤ k, and where k′

opt(I′) ≤
k

opt(I) .2 Given I, I ′ and a solution S′ for I ′, lift outputs a solution S

for I such that, if opt(I) ≤ k, then |S|
opt(I) ≤ α

|S′|
opt(I′) (otherwise, S can be of any size).

In case of a graph problem and when the output graph has f(k) vertices, we say that the kernel (in the above
definition) is an α-approximate f(k)-vertex kernel. When f(k) is linear in k, we use the term α-approximate
linear-vertex kernel.

3 Factor-2 approximations in 2O(k)nO(1)-time
In this section, we present the first single-exponential-time factor-2 FPT-approximations for some well-studied cut
problems – (Subset) DFVS, Undirected Multicut and Directed Odd Cycle Transversal.

3.1 Setting Up the Machinery In Definitions 3.1–3.5, Observation 3.1, Proposition 3.1, fix a digraph D and
disjoint X,Y ⊆ V (D).

Definition 3.1. We denote by relD(X,Y ) the set of all vertices that lie in a strongly connected component of
D − Y intersected by X. We denote by connD(X,Y ) the set of all vertices that lie on an x1-x2 walk in D − Y for
some x1, x2 ∈ X. When Y = ∅, we simply write, relD(X) and connD(X) and drop the subscript if D is clear from
the context.

Notice that in the above definition, it is possible that x1 = x2 and hence connD(X,Y ) ⊇ relD(X,Y ).

2Often, the requirement |I′| ≤ f(k′, α) is replaced by the more relaxed requirement |I′| ≤ f(k, α). However, as all the (known)
kernels we will use (as black boxes) have this property, we directly define it like this. Further, the requirement is implicit for the
definition to be sensible (without using a π function as in [49]).



Definition 3.2. (Separators) A vertex set S disjoint from X∪Y is called an X-Y separator if there is no X-Y
path in D − S. We say that S is a minimal X-Y separator if no strict subset of S is also an X-Y separator. We
denote by RD(X,S) the set of vertices reachable from vertices of X via directed paths in D− S and by NRD(X,S)
the set of vertices not reachable from vertices of X in D − S. The subscript is ignored if the digraph D is clear
from the context.

Definition 3.3. Let S1 and S2 be X-Y separators. We say that S2 covers S1 (denoted by S1 v S2) if
R(X,S1) ⊆ R(X,S2) and we say that S2 dominates S1 (denoted by S1 � S2) if S2 covers S1 and |S2| ≤ |S1|.

When S2 covers S1, we also say that S1 is covered by S2.

Observation 3.1. Let S1 and S2 be minimal X-Y separators such that S1 v S2. Then, S2 \ S1 ⊆ NR(X,S1).
That is, S2 \S1 is unreachable from X in D−S1. Similarly, Y ⊆ NR(S1 \S2, S2). That is, Y is unreachable from
S1 \ S2 in D − S2.

Definition 3.4. (Important separators) Let S be a minimal X-Y separator. We say that S is an important
X-Y separator closest to Y if there is no X-Y separator S′ that dominates S. We say that S is an important X-Y
separator closest to X if there is no X-Y separator S′ that is dominated by S. Following standard terminology, we
simply use the term important X-Y separator, then we are referring to one closest to Y .

Proposition 3.1. [17] The number of important X-Y separators of size at most k closest to Z (for each
Z ∈ {X,Y }) is bounded by 4k. Moreover, these can be enumerated in time 4k(m+ n).

Definition 3.5. Let D be a directed graph. A directed closed walk in D (a directed walk that starts and ends at
the same vertex) with an odd number of edges is called a directed odd closed walk. For a set T ⊆ V (D) ∪A(D), a
directed closed walk in D is said to be a T -closed walk if it contains an element from T . A T -closed walk is called
a T -cycle if it is a simple cycle. A set S ⊆ V (D) is called a T -sfvs if it intersects every T -cycle in D.

Let F = {F1, F2, . . . , , Fq} be a fixed set of subgraphs of a digraph D such that F-free subgraphs of D are
closed under taking subgraphs. An F-transversal in D is a set of vertices that intersects every Fi ∈ F . The family
F could be exponentially large, in which case it is implicitly defined. In our work, we are interested in problems
that can be formulated as computing a smallest F-transversal where the graphs in F are all strongly connected.
We refer to this problem as SCC F-Transversal.

The minimization version of SCC F-Transversal is the tuple (I, sol, cost,min), where, I is the set of
digraphs, for every x ∈ I, sol(x) denotes the set of F-transversals in x. Moreover, for every feasible solution y,
cost(x, y) denotes the size of the vertex set y. Recall that for every c ∈ R, a (standard) factor-c FPT-approximation
algorithm for SCC F-Transversal is an algorithm that, on input (D, k), runs in time f(k) · nO(1) (for some
computable f) and if there is an F-transversal in D of size at most k, then it outputs an F-transversal in D of
size ≤ ck.

Observation 3.2. Subset DFVS, Directed OCT, Bidirected Multicut are special cases of F-transversal.

The following lemma is at the heart of the algorithms in this section.

Lemma 3.1. Let S̃ be an F-transversal in D. Let W = W1 ] W2 be an F-transversal in D such that for
some ∅ 6= S ⊆ S̃, S is a minimal W1-W2 separator. Let Xpre and Xpost be W1-W2 separators in D such that
Xpre v S v Xpost. Then, S̃ \ S is an F-transversal in the graph D′ = D − (Xpre ∪Xpost).

Proof. Suppose that this is not the case. Then, there is a graph F ∈ F that is contained in D′′ = D′−(S̃\S). Since
S̃ and W are both F-transversals in D, it follows that F is a strongly connected subgraph of D′′ that intersects
both S and W . This, in turn, implies that there is a closed walk in D′′ that intersects some s ∈ S \ (Xpre ∪Xpost)
and some w ∈W . Since, Xpre v S v Xpost, we have that S \Xpre is unreachable from W1 in D −Xpre and W2 is
unreachable from S \Xpost in D −Xpost (see Observation 3.1). This gives a contradiction to our assumption that
there is a closed walk in D′′ that contains s and w.

As an immediate consequence of Lemma 3.1, we have the following.



Lemma 3.2. Let D,W1,W2, S̃, S be as defined in Lemma 3.1. Then, there exists an important W1-W2 separator
closest to W1 of size at most |S|, call it Xpre, and an important W1-W2 separator closest to W2 of size at most |S|,
call it Xpost, such that S̃ \ S is an F-transversal in D′ = D − (Xpre ∪Xpost).

Therefore, if we knew W1, W2 and |S|, then we can guess Xpre and Xpost and make some |S| vertices of S̃
“irrelevant” (and reducing the size of the optimal solution by |S|) by paying a cost of at most 2|S|. This property
forms the crux of our approximation algorithms for the special cases of SCC F-Transversal considered in this
section. However, embedding this idea into our algorithms is not straightforward and requires some care.

3.2 Subset DFVS Using the reduction in [15], we work with the following equivalent formulation of Subset
DFVS where the terminals are arcs instead of vertices, as is usually the case. We continue to refer to this problem
as Subset DFVS instead of the term Edge Subset DFVS used in [15]. As proved in Observation 3.2, Subset
DFVS is a special case of SCC F-Transversal as one can simply take F to be the set of T -cycles. Moreover,
notice that the existence of T -cycles is equivalent to the existence of T -closed walks. In order to design our
FPT-approximation for Subset DFVS, we first consider a special case.

Note that a factor-c FPT-approximation algorithm for Strict Subset DFVS is an algorithm that, on input
(D,T,W, k) where (D,T ) is an input to the minimization version of Subset DFVS and W is a T -sfvs in D, runs
in time f(k) · nO(1) (for some computable f) and if there is a T -sfvs S in D of size at most k such that W is
contained in a unique strongly connected component of D − S, then it outputs a T -sfvs in D of size at most ck.
Otherwise, the output of the algorithm can be arbitrary.

Lemma 3.3. There is a factor-1 FPT-approximation algorithm for Strict Subset DFVS with running time
2O(k)nO(1). We call this algorithm Alg-Strict-SFVS.

Proof. Let I = (D,T,W, k) be the given input. We may assume that D is a strongly connected graph. Otherwise,
we work individually over each strongly connected component. We first check whether there is an arc (u, v) ∈ T
such that u, v ∈W . If yes, then we terminate the algorithm with an arbitrary output. This is correct since there
is no T -sfvs S in D such that W is contained in a unique strongly connected component of D− S. Henceforth, we
assume that D[W ] is an independent set.

Our next step is to construct a new tuple I ′ = (D′, T ′, w, k) where D′ is obtained from D by identifying
the vertices in W (with parallel arcs removed), w is the new vertex created in place of W by this operation and
T ′ is obtained by updating T accordingly. That is, T ′ contains the arcs {(x, y) ∈ T | x, y /∈ W} plus the arcs
{(w, y) | ∃x ∈ W, ∃(x, y) ∈ T} and {(x,w) | ∃y ∈ W, ∃(x, y) ∈ T}. Since we are in the case where D[W ] is an
independent set, there are no self-loops incident on w. Notice that D′ is strongly connected since D is assumed to
be strongly connected. We now have the following claim.

Claim 3.1. The following statements hold.

1. w is a T -sfvs in D′.
2. Every T -sfvs S in D that is disjoint from W such that W is contained in a unique strongly connected

component of D − S, is a T ′-sfvs in D′ that is disjoint from w.
3. Conversely, every T ′-sfvs in D′ disjoint from w is a T -sfvs in D.

Due to this claim, it is sufficient to describe an algorithm that, given I ′ = (D′, T ′, w, k), runs in time 2O(k)nO(1)

and either outputs a T ′-sfvs of size at most k disjoint from w (we refer to such sets as a solution for I ′ in the rest
of the proof) or correctly concludes that one does not exist.

Claim 3.2. Let S be a solution for I ′. For every (u, v) ∈ T ′, either {u, v}∩S 6= ∅ or there is a solution for I ′ that
contains an important x-w separator closest to w or an important w-x separator closest to w for some x ∈ {u, v}.

Proof. Let S be a T ′-sfvs in D′ of size at most k disjoint from w and let C be the strongly connected component
of D′ − S that contains w. We first observe that for every e = (u, v) ∈ T ′, it cannot be the case that {u, v} ⊆ C.
Otherwise, we would contradict S being a T ′-sfvs in D′. This implies that either at least one of u or v is contained
in S, or S intersects all w-x or x-w paths for some x ∈ {u, v}. It remains for us to argue that if S intersects all
w-x or x-w paths for some x ∈ {u, v}, then there is a solution S′ that contains an important w-x separator closest



to w or an important x-w separator closest to w for some x ∈ {u, v}. We only argue the case where S intersects
all w-x paths for some x ∈ {u, v}. The other case is analogous.

Let Ŝ ⊆ S be a minimal w-x separator in D′. Since D′ is strongly connected, it must be the case that Ŝ is
non-empty. Now, consider an important w-x separator S̃ of size at most |Ŝ| that is covered by Ŝ. We claim that
(S \ Ŝ) ∪ S̃ is also a solution for I ′. If this were not the case, then there would be a closed walk intersecting w and
a vertex s ∈ Ŝ \ S̃ that is disjoint from S̃, a contradiction to Observation 3.1, which guarantees the absence of w-s
paths in the graph D′ − S̃. This completes the proof of the claim.

Given the above claim, we make use of a standard important-separator branching routine (see [17] for an
exposition) to obtain an algorithm that does the following: It picks an arc (u, v) ∈ T ′, in the first two branches, it
branches by deleting one of u, v and adding it to the solution. In the remaining four branches, it enumerates all
important u-w separators closest to w, important v-w separators closest to w, important w-u separators closest
to w and important w-v separators closest to w, each of size at most k and adds one of them to the solution.
Finally, if there is a leaf at which the vertices added to the solution form a T -sfvs (which can be checked in
polynomial-time) of size at most k, then we return such a solution. Otherwise, we terminate with an arbitrary
output.

The correctness of the algorithm follows from Claim 3.1 and Claim 3.2. Indeed, from Claim 3.1, we have that
for every T -sfvs S in D of size at most k such that W is contained in a unique strongly connected component of
D − S, then S is a solution for I ′. Moreover, Claim 3.2 guarantees that for every (u, v) ∈ T ′, either one of u or v
must be in S or our important separator branching procedure is correct.

Standard important separator analysis with a branching measure of 2k − λ(y, z) (where we are enumerating
important y-z separators and λ(y, z) denotes the size of smallest y-z separator) shows that we have a branching
algorithm with branching vector (2, 2, 1, 1, 1, 1), bounding the number of leaves in our search tree by γk (where
γ = 10 + 4

√
6) and overall running time by γknO(1) since we only require polynomial time at each node. This

completes the proof of the lemma.

Lemma 3.4. Let D be a digraph, T ⊆ A(D), and let W and S be disjoint T -sfvs in D. Let ∅ 6= W ′ ⊆W be such
that in D − S, there is a strongly connected component whose intersection with W is precisely W ′. Consider the
graph D′ obtained from D by adding a bidirected clique on W ′ (i.e., we add an arc (w,w′) for every w,w′ ∈W ′
such that (w,w′) /∈ A(D)). Then, W and S are both T -sfvs in D′.

We are now ready to present the algorithm for Subset DFVS, which uses Algorithm Alg-Strict-SFVS as a
subroutine.

Theorem 3.1. There is a factor-2 FPT-approximation algorithm for Subset DFVS with running time 2O(k)nO(1).

Proof. By using the iterative compression technique, we reduce our goal to designing an algorithm that, on
input (D,T,W, k), where (D,T ) is an instance of Subset DFVS, k ≥ 0 and W is a T -sfvs in D, runs in time
2O(k+|W |)nO(1) and if there is a T -sfvs S in D of size at most k that is disjoint from W , then it outputs a T -sfvs
in D of size at most 2k. Otherwise, the output of the algorithm can be arbitrary. Indeed, suppose that such an
algorithm (which we call Algorithm Alg-Disjoint-SFVS) exists. Then, one can immediately obtain an algorithm
Alg-Compression-SFVS that, on input (D,T,W, k), runs in time 2O(k+|W |)nO(1) and if there is a T -sfvs S in D of
size at most k that is not necessarily disjoint from W , then it outputs a T -sfvs in D of size at most 2k.

Now, suppose that V (D) = {v1, . . . , vn} and for every i ∈ [n], Vi =
⋃i
j=1 vj . Furthermore, for every X ⊆ V (D),

let T [X] = {(x, y) ∈ T | x, y ∈ X}. Then, we construct instances I1, . . . , In where Ii = (D[Vi], T [Vi],Wi, k),
W1 = {v1}, for every i > 1, Wi ← {vi} ∪ Alg-Compression-SFVS(Ii−1). Moreover, for the first occurrence of an i
for which Wi is not a T -sfvs of size at most 2k + 1 in D[Vi], we terminate and return an arbitrary vertex set. It is
straightforward to see that assuming the correctness and claimed running time of Alg-Disjoint-SFVS, we have the
required factor-2 FPT-approximation for Subset DFVS.

We now proceed to describe Algorithm Alg-Disjoint-SFVS. In the base case of this algorithm, k ≤ 1 or |W | = 1.
In either case, can solve the instance by brute force. If k ≤ 1, then it is sufficient for us to check whether there is a
T -cycle in D and if yes, whether there is a T -sfvs in D of size at most 1. If k > 1, |W | = 1, then we can simply
return W . Hence, we assume that k, |W | > 1. Moreover, we assume that D is strongly connected. Otherwise, we
can simply work with the subinstance induced by each strongly connected component.



Figure 1: An illustration of the sets X ] Y ] Z = W and the separators L1, . . . , L4. The dotted arrows represent
paths.

Let P denote the set of all 3-partitions of W into sets (X,Y, Z). For every τ = (X,Y, Z) ∈ P, we define the
following sets and tuples. Let 1 ≤ i, j ≤ k.

• Li[Z → XY ] denotes the set of all important Z-X ∪ Y separators of size at most i closest to X ∪ Y .
• Li[XY ← Z] denotes the set of all important Z-X ∪ Y separators of size at most i closest to Z.

Recall that both these sets have size at most 4i (Proposition 3.1). When i = 0, we assume that these sets only
contain ∅. Moreover, if Z or X ∪ Y is ∅, then Li[Z → XY ] and Li[XY ← Z] are empty for every i.

In the following, let 1 ≤ i, j ≤ k, L1 ∈ Lj [Z → XY ], L2 ∈ Lj [XY ← Z].

• Li[Y → X,L1, L2] denotes the set of all important Y -X separators of size at most i closest to X in
D − (L1 ∪ L2).

• Li[X ← Y,L1, L2] denotes the set of all important Y -X separators of size at most i closest to Y in
D − (L1 ∪ L2).

When i = 0, we assume that these sets only contain ∅. Moreover, if X or Y is empty, then Li[Y → X,L1, L2]
and Li[X ← Y,L1, L2] are empty for every i.

To help readability, in the rest of proof, we will forgo the notation T [Q] when referring to the arcs of T with
both endpoints in Q, because the vertex set Q will always be clear from the context. Abusing notation in this way,
we will continue to refer to the set of terminals as T even when referring to subinstances that do not contain some
arcs in T . Now, for every Q ⊆ V (D), we define the following:

• I[Q,Z, i] denotes the tuple (D[rel(Z,Q)], T, Z, i). Similarly, we define the following tuples.
• I[Q,XY, i] denotes (D[rel(X ∪ Y,Q)], T,X ∪ Y, i).
• I[Q,X, i] denotes (D[rel(X,Q)], T,X, i).
• Ĩ[Q,Y, i] denotes (D′, T, Y, i), where D′ is the graph obtained from D[rel(Y,Q)] by adding a bidirected clique

on Y .

To ease readability, we interleave the steps of the algorithm and intuitive descriptions and observations related
to these.
Main loop: For every (X,Y, Z) ∈ P such that |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3 or |Y | > |W |/3, and for every
i1, i2 such that 1 ≤ i1 ≤ k and k1 = i1 + i2 ≤ k, we do the following:
Step 1: We guess L1 ∈ Li1 [Z → XY ], L2 ∈ Li1 [XY ← Z], L3 ∈ Li2 [Y → X,L1, L2], L4 ∈ Li2 [X ← Y, L1, L2]
(see Figure 1). Set Q =

⋃
q∈[4] Lq.

That is, we guess a pair of important Z-(X ∪Y ) separators of size at most i1 in D, one that is closest to Z and
another that is closest to X ∪ Y . Following this, we delete L1 ∪ L2 and guess a pair of important Y -X separators
of size at most i2 in D − (L1 ∪ L2), one that is closest to Y and another that is closest to X. This guessing step
is implemented as follows. Using the important separator enumeration algorithm [17], we obtain a branching



algorithm that takes polynomial time in each step and produces at most 4i1 · 4i1 · 4i2 · 4i2 = 24(i1+i2) = 24k1 leaves,
where each leaf corresponds to a guess of L1, L2, L3, L4.

Notice that deleting L1 and L2 breaks up the original instance into two disjoint pieces comprising the vertices
in relD(Z) and relD(X ∪ Y ). Additionally, deleting L3 and L4, breaks up the original instance into three disjoint
pieces comprising the vertices in relD(Z), relD(X) and relD(Y ). We will use this crucially in our algorithm as
follows.
Step 2: If |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3, then for every i3, i4 such that i3 + i4 ≤ k− k1, we recursively compute:

(i) SZ ← Alg-Disjoint-SFVS(I[Q,Z, i3]).
(ii) SXY ← Alg-Disjoint-SFVS(I[Q,XY, i4]).

If ∆ = Q ∪ SZ ∪ SXY is a T -sfvs in D of size at most 2k, then we return ∆.
Note that if Z or X ∪ Y is empty, then above two instances are empty. We allow Alg-Disjoint-SFVS to take

empty instances with the promise that the output is always the empty set. We argue that the instances I[Q,Z, i3]
and I[Q,XY, i4] are valid input instances to Alg-Disjoint-SFVS as follows. Notice that from the definition of L1
and L2 as Z-(X ∪ Y ) separators in D, it follows that X ∪ Y is disjoint from rel(Z,L1 ∪ L2) and Z is disjoint
from rel(X ∪ Y,L1 ∪ L2). Moreover, X ∪ Y ∪ Z is a T -sfvs in D. Hence, we conclude that Z and X ∪ Y are
T -sfvs in D[rel(Z,Q)] and D[rel(X ∪ Y,Q)] respectively, validating I[Q,Z, i3] and I[Q,XY, i4] as input instances
to Alg-Disjoint-SFVS.
Step 3: If Step 2 does not apply and |Y | > |W |/3, then for every i3, i4, i5 such that i3 + i4 + i5 = k − k1, we
compute:

(i) SZ ← Alg-Disjoint-SFVS(I[Q,Z, i3]).
(ii) SX ← Alg-Disjoint-SFVS(I[Q,X, i4]).

(iii) SY ← Alg-Strict-SFVS(Ĩ[Q,Y, i5]).

If ∆ = Q ∪ SZ ∪ SX ∪ SY is a T -sfvs in D of size at most 2k, then we return ∆.
The argument for the validity of I[Q,Z, i3] and I[Q,X, i4] as inputs to the recursive calls to Alg-Disjoint-SFVS

follows along the same line as the arguments used following the previous step. That is, since Q is a Z-(X ∪ Y )
separator and a Y -X separator, it follows that Z is a T -sfvs in D[rel(Z,Q)] and X is a T -sfvs in D[rel(X,Q)].
Moreover, we have that Y is a T -sfvs in D[rel(Y,Q)]. Now, since every arc in A(D′) \A(D) is incident on Y , it
follows that Y is also a T -sfvs in D′. This implies that Ĩ[Q,Y, i5] is a valid input to Alg-Disjoint-SFVS.

If the algorithm completes iterating through the main loop without returning, then we return an arbitrary
vertex set. This completes the description.
Correctness. The correctness is proved by induction on |W |. In the base case, |W | = 1, in which case, the
algorithm works by brute-force and hence is correct. Now, we assume that |W | > 1. Suppose that there is a T -sfvs
S in D of size at most k, such that S ∩W = ∅. Our aim is to show that the algorithm outputs a T -sfvs of size at
most 2k.

Let (M1, . . . ,Mr) denote the partition of W such that (i) each Mi is contained in a strongly connected
component of D − S , and (ii) for every `1 > `2, there is no path in D − S from relD(M`1 , S) to relD(M`2 , S).
That is, S is an M`1 -M`2 separator for every `1 > `2. We now consider the following two cases:

Case 1: |M`| ≤ |W |/3 for every ` ∈ [r]. Let `′ ∈ [r] denote the least value such that |W |/3 < Σ`′

i=1|Mi|.
Then, |W |/3 < Σ`′

i=1|Mi| ≤ 2|W |/3. Define X = ∅, Y =
⋃`′

i=1Mi and Z =
⋃r
i=`′+1Mi. Then, we have that

|W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3. Therefore, when considering the partition (X,Y, Z), Step 2 would have been
executed.
Let S1 be a minimal subset of S that intersects all Z-X∪Y paths in D. Let i1 = |S1|. Since D is strongly connected,
it follows that i1 > 0. Lemma 3.2 guarantees that there exist L1 ∈ Li1 [Z → XY ] and L2 ∈ Li1 [XY ← Z] such
that S′ = S \S1 is a T -sfvs in D− (L1 ∪L2). Let i2 = 0. This implies that L3 = L4 = ∅. Let Q =

⋃
q∈[4] Lq. Now,

define:

• S′Z = S′ ∩ rel(Z,Q), i3 = |S′Z |.
• S′XY = S′ ∩ rel(X ∪ Y,Q), i4 = |S′XY |.



Notice that S′XY intersects all T -cycles in D −Q that intersect X ∪ Y and S′Z intersects all T -cycles in D −Q
that intersect Z. Conversely, one can obtain a T -sfvs in D −Q by taking the union of any set that intersects all
T -cycles in D −Q that intersect X ∪ Y and any set that intersects all T -cycles in D −Q that intersect Z. This is
becaue W = X ∪ Y ∪ Z is a T -sfvs in D.
Therefore, by the induction hypothesis, SZ is a T -sfvs of size at most 2i3 in D[rel(Z,Q)] and SXY is a T -sfvs of
size at most 2i4 in D[rel(X ∪ Y,Q)]. As argued, the set Q ∪ SZ ∪ SXY = L1 ∪ L2 ∪ SZ ∪ SXY is a therefore a
T -sfvs in D. Moreover, it has size at most 2(i1 + i3 + i4) ≤ 2|S| ≤ 2k as required.

Case 2: There exists `? ∈ [r] such that |M`? | > |W |/3. Define Y = M`? . If `? = 1, then define X = ∅. If `? = r,
then define Z = ∅. Otherwise, define X =

⋃`?−1
i=1 Mi and Z =

⋃r
i=`?+1Mi. Then, we have that |X|, |Z| ≤ 2|W |/3.

Notice that we would have executed Step 3 in this case.
Let S1 be a minimal subset of S that intersects all Z-X ∪ Y paths in D. Let i1 = |S1|. Then, Lemma 3.2
guarantees that there exist L1 ∈ Li1 [Z → XY ] and L2 ∈ Li1 [XY ← Z] such that S′ = S \ S1 is a T -sfvs in
D− (L1 ∪L2). Now, let S2 be a minimal subset of S′ that intersects all Y -X paths in D− (L1 ∪L2). Let i2 = |S2|.
Then, Lemma 3.2 guarantees that there exist L3 ∈ Li2 [Y → X,L1, L2] and L4 ∈ Li2 [X ← Y, L1, L2] such that
S′′ = S′ \ S2 is a T -sfvs in D −

⋃
q∈[4] Lq. Let Q =

⋃
q∈[4] Lq. Define:

• S′′Z = S′′ ∩ rel(Z,Q), i3 = |S′′Z |.
• S′′X = S′′ ∩ rel(X,Q), i4 = |S′′X |.
• S′′Y = S′′ ∩ rel(Y,Q), i5 = |S′′Y |.

Then, we have that S′′Z is a T -sfvs of size at most i3 in D[rel(Z,Q)], S′′X is a T -sfvs of size at most i4 in D[rel(X,Q)].
Lemma 3.4 implies that S′′Y and Y are both T -sfvs in D′ where D′ is the graph obtained from D[rel(Y,Q)] by
adding a bidirected clique on Y . Due to this bidirected clique, it trivially holds that in D′ − S′′Y , there is a unique
strongly connected component intersected by Y . We also have that S′′Y has size at most i5. Conversely, we have
that the union of any three sets hitting all T -cycles in D−Q passing through X, Y and Z respectively, is a T -sfvs
in D −Q.
Therefore, by the induction hypothesis and correctness of Alg-Strict-SFVS (in the case of S′′Y ), SZ is a T -sfvs of
size at most 2i3 in D[rel(Z,Q)], SX is a T -sfvs of size at most 2i4 in D[rel(X,Q)], SY is a T -sfvs of size at most i5
in D′ where D′ is the graph obtained from D[rel(Y,Q)] by adding a bidirected clique on Y . This also implies that
SY is a T -sfvs of size at most i5 in D[rel(Y,Q)]. Then, the set Q ∪ SX ∪ SY ∪ SZ =

⋃
q∈[4] Lq ∪ SX ∪ SY ∪ SZ is a

T -sfvs in D of size at most 2(i1 + i2 + i3 + i4 + i5) ≤ 2|S| ≤ 2k as required.

This completes the proof of correctness.
Running time. We now analyze the running time taken by Alg-Disjoint-SFVS. The time spent in any single step
of the algorithm is dominated by 2O(k)nO(1) (the running time of Alg-Strict-SFVS). Hence, in order to bound the
running time, it suffices to bound the number of leaves generated in the branching. Let T (k, r) denote the number
of leaves generated by the instance (D,T,W, k), where r = |W |. From the description of the algorithm, we have
the following recurrence:

T (k, r) ≤ 3r ·
k∑

k1=1
25k1 · 2

∑
k2+k3≤k−k1

T (k2, b2r/3c)

+T (k3, b2r/3c).
T (1, r) = 1, T (k, 1) = 1.

The following is an intuitive description of this recurrence. There are 3r 3-way partitions (X,Y, Z) of |W |. For
each possible size k1 (which is equal to i1 + i2) of the minimal part of a hypothetical optimal solution that intersects
all Z-X ∪ Y paths (and if necessary, also all Y -X paths), there are at most 16k1 · k2

1 ≤ 25k1 choices of vertex sets
of size at most 2k1 that comprise important separators and whose deletion reduces the size of the optimal solution
by k1. Having guessed and removed this set of size at most 2k1, we recursively call Alg-Disjoint-SFVS for increasing
values of i3, followed by calls to Alg-Disjoint-SFVS for increasing values of i4, which is followed by the invocation of
Lemma 3.3 (Alg-Strict-SFVS) with budget i5 = k − (k1 − i3 − i4). This gives a total of at most 3 recursive calls
to Alg-Disjoint-SFVS: (i) on subinstance corresponding to X (budget i4), (ii) on subinstance corresponding to Z
(budget i3), (iii) on subinstance corresponding to X ∪ Y (budget i5)). Moreover, |X|, |Z|, |X ∪ Y | ≤ 2|W |/3.



We now argue by induction on k and r that T (k, r) ≤ 29k+5r. Indeed, the base cases are satisfied and we
assume r, k > 1. Now,

T (k, r) ≤ 3r · 210/3r ·
k∑

k1=1
25k1 · 2

∑
i3+i4≤k−k1

(29i3 + 29i4)

≤ 25r ·
k∑

k1=1
25k1 · 29(k−k1)+3

≤ 25r · 29k ·
k∑

k1=1
2−4k1+3 ≤ 25r · 29k.

Thus, we have concluded that Algorithm Alg-Disjoint-SFVS on input (D,T,W, k), where (D,T ) is an instance
of Subset DFVS and W is a T -sfvs in D, runs in time 2O(k+|W |)nO(1) and if there is a T -sfvs S in D of size at
most k disjoint from W , then it outputs a T -sfvs in D of size at most 2k. This completes the proof of Theorem 3.1.

As a corollary of Theorem 3.1, we get our factor-2 FPT-approximation for DFVS.

3.3 Bidirected Multicut For a digraph D and a set T = {(si, ti) | si, ti ∈ V (D)}, we say that a path is a
T -path if it is an si-ti path for some (si, ti) ∈ T . We say that a set S ⊆ V (D) is a T -multicut if there is no T -path
in D − S and T [S] denotes the set {(si, ti) ∈ T | si, ti ∈ S}. The classic Undirected Multicut problem [57, 7]
is easily seen to be equivalent to the Bidirected Multicut (BiMC) problem.

Moreover, recall that BiMC is a special case of SCC F-Transversal as one can simply take F to be
the subgraphs induced by the vertex sets of the si-ti paths in D where (si, ti) ∈ T . The results of Marx and
Razgon [57] and Bousquet et al. [7] on the fixed-parameter tractability of Undirected Multicut imply factor-1
FPT-approximation algorithms for BiMC. The result of Marx and Razgon in particular, implies a factor-1
FPT-approximation with running time 2O(k2)nO(1). Our goal is to improve the running time to 2O(k)nO(1) at the
cost of a factor-2 approximation. As we did for Subset DFVS, we first consider a special case.

Note that a factor-c FPT-approximation algorithm for Strict BiMC is an algorithm that, on input
(D, T ,W, k), runs in time f(k,W ) · nO(1) (for some computable f) and if there is a T -multicut S in D of
size at most k such that W is contained in a unique strongly connected component of D − S, then it outputs a
T -multicut in D of size at most ck. Otherwise, the output of the algorithm can be arbitrary.

Towards designing such an algorithm, we recall the following definitions from [39]. Let D be a digraph,
s ∈ V (D) and {x, y} ⊆ V (D) be a pair of vertices. We say that the pair {x, y} is reachable from s if there exist
paths from s to x and from s to y in D. These paths need not be disjoint. In the Digraph Pair Cut problem, we
are given a directed graph D, a source vertex s ∈ V (D), a set P of pairs of vertices, and a non-negative integer k.
The task is to decide whether there exists a set X ⊆ V (D) \ {s} such that |X| ≤ k and no pair in P is reachable
from s in D −X.

Proposition 3.2. [39] There is an algorithm that, given D, a source vertex s ∈ V (D), a set P of pairs of vertices,
and a non negative integer k, runs in time 2knO(1) and either correctly outputs a set X ⊆ V (D) \ {s} such that
|X| ≤ k and no pair in P is reachable from s in D −X or correctly concludes that one does not exist.

We are now ready to give our algorithm for Strict BiMC.

Lemma 3.5. There is a factor-1 FPT-approximation algorithm for Strict BiMC with running time 2knO(1).
We call this algorithm, Alg-Strict-BiMC.

Proof. Let (D, T ,W, k) be the input. We now construct a graph D′ as follows. We add a new vertex s and make
every vertex in W an out-neighbor of s. We set P = ∅ and then, for every (si, ti) ∈ T , we add the pair (si, ti) to
P. We now have the following claim.

Claim 3.3. If S is a T -multicut in D such that W is contained in a unique strongly connected component of
D − S, then no pair in P is reachable from s in D′ − S. Moreover, if no pair in P is reachable from s in D′ − S′
for some S′ ⊆ V (D), then S′ is a T -multicut in D.



The algorithm follows for Strict BiMC from the above claim, which reduces our problem to Digraph Pair
Cut and Proposition 3.2, which gives a 2knO(1)-time algorithm for Digraph Pair Cut. This completes the proof
of Lemma 3.5.

Theorem 3.2. There is a factor-2 FPT-approximation algorithm for BiMC with running time 2O(k)nO(1).

Proof. By using the iterative compression technique (see proof of Theorem 3.1), we reduce our goal to designing an
algorithm (called Alg-Disjoint-BiMC) that, on input (D, T ,W, k), where (D, T ) is an instance of BiMC and W is a
T -multicut in D, runs in time 2O(k+|W |)nO(1) and if there is a T -multicut S in D of size at most k disjoint from
W , then it outputs a T -mulicut in D of size at most 2k. Otherwise, the output of the algorithm can be arbitrary.

We now proceed to describe Algorithm Alg-Disjoint-BiMC. The structure of the algorithm closely resembles that
of Algorithm Alg-Disjoint-SFVS. Moreover, Algorithm Alg-Disjoint-BiMC is simpler since we work with bidirected
graphs and these essentially behave like undirected graphs in our setting. Another consequence of working with
bidirected graphs is that we only need to consider bipartitions of W instead of 3-partitions. We now proceed to
the description of the algoroithm.

In the base case of this algorithm, k = 1 or |W | = 1. In either case, it is sufficient for us to check whether there
is a T -multicut in D of size at most 1, which can be done in polynomial time. Hence, we assume that k, |W | > 1.
Moreover, since D is bidirected, every vertex-induced subgraph of D is strongly connected.

Let P denote the set of all bipartitions of W into sets (Y,Z). For every τ = (Y, Z) ∈ P , we define the following
sets and tuples. Let 1 ≤ i, j ≤ k.

• Li[Z → Y ] denotes the set of all important Z-Y separators of size at most i closest to Y .
• Li[Y ← Z] denotes the set of all important Z-Y separators of size at most i closest to Z.

In the following, let 1 ≤ i ≤ k and Q ⊆ V (D).

• For each N ∈ {Z, Y }, I[Q,N, i] denotes the tuple (D[rel(N,Q)], T , Z, i), i.e., the subinstance induced by
those vertices that are in the strongly connected components intersected by N after deleting Q.

• Ĩ[Q,Y, i] denotes (D′, T , Y, i), where D′ is the graph obtained from D[rel(Y,Q)] by adding a bidirected clique
on Y (i.e., we add an arc (w,w′) for every w,w′ ∈ Y such that (w,w′) /∈ A(D)).

We now describe the rest of the algorithm.

Main loop: For every (Y,Z) ∈ P such that |W |/3 ≤ |Y |, |Z| ≤ 2|W |/3 or |Y | > |W |/3, and for every i1 such
that 1 ≤ i1 ≤ k, we do the following:
Step 1: We guess L1 ∈ Li1 [Z → Y ] and L2 ∈ Li1 [Y ← Z] and set Q = L1 ∪ L2.
Step 2: If |W |/3 ≤ |Y |, |Z| ≤ 2|W |/3, then for every i2, i3 such that i2 + i3 ≤ k − i1, we recursively compute:

(i) SZ ← Alg-Disjoint-BiMC(I[Q,Z, i2]).
(ii) SY ← Alg-Disjoint-BiMC(I[Q,Y, i3]).

Step 3: If Step 2 does not apply and |Y | > |W |/3, then for every i2, i3 such that i2 + i3 = k − i1, we compute:

(i) SZ ← Alg-Disjoint-BiMC(I[Q,Z, i2]).

(ii) SY ← Alg-Strict-BiMC(Ĩ[Q,Y, i3]).

Step 4: If ∆ = Q ∪ SZ ∪ SY is a T -multicut in D of size at most 2k, then we return ∆.
If the algorithm completes iterating through the main loop without returning, then we return an arbitrary

vertex set. This completes the description of the algorithm. The correctness and running time analysis are similar
to those in the proof of Theorem 3.1 and hence we omit the details.



3.4 Directed OCT For a digraph D, we denote say that S is a directed odd cycle transversal (or doct) in D if
D − S does not contain directed odd cycles.

Definition 3.6. Let D be a digraph. We denote by D̃ the Directed Bipartite Double Cover of D which is defined
as follows. The vertex set of D̃ is {va | v ∈ V (D)} ∪ {vb | v ∈ V (D)}. For every arc (u, v) ∈ A(D), D̃ has arcs
(ua, vb) and (ub, va). For a set S ⊆ V (D), we define S̃ = {va | v ∈ S} ∪ {vb | v ∈ S}. For each v ∈ V (D), we call
va and vb the copies of v in D̃.

Proposition 3.3. [51] A strongly connected digraph does not contain directed odd cycles if and only if the
underlying undirected graph is bipartite.

Recall that DOCT is a special case of SCC F-Transversal as one can simply take F to be the set of all
directed odd cycles.

Note that a factor-c FPT-approximation algorithm for Strict DOCT is an algorithm that, on input (D,W, k)
where W is a doct in D, runs in time f(k,W ) · nO(1) (for some computable f) and if there is a doct S in D of size
at most k such that the undirected graph underlying D[conn(W,S)] is bipartite, then then it outputs a doct in D
of size at most ck. Otherwise, the output of the algorithm can be arbitrary.

The above definition is motivated by Proposition 3.3 and is a relaxation of the case where there is a doct S in
D such that W is contained in a unique strongly connected component of D − S. Indeed, if W is contained in a
unique strongly connected component of D − S, then the undirected graph underlying this strongly connected
component, which is the same as the graph D[conn(W,S)], is bipartite.

Lokshtanov et al. [51] gave a factor-1 FPT-approximation algorithm for Strict DOCT with running time
2O(k2+|W | log |W |)nO(1). They used this algorithm as a subroutine in their factor-2 FPT-approximation for DOCT
running in time 2O(k2)nO(1). We give a single-exponential-time factor-2 approximation for Strict DOCT that
can be used to obtain a single-exponential-time factor-2 approximation for DOCT.

Lemma 3.6. There is a factor-2 FPT-approximation algorithm for Strict DOCT with running time 2|W |nO(1).
We call this algorithm Alg-Strict-DOCT.

Proof. Let I = (D,W, k) be the input. We begin with the following claim.

Claim 3.4. If there is a doct S in D such that the undirected graph underlying D[conn(W,S)] is bipartite, then
there exists an α ⊆W such that the following statements hold.

1. S̃ (see Definition 3.6) intersects all (αa ∪ βb)− (αb ∪ βa) paths in D̃.
2. Conversely, for every S′ ⊆ V (D) such that S̃′ intersects all (αa ∪ βb)− (αb ∪ βa) paths in D̃ is a doct in D.

Given the above claim, our algorithm is described as follows. Recall that I = (D,W, k) is the input. Now, for
every α ⊆W , we check whether there is a (αa ∪ βb)− (αb ∪ βa) separator in D̃ of size at most 2k and compute
one if it exists (call this Ŝα). For every α ⊆W and Ŝα, we define Sα ⊆ V (D) as the set {v | {va ∪ vb} ∩ Ŝα 6= ∅}.
That is, Sα comprises those vertices of V (D) that “contribute a copy” to Ŝα. Notice that for every α ⊆W , either
Sα does not exist or has size at most 2k. When then check whether there exists an α ⊆W such that Sα is a doct
in D. If there is such an α, then we return Sα. Otherwise, we return an arbitrary output and terminate.

The running time bound follows from the fact that for every α ⊆W , the time required to compute Sα (if it
exists) and verify whether it is a doct in D is polynomial. For the correctness, recall that we only need our output
to be correct only if there is a doct S in D such that the undirected graph underlying D[conn(W,S)] is bipartite.
In this case, the second statement of Claim 3.4 guarantees that it is sufficient to compute any S′ ⊆ V (D) such that
S̃′ intersects all (αa ∪ βb)− (αb ∪ βa) paths in D̃ is a doct in D for some α ⊆W . The first statement of Claim 3.4
guarantees that there is indeed at least one such set. This completes the proof of Lemma 3.6.

Theorem 3.3. There is a factor-2 FPT-approximation algorithm for DOCT with running time 2O(k)nO(1).

Proof. The algorithm for DOCT closely resembles that for Subset DFVS (Theorem 3.1) with the primary
difference being the use of Algorithm Alg-Strict-DOCT as a subroutine instead of Algorithm Alg-Strict-SFVS (on an



appropriate subinstance). We therefore use the same notation where possible, omit the running time analysis and
only sketch the differences in the algorithm description and proof of correctness.

By using the iterative compression technique, we reduce our goal to designing an algorithm that, on input
(D,W, k), where W is a doct in D, runs in time 2O(k+|W |)nO(1) and if there is a doct S in D of size at most k
disjoint from W , then it outputs a doct in D of size at most 2k. Otherwise, the output of the algorithm can be
arbitrary.

We now proceed to describe this algorithm (Algorithm Alg-Disjoint-DOCT). In the base case of this algorithm,
k = 1 or |W | = 1. In either case, the algorithm solves the instance by brute force. Hence, we assume that
k, |W | > 1. Moreover, we assume that D is strongly connected. Otherwise, we can simply solve the subinstance
induced by each strongly connected component.

Let P denote the set of all 3-partitions of W into sets (X,Y, Z). In the following, let 1 ≤ i ≤ k, Q ⊆ V (D)
and (X,Y, Z) ∈ P.

• I[Q,Z, i] denotes (D[rel(Z,Q)], Z, i).
• I[Q,XY, i] denotes (D[rel(X ∪ Y,Q)], X ∪ Y, i).
• I[Q,X, i] denotes (D[rel(X,Q)], X, i).
• I[Q,Y, i] denotes (D[rel(Y,Q)], Y, i).

We now proceed to the description of the rest of the algorithm.

Main loop: For every (X,Y, Z) ∈ P such that |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3 or |Y | > |W |/3, and for every
i1, i2 such that 1 ≤ i1 ≤ k and k1 = i1 + i2 ≤ k, we do the following:
Step 1: We guess L1 ∈ Li1 [Z → XY ], L2 ∈ Li1 [XY ← Z], L3 ∈ Li2 [Y → X,L1, L2], L4 ∈ Li2 [X ← Y, L1, L2].
Set Q =

⋃
q∈[4] Lq.

Step 2: If |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3, then for every i3, i4 such that i3 + i4 ≤ k− k1, we recursively compute:

(i) SZ ← Alg-Disjoint-DOCT(I[Q,Z, i3]).
(ii) SXY ← Alg-Disjoint-DOCT(I[Q,XY, i4]).

If ∆ = Q ∪ SZ ∪ SXY is a doct in D of size at most 2k, then we return ∆.

In order to see that the instances I[Q,Z, i3] and I[Q,XY, i4] are valid input instances to Alg-Disjoint-DOCT,
it is sufficient to argue that Z is a doct in D[rel(Z,Q)] and X ∪ Y is a doct in D[rel(X ∪ Y,Q)]. But this follows
from the fact that X ∪ Y ∪ Z is a doct and no directed odd cycle intersects both X ∪ Y and Z in D −Q.
Step 3: If Step 2 does not apply and |Y | > |W |/3, then for every i3, i4, i5 such that i3 + i4 + i5 = k − k1, we
recursively compute:

(i) SZ ← Alg-Disjoint-DOCT(I[Q,Z, i3]).
(ii) SX ← Alg-Disjoint-DOCT(I[Q,X, i4]).

(iii) SY ← Alg-Strict-DOCT(I[Q,Y, i5]).
If ∆ = Q ∪ SZ ∪ SX ∪ SY is a doct in D of size at most 2k, then we return ∆.

If the algorithm completes iterating through the main loop without returning, then we return an arbitrary
vertex set. This completes the description of the algorithm. The correctness and running time analysis are similar
to those in the proof of Theorem 3.1.

4 Conclusion
The area of FPT-approximation has been booming in the last decade, enjoying a flurry of results. Notably, almost
all of these results are for W[1]-hard problems. However, there are fundamental problems within the class FPT
itself which the field of FPT-approximation has so far largely overlooked. In this paper, we took a systematic
approach towards this study and designed FPT-approximation algorithms for problems that are in FPT. That is,
we designed FPT-approximation algorithms for problems that are FPT, with running times that are significantly
faster than the corresponding best known FPT-algorithm, and while achieving approximation ratios that are



significantly better than what is possible in polynomial time. We addressed several fundamental problems such as
Directed Feedback Vertex Set, Weighted Directed Feedback Vertex Set, Directed Odd Cycle
Transversal, Undirected Multicut, Weighted Undirected Multicut, parameterized by the solution size.
We also considered graph problems parameterized by the treewidth of the input graph and considered problems
such as Vertex Cover, Component Order Connectivity, and F-Packing for any family F of bounded
sized graphs. Finally, we presented general reductions of problems parameterized by treewidth to their versions
parameterized by solution size, as well as for weighted problems to their unweighted counterparts. We conclude
the paper with several open problems. Let us fix a constant ε > 0.

1. Do Directed Feedback Vertex Set, and Undirected Multicut, parameterized by the solution size,
admit a (1 + ε) approximation algorithm running in time g(ε)knO(1)?

2. Does Planar Vertex Deletion, parameterized by the solution size, admit a constant-factor approximation
algorithm running in time 2O(k)nO(1)?

3. Does Chordal Vertex Deletion, parameterized by the solution size, admit a constant-factor
approximation algorithm running in time 2O(k)nO(1)?

4. Does Directed Feedback Vertex Set, parameterized by the treewidth of the input graph (w), admit a
(1 + ε) approximation algorithm running in time g(ε)wnO(1)?

5. Does Planar Vertex Deletion, parameterized by the treewidth of the input graph (w), admit a (1 + ε)
approximation algorithm running in time g(ε)wnO(1)? Here, even a constant-factor approximation algorithm
running in time 2O(w)nO(1) would be interesting.

6. Does Feedback Vertex Set, parameterized by the treewidth of the input graph (w), admit a (1 + ε)
approximation algorithm running in time cwnO(1) where c is a fixed constant smaller than 3?
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schemes for steiner trees with small number of steiner vertices, in 35th Symposium on Theoretical Aspects of Computer
Science, STACS 2018, February 28 to March 3, 2018, Caen, France, R. Niedermeier and B. Vallée, eds., vol. 96 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp. 26:1–26:15.

[21] G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum feedback sets and multicuts in directed
graphs, Algorithmica, 20 (1998), pp. 151–174.

[22] U. Feige and M. Mahdian, Finding small balanced separators, in Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, J. M. Kleinberg, ed., ACM, 2006, pp. 375–384.

[23] A. E. Feldmann, Karthik C. S., E. Lee, and P. Manurangsi, A survey on approximation in parameterized
complexity: Hardness and algorithms, Algorithms, 13 (2020), p. 146.

[24] M. R. Fellows, A. Kulik, F. A. Rosamond, and H. Shachnai, Parameterized approximation via fidelity preserving
transformations, J. Comput. Syst. Sci., 93 (2018), pp. 30–40.

[25] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, Berlin, 2006.
[26] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi, Kernelization: theory of parameterized preprocessing,

Cambridge University Press, 2019.
[27] F. Grandoni, S. Kratsch, and A. Wiese, Parameterized approximation schemes for independent set of rectangles

and geometric knapsack, in 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany, M. A. Bender, O. Svensson, and G. Herman, eds., vol. 144 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, pp. 53:1–53:16.

[28] A. Gupta, E. Lee, and J. Li, Faster exact and approximate algorithms for k-cut, in 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, M. Thorup, ed., IEEE Computer
Society, 2018, pp. 113–123.

[29] , An FPT algorithm beating 2-approximation for k-cut, in Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, A. Czumaj, ed., SIAM,
2018, pp. 2821–2837.
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