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Abstract
We present a new parallel algorithm for k-clique counting/list-
ing that has polylogarithmic span (parallel time) and is work-
efficient (matches the work of the best sequential algorithm)
for sparse graphs. Our algorithm is based on computing low
out-degree orientations, which we present new linear-work
and polylogarithmic-span algorithms for computing in paral-
lel. We also present new parallel algorithms for producing
unbiased estimations of clique counts using graph sparsifi-
cation. Finally, we design two new parallel work-efficient
algorithms for approximating the k-clique densest subgraph,
the first of which is a 1/k-approximation and the second of
which is a 1/(k(1 + ε))-approximation and has polylogarith-
mic span. Our first algorithm does not have polylogarithmic
span, but we prove that it solves a P-complete problem.

In addition to the theoretical results, we also implement
the algorithms and propose various optimizations to improve
their practical performance. On a 30-core machine with
two-way hyper-threading, our algorithms achieve 13.23–
38.99x and 1.19–13.76x self-relative parallel speedup for
k-clique counting and k-clique densest subgraph, respectively.
Compared to the state-of-the-art parallel k-clique counting
algorithms, we achieve up to 9.88x speedup, and compared
to existing implementations of k-clique densest subgraph, we
achieve up to 11.83x speedup. We are able to compute the
4-clique counts on the largest publicly-available graph with
over two hundred billion edges for the first time.

1 Introduction
Finding k-cliques in a graph is a fundamental graph-theoretic
problem with a long history of study both in theory and
practice. In recent years, k-clique counting and listing
have been widely applied in practice due to their many
applications, including in learning network embeddings [43],
understanding the structure and formation of networks [59,
56], identifying dense subgraphs for community detection [53,
48, 21, 26], and graph partitioning and compression [22].

For sparse graphs, the best known sequential algorithm
is by Chiba and Nishizeki [12], and requires O(mαk−2)
work (number of operations), where α is the arboricity of the
graph.1 The state-of-the-art clique parallel k-clique counting
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1A graph has arboricity α if the minimum number of spanning forests
needed to cover the graph is α.

algorithm is KCLIST [15], which achieves the same work
bound, but does not have a strong theoretical bound on the
span (parallel time). Furthermore, KCLIST as well as existing
parallel k-clique counting algorithms have limited scalability
for graphs with more than a few hundred million edges,
but real-world graphs today frequently contain billions to
hundreds of billions of edges [34].
k-clique Counting. In this paper, we design a new parallel
k-clique counting algorithm, ARB-COUNT that matches the
work of Chiba-Nishezeki, has polylogarithmic span, and
has improved space complexity compared to KCLIST. Our
algorithm is able to significantly outperform KCLIST and
other competitors, and scale to larger graphs than prior work.
ARB-COUNT is based on using low out-degree orientations
of the graph to reduce the total work. Assuming that
we have a low out-degree ranking of the graph, we show
that for a constant k we can count or list all k-cliques in
O(mαk−2) work, and O(k log n + log2 n) span with high
probability (whp),2 where m is the number of edges in the
graph and α is the arboricity of the graph. Having work
bounds parameterized by α is desirable since most real-world
graphs have low arboricity [17]. Theoretically, ARB-COUNT
requires O(α) extra space per processor; in contrast, the
KCLIST algorithm requires O(α2) extra space per processor.
Furthermore, KCLIST does not achieve polylogarithmic span.

We also design an approximate k-clique counting algo-
rithm based on counting on a sparsified graph. We show
in the appendix that our approximate algorithm produces
unbiased estimates and runs in O(pmαk−2 + m) work and
O(k log n+ log2 n) span whp for a sampling probability of
p.
Parallel Ranking Algorithms. We present two new parallel
algorithms for efficiently ranking the vertices, which we use
for k-clique counting. We show that a distributed algorithm
by Barenboim and Elkin [5] can be implemented in linear
work and polylogarithmic span. We also parallelize an
external-memory algorithm by Goodrich and Pszona [25]
and obtain the same complexity bounds. We believe that our
parallel ranking algorithms may be of independent interest, as
many other subgraph finding algorithms use low out-degree
orderings (e.g., [25, 41, 28]).
Peeling and k-Clique Densest Subgraph. We also present

2We say O(f(n)) with high probability (whp) to indicate O(cf(n))

with probability at least 1− n−c for c ≥ 1, where n is the input size.
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new parallel algorithms for the k-clique densest subgraph
problem, a generalization of the densest subgraph problem
that was first introduced by Tsourakakis [53]. This problem
admits a natural 1/k-approximation by peeling vertices in
order of their incident k-clique counts. We present a parallel
peeling algorithm, ARB-PEEL, that peels all vertices with
the lowest k-clique count on each round and uses ARB-
COUNT as a subroutine. The expected amortized work
of ARB-PEEL is O(mαk−2 + ρk(G) log n) and the span is
O(ρk(G)k log n+ log2 n) whp, where ρk(G) is the number
of rounds needed to completely peel the graph. We also prove
in the appendix that the problem of obtaining the hierarchy
given by this process is P-complete for k > 2, indicating that
a polylogarithmic-span solution is unlikely.

Tsourakakis also shows that naturally extending the Bah-
mani et al. [4] algorithm for approximate densest subgraph
gives an 1/(k(1 + ε))-approximation in O(log n) parallel
rounds, although they were not concerned about work. We
present an O(mαk−2) work and polylogarithmic-span algo-
rithm, ARB-APPROX-PEEL, for obtaining a 1/(k(1 + ε))-
approximation to the k-clique densest subgraph problem. We
obtain this work bound using our k-clique algorithm as a
subroutine. Danisch et al. [15] use their k-clique counting
algorithm as a subroutine to implement these two approxi-
mation algorithms for k-clique densest subgraph, but their
implementations do not have provably-efficient bounds.
Experimental Evaluation. We present implementations of
our algorithms that use various optimizations to achieve good
practical performance. We perform a thorough experimental
study on a 30-core machine with two-way hyper-threading
and compare to prior work. We show that on a variety of real-
world graphs and different k, our k-clique counting algorithm
achieves 1.31–9.88x speedup over the state-of-the-art parallel
KCLIST algorithm [15] and self-relative speedups of 13.23–
38.99x. We also compared our k-clique counting algorithm
to other parallel k-clique counting implementations including
Jain and Seshadhri’s PIVOTER [28], Mhedhbi and Salihoglu’s
worst-case optimal join algorithm (WCO) [35], Lai et al.’s
implementation of a binary join algorithm (BINARYJOIN)
[30], and Pinar et al.’s ESCAPE [41], and demonstrate
speedups of up to several orders of magnitude.

Furthermore, by integrating state-of-the-art parallel
graph compression techniques, we can process graphs with
tens to hundreds of billions of edges, significantly improving
on the capabilities of existing implementations. As far as we
know, we are the first to report 4-clique counts for Hyper-
link2012, the largest publicly-available graph, with over two
hundred billion undirected edges.

We study the accuracy-time tradeoff of our sampling
algorithm, and show that is able to approximate the clique
counts with 5.05% error 5.32–6573.63 times more quickly
than running our exact counting algorithm on the same graph.
We compare our sampling algorithm to Bressan et al.’s serial

MOTIVO [11], and demonstrate 92.71–177.29x speedups.
Finally, we study our two parallel approximation algorithms
for k-clique densest subgraph and show that our we are able to
outperform KCLIST by up to 29.59x and achieve 1.19–13.76x
self-relative speedup. We demonstrate up to 53.53x speedup
over Fang et al.’s serial COREAPP [21] as well.

The contributions of this paper are as follows:

(1) A parallel algorithm with O(mαk−2) and polylogarith-
mic span whp for k-clique counting.

(2) Parallel algorithms for low out-degree orientations with
O(m) work and O(log2 n) span whp.

(3) An O(mαk−2) amortized expected work parallel algo-
rithm for computing a 1/k-approximation to the k-clique
densest subgraph problem, and an O(mαk−2) work and
polylogarithmic-span whp algorithm for computing a
1/(k(1 + ε))-approximation.

(4) Optimized implementations of our algorithms that achieve
significant speedups over existing state-of-the-art meth-
ods, and scale to the largest publicly-available graphs.

Our code is publicly available at: https://github.com/
ParAlg/gbbs/tree/master/benchmarks/CliqueCounting.

2 Preliminaries

Graph Notation. We consider graphs G = (V,E) to be
simple and undirected, and let n = |V | and m = |E|. For
any vertex v, N(v) denotes the neighborhood of v and deg(v)
denotes the degree of v. If there are multiple graphs, NG(v)
denotes the neighborhood of v in G. For a directed graph
DG, N(v) = NDG(v) denotes the out-neighborhood of v in
DG. For analysis, we assume thatm = Ω(n). The arboricity
(α) of a graph is the minimum number of spanning forests
needed to cover the graph. α is upper bounded by O(

√
m)

and lower bounded by Ω(1) [12].
A k-clique is a subgraph G′ ⊆ G of size k where all(

k
2

)
edges are present. The k-clique densest subgraph is a

subgraph G′ ⊆ G that maximizes across all subgraphs the
ratio between the number of k-cliques induced by vertices in
G′ and the number of vertices in G′ [53]. An c-orientation
of an undirected graph is a total ordering on the vertices,
where the oriented out-degree of each vertex (the number of
its neighbors higher than it in the ordering) is bounded by c.
Model of Computation. For analysis, we use the work-
span model [29, 13]. The work W of an algorithm is the
total number of operations, and the span S is the longest
dependency path. We can execute a parallel computation in
W/P + S running time using P processors [9]. We aim for
work-efficient parallel algorithms in this model, that is, an
algorithm with work complexity that asymptotically matches
the best-known sequential time complexity for the problem.
We assume concurrent reads and writes and atomic adds are
supported in the model in O(1) work and span.
Parallel Primitives. We use the following primitives.
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Reduce-Add takes as input a sequence A of length n, and
returns the sum of the entries in A. Prefix sum takes as input
a sequence A of length n, an identity ε, and an associative
binary operator ⊕, and returns the sequence B of length n
whereB[i] =

⊕
j<iA[j]⊕ε. Filter takes as input a sequence

A of length n and a predicate function f , and returns the se-
quence B containing a ∈ A such that f(a) is true, in the
same order that these entries appeared in A. These primitives
take O(n) work and O(log n) span [29].

We also use parallel integer sort, which sorts n integers
in the range [1, n] in O(n) work whp and O(log n) span
whp [42]. We use parallel hash tables that support n
operations (insertions, deletions, and membership queries) in
O(n) work and O(log n) span whp [24]. Given hash tables
T1 and T2 containing n and m elements respectively, the
intersection T1 ∩ T2 can be computed in O(min(n,m)) work
and O(log(n+m)) span whp.
Parallel Bucketing. A parallel bucketing structure main-
tains a mapping from keys to buckets, which we use to group
vertices by their k-clique counts in our k-clique densest sub-
graph algorithms. The bucket value of keys can change, and
the structure updates the bucket containing these keys.

In practice, we use the bucketing structure by Dhulipala
et al. [16]. However, for theoretical purposes, we use the
batch-parallel Fibonacci heap by Shi and Shun [49], which
supports b insertions in O(b) amortized expected work and
O(log n) span whp, b updates in O(b) amortized work and
O(log2 n) span whp, and extracts the minimum bucket in
O(log n) amortized expected work and O(log n) span whp.
Graph Storage. In our implementations, we store our graphs
in compressed sparse row (CSR) format, which requires
O(m + n) space. For large graphs, we compress the edges
for each vertex using byte codes that can be decoded in
parallel [50]. For our theoretical bounds, we assume that
graphs are represented in an adjacency hash table, where each
vertex is associated with a parallel hash table of its neighbors.

3 Clique Counting
In this section, we present our main algorithms for counting
k-cliques. We describe our parallel algorithm for low out-
degree orientations in Section 3.1, our parallel k-clique
counting algorithm in Section 3.2, and practical optimizations
in Section 3.4. We discuss briefly our parallel approximate
counting algorithm in Section 3.3.

3.1 Low Out-degree Orientation (Ranking) Recall that
an c-orientation of an undirected graph is a total ordering
on the vertices, where the oriented out-degree of each vertex
(the number of its neighbors higher than it in the ordering) is
bounded by c. Although this problem has been widely studied
in other contexts, to the best of our knowledge, we are not
aware of any previous work-efficient parallel algorithms for
solving this problem. We show that the Barenboim-Elkin

and Goodrich-Pszona algorithms, which are efficient in the
CONGEST and I/O models of computation respectively, lead
to work-efficient low-span algorithms.

Both algorithms take as input a user-defined parameter
ε. The Barenboim-Elkin algorithm also requires a parameter,
α, which is the arboricity of the graph (or an estimate of
the arboricity). As an estimate of the arboricity, we use the
approximate densest-subgraph algorithm from [17], which
yields a (2 + ε)-approximation and takes O(m+n) work and
O(log2 n) span. The algorithms peel vertices in rounds until
the graph is empty; the peeled vertices are appended to the
end of ordering. Both algorithms peel a constant fraction of
the vertices per round. For the Goodrich-Pszona algorithm,
an ε/(2 + ε) fraction of vertices are removed on each round,
so the algorithm finishes in O(log n) rounds. The Barenboim-
Elkin algorithm peels vertices with induced degree less than
(2 + ε)α on each round. By definition of arboricity, there
are at most nα/d vertices with degree at least d. Thus, the
number of vertices with degree at least (2 + ε)α is at most
n/(2 + ε), and a constant fraction of the vertices have degree
at most (2 + ε)α. Since a subgraph of a graph with arboricity
α has arboricity at most α, each round peels at least a constant
fraction of remaining vertices, and the algorithm terminates in
O(log n) rounds. We provide pseudocode for the algorithms
in the appendix.

For the c-orientation given by the Barenboim-Elkin
algorithm, vertices have out-degree less than (2 + ε)α by
construction. For the c-orientation given by the Goodrich-
Pszona algorithm, the number of vertices with degree at least
(2 + ε)α is at most n/(2 + ε), so the ε/(2 + ε) fraction of the
lowest degree vertices must have degree less than (2 + ε)α.

We implement each round of the Goodrich-Pszona
algorithm using parallel integer sorting to find the ε/(2 +
ε) fraction of vertices with lowest induced degree. Our
parallelization of Barenboim-Elkin uses a parallel filter to
find the set of vertices to peel. We can implement a round in
both algorithms in linear work in the number of remaining
vertices, andO(log n) span. We obtain the following theorem,
which we prove in the appendix.

THEOREM 3.1. The Goodrich-Pszona and Barenboim-Elkin
algorithms compute O(α)-orientations in O(m) work (whp
for Goodrich-Pszona), O(log2 n) span (whp for Goodrich-
Pszona), and O(m) space.

Finally, in the rest of this paper, we direct graphs in CSR
format after computing an orientation, which can be done in
O(m) work and O(log n) span using prefix sum and filter.

3.2 Counting algorithm Our algorithm for k-clique count-
ing is shown as ARB-COUNT in Algorithm 1. On Line 12,
ARB-COUNT first directs the edges ofG such that every vertex
has out-degree O(α), as described in Section 3.1. Then, it
calls a recursive subroutine REC-COUNT-CLIQUES that takes
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Algorithm 1 Parallel k-clique counting algorithm
1: procedure REC-COUNT-CLIQUES(DG, I , `)
2: . I is the set of potential neighbors to complete the clique, and ` is

the recursive level
3: if ` = 1 then return |I| . Base case
4: Initialize T to store clique counts per vertex in I
5: parfor v in I do
6: I′ ← INTERSECT(I , NDG(v)) . Intersect I with directed

neighbors of v
7: t′ ← REC-COUNT-CLIQUES(DG, I′, `− 1)
8: Store t′ in T
9: t← REDUCE-ADD(T ) . Sum clique counts in T

10: return t

11: procedure ARB-COUNT(G = (V,E), k, ORIENT)
12: DG← ORIENT(G) . Apply a user-specified orientation algorithm
13: return REC-COUNT-CLIQUES(DG, V , k)

as input the directed graph DG, candidate vertices I that
can be added to a clique, and the number of vertices ` left
to complete a k-clique (Line 13). With every recursive call
to REC-COUNT-CLIQUES, a new candidate vertex v from I
is added to the clique and I is pruned to contain only out-
neighbors of v (Line 6). REC-COUNT-CLIQUES terminates
when precisely one vertex is needed to complete the k-clique,
in which the number of vertices in I represents the number
of completed k-cliques (Line 3). The counts obtained from
recursive calls are aggregated using a REDUCE-ADD and re-
turned (Lines 9–10).

Finally, by construction, ARB-COUNT and REC-COUNT-
CLIQUES can be easily modified to store k-clique counts
per vertex. We append -V to indicate the corresponding
subroutines that store counts per vertex, which are used in our
peeling algorithms. Similarly, ARB-COUNT can be modified
to support k-clique listing.
Complexity Bounds. Aside from the initial call to REC-
COUNT-CLIQUES which takes I = V , in subsequent calls,
the size of I is bounded by O(α). This is because at every
recursive step, I is intersected with the out-neighbors of some
vertex v, which is bounded by O(α). The additional space
required by ARB-COUNT per processor is O(α), and since the
space is allocated in a stack-allocated fashion, we can bound
the total additional space by O(Pα) on P processors when
using a work-stealing scheduler [8]. Thus, the total space
for ARB-COUNT is O(m + Pα). In contrast, the KCLIST
algorithm requires O(m+ Pα2) space.

Moreover, considering the first call to REC-COUNT-
CLIQUES, the total work of INTERSECT is given by O(m)
whp, because the sum of the degrees of each vertex is bounded
by O(m). Also, using a parallel adjacency hash table, the
work of INTERSECT in each subsequent recursive step is given
by the minimum of |I| and |NDG(v)|, and thus is bounded
by O(α) whp. We recursively call REC-COUNT-CLIQUES k
times as ` ranges from 1 to k, but the first call involves a
trivial intersect where we retrieve all directed neighbors of
v, and the final recursive call returns immediately with |I|.

Hence, we have k − 2 recursive steps that call INTERSECT
non-trivially, and so in total, ARB-COUNT takes O(mαk−2)
work whp.

The span of ARB-COUNT is defined by the span of
INTERSECT and REDUCE-ADD in each recursive call. As
discussed in Section 2, the span of INTERSECT is O(log n)
whp, due to the use of the parallel hash tables, and the span
of REDUCE-ADD is O(log n). Thus, since we have k − 2
recursive steps with O(log n) span, and taking into account
the O(log2 n) span whp in orienting the graph, ARB-COUNT
takes O(k log n+ log2 n) span whp. ARB-COUNT-V obtains
the same work and span bounds as ARB-COUNT, since the
atomic add operations do not increase the work or span. The
total complexity of k-clique counting is as follows.

THEOREM 3.2. ARB-COUNT takes O(mαk−2) work and
O(k log n+ log2 n) span whp, using O(m+ Pα) space on
P processors.

3.3 Sampling We discuss in the appendix a technique,
colorful sparsification, that allows us to produce approximate
k-clique counts, based on previous work on approximate
triangle and butterfly (biclique) counting [39, 45]. The
technique uses our k-clique counting algorithm (Algorithm 1)
as a subroutine, and we prove the following theorem in the
appendix.

THEOREM 3.3. Our sampling algorithm with parameter p =
1/c gives an unbiased estimate of the global k-clique count
and takes O(pmαk−2 + m) work and O(k log n + log2 n)
span whp, and O(m+ Pα) space on P processors.

3.4 Practical Optimizations We now introduce practical
optimizations that offer tradeoffs between performance and
space complexity. First, in the initial call to REC-COUNT-
CLIQUES, for each v, we construct the induced subgraph on
NDG(v) and replaceDG with this subgraph in later recursive
levels. Thus, later recursive levels can skip edges that have
already been pruned in the first level. Because the out-degree
of each vertex is bounded above by O(α), we require O(α2)
extra space per processor to store these induced subgraphs.

Moreover, as mentioned in Section 2, we store our
graphs (and induced subgraphs) in CSR format. To efficiently
intersect the candidate vertices in I with the requisite out-
neighbors, we relabel vertices in the induced subgraph
constructed in the second level of recursion to be in the range
[0, . . . , O(α)], and then use an array of size O(α) to mark
vertices in I . For each vertex I , we check if its out-neighbors
are marked in our array to perform INTERSECT.

While this would require O(kα) extra space per proces-
sor to maintain a size O(α) array per recursive call, we find
that in practice, parallelizing up to the first two recursive lev-
els is sufficient. Subsequent recursive calls are sequential, so
we can reuse the array between recursive calls by using the
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Figure 1: Multiplicative slowdowns of KCLIST’s parallel k-clique
counting implementation, compared to ARB-COUNT. The best
runtimes between node and edge parallelism for KCLIST and ARB-
COUNT, and among different orientations for ARB-COUNT are used.

labeling scheme from Chiba and Nishizeki’s serial k-clique
counting algorithm [12]. We record the recursive level ` in
our array for each vertex in I , perform INTERSECT by check-
ing if the out-neighbors have been marked with ` in the array,
and then reset the marks. This allows us to use only O(α)
extra space per processor to perform INTERSECT operations.

In our implementation, node parallelism refers to par-
allelizing only the first recursive level and edge parallelism
refers to parallelizing only the first two recursive levels. These
correspond with the ideas of node and edge parallelism in
Danisch et al.’s KCLIST algorithm [15]. We also implemented
dynamic parallelism, where more recursive levels are paral-
lelized, but this was slower in practice—further parallelization
did not mitigate the parallel overhead introduced.

Finally, for the intersections on the second recursive
level (the first set of non-trivial intersections), it is faster in
practice to use an array marking vertices in NDG(v). If we
let I1 = NDG(v) denote the set of neighbors obtained after
the first recursive level, then to obtain the vertices in I2 in
the second level, we use a size n array to mark vertices in I1
and perform a constant-time lookup to determine for u ∈ I1,
which out-neighbors u′ ∈ NDG(u) are also in I1; these u′

form I2. Past the second level, we relabel vertices in the
induced subgraph as mentioned above and only require the
O(α) array for intersections. Thus, we use linear space per
processor for the second level of recursion only.

In total, the space complexity for intersecting in the
second level of recursion and storing the induced subgraph
on NDG(v) dominates, and so we use O(max(n, α2)) extra
space per processor.

3.5 Comparison to KCLIST Some of the practical opti-
mizations for ARB-COUNT overlap with those in KCLIST [15].
Specifically, KCLIST also stores the induced subgraph on
NDG(v), offers node and edge parallelism options, and uses
a size n array to mark vertices to perform intersections. How-
ever, ARB-COUNT is fundamentally different due to the low
out-degree orientation and because it does not inherently re-
quire labels or subgraphs stored between recursive levels.

Notably, the induced subgraph that ARB-COUNT com-
putes at the first level of recursion takes O(α2) space per
processor because of the low out-degree orientation, whereas

KCLIST takes O(n2) space per processor for their induced
subgraph. Then, ARB-COUNT further saves on space and com-
putation by maintaining only the subgraph computed from
the first level of recursion to intersect with vertices in later
recursive levels, which is solely possible due to the low out-
degree orientation, whereas KCLIST necessarily recomputes
an induced subgraph on every recursive level. As a result,
ARB-COUNT is also able to compute intersections using only
an array of size O(α) per recursive level, whereas KCLIST
requires an array of size O(n) per level.

In total, KCLIST uses O(n2) extra space per processor,
whereas ARB-COUNT uses O(max(n, α2)) extra space per
processor. Compared to KCLIST, ARB-COUNT has lower
memory footprint, span, and constant factors in the work,
which allow us to achieve speedups between 1.31–9.88x over
KCLIST’s best parallel runtimes and which allows us to scale
to the largest publicly-available graphs, considering the best
optimizations, as shown in Figure 1. Note that for large k on
large graphs, the multiplicative slowdown decreases because
KCLIST incurs a large preprocessing overhead due to the large
induced subgraph computed in the first recursive level, which
is mitigated by higher counting times as k increases. These
results are discussed further in Section 5.1.

4 k-Clique Densest Subgraph
We present our new work-efficient parallel algorithms for
approximating the k-clique densest subgraph problem, using
the vertex peeling algorithm.

4.1 Vertex Peeling
Algorithm. Algorithm 2 presents ARB-PEEL, our paral-
lel algorithm for vertex peeling, which also gives a 1/k-
approximate to the k-clique densest subgraph problem. An
example of this peeling process is shown in Figure 2. The
algorithm uses ARB-COUNT to compute the initial per-vertex
k-clique counts (C), which are given as an argument to the
algorithm. The algorithm first initializes a parallel bucketing
structure that stores buckets containing sets of vertices, where
all vertices in the same bucket have the same k-clique count
(Line 11). Then, while not all of the vertices have been peeled,
it repeatedly extracts the vertices with the lowest induced k-
clique count (Line 14), updates the count of the number of
peeled vertices (Line 15), and updates the k-clique counts of
vertices that are not yet finished that participate in k-cliques
with the peeled vertices (Line 16). UPDATE also returns the
number of k-cliques that were removed as well as the set
of vertices whose k-clique counts changed. We then update
the buckets of the vertices whose k-clique counts changed
(Line 17). Lastly, the algorithm checks if the new induced sub-
graph has higher density than the current maximum density,
and if so updates the maximum density (Lines 18–19).

The UPDATE procedure (Line 1–8) performs the bulk of
the work in the algorithm. It takes each vertex in A (vertices

Copyright © 2021 by SIAM
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Algorithm 2 Parallel vertex peeling algorithm
1: procedure UPDATE(G = (V,E), k,DG,C,A)
2: Initialize T to store k-clique counts per vertex in A
3: parfor v in A do
4: I ← {u | u ∈ NG(v) and u has not been previously peeled or
u ∈ A and u ∈ NDG(v) } . To avoid double counting

5: (t′, U)← REC-COUNT-CLIQUES-V(DG, I , k − 1, C)
6: Store t′ in T
7: t← REDUCE-ADD(T ) . Sum k-clique counts in T
8: return (t, U)

9: procedure ARB-PEEL(G = (V,E), k,DG,C, t)
10: . C is an array of k-clique counts per vertex and t is the total # of

k-cliques
11: Let B be a bucketing structure mapping V to buckets based on # of

k-cliques
12: d∗ ← t/|V |, f ← 0
13: while f < |V | do
14: A← vertices in next bucket in B (to be peeled)
15: f ← f + |A|
16: (t′, U)←UPDATE(G, k,DG,C,A) . Update # of k-cliques
17: Update the buckets of vertices in U , peeling A
18: if t′/(|V | − f) > d∗ then
19: d∗ ← t′/(|V | − f) . Update maximum density
20: return d∗
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Figure 2: An example of our peeling algorithm ARB-PEEL for k = 4.
Each vertex is labeled with its current 4-clique count. At each step,
we peel the vertices with the minimum 4-clique count, highlighted in
red, and then recompute the 4-clique counts on the unpeeled vertices.
If there are multiple vertices with the same minimum 4-clique count,
we peel them in parallel. Each step is labeled with the k-clique
density of the remaining graph.

to be peeled), builds its induced neighborhood, and counts
all (k − 1)-cliques in this neighborhood using ARB-COUNT,
as these (k − 1)-cliques together with a peeled vertex form
a k-clique (Line 5). On Line 4, we avoid double counting
k-cliques by ignoring vertices already peeled in prior rounds,
and for vertices being peeled in the same round, we first mark
them in an auxiliary array and break ties based on their rank
(i.e., for a k-clique involving multiple vertices being peeled,
the highest ranked vertex is responsible for counting it).

This algorithm computes a density that approximates the
density of the k-clique densest subgraph. A subgraph with
this density can be returned by rerunning the algorithm.

In the appendix, we prove that ARB-PEEL correctly gen-
erates a subgraph with the same approximation guarantees
of Tsourakakis’ sequential k-clique densest subgraph algo-
rithm [53], and the following bounds on the complexity of
ARB-PEEL. ρk(G) is defined to be the k-clique peeling com-
plexity of G, or the number of rounds needed to peel the
graph where in each round, all vertices with the minimum

k-clique count are peeled. Note that ρk(G) ≤ n. The proof
requires applying bounds from the batch-parallel Fibonacci
heap [49] and using the Nash-Williams theorem [36].

THEOREM 4.1. ARB-PEEL computes a 1/k-approximation
to the k-clique densest subgraph problem in O(mαk−2 +
ρk(G) log n) expected amortized work, O(ρk(G)k log n +
log2 n) span whp, and O(m + Pα) space, where ρk(G) is
the k-clique peeling complexity of G.

Discussion. To the best of our knowledge, Tsourakakis
presents the first sequential algorithm for this problem,
although the work bound is worse than ours in most cases.
Sariyuce et al. [46] present a sequential algorithm for a more
general problem, but in the case that is equivalent to k-
clique peeling, their fastest algorithm runs in O(R(G, k))
work and O(C(G, k)) space, where R(G, k) is the cost of
an arbitrary k-clique counting algorithm and C(G, k) is the
number of k-cliques in G. They provide another algorithm
which runs in O(m + n) space, but requires O(

∑
v d(v)k)

work, which could be as high as O(nk). Our sequential
bounds are asymptotically better than theirs in terms of either
work or space, except in the highly degenerate case where
C(G, k) = o(ρ log n). Sariyuce et al. [47] also give a parallel
algorithm, which is similarly not work-efficient.

4.2 Approximate Vertex Peeling We present a 1/(k(1 +
ε))-approximate algorithm ARB-APPROX-PEEL for the k-
clique densest subgraph problem based on approximate
peeling. The algorithm is similar to ARB-PEEL, but in
each round, it sets a threshold t = k(1 + ε)τ(S) where
τ(S) is the density of the current subgraph S, and removes
all vertices with at most τ k-cliques. Tsourakakis [53]
describes this procedure and shows that it computes a
1/(k(1 + ε))-approximation of the k-clique densest subgraph
in O(log n) rounds. Although the round complexity in
Tsourakakis’ implementation is low, no non-trivial bound
was known for its work. ARB-APPROX-PEEL is similar to
Tsourakakis’ algorithm, except we utilize the fast, parallel
k-clique counting methods introduced in this paper. We prove
the following in the appendix.

THEOREM 4.2. ARB-APPROX-PEEL computes a 1/(k(1 +
ε))-approximation to the k-clique densest subgraph and
runs in O(mαk−2) work and O(k log2 n) span whp, and
O(m+ Pα) space.

Note that the span for ARB-APPROX-PEEL matches or
improves upon that for ARB-PEEL; notably, when ρk(G) =
o(log n), then ARB-APPROX-PEEL takes O(ρk(G)k log n +
log2 n) span whp, which is better than what is stated in
Theorem 4.2.

4.3 Practical Optimizations We use the same optimiza-
tions described in Section 3.4 for updating k-clique counts.
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n m

com-dblp [31]. 317,080 1,049,866
com-orkut [31]. 3,072,441 117,185,083
com-friendster [31]. 65,608,366 1.806× 109

com-lj [31]. 3,997,962 34,681,189
ClueWeb [14] 978,408,098 7.474× 1010

Hyperlink2014 [34] 1.725× 109 1.241× 1011

Hyperlink2012 [34] 3.564× 109 2.258× 1011

Table 1: Sizes of our input graphs. ClueWeb, Hyperlink2012, and
Hyperlink2014 are symmetrized to be undirected graphs, and are
stored and read in a compressed format from the Graph Based
Benchmark Suite (GBBS) [17].
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Figure 3: Multiplicative slowdowns of various parallel k-clique
counting implementations, compared to ARB-COUNT, on com-orkut
and com-friendster. The best runtimes for each implementation
were used, and we have excluded any running time over 5 hours for
WCO and BINARYJOIN. Note that PIVOTER was unable to perform
k-clique counting on com-friendster due to memory limitations, and
as such is not included in this figure.

Also, we use the bucketing structure given by Dhulipala et
al. [16], which keeps buckets relating k-clique counts to ver-
tices, but only materializes a constant number of the lowest
buckets. If large ranges of buckets contain no vertices, this
structure skips over such ranges, allowing for fast retrieval of
vertices to be peeled in every round using linear space.

5 Experiments

Environment. We run most of our experiments on a machine
with 30 cores (with two-way hyper-threading), with 3.8GHz
Intel Xeon Scalable (Cascade Lake) processors and 240 GiB
of main memory. For our large compressed graphs, we use a
machine with 80 cores (with two-way hyper-threading), with
2.6GHz Intel Xeon E7 (Broadwell E7) processors and 3844
GiB of main memory. We compile our programs with g++
(version 7.3.1) using the -O3 flag. We use OpenMP for our k-
clique counting runtimes, and we use a lightweight scheduler
called Homemade for our k-clique peeling runtimes [7]. We
terminate any experiment that takes over 5 hours, except for
experiments on the large compressed graphs.
Graph Inputs. We test our algorithms on real-world graphs
from the Stanford Network Analysis Project (SNAP) [31],
CMU’s Lemur project [14], and the WebDataCommons
dataset [34]. The details of the graphs are in Table 1, and we
show additional statistics in the appendix.
Algorithm Implementations. We test different orientations
for our counting and peeling algorithms, including the

Goodrich-Pszona and Barenboim-Elkin orientations from
Section 3.1, with ε = 1. We also test other orientations that
do not give work-efficient and polylogarithmic-span bounds,
but are fast in practice, including the orientation given by
ranking vertices by non-decreasing degree, the orientation
given by the k-core ordering [33], and the orientation given
by the original ordering of vertices in the graph.

Moreover, we compare our algorithms against
KCLIST [15], which contains state-of-the-art parallel and
sequential k-clique counting algorithms, and sequential
k-clique peeling implementations. KCLIST additionally
includes a parallel approximate k-clique peeling implemen-
tation. We include a simple modification to their k-clique
counting code to support faster k-clique counting, where we
simply return the number of k-cliques instead of iterating
over each k-clique in the final level of recursion. KCLIST
also offers the option of node or edge parallelism, but only
offers a k-core ordering to orient the input graphs. Note that
KCLIST does not offer a choice of orientation.

We additionally compare our counting algorithms to
Jain and Seshadhri’s PIVOTER algorithm [28], Mhedhbi and
Salihoglu’s worst-case optimal join algorithm (WCO) [35],
Lai et al.’s implementation of a binary join algorithm
(BINARYJOIN) [30], and Pinar et al.’s ESCAPE algo-
rithm [41]. Note that PIVOTER is designed for counting all
cliques, and the latter three algorithms are designed for gen-
eral subgraph counting. Finally, we compare our approximate
k-clique counting algorithm to Bressan et al.’s MOTIVO
algorithm for approximate subgraph counting [11], which is
more general. For k-clique peeling, we compare to Fang et
al.’s COREAPP algorithm [21] and Tsourakakis’s [53] trian-
gle densest subgraph implementation.

5.1 Counting Results Table 2 shows the best parallel run-
times for k-clique counting over the SNAP datasets, from
ARB-COUNT, KCLIST, PIVOTER, WCO, and BINARYJOIN,
considering different orientations for ARB-COUNT, and con-
sidering node versus edge parallelism for ARB-COUNT and
for KCLIST. We also show the best sequential runtimes from
ARB-COUNT. We do not include triangle counting results, be-
cause for triangle counting, our k-clique counting algorithm
becomes precisely Shun and Tangwongsan’s [51] triangle
counting algorithm. Furthermore, we performed experiments
on ESCAPE by isolating their 4- and 5-clique counting code,
but KCLIST consistently outperforms ESCAPE; thus, we
have not included ESCAPE in Table 2. Figure 3 shows the
slowdowns of the parallel implementations over ARB-COUNT
on com-orkut and com-friendster.

We also obtain parallel runtimes for k = 4 on large
compressed graphs, using degree ordering and node paral-
lelism, on a 80-core machine with hyper-threading; note that
KCLIST, PIVOTER, WCO, and BINARYJOIN cannot handle
these graphs. The runtimes are: 5824.76 seconds on ClueWeb
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k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11

com- ARB-COUNT T60 0.10 0.13 0.30 2.05e 24.06e 281.39e 2981.74∗e > 5 hrs
dblp ARB-COUNT T1 1.57 1.71 5.58 64.27 837.82 9913.01 > 5 hrs > 5 hrs

KCLIST T60 0.16 0.17 0.43e 4.28e 55.78e 640.48e 6895.16e > 5 hrs
PIVOTER T60 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88
WCO T60 0.19 0.37 3.84 66.06 1126.69 9738.00 > 5 hrs > 5 hrs
BINARYJOIN T60 0.12 0.42 2.08 39.29 627.48 7282.79 > 5 hrs > 5 hrs

com- ARB-COUNT T60 3.10 4.94 12.57 42.09 150.87◦ 584.39◦ 2315.89◦ 8843.51◦e

orkut ARB-COUNT T1 79.62 158.74 452.47 1571.49 5882.83 > 5 hrs > 5 hrs > 5 hrs
KCLIST T60 25.27 27.40 42.23 91.67e 293.92e 1147.50e 4666.03e > 5 hrs
PIVOTER T60 292.35 385.04 462.05 517.29 559.75 598.88 647.18 647.18
WCO T60 10.71 50.51 267.47 1398.89 6026.99 > 5 hrs > 5 hrs > 5 hrs
BINARYJOIN T60 12.74 29.09 93.06 413.50 1938.06 9732.86 > 5 hrs > 5 hrs

com- ARB-COUNT T60 109.46 111.75 115.52 139.98 300.62 1796.12e 16836.41◦e > 5 hrs
friendster ARB-COUNT T1 2127.79 2328.48 2723.53 3815.24 8165.76 > 5 hrs > 5 hrs > 5 hrs

KCLIST T60 1079.22 1104.28 1117.31 1162.84 1576.61e 4449.81e > 5 hrs > 5 hrs
WCO T60 201.82 379.59 1001.52 4229.20 > 5 hrs > 5 hrs > 5 hrs > 5 hrs
BINARYJOIN T60 163.90 212.53 221.93 632.40 4532.60 > 5 hrs > 5 hrs > 5 hrs

com-lj ARB-COUNT T60 1.77 7.52 258.46 10733.21 > 5 hrs > 5 hrs > 5 hrs > 5 hrs
ARB-COUNT T1 33.04 231.15 8956.53 > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs
KCLIST T60 7.53 22.13 647.77e > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs
PIVOTER T60 268.06 1475.99 7816.13 > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs
WCO T60 6.62 80.78 3448.70 > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs
BINARYJOIN T60 4.10 42.32 1816.87 > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs

Table 2: Best runtimes in seconds for our parallel (T60) and single-threaded (T1) k-clique counting algorithm (ARB-COUNT), as well as the
best parallel runtimes from KCLIST [15], PIVOTER [28], WCO [35], and BINARYJOIN [30]. Note that we cannot report runtimes from
PIVOTER for the com-friendster graph, because for all k, PIVOTER runs out of memory and is unable to complete k-clique counting. The
fastest runtimes for each experiment are bold and in green. All runtimes are from tests in the same computing environment, and include
time spent preprocessing and counting (but not time spent loading the graph). For our parallel and serial runtimes and KCLIST, we have
chosen the fastest orientations and choice between node and edge parallelism per experiment. For the runtimes from ARB-COUNT, we
have noted the orientation used; ◦ refers to the Goodrich-Pszona orientation, ∗ refers to the orientation given by k-core, and no superscript
refers to the orientation given by degree ordering. For the runtimes from ARB-COUNT and KCLIST, we have noted whether node or edge
parallelism was used; e refers to edge parallelism, and no superscript refers to node parallelism.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

com-dblp ARB-PEEL T60 0.14 0.21 0.23◦ 1.29◦ 18.77 276.69◦ 3487.09◦

ARB-PEEL T1 0.27 0.37 1.378 17.99 258.24 3373.05 > 5 hrs
KCLIST T1 0.19 0.25 1.10 14.98 221.98 2955.87 > 5 hrs
COREAPP T1 0.10 0.23 1.09 12.21 244.81 7674.55 > 5 hrs

com-orkut ARB-PEEL T60 33.15◦ 76.91 221.28 721.73 2466.99◦ 9062.99◦ > 5 hrs
ARB-PEEL T1 130.04 184.28 422.20 1032.19 3123.72 > 5 hrs > 5 hrs
KCLIST T1 87.71 218.94 587.24 2029.43 7414.77 > 5 hrs > 5 hrs
COREAPP T1 113.27 546.13 2460.65 16320.24 > 5 hrs > 5 hrs > 5 hrs

com-friendster ARB-PEEL T60 371.52 1747.92 4144.96 6870.06 > 5 hrs > 5 hrs > 5 hrs
ARB-PEEL T1 3297.14 11540.73 12932.28 14112.95 > 5 hrs > 5 hrs > 5 hrs
KCLIST T1 2225.70 3216.92 4325.73 6933.32 > 5 hrs > 5 hrs > 5 hrs
COREAPP T1 > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs

com-lj ARB-PEEL T60 6.46 26.36 324.77 12920.08 > 5 hrs > 5 hrs > 5 hrs
ARB-PEEL T1 17.74 70.12 822.10 > 5 hrs > 5 hrs > 5 hrs > 5 hrs
KCLIST T1 16.64 42.16 839.13 > 5 hrs > 5 hrs > 5 hrs > 5 hrs
COREAPP T1 7.20 27.53 1595.04 > 5 hrs > 5 hrs > 5 hrs > 5 hrs

Table 3: Best runtimes in seconds for our parallel and single-threaded k-clique peeling algorithm (ARB-PEEL), as well as the best sequential
runtimes from previous work (KCLIST and COREAPP) [15, 21]. KCLIST and COREAPP do not have parallel implementations of k-clique
peeling; they are only serial. The fastest runtimes for each experiment are bolded and in green. All runtimes are from tests in the same
computing environment, and include only time spent peeling. For our parallel runtimes, we have chosen the fastest orientations per
experiment, while for our serial runtimes, we have fixed the degree orientation. For the parallel runtimes from ARB-PEEL, we have noted
the orientation used; ◦ refers to the Goodrich-Pszona orientation, and no superscript refers to the orientation given by degree ordering.
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with 74 billion edges (< 2 hours), 12945.25 seconds on Hy-
perlink2014 with over one hundred billion edges (< 4 hours),
and 161418.89 seconds on Hyperlink2012 with over two hun-
dred billion edges (< 45 hours). As far as we know, these are
the first results for 4-clique counting for graphs of this scale.

Overall, on 30 cores, ARB-COUNT obtains speedups
between 1.31–9.88x over KCLIST, between 1.02–46.83x over
WCO, and between 1.20-28.31x over BINARYJOIN. Our
largest speedups are for large graphs (e.g., com-friendster)
and for moderate values of k, because we obtain more
parallelism relative to the necessary work.

Comparing our parallel runtimes to KCLIST’s serial run-
times (which were faster than those of WCO and BINA-
RYJOIN), we obtain between 2.26–79.20x speedups, and con-
sidering only parallel runtimes over 0.7 seconds, we obtain
between 16.32–79.20x speedups. By virtue of our orienta-
tions, our single-threaded runtimes are often faster than the se-
rial runtimes of the other implementations, with up to 23.17x
speedups particularly for large graphs and large values of k.
Our self-relative parallel speedups are between 13.23–38.99x.

We also compared with PIVOTER [28], which is designed
for counting all cliques, but can be truncated for fixed k.
Their algorithm is able to count all cliques for com-dblp and
com-orkut in under 5 hours. However, their algorithm is not
theoretically-efficient for fixed k, taking O(nα23α/3) work,
and as such their parallel implementation is up to 196.28x
slower compared to parallel ARB-COUNT, and their serial
implementation is up to 184.76x slower compared to single-
threaded ARB-COUNT. These slowdowns are particularly
prominent for small k. Also, PIVOTER’s truncated algorithm
does not give significant speedups over their full algorithm,
and PIVOTER requires significant space and runs out of
memory for large graphs; it is unable to compute k-clique
counts at all for k ≥ 4 on com-friendster.

Of the different orientations, using degree ordering is
generally the fastest for small k because it requires little
overhead and gives sufficiently low out-degrees. However,
for larger k, this overhead is less significant compared to the
time for counting and other orderings result in faster counting.
The cutoff for this switch occurs generally at k = 8. Note
that the Barenboim-Elkin and original orientations are never
the fastest orientations. The slowness of the former is because
it gives a lower-granularity ordering, since it does not order
between vertices deleted in a given round. We found that
the self-relative speedups of orienting the graph alone were
between 6.69–19.82x across all orientations, the larger of
which were found in large graphs. We discuss preprocessing
overheads in more detail in the appendix.

Moreover, in both ARB-COUNT and KCLIST, node
parallelism is faster on small k, while edge parallelism is
faster on large k. This is because parallelizing the first level
of recursion is sufficient for small k, and edge parallelism
introduces greater parallel overhead. For large k, there is

more work, which edge parallelism balances better, and the
additional parallel overhead is mitigated by the balancing.
The cutoff for when edge parallelism is generally faster than
node parallelism occurs around k = 8. We provide more
detailed analysis in the appendix.

We also evaluated our approximate counting algorithm
on com-orkut and com-friendster, and compared to MO-
TIVO [11]. We defer a detailed discussion to the appendix.
Overall, we obtain significant speedups over exact k-clique
counting and have low error rates over the exact global counts,
with between 5.32–2189.11x speedups over exact counting
and between 0.42–5.05% error. We also see 92.71–177.29x
speedups over MOTIVO for 4-clique and 5-clique approxi-
mate counting on com-orkut.

5.2 Peeling Results Table 3 shows the best parallel and
sequential runtimes for k-clique peeling on SNAP datasets for
ARB-PEEL, KCLIST, and COREAPP (KCLIST and COREAPP
only implement sequential algorithms for exact k-clique
peeling).

Overall, our parallel implementation obtains between
1.01–11.83x speedups over KCLIST’s serial runtimes. The
higher speedups occur in graphs that require proportionally
fewer parallel peeling rounds ρk compared to its size; notably,
com-dblp requires few parallel peeling rounds, and we see
between 4.78–11.83x speedups over KCLIST on com-dblp
for k ≥ 5. As such, our parallel speedups are constrained
by ρk. Similarly, we obtain up to 53.53x speedup over
COREAPP’s serial runtimes. COREAPP outperforms our
parallel implementation on triangle peeling for com-dblp,
again owing to the proportionally fewer parallel peeling
rounds in these cases. ARB-PEEL achieves self-relative
parallel speedups between 1.19–13.76x. Our single-threaded
runtimes are generally slower than KCLIST’s and COREAPP’s
sequential runtimes owing to the parallel overhead necessary
to aggregate k-clique counting updates between rounds. In
the appendix, we present a further analysis of the distributions
of number of vertices peeled per round.

Moreover, the edge density of the approximate k-clique
densest subgraph found by ARB-PEEL converges towards
1 for k ≥ 3, and as such, ARB-PEEL is able to efficiently
find large subgraphs that approach cliques. In particular, the
k-clique densest subgraph that ARB-PEEL finds on com-lj
contains 386 vertices with an edge density of 0.992. Also,
the k-clique densest subgraph that ARB-PEEL finds on com-
friendster contains 141 vertices with an edge density of 0.993.

We also tested Tsourakakis’s [53] triangle densest sub-
graph implementation; however, it requires too much memory
to run for com-orkut, com-friendster, and com-lj on our ma-
chines. It completes 3-clique peeling on com-dblp in 0.86
seconds, while our parallel ARB-PEEL takes 0.27 seconds.

Finally, we compared our parallel approximate ARB-
APPROX-PEEL to KCLIST’s parallel approximate algorithm
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on com-orkut and com-friendster. ARB-APPROX-PEEL is up
to 29.59x faster than KCLIST for large k, and we see between
5.95–80.83% error on the maximum k-clique density obtained
compared to the density obtained from k-clique peeling.

6 Related Work

Theory. A trivial algorithm can compute all k-cliques in
O(nk) work. Using degree-based thresholding enables clique
counting in O(mk/2) work, which is asymptotically faster
for sparse graphs. Chiba and Nishizeki give an algorithm
with improved complexity for sparse graphs, in which all
k-cliques can be found in O(mαk−2) work [12], where α is
the arboricity of the graph.

For arbitrary graphs, the fastest theoretical algorithm
uses matrix multiplication, and counts 3l cliques in O(nlω)
time where ω is the matrix multiplication exponent [37].
The k-clique problem is a canonical hard problem in the
FPT literature, and is known to be W [1]-complete when
parametrized by k [19]. We refer the reader to [57], which
surveys other theoretical algorithms for this problem.

Recent work by Dhulipala et al. [18] studied k-clique
counting in the parallel batch-dynamic setting. One of their
algorithms calls our ARB-COUNT as a subroutine.
Practice. The special case of counting and listing triangles
(k = 3) has received a huge amount of attention over
the past two decades (e.g., [55, 54, 51, 39], among many
others). Finocchi et al. [23] present parallel k-clique counting
algorithms for MapReduce. Jain and Seshadri [27] provide
algorithms for estimating k-clique counts. The state-of-the-
art k-clique counting and listing algorithm is KCLIST by
Danisch et al. [15], which is based on the Chiba-Nishizeki
algorithm, but uses the k-core ordering (which is not parallel)
to rank vertices. It achieves O(mαk−2) work, but does
not have polylogarithmic span due to the ordering and only
parallelizing one or two levels of recursion. Concurrent with
our work, Li et al. [32] present an ordering heuristic for k-
clique counting based on graph coloring, which they show
improves upon KCLIST in practice. It would be interesting in
the future to study their heuristic applied to our algorithm.

Additionally, many algorithms have been designed for
finding 4- and 5-vertex subgraphs (e.g., [41, 40, 2, 58, 44]) as
well as estimating larger subgraph counts (e.g., [10, 11]),
and these algorithms can be used for counting exact or
approximate k-clique counting as a special case. Worst-case
optimal join algorithms from the database literature [1, 38,
35, 30] can also be used for k-clique listing and counting as a
special case, and would require O(mk/2) work.

Very recently, Jain and Seshadri [28] present a sequential
and a vertex parallel PIVOTER algorithm for counting all
cliques in a graph. However, their algorithm cannot be used
for k-clique listing as they avoid processing all cliques, and
requires much more than O(mαk−2) work in the worst case.

Low Out-degree Orientations. A canonical technique in
the graph algorithms literature on clique counting, listing,
and related tasks [20, 28, 41] is the use of a low out-degree
orientation. Matula and Beck [33] show that k-core gives
an O(α) orientation. However, the problem of computing
this ordering is P-complete [3], and thus unlikely to have
polylogarithmic span. More recent work in the distributed
and external-memory literature has shown that such orderings
can be efficiently computed in these settings. Barenboim
and Elkin give a distributed algorithm that finds an O(α)-
orientation inO(log n) rounds [5]. Goodrich and Pszona give
a similar algorithm for external-memory [25]. Concurrent
with our work, Besta et al. [6] present a parallel algorithm for
generating an O(α)-orientation in O(m) work and O(log2 n)
span, which they use for parallel graph coloring.
Vertex Peeling and k-clique Densest Subgraph. An im-
portant application of k-clique counting is its use as a sub-
routine in computing generalizations of approximate densest
subgraph. In this paper, we study parallel algorithms for k-
clique densest subgraph, a generalization of the densest sub-
graph problem introduced by Tsourakakis [53]. Tsourakakis
presents a sequential 1/k-approximation algorithm based on
iteratively peeling the vertex with minimum k-clique-count,
and a parallel 1/(k(1 + ε))-approximation algorithm based
on a parallel densest subgraph algorithm of Bahmani et al. [4].
Sun et al. [52] give additional approximation algorithms that
converge to produce the exact solution over further iterations;
these algorithms are more sophisticated and demonstrate the
tradeoff between running times and relative errors. Recently,
Fang et al. [21] propose algorithms for finding the largest
(j,Ψ)-core of a graph, or the largest subgraph such that all
vertices have at least j subgraphs Ψ incident on them. They
propose an algorithm for Ψ being a k-clique that peels vertices
with larger clique counts first and show that their algorithm
gives a 1/k-approximation to the k-clique densest subgraph.

7 Conclusion
We presented new work-efficient parallel algorithms for k-
clique counting and peeling with low span. We showed
that our implementations achieve good parallel speedups
and significantly outperform state-of-the-art. A direction for
future work is designing work-efficient parallel algorithms for
the more general (r, s)-nucleus decomposition problem [48].

Acknowledgments
This research was supported by NSF Graduate Research
Fellowship #1122374, DOE Early Career Award #DE-
SC0018947, NSF CAREER Award #CCF-1845763, Google
Faculty Research Award, Google Research Scholar Award,
DARPA SDH Award #HR0011-18-3-0007, and Applications
Driving Architectures (ADA) Research Center, a JUMP Cen-
ter co-sponsored by SRC and DARPA.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



References

[1] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun,
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[38] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal
join algorithms. J. ACM, 65(3), Mar. 2018.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://www.lemurproject.org/
https://www.lemurproject.org/
http://snap.stanford.edu/data


[39] R. Pagh and C. E. Tsourakakis. Colorful triangle counting and
a MapReduce implementation. Inf. Process. Lett., 112(7), Mar.
2012.

[40] H.-M. Park, F. Silvestri, R. Pagh, C.-W. Chung, S.-H. Myaeng,
and U. Kang. Enumerating trillion subgraphs on distributed
systems. ACM Trans. Knowl. Discov. Data, 12(6), Oct. 2018.

[41] A. Pinar, C. Seshadhri, and V. Vishal. ESCAPE: Efficiently
counting all 5-vertex subgraphs. In International Conference
on World Wide Web, 2017.

[42] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic
time randomized parallel sorting algorithms. SIAM J. Comput.,
18(3), June 1989.

[43] R. A. Rossi, N. K. Ahmed, and E. Koh. Higher-order network
representation learning. In International Conference on World
Wide Web, 2018.

[44] R. A. Rossi, R. Zhou, and N. K. Ahmed. Estimation of
graphlet counts in massive networks. IEEE Trans. Neural
Netw. Learning Syst., 30(1), 2019.

[45] S.-V. Sanei-Mehri, A. E. Sariyuce, and S. Tirthapura. Butterfly
counting in bipartite networks. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2018.
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A Examples
Figure 4 shows an example of our k-clique counting algo-
rithm, ARB-COUNT, for k = 4. First, the graph is directed as
shown in Level 1. The algorithm then iterates over all vertices
in parallel, but for simplicity we only show a single process
starting from vertex v. Importantly, the algorithm must iterate
over all vertices, since there are 4-cliques that are not found
by starting at v. For instance, {w2, x2, w4, x4} is a 4-clique
that is found by running this process starting from w4.

We call v the source vertex for its process in Level 1, and
note that v is added to the growing clique set. Each directed
out-neighbor of v, in blue, spawns a new child task where the
out-neighbor is added to the growing clique set and is denoted
as the new source vertex, as shown in Level 2.

In Level 2, we take each source vertex, in red, and
intersect its out-neighbors, in blue, with its parent task’s out-
neighbors, contained within the dashed blue circle. Note that
all vertices xi have no out-neighbors, so these tasks terminate
here. For simplicity, we have removed the parent task’s source
vertex v, because no level 2 source vertices may have v as an
out-neighbor by virtue of our orientation, and we have also
removed any vertices disconnected from the source vertex.
Now, each vertex in the aforementioned intersection (i.e.,
each blue vertex in the dashed blue circle) spawns a new
child task, where it is added to the growing clique set and
becomes the new source vertex, as shown in Level 3. The
dashed blue circle shrinks to contain only the out-neighbors
in the intersection from Level 2.

We repeat this process for a final level, intersecting the
out-neighbors, in blue, of the source vertices, in red, with the
intersection from the previous level, in the dashed blue circle.
Each vertex remaining in the intersection spawns a new child
task. The child tasks remaining in Level 4 represent our 4-
cliques. For example, the 4-clique {v, u2, w2, x2} is obtained
by intersecting w2’s out-neighbors {x2, x4} and u2’s out-
neighbors {w2, w4, x2}, which gives {x2} and adding the
source vertices on the path to this task, {v, u2, w2}. Note
that the arrows between the levels in this figure represent the
dependency graph for the 4-clique counting computation; the
spawned child tasks are all safe to run in parallel.

B Proofs
We present here proofs for the complexity bounds for our
low out-degree orientation algorithms, approximate k-clique
counting algorithm using colorful sparsification, k-clique
vertex peeling algorithm, and approximate k-clique vertex
peeling algorithm. Additionally, we prove the variance of our
estimator in our approximate k-clique counting algorithm,
and we prove that the problem of obtaining the k-clique cores
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Figure 4: An example of our k-clique counting algorithm for k = 4.

Algorithm 3 Goodrich-Pszona Orientation Algorithm
1: procedure ORIENT(G = (V,E), ε)
2: n← |V |, L← []
3: while G is not empty do
4: S ← εn/(2 + ε) vertices of lowest induced degree
5: Append S to L
6: Remove vertices in S from G

7: return L

Algorithm 4 Barenboim-Elkin Orientation Algorithm
1: procedure ORIENT(G = (V,E), ε, α)
2: n← |V |, L← []

3: while G is not empty do
4: S ← {v ∈ V | v’s induced degree less than (2 + ε)α}
5: Append S to L
6: Remove vertices in S from G

7: return L

given by the k-clique vertex peeling process is P-complete.

B.1 Low Out-degree Orientation (Ranking) Algorithms
3 and 4 shows pseudocode for the Goodrich-Pszona algorithm
and the Barenboim-Elkin algorithm respectively. We present
here the bounds for our parallelization of these algorithms,
which are described in Section 3.1.

THEOREM B.1. The Goodrich-Pszona and Barenboim-Elkin
algorithms compute O(α)-orientations in O(m) work (whp
for Goodrich-Pszona), O(log2 n) span (whp for Goodrich-
Pszona), and O(m) space.

Proof. The bounds on out-degree follow from the discussion
in Section 3.1. Also, as discussed in Section 3.1, both
algorithms run in O(log n) rounds, because each round
removes a constant fraction of the vertices. It remains to
prove the work and span bounds for both algorithms. Note
that for both algorithms, we maintain the induced degrees of
all vertices in an array.

For the Goodrich-Pszona algorithm, we can filter out the
vertices with degree less than the c’th smallest degree vertex
for c = εn/(2 + ε) using parallel integer sort, which runs
in O(n′) work whp, O(log n) span whp, and O(n′) space,
where n′ is the number of remaining vertices [42]. For the
Barenboim-Elkin algorithm, we use a parallel filter, which
takes linear work, O(log n) span, and linear space. Overall,

the total work to obtain vertices to process in each round for
both algorithms is O(n) (whp for Goodrich-Pszona), because
each round removes a constant fraction of vertices.

We can update the degrees of the remaining vertices
after removing the peeled vertices by mapping over all
edges incident to these vertices, and applying an atomic
add instruction to decrement the degree of each neighbor.
Each edge is processed exactly once in each direction, when
its corresponding endpoints are peeled, and each vertex is
peeled exactly once, so the total work is O(m). Since each
peeling round can be implemented in O(log n) span, and
there are O(log n) such rounds, the span of both algorithms
is O(log2 n).

Finally, computing an estimate of the arboricity using the
parallel densest-subgraph algorithm from [17] can be done
in O(m) work, O(log2 n) span, and O(m) space, which
does not asymptotically increase the cost of running the
Barenboim-Elkin algorithm.

B.2 Sampling We present here the proof for the variance
of our estimator in approximate k-clique counting through
colorful sparsification, which is described in Section 3.3.

THEOREM B.2. Let X be the true k-clique count in G, C be
the k-clique count in G′, p = 1/c, and Y = C/pk−1. Then
E[Y ] = X and Var[Y ] = p−2(k−1)(X(pk−1 − p2(k−1)) +∑k−1
z=2 sz(p

2(k−1)−z+1 − p2(k−1))), where sz is the number
of pairs of k-cliques that share z vertices.

Proof. Let Ci be an indicator variable denoting whether the
i’th k-clique in G is preserved in G′. For a k-clique to be
preserved, all k vertices in the clique must have the same
color. This happens with probability pk−1 since after fixing
the color of one vertex v in the clique, the remaining k − 1
vertices must have the same color as v. Each vertex picks
a color independently and uniformly at random, and so the
probability of a vertex choosing the same color as v is p. The
number of k-cliques in G′ is equal to C =

∑
i Ci. Therefore

E[C] =
∑
i E[Ci] = Xpk−1. We have that E[Y ] =

E[C/pk−1] = (1/pk−1)E[C] = (1/pk−1)Xpk−1 = X .
The variance of Y is Var[Y ] = Var[C/pk−1] =
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Var[C]/p2(k−1) = Var[
∑
i Ci]/p

2(k−1). By definition
Var[

∑
i Ci] =

∑
i(E[Ci] − E[Ci]

2) +
∑
i6=j Cov[Ci, Cj ].

The first term is equal to X(pk−1−p2(k−1)). To compute the
second term, note that Cov[Ci, Cj ] = E[CiCj ]−E[Ci]E[Cj ]
depends on the number of vertices that cliques i and j
share. Their covariance is 0 if they share no vertices. Their
covariance is also 0 if they share one vertex since the event
that the remaining vertices of each clique have the same
color as the shared vertex is independent between the two
cliques. Let sz denote the number of pairs of cliques
that share z > 1 vertices. For pairs of cliques sharing z
vertices, we have E[CiCj ] = p2(k−1)−z+1. This is because
after fixing the color of one of the shared vertices, there
are 2(k − 1) − z + 1 remaining vertices in the pair of
cliques to color, and the probability that they all match
the fixed color is p2(k−1)−z+1. Therefore Cov[Ci, Cj ] =
E[CiCj ] − E[Ci]E[Cj ] = p2(k−1)−z+1 − p2(k−1). In
total, we have Var[Y ] = p−2(k−1)(X(pk−1 − p2(k−1)) +∑k−1
z=2 sz(p

2(k−1)−z+1 − p2(k−1))).

We also give the proof for the work and span of approxi-
mate k-clique counting through colorful sparsification.

THEOREM B.3. Our sampling algorithm with parameter
p = 1/c gives an unbiased estimate of the global k-clique
count and takes O(pmαk−2 + m) work and O(k log n +
log2 n) span whp, and O(m+ Pα) space on P processors.

Proof. Theorem B.2 states that our algorithm produces an
unbiased estimate of the global count. We now analyze the
work and span of the algorithm. Choosing colors for the
vertices can be done in O(n) work and O(1) span. Creating
a subgraph containing edges with endpoints having the same
color can be done using prefix sum and filtering in O(m)
work and O(logm) span. Each edge is kept with probability
p as the two endpoints will have matching colors with
this probability. Therefore, our subgraph has pm edges in
expectation. The arboricity of our subgraph is upper bounded
by the arboricity of our original graph, α, and so including
the work of running our k-clique counting algorithm on the
subgraph, the sampling algorithm takes O(pmαk−2 + m)
work and O(k log n+ log2 n) span whp.

B.3 Vertex Peeling We present here the proof that ARB-
PEEL correctly generates a subgraph with the same approxi-
mation guarantees of Tsourakakis’ sequential k-clique dens-
est subgraph algorithm [53], as well as the following bounds
on the complexity of ARB-PEEL.

THEOREM B.4. ARB-PEEL computes a 1/k-approximation
to the k-clique densest subgraph problem in O(mαk−2 +
ρk(G) log n) expected amortized work, O(ρk(G)k log n +
log2 n) span whp, and O(m + Pα) space, where ρk(G) is
the k-clique peeling complexity of G.

Proof. This proof uses the Nash-Williams theorem [36],
which states that a graph G has arboricity α if and only if
for every U ⊆ V , |G[U ]| ≤ α(|U | − 1). Here, G[U ] is the
subgraph of G induced by the vertices in U , and |G[U ]| is the
number of edges in G[U ].

First, we provide a proof on the correctness of our k-
clique peeling algorithm. Tsourakakis [53] proves that the
sequential k-clique densest subgraph algorithm that peels
vertices one by one in increasing order of k-clique count
attains a 1/k-approximation to the k-clique densest subgraph
problem. We note that among vertices within the same k-
clique core, the order in which these vertices are peeled
does not affect the approximation; this follows directly from
Tsourakakis’s sequential algorithm, in which in any given
round, any vertex with the same minimum k-clique count
may be peeled. Additionally, given a set of vertices with the
same minimum k-clique count in any given round, peeling a
vertex from this set does not change the k-clique core number
of any other vertex in this set by definition.

As such, in order to show the correctness of ARB-PEEL,
it suffices to show that first, ARB-PEEL peels vertices in the
same order as given by Tsourakakis’s sequential algorithm,
except for vertices in the same k-clique core which may be
peeled in any order among each other, and second, ARB-
PEEL correctly updates the k-clique counts after peeling
these vertices. The first claim follows from the structure
of ARB-PEEL, because ARB-PEEL peels all vertices with the
same minimum k-clique count in each round, which may
be serialized to any order. The second claim follows from
the correctness of ARB-COUNT in Section 3. ARB-PEEL first
obtains for each peeled vertex v all undirected neighbors
N(v), and then uses the subroutine from ARB-COUNT to
obtain k-cliques originating from v. This is equivalent to
first obtaining the induced subgraph on N(v), and then
performing ARB-COUNT to obtain (k − 1)-cliques on the
induced subgraph; thus, this gives all k-cliques containing v.
The additional filtering of already peeled vertices ensures
that previously found k-cliques are not recounted, and
filtering other vertices peeled simultaneously based on a total
order ensures that k-cliques involving these vertices are not
recounted. Thus, ARB-PEEL gives a 1/k-approximation to
the k-clique densest subgraph problem.

The proof of the complexity is similar in spirit to that
of Theorem 3.2, but there are some subtle and important
differences. First, unlike in our k-clique counting algorithm
(Algorithm 1), our peeling algorithm does not have the luxury
of only finding k-cliques directed out of a peeled vertex v.
Instead, it must find all k-cliques that v participates in and
decrement these counts. Arguing that this does not cost a
prohibitive amount of work is the main challenge of the
proof. Importantly, our peeling algorithm calls the recursive
subroutine REC-COUNT-CLIQUES-V of our k-clique counting
algorithm directly, on a different input than used in the full

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



k-clique counting algorithm, and so the analysis of the work
and span differs from the analysis given in Section 3.2.

We first account for the work and span of extracting
and updating the bucketing structure. The overall work of
inserting vertices into the structure is O(n). Each vertex
has its bucket decremented at most once per k-clique, and
since there are at most O(mαk−2) k-cliques, this is also
the total cost for updating buckets of vertices. Lastly,
removing the minimum bucket can be done in O(log n)
amortized expected work and O(log n) span whp, which
costs a total of O(ρk(G) log n) amortized expected work,
and O(ρk(G) log n) span whp.

Next, to bound the cost of finding all k-cliques incident
to a peeled vertex v, we rely on the Nash-Williams theorem,
which provides a bound on the size of induced subgraphs
in a graph with arboricity α. Notably, in the first level
of recursion when REC-COUNT-CLIQUES-V is called from
the UPDATE subroutine, the intersect operations performed
essentially compute the induced subgraph on the neighbors
of each peeled vertex v; this is because during this call, we
intersect the directed neighbors of each vertex in NG(v) (that
has not been previously peeled) with NG(v) itself, producing
a pruned version of the induced subgraph of NG(v) on G.
We have that for each v ∈ V , the induced subgraph on its
neighbors has size |G[N(v)]| ≤ α(|N(v)|−1) = α(d(v)−1).
Assuming for now that we can construct the induced subgraph
on all vertex neighborhoods in work linear in their size,
summed over all vertices, the overall cost is just

(B.1)
∑
v∈V
|G[N(v)]| ≤ α

∑
v∈V

(d(v)− 1) = O(mα)

How do we build these subgraphs in the required work
and span? Our approach is to do so using an argument similar
to the elegant proof technique proposed in Chiba-Nishizeki’s
original k-clique listing algorithm [12]. Because the first call
to REC-COUNT-CLIQUES-V takes each vertex u ∈ NG(v) and
intersects the directed neighbors NDG(u) with NG(v), we
use O(min(d(u), d(v))) work to build the induced subgraph
on v’s neighborhood. Observe that each edge in the graph is
processed by an intersection in this way exactly once in each
direction, when each endpoint is peeled. By Lemma 2 of [12],
we know that

∑
e=(u,v)∈E min(d(u), d(v)) = O(mα) and

therefore the overall work of performing all intersections is
bounded by O(mα), and the per-vertex induced subgraphs
can therefore also be built in the same bound. The span for
this step is O(log n) whp using parallel hash tables [24].

Lastly, we account for the remaining cost of performing
k-clique counting within each round. We now recursively
call REC-COUNT-CLIQUES-V k− 1 times in total, as ` ranges
from 1 to k − 1, but the final recursive call returns the size of
I immediately, and we have already discussed the work of the
first call to REC-COUNTS-V. Considering the remaining k−3
recursive steps with non-trivial work, we have O(m′αk−3)

work and O(k log n) span where m′ is the size of the vertex’s
induced neighborhood. Considering the work first, summed
over all vertices’ induced neighborhoods, the total work is∑

v∈V
O
(
|G[N(v)]|αk−3

)
= O(mαk−2)

which follows from Equation B.1. The span follows, since
adding in the span of the first recursive call, we have
O(k log n) span to update k-clique counts per peeled vertex,
and there are ρk(G) rounds by definition.

B.4 Parallel Complexity of Vertex Peeling The k-clique
vertex peeling algorithm exactly computes for all c the k-
clique c-cores of the graph. The k-clique c-core of a graph G
is defined as the maximal subgraph such that every vertex is
contained within at least c k-cliques. This is a generalization
of the classic c-core problem, which is the maximal subgraph
such that each vertex has degree at least c. The c-core problem
is well known to be P-complete for c ≥ 3 [3]. We present
here the proof that computing k-clique c-cores is P-complete
for c > 2. We first observe that since the number of k-cliques
incident to each vertex can be efficiently computed in NC by
Theorem 3.2, the problem of computing k-clique 1-cores is
in NC for constant k.
k-clique c-cores when c > 2. Next, we study the parallel
complexity of computing k-clique c-cores for c > 2. We
will show that there is an NC reduction from the problem of
deciding whether the c-core is non-empty, to the problem of
deciding whether the k-clique c-core is non-empty. We first
discuss the reduction at a high level. The input is a graph and
some value c, and the problem is to decide whether the c-core
is non-empty. The idea is to map the original peeling process
to compute the c-core to a peeling process to compute the k-
clique c-core. Figure 5 shows the reduction for k = 3, c = 7,
and marks the initial k-clique degrees of each vertex in red.

The reduction works as follows. We break up each edge
(u, v) in the graph into four vertices connected in a path with
the left-most and right-most vertices corresponding to the
original vertices u and v. The middle vertices are M1 and M2

(shown in green in Figure 5). We create gadgets to increase
each of the two middle vertices’ k-clique degrees to c. The
gadgets are constructed so that if either of the original vertices
has its k-clique degree go below c and is thus not in the k-
clique c-core, then the path corresponding to this edge will
unravel, and the other original vertex will have its k-clique
degree decremented by one, exactly as in the c-core peeling
process.

The reduction constructs c − 1 k-cliques between the
two middle vertices in the path, and a set of new gadget
vertices for this edge (shown in pink in Figure 5). It also
constructs one k-clique between each original edge endpoint,
its neighboring middle vertex, and a specially designated set
of base vertices, which are globally shared. The last part of
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Figure 5: Gadget used for the reduction for computing 3-clique c-
cores for an original edge (u, v), shown for c = 7. The red numbers
next to each vertex show the vertex’s 3-clique degree, or the number
of 3-cliques incident per vertex before peeling (as a contribution
of the gadget for this (u, v) edge). The pink gadget vertices and
green middle vertices are distinct per edge in the reduction. The
orange special vertices and base vertices are created only once and
globally shared. The gadget shown here gives each of the green
middle vertices, M1 and M2, a 3-clique degree of c = 7, with one
of the incident triangles being formed by an original vertex endpoint
(either u or v), and the remaining being formed with the pink gadget
vertices. Each of the pink gadget vertices forms one triangle with
the green middle vertices, and the remaining c − 1 triangles with
c − 1 pairs of special (globally shared) vertices, Sij . Modifying
this construction for different values of c is done by creating c− 1
pink gadget vertices and c− 1 special-vertex pairs. To generalize to
k > 3 we make the base vertices B1 and B2 each a (k − 2)-clique
which are fully connected to u and one of the green middle vertices
to form k-cliques. Similarly, each pink gadget vertex becomes a
(k−2)-clique to form c−1 k-cliques with the green middle vertices.

the construction ensures that the gadget vertices have large
enough k-clique degrees by creating c− 1 k-cliques between
them and a set of special vertices, Si’s, which are globally
shared.

To argue that this reduction is correct, it suffices to show
that the k-clique c-core is non-empty if and only if the c-core
of the original graph is non-empty. We only argue the reverse
direction, since the proof for the forward direction is almost
identical. Suppose the input graph has a non-empty c-core, C.
Then, observe that all of the original vertices corresponding
to C in the reduction graph have k-clique degree at least c.
Furthermore, since all of the middle vertices that are added
for original edges in the c-core initially have k-clique degree
exactly c, the gadget vertices corresponding to these edges
have k-clique degree exactly c. It remains to argue that the
special vertices and the base vertices have sufficient k-clique
degree. Observe that the special vertices connected to all
gadget vertices for the edges form k-cliques with all gadget
vertices, and thus have k-clique degree (c − 1)|E(G[C])|,
where E(G[C]) is the set of edges in the induced subgraph
on C. Since a c-core on |C| vertices must have at least c|C|

edges, (c − 1)|E(G[C])| ≥ (c − 1)c|C| > c. Similarly for
the base vertices, they form a single k-clique for each edge in
the c-core, and so the base vertices have k-clique degree c|C|.
Thus, the subgraph corresponding to the original vertices,
middle vertices, and gadget vertices for these edges, and the
special and base vertices all have sufficient k-clique degree
to form a non-empty k-clique c-core.

By the discussion above, we have shown that computing
k-clique c-cores is P-complete for c > 2, a strengthening of
the original P-completeness result of Anderson and Mayr [3].

An interesting question is to understand the parallel
complexity of computing k-clique 2-cores for any constant
k. For k = 2, Anderson and Mayr observed that this problem
is in NC. We leave it for future work to determine whether
a similar algorithm can find the k-clique 2-cores in NC for
k > 2.

B.5 Approximate Vertex Peeling We now present the
proof for the work and span of our approximate k-clique
peeling algorithm, ARB-APPROX-PEEL, from Section 4.2.

THEOREM B.5. ARB-APPROX-PEEL computes a 1/(k(1 +
ε))-approximation to the k-clique densest subgraph and
runs in O(mαk−2) work and O(k log2 n) span whp, and
O(m+ Pα) space.

Proof. The correctness and approximation guarantees of
this algorithm follows from [53]. The work bound follows
similarly to the proof of Theorem 4.1. Also, filtering the
remaining vertices in each round can be done in O(n) total
work, since a constant fraction of vertices are peeled in each
round. The span bound follows because there are O(log n)
rounds in total, and since each round runs in O(k log n) span,
again using the same argument given in Theorem 4.1.

C Additional Experiments and Data
This section presents additional experimental data from our
evaluation.

C.1 Counting Results Figure 4 shows the k-clique counts
that we obtained from our algorithms. Figure 6 shows the
frequencies of the 4-clique counts per vertex, as obtained
using ARB-COUNT, on the large ClueWeb and Hyperlink2014
graphs. We see that the number of vertices decreases roughly
exponentially as a function of the 4-clique count.

Figure 7 shows the preprocessing overheads and k-clique
counting times for com-orkut using different orientations
and node parallelism. The Goodrich-Pszona orientation is
2.86x slower than the orientation using degree ordering, but
this overhead is not significant for large k and the Goodrich-
Pszona orientation gives the fastest counting times for large
k. We found that the self-relative speedups of orienting the
graph alone were between 6.69–19.82x across all orientations,
the larger of which were found in the larger graphs.
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k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11

com-dblp 16,713,192 262,663,639 4.222× 109 6.091× 1010 7.772× 1011 8.813× 1012 8.956× 1013 —
com-orkut 3.222× 109 1.577× 1010 7.525× 1010 3.540× 1011 1.633× 1012 7.248× 1012 3.029× 1013 1.171× 1014

com-friendster 8.964× 109 2.171× 1010 5.993× 1010 2.969× 1011 3.120× 1012 4.003× 1013 4.871× 1014 —
com-lj 5.217× 109 2.464× 1011 1.099× 1013 4.490× 1014 — — — —
ClueWeb 2.968× 1014 — — — — — — —
Hyperlink2014 7.500× 1014 — — — — — — —
Hyperlink2012 7.306× 1015 — — — — — — —

Table 4: Total k-clique counts for our input graphs. Note that we do not have statistics for certain graphs for large values of k, because
algorithm did not terminate in under 5 hours; these entries are represented by a dash.
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Figure 6: The frequencies of 4-clique counts per vertex, obtained using ARB-COUNT, on the large graphs ClueWeb and Hyperlink2014.
Note that the frequencies is plotted on a log-scale.

preprocess
(1.04 s)

k = 4
(3.10 s)

k = 5
(4.94 s)

k = 6
(12.57 s)

k = 7
(42.09 s)

k = 8
(150.87 s)

k = 9
( 584.39 s)

k = 10
(2315.89 s)

k = 11
(10746.72 s)

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5

M
ul

itp
lic

at
iv

e
sl

ow
do

w
n

Goodrich-Pszona Barenboim-Elkin
k-core Degree

Original

Figure 7: Parallel runtimes for k-clique counting (ARB-COUNT) on com-orkut for different orientations, using node parallelism. All times
are scaled by the fastest parallel time (indicated in parentheses). The first set of bars show the preprocessing overhead of the different
orientations. The remaining sets of bars show the performance including both preprocessing and counting.

In both ARB-COUNT and KCLIST, node parallelism is
faster on small k, while edge parallelism is faster on large k,
due to the greater work required on large k and the additional
parallelism available in edge parallelism to take advantage of
this work. The cutoff for when edge parallelism is generally
faster than node parallelism occurs around k = 8. Figure 8
shows this behavior in ARB-COUNT’s k-clique counting
runtimes on com-orkut, where for k ≥ 9 edge parallelism
becomes faster than node parallelism.

Figure 9 show the runtimes for our approximate counting
algorithm on com-orkut and com-friendster. We see that
there is an inflection point where after enough sparsification,
obtaining k-clique counts for large k is faster than for small
k; this is because we cut off the recursion when there are not
enough vertices to complete a k-clique. We compute our error
rates as |exact − approximate|/exact. For p = 0.5 on both

com-orkut and com-friendster across all k, we see between
2.42–87.56x speedups over exact counting (considering the
best k-clique counting runtimes) and between 0.39–1.85%
error. Our error rates degrade for higher k and lower p, but
even for p as low as 0.125, we obtain between 5.32–2189.11x
speedups over exact counting and between 0.42–5.05% error.

We compare our approximate counting algorithms to
approximate k-clique counting using MOTIVO [11]. We
ran both the naive sampling and adaptive graphlet sampling
(AGS) options in MOTIVO. However, MOTIVO is unable
to run on com-friendster because it runs out of memory.
Moreover, in order to achieve a 6% error rate, MOTIVO
takes between 92.71–177.29x the time that our algorithm
takes for 4-clique and 5-clique approximate counting on com-
orkut. MOTIVO takes 168.84 seconds to approximate 6-
clique counts with 31.55% error, while our algorithm takes
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0.49 seconds to approximate 6-clique counts with under 6%
error. However, unlike our algorithm, MOTIVO can estimate
non-clique subgraph counts.

C.2 Peeling Results Figure 5 shows the peeling rounds,
k-clique core sizes, and approximate maximum k-clique
densities that we obtained from our algorithms.

Figure 10 shows the frequencies of the different numbers
of vertices peeled in each parallel round for com-orkut, for
4 ≤ k ≤ 6. A significant number of rounds contain fewer
than 50 vertices peeled, and by the time we reach the tail of
the histogram, there are very few parallel rounds with a large
number of vertices peeled.

Figures 11 and 12 show the parallel runtimes of ARB-
APPROX-PEEL and of KCLIST’s approximate peeling algo-
rithm on com-orkut and com-friendster, respectively. Note
that while KCLIST only provides a sequential implementa-
tion for exact k-clique peeling, KCLIST provides a parallel
implementation for approximate k-clique peeling. We found
there was not a significant difference in performance across
different values of ε for both implementations. ARB-APPROX-
PEEL is up to 29.59x faster than KCLIST for large k. However,
ARB-APPROX-PEEL was slower on com-friendster for small
k since KCLIST uses a serial heap to recompute vertices to be
peeled; this is more amenable over rounds containing fewer
vertices, while our implementation incurs additional overhead
to recompute peeled vertices in parallel, which is mitigated
over larger k. In terms of percentage error in the maximum
k-clique density obtained compared to the density obtained
from k-clique peeling, we see between 48.58–77.88% error
on com-orkut and 5.95–80.83% error on com-friendster.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



k = 4
(3.10 s)

k = 5
(4.94 s)

k = 6
(12.57 s)

k = 7
(42.09 s)

k = 8
(157.64 s)

k = 9
(590.72 s)

k = 10
(2335.13 s)

k = 11
(9193.11 s)

0

2

4

6

8

M
ul

itp
lic

at
iv

e
sl

ow
do

w
n

Node parallel Edge parallel

Figure 8: Parallel runtimes for k-clique counting (ARB-COUNT) on com-orkut, considering node parallelism and edge parallelism, and
fixing the orientation given by degree ordering. All times are scaled by the fastest parallel runtime, which are given in the parentheses.
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Figure 9: Parallel runtimes for approximate k-clique counting (ARB-COUNT) on com-orkut and com-friendster, varying over p = 1/c
where c is the number of colors used. The runtimes were obtained using the orientation given by degree ordering and node parallelism. The
y-axis is in log-scale.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

ρk 5,626 11,669 17,720 22,091 23,988 23,095 21,538
Max density (k-clique peeling) 10,100 297,096 5,598,323 75,372,336 782,071,056 6.183× 109 4.080× 1010

ρk 483 441 343 240 166 127 103
com-dblp k-clique core 6,328 234,136 6,438,740 140,364,532 2.527× 109 3.862× 1010 5.117× 1011

Max density (k-clique peeling) 6,328 234,136 6,438,740 140,364,532 2.527× 109 3.862× 1010 5.117× 1011

ρk 36,752 94,931 160,577 210,966 236,623 241,330 —
com-orkut k-clique core 7,117 117,182 2,115,900 29,272,988 312,629,724 2.741× 109 —

Max density (k-clique peeling) 18,547 340,997 4,882,477 73,696,814 883,634,847 8.332× 109 —
ρk 57,090 140,705 249,605 339,347 — — —

com-friendster k-clique core 8,255 349,377 11,001,375 274,901,025 — — —
Max density (k-clique peeling) 9,521 428,928 12,762,919 363,676,399 — — —
ρk 13,899 29,514 42,994 50,159 — — —

com-lj k-clique core 64,478 7,660,975 679,343,769 4.796× 1010 — — —
Max density (k-clique peeling) 72,255 9,031,923 839,813,448 6.199× 1010 — — —

Table 5: Relevant k-clique peeling statistics for the SNAP graphs that we experimented on. We do not have statistics for certain graphs for
large values of k, because the corresponding k-clique peeling algorithms did not terminate in under 5 hours; these entries are represented
by a dash.
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Figure 10: Frequencies of the number of vertices peeled in a parallel round using ARB-PEEL, for k-clique peeling on com-orkut (4 ≤ k ≤ 6).
Rounds with more than 1000 vertices peeled have been truncated; these truncated round frequencies are very low, most often consisting of
0 rounds. The frequencies are given in log-scale.
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Figure 11: Parallel runtimes on com-orkut for approximate k-clique peeling using ARB-APPROX-PEEL (solid lines) and KCLIST (dashed
lines). These runtimes were obtained by varying over ε, giving a 1/(k(1 + ε))-approximation of the k-clique densest subgraph. These
runtimes were obtained using the orientation given by degree ordering, and the runtimes are given in log-scale. Moreover, we cut off
KCLIST’s runtimes at 5 hours, which occurred for k = 10 over all ε.
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Figure 12: Parallel runtimes on com-friendster for approximate k-clique peeling using ARB-APPROX-PEEL (solid lines) and KCLIST

(dashed lines). These runtimes were obtained by varying over ε, giving a 1/(k(1 + ε))-approximation of the k-clique densest subgraph.
These runtimes were obtained using the orientation given by degree ordering, and the runtimes are given in log-scale. Moreover, we cut off
KCLIST’s runtimes at 5 hours, which occurred for k = 9 over all ε.
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