
ar
X

iv
:2

10
7.

00
77

4v
2

 [
cs

.L
G

]
 1

5
Ju

l 2
02

1

Almost Tight Approximation Algorithms for Explainable Clustering

Hossein Esfandiari∗, Vahab Mirrokni†, Shyam Narayanan‡

July 16, 2021

Abstract

Recently, due to an increasing interest for transparency in artificial intelligence, several
methods of explainable machine learning have been developed with the simultaneous goal of
accuracy and interpretability by humans. In this paper, we study a recent framework of ex-
plainable clustering first suggested by Dasgupta et al. [11]. Specifically, we focus on the k-means
and k-medians problems and provide nearly tight upper and lower bounds.

First, we provide an O(log k log log k)-approximation algorithm for explainable k-medians,
improving on the best known algorithm of O(k) [11] and nearly matching the known Ω(log k)
lower bound [11]. In addition, in low-dimensional spaces d≪ log k, we show that our algorithm
also provides an O(d log2 d)-approximate solution for explainable k-medians. This improves
over the best known bound of O(d log k) for low dimensions [19], and is a constant for constant
dimensional spaces. To complement this, we show a nearly matching Ω(d) lower bound. Next, we
study the k-means problem in this context and provide an O(k log k)-approximation algorithm
for explainable k-means, improving over the O(k2) bound of Dasgupta et al. and the O(dk log k)
bound of [19]. To complement this we provide an almost tight Ω(k) lower bound, improving
over the Ω(log k) lower bound of Dasgupta et al. Given an approximate solution to the classic k-
means and k-medians, our algorithm for k-medians runs in time O(kd log2 k) and our algorithm
for k-means runs in time O(k2d).

1 Introduction

Clustering is one of the most fundamental optimization techniques that lies at the heart of many
applications in machine learning and data mining. Clustering techniques are vastly used for data
classification in unsupervised learning and semi-supervised learning, data compression and repre-
sentation, and even data visualization. As a result, many powerful techniques have been developed
for data clustering over the past decades. However, in the past few years due to an increasing
demand for transparency, people look with doubt at clusterings, or more generally learning mod-
els, that are not interpretable by humans. Consequently, there is an increasing demand to “stop
explaining black box machine learning models for high stakes decisions and use interpretable models
instead” [29].

With this motivation in mind, we study an easily interpretable and powerful clustering frame-
work suggested by Dasgupta et al. [11] called explainable clustering. This framework is based on
decomposing the space of the points using a decision tree where each node separates two clusters

∗Google Research. Email: esfandiari@google.com
†Google Research. Email: mirrokni@google.com
‡MIT. Work done as an intern at Google Research. Email: shyamsn@mit.edu

1

http://arxiv.org/abs/2107.00774v2

via a simple comparison based on one of the dimensions of the space. Decision trees are known as
simple and popular explainable models [27, 28]. In this framework, we evaluate our algorithms by
the ratio of the cost of the explainable clustering algorithm to an optimal non-explainable cluster-
ing algorithm. This has also been referred to as the price of explainability, since it measures the
required cost blowup to guarantee that the clustering is interpretable [11].

In this work, we provide almost optimal explainable algorithms for k-means clustering and k-
medians clustering. These clustering problems are central in data analysis and modern machine
learning with several applications in mining massive datasets. k-means clustering is defined as
follows: Given a dataset of n points where each data element is represented by a vector of real-
valued features, the goal is to find k representative vectors, called centers, such that the sum
of squared distances from each input vector to the closest center is minimized. Similarly, in k-
medians clustering, the goal is to minimize the sum of distances to the closest centers. k-means
clustering and k-medians clustering have become essential building blocks for unveiling hidden
patterns and extracting information in datasets, especially in the unsupervised clustering contexts
where supervised machine learning cannot be applied, or little is known about the data or when
the dataset is massive and hence the competitive supervised methods become impractical.

We first study the explainable k-medians clustering problem. As our first result, we develop
an O(log k log log k)-approximation algorithm for this problem. This improves nearly exponentially
over the previous O(k)-approximation algorithm of Dasgupta et al. We provide an example in
Appendix A for which the algorithm of Dasgupta et al. achieves a Θ(k)-approximation, showing
that developing new techniques are necessary to break the k barrier. In addition, we show that our
algorithm also provides an O(d log2 d)-approximate solution where d is the dimension of the space.
This is interesting when the dimension is low relative to k, specifically d ∈ o(log k

log log k). This improves
over the result of Laber and Murtinho [19] that provides an O(d log k)-approximation algorithm
for k-medians, since min(log k log log k, d log2 d) is always much smaller than d log k. Note that our
result implies a constant-factor approximation algorithm for explainable k-medians in constant-
dimensional spaces.

Next, we show that our approximation factors for explainable k-medians are tight up to a
log log k factor and a log2 d factor, respectively. Specifically, we show that for d = O(log k), there
is no o(log k)-approximation explainable clustering algorithm, which implies an Ω(min(d, log k))-
approximation lower bound. Previously, there was a known Ω(log k)-approximation lower bound
where d = poly(k), implying an Ω(min(log d, log k))-approximation lower bound [11].

Next, we study explainable k-means clustering and provide an O(k log k)-approximation algo-
rithm for this problem. We show that this is tight up to a log k factor by presenting an Ω(k)-
approximation hardness result. Our results improve over the O(k2)-approximation algorithm, and
Ω(log k)-hardness result of Dasgupta et al. [11]. Our results also improve over the O(dk log k)-
approximation algorithm of Laber and Murtinho [19]. Finally, as a side result, we provide a
3-approximation algorithm for explainable 2-means in arbitrary dimension, which is known to be
tight [11]. We summarize our results in Table 1.

We note that, if provided with an O(1)-approximate solution to the classical k-medians (resp.,
k-means), we provide randomized procedures for explainable k-medians (resp., k-means) with the
above approximation guarantees, that run in only O(kd log2 k) (resp., O(k2d)) time. The runtimes
are independent of the total number of points n, and are linear in the dimension d. In addition, we
provide a deterministic explainable k-means algorithm that runs in O(kd · n log n) time.

Finally, it is worth noting that for both k-medians and k-means, our randomized algorithms only

2

Problem Alg/LB Prior Work Our Work

Algorithm
O(k) [11] O(log k log log k)

k-medians O(d log k) [19] O(d log2 d)
Lower Bound Ω(min(log d, log k)) [11] Ω(min(d, log k))

Algorithm
O(k2) [11]

O(k log k)
k-means O(dk log k) [19]

Lower Bound Ω(min(log d, log k)) [11] Ω(k) for d ≥ Ω(log k)

Table 1: Summary of approximation algorithms and lower bounds, for both k-medians and k-means
in d-dimensional space R

d. We include both our results and prior results. The approximation ratios
are with respect to the optimal non-explainable clustering.

use an approximate (not necessarily explainable) solution to k-means or k-medians to construct
an explainable clustering and ignore the rest of the data points. Therefore, our algorithms can be
combined with a coreset construction, or run on top of another sublinear algorithm for the classic
version of the problem and provide an explainable clustering in the same setting.

1.1 Other Related Work

Explainable k-means and k-medians clustering have also been studied in practice. Frost et al. [13]
and Laber and Murtinho [19] provided practical algorithms for explainable clustering evaluated on
real datasets. Other results has also been developed for creating interpretable clustering models or
clustering models based on decision trees [3, 4, 12, 21, 23].

Due to their applications, the classical k-means and k-median problems have been studied
extensively from both theoretical and practical perspectives with many approximation algorithms
and heuristics [22, 2, 5, 16, 15, 20]. In terms of their computational complexity, these problems
are hard to approximate within a factor better than 1.1 in high-dimensional Euclidean spaces
and admits approximation schemes in low-dimension [1, 17, 7]. On the other hand, they admit
constant-factor approximation algorithms for high-dimensional Euclidean spaces, better than for
general metric spaces [9]. Due to hardness results, constant-factor approximation factors are not
achievable for the explainable clustering formulation.

There are several near-linear time algorithms for the classical k-means and k-medians[18, 30,
26, 8, 25, 10]. In low dimensional Euclidean space Kolliopoulos and Rao provide an approximation
scheme for k-median in near linear O(f(ǫ, d)n logd+6) time [18]. Recently, Cohen-Addad et al.
improved this result and provide a Õ(f(ǫ, d)n) time algorithms that w.h.p., give a 1+ε approxima-
tion solutions to k-median and k-means in spaces of doubling dimension d [8]. Mettu and Plaxton
provide a randomized algorithm that w.h.p. returns a O(1)-approximate solution to k-median in
time O(nk), when the ratios of the distances do not exceed 2O(n/log(n/k)) [25].

Independent Work. We note that there have been closely related independent works due to
Makarychev and Shan [24], Gamlath, Jia, Polak, and Svensson [14], and Charikar and Hu [6].
The paper [24] provides an O(log k log log k)-approximation for k-medians, matching ours, and an
O(k log k log log k)-approximation for k-means, an O(log log k) factor worse than ours. They also
provide guarantees for the related k-medoids problem (also known as k-medians with ℓ2 objective).
The paper [14] provides an O(log2 k)-approximation for k-medians, slightly under a quadratic factor

3

worse than ours, and an O(k log2 k)-approximation for k-means, an O(log k)-factor worse than ours.
They also extend their guarantees to general ℓpp-objectives. Finally, the paper [6] looks at k-means
in low dimensions, and proves an O(k1−2/d · poly(d, log k))-approximation, which improves over
our results for k-means if and only if d ≪ log k

log log k . We are the only paper of these to provide a
o(log k)-approximation guarantee for explainable k-medians in low dimensions.

1.2 Preliminaries and Notation

We let X ⊂ R
d be a set of n data points, which we wish to cluster. A clustering algorithm partitions

X into k clusters X1, . . . ,Xk and assigns a center µi ∈ R
d to each cluster Xi. The goal of k-medians

clustering is to choose the partitioning and centers to minimize
∑k

i=1

∑

x∈Xi
‖x − µi‖1. The goal

of k-means clustering is to choose the partitioning and centers to minimize
∑k

i=1

∑

x∈Xi
‖x−µi‖22.

In explainable clustering, the partition X1, . . . ,Xk must be determined by a decision tree with
k-leaves, where each decision, or split, is determined by a threshold in a single direction.

In all of our algorithms (both k-medians and k-means), we start by running a standard (non-
explainable) clustering algorithm, which obtains a set of cluster centers µ1, . . . ,µk. For any 1 ≤
r ≤ d and any point x, we let xr be the rth coordinate of x. We also let µi,r be the rth coordinate
of µi, and let M be the set of cluster centers {µ1, . . . ,µk}. Also, for any point x ∈ X , we let c(x)
be its closest center in M (with respect to ℓ1 for k-medians and ℓ2 for k-means). Our algorithms
will use M to produce a decision tree, which we call T . Each node u ∈ T , except the root node
u0, stores a threshold in a single direction (either {xr < t} or {xr ≥ t}), representing the decision
tree’s instruction for when you may traverse from u’s parent to u.

Each u has some set of cluster centers contained in u, which we call M(u) – in our algorithms,
each leaf node will have precisely one cluster center. We let B(u) be the “box” determined by
the decisions made when splitting (note that some of the dimensions of B(u) may be infinite).
So, M(u) = M ∩ B(u). In a slight abuse of notation, we define |u| := |M(u)|, i.e., |u| is the
number of cluster centers sent to the node u. We let B′(u) ⊂ B(u) be the smallest axis-parallel
box that containsM(u). In other words, B′(u) = [a1(u), b1(u)]×· · ·× [ad(u), bd(u)], where ar(u) =
minµi∈M(u) µi,r and br(u) = maxµi∈M(u) µi,r. Let Rr(u) = br(u) − ar(u) be the rth dimension of
the box B′(u). We also let X (u) = X ∩B(u), i.e., X (u) is the set of points in the main pointset X
that are sent to node u. Finally, for any point x ∈ X , we define s(x) as its assigned cluster by the
tree T . In other words, if x ∈ B(u), where u is a leaf node, then s(x) is the unique cluster center
in M(u). Our algorithms, with probability 1, will never create a node u with any point x on the
boundary of B(u), so we do not have to worry about points being assigned to multiple leaves.

We also note a few notational conventions. First, we use log to denote the natural log, unless a
base is specified. For any positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We use the
inequality . to mean a . b if there is some absolute constant C > 0 such that a ≤ C · b.

1.3 Our Techniques

The methods of both Dasgupta et al. [11] and Laber and Murtinho [19] follow a similar strategy.
For any node u in the decision tree, if we split u to form two nodes v,w, this splitting incurs some
cost caused by points in X that no longer are with their assigned cluster. Dasgupta et al. [11]
shows that each split can be formed in a way that the extra cost of all splits at depth h in the
tree does not exceed the total clustering cost. While the depth of the tree is O(log k) in the best
case, the tree they construct could have depth up to k, which gives them an O(k)-approximation

4

for k-medians. (The same technique gives them an O(k2)-approximation for k-means.) Laber and
Murtinho [19] instead roughly shows that one can perform the splits so that the cost incurred in
each dimension does not significantly exceed the total k-medians (or k-means) cost.

Unlike the previous work, all of our algorithms (k-medians, k-means, and 2-means) either enjoy
randomness or are based on a probabilistic analysis. Ideally we wish to create an explainable
clustering algorithm that maps each xi to a center µs such that ‖xi −µs‖ is not much larger than
minj ‖xi−µj‖, i.e., we map every data point to an approximately optimal cluster center. However
this is not possible simultaneously for all points. To compensate for this, we analyze a randomized
procedure that upper bounds the expectation of ‖xi−µs‖, where µs is the assigned cluster. Overall,
we deviate significantly from [11, 19] by comparing the expected cost of each point to optimal, as
opposed to comparing the (deterministic) cost of each split to the optimal clustering cost.

In the case of k-medians, the algorithm is fairly simple. Roughly speaking, we iteratively select
uniformly at random lines until they separate the k centers µ1, . . . ,µk. In the worst case this
procedure is horribly slow; however, it can be sped up with some modifications. For any point
x with closest center c(x), we bound the probability that x is assigned to a cluster s(x) with
‖x − s(x)‖1 ≥ T · ‖x − c(x)‖1, for any integer T ≥ 1. Note that for x to be assigned to s(x),
the random lines must have split s(x) from x before splitting c(x) from x. It is easy to show
this probability is O(1/T), so a naive union-bound over all s(x) allows us to bound our desired
probability by O(k/T). To improve upon this, we instead note that x must also split not only
from c(x), but also from all T -approximate (or better) clusters c′(x) before being split from some
s(x). In addition, note that the number of lines needed until we finally split x from s(x) is a
Geometric random variable, so it exceeds its expectation by a multiplicative factor of log k with
only 1/k probability, meaning with high probability, no faraway cluster s(x) takes too long to get
split. By considering the different orderings in which random lines split x from c(x) and all c′(x)
with ‖x− c′(x)‖1 ≤ T‖x− c(x)‖1, we provide a complicated upper bound on this probability that
depends on the locations of all cluster centers. Finally, by integrating over T we obtain a telescoping
sum which provides an O(log k log log k)-approximation for the cost of each point x.

In the case of k-means, we start by following the deterministic approach of Dasgupta et al. [11],
but we add a randomized twist that improves the analysis. At a high level, [11] shows that at
each step, it is possible to choose a splitting line with sufficiently few points being mapped to
the wrong cluster center. Unfortunately, as mentioned previously, this tree can be very lopsided
and have depth k, which can blow up the approximation factor. To resolve this issue, we create
a distribution over choosing separating lines that balances the errors of the splitting line with
the lopsidedness of the points at each step. This distribution is somewhat based on the uniformly
random procedure in the k-medians case, but modified to deal with the issues of squared costs. This
combination of creating a non-trivial random distribution with balancing errors and lopsidedness
reduces the total clustering cost significantly. However, we note that for this k-means algorithm, the
randomization is primarily helpful for the analysis, so our algorithm can either remain randomized
(which allows for sublinear guarantees, as in the k-medians case) or be made deterministic.

2 Algorithm for Explainable k-medians Clustering

In this section, we provide both an O(log k log log k) and an O(d log2 d)-approximation algorithm
(in expectation) for explainable k-medians clustering. We start by describing and analyzing a
simplified algorithm that is accurate but can be very slow. We then show how to modify the

5

algorithm to be highly efficient, and prove that the approximation guarantees still hold.

2.1 Simplified algorithm

Our simplified algorithm works as follows. First, we run some standard k-medians algorithm that
provides an O(1)-approximation with k centers µ1,µ2, . . . ,µk ∈ R

d. We suppose that all of the
centers µ1, . . . ,µk, as well as all of the points, are contained in [−B,B]d for some large B. Our
approximation factor does not depend on B, so B may be arbitrarily large. We first consider the
following simplified procedure. At each step i, we pick a random direction r ∈ [d], as well as a
random point z ∈ [−B,B]. We choose the separating line ℓi = {xr = z}. However, we only use this
line to separate a (currently leaf) node u if this line actually separates some of the cluster centers
in that node (or equivalently, splits the cell B′(u)). Note that that often, the line may not be used
at all. Assuming the line is actually used, each leaf node for which the line is used is split into 2
child nodes. We repeat this process until there are k leaf nodes, each with exactly one center in it.

For any pair of cluster centers µi,µj , note that the probability of a randomly selected line ℓ
separating these two centers is precisely ‖µi − µj‖1/(B · d). Therefore, in expectation we should
expect about (B · d)/‖µi − µj‖1 random lines to be chosen before µi and µj are separated.

Fix a point x ∈ X , and suppose that the closest center to x is some µr. Our main result, which
will allow us to obtain both an O(log k log log k)-approximation and an O(d log2 d)-approximation
algorithm, is the following.

Theorem 1. Fix any point x ∈ R
d and any k clusters µ1, . . . ,µk ∈ [−B,B]d, and define c :=

arg min1≤i≤k ‖x− µi‖1. Suppose that our randomized explainable clustering procedure assigns x to
cluster µs. Then,

E [‖x− µs‖1] ≤ O(log k · log log k) · ‖x− µc‖1.
In addition,

E [‖x− µs‖1] ≤ O(d · log2 d) · ‖x− µc‖1.

To see why this implies our final result, consider any dataset X and any k clusters µ1, . . . ,µk

that form an O(1)-approximation for k-medians clustering. If we define c(x) to be the closest
cluster center to x (i.e., the “true” center) and s(x) to be the assigned cluster center to x by the
explainable algorithm, then by Theorem 1 and Linearity of Expectation,

E

[
∑

x∈X
‖x− s(x)‖1

]

≤ O(log k log log k) ·
∑

x∈X
‖x− c(x)‖1 = O(log k log log k) ·OPT,

where OPT is the optimal clustering cost. Likewise,

E

[
∑

x∈X
‖x− s(x)‖1

]

≤ O(d · log2 d) ·
∑

x∈X
‖x− c(x)‖1 = O(d · log2 d) ·OPT.

Hence, we obtain both an O(log k log log k) and an O(d log2 d) approximation guarantee.

2.2 Proof of Theorem 1

Assume WLOG that µ1,µ2, . . . ,µk are sorted so that ‖x− µ1‖1 ≤ ‖x − µ2‖1 ≤ · · · ≤ ‖x− µk‖1
(so we assume that c = 1). In addition, assume WLOG that we scale and shift the dataset so

6

that ‖x − µ1‖1 = 1 and x is at the origin. By redefining B if necessary, we still assume that x
and µ1, . . . ,µk are all contained in [−B,B]d. In addition, we partition the set [k] into contiguous
subsets S0, S1, S2, . . . , where i ∈ Sh if 2h ≤ ‖x − µi‖1 < 2h+1. Note that 1 ∈ S0. Finally, for each
integer H, we define P (H) as the largest index in

⋃

h≤H Sh. Note that even if Si is empty, P (H)
is well defined since 1 ∈ S0, so therefore, 1 ≤ P (0) ≤ P (1) ≤

For any integer H ≥ 2, we will bound the probability that our procedure assigns x to some
cluster µs for some s ∈ SH in two ways: first in terms of the number of clusters k, and second in
terms of the dimension d. Note that if x is assigned to µs, then for all 1 ≤ p < s, the first time
that we randomly chose a line ℓ that separated µp and µs, x was on the same side as of the line
as µs. This is because this line will be used to separate µp and µs in the explainable clustering
procedure, as it is the first sampled line that separates them, and if x were on the same side as µp,
it could not be assigned to µs. So, if x is assigned to µs for some s ∈ SH , there are two options:

1. Let p = P (H − 2). Then, there exists s ∈ SH such that the first sampled line that splits µ1

from µs splits µ1, . . . ,µp from x and µs.

2. There exists 1 ≤ p < P (H − 2) and s ∈ SH such that the first sampled line that splits µ1

from µs splits µ1, . . . ,µp from x and µp+1. In addition, the first sampled line that splits
µp+1 from µs splits µp+1 from x.

For each H ≥ 2 and p ≤ P (H − 2), we let A(p,H) be the event that the corresponding option
occurs (option 1 for p = P (H − 2), option 2 for p < P (H − 2)). By the union bound over p, the
probability that x is assigned to µs for some s ∈ SH is at most

∑

p≤P (H−2) P(A(p,H)). Therefore,

since ‖x− µs‖1 is O(2H) if s ∈ sH , we have that for any V ≥ 1,

E[‖x− µs‖1] ≤ O

V +
∑

H:2H≥V

2H ·
∑

p≤P (H−2)

P(A(p,H))

 . (1)

The additional O(V) term comes from the fact that with some probability, we pick a cluster µs

with s ∈ SH for some H satisfying 2H ≤ V , in which case ‖x− µs‖1 ≤ 2V.
Before we get to bounding P(A(p,H)), we make some definitions. For two values a, b ∈ R, we

define a ∧ b = min(a, b) if a, b ≥ 0, max(a, b) if a, b ≤ 0, and 0 if a < 0 < b or b < 0 < a. Note that
this operation is associative (and commutative), so we can define a1 ∧ a2 ∧ · · · ∧ an in the natural
fashion. In general, for points x1, . . . , xn ∈ R

d, we define x1 ∧ x2 ∧ · · · ∧ xn coordinate-wise. Note
that a line separates x1, . . . , xn from the origin x = 0 if and only if the line separates x1 ∧ · · · ∧ xn
from x. Next, for each 1 ≤ p ≤ k, we define cp = ‖µp‖1 = ‖x−µp‖1 (recall that we assumed x was
the origin). Note that the probability of a randomly sampled line splitting x from µp is cp/(Bd).
In addition, for each 1 ≤ p ≤ k, define αp = ‖µ1∧· · ·∧µp‖1, which equals Bd times the probability
that a randomly sampled line splits x from µ1, . . . ,µp. Finally, for any J ≥ 0, define βJ = αP (J),
or equivalently, βJ equals Bd times the probability that a randomly sampled line splits x from µi

for all i ∈ ⋃h≤J Sh. We note that 1 = α1 ≥ α2 ≥ . . . and 1 ≥ β0 ≥ β1 ≥ For convenience, we
define β−1 := α1 = 1.

We also note the following simple proposition, which will be useful in bounding probabilities.

Proposition 2. Let N ≥ 1 and 0 < ε < 1. Then,
∑∞

t=1 min
(
N · (1− ε)t−1, 1

)
≤ (log(N) + 1)/ε.

7

Proof. For t ≤ log(N)/ε, we can use bound that min(N · (1 − ε)t−1, 1) ≤ 1. Else, we write
t = t′ + 1 + (log(N)/ε), where t′ ≥ 0, and N · (1 − ε)t−1 = (1 − ε)t

′ · N · (1 − ε)log(N)/ε ≤
(1− ε)t

′ ·N · e−ε·log(N)/ε = (1− ε)t
′

. Therefore,

∞∑

t=1

min
(
N · (1− ε)t−1, 1

)
≤

log(N)/ε
∑

t=1

1 +

∞∑

t′=0

(1− ε)t
′

=
log(N)

ε
+

1

ε
=

log(N) + 1

ε
.

We now provide an upper bound on P(P (H − 2),H).

Lemma 3. Let p = P (H−2). Then, P(A(p,H)) ≤ C · log(k) · βH−2−βH

2H
for some absolute constant

C. In addition, if 2H ≥ 2d, then P(A(p,H)) ≤ C · d log(d) · βH−2−βH

2H
.

Proof. Define E0 to be the event, and γ0 to be the associated probability, that a randomly sampled
line splits µ1, . . . ,µp from x and µs for some s ∈ SH . Note that γ0 ≤ (βH−2 − βH)/(Bd), because
the probability that a randomly sampled line splits µ1, . . . ,µp from x is at most βH−2/(Bd), but
you have to subtract a quantity that a randomly sampled line splits µ1, . . . ,µp as well as µs for all
s ∈ SH from x, which is at least βH/(Bd). Next, for each s ∈ SH , define Es to be the event, and γs
to be the associated probability, that a randomly sampled line splits µ1 and x from µs. Note that
γs ≥ cs− c1, because Es occurs as long as we split µs from x, but don’t split µ1 from x. Therefore,
γs ≥ (2H − 1)/(B · d) ≥ 2H/(2 ·B · d). Let γ′ = mins∈SH

γs ≥ 2H/(2 ·B · d).
If A(p,H) occurs, then E0 must occur before Es for some s ∈ SH . The probability that E0 occurs

at some time step t but for some s ∈ SH , Es did not occur for any time step before t, is at most
γ0 ·

∑

s∈SH
(1 − γs)

t−1 ≤ γ0 · k · (1 − γ′)t−1, by the union bound and since what happens at each
time step is independent. In addition, we can also bound this probability by just γ0 by ignoring
the event that Es did not occur for any time step before t. Therefore, for p = P (H − 2),

P(A(p,H)) ≤
∞∑

t=1

γ0 ·min
(
k · (1− γ′)t−1, 1

)

≤ (log(k) + 1) · γ0
γ′

. log(k) · βH−2 − βH
2H

, (2)

where the second inequality follows from Proposition 2.
Next, suppose 2H ≥ 2d. For each dimension 1 ≤ r ≤ d we define Dr,+ as the event that

a randomly selected line is of the form {xr = z} for some z ∈ [2H/(2d), 2H/d]. Likewise, we
define Dr,− as the event that a randomly selected line is of the form {xr = z} for some z ∈
[−2H/d,−2H/(2d)]. Note that the probability of each Dr,+ and each Dr,− is precisely 2H/(2d ·Bd),
which we call δ′. Note that if A(p,H) occurs, then E0 must occur before Dr,+ or Dr,− for some
r ∈ [d] and some choice of +/−. This is because any µs must have at least one of its coordinates
larger than 2H/d in absolute value, so one of these lines must separate µs from x. But since
2H/(2d) > 1 = ‖µ1‖1, x is on the same side as µ1, so if every Dr,+ and Dr,− occurs before E0,
then the splitting of µ1 from µs will occur before the splitting of µ1, . . . ,µp from x and µs. The
probability that E0 occurs at some time step t but some choice of Dr,+ or Dr,− did not occur for

8

any time step before t, is at most min(γ0, γ0 · 2d · (1− δ′)t−1). Therefore,

P(A(p,H)) ≤
∞∑

t=1

γ0 ·min(2d · (1− δ′)t−1, 1)

≤ (log(2d) + 1) · γ0
δ′

. d log(d) · βH−2 − βH
2H

. (3)

Again, the second inequality follows by Proposition 2.
Combining Equations (2) and (3), the lemma is complete.

Next, we provide an upper bound on P(A(p,H)) for p < P (H − 2).

Lemma 4. For p < P (H − 2), P(A(p,H)) ≤ C · (log k) · αp−αp+1

2H
·min

(
(log k) · cp+1

2H
, 1
)
.

Proof. We redefine E0 to be the event, and γ0 to be the associated probability, that a randomly
sampled line splits µ1, . . . ,µp from x and µp+1. For p < P (H−2), we have γ0 = (αp−αp+1)/(B ·d).
Next, for each s ∈ SH , we keep the same definition of Es and γs corresponding to a randomly sampled
line splitting µ1 and x from µs. Recall that γs ≥ 2H/(2·B ·d), and γ′ = mins∈SH

γs ≥ 2H/(2·B ·d).
Next, define H0 to be the event, and η0 to be the associated probability, that a randomly

sampled line splits µp+1 from x. Clearly, η0 = cp+1/(B · d). Next, for each s ∈ SH , define Hs

to be the event, and ηs to be the associated probability, that a randomly sampled line splits µs

from x and µp+1. This probability is at least the probability of a line splitting µs from x minus
the probability of a line splitting µp+1 from x, which is (cs − cp+1)/(B · d) ≥ 2H/(2 · B · d), since
cs ≥ 2H as s ∈ SH and cp+1 ≤ 2H−1 as p + 1 ≤ P (H − 2). So, if we define η′ = mins∈SH

ηs, then
η′ ≥ 2H/(2 · B · d).

Now, for A(p,H) to occur, if t is the first time that E0 occurs and u is the first time that H0

occurs, then there must exist some s such that Es does not occur before t and Hs does not occur
before u. Note that E0 and H0 are disjoint events, which means t 6= u. If t < u and we write
u = t + t′, then we must have that ∃s ∈ SH such that for all 1 ≤ i ≤ t − 1, Es doesn’t occur. In
addition, ∃s ∈ SH such that for all t + 1 ≤ i ≤ t + t′ − 1, Hs doesn’t occur. Therefore, we can
bound the sum over t < u of A(p,H) occurring where E0 first occurs at time t and H0 first occurs
at time u as

≤
∞∑

t=1

∞∑

t′=1

γ0η0 ·min(k · (1− γ′)t−1, 1) ·min(k · (1− η′)t
′−1, 1)

=

(∞∑

t=1

γ0 ·min(k · (1− γ′)t−1, 1)

)

·
(∞∑

t′=1

η0 ·min(k · (1− η′)t
′−1, 1)

)

(4)

≤ (log k + 1) · γ0
γ′
· (log k + 1) · η0

η′

. (log k)2 · γ0
γ′
· η0
η′
. (5)

Likewise, if u < t, we write t = u + u′ where u, u′ range from 1 to ∞, and we obtain the same
product as Equation (4) and upper bound as Equation (5). Therefore, we have that

P(A(p,H)) . (log k)2 · γ0
γ′
· η0
η′

. (log k)2 · αp − αp+1

2H
· cp+1

2H
. (6)

9

Finally, we also can bound A(p,H) by completely ignoring H0 and Hs, and just considering E0
occuring before some Es. By similar calculations to Lemma 3, this results in the bound

P(A(p,H)) ≤
∞∑

t=1

γ0 ·min(k · (1− γ′)t−1, 1) . (log k) · γ0
γ′

. (log k) · αp − αp+1

2H
. (7)

By combining Equations (6) and (7), we obtain

P(A(p,H)) . (log k) · αp − αp+1

2H
·min

(

(log k) · cp+1

2H
, 1
)

.

Next, we provide an upper bound on P(A(p,H)) for p < P (H − 2) based on the dimension d.

Lemma 5. For p < P (H−2) and 2H ≥ 2d, P(A(p,H)) ≤ C·(d log d)·αp−αp+1

2H
·min

(
(d log d) · cp+1

2H
, 1
)
.

Proof. As in Lemma 4, we define E0 as the event, and γ0 =
αp−αp+1

B·d as the associated probability,
that a randomly sampled line splits µ1, . . . ,µp from x and µp+1. Also, as in Lemma 4, we define
H0 as the event, and η0 = cp+1/(B · d) as the associated probability, that a randomly sampled
line splits µp+1 from x. Finally, as in Lemma 3, let Dr,+ be the event that a line is of the form
{xr = z} for z ∈ [2H/(2d), 2H/d] and Dr,− be the event that a line is of the form {xr = z} for
z ∈ [−2H/d,−2H/(2d)]. We let δ′ = 2H/(2d · Bd) be each of these event’s probabilities.

Consider t as the first time that E0 occurs, and u as the first time that H0 occurs. (Recall that
t 6= u since these two events are disjoint.) In order for A(p,H) to occur, we must have that for all
i < t, one of the 2d intervals [2H/2d, 2H/d] or [−2H/d,−2H/2d] is never covered, since otherwise,
we would have had an earlier splitting of µ1 and x from µs. In addition, if 2H/(2d) ≥ cp+1, then
for this must also be true for all i < u, or else we would have also had an earlier splitting of µp+1

and x from µs. First, we suppose that 2H/(2d) ≥ cp+1. If we just consider the case where t < u,
this implies there exists an interval that isn’t covered by any of the lines 1 ≤ i ≤ t − 1 and there
also is an interval that isn’t covered by any of the lines t + 1 ≤ i ≤ u − 1. By writing u = t + t′,
we can bound the sum over t < u of A(p,H) occurring where E0 first occurs at time t and H0 first
occurs at time u as

≤
∞∑

t=1

∞∑

t′=1

γ0η0 ·min(2d · (1− δ′)t−1, 1) ·min(2d · (1− δ′)t−1, 1)

=

(∞∑

t=1

γ0 ·min(2d · (1− δ′)t−1, 1)

)

·
(∞∑

t′=1

η0 ·min(2d · (1− δ′)t−1, 1)

)

≤ (log(2d) + 1)2 · γ0
δ′
· η0
δ′

. (d log d)2 · αp − αp+1

2H
· cp+1

2H
.

In addition, by summing over the cases where t > u (for instance writing t = u + u′), we get an
identical sum, so

P(A(p,H)) . (d log d)2 · αp − αp+1

2H
· cp+1

2H
. (8)

In addition, by ignoring H0 and just computing the probability that a line splits µ1, . . . ,µp

from x and µp+1 before one of the 2d intervals, the same argument as in Lemma 3 allows us to
bound

P(A(p,H)) . (d log d) · αp − αp+1

2H
. (9)

10

This does not require 2H/(2d) ≥ cp+1, just that 2H ≥ 2d. In addition, note that if 2H/(2d) < cp+1,

then (d log d) · αp−αp+1

2H
≤ (d log d)2 · αp−αp+1

2H
· cp+1

2H
anyway. So, by combining Equations (8) and (9),

we obtain

P(A(p,H)) . (d log d) · αp − αp+1

2H
·min

(

d log d · cp+1

2H
, 1
)

.

We now return to the proof of Theorem 1. Define f = min(d log d, log k). Note that for any
1 ≤ J < H,

∑

p+1∈SJ
(αp − αp+1) = βJ−1 − βJ , and if p + 1 ∈ SJ , then cp+1 ≤ 2 · 2J . This is

also true for J = 0, since
∑

p≥1:p+1∈SJ
(αp − αp+1) = β−1 − β0 by our definition of β−1 := α1, and

cp+1 ≤ 2 = 2 · 2J . Therefore, by adding either Lemma 4 or Lemma 5 over all p < P (H − 2) and
splitting based on which set SJ contains p + 1, we get that for any H ≥ 2 (if f = log k) or for any
2H ≥ 2d (if f = d log d),

∑

p<P (H−2)

P(A(p,H)) ≤ C · f ·
H−2∑

J=0

∑

p+1∈SJ

αp − αp+1

2H
·min

(
f · cp+1

2H
, 1

)

≤ 2C · f ·
H−2∑

J=0

βJ−1 − βJ
2H

·min

(

f · 2J

2H
, 1

)

Adding the term for P(A(P (H − 2),H)) based on Lemma 3, we obtain

∑

p≤P (H−2)

P(A(p,H)) ≤ 2C · f ·
H∑

J=0

βJ−1 − βJ
2H

·min

(

f · 2J

2H
, 1

)

.

Therefore,

∑

H≥2 if f=log k
2H≥2d if f=d log d

2H ·
∑

p≤P (H)

P(A(p,H)) ≤ 2C · f ·
∑

H≥2

2H ·
H∑

J=0

βJ−1 − βJ
2H

·min

(

f · 2J

2H
, 1

)

= 2C · f ·
∑

H≥2

H∑

J=0

(βJ−1 − βJ) ·min

(

f · 2J

2H
, 1

)

≤ 2C · f ·
∑

J≥0

(βJ−1 − βJ) ·
∑

H≥J

min

(

f · 2J

2H
, 1

)

≤ 2C · f ·
∑

J≥0

(βJ−1 − βJ) · (log f + 2)

. f · log f · β−1 = f · log f. (10)

To finish, if f = log k, then by Equations (1) (where we set V = 4 so that H ≥ 2) and (10),

E[‖x− µs‖1] ≤ O

4 +
∑

H≥2

2H ·
∑

p≤P (H)

P(A(p,H))

 ≤ O(log k · log log k),

assuming that C is a constant. If f = d log d, then by Equations (1) (where we set V = 2d so that
2H ≥ 2d) and (10),

E[‖x− µs‖1] ≤ O

2d +
∑

H:2H≥2d

2H ·
∑

p≤P (H)

P(A(p,H))

 ≤ O(d · log2 d).

11

Algorithm 1 Main procedure for explainable
k-medians
1: procedure K-medians(u)
2: Use standard k-medians algorithm to

find centers µ1, . . . ,µk

3: Create tree T with single node u0 ← ∅
with M(u0) = {µ1, . . . ,µk}

4: while ∃ leaf u ∈ T with |M(u)| ≥ 2 do
5: MedianSplit(u)
6: end while
7: Return T
8: end procedure

Algorithm 2 Splitting procedure of a node u

1: procedure MedianSplit(u)
2: for r = 1 to d do
3: ar = min

µi∈M(u)
µi,r

4: br = max
µi∈M(u)

µi,r

5: Rr = br − ar
6: end for
7: Sample r ∈ [d] with probability Rr

R1+···+Rd

8: Sample z ∼ Unif[ar, br]
9: Add left child L(u)← {xr < z} to u

10: M(L(u)) =M(u) ∩ {µi : µi,r < z}
11: Add right child R(u)← {xr ≥ z} to u
12: M(R(u)) =M(u) ∩ {µi : µi,r ≥ z}
13: end procedure

Figure 1: The core procedure for fast Explainable k-medians clustering is on the left, with the main
subroutine, MedianSplit, on the right. Each node u is set to a single decision tree instruction (with
the root u0 having no such instruction), and contains a set of cluster centers M(u).

This concludes the proof of Theorem 1.

2.3 Faster algorithm

We note that B could be much larger than k or even n, and as a result the above algorithm could
take arbitrarily long. In this section, we show how to modify the algorithm, which will allow us to
create the decision tree in O(kd log2 k) time given the set of clusters µ1, . . . ,µk, without sacrificing
the cost of clustering. Moreover, we show that verification of the explainable clustering being
accurate can be done in O(n(d + HT)) time, where HT ≤ k is the height of the decision tree T .

To create the decision tree, we first completely ignore all points x ∈ X , and just focus on the
cluster centers µ1, . . . ,µk. At the beginning, we have a node u0 and a cell c = B′(u0) which is the
smallest axis-parallel box that contains all cluster centers. In other words, c = [a1, b1]×· · ·× [ad, bd],
where for each dimension r, ar = min(µ1,r, . . . , µk,r) and br = max(µ1,r, . . . , µk,r). Now, we choose
a dimension r proportional to Rr := br−ar, and then given r, choose a point z uniformly at random
in [ar, br]. This line {xr = z} will be our first splitting line. Since we chose ar < z < br, the cluster
centers will not be all on the same side of {xr = z}, so we have successfully split the clusters into
two regions. Now, each of these two sets of cluster centers will correspond to a new cell, where we
again create the smallest axis parallel box that contains all cluster centers. For each cell that has
2 or more points, we keep repeating this procedure until we have 1 cluster center per cell.

So, in general, for any node u in the tree T with |u| ≥ 2, i.e., with more than 1 cluster center, we
choose the a line {xr = z} as done above, and make two new nodes, L(u) (for left child) and R(u)
(for right child). L(u) will represent the part of u with xr < z, soM(L(u)) =M(u)∩{µi : µi,r < z},
while R(u) will represent the part of u with xr ≥ z, so M(R(u)) = M(u) ∩ {µi : µi,r ≥ z}. The
full procedure of our explainable k-medians clustering is presented in Figure 1.

12

To see why this procedure still provides a O(min(log k log log k, d log2 d))-approximation, we just
show that for each point x ∈ X , the distribution of its assigned cluster s(x) is unchanged. This
implies that E[‖x − s(x)‖1] is also unchanged, so the same approximation guarantees hold. We
note that the overall clustering distribution may not be the same (since there may be differing
correlations between where two points x, x′ get assigned), but we only need linearity of expectation
to show that our procedure is accurate on average.

To see why this is true, for any point x ∈ X , let uj(x) represent the node in T of depth j that
contains x, where u0(x) = u0 is the root node and if the leaf node containing x has depth h, then
uj(x) is defined to be uh(x) for j ≥ h. It suffices to show that for any x ∈ X , the distribution
of uj(x) is the same regardless of whether we create the decision tree from the simple algorithm
described in subsection 2.1 or from the faster algorithm described in this subsection. We prove this
by induction, with trivial base case j = 0 (since u0(x) is the root node and is deterministic).

Now, let us assume the claim is true for some j, and condition on the node uj(x). If there is
only one cluster center in uj(x), then uj+1(x) = uj(x) by definition, so it does not matter which
algorithm we choose. Otherwise, let B′

j(x) be the smallest box containing all cluster centers in
uj(x). Note that one we have done the splits necessary to create the node uj(x), the simplified
algorithm continues randomly picking lines {xr = z}, where r is uniformly selected from [d] and
z is uniformly selected from [−B,B]. The node uj(x) remains intact until we have found a line
splits at least some clusters in uj(x) from each other. But the random line splitting at least
some clusters in uj(x) from each other is equivalent to choosing {xr = z} where z ∈ [ar, br] for
ar = minµi∈M(uj(x)) µi,r and br = maxµi∈M(uj(x)) µi,r. Clearly, picking a random line conditional
on this is equivalent to picking a dimension r proportional to br − ar, and then picking a random
z ∈ [ar, br]. Therefore, the distribution of uj+1(x) conditioned on uj(x) is the same regardless of
whether we used the simplified algorithm or the faster algorithm. This completes the induction.

Finally, we describe how to implement this efficiently. For each node u, let B′(u) = [a1(u), b1(u)]×
· · · × [ad(u), bd(u)]. We store these values, and for each node u and each dimension r ∈ [d], we
also store a balanced binary search tree (BBST) of the key-value pairs (i, µi,r) for each µi ∈ B′(u),
where the BBST is sorted based on the values µi,r. Each node in the BBST also keeps track of the
number of total items to its left and to its right. We also keep a size-k array of pointers the map
each i to its corresponding node and its location in each of the d BBSTs.

Now, to split the node u, it takes O(d) time to pick a random dimension r ∝ (br(u) − ar(u))
and a uniformly random z ∈ [ar(u), br(u)]. Next, by binary searching on the dimension r BBST
corresponding to node u, in O(log k) time we can determine how many cluster centers in u have
µi,r < z and how many have µi,r > z. For whichever set is smaller, we remove all of those points
and create a new BBST with those points, in each dimension. This allows us to have a BBST for
each node and each dimension, since we have replaced our node u with two new ones. We note that
removal of each point in any fixed dimension takes O(log k) time, since for a dimension r′ and a
cluster center µi, we can access µi,r′ in O(1) time and then binary search in the dimension-r′ BBST.
(Note that we can break ties in the µi,r′ by the value of i, so removing (i, µi,r′) indeed takes O(log k)
time.) Therefore, if the new nodes are L(u) andR(u), this takes time O(d·log k·min(|L(u)|, |R(u)|)).
Finally, we need to compute the dimensions of the new boxes B′(L(u)) and B′(R(u)). This takes
time O(d · log k), since we just find the smallest and largest elements of each of the 2d BBSTs.

Overall, the total runtime is
∑

u∈T
O(d log k) ·min(|L(u)|, |R(u)|).

13

To bound this, we use the fact that 1 + logα ≤ (1 + α) log(1 + α) for all α ≥ 1, which implies
that x + x log x + y log y ≤ (x + y) log(x + y) for all x ≤ y (by setting y/x = α). Therefore,
min(|L(u)|, |R(u)|) + |L(u)| log |L(u)| + |R(u)| log |R(u)| ≤ |u| log |u|, since |u| = |L(u)| + |R(u)|.
Therefore, by induction, we obtain the bound

∑

u∈T
min(|L(u)|, |R(u)|) ≤ O(k log k),

so the overall runtime to create the decision tree for explainable clustering is O(d · k · log2 k).
While our algorithm is randomized and only works in expectation, note that, once given the

cluster centers µ1, . . . ,µk, the algorithm runs in time sublinear in the full dataset X . Moreover,
the algorithm only depends on the cluster centers, which means that we can run this explainable
algorithm on an O(1)-approximate k-medians coreset of X and obtain the same O(log k log log k)-
approximation guarantee in expectation.

If we wish to compute the actual clustering cost given the decision, we need to compute ‖x −
s(x)‖1 for each x ∈ X , where s(x) is the assigned cluster. However, since we have computed the
entire decision tree, for each x ∈ X , we just follow it down, which takes O(HT) time, where HT is
the height of the tree, since we just have to check 1 coordinate at each step. Finally, computing
‖x − s(x)‖1 takes O(d) time. Therefore, doing this for all X takes O(n(d + HT)) = O(n(d + k))
additional time.

3 Algorithm for Explainable k-means Clustering

In this section, we provide an O(k log k)-approximation algorithm for explainable k-means cluster-
ing.

For each node u ∈ T , we recall the definitions of B(u), B′(u), ar(u), br(u), Rr(u), and M(u)
from Section 1.2. Next, we define X cor(u) represent the points x ∈ X that are “correctly classified”
to be in u, i.e., X cor(u) = {x ∈ X : x ∈ B(u), c(x) ∈ M(u)}. In addition, for a line xr = t for some
fixed r ∈ [d] and t ∈ [ar, br], we say that a point x ∈ X cor(u) is misclassified by xr = t if this line
splits x from c(x). Finally, for r ∈ [d] and t ∈ [ar, br], define

fu(r, t) := min (|{µi ∈ M(u) : µi,r ≤ t}|, |{µi ∈M(u) : µi,r ≥ t}|) . (11)

In other words, fu(r, t) is the minimum of the number of cluster centers µi in B(u) such that
µi,r ≥ t and the number of cluster centers µi in B(u) such that µi,r ≤ t.

The main lemma of Dasgupta et al. [11] used to obtain an O(k2)-approximation algorithm
bounds the number of misclassified points at each split of a node u. Their performance in the worst
case can be poor if the decision tree T has high depth. First, we improve significantly over their
main lemma by balancing the number of misclassified points with fu(r, t), which represents the
lopsidedness of the branching of node u. We then show how to apply this improved main lemma to
obtain an O(k log k)-approximation. Finally, we analyze the algorithm, showing that we can obtain
a fast O(k2d) time randomized procedure (with no dependence on the size of the total dataset X),
as well as a slower but deterministic O(kd · n log n) time procedure.

3.1 Main Lemma

We prove the following main lemma. This lemma improves over Lemma 5.7 in [11] for the k-means
case, which was the main technical lemma in the O(k2)-approximation algorithm by [11].

14

Lemma 6. For any node u, there exists r ∈ [d] and t ∈ [ar(u), br(u)] such that the number of points
in X cor(u) that are misclassified by the splitting line xr = t is at most

15 log k · fu(r, t) ·
∑

x∈X cor(u) ‖x− c(x)‖22
∑d

r=1Rr(u)2
.

Proof. We treat the node u as fixed in this lemma, so for simplicity, we drop the argument u in
ar, br, and Rr.

We consider the following procedure of selecting a splitting line. First, select each dimension
r ∈ [d] with probability proportional to R2

r . Next, select a point t uniformly at random in [ar, br]
conditioned on

|t− µi,r| ≥
Rr

10 log k · fu(r, t)
for all µi ∈M(u).

Let (r, t) be a pair where r ∝ R2
r and t ∼ Unif [ar, br]. Let Eu(r, t) be the number of misclassified

points in X cor(u) by the line xr = t, i.e.,

Eu(r, t) = |{x ∈ X cor(u) : xr < t ≤ c(x)r or c(x)r < t ≤ xr}| (12)

Also, let A be the event (and 1A be the indicator random variable) that

|t− µi,r| ≥
Rr

10 log k · fu(r, t)
for all µi ∈M(u).

First, we note that P(A) ≥ 1/3. To see why, it suffices to show that conditioned on choosing
any fixed dimension r, the probability of A not occurring for a random t ∈ [ar, br] is at most 2/3.
Let k′ := |M(u)| ≤ k, and let x1 ≤ x2 ≤ · · · ≤ xk′ be the rth coordinates of the points in M(u)
in sorted order. Note that x1 = ar and xk′ = br. Now, if t ∈ [xi, xi+1] and A does not occur,
then either t ∈ [xi, xi + Rr

10 log k·min(i,k′−i)] or t ∈ [xi+1 − Rr

10 log k·min(i,k′−i) , xi+1]. Therefore, since
br − ar = Rr, the probability of A not occurring conditioned on r is at most

1

Rr
·
(

k′−1∑

i=1

2 · Rr

10 log k ·min(i, k′ − i)

)

=
1

5 log k
·
k′−1∑

i=1

1

min(i, k′ − i)
≤ 2

5 log k
·
⌊k′/2⌋
∑

i=1

1

i
≤ 2

3
,

assuming that 2 ≤ k′ ≤ k.
To prove the lemma, it clearly suffices to show that

Er,t

[
Eu(r, t)

fu(r, t)

∣
∣
∣
∣
A
]

≤ 15 log k ·
∑

x∈X cor(u) ‖x− c(x)‖22
∑d

r=1R
2
r

.

Since P(A) ≥ 1/3, we will just bound E

[
Eu(r,t)
fu(r,t)

· 1A
]

, since

E

[
Eu(r, t)

fu(r, t)

∣
∣
∣
∣
A
]

=
E

[
Eu(r,t)
fu(r,t)

· 1A
]

P(A)
≤ 3 · E

[
Eu(r, t)

fu(r, t)
· 1A

]

. (13)

Note that we can write

E

[
Eu(r, t)

fu(r, t)
· 1A

]

=
1

∑d
r=1 R

2
r

·
d∑

r=1

∫ br

ar

Rr ·
Eu(r, t)

fu(r, t)
· 1A dt . (14)

15

Now, if we let 1x,t,r be the indicator random variable that x, c(x) are on opposite sides of the line
xr = t, then we can write Eu(r, t) as a sum of indicator variables: Eu(r, t) =

∑

x∈X cor(u) 1x,t,r.
Therefore, by Equation (14), we have that

E

[
Eu(r, t)

fu(r, t)
· 1A

]

=
1

∑d
r=1R

2
r

·
d∑

r=1

∑

x∈X cor(u)

∫ br

ar

Rr ·
1x,t,r · 1A
fu(r, t)

dt . (15)

Note that 1x,t,r = 1 if and only if t is between xr and c(x)r, and 1A = 1 only if |t − c(x)r| ≥
Rr

10 log k·fu(r,t) , which means that 10 log k · |t− c(x)r| ≥ Rr

fu(r,t)
· 1A. Therefore,

∫ br

ar

Rr · 1x,t,r · 1A
fu(r, t)

dt ≤ 10 log k ·
∫ max(xr ,c(x)r)

min(xr,c(x)r)
|t− c(x)r| dt = 5 log k · (xr − c(x)r)

2, (16)

so by combining Equations (13), (15), and (16), we obtain

E

[
Eu(r, t)

fu(r, t)

∣
∣
∣
∣
1A

]

≤ 3 · E
[
Eu(r, t)

fu(r, t)
· 1A

]

= 3 · 1
∑d

r=1R
2
r

·
d∑

r=1

∑

x∈X cor(u)

∫ br

ar

Rr ·
1x,t,r · 1A
fu(r, t)

dt

≤ 3 · 1
∑d

r=1R
2
r

·
∑

x∈X cor(u)

d∑

r=1

5 log k · (xr − c(x)r)
2

= 15 log k ·
∑

x∈X cor(u) ‖x− c(x)‖22
∑d

r=1R
2
r

, (17)

as desired.

3.2 Finishing the Proof

Our algorithm structure is similar to the “IMM” algorithm as in Dasgupta et al. [11]. The main
difference is that at each step, we do the splitting according to Lemma 6 instead of Lemma 5.7 in
[11]. Namely, for each node u of size |u| ≥ 2, we choose the pair (r, t) where t ∈ [ar(u), br(u)], that

minimizes Eu(r,t)
fu(r,t)

. By Lemma 6, we know there exists such a point with Eu(r,t)
fu(r,t)

≤ 15 log k.
We present the explainable k-means algorithm in Figure 2. To analyze the accuracy of this

algorithm, we use the following lemma, due to Dasgupta et al. [11].

Lemma 7. [11, Lemma 5.5, Part 2] For any node u, recall that B′(u) = [a1(u), b1(u)] × · · · ×
[ad(u), bd(u)] is the smallest d-dimensional box containing all clusters inM(u). Then, let C2(u) =
∑d

i=1(bi(u) − ai(u))2. (This is referred to as ‖µL,u − µ
R,u‖22 in [11]). Then, the k-means cost of

the tree T satisfies

cost(T) ≤ 2 · cost(µ1, . . . ,µk) + 2 ·
∑

u∈T
Eu(r, t)C2(u),

where Eu(r, t) is the number of points in X cor(u) that are misclassified when splitting the node u.

16

Algorithm 3 Main procedure for explainable
k-means
1: procedure K-means(u)
2: Use standard k-means algorithm to find

centers µ1, . . . ,µk

3: Create tree T with single node u0 ← ∅
with M(u0) = {µ1, . . . ,µk}

4: while ∃ leaf u ∈ T with |M(u)| ≥ 2 do
5: MeanSplit(u)
6: end while
7: Return T
8: end procedure

Algorithm 4 Splitting procedure of a node u

1: procedure MeanSplit(u)
2: for r = 1 to d do
3: ar = min

µi∈M(u)
µi,r

4: br = max
µi∈M(u)

µi,r

5: end for
6: Find pair r ∈ [d], t ∈ (ar, br) minimizing

Eu(r, t)/fu(r, t) ⊲ See equations (11), (12) for
definitions of Eu(r, t), fu(r, t).

7: Add left child L(u)← {xr < t} to u
8: M(L(u)) =M(u) ∩ {µi : µi,r < t}
9: Add right child R(u)← {xr ≥ t} to u

10: M(R(u)) =M(u) ∩ {µi : µi,r ≥ t}
11: end procedure

Figure 2: The core procedure for fast Explainable k-means clustering is on the left, with the main
subroutine, MeanSplit, on the right. The MeanSplit procedure here is deterministic, we later show
a faster, but randomized procedure in Figure 3.

To finish the proof, we first note that for any node u, C2(u) =
∑d

r=1 Rr(u)2. Thus, by Lemma
6, we have

Eu(r, t)C2(u) ≤ 15 log k · fu(r, t) ·
∑

x∈X cor(u)

‖x− c(x)‖22,

so
cost(T) ≤ 2 · cost(µ1, . . . ,µk) + 30 log k ·

∑

u∈T
fu(r, t) ·

∑

x∈X cor(u)

‖x− c(x)‖22,

where fu(r, t) = min(|M(L(u))|, |M(R(u))|), where L(u),R(u) are the two direct children of the
node u. To finish the proof, it suffices to show that for each x ∈ X, the term ‖x − c(x)‖22 appears
at most k times in the double summation, or equivalently, for any fixed x ∈ X ,

∑

u:x∈X cor(u)

fu(r, t) ≤ k. (18)

To prove Equation (18), first note that for any node u with children v,w, |M(v)| + |M(w)| =
|M(u)|, so fu(r, t) ≤ min(|M(u)| − |M(v)|, |M(u)| − |M(w)|). Therefore, since the set of nodes u
precisely forms a linear path from the root to some node (let this path of nodes be u0, u2, . . . , uh,
where u0 is the root of the tree T , but uh may not necessarily be a leaf), we have that
∑

u:x∈X cor(u)

fu(r, t) ≤ (|M(u0)|− |M(u1)|) + · · ·+ (|M(uh−1)|− |M(uh)|) + |M(uh)| = |M(u0)| = k.

3.3 Analyzing the Runtime

For the algorithm described in Subsection 3.2, the runtime can be analyzed in the same way as in
Dasgupta et al. [11]. Namely, for each node u that we wish to split and each dimension r ∈ [d], we

17

run a sweep line and keep track the number of misclassified points, while also keeping track of the
number of cluster centers inM(u) that are to the left and to the right of the sweep line, respectively.
By sorting the points inM(u) and X cor(u) in each dimension, and using dynamic programming to

keep track of the number of misclassified points, for any node u we can minimize the ratio Eu(r,t)
fu(r,t)

over all r ∈ [d] and t ∈ [ar(u), br(u)] in O(dn log n) time. Overall, doing this for each node in u,
we get that once we have our centers from a standard k-means clustering algorithm, the remaining
runtime is O(kdn log n), which matches that of [11]. We note this algorithm is deterministic and
always obtains an O(k log k)-approximation.

Finally, as in the k-medians algorithm, we note there also exists a sublinear-time, randomized
explainable clustering algorithm that only depends on the cluster centers µ1, . . . ,µk, which may be
generated from a non-explainable k-means clustering algorithm. Indeed, the proof of Lemma 6 tells
us that if we sample each coordinate r ∈ [d] proportional to R2

r and select t ∼ Unif [ar(u), br(u)],
and condition the whole thing on the event A, which is that |t−µi,r| ≥ Rr/(10 log k ·fu(r, t)) for all

µi ∈ M(u), then E[Eu(r, t)/fu(r, t)] ≤ O(log k) ·∑x∈X cor(u) ‖x− c(x)‖22/(
∑d

r=1R
2
r). Therefore, for

any node u and set of pointsM(u), our randomized procedure will compute B′(u), and then sample
a random line {xr = t} where (r, t) is drawn proportional to Rr · 1A/fu(r, t). (We remark that the
proportionality is Rr instead of R2

r since the rth dimension of the box also contributes a factor of Rr.)

When (r, t) was drawn proportional to Rr · 1A, we had that E

[
Eu(r,t)
fu(r,t)

]

≤ 15 log k ·∑x∈X cor(u) ‖x−
c(x)‖22/(

∑d
r=1Rr(u)2) (see Equation (17)), which means that with our new distribution, we have

E [Eu(r, t)] ≤ 15 log k ·
∑

x∈X cor(u) ‖x− c(x)‖22
∑d

r=1Rr(u)2
· E [fu(r, t)] . (19)

Therefore, if we use this randomized procedure to split the node at each point, and recall that
C2(u) =

∑d
r=1 Rr(u)2, we have that

E[cost(T)] ≤ 2 · cost(µ1, . . . ,µk) + 2 · E
[
∑

u∈T
Eu(r, t) · C2(u)

]

≤ 2 · cost(µ1, . . . ,µk) + 2 · E
[
∑

u∈T
15 log k ·

∑

x∈X cor(u) ‖x− c(x)‖22
C2(u)

· fu(r, t) · C2(u)

]

= 2 · cost(µ1, . . . ,µk) + 30 log k · E

∑

u∈T

∑

x∈X cor(u)

‖x− c(x)‖22 · fu(r, t)

≤ 2 · cost(µ1, . . . ,µk) + 30k log k ·
(
∑

x∈X
‖x− c(x)‖22

)

,

which means that in expectation, we have an O(k log k)-approximation. Above, the first line follows
from Lemma 7. The second line follows from Equation (19) and the fact that our expectation of
Eu(r, t) is computed after we already know u (so C2(u) can essentially be treated as a constant
when evaluating the expectation for a single u). The third line is simple manipulation, and the
final line follows from Equation (18).

Finally, we show how to actually perform this random procedure efficiently in sublinear time.
We will not get O(k log2 k · d) as in the k-medians case, but we obtain a runtime of O(k2d), which

18

Algorithm 5 Randomized splitting procedure of a node u

1: procedure MeanSplitRandom(u)
2: for r = 1 to d do
3: Rr = max

µi∈M(u)
µi,r − min

µi∈M(u)
µi,r

4: for i = 1 to |M(u)| do
5: xi,r = ith coordinate in sorted order among {µj,r : µj ∈ M(u)}
6: end for
7: end for
8: Sample (r, t) proportional to Rr

min(i,|M(u)|−i) if t ∈ [xi,r + Rr

10 log k·min(i,|M(u)|−i) , xi+1,r −
Rr

10 log k·min(i,|M(u)|−i)] for some 1 ≤ i ≤ |M(u)| − 1, proportional to 0 otherwise.

9: Add left child L(u)← {xr < t} to u
10: M(L(u)) =M(u) ∩ {µi : µi,r < t}
11: Add right child R(u)← {xr ≥ t} to u
12: M(R(u)) =M(u) ∩ {µi : µi,r ≥ t}
13: end procedure

Figure 3: Randomized procedure for selecting a splitting line of a node u. The main k-means
procedure (Algorithm 3) can be implemented with MeanSplitRandom as opposed to MeanSplit.

is still substantially faster than the deterministic O(dk ·n log n) runtime. First, in O(kd log k) time,
we can assume we have the points µ1, . . . ,µk sorted in each dimension. Next, for each node u and
each dimension r ∈ [d], we can use the original sorted points to have the points in M(u) sorted
in dimension r in O(k) time per dimension. If the sorted values in dimension r are x1,r, . . . , xk′,r
where k′ = |M(u)|, then we can compute [xi,r + Rr

10 log k·min(i,k′−i) , xi+1,r − Rr

10 log k·min(i,k′−i)] for each

i ∈ [k′] and r ∈ [d]. Recall that we are sampling the pair (r, t) proportional to Rr · 1A/fu(r, t),
where A is the event that t ∈ [xi,r + Rr

10 log k·min(i,k′−i) , xi+1,r − Rr

10 log k·min(i,k′−i)] for some choice of i.
Therefore, by explicitly writing out all of the k relevant intervals in each of the d dimensions, one
can easily do the sampling in time O(kd) time. Therefore, since we have to perform this for each
node u ∈ T , the overall runtime is O(k2d). Moreover, this algorithm only depends on the cluster
centers, which means that we can run this algorithm on an O(1)-approximate k-means coreset of
X and obtain the same O(k log k)-approximation guarantee in expectation.

The full randomized splitting procedure is shown in Figure 3.
Finally, if one wishes to verify the explainable clustering solution’s cost on the data, one can

perform it in the same manner as in Subsection 2.3, which will require O(n(d+HT)) = O(n(d+k))
time (where HT is the height of the tree).

4 Algorithm for explainable 2-means clustering

In this section, we provide a 3-approximation algorithm for 2-means explainable clustering, which
improves over the 4-approximation algorithm of Dasgupta et al. [11] and matches the lower bound
of [11] when the dimension d is not a constant.

Our algorithm will be identical to that of [11], which essentially tries all possible decision trees.

19

Because k = 2, the decision tree only consists of a single threshold line {xr = z}, so for each
dimension r from 1 to d, the algorithm runs a sweep line to compute the cost of all possible
thresholds. This procedure can be made to run in O(nd2 + nd log n), and also has the advantage
that it obtains the optimal explainable clustering algorithm.

However, unlike the analysis of [11], our analysis is probabilistic. Namely, we provide a random-
ized procedure that finds an explainable clustering that, in expectation, provides a 3-approximation
to k-means. This implies that the optimal explainable algorithm is at most a 3-approximation, so
the algorithm of the previous paragraph will find it.

We now proceed with the analysis. Let µ1 and µ2 represent the optimal cluster centers for
2-means clustering. By reflecting and shifting, we may assume WLOG that µ1 = (0, 0, . . . , 0) ∈ R

d

and µ2 = (R1, R2, . . . , Rd) ∈ R
d, where R1, . . . , Rd ≥ 0. Next, we will choose a line based on the

following procedure.
Let

F (x) =

0 x ≤ 0

2x2 0 ≤ x ≤ 1/2

1− 2(1− x)2 1/2 ≤ x ≤ 1

1 x ≥ 1

represent the PDF of a distribution D over R. Note that D is supported on [0, 1]. We choose i ∈ [d]
proportional to R2

i (call this distribution P), and then choose the line {xi = Ri · a}, where a ∼ D.
We will show that for every point x ∈ R

d that is closer to µ1 than to µ2, that

Pi∼P,a∼D(xi ≤ Ri · a) · ‖x‖22 + Pi∼P,a∼D(xi ≥ Ri · a) · ‖µ2 − x‖22
‖x‖22

≤ 3. (20)

This is sufficient, as it implies that the expectation of the squared Euclidean distance between x
and its assigned cluster, in expectation, is at most 3 times the squared Euclidean distance between
x and its true cluster, for any x closer to µ1 than µ2. However, by the symmetry of the distribution
F (x), we also get that this is true for any x closer to µ2 than to µ1. Hence, in expectation, our
algorithm provides a 3-approximation.

Equivalently, by subtracting 1 from Equation (20) and multiplying by ‖x‖22, it suffices to show
that

Pi∼P,a∼D(xi ≥ Ri · a) · (‖µ2 − x‖22 − ‖x‖22) ≤ 2 · ‖x‖22.

Let x = (R1 · α1, R2 · α2, . . . , Rd · αd), where α1, . . . , αd ∈ R. Then, ‖x‖22 =
∑d

i=1 R
2
iα

2
i , and

‖µ2 − x‖22 − ‖x‖22 =
∑d

i=1 R
2
i (1− 2αi). Finally,

Pi∼P,a∼D(xi ≥ Ri · a) = Pi∼P,a∼D(αi ≥ a) =

∑d
i=1R

2
i · F (αi)

∑d
i=1R

2
i

.

Hence, it suffices to prove the following lemma.

Lemma 8. For any nonnegative real numbers R1, . . . , Rn and real numbers α1, . . . , αn,

d∑

i=1

R2
i (1− 2αi) ·

d∑

i=1

R2
iF (αi) ≤ 2

d∑

i=1

R2
i ·

d∑

i=1

R2
iα

2
i .

20

Proof. We define the following quantities:

R :=

d∑

i=1

R2
i , w =

∑

αi≥0

αiR
2
i , x =

∑

αi<0

(−αi)R
2
i , y =

∑

αi≥0

R2
iα

2
i , z =

∑

αi<0

α2
iR

2
i .

First note that R,w, x, y, z are all nonnegative. Also, note that 0 ≤ F (x) ≤ 2x2 for all x ∈ R, so
we can define y′ =

∑d
i=1 R

2
i · F (αi)/2, and we have that 0 ≤ y′ ≤ y.

The lemma is equivalent to proving (R− 2w + 2x) · y′ ≤ R · (y + z), or equivalently, that

R(y − y′) + Rz + 2wy′ ≥ 2xy′.

Since y ≥ y′, we have that R(y − y′) ≥ 0. Also, by Cauchy-Schwarz, Rz ≥
(∑

αi<0 αiR
2
i

)2
= x2.

Finally, note that for all αi ≥ 0, αi ≥ F (αi)/2 and for αi < 0, F (αi) = 0, so w ≥ y′. Therefore, we
have that

R(y − y′) + Rz + 2wy′ ≥ 0 + x2 + 2(y′)2 ≥ x2 + (y′)2 ≥ 2xy′.

This proves the lemma, which is also sufficient to establish the 3-approximation.

5 Lower Bounds

In this section, we prove unconditional lower bounds for explainable clustering, where we recall that
we wish for strong approximations with respect to the optimal non-explainable clustering algorithm.
First, in Subsection 5.1, we give a counterexample showing that no explainable clustering algorithm
can provide a o(min(log k, d))-approximation for k-medians. Next, in Subsection 5.2, we give a
counterexample showing that no explainable clustering algorithm can provide a o(k) approximation
for k-means, even when d is only logarithmic in k. Finally, we show that our k-means lower bound
also implies an Ω(

√
d ·k) lower bound for explainable k-center clustering for d = Ω(log k), providing

a slight improvement over the lower bound of Laber and Murtinho [19].

5.1 Lower bound for explainable k-medians clustering

In this subsection, we prove an Ω(log k)-lower bound for any explainable k-medians clustering
algorithm, even if the dimension is only d = O(log k). The lower bound of Ω(log k) was already
known in the case when d = poly(k), which also provided an Ω(min(log k, log d))-lower bound, but
now we have an improved Ω(min(log k, d))-lower bound for explainable k-medians clustering.

Before we introduce the construction, we note the following lemma about k-medians clustering.

Lemma 9. Let x1, . . . , xn ∈ {−1, 1}n be clustered into sets S1, S2, . . . , Sk that partition [n]. Then,
for any point xi ∈ Sj if |Sj| = 1, define ci = 0, and otherwise, define ci as the average ℓ1 distance
from xi to the other points in Sj. Then, the minimum k-medians clustering cost induced by this
partition is at least

1

4
·

n∑

i=1

ci.

Proof. Fix a cluster (assume WLOG S1) and suppose that µ1 is the optimal cluster center for S1.
Then, suppose that |S1| = m > 2. For each j ∈ [d], define aj as the number of points xi for i ∈ S1

with jth coordinate xij = 1, and bj = m − aj as the number of such points with jth coordinate

21

xij = −1. Then, if µ1j is the jth coordinate of µ1, then
∑

i∈S1
|µ1j−xij| = aj ·|µ1j−1|+bj ·|µ1j+1| ≥

2 ·min(aj , bj). However, for each point xi for i ∈ S1 with jth coordinate 1, its average distance from

the other points in just the jth direction is 2 · bj
k−1 , and for each such point with jth coordinate −1,

its average distance from the other points in just the jth direction is 2 · aj
k−1 . Therefore, the sum of

these average distances is 2 · 2ajbjk−1 ≤ 4 · min(aj ,bj)·k
k−1 , and since k ≥ 2, this is at most 8 ·min(aj , bj). So,

∑

i∈S1
|µ1j − xij| is at least 1

4 times the sum of the average distances in the jth direction. Adding

this up over all coordinates j, we get that if |S1| ≥ 2, then
∑

i∈S1
‖µ1 − xi‖1 ≥ 1

4 ·
∑

i∈S1
ci. Also,

if |S1| = 1, then
∑

i∈S1
‖µ1 − xi‖1 ≥ 0 =

∑

i∈S1
ci. Therefore, adding over all clusters gives us the

desired result.

Our construction is somewhat similar to that of Dasgupta et al. [11], but our analysis of the
lower bound will be different. Let d = 10 · log k and let µ1, . . . ,µk be randomly selected points in
the Boolean cube {−1, 1}d. By a basic application of the Chernoff bound, we have the following
result:

Proposition 10. For sufficiently large k, with probability at least 0.99, every pair of points µi and
µj differ in at least d

10 coordinates.

Now, for each cluster center µi, we let µi,j be the point µi
⊕ej , i.e., where we negate the jth

coordinate of µi. The total set of points X in the dataset will be the µi along with the µi,j’s. Since
each of the k cluster centers has d points assigned to it besides itself, the total k-medians clustering
cost is 2dk, since ‖µi − µi,j‖1 = 2. In addition, the total number of points is n = k · (d + 1).
Finally, as a direct corollary of Proposition 10, for any two points in X not in the same true cluster,
they differ in at least d

10 − 2 coordinates, so assuming that d ≥ 40, their ℓ1 distance is at least

2 ·
(

d
10 − 2

)
≥ d

10 .
Now, consider any decision tree process that creates k clusters. Note that if we ever use some

coordinate j at some node, we may assume that we never use the same coordinate on its descendants,
as the jth coordinate only takes two values, so no more information can be obtained about the jth
coordinate afterwards. Now, for any i, let di represent the depth of the final (leaf) node in the
decision tree that contains µi, where the depth of the root is defined to be 0. Then, we must have
called di separate coordinates on the path from the root to the node, which means that di of the
points µi,j have been separated from µi, as well as from the remaining points µi,j′ for j′ 6= j.

Now, we claim the following lemma.

Lemma 11. Suppose that the dimension d is at least 40, and define N :=
∑k

i=1 di. Then, the
total clustering cost must be at least d

40 · (N − k). So, if N ≥ Ω(k log k), then the clustering is an
Ω(log k)-approximation.

Proof. We know that at least N of the points µi,j have been separated from the remainder of their
true clusters. In addition, since there are k clusters at the end, at least N − k of these points are
not assigned to be in clusters by themselves, but are assigned in clusters with other points that are
at least d

10 − 2 away from them. So, by Lemma 9, the total clustering cost is at least

1

4
· (N − k) · 2

(
d

10
− 2

)

≥ d

40
· (N − k).

From now on, we may assume that
∑k

i=1 di ≤
k log2 k

4 , which means that at least k
2 of the

values i ∈ [k] have di ≤ log2 k
2 . However, note that the number of nodes of depth at most log2 k

2 is

22

O(2(log2 k)/2) = O(
√
k). Therefore, assuming that k is sufficiently large, at least k

3 of the centers µi

are in the same assigned cluster as at least one other cluster center µk. In addition, exactly di of
the cluster center’s points µi,j are in different cells, so at least d − di ≥ 0.9 · d of the points µi,j

are in the same cell as µi. This implies that for any such i and any such µi,j in the same assigned
cluster as µi, the average ℓ1 distance between µi,j and any other point in its assigned cluster is at
least d

20 , since at least 1
2 of the points in the assigned cluster are of distance at least 2

(
d
10 − 2

)
≥ d

20
from it. Therefore, by Lemma 9, the total clustering cost is at least

1

4
· k

3
· (0.9 · d) · d

20
=

3kd2

800
≥ 3kd

80
· log k,

so again we have an Ω(log k) approximation as the optimal clustering cost is 2kd.

5.2 Lower bound for explainable k-means clustering

In this subsection, we prove an Ω(k)-approximation lower bound for any explainable k-means
clustering algorithm in d = Θ(log k)-dimensions. This means that if d = Ω(log k), the best possible
approximation is Ω(k) Thus, we provide an exponentially stronger lower bound than the Ω(log k)-
lower bound proven by Dasgupta et al. [11].

We create k centers as follows. Let d be the dimension (which we will fix later), and let
π1, . . . , πd : [k] → [k] represent independent random permutations of {1, 2, . . . , k}. Our ith center
µi will be (π1(i), . . . , πd(i)). Next, for each cluster center µi, we assign it 2 · d points: for each
direction j, we create a point x+i,j = µi + ej and another point x−i,j = µi − ej, where ej is the

identity vector in the jth coordinate. Note that each point x+i,j and x−i,j is only 1 away from its

closest center µi in Euclidean (ℓ2) distance. Our dataset X will be the set of all x+i,j and x−i,j points.
We now show that all of the clusters are far apart with high probability.

Lemma 12. There exist absolute constants C, c > 0 such that if d ≥ C log k, with probability at
least 1/2, all of the points µi are at least c · k ·

√
d away from each other in Euclidean distance.

Proof. Fix 1 ≤ i < j ≤ k. We consider the random variable X = ‖µi−µj‖22 =
∑k

r=1(πr(i)−πr(j))2.
For a fixed coordinate r, the random variable (πr(i) − πr(j))

2 is bounded in the range [0, k2].
Moreover, it has expectation at least c1k

2 for some absolute constant c1 > 0, since with probability
at least 1/16, πr(i) ≥ 3k/4 and πr(j) ≤ k/4, in which case (πr(i) − πr(j))

2 ≥ k2/4.
Now, define Xr = (πr(i)−πr(j))2 and let X = X1+· · ·+Xd. Since each Xr is independent (since

the permutations are drawn independently), and since each Xr is bounded in the range [0, k2], we
have that

P (|X − E[X]| ≥ t) ≤ exp

(

− 2t2

d · k4
)

.

In addition, note that E[X] ≥ c1dk
2. Therefore,

P

(

X ≤ c1
2
dk2
)

≤ exp

(−2(c1dk
2/2)2

d · k4
)

≤ exp

(−c21
2
· d
)

.

Since X = ‖µi −µj‖22, the probability that ‖µi −µj‖2 ≤ ck
√
d, for c =

√

c1/2 and d ≥ C log k for
C = 4

c2
1

, is at most 1
k2

. Therefore, the probability that there exist any i 6= j such that ‖µi− µj‖22 ≤
ck
√
d is at most 1

k2
·
(
k
2

)
≤ 1

2 by the union bound.

23

Now, suppose that we have picked some cluster centers µ1, . . . ,µk as above, satisfying that all
of the centers have pairwise distances at least ck

√
d from each other. We note that the optimal

clustering cost is at most 2dk, since for each cluster center µi, there are d points x+i,j and d more

points x−i,j, all of distance 1 from µi.
However, no matter what decision tree we choose, we must start off by selecting some line

xr = t for some integer 1 ≤ r ≤ d and real number 1 ≤ t ≤ k. Let i = π−1
r (⌊t⌋). Then, µi has

rth coordinate equal to ⌊t⌋, which means that x−i,r and x+i,r will be assigned to different clusters.
However, since there are only k clusters in total, this means that for any explainable clustering
algorithm on X , there must exist points x, y ∈ X that were originally assigned to two different
clusters i and j, but now are assigned to the same cluster. By Lemma 12 and the triangle inequality,
‖x − y‖2 ≥ ck

√
d − 2, which means that the k-means clustering cost of this algorithm must be at

least Ω(k2d). However, since the optimal cost is at most 2kd, no explainable algorithm can do
better than a O(k)-approximation for k-means clustering, as long as d ≥ Ω(log k).

We also note that this example also shows that no explainable algorithm can perform better
than an O(k

√
d)-approximation for the k-center clustering problem if d = Ω(log k). This is because

the k-center cost of this pointset is O(1) (since every point x+i,j and x−i,j is within Euclidean distance
1 of µi), but we have shown that any explasinable clustering algorithm must send at least one point
x+i,j or x−i,j to a cluster of distance ck

√
d − 2 = Ω(k

√
d). This provides a slight improvement over

the Ω
(

k
√
d ·

√
log log k
log1.5 k

)

lower bound obtained by [19] when d = Ω(log k).

Acknowledgments

We thank Piotr Indyk and Amin Karbasi for constructive discussions.

References

[1] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for euclidean
k -medians and related problems. In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth
Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
pages 106–113. ACM, 1998.

[2] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics, 2007.

[3] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517, 1975.

[4] Leo Breiman, Jerome Friedman, Charles J. Stone, and R. A. Olshen. Classification and Re-
gression Trees. Number 173. CRC press, 1984.

[5] Jaros law Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization. In
Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages
737–756. SIAM, 2014.

24

[6] Moses Charikar and Lunjia Hu. Near-optimal explainable k-means for all dimensions. CoRR,
2021.

[7] Vincent Cohen-Addad. A fast approximation scheme for low-dimensional k -means. In Artur
Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 430–440. SIAM,
2018.

[8] Vincent Cohen-Addad, Andreas Emil Feldmann, and David Saulpic. Near-linear time approx-
imations schemes for clustering in doubling metrics. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pages 540–559. IEEE, 2019.

[9] Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. SIAM J. Comput.,
48(2):644–667, 2019.

[10] Vincent Cohen-Addad, Silvio Lattanzi, Ashkan Norouzi-Fard, Christian Sohler, and Ola Svens-
son. Fast and accurate k-means++ via rejection sampling. Advances in Neural Information
Processing Systems, 33, 2020.

[11] Sanjoy Dasgupta, Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Explainable k-means
and k-medians clustering. In Proceedings of the 37th International Conference on Machine
Learning, Vienna, Austria, pages 12–18, 2020.

[12] Ricardo Fraiman, Badih Ghattas, and Marcela Svarc. Interpretable clustering using unsuper-
vised binary trees. Advances in Data Analysis and Classification, 7(2):125–145, 2013.

[13] Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Exkmc: Expanding explainable k-
means clustering. arXiv preprint arXiv:2006.02399, 2020.

[14] Buddhima Gamlath, Xinrui Jia, Adam Polak, and Ola Svensson. Nearly-tight and oblivious
algorithms for explainable clustering. CoRR, 2021.

[15] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. Journal
of the ACM (JACM), 50(6):795–824, 2003.

[16] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman,
and Angela Y Wu. A local search approximation algorithm for k-means clustering. Computa-
tional Geometry, 28(2-3):89–112, 2004.

[17] Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the
euclidean k-median problem. SIAM J. Comput., 37(3):757–782, 2007.

[18] Stavros G Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the
euclidean k-median problem. SIAM Journal on Computing, 37(3):757–782, 2007.

[19] Eduardo Laber and Lucas Martinho. On the price of explainability for some clustering prob-
lems. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 2021.

25

http://arxiv.org/abs/2006.02399

[20] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. In
International Colloquium on Automata, Languages, and Programming, pages 77–88. Springer,
2011.

[21] B. Liu, Y. Xia, and P. Yu. Clustering via decision tree construction. In Foundations and
Advances in Data Mining, pages 97–124, 2005.

[22] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[23] Wei-Yin Loh. Classification and regression trees. Data Mining and Knowledge Discovery,
1(1):14–23, 2011.

[24] Konstantin Makarychev and Liren Shan. Near-optimal algorithms for explainable k-medians
and k-means. In Proceedings of the 38th International Conference on Machine Learning, Vir-
tual, 2021.

[25] Ramgopal R Mettu and C Greg Plaxton. Optimal time bounds for approximate clustering.
Machine Learning, 56(1):35–60, 2004.

[26] Adam Meyerson, Liadan O’callaghan, and Serge Plotkin. A k-median algorithm with running
time independent of data size. Machine Learning, 56(1):61–87, 2004.

[27] Christoph Molnar. Interpretable machine learning. lulu. com, 2019, 2019.

[28] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. In-
terpretable machine learning: definitions, methods, and applications. arXiv preprint
arXiv:1901.04592, 2019.

[29] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

[30] Konstantin Voevodski. Large scale k-median clustering for stable clustering instances. In
International Conference on Artificial Intelligence and Statistics, pages 2890–2898. PMLR,
2021.

A Dasgupta et. al’s Algorithm is Suboptimal for k-medians

In this appendix, we establish that the IMM algorithm by Dasgupta et al. [11] cannot obtain better
than an O(k)-approximation for k-medians. In addition, even the improvement that we make in
the Section 3 of greedily selecting a line based on minimizing the number of misclassified points
Eu(r, t) divided by fu(r, t), rather than just minimizing Eu(r, t), is also suboptimal. Our example
assumes the dimension d is Θ(k).

We now present the dataset for which the IMM algorithm, or even our proposed improvement,
fails to obtain better than a k-approximation. All of our points and cluster centers will be in
the Boolean hypercube {0, 1}d, where we set d = 2(k − 1). Let µ1 = 0 = (0, 0, . . . , 0). Next, let
z = (0, 0, . . . , 0

︸ ︷︷ ︸

k−1

, 1, 1, . . . , 1
︸ ︷︷ ︸

k−1

) be the point with first k − 1 coordinates 0 and last k − 1 coordinates

26

http://arxiv.org/abs/1901.04592

1. For each 1 ≤ i ≤ k − 1, we define the (i + 1)th cluster center as µi+1 = ei + z, where ei is the
identity vector on the ith coordinate.

Next, our dataset X will be as follows. First, for each 2 ≤ i ≤ k, we let there be 3(k− 1) copies
of µi in X . In addition, for each coordinate 1 ≤ j ≤ k − 1, we let there be 1 copy of ej , and for
each coordinate k ≤ j ≤ 2(k− 1), we let there be 2 copies of ej . Note that the copies of µi for each
2 ≤ i ≤ k will be assigned to cluster center µi, and the copies of ej for each j ∈ [d] will be assigned
to cluster center µ1. In addition, there are n = 3(k − 1) · k points in X , 3(k − 1) assigned to each
point µi, and the total k-medians clustering cost is 3(k− 1), since the copies of ej are contributing
1 each to the cost, and the remaining points contribute 0.

The correct strategy would be to first make a split along one of the last k− 1 dimensions. This
would separate µ1 from all other cluster centers, and anything done now will result in an O(k)
clustering cost. Unfortunately, IMM will not do so. Rather, IMM will choose one of the first k− 1
coordinates to split the dataset, as this causes there to only be 1 misclassified point instead of 2.
If we split based on the ith coordinate, then µi+1 will split from the remaining cluster centers.
We will then continue to split the others of the first k − 1 coordinates. Overall, each of the points
e1, . . . , ek−1 will be sent to µ2, . . . ,µk, respectively, incurring a k-medians cost of (k−1)·k = Ω(k2).
Hence, the IMM algorithm provides an Ω(k)-approximation in the worst case.

Even if we use the modification of IMM that minimizes Eu(r, t)/fu(r, t) at each step, we would
still end up with the same algorithm. This is because in each coordinate, there is always exactly one
point among {µ1, . . . ,µk} with a 0 at that coordinate, or exactly one point among {µ1, . . . ,µk}
with a 1 at that coordinate. So, any choice of division will always have fu(r, t) = 1, so the algorithm
does not change, and we still get an Ω(k)-approximation.

27

	1 Introduction
	1.1 Other Related Work
	1.2 Preliminaries and Notation
	1.3 Our Techniques

	2 Algorithm for Explainable k-medians Clustering
	2.1 Simplified algorithm
	2.2 Proof of Theorem 1
	2.3 Faster algorithm

	3 Algorithm for Explainable k-means Clustering
	3.1 Main Lemma
	3.2 Finishing the Proof
	3.3 Analyzing the Runtime

	4 Algorithm for explainable 2-means clustering
	5 Lower Bounds
	5.1 Lower bound for explainable k-medians clustering
	5.2 Lower bound for explainable k-means clustering

	A Dasgupta et. al's Algorithm is Suboptimal for k-medians

