
Using Predicted Weights for Ad Delivery∗

Thomas Lavastida1, Benjamin Moseley1, R. Ravi†1, and Chenyang Xu‡2

1Carnegie Mellon University, USA
{tlavasti, moseleyb, ravi}@andrew.cmu.edu

2Zhejiang University, China
xcy1995@zju.edu.cn

Abstract

We study the performance of a proportional weights al-
gorithm for online capacitated bipartite matching mod-
eling the delivery of impression ads. The algorithm
uses predictions on the advertiser nodes to match arriv-
ing impression nodes fractionally in proportion to the
weights of its neighbors. This paper gives a thorough
empirical study of the performance of the algorithm on
a data-set of ad impressions from Yahoo! and shows
its superior performance compared to natural baselines
such as a greedy water-filling algorithm and the ranking
algorithm.

The proportional weights algorithm has recently re-
ceived interest in the theoretical literature where it was
shown to have strong guarantees beyond the worst-case
model of algorithms augmented with predictions. We
extend these results to the case where the advertisers’
capacities are no longer stationary over time. Addi-
tionally, we show the algorithm has near optimal per-
formance in the random-order arrival model when the
number of impressions and the optimal matching are
sufficiently large.

1 Introduction

There has been recent interest in augmenting online al-
gorithms with machine-learned prediction. This line of
work has lead to new models of algorithm analysis for
going beyond worst-case analysis [23, 21, 17, 3]. The

∗Thomas Lavastida, and Benjamin Moseley: Supported in

part by a Google Research Award, an Infor Research Award,
a Carnegie Bosch Junior Faculty Chair and NSF grants CCF-

1824303, CCF-1845146, CCF-1733873 and CMMI-1938909.
†This material is based upon work supported in part by the

U. S. Office of Naval Research under award number N00014-21-1-

2243 and the Air Force Office of Scientific Research under award

number FA9550-20-1-0080.
‡The corresponding author. Supported in part by Science and

Technology Innovation 2030 –”The Next Generation of Artifi-
cial Intelligence” Major Project No.2018AAA0100902 and China
Scholarship Council No.201906320329.

theoretical models considered in these works have led
to the development of new algorithms which incorpo-
rate learned parameters (i.e. predictions) along with
theoretical guarantees depending on the quality of the
predictions. Typically, an algorithm’s performance is
parameterized by the error in the prediction. With a
perfect prediction, an algorithm’s performance should
be stronger than the best worst-case algorithm. Addi-
tionally the algorithm’s performance should be robust
to moderate error in the predicted parameters.

An exciting question is how close the model is to
practice and how to leverage it to develop improved
practical algorithms. The goal of this paper is to
show that the model is closely tied to practice for the
online matching problem that arises in impression ad
allocation and to demonstrate the empirical efficiency
of a recently proposed algorithm based on proportional
weights.

Capacitated Online Matching: Capacitated online
matching is a fundamental problem faced in practice
and is a special case of the Adwords problem [25]. In the
problem, there is a set of known advertisers (offline) that
each have a capacity (budget). Impressions arrive online
that have edges to an arbitrary subset of advertisers. An
impression can be matched (fractionally) to at most one
advertiser. The goal is to match as many impressions
as possible under the capacity constraints.

It is well-known that the best deterministic (greedy)
algorithm is 1

2 -competitive. Allowing for randomiza-
tion, the ranking algorithm is known to be (1 − 1

e)-
competitive and this is the best possible competitive
ratio for any online algorithm [19].

The best worst-case algorithm is far from optimal.
Squeezing out the best performance in practice is fun-
damental in applications such as the Adwords prob-
lem [10].

An emerging line of work [21, 22, 5] has suggested
that perhaps better matching algorithms exist if they
use learned information about known real world match-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

ar
X

iv
:2

10
6.

01
07

9v
1

 [
cs

.D
S]

 2
 J

un
 2

02
1

ing instances. That is, in practice there is often lots
of data available on prior matching instances (e.g. the
instance from yesterday). The idea is that an algorithm
can use information from prior instances to perform bet-
ter in future problem instances. Information learned
from past data is referred to as a prediction. This work
has the potential to offer new algorithmic ideas for solv-
ing matching instances in practice.

We consider the proportional weights algorithm,
which has been suggested in this line of work.

Proportional Weights for Online Matching:
This paper considers a recently proposed proportional
weights algorithm for online matching. The algorithm
was first proposed by Agrawal et al. [2] and further de-
veloped in [21, 22].

Let G = (I, A,E) be a bipartite graph with capac-
ities C ∈ ZA+ on A. We refer to I as impressions and
A as advertisers. We use m = |I| and n = |A| for the
number of impressions and advertisers. Each advertiser
(impression) has a subset Na (Ni) of neighbors in the
graph. In this paper we consider the fractional match-
ing problem that is represented by the following linear
program1.

(1.1)

max
∑
ia∈E

xia

s.t.
∑
a∈Ni

xia ≤ 1 ∀i ∈ I∑
i∈Na

xia ≤ Ca ∀a ∈ A

xia ≥ 0 ∀ia ∈ E

The proportional weights algorithm assigns each
advertiser a ∈ A a weight αa > 0. The vector of
weights α ∈ RA+ on the advertisers encodes a fractional
assignment of impressions to advertisers in the following
way.

(1.2) xia(α) =
αa∑

a′∈Ni
αa′

That is, an impression is assigned to the advertisers in
its neighborhood proportionally according to α. Notice
that the allocation of each impression is independent of
the others. Thus, if a set of weights is given a priori then
the weights can be used to assign impressions online.

This algorithm does not consider if an advertiser
has been saturated and may assign extra impressions
to an advertiser above its capacity. These impressions
are effectively not allocated. In the online setting, we

1The more general AdWords problem has an objective coeffi-

cient for each allocated impression representing different values of
an impression for different advertisers.

consider an improved version that uses the weights to
assign the impression proportionally, but only among
the neighborhood of advertisers that have remaining
capacity. This is the natural adaptation to the case
where an advertiser becomes saturated.

Agrawal et al. [2] showed that for any ε > 0, there
exists a set of weights α ∈ RA+ such that the allocation
given by (1.2) is a (1− ε)-approximate solution to (1.1):
the running time to arrive at such weights is inversely
proportional to ε2. This establishes that there exists
a set of weights giving a high quality matching; notice
that it is not obvious that such weights exist in the first
place.

The work of Agrawal et al. [2] was interested in
this proportional weights algorithm because they give a
static assignment of impressions (order independent) as
well as allowing for each impression to be assigned only
knowing the neighborhood of the impressions, which is
useful for distributed algorithms.

Later these weights were considered in the al-
gorithms augmented with predictions model [21, 22].
Lavastida et al. [22] showed that predicting these
weights can be used to go beyond the worst-case for
online matching. This prediction could come from com-
puting the weights from prior instances of matching.
The work of Agrawal et al. [2] imply the weights give
near optimal performance if predicted perfectly. [22]
showed that the weights are instance-robust. Infor-
mally, this guarantees that if the weights give good per-
formance on one instance, then they have strong per-
formance on similar instances. Moreover, [22] showed
that if the matching instance is drawn from an unknown
product distribution then weights that give a near op-
timal solution are learnable in the PAC learning model
(learnability). This suggests that weights can be learned
in practice from prior matching instances and used on
future instances to get strong online performance.

This line of work begs the question, does the pro-
portional weights algorithm perform well empirically?
In particular, if weights are computed from prior in-
stances of online matching can they be used to give
strong performance on future instances of the match-
ing problem in practice? For instance, can learning the
weights on yesterdays data be used on today’s online
instance? Understanding these questions has the po-
tential to influence matching algorithms in numerous
applications.

Results: This paper’s goal is to demonstrate the em-
pirical effectiveness of the proportional weights algo-
rithm. To do so, we consider a data set obtained from
Yahoo! [29] on the Adwords problem [25]. This data
set gives instances of advertisers and impressions over
multiple days. We propose two algorithms utilizing pre-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

dictions, one is the standard proportional weights algo-
rithm while the other is an improved version.

We use the following strong benchmarks. One
is the water-filling algorithm [18], which fractionally
allocates the current impression so that it maximizes
the minimum occupied proportion of its capacity among
its neighbours. The other is the randomized ranking
algorithm, which uses a single random ordering of the
advertisers and assigns each impression to the available
advertiser in its neighborhood with highest priority. In
the following results we consider several methods for
setting the advertisers’ capacities and the impression
arrival orders.

• Our improved proportional weights algorithm sig-
nificantly outperforms the standard version.

• Fix a single day. Consider weights that are com-
puted from a random sample of the day’s impres-
sions and use them for the remaining impressions
online. The improved weights algorithm is consis-
tently ahead of the baselines, often giving a near
optimal matching. This shows the impressions can
be learned from a sample of a day’s impressions
and used on the remaining impressions effectively.
This empirically demonstrates that the weights are
learnable.

• Next we consider learning weights on prior days and
using them on future days. The impression distri-
bution varies drastically from day to day. Despite
this high variance, our improved weights algorithm
has stronger performance than the baselines on ev-
ery day tested, demonstrating robustness.

To complement our results, we give two theoretical
results. First, we consider the weights in the random
order arrival model. We show that the weights give
a (1 − ε)-approximate online matching in the random
order model for any constant ε > 0. This algorithm
uses the first σ fraction of the arriving impressions to
compute the weights (i.e. learn the weights) and then
applies them to the remaining instance. In the result
below, m refers to the number of impressions arriving
online while n is the number of (offline) advertisers.
This gives a similar result to prior work in the random
order model [10], but uses proportional weights instead
of a primal-dual scheme.

Theorem 1.1. There exists an algorithm which is (1−
ε)-competitive with probability 1− δ for online matching

in the random order model whenever m = Ω(n
2

σε2 log(nδ))
and OPT ≥ εm for any ε, δ, σ ∈ (0, 1).

Next, we give a theorem that demonstrates the
robustness of the weights. This is an extension of the

robustness result in [22]. Intuitively, we show that
predicted weights are robust to modest changes in the
input, including changes in advertiser capacity.

Consider a problem instance where advertiser a has
capacity Ca and there is a set of impression types,
where each type is defined by a subset of advertisers.
Each impression of the same type has the same set
of advertisers as neighbors. Let Ci be the number of
impressions of type i.

In Section 5 (Theorem 5.2), we show that if a
fixed set of weights can match at least (1 − ε)OPT
impressions on a given instance defined by C, then
the same weights have value at least (1 − ε)OPT −
2η on any instance C ′ where η =

∑
i |Ci − C ′i| +∑

a |C ′a − Ca|. Here η measures the difference in the
two instances. This gives a theoretical explanation for
the strong empirical performance of the weights even
when advertiser capacities change and the impression
volumes vary.

2 Related Work

Algorithms with Predictions: In this paper we do a
practical evaluation of online matching algorithms using
predictions learned from past data. There has been
significant recent interest in analyzing online algorithms
in the presence of erroneous predictions [23, 28, 16, 4,
27, 13, 3, 21, 8, 31, 32, 5]

Antoniadis et al. [5] looks at online weighted bi-
partite matching problems with predictions in the ran-
dom order model. In this setting each offline node can
be matched at most once and the edges are weighted.
This differs from our setting where we consider the un-
weighted problem with capacities on the offline nodes.

Data Driven Algorithm Design: Using past data
to learn the weights for our algorithm can be seen
as a case of data driven algorithm design [6, 15, 7].
This line of work is concerned with using past problem
instances to learn an algorithm from some class of
algorithms which will perform well on future instances
drawn from the same population as the past instances.
In particular, the sample complexity (i.e. the number
of past instances used by the learning algorithm) is of
particular importance.

Practical Algorithms for Online Matching: In
addition to the deep theoretical understanding of online
matching algorithms, there has been effort to develop
algorithms that work well on real data sets. Zhou
et al. [30] develop a robust online weighted matching
algorithm based on primal-dual schemes for the random
order model which account for changes in the underlying
distribution and evaluate it on a display ad data set. Ma
et al. [24] develop an algorithm for online assortment

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

optimization and evaluate it on data from a hotel chain,
but their emphasis is on revenue maximization rather
than capacity allotment. Chen et al. [9] develop a real-
time bidding algorithm for display ad allocation and
evaluate it on a proprietary display ad data set; their
methods closely mirror the water-filling algorithm we
study.

Random Order Model: There has been a line of
work in analyzing online algorithms in the random order
model for matching problems and more general packing
integer linear programs [10, 12, 26, 1, 11, 20, 14]. These
algorithms are usually based off of some sort of primal-
dual approach. We give an alternative approach for
online capacitated matching in the random order model
based on using proportional weights.

3 Preliminaries

Recall the capacitated online matching problem repre-
sented by the linear program (1.1). In the online version
of the problem, only the advertisers and their capacities
are initially known to the algorithm. The impressions
I (along with their neighbors) are revealed to the algo-
rithm one at a time and it must commit to an assign-
ment {xia}a∈Ni

satisfying the constraints in (1.1). We
consider the case when the set of impressions I are de-
cided by an adversary, but revealed to the algorithm in
random order.

Proportional Weights: We consider fractional solu-
tions to (1.1) parameterized by weights α ∈ RA+, using
the proportional allocation scheme in (1.2).

Observe that given a fixed set of weights α, the
allocation xia(α) is order independent and thus is
suitable for the online setting. Next, note that xia(α)
always satisfies the first constraint of (1.1) with equality,
but it may not satisfy the second constraint. Any
reasonable way of decreasing the allocation to satisfy
the second constraint suffices, so we define Ra(α) =
min{

∑
i∈I xia(α), Ca} to be a’s contribution to the size

of the fractional matching. We utilize the following
theorem due to Agrawal et al. [2].

Definition 3.1. For T ∈ Z+ and ε > 0, define
A(T, ε) = {α ∈ RA+ | αa = (1 + ε)k, k ∈ [T]}.

Theorem 3.1. ([2]) For any bipartite graph G =
(I, A,E), capacities C ∈ ZA+, and ε > 0 there exists
T ∈ Z+ and α ∈ A(T, ε) such that∑

a∈A
Ra(α) ≥ (1− ε)OPT.

In particular, we can take T = O(1
ε2 log(nε)). Moreover,

there is a polynomial time algorithm which computes α.

4 Proportional Weights under Random Orders

This section considers the capacitated online matching
problem in the random order model and shows that the
proportional weights are learnable in this model. Under
some mild assumptions, the weights computed by the
first small portion of impressions can obtain a good
performance for the whole instance.

We first state the definition of the random order
model. Suppose that I = {i1, i2, . . . , im} and let γ :
[m] → [m] be a permutation. Denote I(γ) to be the
sequence (iγ(1), iγ(2), . . . , iγ(m)), i.e. consider revealing
the impressions I in the order induced by γ. If γ is a
permutation drawn uniformly at random and δ ∈ (0, 1),
then we say that an algorithm is c-competitive with high
probability if for all impression sets I:

(4.3) Pr[ALG(I(γ)) ≥ cOPT(I)] ≥ 1− δ.

where ALG(I(γ)) is the size of the matching when I(γ)
is given as input to the online algorithm and OPT(I) is
the optimal value of (1.1). Note that OPT(I) does not
depend on the ordering γ. We will use OPT instead of
OPT(I) when the context is clear.

Our algorithm takes the first σm impressions for
some σ ∈ (0, 1) and reduces the capacity of each
advertiser by a σ factor, then computes proportional
weights α using the algorithm of Theorem 3.1.

Denote the first σm impressions by S ⊆ I. Let

Ra(α, S) = min{
∑
i∈S xia(α), |S|m Ca}. Similarly, let

OPT(S) be the size of a maximum cardinality matching

on the graph G′ = (S,A,E) with capacities C ′a = |S|
m Ca.

We think of
∑
aRa(α, S) as the value obtained by

weights α on an instance restricted to the impressions
in S and the capacities scaled down appropriately.

Algorithm 1 Proportional Weights in the Random
Order Model

Input: G = (I, A,E), C, γ, σ, ε.
Let S be the first σm impressions in I(γ)
Set xia = 0 for each i ∈ S, a ∈ Ni
Set T = Θ(1

ε2 log(nε))
Compute weights α ∈ A(T, ε) on G′ = (S,A,E) with
capacities C ′a = σCa ∀a ∈ A
for each remaining impression i do

For each a ∈ Ni, let xia(α) = αa∑
a′∈Ni

αa′

end for

We show that this algorithm performs well when the
number of impressions m is large relative to the number
of advertisers.

Theorem 4.1. Algorithm 1 is (1− ε)-competitive with
probability 1−δ for online matching in the random order

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2 Proportional Weights (PW)

Input: G = (I, A,E) where I and E arrive online,
{Ca}a∈A, predicted weights {α̂}
while an impression i comes do

For each a ∈ Ni, let xia = α̂a∑
a′∈Ni

α̂a′
.

end while

model whenever m = Ω(n
2

σε2 log(nδ)) and OPT ≥ εm for
any ε, δ, σ ∈ (0, 1).

Our analysis applies two probabilistic arguments.
First, we show that

∑
aRa(α, S) ≈ σ

∑
aRa(α) for the

computed weights α with high probability. This involves
a union bound over all possible weights in A(R, ε).
Second, we show that OPT(S) ≈ σOPT with high
probability. This involves a union bound over cuts in
the bipartite graph G. Formal versions of these two
statements imply the theorem. See Appendix B for
complete arguments.

5 Robustness of Proportional Weights on
Similar Instances

A learning-augmented algorithm can be given directly
if we can predict the proportional weights. See Al-
gorithm 2 for the description. For this algorithm,
Lavastida et al. [22] give a theoretical result of its com-
petitive ratio under an assumption about advertiser ca-
pacities. This section extends this result by relaxing
that assumption.

Define an impression vector for an instance to
be the m-dimensional vector (. . . , Ci, . . .), where each
component corresponds to the supply of each impression
i. In [22], Lavastida et al. prove that when the capacity
of each advertiser is fixed, for any constant ε > 0, the
(1 − ε)-approximated weights α̂ for instance Î has a
competitive ratio at least 1 − ε − 2η/OPT on instance
I, where OPT is the optimal value of instance I and η
is `1 norm between the impression vectors of these two
instances. In this paper, we relax the condition that the
capacity needs to be fixed, and obtain a similar theorem.
Define an advertiser vector, similarly, to be the n-
dimensional vector (. . . , Ca, . . .), where each component
corresponds to the capacity of each advertiser a.

Theorem 5.1. For any constant ε > 0, with the (1−ε)-
approximated weights α̂ for instance Î, algorithm PW
has a competitive ratio at least

1− ε− 2η

OPT

on instance I, where OPT is the optimal value of
instance I and η is `1 norm between the impression

Algorithm 3 Improved Proportional Weights (IPW)

Input: G = (I, A,E) where I and E arrive online,
{Ca}a∈A, predicted weights {α̂}
while an impression i comes do

Let N∗ ⊆ Ni be the unfull advertisers in its neigh-
bourhood (A full advertiser is one whose capacity is
equal to its current total allocation).

For each a ∈ N∗, let xia = α̂a∑
a′∈N∗ α̂a′

.

end while

vectors of these two instances plus the `1 norm between
two advertiser vectors.

The basic idea of this proof is first showing the
difference between the performances of weights α̂ in
the two instances is at most η and then proving the
difference of these two instances’ optimal values is also
at most η with the help of a vertex cut. The details are
deferred to Appendix C.

This simple algorithm is consistent, but not robust,
which means that it will achieve good results if the
prediction is accurate, but will perform badly if the
prediction error is large. Several ideas are introduced
in [22] to obtain robust algorithms with proportional
weights. In this paper, instead of using the complicated
algorithms in [22], we propose a very simple algorithm
called Improved Proportional Weights (IPW) that can
achieve a very competitive and robust performance in
the experiments. The description is given in Alg. 3.

Clearly, algorithm IPW always matches more (frac-
tional) impressions than algorithm PW and obtains a
maximal matching, whose competitive ratio is at least
1/2. Thus, we have the following theorem.

Theorem 5.2. For any constant ε > 0, with the (1−ε)-
approximated weights α̂ for instance Î, algorithm IPW
has a competitive ratio at least

max

{
1− ε− 2η

OPT
,

1

2

}
on instance I, where OPT is the optimal value of
instance I and η is `1 norm between the impression
vectors of these two instances plus the `1 norm between
two advertiser vectors.

6 Experimental Results

In this section, we validate the performance of PW and
IPW on realistic data empirically. We investigate two
main aspects of applying predicted weights in practice:

• Learnability - we sample a small fraction of the data
we assembled as training data (motivated by the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

results in Section 4) and observe that this provides
enough information to set weights that are superior
in performance to the benchmarks.

• Robustness - we use data obtained over several
days and examine the performance of our weights
from previous day(s) on the current day’s set of
impression arrivals, and show consistent improved
performance over the benchmarks across time.

First, we describe our data source and how we set
up instances, such as the definition of impressions, the
bipartite graph between impressions and advertisers,
and how the capacities of the advertisers are set based
on the supply of impressions.

6.1 Experimental Setup We used the Yahoo!
Search Marketing Advertiser Bid-Impression-Click
data, provided as part of their Advertising and Mar-
ket data [29]2. The data contains nearly 78 million
records each containing an allocated advertising impres-
sion. Each record provides a day d, an anonymized
account id (for the advertiser) a, a rank r, a set of
anonymized keyphrases P , average bid b, the number
of impressions CP of the keyphrase P allocated to this
advertiser, and clicks k out of these impressions. A row
(d, a, r, P, b, Cp, k) indicates that on day d, advertiser a
was allocated CP copies of impression P at (average
monetary) cost b and obtained k clicks. Since the im-
pressions are presumably made available in a ranked
order of preference of placement, an advertiser’s place-
ment for each of these impressions is also accompanied
by its rank.

Our maximum cardinality matching instances are
built from this data set, one for each day. The average
bid and click data are ignored. We first define the vertex
set, then the edge set and finally the supply and capacity
functions.

Vertex Sets: The advertiser set A is the set of ad-
vertiser account ids. Keyphrases in the data are defined
as a combination of a set of elementary (anonymized)
keywords. We use this to construct the impression set I
as follows. The keyphrase base set S is obtained by
taking the union of all elementary keyphrases in P .
We count the number of occurrences of each elemen-
tary keyphrase p ∈ S and select the top 20 most fre-
quent keyphrases (based on the supply of the impres-
sions they are part of). Let S∗ denote the set of these
most popular keyphrases and define the impression set
I to be the power set of S∗ excluding the empty set, i.e.,
I := 2S

∗ \ ∅. Each vertex i ∈ I can thus be viewed as
an impression type. Different keyphrases that have the

2The data set is available from Yahoo! upon request.

same intersection with S∗ are this ‘contracted’ into the
same impression vertex in this formulation.

Edge Set: Next we construct the edges. Define a
mapping f from the given keyphrase sets {P} to the
impression set I by f(P) = P ∩ S∗. For each row,
add edge (f(P), a) into the edge set. Additionally, for
any subset i ∈ I of f(P), the edge (i, a) is also added.
Although these keyphrases might not be assigned to
advertiser a in this table, we assume that they are
relevant and hence can be assigned to advertiser a3.

Impression supply: Intuitively, on each day, the
total impression sizes corresponding to different ranks
should be the same. However, this is not the case
in the provided data set, potentially due to sampling
effects. Thus, for each day and for each keyphrase, we
only retain the rows with the rank that contains the
maximum total impression size and remove the rows
with other ranks 4. For each vertex i ∈ I, its impression
supply Ci is the total size of the keyphrase sets that
belongs to type i, i.e., Ci =

∑
f(P)=i CP .

Advertiser Capacities: The appropriate capac-
ity function of the advertiser set for creating challeng-
ing instances is not readily apparent. Thus, we consider
three ways to set advertiser capacities.

1. Random Quota: For each impression vertex i,
split its size Ci among its neighbourhood randomly.
The capacity of each advertiser is set to be its final
allocation obtained in this way.

2. Max-min Quota: Sort all impressions lexico-
graphically and process each impression one by one:
for each impression, allocate its supply to its neigh-
bourhood such that the minimum allocation in the
neighborhood is maximized. The capacity of each
advertiser is set to be its final allocation at the end
of this process.

3. Least-degree Quota: For each impression, assign
its size equally to the advertisers with the least
degree5 in its neighbourhood.

The random method above tries to de-correlate an
impression’s capacity and its neighborhood’s eventual
demands. The second and the third are also designed

3While some advertisers may only seek out very specific

combinations of keyphrases in their bidding, we assume that most
advertisers are interested in impressions broadly matching their

keyphrases of interest in our formulation, and ignore the existence

of the former type of advertisers.
4The experimental results do not vary significantly if selecting

other ranks in this process of defining the impression supply.
5In the graph constructed from the data set, the proportion of

the least-degree neighbours is roughly half its total neighborhood
for each impression.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

to deliberately avoid correlations between the neighbor-
hood’s demands.

For the daily instance constructed in this way, there
are roughly 4500 advertisers and 85 impressions with
non-zero sizes, with roughly 8000 edges between them
that can be used to allocate a total supply of about 1.8
million copies of these impressions.

Computational Setup and Methods. We con-
ducted the experiments6 on a machine running Ubuntu
18.04 with 12 i7-7800X CPUs and 48 GB memory. In
the experiments, our algorithms (PW and IPW) are
compared to the competitive greedy/water-filling algo-
rithm (G) [18] and ranking algorithm (R) [19]. The
greedy ‘water-filling’ algorithm (G) fractionally allo-
cates the current impression so that the proportion of
capacities of all its neighbors capacities that are filled
are as equal as possible (Imagining these filled propor-
tions to be water levels, the allocation fills the lowest
levels until they all rise to include another in this set,
and so on). The ranking algorithm (R) uses a single
random permutation of the advertisers to set a priority
order among the neighborhoods of any arriving impres-
sions and allocates the impression in this order. All al-
gorithms are implemented in Python 3.6.11. All results
are averaged over 4 runs.

6.2 Learnability To test the learnability of our algo-
rithms, for each daily instance we sample a σ proportion
of impressions (for a sampling parameter σ ∈ [0, 1]) to
construct the training instance. The graph connectivity
is the same as in the original data set while the adver-
tiser capacities are constructed using these impressions
and one of the three rules above. We compute propor-
tional weights on this training instance and use them in
Algorithms 2 and 3 for that day’s whole instance.

We investigate the performance when impressions
arrive in a random order or in an adversarial order.
We measure performance by the traditional measure of
competitive ratio. Since the instances were engineered
so that all impressions are allocable, this is simply
the fraction of all impressions that were assigned by
each of the methods. Since it is hard to find the
most adversarial order for each algorithm for the given
impressions, we set up five different arrival orders and
use the worst performance of an algorithm among these
orders to approximate its performance in an adversarial
order. Finally, we illustrate the performance of the
algorithms across the daily order, which we think is
closest to the order which occurs in practice. The
description of the daily order is given later.

6Code is available at https://github.com/Chenyang-1995/

PredictiveWeights

(a) Random Quota

(b) Max-min Quota

(c) Least-degree Quota

Figure 1: The performance of each algorithm on the
test data when impressions arrive in a random order,
plotted as a function of the training ratio.

Random Order. The performance of each algo-
rithm in random order is shown in Figure 1, where each
plot corresponds to one of the three quota allocation
rules7. All results are obtained by taking the average
performance of ten days’ instances, while the perfor-
mance of each day is evaluated on 4 separate runs. The
x-axis of each plot is the training ratio σ, indicating
that σ proportion of impressions are sampled to serve
as the training data. Note that in these figures, the
learned weights from the σ proportion are evaluated on
the whole data set for the same day. As σ increases,
the baseline greedy (G) and ranking (R) algorithms’

7Note the varying scales in the Y-axes in many of the figures.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/Chenyang-1995/PredictiveWeights
https://github.com/Chenyang-1995/PredictiveWeights

(a) Random Quota

(b) Max-min Quota

(c) Least-degree Quota

Figure 2: The worst performance of each algorithm
on the test data among five impression arriving orders
tested, plotted as a function of the training ratio.

performance remain unchanged since they do not use
the training data, while algorithms PW and IPW show
improving performances. In Figure 1a and Figure 1b,
algorithm PW has a worse performance than algorithm
G and algorithm R initially, but obtains a better perfor-
mance when σ becomes 0.6 and 0.1 respectively. Com-
pared to other algorithms, IPW gives the best perfor-
mance. We see that even with one percent of the data
(σ = 0.01), IPW outperforms the traditional online al-
gorithms.

Approximating Adversarial Orders. To study
the performance of these algorithms when impressions
arrive in an adversarial order, we set up following five
arriving orders and check the worst performance.

(a) Random Quota

(b) Max-min Quota

(c) Least-degree Quota

Figure 3: The performance of each algorithm when
impression arrives in a daily order, as a function of the
training ratio. Impressions within a day are assumed to
arrive in random order.

1. Random Order: Impressions arrive randomly.

2. Ci-descending Order: Sort all impressions in
the descending order of their capacities and let
impressions arrive in this order.

3. Ci-ascending Order: All impressions arrive in
the opposite order of the Ci-descending order (i.e.
non-descending order of their capacities).

4. Ca-descending Order: Define the neighbourhood
capacity of an impression to be the sum of the sup-
plies of its neighbouring advertisers. Sort all im-
pressions in the descending order of their neigh-
bourhood capacities and let impressions arrive in
this order.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 4: The `1 norm between the impression vectors
on day 0 and day i > 0.

5. Ca-ascending Order: All impressions arrive in
the opposite order of the Ca-descending order.

The worst performance of each algorithm (over
these five orders) is shown in Figure 2. We observe
that the algorithms based on proportional weights are
much more stable than other algorithms over different
arrival orders (More experimental results are provided
in Appendix D). The performance of algorithms PW
and IPW mostly remain unchanged because their allo-
cation policies are unrelated to the impression arrival
order, unlike greedy and ranking, and IPW remains the
best. The performances of algorithm G and R vary sig-
nificantly when the arriving order changes. Their worst
performances are usually realized in the Ci-descending
order and Ca-descending order respectively.

Daily Order. Finally, we show each algorithm’s
performance when impressions arrive in a daily order in
Figure 3. We combine the instances on 7 days and get
a stacked instance, where the vertex set is the union of
vertex sets in these graphs and each vertex’s capacity
is the sum of its capacities in the instances. Say that
impressions arrive in daily order if all impressions on
day d arrive before the impressions on day d + 1 while
inside any day d, impressions arrive in a random order.
The results show a similar trend as in Figure 1 with
one difference being that the performances of algorithm
G and R decrease slightly. Thus, the value σ where
algorithm PW surpasses algorithm G and R becomes
slightly smaller.

6.3 Robustness. This subsection considers the ro-
bustness. As mentioned above, the instances on differ-
ent days are quite different from each other. We visual-
ize this by showing the `1 norm between the impressions
on the first day (Day 0) and the normalized impression

(a) Max-min Quota

(b) Least-degree Quota

Figure 5: The performance of algorithms on different
days where PW and IPW use weights from previous
days on the current day, and the impression arrival order
is random within each day. Note that the starting day
is set to be day 8 in order to collect more training data
for algorithm PW all and IPW all.

vectors on following days, using the impressions from
the given data set across the first 15 days. In our set-
ting, the vector has dimension 220 − 1. As shown in
Figure. 4, the difference between two days could be very
large. This suggests it could be hard for proportional
weights to work well when learned on one day and used
on another. Surprisingly, our experiments shows empir-
ically that weights are robust across days despite these
large differences in the problem instances. Since we wish
to model some level of correlation between the instances
on different days, the random quota is not tested in this
experiment.

The robustness experiment simulates how the pro-
portional weights may be used in practice. We pre-
dict the weights based on previous day(s) and use the
weights to allocate impressions for a different day. We
consider either computing weights on an instance that

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

is just the previous day or computing the weights from
all prior days impressions. We use “ all” and “ 1” to
denote the weights of all previous days and yesterday
respectively. The results are shown in Figure 5 8.

As mentioned in the beginning of this section,
algorithm PW will not be robust if the predicted
weights are inaccurate. The performance of algorithm
PW all and PW 1 imply a large error in the prediction.
However, even with large prediction error IPW achieves
the best performance.

6.4 Conclusions We see the following trends from
the experiments.

• The Improved Proportional Weights algorithm is
consistently the best algorithm considered, giving
near optimal performance on all instances tested.

• The weights are learnable given a random sample
of a problem instance. In particular, such weights
leads to the improved proportional weights algo-
rithm having near-optimal performance.

• The weights are robust to large changes in the
problem instance. Across days, the advertiser
capacities and the supply of the impressions change
by large margins. Still, the Improved Proportional
Weights algorithm has strong performance.

These experiments show that (1) the proportional
weights algorithm is a strong algorithm for online
matching and (2) the theoretical results on the weights
can be seen empirically. This empirically shows a con-
nection between the algorithms augmented with predic-
tions model and practice. We hope these results stim-
ulate further experimental investigation of algorithms
augmented with predictions.

References

[1] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A dy-
namic near-optimal algorithm for online linear pro-
gramming. Oper. Res., 62(4):876–890, 2014.

[2] Shipra Agrawal, Morteza Zadimoghaddam, and Va-
hab Mirrokni. Proportional allocation: Simple, dis-
tributed, and diverse matching with high entropy. In
Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pages 99–108, Stockholmsmässan, Stock-
holm Sweden, 10–15 Jul 2018. PMLR.

8If one considers the worst performance among the five orders,

the performance of algorithm G and R will decrease significantly
as in previous experiments, while PW and IPW remain stable.

[3] Keerti Anand, Rong Ge, and Debmalya Panigrahi.
Customizing ml predictions for online algorithms.
ICML 2020, 2020.

[4] Antonios Antoniadis, Christian Coester, Marek Elias,
Adam Polak, and Bertrand Simon. Online metric algo-
rithms with untrusted predictions. In Hal Daumé III
and Aarti Singh, editors, Proceedings of the 37th Inter-
national Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages
345–355. PMLR, 13–18 Jul 2020.

[5] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer,
and Pavel Kolev. Secretary and online matching prob-
lems with machine learned advice. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Sys-
tems, volume 33, pages 7933–7944. Curran Associates,
Inc., 2020.

[6] Maria-Florina Balcan. Data-driven algorithm design,
2020.

[7] Maria-Florina Balcan, Dan F. DeBlasio, Travis Dick,
Carl Kingsford, Tuomas Sandholm, and Ellen Vitercik.
How much data is sufficient to learn high-performing
algorithms? CoRR, abs/1908.02894, 2019.

[8] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and
Manish Purohit. Online learning with imperfect hints.
CoRR, abs/2002.04726, 2020.

[9] Ye Chen, Pavel Berkhin, Bo Anderson, and
Nikhil R. Devanur. Real-time bidding algorithms for
performance-based display ad allocation. In Proceed-
ings of the 17th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD
’11, page 1307–1315, New York, NY, USA, 2011. Asso-
ciation for Computing Machinery.

[10] Nikhil R. Devanur and Thomas P. Hayes. The adwords
problem: online keyword matching with budgeted
bidders under random permutations. In Proceedings
10th ACM Conference on Electronic Commerce (EC-
2009), Stanford, California, USA, July 6–10, 2009,
pages 71–78, 2009.

[11] Nikhil R. Devanur, Kamal Jain, Balasubramanian
Sivan, and Christopher A. Wilkens. Near optimal
online algorithms and fast approximation algorithms
for resource allocation problems. J. ACM, 66(1):7:1–
7:41, 2019.

[12] Jon Feldman, Monika Henzinger, Nitish Korula, Va-
hab S. Mirrokni, and Clifford Stein. Online stochas-
tic packing applied to display ad allocation. In Mark
de Berg and Ulrich Meyer, editors, Algorithms - ESA
2010, 18th Annual European Symposium, Liverpool,
UK, September 6-8, 2010. Proceedings, Part I, volume
6346 of Lecture Notes in Computer Science, pages 182–
194. Springer, 2010.

[13] Sreenivas Gollapudi and Debmalya Panigrahi. Online
algorithms for rent-or-buy with expert advice. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Machine Learning Research, pages 2319–2327. PMLR,
2019.

[14] Anupam Gupta and Marco Molinaro. How the experts
algorithm can help solve lps online. Math. Oper. Res.,
41(4):1404–1431, 2016.

[15] Rishi Gupta and Tim Roughgarden. A PAC approach
to application-specific algorithm selection. SIAM J.
Comput., 46(3):992–1017, 2017.

[16] Piotr Indyk, Frederik Mallmann-Trenn, Slobodan
Mitrovic, and Ronitt Rubinfeld. Online page migra-
tion with ML advice. CoRR, abs/2006.05028, 2020.

[17] Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun.
Online algorithms for weighted paging with predic-
tions. In Artur Czumaj, Anuj Dawar, and Emanuela
Merelli, editors, 47th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Con-
ference), volume 168 of LIPIcs, pages 69:1–69:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

[18] Bala Kalyanasundaram and Kirk Pruhs. An optimal
deterministic algorithm for online b-matching. Theor.
Comput. Sci., 233(1-2):319–325, 2000.

[19] Richard M. Karp, Umesh V. Vazirani, and Vijay V.
Vazirani. An optimal algorithm for on-line bipartite
matching. In Harriet Ortiz, editor, Proceedings of the
22nd Annual ACM Symposium on Theory of Com-
puting, May 13-17, 1990, Baltimore, Maryland, USA,
pages 352–358. ACM, 1990.

[20] Thomas Kesselheim, Klaus Radke, Andreas Tönnis,
and Berthold Vöcking. Primal beats dual on online
packing lps in the random-order model. SIAM J.
Comput., 47(5):1939–1964, 2018.

[21] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley,
and Sergei Vassilvitskii. Online scheduling via learned
weights. In Shuchi Chawla, editor, Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8,
2020, pages 1859–1877. SIAM, 2020.

[22] Thomas Lavastida, Benjamin Moseley, R. Ravi, and
Chenyang Xu. Learnable and instance-robust predic-
tions for online matching, flows and load balancing,
2020.

[23] Thodoris Lykouris and Sergei Vassilvtiskii. Compet-
itive caching with machine learned advice. In Jen-
nifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning
Research, pages 3302–3311, Stockholmsmässan, Stock-
holm Sweden, 10–15 Jul 2018. PMLR.

[24] Will Ma and David Simchi-Levi. Algorithms for online
matching, assortment, and pricing with tight weight-
dependent competitive ratios. Oper. Res., 68(6):1787–
1803, 2020.

[25] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and
Vijay V. Vazirani. Adwords and generalized online
matching. J. ACM, 54(5):22, 2007.

[26] Marco Molinaro and R. Ravi. The geometry of online

packing linear programs. Math. Oper. Res., 39(1):46–
59, 2014.

[27] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Im-
proving online algorithms via ML predictions. In Ad-
vances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Process-
ing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada., pages 9684–9693, 2018.

[28] Dhruv Rohatgi. Near-optimal bounds for online
caching with machine learned advice. In Shuchi
Chawla, editor, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 1834–
1845. SIAM, 2020.

[29] Yahoo! Webscope. Yahoo! search marketing adver-
tiser bid-impression-click dataset version 1.0. http://

research.yahoo.com/Academic_Relations. Accessed
2020-12-1.

[30] Yu-Hang Zhou, Chen Liang, Nan Li, Cheng Yang,
Shenghuo Zhu, and Rong Jin. Robust online match-
ing with user arrival distribution drift. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):459–466, Jul. 2019.

[31] Étienne Bamas, Andreas Maggiori, Lars Rohwedder,
and Ola Svensson. Learning augmented energy mini-
mization via speed scaling, 2020.

[32] Étienne Bamas, Andreas Maggiori, and Ola Svensson.
The primal-dual method for learning augmented algo-
rithms, 2020.

A Concentration Inequalities

Theorem A.1. (Corollary 2.4 in [14]) Let Y =
{Y1, ..., Yn} be a set of real numbers in the interval
[0, 1]. Let S be a random subset of Y of size s and
let YS =

∑
i∈S Yi. Setting µ = 1

n

∑
i Yi, we have that

for every τ > 0,

Pr[|YS − sµ| ≥ τ] ≤ 2 exp

(
−min

{
τ2

8sµ
,
τ

2

})
.

B Proofs for the Random Order Model

Lemma B.1. Suppose that the weights α computed in
Algorithm 1 satisfy

1. Pr
[∑

aRa(α, S) > σ
∑
aRa(α) + ε2σm

]
≤ δ

2

2. Pr
[
OPT(S) < σOPT− ε2σm

]
≤ δ

2

Then Algorithm 1 is (1−O(ε))-competitive with proba-
bility 1− δ whenever OPT ≥ εm.

Proof. The key fact we use is that for any S, by
Theorem 3.1,

∑
aRa(α, S) ≥ (1 − ε)OPT(S) since we

computed α using S. If neither event above occurs, then

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

http://research.yahoo.com/Academic_Relations
http://research.yahoo.com/Academic_Relations

we have ∑
a

Ra(α) ≥ 1

σ

∑
a

Ra(α, S)− ε2m

≥ (1− ε)
σ

OPT(S)− ε2m

≥ (1− ε)OPT− 2ε2m

≥ (1−O(ε))OPT.

Indeed, neither event occurs with probability at least
1− δ by a union bound.

Our goal is to now show that the two properties

above hold whenever m = Ω(n
2

σε2 log(nδ)). Let’s start
with the first property. In order to show this property
we need the following lemma.

Lemma B.2. Let S be a subset I of size σm and α ∈
A(T, ε). For any a ∈ A, if Ra(α, S) ≥ σRa(α) then∑
i∈S xia(α) ≥ σ

∑
i∈I xia(α).

Proof. Fix a ∈ A and suppose that Ra(α, S) ≥ σRa(α).
Using the definition of Ra(α, S) and Ra(α) we have

min

{∑
i∈S

xia(α), σCa

}
= Ra(α, S) ≥ σRa(α)

= σmin

{∑
i∈I

xia(α), Ca

}

= min

{
σ
∑
i∈I

xia(α), σCa

}

A case analysis of this shows that
∑
i∈S xia(α) ≥

σ
∑
i∈I xia(α).

This lemma allows us to bound the probability that
Ra(α, S) > (1+ε)σRa(α) by instead bounding the prob-
ability that

∑
i∈S xia(α) ≥ (1 + ε)σ

∑
i∈I xia(α), which

is accomplished via standard concentration inequalities.

Lemma B.3. For each α ∈ A(T, ε) and a ∈ A, if

m = Ω(n
ε2σ log(2n|A(T,ε)|

δ)) then

Pr[Ra(α, S) > σRa(α) + ε2σ
m

n
] ≤ δ

2n|A(T, ε)|
.

Proof. By Lemma B.2, we have

Pr[Ra(α, S) > σRa(α) + ε2σ
m

n
]

≤ Pr[
∑
i∈S

xia(α) > σ
∑
i∈I

xia(α) + ε2σ
m

n
].

Since S is a random subset of I of size σm, xia ∈ [0, 1],
and E[

∑
i∈S xia(α)] = σ

∑
i∈I xia(α), we can apply

Theorem A.1 to the right hand side to get

Pr

[∑
i∈S

xia(α) > σ
∑
i∈I

xia(α) + ε2σ
m

n

]

≤ exp
(
−ε2σ m

2n

)
≤ δ

2n|A(T, ε)|

where in the last step we use the condition on m.

We use a similar strategy for showing the second
condition which regards OPT and OPT(S): find a
quantity which can be captured as a sum and apply
concentration. In this case we use the fact that there
exists a cut/vertex cover which equals the size of the
maximum cardinality (fractional) matching. The fol-
lowing theorem is folklore (see e.g. Claim 1 in [2]). For
B ⊆ A let N(B) =

⋃
a∈B Na.

Theorem B.1. Let G = (I, A,E) be a bipartite graph
with capacities C ∈ ZA+ on A. If OPT is the optimum
value of (1.1), then for all partitions of A into A′ ∪A′′
we have OPT ≤ |N(A′)| +

∑
a∈A′′ Ca. Moreover,

there exists a partition of A into A0 ∪ A1 such that
OPT = |N(A1)|+

∑
a∈A1

Ca.

We can apply this theorem directly to G as well as
to G′ = (S,A,E) as in Algorithm 1. The capacities
for G′ are C ′a = σCa, so for any S ⊆ I of size σm,
we get that there is a partition A = A0 ∪ A1 such that
OPT(S) = |N(A0) ∩ S| +

∑
a∈A1

σCa. Now we can
write |N(A0) ∩ S| =

∑
i∈S Yi, where Yi = 1{i∈N(A0)},

which will allow us to apply Theorem A.1.

Lemma B.4. If m = Ω(1
ε2σ (n+ log 2

δ)), then

Pr[OPT(S) < σOPT− ε2σm] ≤ δ

2n+1
.

Proof. By Theorem B.1 there is a partition such that
A = A0 ∪ A1 such that OPT(S) = |N(A0) ∩ S| +∑
a∈A1

σCa. Now write |N(A0) ∩ S| =
∑
i∈S Yi, where

Yi = 1{i∈N(A0)}. Computing the expectation of this
sum we have E[

∑
i∈S Yi] = σ|N(A0)|. Now we have

Pr[OPT(S) < σOPT− ε2σm]

≤ Pr

[∑
i∈S

Yi ≤ σ|N(A0)| − ε2σm

]

≤ exp
(
−ε2σm

2

)
≤ δ

2n+1

where we use the condition on m in the last step.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Now we can prove the main result about Algo-
rithm 1.

Proof. [of Theorem 4.1] Our goal is to show that the
properties in Lemma B.1 hold, then apply its conclu-

sion. Recall that we assumem = Ω(n
2

σε2 log(nδ)) and that
OPT ≥ εm. For the first property, from Lemma B.3,
we have that for each α ∈ A(T, ε) and a ∈ A

Pr
[
Ra(α, S) > σRa(α) + ε2σ

m

n

]
≤ δ

2n|A(T, ε)|
.

Note that |A(T, ε)| = Tn = (O
(

1
ε2 log(nε)

)
)n. Union

bounding over all α ∈ A(T, ε) and a ∈ A, we get
that this holds for the particular α computed by the
algorithm and also we can sum the inequalities to get

Pr

[∑
a

Ra(α, S) > σ
∑
a

Ra(α) + ε2σm

]
≤ δ

2

showing the first property. For the second property, we
apply Lemma B.4 and union bound over all partitions of
A into A0 ∪A1, of which there are at most 2n, yielding

Pr[OPT(S) < σOPT− ε2σm] ≤ δ

2

showing the second property. Applying Lemma B.1
proves the theorem.

C The Proof for Theorem 5.1

Proof. The basic framework of the proof is similar
with the proof in [22]. Let R(α, I) be the objective
value obtained by using weights α proportionally on
instance I. Thus, our main goal is to prove R(α̂, I) ≥
(1 − ε)OPT − 2η. According to the property of the
proportional weights [1], if we add a dummy source s
adjacent to all impressions and dummy sink t adjacent
to all advertisers on the graph of instance Î, there
exists a vertex s-t cut C whose value C(C, Î) is at most
(1 + ε)R(α̂, Î). As mentioned in Appendix B, the cut
C is formed by N(A0) ∪ A1, where A0 and A1 is two
partitions of advertiser set A. Use C(C, I) to represent
the value of the cut C in instance I.

We first build the relationship between the perfor-
mances of weights α̂ in the two instances:

(C.1) R(α̂, I) ≥ R(α̂, Î)− η,

and then prove the values of cut C in Î and I are also
close:

(C.2) C(C, Î) ≥ C(C, I)− η.

Since C(C, G) is the upper bound of OPT, the theorem
can be proved directly by Eq. (C.1) and Eq. (C.2).

Note that we can assume that the graph connections
in Î and I are the same and the difference is the capacity
of each vertex. Create a new instance I ′ based on Î and
I, where the connection is the same and the capacity
of each vertex is the minimum value of its capacity in
these two instance. Let Cv(I) be the capacity of vertex
v in instance I. Namely, for each vertex v ∈ I ′, we have
Cv(I ′) = min{Cv(I), Cv(Î)}. Thus, we have∑

i

|Ci(I ′)− Ci(Î)|+
∑
a

|Ca(I ′)− Ca(Î)| ≤ η,

indicating that with the same weights, if the capacity
of each vertex v increases from Cv(I ′) to cv(Î), the
objective value increases at most η. In other words,

R(α̂, I ′) ≥ R(α̂, Î)− η.

Since the capacity of each vertex in I is no less than
that in I ′, we know

R(α̂, I) ≥ R(α̂, I ′) ≥ R(α̂, Î)− η,

completing the proof of Eq. (C.1).
Eq (C.2) can also be proved in the same way by

analyzing the capacity of the cut in I ′ and comparing
this to the capacities in Î and I, respectively. Doing so
yields the following chain of inequalities:

C(C, Î) ≥ C(C, I ′) ≥ C(C, I)− η.

This now completes the proof as argued above.

D Additional Experimental Results

This section shows more results in the experiments. Re-
call that we used five arrival orders in the learnabil-
ity experiments and show the performance in the ran-
dom order and the worst performance of each algorithm
among these five orders. Now we present the perfor-
mance of different algorithms in the remaining four im-
pression arrival orders (other than random) in Fig. 6 - 9.
For the robustness experiments in Fig. 5, we give the
instance differences under different capacity settings in
Fig. 10. In most places, when the instance difference η
decreases, algorithm PW 1 tends to increase.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

(a) Random Quota (b) Max-min Quota (c) Least-degree Quota

Figure 6: Competitive Ratios of different algorithms in the Ci-descending order, plotted as a function of the
training ratio.

(a) Random Quota (b) Max-min Quota (c) Least-degree Quota

Figure 7: Competitive Ratios of different algorithms in the Ci-ascending order, plotted as a function of the
training ratio.

(a) Random Quota (b) Max-min Quota (c) Least-degree Quota

Figure 8: Competitive Ratios of different algorithms in the Ca-descending order, plotted as a function of the
training ratio.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

(a) Random Quota (b) Max-min Quota (c) Least-degree Quota

Figure 9: Competitive Ratios of different algorithms in the Ca-ascending order, plotted as a function of the
training ratio.

(a) Max-min Quota (b) Least-degree Quota

Figure 10: The instance difference η between day i and day i− 1 for i ∈ [8, 21] under two capacity settings, where
the instance difference is the `1 norm between the impression vectors (normalized) of these two instances plus the
`1 norm between two advertiser vectors (normalized). Note the different scales in the Y-axis.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proportional Weights under Random Orders
	5 Robustness of Proportional Weights on Similar Instances
	6 Experimental Results
	6.1 Experimental Setup
	6.2 Learnability
	6.3 Robustness.
	6.4 Conclusions

	A Concentration Inequalities
	B Proofs for the Random Order Model
	C The Proof for Theorem 5.1
	D Additional Experimental Results

