
Approximating 1-Wasserstein Distance between Persistence Diagrams by
Graph Sparsification∗

Tamal K. Dey† Simon Zhang†

Abstract

Persistence diagrams (PD)s play a central role in topological data analysis. This analysis
requires computing distances among such diagrams such as the 1-Wasserstein distance. Accurate
computation of these PD distances for large data sets that render large diagrams may not scale
appropriately with the existing methods. The main source of difficulty ensues from the size of the
bipartite graph on which a matching needs to be computed for determining these PD distances.
We address this problem by making several algorithmic and computational observations in order
to obtain an approximation. First, taking advantage of the proximity of PD points, we condense
them thereby decreasing the number of nodes in the graph for computation. The increase in
point multiplicities is addressed by reducing the matching problem to a min-cost flow problem
on a transshipment network. Second, we use Well Separated Pair Decomposition to sparsify
the graph to a size that is linear in the number of points. Both node and arc sparsifications
contribute to the approximation factor where we leverage a lower bound given by the Relaxed
Word Mover’s distance. Third, we eliminate bottlenecks during the sparsification procedure
by introducing parallelism. Fourth, we develop an open source software called 1PDoptFlow
based on our algorithm, exploiting parallelism by GPU and multicore. We perform extensive
experiments and show that the actual empirical error is very low. We also show that we can
achieve high performance at low guaranteed relative errors, improving upon the state of the arts.

1 Introduction

A standard processing pipeline in topological data analysis (TDA) converts data, such as a point
cloud or a function on it, to a topological descriptor called the persistence diagram (PD) by a
persistence algorithm [36]. See books [32, 35] for a general introduction to TDA. Two PDs are
compared by computing a distance between them. By the stability theorem of PDs [25, 71], close
distances between shapes or functions on them imply close distances between their PDs; thus,
computing diagram distances efficiently becomes important. It can help an increasing list of
applications such as clustering [29, 53, 60], classification [17, 56, 72] and deep learning [76] that
have found the use of topological persistence for analyzing data. The 1-Wasserstein (W1) distance
is a common distance to compare persistence diagrams; Hera [50] is a widely used open source
software for this. Others include [62, 64]. In this paper, we develop a new approach and its efficient
software implementation for computing the 1-Wasserstein distance called here the W1-distance that
improves the state-of-the-art.

∗This work has been partially supported by NSF grants CCF 1839252 and 2049010
†Purdue University, Department of Computer Science, USA
1https://github.com/simonzhang00/pdoptflow

1

ar
X

iv
:2

11
0.

14
73

4v
1

 [
cs

.C
G

]
 2

7
O

ct
 2

02
1

https://github.com/simonzhang00/pdoptflow

1.1 Existing Algorithms and Our Approach

As defined in Section 2, the W1-distance between PDs is the assignment problem on a bipartite
graph [13], the problem of minimizing the cost of a perfect matching on it. Thus, any algorithm
that solves this problem [8, 9, 12, 48, 57, 59] can solve the exact W1-distance between PDs problem.

Different algorithms computing W1-distance between PDs have been implemented for open usage
which we briefly survey here. For ε > 0, the software hera [50] gives a (1+ε) approximation to

the W1-distance by solving a bipartite matching problem using the auction algorithm in Õ(n
2.5

ε)
time. In software GUDHI [61], the problem is solved exactly by leveraging a dense min-cost flow
implementation from the POT library [34, 41] to solve the assignment problem. The sinkhorn

algorithm for optimal transport has a time complexity of Õ(n
2

ε2
) [19] but requires O(n2) memory

and incurs numerical errors for small ε. The O(n2) memory requirement is demanding for large n,
especially on GPU. It was shown in [22] that the quadtree [47] and flowtree [5] algorithms can
be adapted to achieve a O(log ∆) approximation in O(n log ∆) memory and time where ∆ is the
ratio of the largest pairwise distance between PD points divided by their closest pairwise distance.
One has no control over the error with this approach and in practice the approximation factor is
large. The sliced Wasserstein Distance achieves an upper bound on the error with a factor of 2

√
2

in O(n2 log n) time [17]. Table 1 shows the complexities and approximation factors of PDoptFlow
and other algorithms.

Algorithm Complexities and Approximation Factors

Algorithm Time (Sequential) Memory Approx. Bound

hera Õ(n
2.5

ε) O(n) (1 + ε)

dense MCF Õ(n3) O(n2) exact

sinkhorn Õ(n
2

ε2
) O(n2) ε abs. err

flowtree, quadtree O(n log ∆) O(n log ∆) O(log ∆)
WCD, RWMD O(n) and O(n

√
n) O(n) none

sliced Wasserstein O(n2 log n) O(n2) 2
√

2

PDoptFlow Õ(n̂
2

ε2
) O(max(n̂

ε2
, n)) 1 +O(ε)

Table 1: n̂ ≤ n depends on n, the total number of points. A better bound of Õ(n̂2/ε) for
PDoptFlow is possible with a tighter spanner, see Section 3.2 for the reasoning behind our spanner
choice.

Our Approach: We design an algorithm that achieves a (1 + O(ε)) approximation to W1-
distance. The input to our algorithm is two PDs and a sparsity parameter s with ε = O(1/s).
The problem is reduced to a min-cost flow problem on a sparsified transshipment network with
sparsification determined by s. The min-cost flow problem is implemented with the network simplex
algorithm. We use two geometric ideas to sparsify the nodes and arcs of the transshipment network.
We are able to construct networks of linear complexity while availing high parallelism. This lowers
the inherent complexity of the network simplex routine, and enables us to gain speedup using the
GPU and multicore executions over existing implementations.

We apply a simple geometric idea called δ-condensation (see Figure 4) to reduce the number of
nodes in the transshipment network. This approach is synonymous to ”grid snapping” [40, 63] or
”binning” [53] to a δ-grid where δ depends on s. In order to maintain a (1+O(ε))-approximation, we
use a lower bound given by the Relaxed Word Mover’s distance [52]. Its naive sequential computation
can be a bottleneck for large PDs. We parallelize its computation with parallel nearest neighbor
queries to a kd-tree data structure.

2

In existing flow-based approaches [27, 41] that compute the W1-distance, the cost matrix is
stored and processed incurring a quadratic memory complexity. We address this issue by reducing
the number of arcs to O(s2n) using an s-well separated pair decomposition (s-WSPD) (s is the
algorithm’s sparsity parameter) where n is the number of nodes. This requires O(s2n) memory.
Moreover, we parallelize WSPD construction in the pre-min-cost flow computation since it is a
computational bottleneck. This can run in time O(polylog(s2n)) according to [77]. Thus, the
pre-min-cost flow computation of our algorithm incurs O(s2n) cost. We focus on the W1-distance
instead of the general q-Wasserstein distance since we can use the triangle inequality for a guaranteed
(1+ε)-spanner [14].

W1 Comput. Times (sec.) for Relative Error Bound

bh AB mri rips

Ours (th. error = 0.5 8.058s 0.67s 18.0s 48.4s

hera (th. error = 0.5) 405.02s 10.46s 1010.7s 207.38s

Ours (th. error = 0.2) 29.15s 1.52s 51.5s 154s

hera (th. error = 0.2) 405.02s 14.56s 1256.4s 342.1s

S.H. (emp. err. ≤ 0.5) >32GB 3.80s >32GB >32GB

dense NtSmplx >.3TB 5.934s >.3TB 354s

Ours, Sq. th. err. = 0.5 9.13s 0.88s 29.3s 80.16s

Ours, Sq. th. err. = 0.2 35.69s 3.03s 88.85s 266.48s

Table 2: Running times of PDoptFlow, parallel (Ours) and sequential (Ours, Sq.), against hera,
GPU-sinkhorn (S.H.), and Network-Simplex (NtSmplx) for W1-distance; > 32 GB or > .3 TB
means out of memory for GPU or CPU respectively.

1.2 Experimental Results

Table 2 and Table 3 summarize the results obtained by our approach. First, we detail these
results and explain the algorithms later. For our experimental setup and datasets, the reader may
refer to Section 4. Experiments show that our methods accelerated by GPU and multicore, or
even serialized, can outperform state-of-the-art algorithms and software packages. These existing
approaches include GPU-sinkhorn [27], Hera [50], and dense network simplex [41] (NtSmplx). We
outperform them by an order of magnitude in total execution time on large PDs and for a given low
guaranteed relative error. Our approach is implemented in the software PDoptFlow, published at
https://github.com/simonzhang00/pdoptflow.

We also perform experiments for the nearest neighbor(NN) search problem on PDs, see Problem
2 in Section 3.5. This means finding the nearest PD from a set of PDs for a given query PD with
respect to the W1 metric. Following [5, 22], define recall@1 for a given algorithm as the percentage
of nearest neighbor queries that are correct when using that algorithm for distance computation.
We also use the phrase ”prediction accuracy” synonymously with recall@1. Our experiments are
conducted with the reddit dataset; we allocate 100 query PDs and search for their NN amongst
the remaining 100 PDs. We find that PDoptFlow at s = 1 and s = 18 achieve very high NN
recall@1 while still being fast, see Table 3. Although at s = 1 there are no approximation guarantees,
PDoptFlow still obtains high recall@1; see Figure 7 and Table 6 for a demonstration of the low
empirical error from our experiments. Other approximation algorithms [5, 22, 52] are incomparable
in prediction accuracy though they run much faster.

In Table 2, we present the total execution times for comparing four pairs of persistence diagrams:
bh, AB, mri, rips from Table 5 in Section 4. The guaranteed relative error bound is given for each

3

https://github.com/simonzhang00/pdoptflow

 0.1

 1

 10

 100

 1000

 10000

 0 20000 40000 60000 80000 100000

tim
e

(s
)

n: the number of nodes in the sparsified transshipment network

synthetic Gaussian, s=4
synthetic Gaussian, s=12
synthetic Gaussian, s=40

Figure 1: Plot of the empirical time (log scale) against the number of nodes n.

column. We achieve 50x, 15.6x, 56x and 4.3x speedup over hera with the bh, AB, mri and rips
datasets at a guaranteed relative error of 0.5. When this error is 0.2, we achieve a speedup of 13.9x,
9.6x, 24.4x, and 2.2x respectively on the same datasets. We achieve a speedup of up to 3.90x and
5.67x on the AB dataset over the GPU-sinkhorn and the NtSmplx algorithm of POT respectively.
Execution on rips is aborted early by POT. We also run PDoptFlow sequentially, doing the same
total work as our parallel approach does. A slowdown of 1.1x-2.0x is obtained on bh at ε = 0.5
and AB at ε = 0.2 respectively compared to the parallel execution of PDoptFlow. This suggests
most of PDoptFlow’s speedup comes from the approximation algorithm design irrespective of the
parallelism. The Software from [22] is not in Table 2 since its theoretical relative error (2× (height
of its quadtree)-1) [5, 22] is not comparable to values (0.5 and 0.2) from Table 2. In fact, it has
theoretical relative errors of 75, 41, 61, 41 for bh, AB, mri, rips respectively. flowtree [22] is much
faster than PDoptFlow and is less accurate empirically. On these datasets, there is a 10.1x, 2.6x,
18.8x and 90.3x speedup against PDoptFlow(s = 18) at ε = 1.3, for example.

NN PD Search for W1 Time and Prediction Accuracy

avg. time ± std. dev. avg. recall@1 ± std. dev.

quadtree: (ε = 37.8± 0.5) 0.46s ± 0.05s 2.2% ± 0.75%

flowtree: (ε = 37.8± 0.5) 4.88s ± 0.2s 44% ± 4.05%

WCD 8.14s ± 2.0s 39.8% ± 2.71%

RWMD 17.16s ± 0.97s 29.8% ± 5.74%

PDoptFlow(s=1) 62.6s ± 3.38s 81% ± 5.2%

PDoptFow(s=18): (ε = 1.4) 371.2s ± 85s 95.4% ± 1.62%

hera: (ε = 0.01) 2014s ± 12.6s 100%

Table 3: Total time for all 100 NN queries and overall prediction accuracy over 5 dataset splits of
50/50 queries/search PDs; ε is the theoretical relative error.

Table 3 shows the total time for 100 NN queries amongst 100 PDs in the reddit dataset. The
overall prediction accuracies using each of the algorithms are listed. See Section 4.1 for details on
each of the approximation algorithms. Table 3 shows that the algorithms ordered from the fastest
to the slowest on average on the reddit dataset are quadtree [5, 22], flowtree [5, 22], WCD [52],
RWMD [52], PDoptFlow(s = 1), PDoptFlow(s = 18), and hera [50].

Table 3 also ranks the algorithms from the most accurate to the least accurate on average as hera,
PDoptFlow(s = 18), PDoptFlow(s = 1), flowtree, WCD, RWMD, and quadtree. The
average accuracy is obtained by 5 runs of querying the reddit dataset 100 times. PDoptFlow(s = 18)
provides a guaranteed 2.3-approximation which can even be used for ground truth distance since it
computes 95% of the NNs accurately. Furthermore, it takes only one-fourth the time that Hera

4

takes. Figure 2 shows the time-accuracy tradeoff of the seven algorithms in Table 3 on the reddit
dataset.

-20

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500

pr
ed

ic
tio

n
ac

cu
ra

cy
 (

pe
rc

en
ta

ge
)

time (s)

pareto frontier
quadtree
flowtree

wcd
rwmd

PDoptFlow(s=1)
PDoptFlow(s=18)

hera

Figure 2: Pareto frontier of 7 algorithms showing the time and prediction accuracy tradeoff amongst
the algorithms from Table 3 on the reddit dataset.

Figure 1 shows that our overall approach runs empirically in O(s2n1.5) time for small s (≤ 40).
The empirical complexity improves with a smaller s. The datasets are given by synthetic 2D
Gaussian point distributions on the plane acting as PDs. There are total of 10K, 20K, 40K, ... 100K
points in the synthetic PDs. We achieve up to 20% reduction in the total number of PD points by
δ-condensation. Section A.2.2 in the Appendix further explains the trend. This partly explains the
speedups that Table 2 exhibits. For empirical relative errors, see Table 6 Section 4.

The rest of the paper explains our approach, implementation, and further experiments. Here is
a table of the notations that follow.

Notations

Symbol Meaning

A,B input PDs

Ã, B̃ multiset of points on R2 (nondiagonal points of A and B)
∆ set of diagonal points

Ãproj , B̃proj multisets of projections of Ã, B̃ to ∆

Â, B̂ sets of points corresponding to Ã, B̃

ā, b̄ virtual points that represent Ãproj and B̃proj
Âδ, B̂δ δ condensation of Â and B̂
σ, c, f supply, cost and flow functions of a transshipment network
L, δ a lower bound to the W1-distance, additive error
WCD, RWMD word centroid distance, relaxed word movers distance

s, ε, n sparsification factor, theoretical relative error, and |Ã ∪ B̃|
G(A,B) bipartite transportation network on Â ∪ {b̄} and B̂ ∪ {ā}
Gδ G(Âδ ∪ {b̄}, B̂δ ∪ {ā})
WSs(Â

δ ∪ B̂δ) s-WSPD on (Âδ ∪ B̂δ)

WSPDs (Aδ, Bδ) sparsified transshipment network induced by WSs(Â
δ ∪ B̂δ)

W1(A,B) ground truth W1-distance

Table 4: Notations used in this paper.

5

2 1-Wasserstein Distance Problem

A persistence diagram is a multiset of points in the plane along with the points of infinite multiplicity
on the diagonal line ∆ (line with slope 1). The pairwise distances between diagonal points are
assumed to be 0. Each point (b, d), b 6= d in the multiset represents the birth and death time of a
topological feature as computed by a persistence algorithm [35, 36]. Diagonal points are introduced
to ascertain a stability [21, 25, 35] of PDs.

Given two PDs A = Ã ∪∆ and B = B̃ ∪∆, Ã, B̃ ⊂ R2 \∆ let

W1(A,B) = inf
Π:A→B

∑
x1∈A

(‖x1 −Π(x1)‖2),

where Π is a bijection from A to B. Notice that this formulation is slightly different from the ones
in [32, 35] which takes the l1 and l∞-norms respectively instead of the l2-norm considered here. It
is easy to check that this is equivalent to the following formulation:

inf
M⊂Ã×B̃

(
∑

(x1,x2)∈M

(‖x1 − x2‖2) +
∑

x1 /∈π1(M)

d∆(x1) +
∑

x2 /∈π2(M)

d∆(x2))

where M is a partial one-to-one matching between Ã and B̃; π1, π2 are the projections of the
matching M onto the first and second factors, respectively; d∆(x) is the l2-distance of x to its
nearest point on the diagonal ∆. The triangle inequality does not hold among the points on ∆. In
that sense, this W1-distance differs from the classical Earth Mover’s Distance (EMD) [69] between
point sets with the l2 ground metric. Computing W1(A,B) (Problem 1) reduces to the problem of
finding a minimizing partial matching M ⊂ Ã× B̃.

Problem 1. Given two PDs A and B, Compute W1(A,B).

2.1 Matching to Min-Cost Flow

Let Ãproj , B̃proj be the sets of points in ∆ nearest (in l2-distance) to Ã, B̃, respectively. Define
the bipartite graph Bi(A,B) = (U1∪̇U2, E) where U1 := Ã ∪ B̃proj and U2 := B̃ ∪ Ãproj . Define the
point pproj to be the nearest point in l2-distance to p in ∆ and let

E = (Ã× B̃) ∪ {(p, pproj)}p∈Ã ∪ {(qproj , q)}q∈B̃ ∪ (Ãproj × B̃proj).

The edge e = (p, q) ∈ E has weight (i) 0 if e ∈ Ãproj × B̃proj , (ii) weight ‖p− q‖2 if p ∈ Ã, q ∈ B̃,
(iii) weight d∆(p) if q = pproj , and (iv) weight d∆(q) if p = qproj . Because of the edges with cost 0,
minimizing the total weight of a perfect matching on Bi(A,B) is equivalent to finding a minimizing
partial matching M ⊂ Ã× B̃ and thus computing W1(A,B) in turn.

Let G = (V,E, c, σ) be a transshipment network made up of nodes and directed edges called
arcs where we have a supply function σ : V (G)→ Z, a cost function c : V (G)× V (G)→ R+, and a
flow function f : V (G)× V (G)→ Z. Define the uncapacitated min-cost flow on G as:

min
Σuf(u,v)=|σ(v)|,Σvf(u,v)=|σ(u)|,f(u,v)≥0

c(u, v) · f(u, v),where (u, v) ∈ E(G).

Now we describe a construction of the bipartite transshipment network G(A,B) for two PDs
A and B. Intuitively, G(A,B) is Bi(A,B) with a set instead of multiset representation for the
nodes. Let πA and πB denote the mapping of the points in Ã ∪ B̃proj and B̃ ∪ Ãproj respectively to
the nodes in the graph G(A,B). All points with distance 0 are mapped to the same node by πA

6

and πB. Since the diagonal points Ãproj and B̃proj are assumed to have distance zero, all points
in Ãproj map to a single node, say ā = πA(Ãproj). Similarly, all points in B̃proj map to a single
node, say b̄ = πB(B̃proj) (See Figure 3). We call this 0-condensation because it does not perturb
the non-diagonal PD points. All arcs to or from ā or b̄ form diagonal arcs, which are used in our
main algorithm.

2

2
3

1

1

7

Figure 3: (a) −5; (7, 12) means a supply of −5 units at point (7, 12). (b) Bi(A,B) with the nodes
denoted by solid circles. (c) G(A,B), nodes are the solid outer boxes. Supplies in G(A,B) are set
by the number of circles inside each box. In (b) and (c), barred-points e.g. (7, 12) are projections to
the diagonal.

Let Â and B̂ denote the set of nodes corresponding to the non-diagonal points, that is, Â = πA(Ã),
B̂ = πB(B̃). The nodes of G(A,B) are (Â ∪ {b̄})∪̇(B̂ ∪ {ā}). The vertices of the transshipment
network G(A,B) are assigned supplies σ(u) = |π−1

A (u)| for u ∈ U1 and σ(v) = −|π−1
B (v)| for v ∈ U2.

Intuitively, negative supply at a node means that there is a demand for a net flow at that node,
which corresponds to a point in B. The intuition for positive supply is analogous.

Proposition 2.1. There is a perfect matching on Bi(A,B) with |Ã| = n1 and |B̃| = n2 iff there is
a feasible flow of value n1 + n2 in G(A,B).

Proof. ⇒ Any perfect matching µ on Bi(A,B) can be converted to a feasible flow on G(A,B) by
assigning a flow between u ∈ U1 and v ∈ U2 equal to the number of pairs (p, µ(p)) with p ∈ π−1(u)
and µ(p) ∈ π−1(v). The supplies on G(A,B) are met because of the way G(A,B) is constructed.
The value of the flow for the conversion is n1+n2 since there were that many pairings in the perfect
matching.
⇐ Given a feasible flow of value n1 + n2 on G(A,B), we obtain a matching on Bi(A,B) by

observing that we can decompose any feasible flow on arc (u, v) ∈ Â ∪ {b̄} × B̂ ∪ {ā}, into unit
flows from π−1

A (u) to π−1
B (v) with no pair repeating any point from other pairs. Each unit flow

corresponds to a pair in the matching. Since the flow has n1 + n2 flow value, there must be the
n1 + n2 pairings in the matching, making it perfect.

Problem 1 reduces to a min-cost flow problem on G(A,B) by Proposition 2.1. A proof based on
linear algebra can be found in [53].

7

3 Approximating 1-Wasserstein Distance

In this section we design a (1 +O(ε))-approximation algorithm for Problem 1 that first sparsifies
the bipartite graph G(A,B) with an algorithm incurring a cost of Õε(n), where Õε hides a polylog
dependence on n and a polynomial dependence on 1

ε . Due to the node and edge sparsification,
we must then use the min-cost flow formulation of Section 2 instead of a bi-partite matching for
computing an approximation to the W1-distance. We use the network simplex algorithm to solve
the min-cost flow problem because it suits our purpose aptly though theoretically speaking any
min-cost flow algorithm can be used.

(a) (b)

Figure 4: δ-condensation for (a) matched and (b) unmatched points. Points snapped to their nearest
0.99δ-grid point. Points are then perturbed in a 0.01(δ2) neighborhood. Green dotted pairwise
distances change to new purple dotted and dashed pairwise distances.

3.1 Condensation (Node Sparsification)

As the size of the PD increases, many of its points cluster together since filtration values often
become close. This is because the filtration values may come from, for example, scale-free [6] social
network data, that is, graphs with power law degree distributions, or voxelized data given as finitely
many grid values. See Section A.1.3 for a discussion on the clustering of PD points and how do they
arise from scale-free graphs and voxel data. Figure 6 shows such evidences for voxelized data. We
draw upon a common technique for rasterizing the plane by snapping points to an evenly spaced
grid to decrease the number of points. As discussed in Section A.2, it is known that the network
simplex algorithm performs better on a transshipment network with many different arc lengths than
the one with many arcs having the same length. To avoid the symmetry induced by the lattice, we
perturb randomly the combined points. For a δ > 0 and a fraction k ≥ 0.5 (say k = 0.99), we snap
nondiagonal points to a kδ · Z× kδ · Z lattice (grid). Let πδ : Â ∪ B̂ → (kδ · Z)× (kδ · Z) define this
snapping of a point to its nearest δ-lattice point where πδ((x, y)) = (kδ · round(xkδ), kδ · round(ykδ)).

We follow the snapping by πδ with a random shift of each condensed point by at most 1−k
2 · δ in

any of the ±x or ±y directions; see Figure 4. We call the entire procedure as ”δ-condensation” or
”δ-snapping”. The aggregate of the points snapped to a grid point is accounted for by a supply
value assigned to it; see Algorithm 2.

Proposition 3.1. Let A and B be two PDs and ε > 0. For δ := 2εL√
2(|Ã|+|B̃|) where L ≤W1(A,B),

let the snapping by πδ followed by a δ · (1 − k)/2 random shift on A and B produce Aδ and Bδ

respectively. Then, (1− ε)W1(A,B) ≤W1(Aδ, Bδ) ≤ (1 + ε)W1(A,B).

Proof. After applying πδ, each point moves in a
√

2δ
2 neighborhood. Thus for any pair of nondiagonal

points p ∈ Ã and q ∈ B̃, the l2-distance between the two points shrinks/grows at most by

8

2
√

2kδ
2 units. A (1−k)δ

2 -perturbation contributes to an error of 2
√

2(1−k)δ
2 units for the l2-distance

between p and q. Thus, for a pair of nondiagonal points the additive error incurred is
√

2δ units.
Furthermore, for any nondiagonal point in either diagram, its distance to ∆ can shrink/grow by at

most
√

2kδ
2 +

√
2(1−k)δ

2 =
√

2δ
2 units.

Let m1 be the number of pairs of matched nondiagonal points and m2 be the number of unmatched
nondiagonal points. Let the δ-condensation of A and B be Aδ, Bδ and let δ′ =

√
2(m1 + m2

2)δ. To
reach the conclusion of the proposition, we want δ to induce a relative error of ε for W1(Aδ, Bδ)
with respect to W1(A,B) satisfying the following inequalities:

(1− ε)W1(A,B) ≤W1(A,B)− δ′ ≤W1(Aδ, Bδ) ≤W1(A,B) + δ′ ≤ (1 + ε)W1(A,B).

Observe that m1 + m2
2 = (|Ã|+|B̃|)

2 . Also, we have that L ≤W1(A,B). These together constrain δ

to satisfy
√

2(m1 + m2
2)δ =

√
2 (|Ã|+|B̃|)

2 δ ≤ εL ≤ εW1(A,B), which gives the desired value of δ as
stated.

A lower bound L from Proposition 3.1 is needed in order to convert the additive error of δ to a
multiplicative error of 1± ε. To find the lower bound L, we use the Relaxed Word Mover’s distance
(RWMD) [52] that gives a lower bound for the min-cost flow of G(A,B), hence for W1(A,B). There
are many lower bounds that can be used such as those from [4, 52]. However, we find RWMD to be
the most effective in terms of computational time and approximation in general.

Recall that RWMD is a relaxation of one of the two constraints of the min-cost flow problem.
If we ”relax” or remove the constraint

∑
v f(u, v) = |σ(u)|, u ∈ B̂ ∪ {ā} from the min-cost flow

formulation, we obtain the following feasible flow to the min-cost flow with one of its constraints
removed

f low,A(u, v) =

{
|σ(u)| if v = argminv′ c(u, v

′)
0 otherwise

and evaluate LA :=
∑

u,v c(u, v) · f low,A(u, v). Since W1(A,B) is a feasible solution to the relaxed

min-cost flow problem, LA ≤W1(A,B). Relaxing the constraint
∑

u f(u, v) = |σ(v)|, v ∈ Â ∪ {b̄},
we can define f low,B(u, v) and LB similarly.

Our simple parallel algorithm involves computing L := max(LA, LB), the RWMD, by exploiting
the geometry of the plane via a kd-tree to perform fast parallel nearest neighbor queries. For LA,
we first construct a kd-tree for B̂ viewed as points in the plane, then proceed to search in parallel
for every u ∈ Â, its nearest l2-neighbor v∗ in B̂ while writing the quantity c(u, v∗) · f low,A(u, v∗) to
separate memory addresses. Noticing that the closest point to b̄, is ā at cost 0, it suffices to consider
the points Â to compute LA. We then apply a sum-reduction to the array of products, taking
O(log n) depth [11]. We apply a similar procedure for LB. See Algorithm 1. Since the kd-tree

Algorithm 1 RWMD(Â, B̂, c)

1: build kd-tree on B̂ using Euclidean distance on R2

2: compute v∗ = argminv∈B̂c(u, v) by NN search on B̂ and store f low,A(u, v∗) for each u ∈ Â in
parallel

3: LA ← compute sum-reduction of line 2
4: LB ← compute lines 1-3 with Â and B̂ swapped return max(LA, LB)

9

queries each takes O(
√
n) sequential time, we obtain an algorithm with O(n) processors requiring

O(
√
n+ log n) = O(

√
n) depth and O(n

√
n) work.

Algorithm 2 δ-condensation

Require: PDs A,B, s > 0
1: (Â, b̄, σÂ, B̂, ā, σB̂)← 0-condense(A,B)

2: L← RWMD(Â, B̂, c) . c(·, ·) from Section 2
3: ε← 8

s−4 if s ≥ 12 else ε← 1; δ ← 2εL√
2(|Ã|+|B̃|)

4: (Âδ, B̂δ) ← (πδ(Â), πδ(B̂)) . snap points of Â, B̂ to a common 0.99δ-lattice

5: σÂδ∪B̂δ∪{ā}∪{b̄} ←

{∑
u∈π−1

δ (v) σ(u) v ∈ Âδ ∪ B̂δ

σ(v) v = {ā} ∪ {b̄}
6: perturb Âδ ∪ B̂δ in a 0.01

2 δ-radius square

return (Âδ ∪ B̂δ, σÂδ∪B̂δ∪{ā}∪{b̄})

The algorithm for δ-condensation is given in Algorithm 2. We first gather all the points based
on their x and y coordinates called a 0-condensation; see Section 2. Then, we compute the RWMD
in order to compute δ. This δ depends on an intermediate relative error of ε for δ-condensation,
which depends on the input s. The quantity ε is chosen to be less than 1. In particular, we set
ε ← 8

s−4 if s ≥ 12 and ε ← 1 otherwise; see line 3 in Algorithm 2. Finally, we snap the points

of Â and B̂ to the δ-grid and then perturb the condensed points in a small neighborhood. The
resulting sets of points are denoted Âδ and B̂δ. For each condensed point, we aggregate the supplies
of points that are snapped to it. The aggregated supply function is denoted σÂδ∪B̂δ∪{ā}∪{b̄}. The
bipartite transshipment network that could be constructed by placing arcs between all nodes from
Aδ := Âδ ∪ {b̄} to Bδ := B̂δ ∪ {ā} is denoted as Gδ:=G(Aδ, Bδ). The cost cδ is defined on arcs of
G(Aδ, Bδ) as cδ(u, v) = ‖u− v‖2 for u ∈ Âδ and v ∈ B̂δ. The costs cδ(u, ā) and cδ(b̄, v) are defined
by the l2-distances of u and v to ∆ as in Section 2.1. Furthermore, the supply on all points is
defined by σAδ∪Bδ . Only the nodes and supplies of this network are constructed.

3.2 Well Separated Pair Decomposition(Arc Sparsification)

The node sparsification of G(A,B) gives Gδ whose arcs are further sparsified. Using Theorem 1
in [14], we bring the quadratic number of arcs down to a linear number by constructing a geometric
(1 + ε)-spanner on the point set Âδ ∪ B̂δ. For a point set P ⊂ R2, let its complete distance graph be
defined with the points in P as nodes where every pair p, q ∈ P , p 6= q, is joined by an edge with
weight equal to ‖p− q‖2. Define a geometric t-spanner S(P) as a subgraph of the complete distance
graph of P where for any p, q ∈ P, p 6= q, the shortest path distance dSP (p, q) between p and q in
S(P) satisfies the condition dSP (p, q) ≤ t · ‖p− q‖2.

We compute a spanner using the well separated decomposition s-WSPD [20, 45]. Notice that
there are many other possible spanner constructions such as θ-graphs [24, 49] and others, e.g. [44, 55].
However, experimentally we find that WSPD is effective in practice, and becomes especially effective
when s is small. The θ-graphs, for example, can be an order of magnitude slower to compute as
implemented in the CGAL software [39]. This is theoretically justified by the O(log n) factor in the
O(n log n) construction time of θ-graphs when n > 1024. An s-WSPD is a well known geometric
construction that approximates the pairwise distances between points by pairs of ”s-well-separated”
point subsets. Two point subsets U and V are s-well separated in l2-norm if there exist two l2 balls
of radius d containing U and V that have distance at least d · s. An s-WSPD of a point set P ⊂ R2

10

is a collection of pairs of s-well separated subsets of P so that for every pair of points p, q ∈ P , p 6= q,
there exists a unique pair of subsets U, V in the s-WSPD with U 3 p and V 3 q. Each subset in an
s-WSPD is represented by an arbitrary but fixed point in the subset. We can construct a digraph
WSs(P) from the s-WSPD on P by taking the point representatives as nodes and placing biarcs
between any two nodes u, v, that is, creating both arcs (u, v) and (v, u). It is known [20, 45] that
WSs(P), viewed as an undirected graph, is a geometric t-spanner for t = (s+ 4)/(s− 4). Putting
t = (1 + ε), this gives s = 4 + 8

ε . It was recently shown in [30] that by taking leftmost points as
representatives in the well separated subsets, one can improve t to 1 + 4

s + 4
s−2 . Furthermore, it is

also known that WSs(P) has O(s2n) number of arcs where n = |P |.

a,b,c,d

b,c

d b c

a,d

a

(b) Split Tree and WSPD pairs(a) -Condensation (c) -Spanner with Diag. Arcs

Figure 5: Illustration of Algorithm 3: (a) δ-condensation for the example in Figure 3 with the split
tree construction on Âδ ∪ B̂δ; (b) WSPD pairs (black biarcs) on the split tree from (a); and (c) the
induced transshipment network from the WSPD with the green diagonal arcs included.

Now we describe how we compute an arc sparsification of Gδ. To save notations, we assume the
points of Âδ and B̂δ, the δ-condensation of Â and B̂ respectively, to be nodes also. We compute a
(1 + ε)-spanner WSs(Â

δ ∪ B̂δ) via an s-WSPD on the points Âδ ∪ B̂δ. Notice that this digraph has
all nodes of Gδ except the two diagonal nodes ā and b̄ which we add to it with all the original arcs
from ā and to b̄ having the cost same as in Gδ. Now we assign supplies to nodes in WSs(Â

δ ∪ B̂δ)
as in Gδ. There is a caveat here. It may happen that points from Âδ and B̂δ overlap. Two such
overlapped points from two sets are represented with a single point having the supply equal to
the supplies of the overlapped points added together. Let WSPDs (Aδ, Bδ) denote this sparsified
transshipment network. Adapting an argument in [14] to our case, we have:

Theorem 3.2. Let f∗ and f̄∗ be the min-cost flow values in Gδ and WSPDs (Aδ, Bδ) respectively
where s satisfies ε = 4

s + 4
s−2 for some ε > 0. Then f∗ and f̄∗ satisfy f∗ ≤ f̄∗ ≤ (1 + ε)f∗.

Proof. First, notice that the nodes of WSPDs (Aδ, Bδ) are exactly the same as in G(Aδ, Bδ) =
(Aδ∪̇Bδ, Aδ×Bδ, cδ, σAδ∪Bδ) except the overlapped nodes. We can decompose the overlapped nodes
back to their original versions in Âδ and B̂δ with biarcs of 0-distance between them. This will also
restore the supplies at each node. This does not affect f̄∗. Let the cost cδ(u, v) in WSPDs (Aδ, Bδ) be
the l2-distance between corresponding points of u and v for u, v ∈ Âδ t B̂δ (all non-diagonal points
pairs). Furthermore, let cδ(b̄, v), v ∈ B̂δ and cδ(u, ā), u ∈ Âδ have cost exactly as in G(Aδ, Bδ).
Recall that in WSPDs (Aδ, Bδ) there is no arc between Âδ and b̄ nor between B̂δ and ā. Treating
the costs on the arcs as weights, let the shortest path distance between u and v be dWS

SP (u, v) on

WSPDs (Aδ, Bδ). We already have a (1 + ε)-spanner WSs(Â
δ ∪ B̂δ), and adding the nodes ā and b̄

11

with the diagonal arcs to form WSPDs (Aδ, Bδ) still preserves the spanner property, namely

dSP (b̄, v) = cδ(b̄, v) ≤ (1 + ε)cδ(b̄, v) for v ∈ Bδ

and

dSP (u, ā) = cδ(u, ā) ≤ (1 + ε)cδ(u, ā) for u ∈ Aδ.

Let f and f̄ denote the respective flows for f∗ and f̄∗. We can now prove the conclusion of the
theorem.

f∗ ≤ f̄∗: f̄ can be decomposed into flows along paths from nodes in Aδ to nodes in Bδ. One can
get a flow f̂ on G(Aδ, Bδ) from f̄ by considering a flow on every bipartite arc (u, v) in G(Aδ, Bδ)
which equals the path decomposition flow from u to v in WSPDs (Aδ, Bδ). We have

f∗ =
∑

(u,v)∈G(Aδ,Bδ)

cδ(u, v) · fuv ≤
∑

(u,v)∈G(Aδ,Bδ)

cδ(u, v) · f̂uv ≤
∑

(u,v)∈Aδ×Bδ
dWS
P (u, v) · f̂uv = f̄∗,

where dWS
P (u, v) is the path distance on WSPDs (Aδ, Bδ) as determined by the flow decomposition.

The leftmost inequality follows since f̂ is a feasible flow on G(Aδ, Bδ) and the rightmost inequality
follows since any path length between two nodes u and v is bounded from below by the direct dis-
tance cδ(u, v) between the points they represent. The last equality follows by the flow decomposition.

f̄∗ ≤ (1 + ε)f∗:

f̄∗ ≤
∑

(u,v)∈Aδ×Bδ
dWS
SP (u, v) · fuv ≤

∑
(u,v)∈G(Aδ,Bδ)

(1 + ε)cδ(u, v) · fuv = (1 + ε)f∗.

The leftmost inequality follows since the flow f of G(Aδ, Bδ) sent across shortest paths forms a
feasible flow on WSPDs (Aδ, Bδ). To check this, notice that the supplies are all satisfied for every
node in WSPDs (Aδ, Bδ). Any intermediate node of a shortest path between u ∈ Aδ and v ∈ Bδ gets
a net change of 0 supply. The rightmost inequality follows because WSPDs (Aδ, Bδ) still satisfies the
(1 + ε)-spanner property as mentioned above.

s-WSPD Construction: In order to construct an s-WSPD, a hierarchical decomposition
such as a split tree or quad tree is constructed. We build a split tree due to its simplicity and
high efficiency. A split tree can be computed sequentially with any of the standard algorithms in
[16, 20, 45] that runs in O(n log n) time. It is not a bottleneck in practice. This is because there
is only O(n) writing to memory for constructing the tree. A simple construction of the split tree
T starts with a bounding box containing the input point set followed by a recursive division that
splits a box into two halves by dividing the longest edge of the box in the middle. The split tree
construction for a given box stops its recursion when it has one point.

Sequential construction of a WSPD involves collecting all well separated pairs of nodes which
represent point subsets from the split tree T . This is done by searching for descendant node pairs
from each interior node w in T . For each pair of descendant nodes u and v reached from w, the
procedure recursively continues the search on both children of the node amongst u and v that has
the larger diameter for its bounding box. When the points corresponding to a pair of nodes u, v
become well separated, we collect (u, v) in the WSPD and stop recursion.

The construction of WSPD is the primary bottleneck before the min-cost flow computation.
The sequential computation incurs high data movement and also a large hidden constant factor

12

in the complexity. To overcome these difficulties, we compute the WSPD in parallel while still
preserving locality of reference, only using n− 1 threads, and O(n) auxiliary memory. We propose
a simple approach on multicore that avoids linked lists or arbitrary pointers as in [15, 16]. A unique
thread is assigned to each internal node w in the split tree T . Then, we write a prefix sum [54]
of the counts of well separated pairs found by each thread. Following this, each thread on w ∈ T
re-searches for well separated pairs and independently writes out its well separated descendant
nodes in its memory range as determined by the prefix sum. Recursive calls on split tree node pairs
can also be run in parallel as in [77]; doing so requires an unbounded data structure to store the
pairs found by each thread such as a 2-layer tree with blocks at its leaves. Such a parallel algorithm
can have worst-case depth of O(polylog(s2n)) and work complexity of O(s2n). In practice, we can
gain speedup in our simplified implementation, which does not issue recursive calls at interior nodes
and thus has O(s2n) depth. This is because significant work can arise at internal nodes near the
leaves. For an illustration of the implementation, see Appendix.

3.3 Min-cost Flow by Network Simplex

Having constructed a sparsified transshipment network, we solve the min-cost flow problem on this
network with an efficient implementation of the network simplex (NtSmplx) algorithm.

The NtSmplx algorithm is a graph theoretic version of the simplex algorithm used for linear
programming. It involves the search for basic feasible min-cost flow solutions. This is done by
successively applying pivoting operations to improve the objective function. A pivot involves an
interchange of arcs for a spanning tree on the transshipment network. As observed in [51], we also
find that the pivot searching phase for the incoming arc during pivoting dominates the runtime of
NtSmplx. In particular, it is vital to have an efficient pivot searching algorithm: to quickly find a
high quality entering arc that lessens the number of subsequent pivots. Authors in [43] propose
an interpolation between Dantzig’s greedy pivot rule [28] and Bland’s pivot rule [10] by the block
search pivot (BSP) algorithm. This implementation for NtSmplx is adopted in [33]. It is found
empirically in [51] that the BSP algorithm is very efficient, simple, and results in a low number of
degenerate pivots in practice. We use the BSP algorithm in our implementation because of these
reasons.

Notice that if dynamic trees [74] are used, the complexity of a pivot search can be brought down
to O(log n) and thus NtSmplx can run in time Õ(s2n2) [1, 42] on our WSPD spanner.

BSP sacrifices theoretical guarantees for simplicity and efficiency in practice. During computation,
degenerate pivots, or pivots that do not make progress in the objective function may appear. There
is the possibility of stalling or repeatedly performing degenerate pivots for exponentially many
iterations. As Section A.2 in Appendix illustrates, stalling drives the execution to a point where no
progress is made. However, our experiments suggest that, before stalling, BSP usually arrives at a
very reasonable feasible solution.

We observe that performance of NtSmplx depends heavily on the sparsity of our network. Since
a pivot involves forming a cycle with an entering arc and a spanning tree in the network, if the
graph is sparse there are few possibilities for this entering arc.

3.4 Approximation Algorithm

The approximation algorithm is given in Algorithm 3, which proceeds as follows. Given input PDs
A and B and the parameter s > 2, first we set ε = 8

s−4 . We compute a δ according to Proposition
3.1 using this ε for s ≥ 12 and setting ε = 1 for 2 < s < 12. Then, we perform a δ-condensation and
compute an s-WSPD via a split tree construction on Âδ ∪ B̂δ.

13

We then compute WSs(Â
δ ∪ B̂δ) from the s-WSPD. It is a (1 + ε′)-spanner for s > 2 where

ε′ = 4
s + 4

s−2 . Diagonal nodes along with their arcs are added to this graph as determined by Gδ.

This means that we add the nodes ā and b̄ and all arcs from Âδ to b̄ and ā to B̂δ. This produces
WSPDs (Aδ, Bδ). Figure 5 shows our construction. The network simplex algorithm is applied to the
sparse network WSPDs (Aδ, Bδ) to get a distance that approximates the min-cost flow value on Gδ
within a factor of (1 + ε′) between inputs Aδ and Bδ. The algorithm still runs for s > 0 instead of
s > 2 since we can still construct a valid transshipment network for optimization. However, there
are no guarantees if s ≤ 2. Nonetheless, empirical error is found to be low and the computation
turns out very efficient; see Section 4.

Algorithm 3 Approximate W1-Distance Algorithm

Require: PDs: A,B, s > 2 the sparsity parameter, ε = 8
s−4 for s ≥ 12 and ε = 1 + 8

s + 8
s−2 for

2 < s < 12
Ensure: a (1 +O(ε))-approximation to W1-distance
1: (PPP ,σPPP)← δ-condensation(A,B, s) . PPP = Âδ ∪ B̂δ

2: TTT ← form-splittree(PPP)
3: nondiag-arcs ← form-WSPD(TTT , s) . 1 + ε-spanner
4: diag-arcs ← form-diag-arcs(PPP) . diagonal arcs constructed as in Section 2.1
5: GGG← (PPP , nondiag-arcs ∪ diag-arcs, σPPP , c :=dists(nondiag-arcs ∪ diag-arcs)) . Defn. 2.1

return min-cost flow(GGG)

The time complexity of the algorithm is dominated by the computation of the min-cost flow
routine. Thus, all the steps of our algorithm are designed to improve the efficiency of the NtSmplx
algorithm. Replacing NtSmplx with the algorithm in [12], a complexity of Õ(ns2 + n1.5) can be
achieved. However, NtSmplx is simpler, more memory efficient, has a reasonable complexity of
Õ(s2n2) [74], and is very efficient in practice; see Figure 1 and Figure 12 in Appendix.

3.5 Theoretical Bounds

By Theorem 3.2, the spanner achieves a (1 + 4
s + 4

s−2)-approximation to the min-cost flow value
on the δ-condensed graph. A δ-condensation results in an approximation of the W1-distance with
a factor of (1 ± (8

s−4)) for s ≥ 12 and 2 for 2 < s < 12. The factor 2 for the range 2 < s < 12

is obtained by putting s = 12 in 8
s−4 because s ≤ 12 and we need 8

s−4 > 0. The node and arc

sparsifications together guarantee an approximation factor of ((1 + 4
s + 4

s−2)(1± (8
s−4))) ≤ (1 + ε)2

where ε = 8
s−4 and s ≥ 12. For the range 2 < s < 12, we have 2(1 + 4

s + 4
s−2) = 1 + ε where

ε = 1 + 8
s + 8

s−2 . We are thus guaranteed a (1 +O(ε))-approximation to the W1-distance if s > 2 as
claimed in Algorithm 3. Hence, we have the following Corollary to Theorem 3.2.

Corollary 3.3. Let ε > 0 and define s = 4 + 8
ε for s ≥ 12. Define δ in terms of ε as in Proposition

3.1. Then, f̄∗, the min-cost flow value of WSPDs (Aδ, Bδ), is a (1+O(ε))-approximation of W1(A,B).

Approximate Nearest Neighbor Bound: Define the following problem using the solution
to Problem 1.

Problem 2. Given PDs A1, . . . , An and a query PD B, find the nearest neighbor (NN) A∗ =
argminAi∈{A1,...,An}W1(B,Ai).

We obtain the following bound on the approximate NN factor of our algorithm, where a
c-approximate nearest neighbor A∗ to query PD B among A1...An means that W1(A∗, B) ≤
c ·mini(W1(Ai, B)).

14

(a) PD1: Athens, PD2: Beijing (b) PD1: MRI750, PD2: MRI751 (c) PD1: brain, PD2: heart

Figure 6: Some of the persistence diagrams; PD1 is in blue and PD2 is in red.

Theorem 3.4. Let 4 + 8
ε = s ≥ 12. The nearest neighbor of PD B among PDs A1, ...An as

computed by PDoptFlow at sparsity parameter s is a (1+ε)2

1−ε -approximate nearest neighbor in the
W1-distance.

Proof. For a given s, define ε = 8
s−4 and an appropriate δ as in Proposition 3.1. Let A′ be the

nearest neighbor according to PDoptFlow at sparsity parameter s and B be the query PD. Let
f∗A′,B be the optimal flow between A′ and B and let f∗

A′δ,Bδ
be the optimal flow on the pertrubed

δ-grid and let f sA′,B be the optimal flow between them on the sparsified graph with parameter s.

Let X be the union of all PDs of interest such as A1...An and B. Let Xδ be the perturbed grid
obtained by snapping X. Let PDoptFlows denote the value of the optimal flow computed by
PDoptFlow for sparsity parameter s. We have that:

W1(A′, B) =
∑

(x,y)∈X×X f
∗
A′,B · ‖x− y‖2

≤ (1
1− 8

s−4

) ·
∑

(x′,y′)∈Xδ×Xδ f∗A′δ,Bδ · ‖x
′ − y′‖2 (lower bound from Proposition 3.1)

≤ (1
1− 8

s−4

) ·
∑

(x′,y′)∈WSs(Â′
δ
,B̂δ)

fs
A′δ,Bδ

· ‖x′ − y′‖2 (optimality of f∗
A′δ,Bδ

)

= (1
1− 8

s−4

)· PDoptFlows(A
′δ, Bδ)

≤ (1
1− 8

s−4

) ·
∑

(x′,y′)∈WSs(Â∗
δ
,B̂δ)

fs
A∗δ,Bδ

· ‖x′ − y′‖2 (optimality of A′ w.r.t. PDoptFlows)

= (1
1− 8

s−4

)· PDoptFlows(A
∗δ, Bδ)

≤ (1
1− 8

s−4

) · (1 + 8
s−4) · (1 + 4

s + 4
s−2) ·W1(A∗, B) (by Corollary 3.3)

≤ (1+ε)2

1−ε ·W1(A∗, B) (if 4 + 8
ε = s ≥ 12 and by Corollary 3.3)

This bound matches with our experiments described in Section 4.1 which show the high NN
prediction accuracy of PDoptFlow.

4 Experiments

All experiments are performed on a high performance computing platform [18]. The node we use is
equipped with an NVIDIA Tesla V100 GPU with 32 GB of memory. The node also has a dual Intel
Xeon 8268 with a total of 48 cores where 300 GB of CPU DRAM is used for computing. Table 5
describes the persistence diagrams data we used for all experiments.

The Athens and Beijing (producing pair AB) are real-world images taken from the public repository
of [31]. MRI750 and MRI751 (producing pair mri) are adjacent axial slices of a high resolution 100
micron brain MRI scan taken from the data used in [37]. The images are saved as csv and jpeg
files, respectively. The H0 barcodes of the lower star filtration are computed using ripser.py [75].

15

Datasets

Name Multiset
Card.

Unique
Points

Type of Filtration Orig. Data

Athens 1281 1226 H0 lower star csv image
Beijing 13141 13046 H0 lower star csv image
Brain 17396 17291 H1 low. star cubical 3d vti file
Heart 171380 171335 H1 low. star cubical 3d vti file
MRI750 92635 92635 H0 low. star pertb. jpg img.
MRI751 92837 92837 H0 low. star pertb. jpg img.
rips1 31811 31811 H1 Rips pnt. cloud
rips2 38225 38225 H1 Rips pnt. cloud

Name Avg. Card. Avg. Card. Type of Filtration Orig. Data

reddit 278.55 278.55 lower/upper star graphs

Table 5: Datasets used for all experiments.

The MRI scans are perturbed by a small pixel value to remove any pixel symmetry from natural
images. The brain and heart (producing pair bh) 3d models are vti [2] files converted from raw data
and then converted to a bitmap cubical complex. The brain and heart raw data are from [73] and
[3]. The H1 barcodes of the lower star filtration of the bitmap cubical complex are computed with
GUDHI [61]. Datasets rips1 and rips2 (producing pair rips) consist of 7000 randomly sampled points
from a normal distribution on a 5000 dimensional hypercube of seeds 1 and 2 respectively from the
numpy.random module [46]. The Rips barcodes [7] for H1 are computed by Ripser++ [79]. The
reddit dataset is taken from [22] and is made up of 200 PDs built from the extended persistence of
graphs from the reddit dataset with node degrees as filtration height values.

The input to our algorithm contains the parameter s with which we determine a δ for δ-
condensation and construct an s-WSPD. The larger the s is, the smaller the average supply of each
node in the transshipment network and the denser the network becomes since it has O(s2n) number
of arcs for n points. Since there is a quadratic dependence on s, it is best to use s ∈ (0, 18] on a
conventional laptop for memory capacity reasons. Figure 7 shows the empirical dependence of the
relative error ε′ w.r.t. the parameter s. To calculate a tighter theoretical bound ε on the relative
error than Corollary 3.3, one can solve for s from the expression 1 + ε = (1 + 4

s + 4
s−2) · (1 + (8

s−4))
In practice the algorithm performs very well in both time and relative error with s < 12, see

Figure 7 and Table 6. Compared to flowtree [22], PDoptFlow is surprisingly not that much
slower for n ∼ 100K and s ≤ 1 (a very low sparsity factor) and has a smaller relative error. Since
the flowtree algorithm only needs one pass through the tree, it is very efficient. On the other
hand, our algorithm depends on the cycle structure of the sparsified transshipment network. The
relative error of PDoptFlow may heavily depend on the amount of δ-condensation; see bh, for
example.

The δ-condensation can significantly change the number of nodes in the transshipment network.
From the graph G(A,B), the number of nodes in WPD

40 (Aδ, Bδ) can drop by 90%, 82%, 70%, and
2% for the bh, AB, mri, and rips comparisons respectively. The great variability is determined by the
clustering of points in the PDs. Since the range of pairwise distances for a random point cloud in
high dimensions (5000) is much greater than the distribution of 28 pixel values of a natural image
due to the curse of dimensionality, there is almost no clustering of filtration values, see Table 5
and Table 7. In cases like these it is actually advised not to use δ-condensation and just a spanner
instead so that one may get a tighter theoretical approximation bound. More condensation results

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140

ab
s.

 r
el

. e
rr

or

s

theor. rel. error= (1+8*((s-4)-1)) * (1+(4*((s-2)-1)) +4*((s)-1))-1
rips
mri

brainheart
AthensBeijing

Figure 7: Convergence of PDoptFlow for W1-distance against the parameter s.

in higher empirical relative errors and less computing time. Since only the theoretical relative error
is known before execution, we compare times for a given theoretical relative error bound as in Table
2.

W1 Empirical Errors for a given Theoretical Error

PD data
sets

Emp. Err. s = 40
(Ours)

Emp. Err. ε =
0.5(hera)

Emp. Err. s = 93
(Ours)

Emp. Err. ε =
0.2(hera)

bh 0.00093 0.00028 0.00014 0.000280
AB 0.00043 0.00101 8.6e-5 0.000233
mri 0.00224 0.00373 0.00077 0.001315
rips 0.00011 0.00689 3.4e-5 0.001770

Table 6: Empirical relative error of PDoptFlow and hera.

W1-Distance Computation Stats. for a Guaranteed Rel. Error Bound

PD data sets %node drop, (#nodes, #arcs) for
WPD

40 (Aδ, Bδ)
%node drop, (#nodes, #arcs) for
WPD

90 (Aδ, Bδ)

bh 90%,(18K,22M) 86%,(25K,92M)
AB 82%,(2.5K,1.4M) 70%,(4.3K,6.1M)
mri 70%,(55K,57M) 67%,(60K,188M)
rips 2%,(68K,133M) 0.3%,(69K,468M)

Table 7: δ-condensation statistics. K: ×103, M: ×106.

4.1 Nearest Neighbor Search Experiments

We perform experiments in regard to Problem 2. NN search is an important problem in machine
learning [5, 23], content based image retrieval [58], in high performance computing [78, 65] and
recommender systems [68]. We use the dataset given in [22] which consists of 200 PDs coming from
graphs generated by the reddit dataset. Having established ground truth with the guaranteed 0.01
approximation of hera, we proceed to find the nearest neighbor for a given query PD. Following
[5], we consider various approximations to the W1-distance. We experiment with 6 different
approximations: the Word Centroid Distance (WCD), RWMD [52], quadtree, flowtree [22],
PDoptFlow at s = 1 and PDoptFlow at s = 18 for a guaranteed 2.3 factor approximation. The
WCD lower bound is achieved with the observation in [22]. Table 3 shows the prediction accuracies

17

and timings of all approximation algorithms considered on the reddit dataset. Sinkhorn or dense
network simplex are not considered in our experiments because they require O(n2) memory. This is
infeasible for large PDs in general.

Although PDoptFlow is fast for the error that it can achieve, the computational time to
use PDoptFlow for all comparisions is still too costly, however. This suggests combining the 7
considered algorithms to achieve high performance at the best prediction accuracy. One way of
combining algorithms is through pipelining, which we discuss next.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

15-3-1 10-1 10-5-1 15-3-1

R
un

ni
ng

 T
im

e
(s

)

pipelines

flow tree
PDoptFlow(s=1)

PDoptFlow(s=18)
Hera (d=0.01)

Figure 8: Pipelines for computing NN.

Pipelining Approximation Algorithms: Following [5] and using a distance to compute a set
of candidate nearest neighbors, we pipeline these algorithms in increasing order of their accuracy to
find the 1-NN with at least 90% accuracy. A pipeline of k algorithms is written as c1 − c2 − · · · − ck
where ci is the number of output candidates of the ith algorithm in the pipeline.

Since flowtree achieves a better accuracy than RWMD and WCD in less time, we can
eliminate WCD and RWMD from any pipeline experiment. This is illustrated by WCD and
RWMD not being on the Pareto frontier in Figure 2. The quadtree algorithm is not worth placing
into the pipeline since its accuracy is too low; it prunes the NN as a potential output PD too early.
It also can only save on flowtree’s time, which is not the bottleneck of the pipeline. In fact, the
last stage of computation, which can only be achieved with a high accuracy algorithm such as hera
or PDoptFlow, always forms the bottleneck to computing the NN.

Figure 8 shows four pipelines involving flowtree, PDoptFlow and hera. The 15-3-1 pipeline
consisting of Flowtree then PDoptFlow(s=1) and then PDoptFlow(s=18) was found to be
the best in performance through grid search. Three other pipelines computed in the grid search
are shown. Each pipeline computes 100 queries with at least 90% accuracy for a random split of
the reddit dataset. We measure the total amount of time it takes to compute all 100 queries. For
the pipeline 15-3-1 with hera replacing PDoptFlow(s=18), hera takes 65 seconds on 3 queries,
while PDoptFlow takes 19 seconds on 3 queries. We find that 82% of the time is spent on only
3% of the PDs for hera, while 57% of the time is spent if PDoptFlow(s = 18) replaces hera.
We notice that flowtree is able to eliminate a large number of candidate PDs in a very short
amount of time though it is not able to complete the task of finding the NN due to its low prediction
accuracy. PDoptFlow(s = 1) surprisingly achieves very good times and prediction accuracies
without an approximation bound.

18

5 Conclusion

We propose a new implementation for computing the W1-distances between persistence diagrams
that provides a 1 +O(ε) approximation. We achieve a considerable speedup for a given guaranteed
relative error in computation by two algorithmic and implementation design choices. First, we
exploit geometric structures effectively via δ-condensation and s-WSPD, which sparsify the nodes
and arcs, respectively, when comparing PDs. Second, we exploit parallelism in our methods with
an implementation in GPU and multicore. Finally, we establish the effectiveness of the proposed
approaches in practice by extensive experiments. Our software PDoptFlow can achieve an
order of magnitude speedup over other existing software for a given theoretical relative error.
Furthermore, PDoptFlow overcomes the computational bottleneck to finding the NN amongst
PDs and guarantees an O(1) approximate nearest neighbor. One merit of our algorithm is its
applicability beyond comparing persistence diagrams. The algorithm is in fact applicable to an
unbalanced optimal transport problem on R2 upon viewing b̄ and ā as creator/destructor and
reassigning the diagonal arc distances to the creation/destruction costs.

References

[1] Charu C. Aggarwal, Haim Kaplan, and Robert E. Tarjan. A faster primal network simplex
algorithm. 1996.

[2] James Ahrens, Berk Geveci, and Charles Law. Paraview: An end-user tool for large data
visualization. The Visualization Handbook, 717, 2005.

[3] Alexander Andreopoulos and John K. Tsotsos. Efficient and generalizable statistical models of
shape and appearance for analysis of cardiac mri. Medical Image Analysis, 12(3):335–357, 2008.

[4] Kubilay Atasu and Thomas Mittelholzer. Linear-complexity data-parallel earth mover’s distance
approximations. In International Conference on Machine Learning, pages 364–373. PMLR,
2019.

[5] Arturs Backurs, Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Scalable nearest
neighbor search for optimal transport. In International Conference on Machine Learning, pages
497–506. PMLR, 2020.

[6] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[7] Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes. arXiv
preprint arXiv:1908.02518, 2019.

[8] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Determinis-
tic decremental sssp and approximate min-cost flow in almost-linear time. arXiv preprint
arXiv:2101.07149, 2021.

[9] Dimitri P. Bertsekas. The auction algorithm: A distributed relaxation method for the assignment
problem. Annals of Operations Research, 14(1):105–123, 1988.

[10] Robert G. Bland. New finite pivoting rules for the simplex method. Mathematics of operations
Research, 2(2):103–107, 1977.

19

[11] Guy E. Blelloch and Bruce M. Maggs. Parallel algorithms. In Algorithms and Theory of
Computation Handbook: Special Topics and Techniques, pages 25–25. 2010.

[12] Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, MDPs, and l1 -regression in nearly linear time for
dense instances. arXiv preprint arXiv:2101.05719, 2021.

[13] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment problems: revised reprint.
SIAM, 2012.

[14] Sergio Cabello, Panos Giannopoulos, Christian Knauer, and Günter Rote. Matching point
sets with respect to the earth mover’s distance. In European Symposium on Algorithms, pages
520–531. Springer, 2005.

[15] Paul B. Callahan. Optimal parallel all-nearest-neighbors using the well-separated pair decom-
position. In Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pages
332–340. IEEE, 1993.

[16] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM (JACM),
42(1):67–90, 1995.

[17] Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced wasserstein kernel for persistence
diagrams. In International conference on machine learning, pages 664–673. PMLR, 2017.

[18] Ohio Supercomputer Center. Pitzer supercomputer, 2018. URL: http://osc.edu/ark:/19495/
hpc56htp.

[19] Deeparnab Chakrabarty and Sanjeev Khanna. Better and simpler error analysis of the sinkhorn–
knopp algorithm for matrix scaling. Mathematical Programming, pages 1–13, 2020.

[20] Timothy M. Chan. Well-separated pair decomposition in linear time? Information Processing
Letters, 107(5):138–141, 2008.

[21] Frédéric Chazal, Vin de Silva, and Steve Oudot. Persistence stability for geometric complexes.
Geometriae Dedicata, 173(1):193–214, 2014.

[22] Samantha Chen and Yusu Wang. Approximation algorithms for 1-wasserstein distance between
persistence diagrams. arXiv preprint arXiv:2104.07710, 2021.

[23] Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, and Luca Cazzanti. Similarity-based
classification: Concepts and algorithms. Journal of Machine Learning Research, 10(3), 2009.

[24] Ken Clarkson. Approximation algorithms for shortest path motion planning. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, pages 56–65, 1987.

[25] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete & computational geometry, 37(1):103–120, 2007.

[26] Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, 1988.

[27] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in neural information processing systems, pages 2292–2300, 2013.

20

http://osc.edu/ark:/19495/hpc56htp
http://osc.edu/ark:/19495/hpc56htp

[28] George B. Dantzig and Mukund N. Thapa. Linear programming 2: theory and extensions.
Springer Science & Business Media, 2006.

[29] Thomas Davies, Jack Aspinall, Bryan Wilder, and Long Tran-Thanh. Fuzzy c-means clustering
for persistence diagrams. arXiv preprint arXiv:2006.02796, 2020.

[30] Jean-Lou De Carufel, Prosenjit Bose, Frédérik Paradis, and Vida Dujmovic. Local routing in
WSPD-based spanners. Journal of Computational Geometry, 12(1):1–34, 2021.

[31] Tamal K. Dey, Jiayuan Wang, and Yusu Wang. Graph reconstruction by discrete Morse theory.
In Proceedings 34th International Symposium on Computational Geometry (SoCG), pages
31:1–31:15, 2018.

[32] Tamal K. Dey and Yusu Wang. Computational topology for Data Analysis. Cambridge Uni-
versity Press, 2022. URL: https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/
CTDAbook.html.

[33] Balázs Dezső, Alpár Jüttner, and Péter Kovács. Lemon–an open source c++ graph template
library. Electronic Notes in Theoretical Computer Science, 264(5):23–45, 2011.

[34] Vincent Divol and Théo Lacombe. Understanding the topology and the geometry of the
persistence diagram space via optimal partial transport. arXiv preprint arXiv:1901.03048,
2019.

[35] Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. American
Mathematical Society, 2010.

[36] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In Proceedings 41st Annual Symposium on Foundations of Computer Science,
pages 454–463. IEEE, 2000.

[37] Brian L. Edlow, Azma Mareyam, Andreas Horn, Jonathan R. Polimeni, Thomas Witzel,
M. Dylan Tisdall, Jean C. Augustinack, Jason P. Stockmann, Bram R. Diamond, Allison
Stevens, et al. 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Scientific
data, 6(1):1–10, 2019.

[38] Stanley C. Eisenstat, Howard C. Elman, Martin H. Schultz, and Andrew H. Sherman. The
(new) Yale sparse matrix package. In Elliptic Problem Solvers, pages 45–52. Elsevier, 1984.

[39] Andreas Fabri and Sylvain Pion. Cgal: The computational geometry algorithms library. In
Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic
information systems, pages 538–539, 2009.

[40] Brittany Terese Fasy, Xiaozhou He, Zhihui Liu, Samuel Micka, David L. Millman, and Binhai
Zhu. Approximate nearest neighbors in the space of persistence diagrams. arXiv preprint
arXiv:1812.11257, 2018.

[41] R’emi Flamary and Nicolas Courty. POT python optimal transport library, 2017. URL:
https://pythonot.github.io/.

[42] Andrew V. Goldberg, Michael D. Grigoriadis, and Robert E. Tarjan. Efficiency of the network
simplex algorithm for the maximum flow problem. Technical report, Princeton Univ., Dept.
Computer Science, 1988.

21

https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.html
https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.html
https://pythonot.github.io/

[43] Michael D. Grigoriadis. An efficient implementation of the network simplex method. In Netflow
at Pisa, pages 83–111. Springer, 1986.

[44] Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan. Fast greedy algorithms
for constructing sparse geometric spanners. SIAM Journal on Computing, 31(5):1479–1500,
2002.

[45] Sariel Har-Peled. Geometric approximation algorithms. Number 173. American Mathematical
Soc., 2011.

[46] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fern’andez del R’ıo, Mark Wiebe, Pearu Peterson, Pierre G’erard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020.
doi:10.1038/s41586-020-2649-2.

[47] Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In 3rd international
workshop on statistical and computational theories of vision, volume 2, page 5, 2003.

[48] Roy Jonker and Ton Volgenant. Improving the Hungarian assignment algorithm. Operations
Research Letters, 5(4):171–175, 1986.

[49] J. Mark Keil. Approximating the complete euclidean graph. In Scandinavian Workshop on
Algorithm Theory, pages 208–213. Springer, 1988.

[50] Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry helps to compare persistence
diagrams. Journal of Experimental Algorithmics (JEA), 22:1–20, 2017.

[51] Zoltán Király and Péter Kovács. Efficient implementations of minimum-cost flow algorithms.
arXiv preprint arXiv:1207.6381, 2012.

[52] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to
document distances. In International conference on machine learning, pages 957–966. PMLR,
2015.

[53] Théo Lacombe, Marco Cuturi, and Steve Oudot. Large scale computation of means and clusters
for persistence diagrams using optimal transport. In Advances in Neural Information Processing
Systems, pages 9770–9780, 2018.

[54] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. Journal of the ACM
(JACM), 27(4):831–838, 1980.

[55] Hung Le and Shay Solomon. Light euclidean spanners with steiner points. arXiv preprint
arXiv:2007.11636, 2020.

[56] Tam Le and Truyen Nguyen. Entropy partial transport with tree metrics: Theory and practice.
arXiv preprint arXiv:2101.09756, 2021.

[57] Yin Tat Lee and Aaron Sidford. Path finding ii: An\˜ o (m sqrt (n)) algorithm for the minimum
cost flow problem. arXiv preprint arXiv:1312.6713, 2013.

22

https://doi.org/10.1038/s41586-020-2649-2

[58] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-based multimedia
information retrieval: State of the art and challenges. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), 2(1):1–19, 2006.

[59] Fredrik Manne and Mahantesh Halappanavar. New effective multithreaded matching algorithms.
In 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pages 519–528.
IEEE, 2014.

[60] Andrew Marchese, Vasileios Maroulas, and Josh Mike. K- means clustering on the space
of persistence diagrams. In Wavelets and Sparsity XVII, volume 10394, page 103940W.
International Society for Optics and Photonics, 2017.

[61] Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The Gudhi library:
Simplicial complexes and persistent homology. In International Congress on Mathematical
Software, pages 167–174. Springer, 2014.

[62] Dmitriy Morozov. Dionysus software. Retrieved December, 24:2018, 2012.

[63] Brendan Mumey. Indexing point sets for approximate bottleneck distance queries. arXiv
preprint arXiv:1810.09482, 2018.

[64] Chris Tralie Nathaniel Saul. Scikit-tda: Topological data analysis for python, 2019. doi:

10.5281/zenodo.2533369.

[65] Sameer A. Nene and Shree K. Nayar. A simple algorithm for nearest neighbor search in high
dimensions. IEEE Transactions on pattern analysis and machine intelligence, 19(9):989–1003,
1997.

[66] James B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations research,
41(2):338–350, 1993.

[67] Nikolaos Ploskas and Nikolaos Samaras. GPU accelerated pivoting rules for the simplex
algorithm. Journal of Systems and Software, 96:1–9, 2014.

[68] Ali M. Roumani and David B. Skillicorn. Finding the positive nearest-neighbor in recommender
systems. In DMIN, pages 190–196, 2007.

[69] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s distance as a metric
for image retrieval. International journal of computer vision, 40(2):99–121, 2000.

[70] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Fast unbalanced optimal transport on
tree. arXiv preprint arXiv:2006.02703, 2020.

[71] Primoz Skraba and Katharine Turner. Wasserstein stability for persistence diagrams. arXiv
preprint arXiv:2006.16824, 2020.

[72] Anirudh Som, Kowshik Thopalli, Karthikeyan Natesan Ramamurthy, Vinay Venkataraman,
Ankita Shukla, and Pavan Turaga. Perturbation robust representations of topological persistence
diagrams. In Proceedings of the European Conference on Computer Vision (ECCV), pages
617–635, 2018.

23

https://doi.org/10.5281/zenodo.2533369
https://doi.org/10.5281/zenodo.2533369

[73] Roberto Souza, Oeslle Lucena, Julia Garrafa, David Gobbi, Marina Saluzzi, Simone Appenzeller,
Let́ıcia Rittner, Richard Frayne, and Roberto Lotufo. An open, multi-vendor, multi-field-
strength brain mr dataset and analysis of publicly available skull stripping methods agreement.
NeuroImage, 170:482–494, 2018.

[74] Robert E. Tarjan. Dynamic trees as search trees via euler tours, applied to the network simplex
algorithm. Mathematical Programming, 78(2):169–177, 1997.

[75] Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser. py: A lean persistent homology
library for python. Journal of Open Source Software, 3(29):925, 2018.

[76] Fan Wang, Huidong Liu, Dimitris Samaras, and Chao Chen. TopoGAN: A topology-aware
generative adversarial network.

[77] Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. Fast parallel algorithms for euclidean mini-
mum spanning tree and hierarchical spatial clustering. In Proceedings of the 2021 International
Conference on Management of Data, pages 1982–1995, 2021.

[78] Bo Xiao and George Biros. Parallel algorithms for nearest neighbor search problems in high
dimensions. SIAM Journal on Scientific Computing, 38(5):S667–S699, 2016.

[79] Simon Zhang, Mengbai Xiao, and Hao Wang. GPU-accelerated computation of Vietoris-Rips
persistence barcodes. In 36th International Symposium on Computational Geometry (SoCG
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

24

a,b,c,d,e

a,c,d,e b

c,e

a d c e

a,d

0

1

2

3 4

5

6 7

8

(2,8) (5,8) (2,7) (3,6) (4,6) (3,4) (6,7)

Thread 0 for
node 0

Thread 1 for
node 1

Thread 2 for
node 4

Thread 3 for
node 5

Array of Well Separated Pairs

0 2 5 6 7

Prefix Sum of Counts Array

2 3 1 1

Array of Counts

Threads
0,1,2,3 for
nodes 0,1,4,5
respectively:

Thread 0 Thread 1 Thread 2 Thread 3Thread 0

Thread 1

Thread 2 Thread 3

Figure 9: constructing WSPD in parallel for array from the split tree

A Appendix

Here we present the datasets, algorithms, finer implementation details, more experiments, and
discussions that are not presented in the main body of the paper due to the space limit.

A.1 More Algorithmic Details:

Here we present the algorithmic and implementation details that are omitted in the main context of
the paper.

A.1.1 WCD:

We implement the WCD using the Observation in [22] that OT (A∪ B̃, B ∪ Ã) ≤ 2W1(A,B), where
OT (A ∪ B̃, B ∪ Ã) is the classical optimal transport distance between A ∪ B̃ and B ∪ Ã, the sum of
distances of their optimal matching, is a 2 approximation to W1(A,B). Since WCD(A∪ B̃, B∪ Ã) ≤
OT(A ∪ B̃, B ∪ Ã), we get 1

2 WCD≤W1(A,B).
flowtree is faster than WCD on reddit due to the small scale of the PDs in that dataset.

However asymptotically WCD is much faster on very large datasets since it can be implemented as
a O(log n) depth sum-reduction of coordinates on GPU, similar to quadtree.

A.1.2 WSPD and Spanner Construction:

Here we present our simplified parallel algorithm for WSPD construction used in our implementation.
The purpose of traversing the split tree twice is to parallelize writing out the WSPD, the bottleneck
to constructing a WSPD. Although the WSPD is linear in n, the number of nodes of WSPDs (Aδ, Bδ),
in practice the size of the WSPD is several orders of magnitude larger than n. Thus writing out
the WSPD requires a large amount of data movement. Algorithm 5 first finds the number of pairs
written out by a thread rooted at some node in the split tree. The computation of counts is in
parallel and is mostly arithmetic. Once the counts are accumulated, a prefix sum of the counts
is computed and written out to an offsets array. The offsets are then used as starting memory
addresses to write out the WSPD pairs for each thread in parallel.

Figure 9 illustrates the parallel computation of the WSPD. The prefix sum is computed over the
counts determined by each thread. There is a thread per internal node.

25

In our implementation, we do not actually keep track of the point subsets for each node of the
split tree. Instead, we keep track of a single point in each point subset P ⊂ Â ∪ B̂ as well as a
bounding box of P . This constructs the non-diagonal arcs of WSPDs (A,B) with minimal data.

Algorithm 4 Construct s-WSPD-biarcs in parallel

Require: TTT a split tree, WSPD parameter s
Ensure: s-WSPD represented by wspd-ptn-pairs as an array
1: counts ← {0...0} . allocate O(n) elements
2: for node w ∈ TTT in parallel do
3: count-WSPD(tid(w),w.left,.w.right,s,counts)

4: offsets ← prefix-sum(counts)
5: L= offsets[w] . offsets[w]=sum(counts)
6: wspd-ptn-pairs ← {...} . allocate L elements for wspd-ptn-pairs: O(s2n) memory
7: for node w ∈ TTT in parallel do
8: construct-WSPD(tid(w),w.left,w.right,s,offsets, wspd-ptn-pairs)

Algorithm 5 Compute WSPD thread counts for offsets

1: function count-WSPD
Require: tid: thread id; nodes u and v in the split tree; s: WSPD parameter; counts: the number

of recursive calls made by each thread;
Ensure: counts: array of counts, counts[tid]= number of pairs each thread will find
2: if u is s-well separated from v then
3: counts[tid]++

return . keep track of the number of well separated pairs associated with tid

4: if max len(BndingBx(u)) > max len(BndingBx(v)) then
5: count-WSPD(tid, u.left, v, s,counts)
6: count-WSPD(tid, u.right, v, s,counts)
7: else
8: count-WSPD(tid, u, v.left, s,counts)
9: count-WSPD(tid, u, v.right, s,counts)

Algorithm 6 Write out WSPD from offsets

1: function construct-WSPD
Require: tid: thread id; nodes u and v in the split tree; s: WSPD parameter; offsets: wspd: a

writable array of point pairs;
Ensure: s-WSPD with representatives of point pairs as an array
2: if u is s-well separated from v then
3: wspd[offsets[tid]++] ← (u.point, v.point) . all threads write in parallel

return
4: if max len(BndingBx(u))>max len(BndingBx) then
5: construct-WSPD(tid, u.left, v, s,wspd)
6: construct-WSPD(tid, u.right, v, s,wspd)
7: else
8: construct-WSPD(tid, u, v.left, s,wspd)
9: construct-WSPD(tid, u, v.right, s,wspd)

26

Algorithm 7 shows how to write out the diagonal arcs for WSPDs (Aδ, Bδ). On line 2 it states that
there is a parallelization by prefix sum on arc counts. This computation is similar to the algorithm
for WSPD construction. The number of arcs per point is kept track of. A prefix sum is computed
after this and the diagonal arcs are written out per point.

Algorithm 7 Form diagonal arcs

1: for point p ∈ PPP = Âδ ∪ B̂δ parallelized by prefix sum on count of arcs incident on each p do
2: if p is from Âδ then diag-arcs ← diag-arcs ∪{p, pproj}
3: if p is from B̂δ then diag-arcs ← diag-arcs ∪{pproj , p}

A.1.3 Assumptions on PD density for δ-condensation

Proposition 2 has δ = O(1
n) where n is the total number of points of both PDs. In particular,

assuming W1(A,B) bounded, we have δ → 0 as n→∞. In order for δ-condensation to scale with
n, we need to make an appropriate assumption about the distribution of points for our PDs. Define
the density for a point set A ⊂ R2 on a δ-square grid as |A||Γδ| where |Γδ| is the number of nonempty
grid cells with points from A.

Proposition A.1. The fraction of nodes eliminated from A by δ-condensation increases if the
density of a PD A on a δ-grid increases.

Proof. For each grid point p ∈ Γδ, all points in a δ-square neighborhood centered at p snap to
p. These new cells partition the plane just like the original grid cells and are a translation of the
original grid cells. We consider this translated grid as Γδ, which can only affect the number of
nonempty cells by at most a factor of 4. Say a δ-cell i ∈ Γδ, δ depending on |A|, has ci points. We
get that exactly ci points collapse into one point. Thus ci − 1 points are eliminated. Adding this up
over all nonempty cells i, we get that the fraction of nodes eliminated from A is:∑

i∈Γδ
(ci − 1)

|A|
=
|A| − |Γδ|
|A|

It follows that if the density |A|
|Γδ| increases, we eliminate a larger fraction of nodes as claimed.

In particular, for lower star filtrations on voxel based data, we have that there are only 28

possible number of filtration values to fill up, up to infinitesimal perturbations from the data. We
thus have, |Γδ| ≤ 216 for all δ, where 216 counts the bound on the number of pairs of filtration
values that lie in R2. Then, by Proposition A.1, δ-condensation scales well when n is sufficiently
large. For lower star filtrations defined on degree valued nodes of scale free networks, the degree
distribution is given by the power law: P (k) ∼ k−γ , 2 < γ < 3 a constant and k the degree of any
node. Thus, as n→∞, we sample at most n times from this distribution. With probability 0.99,

each sample is bounded by some constant threshold N(γ) = O((1
0.99)

1
γ). Hence, |Γδ| is bounded

w.h.p. and by Proposition A.1, we have that δ-condensation eliminates an eventually increasing
proportion of nodes w.h.p. as n→∞.

A.1.4 Representing the Transshipment Network:

The data structure used to represent the transshipment network significantly affects the performance
of network simplex algorithm. Since most of the time of computation is spent on the network

27

 0

 200000

 400000

 600000

 0 100000 200000 300000 400000 500000 600000

(a): no stalling cases

to
t.

bl
ks

. s
ea

rc
he

d

number of pivots sorted by tot. blks. searched per dataset

rips (1 blk./pivot)
rips (>1 blk./pivot)

mri (blk./pivot)
mri (>1 blk./pivot)

bh (1 blk./pivot)
bh (>1 blk./pivot)

 0

 1x107

 2x107

 3x107

 4x107

 0 100000 200000 300000 400000 500000 600000

to
t.

bl
ks

. s
ea

rc
he

d

pivot iteration

mri cumulative searches over time; exhibits stalling

Figure 10: (a) Plot of no stalling case of the cumulative distribution of blocks searched for rips, mri
and brain-heart datasets. (b) Plot of a stalling case for the mri dataset. block size=

√
m

simplex algorithm and not the network construction stage, the network data structure is designed
to be constructed to be as efficient for arc reading and updating as possible. A so-called static
graph representation [33], essentially a compressed sparse row (CSR) [38] format matrix, is used
to represent the transshipment network. Thus in order to build a CSR matrix, we must sort the
arcs (u, v) first by first node followed by second node in case of ties. This sorting can be over
several millions of arcs, see Table 2 column 2. For example, for rips at ε′ ≤ 0.2, 468 million
arcs must be sorted. (ε′ is the guaranteed relative error bound). For a sequential O(m logm)
algorithm, this would form a bottleneck to the entire algorithm before network simplex, making the
algorithm Ω(m log(m)). Thus we sort the arcs on GPU using the standard parallel merge sorting
algorithm [11, 26] and achieving a parallel depth complexity of O(logm).

A.2 Computational Behavior of Network Simplex (BSP in practice):

Refer to Section 4 and Table 5 for dataset information. Figure 10 shows two very different
computational patterns of the block search pivot based NtSmplx algorithm. Figure 10(a) shows
the vast majority of cases when there is no stalling. We show the cumulative distribution of blocks
searched for the rips, mri and brain-heart datasets at s=20, 49 and 150 respectively. The block sizes
are set to the square root of the number of arcs; the block sizes are 6539, 9134 and 8922 respectively.
Notice that 98.9%, 96.8% and 93.8% of the pivots involve only a single block being searched, and
account for 91.4%, 80.2% and 58.8% of the total blocks searched. Although the pivots are sorted
per dataset by the number of blocks searched, the cumulative distribution depending on the pivots
computed over execution is almost identical. Figure 10(b) shows the relatively rare but severe case
of stalling for the mri dataset at s=36, stopped after 10 minutes. Stalling begins at the 391559th
arc found.

Furthermore, we have noticed empirically that repeated tie breaking of reduced costs during
pivot searching results in a tendency to stall. In fact, most implementations simply repeatedly
choose the smallest indexed arc for tie breaking. After applying lattice snapping by πδ, symmetry is
introduced into the pairwise relationships and thus results in many equivalent costs on arcs and
subsequent reduced costs. This is why we introduce a small perturbation to the snapped points in

28

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 0 5x108 1x109 1.5x109 2x109

to
ta

l n
um

be
r

of
 b

lo
ck

s
se

ar
ch

ed

number of arcs in transshipment network: m

O((mn)0.5), constant n<200000 (rips, mri)
O((mn)0.5), constant n<20000 (bh, AB)

rips
mri

brainheart
AthensBeijing

Figure 11: Plot of the total number of block pivot searches depending on the number of arcs.

order to break this symmetry. This results in much less stalling in practice.

A.2.1 Parallelizing Network Simplex Algorithm:

Network simplex is a core algorithm used for many computations, especially exact optimal transport.
This introduces a natural question: can we directly parallelize some known network simplex pivot
search strategies and gain a performance improvement? We attempted to implement parallel pivot
search strategies such as a O(logm)-depth parallel min reduction over all reduced costs on either
GPU or multicore, such as in [67]. These approaches did not improve performance over a sequential
block pivot search strategy. There was speedup over Dantzig’s pivot strategy, where all admissible
arcs are checked, however. For GPU, there is an issue of device to host and host to device memory
copy. These IO operations dominate the pivot searching phase and are several of orders of magnitude
slower than a single block searched sequentially from our experiments. Recall that most searches
result in a single block by Figure 10. For multicore, there is an issue of thread scheduling which
provides too much overhead. In general, it is very difficult to surpass the performance of a sequential
search over a single block when the block size can fit in the lower level cache due to the two
aforementioned issues. For example, in our experiments the cache size is 28160KB, which should
hold 6 · B · 8 bytes for B =

√
m, the block size, and m < 3 × 1011 where 6 denotes the 6 arrays

needed to be accessed to compute the reduced cost and 8 is the number of bytes in a double. This
bound on m, the number of arcs, should hold for almost all pairs of conceivable input persistence
diagrams and s > 0 in practice. This does not preclude, however the possibility of efficient parallel
pivoting strategies completely since stalling still exists for the sequential block search algorithm.

A.2.2 Empirical Complexity:

 0.1

 1

 10

 100

 1000

 10000

 0 5x108 1x109 1.5x109 2x109

tim
e

(s
)

number of arcs in transshipment network: m

O(n0.5m1), n<200000 constant (rips, mri)
O(n0.5m1), n<20000 constant (bh, AB)

rips
mri

brainheart
AthensBeijing

Figure 12: Plot of the empirical time (log scale) depending on the number of arcs of the sparsified
transshipment network for each dataset. n is the number of nodes.

29

For each of the datasets from Table 5, our experiments illustrated in Figure 12, show that for
varying s and fixed n, our overall approach runs empirically in O(

√
nm) time, where m = s2n with

s the WSPD parameter and n the number of nodes in the sparsified transshipment network.
Here we explain in more detail the experiment illustrated in Figure 1. We determine the empirical

complexity with respect to the number of points on a synthetic Gaussian dataset. These are not
real persistence diagrams and are made up of points randomly distributed on the plane above
the diagonal. The points follow a Gaussian distribution. For fixed s ≤ 40, as a function of n our
algorithm empirically is upper bounded by O(s2n1.5). This is determined through upper bounding
the least squares curve fitting. Since we are still solving a linear program, it should not be expected
that the empirical complexity can be truly linear, except perhaps under certain dataset conditions.
The proximity of points, for certain real persistence diagrams, for example, could be exploited more
by δ-condensation. We notice that the empirical complexity is better, the smaller the s, including for
s ≤ 40. This is why in Section 4 PDoptFlow for s = 1 performs so much faster than PDoptFlow
for s = 18.

A.2.3 Stopping Criterion:

Due to the rareness of stalling for given s in practice, our stopping criterion is designed to justify
the empirical time bound. If the block size is

√
m, the computation goes like O(s2n1.5), and each

iteration within a block search determines the time, O(s
2n1.5

s
√
n

) = O(
√
mn) blocks is an upper bound

on the number of searched blocks when there is no stalling. Figure 11 illustrates this relationship
amongst m, n and the time. Thus the stopping criterion is set to C

√
mn+ b. In practice, C may

simply be set to 0 and b set to a large number however it has been empirically found that the
stopping citerion goes like

√
mn blocks for a large number of the various types of real persistence

diagrams such as those generated by the persistence algorithm on lower star filtrations induced by
images and rips filtrations on random point clouds, to name the types from the experiments.

A.2.4 Bounds on Min-Cost Flow:

The W1-distance between PDs is a special case of the unbalanced optimal transport (OT) problem
as formulated in [53, 70]. Solving such a problem exactly using min-cost flow is known to take cubic
complexity [66] in the number of points. However, affording cubic complexity is usually infeasible in
practice and thus we seek a subcubic solution.

There are several approaches to approximating the distance between PDs with n total points.
In [22], a log ∆ approximation is developed, where, ∆ is the aspect ratio, adapting the work of
[47] and [5] for persistence diagrams. In [50], the auction matching algorithm performs a (1 + ε)
approximation, also lowering complexity by introducing geometry into the computation. Geometry
lowers a linear search over O(n) points for nearest neighbors to O(

√
n) via kd-tree. This does not

lower the theoretical bound below O(n2.5), however. Our approach lowers complexity by introducing
a geometric spanner [14], using a linear number of arcs between points.

Min-cost flow algorithms can have theoretically very low complexity. The input to min-cost flow
is a transshipment network and its output is the minimum cost flow value. Let m be the number of
arcs in the transshipment network and n its number of nodes. It was shown that min-cost flow can
be found exactly in Õ(m + n1.5) complexity in [12], by network simplex in Õ(n2) complexity, in
parallel in Õ(

√
m) and approximated on undirected graphs in [8] in Õ(m1+o(1)) complexity.

Since the number of nodes and arcs of the transshipment network depend directly on the points
and pairwise distances respectively, an implication of using a geometric spanner for (1 + O(ε))
approximation is that the complexity becomes theoretically subcubic and requiring Oε(n) memory,

30

where Oε hides a polynomial dependency on ε, the relative approximation error. In fact this bound
is actually achieved in practice. We show the empirical complexity is actually similar to O(s2n1.5)
as shown in Figure 12 and Figure 1 but only for small s.

31

	1 Introduction
	1.1 Existing Algorithms and Our Approach
	1.2 Experimental Results

	2 1-Wasserstein Distance Problem
	2.1 Matching to Min-Cost Flow

	3 Approximating 1-Wasserstein Distance
	3.1 Condensation (Node Sparsification)
	3.2 Well Separated Pair Decomposition(Arc Sparsification)
	3.3 Min-cost Flow by Network Simplex
	3.4 Approximation Algorithm
	3.5 Theoretical Bounds

	4 Experiments
	4.1 Nearest Neighbor Search Experiments

	5 Conclusion
	A Appendix
	A.1 More Algorithmic Details:
	A.1.1 WCD:
	A.1.2 WSPD and Spanner Construction:
	A.1.3 Assumptions on PD density for -condensation
	A.1.4 Representing the Transshipment Network:

	A.2 Computational Behavior of Network Simplex (BSP in practice):
	A.2.1 Parallelizing Network Simplex Algorithm:
	A.2.2 Empirical Complexity:
	A.2.3 Stopping Criterion:
	A.2.4 Bounds on Min-Cost Flow:

