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Abstract

The program performance on modern hardware is characterized by locality of reference, that is, it is faster
to access data that is close in address space to data that has been accessed recently than data in a random
location. This is due to many architectural features including caches, prefetching, virtual address translation
and the physical properties of a hard disk drive; attempting to model all the components that constitute the
performance of a modern machine is impossible, especially for general algorithm design purposes. What if
one could prove an algorithm is asymptotically optimal on all systems that reward locality of reference, no
matter how it manifests itself within reasonable limits? We show that this is possible, and that excluding some
pathological cases, cache-oblivious algorithms that are asymptotically optimal in the ideal-cache model are
asymptotically optimal in any reasonable setting that rewards locality of reference. This is surprising as the
cache-oblivious framework envisions a particular architectural model involving blocked memory transfer into a
multi-level hierarchy of caches of varying sizes, and was not designed to directly model locality-of-reference
correlated performance.

1 Introduction

Modeling memory access time of modern computers is an important area of research that lies at the intersection
of theoretical computer science, algorithm engineering, and practical aspects of computing. The reality is that
modern computers are extremely complicated with numerous components that try to reduce the access time of
the elements in the memory. Consequently, the access time varies by orders of magnitude depending on whether
favorable conditions are met or not. Choices in the algorithm design can highly impact reaching those favorable
conditions, which necessitates building good theoretical models of memory structures of modern computers.

The main direction of existing theoretical work has been on modeling of the memory hierarchy. This has been
initiated by the Disk Access Model (DAM) [3], which is also known as the I/O model or the External Memory
(EM) model. The DAM assumes a (fast) memory of size M and a disk (i.e., slow memory) of infinite size. The
disk stores the input in blocks of size B and can be read or written to via the input-output (I/O) operations,
where each I/O transfers one block of data at unit cost. The analysis then typically only considers the number of
I/Os (read or written), ignoring any other computational cost. The justification is that since a disk is so much
slower than internal memory, minimizing the number of block transfers and ignoring all else is a good model of
runtime, however, sometimes this is not a realistic assumption. For example, when DAM is used to model cached
memory (modeling cache misses as I/O operations, M as the size of the cache, and B as the size of the cache
lines), the relative difference in the cost of a cache misses compared to the arithmetic operations is much smaller.
Aside from this, the DAM model has additional limitations, e.g., it ignores the fact that accessing adjacent blocks
on a disk is in practice much faster than two random blocks [12] and it models only two levels of memory.

Modeling more than two levels of the memory hierarchy is rather challenging. The big problem is that very
precise models (e.g., the ones defining individual parameters for each level of memory hierarchy [13]) are often
too complicated, making it hopelessly difficult to design and analyze algorithms. Other approaches, such as the
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Figure 1: On the right, one can see a hierarchical model of modern computers, with multiple levels of permanent
storage, look up tables for virtual memory and CPU cache. From top to bottom, the levels become smaller but
faster. On the left, a sample access time is shown (not to scale). Here, it is assumed that each level contains a
continuous portion of the elements from the level above it. As a result, the access time increases as we move
away from the elements that are located in the fastest memory, as a complicated function of the distance. For
caches, the access time dramatically increases when we hit an element that is stored in the next (slower) level. For
mechanical devices (tapes, hard disks), the access time increases rather smoothly due to mechanical processes
involved.

hierarchical memory model (HMM) [1, 2], model memory with variable access costs by assuming that the cost
to access a memory address x is a non-decreasing function, f(x), of the address itself. However, this does not
accurately represent modern caches.

The most successful attempt at analyzing cache misses in multi-level cache hierarchies is probably the cache-
oblivious framework [8]. It surprisingly avoids the complexity of modeling memory hierarchies by completely
avoiding it: the algorithms are designed “obliviously to M and B”, i.e., in the classical (single-level) RAM model.
However, if such algorithms are analyzed in the two-level DAM with the best cache-management policy, also known
as the ideal-cache model, and they happen to be efficient in terms of cache misses with respect to the two levels of
memory, then they are also efficient for all levels of multi-level memory hierarchy. Moreover, it has been shown [11]
that such algorithms are also efficient for many reasonable cache management policies, e.g., least-recently used
(LRU) policy, typically implemented by hardware in practice. However, up to now, cache-oblivious algorithms
haven’t been shown to optimize anything beyond cache misses.

Capturing locality of reference. In a real hardware, cache utilization is only one aspect that affects
program runtime. For example, Jurkiewicz and Mehlhorn [9] show that the time it takes to perform address
translations for virtual memory noticeably affects the runtime of programs on real hardware. Figure 1 illustrates
the complicated ways various hardware features affect the memory access time. It shows a memory hierarchy,
where cheaper and larger but slower memories are placed at the top. The functions that describe the access times
of the components may have different behaviors, e.g., for a magnetic tape the access time is basically a linear
function of the physical distance, whereas for hard disks it is a more complicated function.

Locality of reference is a fundamental principle of computing that heavily impacts both hardware and algorithm
design [12]. In his widely-cited article [7], Peter Denning provides an overview of the history of the concept and
how it became very popular in almost all aspects of computing. To quote him, “The locality was adopted as an
idea almost immediately by operating systems, database, and hardware architects.”

The DAM algorithm and the cache-oblivious algorithms try to capture spatial locality and temporal locality
– the two fundamental components of the notion of “locality of reference” – from an algorithmic point of view.
However, given the complexity of modern hardware, the main question is if other, possibly more complex hardware
features, can be modeled simply enough to facilitate design and analysis of algorithms. The approach of the
HMM model [1, 2] to model the cost of access as a function of memory address is one way to keep the modeling
complexity at bay. For instance the authors [1, 2] show that if the cost of accessing address x is log(x) then
sorting n elements can be done in O(n log n log log n) time. But is log(x) the correct function for modern (and
ever-changing) hardware?
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1.1 Our Results. We propose to pick up where the previous attempts have left off by following a holistic
approach. We present the locality of reference (LoR) model, a computational model that looks at memory in a new
way: the cost of a memory access is based on the proximity from prior accesses via what we call a locality function.

More specifically, we consider the machine as having an infinite memory with a linear address space, i.e.,
memory cells are numbered with the set of natural numbers. Let E = {e1, . . . , e|E|} be the sequence of memory
addresses accessed by an algorithm A while running on a given input. A simple locality function ` can define the
cost of accessing address ei as a function of the distance from the address ei−1 of the preceding access, for example,
log(|ei − ei−1|),

√
|ei − ei−1|, or any other arbitrarily function of |ei − ei−1|.

A specific locality function can capture the (complicated) cost of accessing the data on the hardware running
the algorithm. For example, in the classical random access memory (RAM) model, the sequence E simply takes
O(|E|) time, so setting ` to a constant function captures the RAM model. As we show later, by setting ` to a
logarithmic function, we can model the cost of the TLB in virtual memory translation.

The goal of this paper is not to define locality functions for various models of computation. Instead, our
results show that cache-oblivious algorithms go beyond minimizing the number of cache misses. In particular, we
show that optimal cache-oblivious algorithms are locality-of-reference optimal, meaning, they are asymptotically
optimal with respect to any choice of locality function, subject to some mild constraints (needed to ensure that
these functions reward locality of reference). In Section 3 we present our result in a simplified setting, in which we
focus on the algorithms that do not benefit from large cache sizes. In Section 4 we generalize the result to more
general algorithms that do utilize the full cache.

1.2 Example application: optimality of van Emde Boas layout. We now demonstrate an example
application of our results which will appear as Theorem 3.1: namely, that the van Emde Boas layout—a layout for
implicit static search trees that is optimal for cache-oblivious searching [8]—is also optimal for address translation
on modern virtual memory architectures. This cost of address translation is non-negligible and has been observed
to impact the performance of fundamental algorithms such as sorting and permuting in practice [9].

Let us review modern virtual memory design. Consider a machine that uses U bits for addressing memory.
Virtual memory is implemented as a trie of degree 2b, for some parameter b, where the translation process translates
b bits at a time, starting from the most significant bits of the address. In the worst-case, one translation necessitates
U/b lookups, but this cost is often much lower when TLB caching is used. In particular, if two addresses ei and
ei−1 share kb most significant bits, then after translating the first memory address, the first k steps of the second
translation are cached in the TLB. As a result, the cost function associated with virtual memory translation is
essentially `(|ei − ei−1|) = logb(|ei − ei−1|). This function is clearly non-negative, non-decreasing and concave,
thus, satisfying the requirements of Theorem 3.1.

The van Emde Boas layout of an implicit complete binary search tree (for brevity we’ll call it vEB tree) is
defined as follows. Given a complete binary search tree on n vertices of height h = dlog ne, let T0 be the top subtree
of height dh/2e and let T1, . . . , T√n be the subtrees rooted at the children of the leaves of T0. Then, vEB tree is
defined by placing the subtree T0 in a contiguous portion of an array, immediately followed by T1, T2, . . . , T√n,
with each subtree Ti laid out recursively. Search on vEB tree is known to incur O(logB n) cache misses, where B
is the block size of the DAM model [8].

Consider a machine that is equipped with virtual memory with parameters U = O(log n) and b = O(1). The
root-to-leaf traversal of vEB tree recursively traverses T0, jumps by at most n−

√
n addresses from a leaf of T0 to

the root of the appropriate subtree Ti, and recursively traverses Ti. Thus, the cost QLoR
` (n) of the traversal using

the above locality of reference function ` for virtual memory can be computed using the following recurrence:

QLoR
` (n) =

{
2 ·QLoR

` (
√
n) +O(log n) if n ≥ 2

O(1) otherwise

This solves to QLoR
` (n) = O(log n log log n). And Theorem 3.1 implies that this is an asymptotically optimal LoR

cost for virtual address translation for the above function `.

1.3 Related work. The closest work to our presentation here is the Hierarchical Memory Model [1]. In this
model, accessing memory location x takes time f(x). This was extended to a blocked version where accessing k
memory locations takes times f(x) + k [2]. In particular the case where f(x) = log x was studied and optimality
obtained for a number of problems. This model, through its use of the memory cost function f , bears a number of
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similarities to ours, and it is meant to represent a multi-level cache where the user manually controls the movement
of data from slow to fast memory. However, while it is able to capture temporal coherence well, even in the blocked
version it does not capture fully the idea of spatio-temporal locality of reference, where an access is fast because it
was close to something accessed recently.

Another model that proposed analyzing algorithm performance on a multi-level memory hierarchy is the
Uniform Memory Hierarchy model (UMH) [4]. The UMH model is a multi-level variation of the DAM that
simplifies analysis by assuming that the block size increases by a fixed factor at each level and that there is a
uniform ratio between block and memory size at each level of the hierarchy. Unfortunately, this assumption is
quite restrictive and doesn’t hold in practice on modern hardware.

2 Preliminaries

2.1 Models of computation Let P be a problem, IP = {I1, I2, . . .} be a set of valid instances (input sequences)
for which problem P can be solved, and IPn = {I ∈ P : |I| = n} be the subset of instances of P with input of size
n. Let E(A, I) = {e1, e2, . . .} be the sequence of accesses (reads and writes) to memory locations that arises by
executing algorithm A on instance I, and let AP = {A1, A2, . . .} denote the set of all algorithms that correctly
solve P , i.e., generate a correct output for every instance in IP .

The general ideal-cache and LRU-cache models incorporate memory size M and block size B when computing
the cost of an execution sequence. The M

B blocks stored in internal memory make up the working set, and we
define WM

M,B(E, i) to be the working set after the i-th access to the execution sequence E in model M. In the
ideal-cache model (and the DAM model) the evictions from the working set Wopt

M,B are selected such that the total
cost of executing E is minimized [8], while in the LRU-cache model the evictions from the working set Wlru

M,B

follow the least recently used policy [12]. Let QM
x (E(A, I)) denote the cost of executing algorithm A on instance I

in model M with model parameters x. Then the cost of algorithm A on instance I in the ideal-cache or LRU-cache
models with cache parameters M and B is

QM
M,B(E(A, I)) =

|E(A,I)|∑
i=1

{
0 if ei ∈ WM

M,B(E(A, I), i− 1)

1 otherwise

for M ∈ {co, lru}. If E(A, I) only depends on the input instance I and not on any of the parameters of the model
(e.g., M or B) then the algorithm is cache-oblivious. Effectively, a cache-oblivious algorithm is one that runs in the
classical RAM (with one level of memory). On the other hand, if the algorithm explicitly uses multiple levels of
memory, or if the access pattern E(A, I) depends on the particular values of M or B, then it is called cache-aware.
A more rigorous and formal definition of the working set, cache replacement policies, and the cache-oblivious and
LRU costs is included in the full version of the paper.In Sections 3 and 4 we also define the cost QLoR

` (E(A, I))
of an algorithm on instance I in our memoryless and general Locality of Reference (LoR) models with locality
function `.

Similarly, we define WM
x (P,A, n) = maxI∈IPn {Q

M
x (E(A, I)} as the worst-case cost of algorithm A on problem

instances of size n for problem P on model M with parameters x.
Analysis of both cache-oblivious and cache-aware algorithms relies on additional constraints defining the

relationship between the cache parameters M and B. For example, the analysis of the cache-aware sorting
algorithms [3] assumes M ≥ 2B, while the analysis of the cache-oblivious sorting algorithms [8] and cache-oblivious
sparse matrix dense vector (SpMV) multiplication [5] assume, respectively, M ≥ B2 and M ≥ B1+ε – the so-called
tall-cache assumption. Therefore, let MP (B) denote the set of all values of M (as a function of B) that satisfy
such constraints for problem P .

To prove our results, we need to rigorously define algorithm optimality. Otherwise, as there are multiple
parameters involved, the order of the quantifiers would be unclear and ambiguous.

Definition 2.1. A cache-oblivious algorithm A for problem P is asymptotically CO-optimal in the ideal-cache
model with the cache parameters B and M ∈MP (B) iff1:

∃c>0,n0>0∀n>n0∀B≥1∀M∈MP (B)∀A′∈AP
[
W co
M,B(P,A, n) ≤ c ·W co

M,B(P,A′, n)
]

1A standard and understandable reaction to this definition and the math to come is to sneer at the chain of quantifiers and declare

“just write this using asymptotic notation!” Unfortunately, such notation is not flexible enough to say exactly what we need to say, and
thus we make the quantification explicit.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited



To implement the cache replacement policy of the ideal-cache model requires the knowledge of what an
algorithm will do in the future. Instead, modern hardware caches implement an approximation of the LRU-cache
model, each time evicting the block that has been accessed least recently. While it is often easier to analyze the
cache misses of an algorithm in the ideal-cache model, in this work we are able to work directly in the LRU-cache
model.

Definition 2.2. A cache-oblivious algorithm A for problem P is asymptotically LRU-optimal in the LRU-cache
model with the cache parameters B and M ∈MP (B) iff:

∃c>0,n0>0∀n>n0
∀B≥1∀M∈MP (B)∀A′∈AP

[
W lru
M,B(P,A, n) ≤ c ·W lru

M,B(P,A′, n)
]

For completeness, however, we also prove our results in the ideal-cache model, by utilizing the following
well-known resource-augmentation result of Sleator and Tarjan [11] (which also applies to other reasonable
cache-replacement policies):

Lemma 2.1. [11] Any LRU-optimal algorithm in the LRU-cache model with cache parameters B and M is
CO-optimal in the ideal-cache model with cache parameters B and 2M .

The equivalence in optimality between the ideal-cache and LRU-cache models relies on the cache augmentation,
and says nothing about asymptotic equivalence for the same M . However, this is not an issue for a large class of
natural problems, which can be solved using memory-smooth cache-oblivious algorithms.

Definition 2.3. A cache-oblivious algorithm A is memory-smooth iff increasing the memory size M by a constant
factor does not asymptotically change its execution cost. That is,

∀I∈IP ∀c>0∀B≥1∀M∈MP (B)

[
Qco
M,B(E(A, I)) = Θ(Qco

c·M,B(E(A, I)))
]
,

where the Θ-notation is with respect to the size of instance I.

Finally, we define algorithm optimality in our LoR model:

Definition 2.4. Let L be a class of functions. Algorithm A for problem P is asymptotically LoR-optimal with
respect to L iff:

∃c>0,n0>0∀n>n0
∀`∈L∀A′∈AP

[
WLoR
` (P,A, n) ≤ c ·WLoR

` (P,A′, n)
]

The notion of an LoR-optimal algorithm with respect to all possible functions would be very powerful, as
such an algorithm would be asymptotically optimal on any computing device that rewards locality of reference.
In this paper we come very close to achieving such optimality, requiring only a natural set of restrictions on the
functions in L.

2.2 B-stable problems To show the equivalence between LoR-optimal and CO-optimal algorithms, we must
avoid pathological problems with worst-case behavior that varies dramatically with different instances of the
problem for different block sizes.

We say that a problem is B-stable if, for any algorithm A that solves P , there is some “worst-case” instance
Iw ∈ IPn that, for every B, has CO cost asymptotically no less than the optimal worst-case cost for that B, over
all instances. Formally,

Definition 2.5. Problem P is B-stable if, for any algorithm A ∈ AP that solves P :

∃c>0,n0>0∀n>n0
∃Iw∈IPn ∀B≥1∀M∈MP (B) min

A′∈AP
W co
M,B(P,A′, n) ≤ c ·Qco

M,B(E(A, Iw))

Intuitively, for any algorithm that solves a B-stable problem, there must be a single instance that, for all block
sizes, has cost no less than the asymptotically worst-case optimal cost.

The following lemma, implied by the definition of CO-optimality (Definition 2.1), states that every algorithm
must have an instance on which it performs no better, asymptotically, than the CO-optimal algorithm, for every B:
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Lemma 2.2. If an asymptotically CO-optimal algorithm A solves a B-stable problem P , then

∃c>0,n0>0∀n>n0
∀A′∈AP ∃Iw∈IPn ∀B≥1∀M∈MP (B)

[
W co
M,B(P,A, n) ≤ c ·Qco

M,B(E(A′, Iw))
]

In the full version of the paper we prove the following lemma, which shows existence of non-B-stable problems,
for which our main result (Theorem 3.1) does not hold. This justifies our classification and exclusion of these
pathological cases.

Lemma 2.3. There exists a problem P which is not B-stable and which has a CO-optimal algorithm which is not
LoR-optimal.

2.3 B-smoothed analysis To prove our results, we will work with the smoothed version of the analysis. Given
the access sequence E = E(A, I) and an integer s chosen uniformly at random in the range [0, B), let EB-smooth be
the sequence derived from E where every element of E is increased by s. Then, the B-smoothed costs are defined as
the expected cost on the B-smooth sequence in the respective cache models, i.e., Qsco

M,B(E) = E
[
Qco
M,B(EB-smooth

]
and Qslru

M,B(E) = E
[
Qlru
M,B(EB-smooth)

]
.

Lemma 2.4. For any execution sequence E

Qsco
M,B(E) ≤ 2 ·Qco

M,B(E) ≤ 4 ·Qsco
M,B(E),

and

Qslru
M,B(E) ≤ 2 ·Qlru

M,B(E) ≤ 4 ·Qslru
M,B(E).

Proof. Shifting the execution sequence may cause accesses that were in the same block to become in two neighboring
blocks, and accesses that were in two neighboring blocks to become in the same block. Thus, the cost may grow or
shrink by a factor of two, but not more.

3 Memoryless algorithms

We begin with the simplest case, namely, the memoryless cache model (MCM) where the internal memory is just a
single block, i.e. MP (B) = {B}.2 Note that in this case, there is no need to differentiate between LRU-cache
model and ideal-cache model because the working sets in both cache models, after accessing ei ∈ E(A, I), consist
of a single block that contains ei. Thus, the costs of the algorithm A on instance I in the MCM becomes

Qco
B,B(E(A, I)) = Qlru

B,B(E(A, I))

=

|E(A,I)|∑
i=1

{
1 if b eiB c 6= b

ei−1

B c
0 otherwise.

This cost rewards spatial locality. Hence, in the LoR model it is natural to define the locality function `
to measure the cost of executing the sequence E(A, I) as a function of the spatial distance |ei − ei−1| between
accesses:

QLoR
` (E(A, I)) =

|E(A,I)|∑
i=1

`(|ei − ei−1|)

Let L denote the set of all non-negative, non-decreasing, concave functions ` : N → R. Even though L
encompasses a wide range of (arbitrarily complicated) functions, we will show that any cache-oblivious algorithm
is LoR-optimal with respect to L if and only if it is CO-optimal in the MCM.

2While this might seem overly restrictive, a number of query algorithms on cache-oblivious data structures are CO-optimal, because
one is always traversing further into the structure, and never comes back to revisit parts of memory near where it has already gone.
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3.1 Main result. Let `B(d) = min
(
1, dB

)
. We begin by proving our result for this specific locality function

`B ∈ L and generalize it to any ` ∈ L later.

Lemma 3.1. For any execution sequence E and block size B, Qsco
B,B(E) = QLoR

`B
(E).

Proof. Consider a single access ei ∈ E. Let d = |ei − ei−1|. If d ≥ B then `B(d) = 1, and the ith term of Qco
B,B(E)

is also 1 because b ei+sB c 6= b
ei−1+s
B c for all 0 ≤ s < B. If d < B then `B(d) = d

B , and the expected value of the ith

term of Qco
B,B(E) is also d

B , because b ei+sB c 6= b
ei−1+s
B c for d of the possible shifts s ∈ [0, B).

Corollary 3.1. If a cache-oblivious algorithm A for problem P is asymptotically LoR-optimal with respect to L,
then it is asymptotically CO-optimal in the MCM.

Proof. Since A is LoR-optimal, then it is within a constant factor of optimal for all locality functions, including
`B(d) = min

(
1, dB

)
. The corollary follows from Lemmas 3.1 and 2.4.

We now show that any locality function ` ∈ L can be represented as a linear combination of N functions
`B(d), for N various values of B.

For every locality function ` ∈ L there exist non-negative constants α1, α2 . . . αN and β1, β2 . . . βN such that
`(d) =

∑N
i=1 αi`βi(d) for integers d in [1..N ].

Proof. [Proof (Sketch)] Let γi =


2`(i)− `(i+ 1) if i = 1

2`(i)− `(i+ 1)− `(i− 1) if 2 ≤ i ≤ N − 1

`(i)− `(i− 1) if i = N

and let αi = iγi and βi = i.

Then for any integer x ∈ [1..N ]:
∑N
i=1 αi`βi(x) =

∑N
i=1 min

(
αi,

αix
βi

)
=
∑N
i=1 min(iγi, γix) =

∑x−1
i=1 iγi + γxx+∑N

i=x+1 γix and this expression telescopes to l(x) (the full derivation can be found in the full version of the paper.
Since function ` is non-negative and concave, all values of αi and βi are non-negative.

For every locality function ` ∈ L there exists a sets of n non-negative constants α1, α2 . . . αn, and β1, β2 . . . βn
such that, for any execution sequence E,

∑n
i=1 αiQ

LoR
`βi

(E) = QLoR
` (E).

Theorem 3.1. Let L be a set of all non-negative, non-decreasing, concave functions l : N → R. Any cache-
oblivious algorithm A that solves a B-stable problem P is LoR-optimal with respect to L if and only if it is
CO-optimal in the memoryless cache model.

Proof. The first direction follows from Corollary 3.1. To prove the other direction, consider the CO-optimal
algorithm ACO-Opt and some algorithm A that solves P . Since P is B-stable, by Definition 2.5,

∃c,n0
∀n>n0

∃Iw∈IPn ∀B≥1
[
WB(P,ACO-Opt, n) ≤ c ·Qco

B,B(E(A, Iw))
]

Using the definition of the worst-case cost WB , we get

∃c,n0
∀n>n0

∃Iw∈IPn ∀B≥1
[

max
I∈IPn

Qco
B,B(E(ACO-Opt, I)) ≤ c ·Qco

B,B(E(A, Iw))
]

By Lemma 2.4, we get

∃c,n0∀n>n0∃Iw∈IPn ∀B≥1
[

max
I∈IPn

Qsco
B,B(E(ACO-Opt, I)) ≤ 4c ·Qsco

B,B(E(A, Iw))
]

and since, by Lemma 3.1, for any B the smoothed CO cost is equivalent to the LoR cost with the corresponding
`B function,

∃c,n0∀n>n0∃Iw∈IPn ∀B≥1
[

max
I∈IPn

QLoR
`B (E(ACO-Opt, I)) ≤ 4c ·QLoR

`B (E(A, Iw))
]
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This inequality holds for all B and thus all linear combinations of various B. For any locality function ` in the set
of valid locality functions, L, consider α`1, α

`
2, . . . , α

`
n and β`1, β

`
2, . . . , β

`
n given by Lemma 3.1. We use the β’s as

the B values and the α’s as the coefficients in the linear combination to get

∃c′,n0
∀n>n0

∃Iw∈IPn ∀`∈L
n∑
k=1

max
I∈IPn

(
α`kQ

LoR
`
β`
k

(E(ACO-Opt, I))
)
≤ c′ ·

n∑
k=1

(
α`kQ

LoR
`
β`
k

(E(A, Iw))
)

Iw is a single instance of P , therefore it cannot have a greater total cost than the single instance that maximizes
the cost

∃c′,n0
∀n>n0

∀`∈L
n∑
k=1

max
I∈IPn

(
α`kQ

LoR
`
β`
k

(E(ACO-Opt, I))
)
≤ c′ · max

I∈IPn

n∑
k=1

(
α`kQ

LoR
`
β`
k

(E(A, I))
)

Moving the max outside the summation can only decrease the overall cost of the left side of the inequality, thus

∃c′,n0∀n>n0∀`∈L max
I∈IPn

n∑
k=1

(
α`kQ

LoR
`
β`
k

(E(ACO-Opt, I))
)
≤ c′ · max

I∈IPn

n∑
k=1

(
α`kQ

LoR
`
β`
k

(E(A, I))
)

Using Corollary 3.1, we get

∃c′,n0
∀n>n0

∀`∈L max
I∈IPn

(QLoR
` (E(ACO-Opt, I))) ≤ c′ · max

I∈IPn
(QLoR

` (E(A, I)))

We are considering an arbitrary algorithm A that solves P , so this applies to all A ∈ AP . By the definition of
worst-case LoR cost,

∃c′,n0
∀n>n0

∀`∈L∀A∈AP
[
W`(P,ACO-Opt, n) ≤ c′ ·W`(P,A, n)

]
Thus, by Definition 2.4, ACO-Opt is asymptotically LoR-optimal.

4 General models for algorithms with memory

In the previous section, we considered execution sequences that did not utilize more than one block of memory,
and thus locality to other than the previously accessed memory location was irrelevant. Now we generalize the
model and apply it to execution sequences without this restriction. This requires that we consider the size and
contents of internal memory when computing the expected cost of an access.

4.1 General LoR model To capture the concept of the working set for algorithms that use internal memory,
we define bidimensional locality functions that compute LoR cost based on two dimensions: distance and time.
This bidimensional locality function, `(d, δ) represents the cost of a jump from a source element, s, to a target
element, t, where d and δ are the spatial distance and temporal distance, respectively, between s and t. This
captures the concept of the working set by using “time” to determine if the source element is in memory or not. If
the source is temporally close (was accessed recently) and spatially close to the target, t, the resulting locality cost
of the jump is small.

Details of the bidimensional locality functions. Let LB denote the set of bidimensional locality functions
that we consider. The functions in this set have the following properties. An element of this set is a function of
the form `(d, δ) = max(f(d), g(δ)), where f(d) is non-negative, non-decreasing, and concave, while g(δ) is a 0-1
threshold function, i.e.,

g(δ) = gx(δ) =

{
0 if 0 ≤ δ ≤ x
1 otherwise

for some value x. For any k ≤ i, the bidimensional locality cost of a jump from source element ek to target ei
in the sequence E is `(|ei − ek|, t(E, i) − t(E, k)), where t(E, i) is the time of the i-th access. For simplicity of
notation, we define δt(E, k, i) to be the temporal distance between the i-th access (ei) and k-th access (ek), i.e.,
δt(E, k, i) = t(E, i)− t(E, k). Intuitively, we can think of δt(E, k, i) as the time from access ek to “present” when
accessing ei. In addition, we require that the functions cannot be more “sensitive” to temporal locality than spatial
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locality, i.e., for any locality function `(d, δ) = max(f(d), g(δ)), we have that ∀x[f(x) ≥ g(x)]. This corresponds to
the tall cache assumption M ≥ B2, which is typically used in the analysis of cache-oblivious algorithms [6, 10].
Therefore, we restrict the machine parameters, M and B, to all values B ≥ 1 and MP (B) = {M : M ≥ B2}. A
more in-depth discussion of the tall cache assumption and how it relates to the LoR model can be found in the
vull version of the paper.

We form our definition of time based on the amount of change that occurs to the working set. For example,
if an access causes a block of B elements to be evicted, we say that time increases by 1. Thus, time depends
on the locality function, so we define the time of the i-th access of E, for the given locality function ` to be
t`(E, i) =

∑i−1
k=1(QLoR

` (E, k)). That is, the time of access ei ∈ E is simply the sum of costs of all accesses prior to ei
in sequence E. We note that the time after the last access of E is the total LoR cost (i.e., QLoR

` (E) = t`(E, |E|+1)).
Unlike the memoryless LoR cost, we cannot simply compute the cost of access ei using the distance from the

previous access, ei−1, since any of the prior accesses may be in the working set when accessing ei. Furthermore,
since we no longer consider only non-decreasing execution sequences, when accessing ei, there may be accesses to
both the left and right that could be in the same block as ei. Therefore, computing QLoR

` (E, i) using the locality
function from a single source is insufficient to capture the idea of the working set, and a detailed example showing
why this is the case is included in the full version of the paper. We define the general LoR cost of access ei ∈ E as
QLoR
` (E, i) =

max





left side︷ ︸︸ ︷
min
∀L<i s.t.
eL≤ei

`(ei − eL, δt(E, i, L))

+

min
∀R<i s.t.
eR≥ei

`(eR − ei, δt(E, i, R))

︸ ︷︷ ︸
right side


− 1, 0


.

Intuitively, the LoR cost of access ei ∈ E is computed from the minimum cost jumps from both the left side and
right side of ei. We note that this generalizes the LoR cost definition of the memoryless setting (Section 3), as the
locality function from source eR will always evaluate to 1 for non-decreasing accesses.

This formulation has the added benefit that it lets us easily visualize an execution sequence in a graphical
representation, illustrated in Figure 2. We consider a series of accesses in execution sequence E as points in a
2-dimensional plane. The point representing access ei is plotted with the x and y coordinates corresponding to the
spatial position, ei, and the temporal position, t(E, i), respectively. The cost of access ei is simply computed from
the LoR cost with sources eL and eR (the previous access with the minimum locality function cost to the left and
right, respectively). We can visually determine which previous accesses correspond to eL and eR: if a previous
access is outside the gray region (i.e., δ > M

B or d > B), the cost is 1. Otherwise, it is simply d
B .

4.2 Equivalence to cache-oblivious cost As with the memoryless LoR model, we first prove our result for a

specific bidimensional locality function, `M,B(d, δ) = max
(

min
(
1, dB

)
,min

(
1,
⌊

δ
M/B

⌋))
, and later generalize

our result to all bidimensional locality function in LB.
For any cache-oblivious algorithm A, B ≥ 1, M ≥ B2, execution sequence E generated by A, and

`M,B(d, δ) = max
(

min
(
1, dB

)
,min

(
1,
⌊

δ
M/B

⌋))
: QLoR

`M,B
(E) = Qslru

M,B(E) and, consequently, Qsco
M,B(E) ≤

QLoR
`M,B

(E) ≤ 2 ·Qsco
M
2 ,B

(E).

Proof. To prove that QLoR
`M,B

(E) = Qslru
M,B(E), we consider the cost of performing access ei ∈ E. Assume that,

when accessing ei, eL is the nearest element to the left of ei (eL ≤ ei) that is in the working set, i.e., L < i,
eL ∈ Wlru

M,B (E, i − 1), and ei − eL is minimized. If there is no such element to the left of ei in the working set,
then we say that eL = −∞. Similarly, assume that eR is the nearest element in Wlru

M,B (E, i− 1) to the right of ei
(ei ≤ eR), and if there is no such element, then eR = +∞. By this definition, for any access ei, we can simply
consider the spatial components, because, if no element is within temporal distance M

B , the spatial distance is ∞
and the `M,B cost is 1.

We consider three possible cases for the spatial distance of eL and eR from access ei:
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Position (in memory)

T
im

e
(t
(E

,i
))

B ei

ei−1

M
B

eL

cost=1

eR

Figure 2: Graphical visualization of accesses in the general LoR model with locality function `M,B. At time of
access ei, all prior accesses within the past time M

B (above the dashed horizontal line) have g(δ) = 0. The locality
cost to jump from any element outside the gray region has the maximum cost of 1. In this example, there is both
an eL and eR with cost < 1.

Case 1: (ei − eL) ≥ B AND (eR − ei) ≥ B
There is no element in the working set within distance B of ei, then, for all alignment shifts, 0 ≤ s < B, we

know that ei 6∈ Wlru
M,B(E, i− 1). Thus,

Qslru
M,B(E, i) = E

[
Qco
M,B(EB−smooth, i)

]
=

1

B

B−1∑
s=0

1

= 1

and the LoR model cost is

QLoR
`M,B

(E, i) = max(`M,B(ei − eL, δt(E, i, L))

+ `M,B(eR − ei, δt(E, i, R))− 1, 0)

= max(1 + 1− 1, 0) = 1

We note that this includes the cases where eL and/or eR do not exist, since, we set eL = −∞ and/or eR = ∞,
respectively, in such cases.

Case 2: (ei − eL) < B OR (eR − ei) < B
Only one side (left or right) is within distance B of ei. W.l.o.g, assume that (eR − ei) < B and (ei − eL) ≥ B.

Since (ei − eL) ≥ B, for all shifts 0 ≤ s < B − 1, we know that eL 6∈ Wlru
M,B(E, i− 1). Thus, the smoothed LRU

cost is simply

Qslru
M,B(E, i) =

1

B

B−1∑
s=0

{
1 if b eR+s

B c 6= b ei+sB c
0 otherwise

=
eR − ei
B
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The LoR cost is

QLoR
`M,B

(E, i) = max

(
min

(
1,
ei − eL
B

)
+ min

(
1,
eR − ei
B

)
− 1, 0

)
= max

(
1 +

(eR − ei)
B

− 1, 0

)
=

(eR − ei)
B

A symmetric argument holds in the case where (ei − eL) < B and (eR − ei) ≥ B.

Case 3: (ei − eL) < B AND (eR − ei) < B
Both eL and eR are within distance B of ei, so the smoothed LRU cost depends on the number of alignment

shifts, s, for which ei is not in the same block as either eL or eR, i.e.,

Qslru
M,B(E, i) =

1

B

B−1∑
s=0


1 if b ei+sB c 6= b

eR+s
B c

and b ei+sB c 6= b
eL+s
B c

0 otherwise

For simplicity, assume that at alignment shift s = 0, ei is in the last location of the block of size B. Thus, the
shifts from s = 0 to s = (B − 1) define a 2B range around ei (i.e., [ei −B, ei +B]). We define p(eL) and p(eR) to
be the indexes of eL and eR in this 2B range, respectively. For all 0 ≤ s ≤ p(eL), ei is in the same block as eL.
Similarly, for all (p(eR)−B) ≤ s < B, ei is in the same block as eR Thus, the cost is simply the number of shifts,
s, where the entire block of size B containing ei is strictly between p(eL) and p(eR), i.e.,

Qslru
M,B(E, i) =

1

B

p(eR)−B∑
s=p(eL)

1

=
p(eR)−B − p(eL)

B

and, since the cost cannot be negative, this becomes

= max

(
p(eR)− p(eL)

B
− 1, 0

)
We know that p(eR) = B + eR − ei and p(eL) = B − (ei − eL), thus

= max

(
B + eR − ei

B

− B − (ei − eL)

B
− 1, 0

)
= max

(
eR − ei
B

+
ei − eL
B

− 1, 0

)
Since both eL and eR are within distance B of ei, this is equal to LoR cost, i.e.,

QLoR
`M,B

(E, i) = max

(
min

(
1,
ei − eL
B

)
+ min

(
1,
eR − ei
B

)
− 1, 0

)
= max

(
ei − eL
B

+
eR − ei
B

− 1, 0

)
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Thus, for any access access, ei ∈ E,

QLoR
`M,B

(E, i) = Qslru
M,B(E, i)

where

`M,B(d, δ) = max

(
min

(
1,
d

B

)
,min

(
1,

⌊
δ

M/B

⌋))
.

Since they are equivalent for any access, ei ∈ E, then for any execution sequence E,

QLoR
`M,B

(E) = Qslru
M,B(E)

Since the cache-oblivious cost is computed assuming ideal cache replacement, and LRU cache replacement
with twice the memory is 2-competitive with ideal cache, we have

Qsco
M,B(E) ≤ Qslru

M,B(E)

≤ QLoR
`M,B

(E)

≤ Qslru
M,B(E)

≤ 2 ·Qsco
M
2 ,B

(E)

We can also prove similar asymptotic equivalence result between the LoR and the ideal-cache models for the same
M , if we consider memory-smooth algorithms:

Lemma 4.1. For any memory-smooth cache-oblivious algorithm A, B ≥ 1, M ≥ B2, execution sequence E

generated by A, and `M,B(d, δ) = max
(

min
(
1, dB

)
,min

(
1,
⌊

δ
M/B

⌋))
:

QLoR
`M,B

(E) = Θ
(
Qsco
M,B(E)

)
.

Proof. If A is memory-smooth, then Qsco
M,B(E) = Θ(Qsco

M
2 ,B

(E)), and, by Theorem 4.2, QLoR
`M,B

(E) = Θ
(
Qsco
M,B(E)

)
.

4.3 Main result We now extend our result to any bidimensional locality function ` ∈ LB. A cache-oblivious
algorithm A for a B-stable problem P is LRU-optimal if and only if it is LoR-optimal with respect to LB, where
LB is a set of all functions of the form `(d, δ) = max(f(d), g(δ)), where g(δ) is a 0-1 threshold function, f(x) ≥ g(x)
for all x ≥ 0, and f is a non-negative, non-decreasing, concave function.

Proof. If algorithm ALoR is LoR-optimal for all bidimensional locality functions, then it is optimal for locality
functions `M,B , for any M and B. By Theorem 4.2, it follows that ALoR is LRU-optimal for any M and B.

To prove that LRU-optimal algorithms are also LoR-optimal, we consider problem P and algorithm ALRU that
solves P with optimal LRU cost, i.e.,

∃c,n0∀n>n0∀B≥1∀M≥B2∀A∈AP WLRU
M,B (P,ALRU, n) ≤ c ·WLRU

M,B (P,A, n)

And by the definition of the worst-case cost W ,

∃c,n0
∀n>n0

∀B≥1∀M≥B2∀A∈AP max
I∈IPn

(Qlru
M,B(E(ALRU, I))) ≤ c · max

I∈IPn
(Qlru

M,B(E(A, I)))

Since P is B-stable, there is some instance Iw ∈ IPn for each A such that

∃c,n0
∀n>n0

∀B≥1∀M≥B2∀A∈AP max
I∈IPn

(Qlru
M,B(E(ALRU, I))) ≤ c ·Qlru

M,B(E(A, Iw))
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and by Lemma 2.4,

∃c,n0
∀n>n0

∀B≥1∀M≥B2∀A∈AP
1

2
max
I∈IPn

(Qslru
M,B(E(ALRU, I))) ≤ 2c ·Qslru

M,B(E(A, Iw))

therefore, by Lemma 4.2

∃c,n0
∀n>n0

∀B≥1∀M≥B2∀A∈AP max
I∈IPn

(QLoR
`M,B

(E(ALRU, I))) ≤ 4c ·QLoR
`M,B

(E(A, Iw))

Since this inequality holds for all `M,B functions, we define a series of such functions that we use to represent any
bidimensional locality function. Recall that `M,B functions are of the form

`M,B(d, δ) = max

(
min

(
1,
d

B

)
,min

(
1,

⌊
δ

M/B

⌋))
where B ≥ 1 and M ≥ B2. Consider an arbitrary bidimensional locality function `(d, δ) = max(f(d), g(δ)). By
Lemma 3.1, we can represent the f(d) component by a linear combination of n memoryless `B functions (and
therefore using the spatial component of `M,B functions). By our definition of bidimensional locality functions,
g(δ) =

⌊
δ
x

⌋
, for some integer x. Thus, we simply set the temporal component of every one of our `M,B functions

to be g(δ). For a given bidimensional locality function `, we define ``k to be the k-th such `M,B function that we
use to represent it, i.e., ``k = max(α`k`β`k , g(δ)).3 Thus, we have

∃c′,n0∀n>n0∀A∈AP ∀`∈LB
n∑
k=1

max
I∈IPn

(
QLoR
``k

(E(ALRU, I))
)
≤ c′

n∑
k=1

(
QLoR
``k

(E(A, Iw))
)

Instance Iw cannot result in greater cost than the instance that maximizes the total cost, so

∃c′,n0
∀n>n0

∀A∈AP ∀`∈LB
n∑
k=1

max
I∈IPn

(
QLoR
``k

(E(ALRU, I))
)
≤ c′ max

I∈IPn

n∑
k=1

(
QLoR
``k

(E(A, I))
)

Moving the max outside of the summation can only decrease the cost of the left hand side of the inequality, thus

∃c′,n0
∀n>n0

∀A∈AP ∀`∈LB max
I∈IPn

n∑
k=1

(
QLoR
``k

(E(ALRU, I))
)
≤ c′ max

I∈IPn

n∑
k=1

(
QLoR
``k

(E(A, I))
)

The proof of Corollary 3.1 applies, giving us

∃c′′,n0
∀n>n0

∀A∈AP ∀`∈LB max
I∈IPn

(QLoR
` (E(ALRU, I))) ≤ c′′ · max

I∈IPn
(QLoR

` (E(A, I)))

Using our definition of the worst-case LoR cost,

∃c′′,n0∀n>n0∀A∈AP ∀`∈LB W`(P,ALRU, n) ≤ c′′ ·W`(P,A, n)

Therefore, any LRU-optimal algorithm is also LoR-optimal.

A memory-smooth cache-oblivious algorithm A for a B-stable problem P is CO-optimal if and only if A is
LoR-optimal with respect to LB, where LB is a set of all functions of the form `(d, δ) = max(f(d), g(δ)), where g(δ)
is a 0-1 threshold function, f(x) ≥ g(x) for all x ≥ 0, and f is a non-negative, non-decreasing, concave function.

Proof. Since the cache-oblivious model assumes ideal cache replacement, for any execution sequence E,
Qsco
M,B(E) ≤ Qslru

M,B(E) ≤ 2 · Qsco
M
2 ,B

(E). Since algorithm A is memory-smooth, for any execution sequence E

generated by A, Qsco
M
2 ,B

(E) = Θ(Qsco
M,B(E)). Therefore, Qslru

M,B(E) = Θ(Qsco
M,B(E)). Since the LRU cost and CO cost

are asymptotically equivalent for every execution sequence generated by A, then A is asymptotically LRU-optimal
if and only if it is asymptotically CO-optimal and, by Theorem 4.3, A is LoR-optimal if and only if it is CO-optimal.

3We note that, because we are limited to M ≥ B2 for our `M,B functions, we can only construct functions where f(k) ≥ g(k),

for all k > 0. However, our definition of bidimensional locality functions includes this restriction, as it corresponds to the tall cache
assumption (discussed in Section 4.1).
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5 Conclusion

Despite the increasing complexity of modern hardware architectures, the goal of many design and optimization
principles remain the same: maximize locality of reference. Even many of the optimization techniques used by
modern compilers, such as branch prediction or loop unrolling [12], can be seen as methods of increasing spatial
and/or temporal locality. As we demonstrated in this work, cache-oblivious algorithms do just that, suggesting
that the performance benefits of such algorithms extend beyond what was originally envisioned.

That is to say, although we have introduced a new way to model computation via locality functions, we are
not advocating algorithm design and analysis using locality functions. Instead, though our transformations, we
have shown that creating the best possible algorithms in the existing cache-oblivious models is they right way to
design algorithms not just for a multi-level cache, but for any locality-of-reference-rewarding system. One can thus
conclude that the cache-oblivious model is better than we thought it was.
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