
ar
X

iv
:2

11
1.

01
99

7v
1

 [
cs

.C
C

]
 3

 N
ov

 2
02

1

Deterministic Approximation of Random Walks via Queries in Graphs of

Unbounded Size

Edward Pyne∗

Harvard University

epyne@college.harvard.edu

Salil Vadhan†

Harvard University

salil_vadhan@harvard.edu

November 4, 2021

Abstract

Consider the following computational problem: given a regular digraph G = (V,E), two
vertices u, v ∈ V , and a walk length t ∈ N, estimate the probability that a random walk of
length t from u ends at v to within ±ε. A randomized algorithm can solve this problem by
carrying out O(1/ε2) random walks of length t from u and outputting the fraction that end at
v.

In this paper, we study deterministic algorithms for this problem that are also restricted
to carrying out walks of length t from u and seeing which ones end at v. Specifically, if G is
d-regular, the algorithm is given oracle access to a function f : [d]t → {0, 1} where f(x) is 1 if the
walk from u specified by the edge labels in x ends at v. We assume that G is consistently labelled,
meaning that the edges of label i for each i ∈ [d] form a permutation on V .

We show that there exists a deterministic algorithm that makes poly(dt/ε) nonadaptive
queries to f , regardless of the number of vertices in the graph G. Crucially, and in contrast
to the randomized algorithm, our algorithm does not simply output the average value of its
queries. Indeed, Hoza, Pyne, and Vadhan (ITCS 2021) showed that any deterministic algorithm
of the latter form that works for graphs of unbounded size must have query complexity at least
exp(Ω̃(log(t) log(1/ε))).

In the language of pseudorandomness, our result is a separation between the query complexity
of “deterministic samplers” and “deterministic averaging samplers” for the class of “permutation
branching programs of unbounded width”. Our separation is stronger than the prior separation
of Pyne and Vadhan (CCC 2021), and has a much simpler proof (not using spectral graph
theory or the Impagliazzo–Nisan–Wigderson pseudorandom generator). On the other hand,
the algorithm of Pyne and Vadhan is explicit and computable in small space, whereas ours is
not explicit (unless we assume the existence of an optimal explicit pseudorandom generator for
permutation branching programs of bounded width).

Keywords: pseudorandomness, space-bounded computation

∗Supported by NSF grant CCF-1763299.
†Supported by NSF grant CCF-1763299 and a Simons Investigator Award.

http://arxiv.org/abs/2111.01997v1

1 Introduction

Consider the following computational problem: given a regular digraph G = (V,E), two vertices
u, v ∈ V , and a walk length t ∈ N, estimate the probability that a random walk of length t from u
ends at v to within ±ε. A randomized algorithm can solve this problem by carrying out O(1/ε2)
random walks of length t from u and outputting the fraction that end at v.

In this paper, we study deterministic algorithms for this problem that are also restricted to
carrying out walks of length t from u and seeing which ones end at v. Specifically, if G is d-regular,
the algorithm is given oracle access to a function f : [d]t → {0, 1} where f(x) is 1 if the walk from u
specified by the edge labels in x ends at v. We assume that G is consistently labelled, meaning that
the edges of label i for each i ∈ [d] form a permutation on V . (It can be shown that every d-regular
digraph has a consistent labelling, so this requirement does not constrain the graph structure, only
the labelling.) In the case where we have “white-box” access to the graph, Ahmadinejad, Kelner,
Murtagh, Peebles, Sidford, and Vadhan [AKM+20] gave a deterministic algorithm for this problem
with space complexity Õ(log(|V | · td/ε)).

We show that there exists a deterministic algorithm that makes poly(dt/ε) nonadaptive queries
to f , regardless of the number of vertices in the graph G. Crucially, and in contrast to the ran-
domized algorithm, our algorithm does not simply output the average value of its queries. Indeed,
Hoza, Pyne, and Vadhan [HPV21] showed that any deterministic algorithm of the latter form that
works for graphs of unbounded size must have query complexity at least exp(Ω̃(log(t) log(1/ε))).

Below we present these results in the language of pseudorandomness, as a separation between
the query complexity of “deterministic samplers” and “deterministic averaging samplers” for the
class of “permutation branching programs of unbounded width”. Our separation is stronger than
the prior separation of Pyne and Vadhan [PV21], and has a much simpler proof (not using spectral
graph theory or the Impagliazzo–Nisan–Wigderson pseudorandom generator). On the other hand,
the algorithm of Pyne and Vadhan is explicit and computable in small space, whereas ours is
not explicit (unless we assume the existence of an optimal explicit pseudorandom generator for
permutation branching programs of bounded width).

1.1 Ordered Branching Programs

Motivated by the goal of derandomizing space-bounded computation, i.e. proving BPL = L, there
has been extensive work on estimating the acceptance probabilities of ordered branching programs,
which capture how a randomized small-space algorithm uses its random bits.

Definition 1.1. An ordered branching program (OBP) B of length n andwidth w computes
a function B : {0, 1}n → {0, 1}. On an input σ ∈ {0, 1}n, the branching program computes as
follows. It has n + 1 layers V0, . . . , Vn, each with vertices labeled {1, . . . , w}. It starts at a fixed
start state v0 ∈ V0. Then for r = 1, . . . , n, it reads the next symbol σr and updates its state
according to a transition function Br : Vr−1 × {0, 1} → Vr by taking vr = Br(vr−1, σr). For v ∈ Vi

and u ∈ Vj for j > i, we write B[v, x] = u if the program transitions to state u starting from state
v on input x ∈ {0, 1}j−i.

Moreover, there is an accept state vacc ∈ Vn. For x ∈ {0, 1}n, we define B(x) = 1 iff B[v0, x] =
vacc . That is, B accepts the inputs x that lead it from the start state v0 in the first layer to the
accept state in the last layer vacc .

Given a graph G = (V,E) with w vertices, outdegree 2, n ∈ N, and two vertices u, v ∈ V , we
can define an associated ordered branching program BG,u,v,n which simulates walks of length n in
G. Specifically, we set v0 = u, vacc = v, and BG,u,v,n

r (vr−1, σ) to be the σ’th neighbor of vertex vr−1

1

for every r = 1, . . . , n, vr−1 ∈ Vr−1 = {1, . . . , w}, and σ ∈ {0, 1}. Then BG,u,v,n(x) = 1 iff carrying
out a walk of length n according to the edge labels in x leads from u to v in G. In particular,
the probability that BG,u,v,n accepts a uniformly random input x is exactly the probability that a
random walk of length n from u ends at v, exactly the computational problem we wish to solve.
Compared to a general ordered branching program, BG,u,v,n has the same transition function at
every layer.

The definition of branching programs naturally generalizes to alphabet sizes d > 2, allowing for
simulation of random walks on graphs of degree d. We present our results just for the d = 2 case
for simplicity, but they extend to larger d as well.

Motivated by the derandomization of space-bounded computation, there has been three decades
of work on deterministically estimating the acceptance probability of ordered branching programs
in small space (for instance [BNS92,Nis92,INW94,SZ99,BCG18,MRT19,Hoz21] and many others).
In the case where we have white-box access to the branching program, the algorithm of Saks and
Zhou [SZ99], as recently improved by Hoza [Hoz21], achieves space complexity o(log3/2 n) in the
case w = poly(n) and ε = 1/poly(n).

Our focus, however, is on “black-box” derandomization, where we only have oracle access to
the function B : {0, 1}n → {0, 1}. In this setting, we consider two questions:

1. Is there a small set Q ⊆ {0, 1}n such that knowing the value of an arbitrary branching program
B on all points of Q allows us to estimate Pr[B(Un) = 1] up to additive error ε? We call the
size of the smallest such Q the query complexity of two-sided derandomization.

2. If so, can we explicitly construct this set, and compute the estimate of the probability, in
space O(log |Q|)?

Such algorithms can be seen as deterministic analogues of samplers for a restricted class of
functions. (See the survey [Gol11] for a general treatment of samplers.) These are defined as
follows, following the language of Cheng and Hoza [CH20]:

Definition 1.2. Let F be a class of functions f : {0, 1}n → {0, 1}. A deterministic ε-sampler
for F is an algorithm SAMP that, given oracle access to an arbitrary f ∈ F , makes queries to f
and outputs SAMPf () ∈ R such that

|SAMPf ()− Pr[f(Un) = 1]| ≤ ε.

We say the the query complexity S is the maximum over f ∈ F of the number of distinct queries
made. We say the sampler is explicit if, given n, ε, and parameters defining the family F and
ε > 0, SAMP can be computed by a uniform algorithm with space complexity O(log S).

We say that SAMP is nonadaptive if it makes nonadaptive queries to its oracle f . A special
case of nonadaptive samplers are deterministic averaging samplers whereby the output of the
sampler is the average of f over its set Q of oracle queries.

It can be shown that deterministic averaging ε-samplers for a class F are equivalent to ε-
pseudorandom generators (PRGs) for the class F , where the seed length of the PRG is equal to
the logarithm of the query complexity of the sampler.

We also consider deterministic hitters (i.e. hitting set generators), a weaker one-sided analogue
of deterministic samplers.

Definition 1.3. Let F be a class of functions f : {0, 1}n → {0, 1}. A deterministic ε-hitter for
F is a set H ⊆ {0, 1}n such that for every f ∈ F where Prx←Un

[f(x) = 1] > ε, there is x ∈ H
such that f(x) = 1. We say that H is explicit if the elements of H can be enumerated in space
O(log |H|).

2

It can be shown that a deterministic ε-sampler SAMP for a class F implies a deterministic
2ε-hitter H for F , where H is explicit if SAMP is. (Let H be the queries made by SAMPf0 on the
all-zeroes function f0.)

A standard application of the probabilistic method (see Appendix A) shows that there do ex-
ist deterministic averaging samplers (i.e. PRGs) with polynomial query complexity for ordered
branching programs of polynomial size. Specifically, for ordered branching programs of length n
and width w, there exists a deterministic averaging ε-sampler with query complexity poly(nw/ε),
and this is optimal. However, constructing an explicit deterministic sampler with matching query
complexity has been a longstanding open problem. The classic deterministic averaging samplers
(i.e. PRGs) of Nisan [Nis92] and Impagliazzo–Nisan–Wigderson [INW94] have query complexity
exp(Θ(log(n) log(nw/ε))), and this has not been improved except where w ≤ 3 or ε = n−ω(1) or
w = n−ω(1).

However, in other models the picture is not so clear. There has been extensive work on permuta-
tion branching programs, which are a subset of ordered branching programs that posses additional
structure.

Definition 1.4. An (ordered) permutation branching program of length n, and width w is
an ordered branching program where for all t ∈ [n] and σ ∈ {0, 1}, Bt(·, σ) is a permutation on [w].

Similarly to how general ordered branching programs can simulate walks on general directed
graphs of outdegree 2, permutation branching programs can simulate walks on 2-regular and con-
sistently labelled directed graphs G. Indeed, for every such graph G, the ordered branching program
BG,u,v,n defined earlier will be a permutation branching program.

There are several constructions of deterministic averaging samplers for permutation branching
programs that beat the classic Nisan and INW analyses in the constant width regime [BRRY10,
KNP11, De11, Ste12]. We consider the opposite regime, that of unbounded width permutation
branching programs with a single accept state. This model was introduced by Hoza, Pyne and
Vadhan [HPV21], and corresponds to derandomizing walks with no constraint on the size of the
graph, merely requiring it to be consistently labeled.

In the case of one-sided derandomization, they established that deterministic hitters for bounded-
width permutation branching programs are also deterministic hitters for unbounded width permu-
tation BPs:

Proposition 1.5 ([HPV21] Proposition 7.1). Given n ∈ N and δ > 0, there is a value w = O(n2/δ)
such that if H ⊆ {0, 1}n is a deterministic δ-hitter for permutation branching programs of length n
and width w, then H is a deterministic 2δ-hitter for permutation branching programs of length n
and unbounded width (with a single accept state).

This result, together with an accompanying lower bound (see Claim 2.2), established that
optimal hitters for bounded-width permutation branching programs imply optimal hitters for the
unbounded width case, but says nothing about two-sided derandomization.

In the two-sided regime, they constructed an explicit deterministic averaging ε-sampler for
unbounded width permutation branching programs with query complexity exp(Õ(log(n) log(1/ε))).
Moreover, they showed an unconditional lower bound on the query complexity of deterministic
averaging samplers of exp(Ω̃(log(n) log(1/ε))). They also showed a random set Q of points in
{0, 1}n fails to produce a deterministic averaging sampler whp unless |Q| = exp(Ω(n)), so in
contrast to the case of general ordered branching programs, they obtained an explicit deterministic
sampler with exponentially smaller query complexity than is obtained via the probabilistic method.

3

However, there remained a gap between their upper bound of exp(Õ(log(n) log(1/ε))) and the lower
bound of (n/ε)Ω(1) = exp(Ω(log(n/ε))) on the query complexity of general (possibly non-averaging)
deterministic ε-samplers for this model.

Next, Pyne and Vadhan [PV21] constructed an explicit deterministic ε-sampler (in fact a
weighted pseudorandom generator, which outputs a fixed linear combination of the queried points)
for the model with query complexity exp(Õ(log(n)

√
log(n/ε) + log(1/ε))). This deterministic

sampler obtains smaller query complexity than every deterministic averaging sampler when ε =
n−Ω(1). Thus, they obtained an unconditional separation between the query complexity of de-
terministic averaging and general deterministic samplers for the model. However, this left a
gap between the lower bound on query complexity of exp(Ω(log(n/ε))) and the upper bound of
exp(min{Õ(log(n)

√
log(n/ε) + log(1/ε)), Õ(log(n) log(1/ε))}) required for two-sided derandomiza-

tion of the model. In addition, their construction was highly involved, and relied on sophisticated
results in spectral graph theory [CKK+18,AKM+20], as well as the connection between the INW
generator on permutation branching programs and the derandomized square of Rozenman and
Vadhan [RV05].

1.2 Our Contribution

Our main result is to resolve the query complexity of derandomizing unbounded-width permutation
branching programs.

Theorem 1.6. There is a non-explicit deterministic nonadaptive ε-sampler for permutation branch-
ing programs of length n and unbounded width (with a single accept state) that has query complexity
poly(n/ε).

Thus, we establish the optimal query complexity for deterministic algorithms estimating the
fraction of fixed-length walks from u that end at v for arbitrary u, v in an arbitrarily sized
consistently-labeled graph. Furthermore, we obtain a deterministic sampler that achieves query
complexity poly(n) for ε = 1/poly(n), whereas every deterministic averaging sampler with these
parameters has query complexity exp(Ω(log2 n)) [HPV21]. This gives a simple unconditional sepa-
ration between averaging samplers and general nonadaptive samplers in the no-randomness regime
with respect to a natural computational model.

We prove this result via a reduction from the unbounded-width case to the bounded-width case.
We show that an optimal family of samplers for bounded-width permutation branching programs
can be used to construct an optimal sampler for unbounded-width ones. Since optimal non-explicit
samplers for the bounded-width case exist via the probabilistic method (See Appendix A), this
immediately establishes our result.

We now state the reduction. For the remainder of the paper, rather than working with branching
programs with a single accept state vacc ∈ Vn, we allow branching programs to have a set Vacc ⊆ Vn

of accept vertices, where B(x) = 1 if B[v0, x] ∈ Vacc . We let a = |Vacc | be the number of accept
vertices.

Theorem 1.7. Let S = {SAMPn,w,ε} be a family of deterministic ε-samplers SAMPn,w,ε for
permutation branching programs of length n and width w such that SAMPn,w,ε has query complex-
ity poly(nw/ε). From S, we can construct a deterministic ε-sampler SAMP′n,a,ε for permutation
branching programs of length n and unbounded width with a accept vertices that has query complex-
ity poly(na/ε). Moreover, if the samplers SAMPn,w,ε in S are explicit then so is SAMP′n,a,ε, and
if the samplers SAMPn,w,ε in S are non-adaptive then so is SAMP′n,a,ε.

4

Note that this reduction preserves explicitness and (non-)adaptiveness, so optimal explicit de-
terministic samplers (for instance, optimal explicit PRGs) for the bounded width case imply explicit
deterministic samplers for unbounded-width permutation BPs that have optimal space complex-
ity O(log(na/ε)). Put differently, optimal black-box two-sided derandomization of permutation
branching programs with k vertices in all layers is no harder than derandomization of permutation
branching programs with k accept vertices in the final layer and no restriction on width.

We summarize the current known derandomizations for unbounded-width permutation branch-
ing programs. An entry of “Conditional” means an optimal explicit construction for permutation
branching programs of bounded width would imply an explicit construction.

Object Query Complexity Explicit? Reference

Det. Hitter exp(O(log(na/ε))) Conditional [HPV21]

PRG exp(Õ(log(n) log(a/ε))) Yes [HPV21]

WPRG exp(Õ(log(n)
√

log(na/ε) + log(a/ε))) Yes [PV21]
Det. Sampler exp(O(log(na/ε))) Conditional This work.

1.3 Proof Overview

Our construction is very simple, and in contrast to prior work on the model [HPV21,PV21] the
proof uses neither special properties of the INW PRG [INW94], nor results from spectral graph
theory.

The key idea behind Theorem 1.7 is that compositions of layers of permutation branching pro-
grams themselves define permutations. More concretely, fixing a permutation branching program
B, an input x ∈ {0, 1}n−i and an accept state vf ∈ Vacc in the final layer, there is at most one
state v in layer i such that B[v, x] = vf . With this observation, we can use a sparse set of strings
T ⊆ {0, 1}n to restrict the branching program. For every layer Vi, we remove all states v ∈ Vi

where for all x ∈ T , B[v, x1..n−i] /∈ Vacc . Since each element of T can cause at most a = |Vacc |
vertices in every layer to be included in the restricted program, which we denote BT , we limit the
width of BT to at most |T | · a. Furthermore, by adding n|T | dummy states we have that BT can
be computed by a permutation branching program.

We next show that there is a sparse set T such that the restriction induced by T is a good
approximation of the original program. We take T to be the set of points queried by a deterministic
hitter for permutation branching programs of unbounded width. To obtain T from our hypothesis,
we use a result of HPV, which proves that samplers for the bounded-width case are hitters for the
unbounded-width case (Proposition 1.5). We show that the states not included in the restricted
program are unimportant, in that removing all of them simultaneously only changes the acceptance
probability Pr[B(Un) = 1] by at most ε/2.

Then to estimate the acceptance probability of the restricted program, we use a second sampler
that is good against branching programs of width |T | · a, and return the output of the sampler
on the restricted program BT . Unfortunately, even if T is explicit it is unclear how to learn BT

given only oracle access to the original program B. To avoid having to do so, we construct a way
to compute BT (x) for arbitrary x ∈ {0, 1}n given only oracle access to B; we apply this procedure
whenever the second sampler queries BT . Thus we obtain a good estimate of Pr[BT (Un) = 1],
which is itself a good estimate of Pr[B(Un) = 1], so we conclude.

1.4 Organization

In Section 2 we recall that a deterministic ε-sampler for a class of functions implies a deterministic
2ε-hitter for that class, and use this to establish the optimal space and query complexity of samplers

5

for unbounded-width permutation BPs. In Section 3 we prove that hitters can be used to restrict
unbounded-width permutation BPs to bounded width, and that this restriction can be done in a
black-box manner, and this restriction is a good approximation of the original program. Then in
Section 4, we combine these two results and prove the main theorem.

2 Samplers Imply Hitters

We first recall that an arbitrary deterministic ε-sampler for a model that includes the all-zeroes
function (which includes functions computed by permutation branching programs of width at least
2) induces a deterministic 2ε-hitter for the model. We use this to establish tight lower bounds
on space and query complexity for deterministic samplers for permutation branching programs of
unbounded width.

Proposition 2.1. Let F be a class of functions f : {0, 1}n → {0, 1} that includes the constant
function f0(x) = 0. Then if A is an deterministic ε-sampler for F , the set of queries Q made by A
on the all-zeroes function f0 is a deterministic 2ε-hitter for F , and moreover Q is explicit if A is.

Proof. Assuming for contradiction this is not the case, there is f ∈ F such that f(Q) = 0 but
Pr[f(Un) = 1] > 2ε. But since the sampler must output a single estimate SAMPf () = SAMPf0()
for f and the all-0 program f0 (since the value of both functions on all queried points are identical),
it must fail to estimate the acceptance probability of one to within ε, a contradiction.

We then recall the optimal seed length for deterministic hitters for permutation branching
programs of unbounded width.

Claim 2.2 ([HPV21] Claim 7.3). Given n, a ∈ N and ε ∈ (1/4, 0) such that 1/2 > ε/a ≥ 2−n,
let H ⊆ {0, 1}n be a deterministic ε-hitter for permutation branching programs of unbounded width
and at most a accept vertices. Then |H| = (na/ε)Ω(1) = exp(Ω(log(na/ε))).

We recall the proof in Appendix A. From this, we can derive the optimal space and query
complexity of a sampler.

Corollary 2.3. Given 1/8 > ε ≥ 2−n and n, a ∈ N, let A be a deterministic ε-sampler for
permutation branching programs of length n and unbounded width with at most a accept vertices,
where ε/a ≥ 2−n. Then A has query complexity (na/ε)Ω(1). Moreover, if A is explicit it has space
complexity s = Ω(log(na/ε)).

Proof. We apply Proposition 2.1 to A and obtain a deterministic 2ε-hitter Q ⊆ {0, 1}n for per-
mutation branching programs of length n with at most a accept vertices. By Claim 2.2 we obtain
|Q| = (na/ε)Ω(1) which establishes the claimed bound on query complexity. Furthermore if A is
explicit and has space complexity s, it must run in time 2O(s) since it is required to halt, and thus
its query complexity |Q| is at most 2O(s). Combined with the lower bound on |Q|, we have that
s = Ω(na/ε).

3 Hitters Induce Bounded-Width Approximators

We next show that, given a permutation branching program B and a sufficiently good deterministic
hitter, the set of states v ∈ Vi for which there is a hitter output whose prefix reaches an accept
state starting from v forms an approximator of the original program. To show this, we define the
program “cut out” by a deterministic hitter. Then we show that we can evaluate this approximator
program on any input given only oracle access to B.

6

Definition 3.1. Given a set H ⊆ {0, 1}n and a permutation branching program B of length n
with a accept vertices Vacc and vertices V0, . . . , Vn, let the hit states in layer i be

Ki = {v ∈ Vi : ∃x ∈ H s.t. B[v, x1..n−i] ∈ Va}.

WLOG pad all such sets to have size K = maxni=0 |Ki|, where all transitions from padding states
in Ki do not lead to Ki+1. The induced hit program BH is the length n permutation branching
program with states in layer i given by {Ki} ∪ {{0, . . . , n} × [K]}, where we identify states in
{0, . . . , n} × [K] by (j, v). For v ∈ Ki, define the transition function

(BH)i(v, b) =

{
Bi(v, b) Bi(v, b) ∈ Ki+1

(i, v) otherwise.

Then greedily define transitions for {(i, v) : v ∈ [K]} to maintain the permutation property. For
all states (j, v) for j 6= i, let (BH)i((j, v), b) = (j, v).

We next show that the width of the induced hit program is bounded by the size of the domain
of H (and thus its seed length). This will allow us to derandomize the induced hit program as a
standard bounded-width permutation branching program.

Lemma 3.2. Given H ⊆ {0, 1}n and a permutation branching program B of length n with a accept
vertices, the width of the induced hit program BH is at most |H| · (n+ 2) · a.

To prove this, we require a proposition essentially showing that composing multiple layers of a
permutation branching program produces a permutation branching program of higher degree. This
is the only element of the proof that uses the fact that B is a permutation, rather than regular,
branching program.

Proposition 3.3. For every permutation branching program B, for every distinct v, v′ ∈ Vi and
σ ∈ {0, 1}k so that i+ k ≤ n, B[v, σ] 6= B[v′, σ].

Proof. We prove this by induction on k. The base case of k = 0 is vacuously true. Assuming
it holds for k, let B be an arbitrary permutation branching program and v, v′ ∈ Vi arbitrary
distinct states. Let σ ∈ {0, 1}k+1 be arbitrary. From the permutation property it must be the case
that u1 = B[v, σ1] 6= B[v′, σ1] = u2, so B[v, σ] = B[u1, σ2..k] 6= B[u2, σ2..k] = B[v′, σ] where the
inequality follows from the inductive step, and since σ, B and v, v′ were arbitrary we conclude.

We can then prove Lemma 3.2.

Proof. It suffices to show that the number of included states of the original program satisfies |Ki| ≤
|H|·a for all i ∈ {0, . . . , n−1}, since the width of BH is bounded by (n+2)·K = (n+2)·maxni=0 |Ki|.
For every fixed accept state u ∈ Vacc , there are at most |H| states v ∈ Vi such that there exists
x ∈ H such that B[v, x1..n−i] = u by Proposition 3.3, so we conclude via a union bound.

The induced hit program is well defined for every H ⊆ {0, 1}n. However, we wish to show
that the program induced by a sufficiently good deterministic hitter is a close approximation of the
original permutation branching program.

Lemma 3.4. Let H ⊆ {0, 1}n be a deterministic δ/na-hitter for permutation branching programs
of length n and unbounded width with a single accept state. Then for every permutation branching
program B of length n and unbounded width with at most a accept vertices, the induced hit program
BH satisfies

|Pr[BH(Un) = 1]− Pr[B(Un) = 1]| ≤ δ.

7

Proof. Let Vneg be the set of states of B not included in the induced hit program BH . For every
v ∈ Vneg in layer n− k, using the fact that H is a deterministic δ/na-hitter for branching programs
of length n, and hence for length n− k ≤ n since branching programs can ignore bits, we obtain

Pr[B[v, Uk] ∈ Vacc] =
∑

u∈Vacc

Pr[B[v, Uk] = u] ≤ a ·
δ

na
.

If v0 ∈ Vneg then BH is the all zeroes program and the above implies Pr[B(Un) = 1] ≤ δ so we are
done. Thus assume that v0 /∈ Vneg. For arbitrary x ∈ {0, 1}n such that B(x) 6= BH(x), it must
be the case that B(x) = 1 while BH(x) = 0, i.e. B passes through some element of Vneg in its
computation on x and B[v0, x] ∈ Vacc . Therefore,

|Pr[BH(Un) = 1]− Pr[B(Un) = 1]| ≤ Pr
x←Un

[B(x) 6= BH(x)]

= Pr
x←Un

[
(B[v0, x] ∈ Vacc)

∧
(

n∨

i=1

B[v0, x1..i] ∈ Vneg

)]

≤

n∑

i=1

∑

v∈Vi∩Vneg

Pr
x←Un

[(B[v0, x1..i] = v) ∧ (B[v, xi+1..n] ∈ Vacc)]

=

n∑

i=1

∑

v∈Vneg∩Vi

Pr[B[v0, Ui] = v] · Pr[B[v, Un−i] ∈ Vacc]

≤

n∑

i=1




∑

v∈Vneg∩Vi

Pr[B[v0, Ui] = v]


 ·

δ

n

≤
n∑

i=1

1 ·
δ

n
= δ.

Finally, we show that given H, we can evaluate an arbitrary input on the induced hit program.

Lemma 3.5. Given a permutation branching program B of length n and a set H ⊆ {0, 1}n, for
every x ∈ {0, 1}n we have

BH(x) =
n∧

i=0



∨

y∈H

B(x1..i||yi+1..n)




where || denotes string concatenation and x1..0 and yn+1..n are the empty string.

Proof. Fix arbitrary x ∈ {0, 1}n and let vi = B[v0, x1..i] for all i ∈ {0, . . . , n}. First suppose the
RHS evaluates to 1. For i ∈ {0, . . . , n} we have 1 =

∨
y∈H B(x1..i||yi+1..n), so there is some y ∈ H

such that B[vi, yi+1..n] ∈ Vacc , which is precisely the condition for including vi in the induced hit
program BH , and this holds for every i, so BH(x) = 1. Now suppose the RHS evaluates to 0.
Fixing the least i such that

∨
y∈H B(x1..i||yi+1..n) = 0, we have that vi is not included in BH and

so B[vi−1, xi] = u /∈ Ki. Since u is always subsequently wired to itself and marked as reject in the
final layer we have BH(x) = 0.

Note that this implies that we can evaluate BH(x) given x and oracle access to B, and this
procedure is explicit if H is.

8

4 Putting it All Together

We can now go from samplers for bounded-width permutation branching programs to samplers for
unbounded-width permutation branching programs. We follow the outline in the proof sketch in
Section 1.4. First, we use an optimal sampler for the bounded-width case to generate an optimal
deterministic hitter for the bounded-width case, which implies an optimal deterministic hitter H
for the unbounded-width case. Then we use a second sampler and evaluate it on the induced
hit program BH , and by choosing the parameters for the second sampler appropriately obtain an
accurate estimate of Pr[BH(Un) = 1] and thus Pr[B(Un) = 1].

Theorem 1.7. Let S = {SAMPn,w,ε} be a family of deterministic ε-samplers SAMPn,w,ε for
permutation branching programs of length n and width w such that SAMPn,w,ε has query complex-
ity poly(nw/ε). From S, we can construct a deterministic ε-sampler SAMP′n,a,ε for permutation
branching programs of length n and unbounded width with a accept vertices that has query complex-
ity poly(na/ε). Moreover, if the samplers SAMPn,w,ε in S are explicit then so is SAMP′n,a,ε, and
if the samplers SAMPn,w,ε in S are non-adaptive then so is SAMP′n,a,ε.

Proof. By assumption, we have a deterministic ε-hitter for permutation branching programs of
length n and width w = O(n3a/ε), where this w is that obtained from Proposition 1.5 with
n = n and δ = ε/(8na). Applying Proposition 2.1, we obtain a deterministic ε/(4na)-hitter
H ⊆ {0, 1}n for permutation BPs of length n and width w = O(n3a/ε), with |H| = (na/ε)O(1) =
exp(O(log(na/ε))). Applying Proposition 1.5, we have that H is a deterministic ε/2na-hitter for
permutation branching programs of unbounded width with a single accept state.

Now let A = SAMPn,w′,ε/2 be an ε/2-sampler for permutation branching programs of length n
and width w′ = |H| · (n+2) · a = poly(na/ε). By assumption, A has query complexity poly(na/ε).

Finally, given an arbitrary permutation branching program B with at most a accept vertices,
define SAMP

′B
n,a,ε() = ABH (), where whenever A queries the value of BH on x ∈ {0, 1}n, we apply

Lemma 3.5, so SAMP
′B
n,a,ε queries

{(x1..i||y1..n−i) : i ∈ {0, . . . , n}, y ∈ H}.

Thus SAMP′n,a,ε has query complexity that equals the query complexity of A times (n + 1) · |H|,
for a total query complexity of poly(na/ε). If S = {SAMPn,w,ε} is non-adaptive (i.e. the queries
made by A do not depend on BH and thus B) then SAMP′n,a,ε is. Finally, if S = {SAMPn,w,ε} is
explicit then SAMP′n,a,ε is by definition.

Finally, we prove SAMP′n,a,ε is an ε-sampler. We have that BH is a permutation branching
program of length n and width at most |H| ·(n+2) ·a by Lemma 3.2, so by our choice of parameters
A is an ε/2-sampler for BH , i.e. |ABH ()−Pr[BH(Un) = 1]| ≤ ε/2. Then we conclude by the triangle
inequality:

|SAMP
′B
n,a,ε()− Pr[B(Un) = 1]|

= |ABH ()− Pr[B(Un) = 1]| (Lemma 3.5)

≤ |ABH ()− Pr[BH(Un) = 1]|+ |Pr[BH(Un) = 1]− Pr[B(Un) = 1]|

≤ |ABH ()− Pr[BH(Un) = 1]|+ ε/2 (Lemma 3.4)

≤ ε

and since B was arbitrary we obtain the result.

9

References

[AKM+20] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron
Sidford, and Salil P. Vadhan. High-precision estimation of random walks in small
space. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, Durham, NC, USA, November 16-19, 2020, pages 1295–1306. IEEE, 2020.

[BCG18] Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-optimal error
for read-once branching programs. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 353–
362. ACM, 2018.

[BNS92] László Babai, Noam Nisan, and Márió Szegedy. Multiparty protocols, pseudorandom
generators for logspace, and time-space trade-offs. Journal of Computer and System
Sciences, 45(2):204–232, 1992. Twenty-first Symposium on the Theory of Computing
(Seattle, WA, 1989).

[BRRY10] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom genera-
tors for regular branching programs. In FOCS, pages 40–47. IEEE Computer Society,
2010.

[CH20] Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandomization of
small space. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169
of LIPIcs, pages 10:1–10:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[CKK+18] Michael B Cohen, Jonathan Kelner, Rasmus Kyng, John Peebles, Richard Peng,
Anup B Rao, and Aaron Sidford. Solving directed laplacian systems in nearly-linear
time through sparse lu factorizations. In 2018 IEEE 59th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 898–909. IEEE, 2018.

[De11] Anindya De. Pseudorandomness for permutation and regular branching programs.
In IEEE Conference on Computational Complexity, pages 221–231. IEEE Computer
Society, 2011.

[Gol11] Oded Goldreich. A sample of samplers: A computational perspective on sampling. In
Oded Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea on the
Interplay between Randomness and Computation - In Collaboration with Lidor Avi-
gad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman,
Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan,
Avi Wigderson, David Zuckerman, volume 6650 of Lecture Notes in Computer Science,
pages 302–332. Springer, 2011.

[Hoz21] William M. Hoza. Better pseudodistributions and derandomization for space-
bounded computation. In Mary Wootters and Laura Sanità, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Wash-
ington, USA (Virtual Conference), volume 207 of LIPIcs, pages 28:1–28:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

10

[HPV21] William M. Hoza, Edward Pyne, and Salil P. Vadhan. Pseudorandom generators for
unbounded-width permutation branching programs. In James R. Lee, editor, 12th
Innovations in Theoretical Computer Science Conference, ITCS 2021, January 6-8,
2021, Virtual Conference, volume 185 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory
of Computing, pages 356–364, Montréal, Québec, Canada, 23–25 May 1994.

[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators
for group products: extended abstract. In Lance Fortnow and Salil P. Vadhan, editors,
STOC, pages 263–272. ACM, 2011.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3
branching programs. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 626–637. ACM, 2019.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449–461, 1992.

[PV21] Edward Pyne and Salil Vadhan. Pseudodistributions That Beat All Pseudorandom
Generators (Extended Abstract). In Valentine Kabanets, editor, 36th Computational
Complexity Conference (CCC 2021), volume 200 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 33:1–33:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[RV05] Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In Proceedings of
the 8th International Workshop on Randomization and Computation (RANDOM ‘05),
number 3624 in Lecture Notes in Computer Science, pages 436–447, Berkeley, CA,
August 2005. Springer.

[Ste12] Thomas Steinke. Pseudorandomness for permutation branching programs without the
group theory. Technical Report TR12-083, Electronic Colloquium on Computational
Complexity (ECCC), July 2012.

[SZ99] Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer
and System Sciences, 58(2):376–403, 1999.

A The Optimal Seed Length For Deterministic Hitters

We prove the optimal seed length for deterministic hitters for unbounded-width permutation
branching programs. The proof is identical to that given in Hoza et al. [HPV21] except we ex-
plicitly consider the number of accept vertices in the final layer.

Claim A.1 ([HPV21] Claim 7.3). Given n, a ∈ N and ε ∈ (1/4, 0) such that 1/2 > ε/a ≥ 2−n,
let H ⊆ {0, 1}n be a deterministic ε-hitter for permutation branching programs of unbounded width
and at most a accept vertices. Then |H| = (na/ε)Ω(1) = exp(Ω(log(na/ε))).

Proof. We prove the bounds on n and ε/a separately:

11

1. If |H| ≤ n− 1, there is some nonzero vector z ∈ F
n
2 such that for every x,

n⊕

i=1

zi ·H(x)i = 0.

The function B(x) = I[⊕n
i=1zi ·xi = 1] can be computed by a permutation branching program

(of width 2) with a single accept state, and Pr[B(Un) = 1] ≥ 1/2, but B(x) = 0 for all x ∈ H,
a contradiction.

2. If |H| ≤ a/4ε, there are at most a/4ε distinct length l = ⌈log(ε/a)⌉ − 1 prefixes of elements
of H. Letting B be a permutation branching program that reaches the ith state in the final
layer on input x if

l∑

j=1

2j−1 · xj = i,

we have that the final state of B(Un) is distributed uniformly over {0, . . . , 2l − 1}. Then
choosing a distinct states in the final layer that are not reached by every output of H (where
we use that 2l − a/4ε ≥ a) and marking them as accept, we obtain that Pr[B(Un) = 1] ≥
a(2ε/a) = 2ε whereas B(x) = 0 for all x ∈ H, a contradiction.

We also note the optimal seed length for hitters for general ordered branching programs (which
include permutation branching programs of bounded width). Together with the result converting
deterministic samplers into hitters (Proposition 2.1), this establishes the query complexity of two-
sided derandomization for the model is (nw/ε)Ω(1).

Claim A.2. Given n,w ∈ N and 1/2 > ε ≥ 2−n, let H ⊆ {0, 1}n be a deterministic ε-hitter for
ordered branching programs of width w and length n. Then |H| = (nw/ε)Ω(1).

Proof. We prove the bounds on w and 1/ε separately. The bound |H| = nΩ(1) is identical to the
same bound in the prior proof.

1. If |H| ≤ 1/2ε, there is some string σ of length l = ⌈log(1/ε)⌉ − 1 such that x1..l 6= σ for every
x ∈ H. Then let B be a width-2 ordered branching program where

B(x) = 1 ⇐⇒ x1..l = σ

(note that we use the program is non-regular to keep the width at 2), we have Pr[B(Un) =
1] ≥ 2ε but B(x) = 0 for all x ∈ H, a contradiction.

2. If |H| ≤ w/2, there are at most w/2 distinct length l = ⌈log(w)⌉ prefixes of elements of H.
Letting B be a branching program that reaches the ith state in the final layer on input x if

l∑

j=1

2j−1 · xj = i,

we have that the final state of B(Un) is distributed uniformly over {0, . . . , 2l − 1}. Then
choosing w/2 distinct states in the final layer that are not reached by every x ∈ H and
marking them as accept states, we obtain that Pr[B(Un) = 1] ≥ 1/2 whereas B(x) = 0 for
all x ∈ H, a contradiction.

12

We recall the existence of non-explicit deterministic averaging samplers for ordered branching
programs of bounded width. Since ordered branching programs are a superset of permutation
branching programs, this likewise implies the existence of optimal non-explicit averaging samplers
for bounded-width permutation branching programs. Together with Theorem 1.7 this implies
Theorem 1.6.

Proposition A.3. There is a family S = {SAMPn,w,ε} of (non-explicit) deterministic ε-samplers
SAMPn,w,ε for ordered branching programs of length n and width w such that SAMPn,w,ε has query
complexity poly(nw/ε).

Proof. First note that a branching program of length n and width w has a description using
k = poly(nw) bits, so there are at most 2k such programs. Now fix n,w ∈ N and ε > 0 and
consider a random set Q of size |Q| = 3k/ε where Qi is a random independently chosen element
of {0, 1}n for all i. Fixing an arbitrary ordered branching program B of length n and width w,
let µ = Pr[B(Un) = 1] be its accept probability and WLOG assume µ ≥ 1/2, since an additive
estimate of the accept probability implies an equivalent estimate of the reject probability. Then let
Yi = B(Qi) be the random variable that is 1 when B accepts on Qi. We have Yi ∈ [0, 1] and they
are independent for all i. Applying a Chernoff bound over the randomness of the strings in Q, we
obtain for all δ ∈ (0, 1)

Pr

[∣∣∣∣∣
1

|Q|

∑

i

Yi − µ

∣∣∣∣∣ ≥ δµ

]
≤ 2 exp(−|Q|2δ2µ/3).

Then choosing δ = ε we obtain

Pr

[∣∣∣∣∣
1

|Q|

∑

i

Yi − µ

∣∣∣∣∣ ≥ ε

]
≤ 2 exp(−3k2).

By a union bound, the probability that a random set Q of the chosen size fails to be a deterministic
averaging sampler for at least one of the 2k length n, width w branching programs is at most
2 exp(k − 3k2) < 1. Thus there exists some Qgood that is good for all such programs, so Qgood

generates a deterministic averaging ε-sampler SAMPn,w,ε for ordered branching programs of length
n and width w. By construction, |Qgood| = poly(nw/ε).

13

	1 Introduction
	1.1 Ordered Branching Programs
	1.2 Our Contribution
	1.3 Proof Overview
	1.4 Organization

	2 Samplers Imply Hitters
	3 Hitters Induce Bounded-Width Approximators
	4 Putting it All Together
	A The Optimal Seed Length For Deterministic Hitters

