
ar
X

iv
:2

10
7.

09
23

9v
2

 [
cs

.G
T

]
 2

1
Ju

l 2
02

1

Deterministic Budget-Feasible Clock Auctions∗

Eric Balkanski†a, Pranav Garimidi‡a, Vasilis Gkatzelis§b, Daniel Schoepflin¶b, Xizhi Tan‖b

aColumbia University
bDrexel University

Abstract

We revisit the well-studied problem of budget-feasible procurement, where a buyer with a
strict budget constraint seeks to acquire services from a group of strategic providers (the sellers).
During the last decade, several strategyproof budget-feasible procurement auctions have been
proposed, aiming to maximize the value of the buyer, while eliciting each seller’s true cost for
providing their service. These solutions predominantly take the form of randomized sealed-
bid auctions: they ask the sellers to report their private costs and then use randomization to
determine which subset of services will be procured and how much each of the chosen providers
will be paid, ensuring that the total payment does not exceed the buyer’s budget. Our main
result in this paper is a novel method for designing budget-feasible auctions, leading to solutions
that outperform the previously proposed auctions in multiple ways.

First, our solutions take the form of descending clock auctions, and thus satisfy a list of very
appealing properties, such as obvious strategyproofness, group strategyproofness, transparency,
and unconditional winner privacy; this makes these auctions much more likely to be used in
practice. Second, in contrast to previous results that heavily depend on randomization, our
auctions are deterministic. As a result, we provide an affirmative answer to one of the main open
questions in this literature, asking whether a deterministic strategyproof auction can achieve
a constant approximation when the buyer’s valuation function is submodular over the set of
services. In addition to this, we also provide the first deterministic budget-feasible auction
that matches the approximation bound of the best-known randomized auction for the class of
subadditive valuations. Finally, using our method, we improve the best-known approximation
factor for monotone submodular valuations, which has been the focus of most of the prior work.

∗This project was supported in part by by NSF grants CCF-2008280 and CCF-1755955. The authors would like
to thank Eva Tardos and Georgios Amanatidis for helpful discussions during the early stages of this project.

†
eb3224@columbia.edu, Industrial Engineering and Operations Research Department

‡
pg2682@columbia.edu, Computer Science Department

§
gkatz@drexel.edu, Computer Science Department

¶schoep@drexel.edu, Computer Science Department
‖
xizhi@drexel.edu, Computer Science Department

http://arxiv.org/abs/2107.09239v2

1 Introduction

A decade ago, the seminal paper of Singer [30] was the first to analyze the following important
mechanism design problem: a buyer with a hard budget constraint, B, is looking to acquire some
services (or goods) from a group of sellers, N . The buyer has a value function v(S) for receiving
the services of each subset of sellers S ⊆ N , and her goal is to maximize this value, but each seller
i ∈ N has a private cost ci for providing the service and would need to be compensated accordingly.
The objective in this problem is to design a polynomial-time auction that determines which subset
of services, S, the buyer should acquire and what payment pi each seller i ∈ S should receive,
while ensuring budget feasibility, i.e.,

∑

i∈S pi ≤ B, and strategyproofness, i.e., that reporting their
true costs is the optimal strategy for all sellers. The main result of Singer [30] was a prior-free
auction (i.e., one that has no prior information regarding the sellers’ costs) that achieves a constant
approximation of the optimal value when the buyer’s valuation function is monotone submodular.

Since then, this problem has received a lot of attention due to its distinctive combination of
practical and theoretical appeal. From a practical standpoint, budget-feasible procurement cap-
tures a multitude of application domains, ranging from crowdsourcing markets [32, 2], to influence
maximization [31] and data acquisition [28, 19]. From a theoretical standpoint, this problem stands
out because, unlike most mechanism design problems, budget feasibility imposes a non-trivial con-
straint on the payments that the mechanism can use, which introduces new challenges. A list
of impressive results managed to overcome many of these challenges, leading to several prior-free
budget-feasible auctions for instances where the buyer’s valuations are additive [10, 2, 18], monotone
submodular [10, 2, 20], non-monotone submodular [1, 8], and even subadditive [12, 8].

All these results take the form of sealed-bid auctions: the sellers are asked to reveal their private
costs to the auctioneer, who then uses this information to decide the outcome. Although sealed-bid
auctions are ubiquitous in the mechanism design literature, they have significant shortcomings. For
example, they lack transparency, so the bidders need to trust that the auctioneer will not mishandle
their private information and will faithfully implement the auction protocol. Furthermore, even if a
sealed-bid auction is provably strategyproof, in practice bidders often lie to such auctions (see, e.g.,
[22]), partly because their strategyproofness may be hard to verify. Motivated by this discrepancy,
Li [24] recently introduced a more demanding notion, known as obvious strategyproofness. In an
obviously strategyproof auction, the bidders can trivially verify that they cannot benefit by manip-
ulating the auction, and experimental evidence verifies that their behavior in practice conforms with
the rules of these auctions. This also implies other sought-after incentive properties, such as weak
group strategyproofness (i.e., no coalition of bidders can misreport collectively and all benefit).

In search for a practical alternative to sealed-bid auctions, Milgrom and Segal [27] recently iden-
tified a particularly noteworthy class of obviously strategyproof auctions, known as clock auctions.
In contrast to sealed-bid auctions, budget-feasible clock auctions take place over multiple rounds: in
each round they offer a price to each bidder and the bidders have the opportunity to reject the price
offered to them and permanently exit the auction. The price offered to each bidder weakly decreases
over time, and the auction terminates when the prices offered to the bidders that remain active add
up to no more than the budget, at which point the buyer acquires the services of the active bidders
at the last price that they were offered. Apart from being obviously strategyproof, these auctions
are highly transparent and do not require that the bidder trust the auctioneer. Motivated by these
highly appealing properties, in this work we set out to design budget-feasible clock auctions.

Another important limitation of the previously proposed budget-feasible mechanisms is that the
vast majority of them heavily rely on randomization, making it unlikely that they would be used in

1

practice: on one hand, bidders can find the notion of randomization and its impact confusing and,
on the other hand, it can be hard to verify that the resulting outcome is indeed the product of the
prescribed randomization [26, 21]. Furthermore, the performance bounds of randomized mechanisms
are guaranteed only in expectation rather than ex-post. However, the design of deterministic budget-
feasible auctions for submodular valuations has remained elusive, with Amanatidis et al. [1] pointing
to the problem of “obtaining deterministic, budget-feasible, O(1)-approximation mechanisms—or
showing that they do not exist” as the most intriguing open problem in this line of work.

1.1 Our Results

In this paper we propose a new method for designing budget-feasible auctions that simultaneously
addresses many of the shortcomings of previous mechanisms. First, our results take the form of
clock auctions, thus avoiding the shortcomings of sealed-bid auctions and leading to solutions that
are much more likely to be used in practice. Second, they are deterministic, making them even more
practical and guaranteeing their performance ex-post. Finally, our auctions either beat or match
the best known approximation bounds by any other polynomial time strategyproof auction. The
approximation guarantees that we achieve through our deterministic clock auctions are:

• monotone submodular valuations (Section 3): our deterministic approximation of 4.75,
improves the best known randomized approximation of 5 by Jalaly and Tardos [20].

• non-monotone submodular valuations (Section 4): our deterministic approximation of 64,
improves the best known randomized approximation of 505 by Amanatidis et al. [1].

• subadditive valuations (Section 5): our deterministic approximation of O(log(n)/ log log(n))
matches the best known randomized approximation by Bei et al. [8] and improves the best known
deterministic approximation of O(log3(n)) by Dobzinski et al. [12].

As a corollary, we resolve the open question posed by Amanatidis et al. [1] in the affirmative, by
providing the first deterministic mechanism that combines strategyproofness with a constant factor
approximation for instances where the buyer valuations are submodular. In fact, rather than using
a sealed-bid auction, we achieve this result using the more restrictive class of clock auctions.

Our method for designing these budget-feasible clock auctions proceeds by initially making a
pessimistic estimate regarding the quality of the optimal solution and determining the first set of
prices to offer to the bidders, aiming to achieve that pessimistic estimate. If some budget-feasible
group of bidders that accepted their prices is sufficient to satisfy the pessimistic estimate, this group
is temporarily set aside. Then, the estimate is updated to be slightly more ambitious, and a new set
of prices is offered to bidders, except the ones that were set aside. If this more ambitious estimate
is achieved by a new budget-feasible group of bidders, then the set-aside bidders are replaced by
the new group, and the process continues until the auction reaches an estimate that it is unable to
achieve. By setting aside the group of bidders that achieved the latest estimate, these auctions secure
that estimate before attempting to reach a more ambitious estimate. Meanwhile, these estimates
are used as a guide for gradually more demanding pricing, so the process that leads to the discovery
of the final prices has a primal-dual flavor. When designing our auctions the pace at which we raise
the estimate balances a subtle tradeoff between increasing it slowly enough to avoid overshooting
the target value we wish to reach, yet quickly enough to limit the loss from optimal bidders who
are eliminated in each phase due to overlapping value with non-optimal bidders.

2

Clock auctions and algorithms All clock auctions automatically satisfy multiple very appealing
properties, like obvious-strategyproofness, weak group strategyproofness, transparency, simplicity,
and unconditional winner privacy, which are, in general, not satisfied by sealed-bid auctions [27].
An exciting implication is that this reduces the problem of designing practical auctions to the purely
algorithmic problem of designing price increase trajectories without worrying at all about incentives.
For instance, note that this paper requires no proofs regarding strategyproofness: we just design
algorithms that follow the format of clock auctions and analyze their worst-case approximation
guarantees. In fact, Milgrom and Segal [27] proved that clock auctions correspond to a specific
class of backward greedy algorithms. Specifically, every budget-feasible clock auction corresponds
to a multi-round greedy algorithm that, in each round, summarizes the “attractiveness” of each bid
using a score that depends only on its cost, and then myopically eliminates the active bidder with
the lowest score. This process continues until the algorithm terminates and accepts all remaining
bidders. Therefore, designing clock auctions is equivalent to designing backward greedy algorithms.

This connection between clock auctions and backward greedy algorithms illuminates some non-
trivial design challenges that we had to overcome. Although there are several classic results that use
forward greedy algorithms for approximately maximizing a submodular function1, we are not aware
of any prior work that achieves comparable guarantees using backward greedy algorithms. A crucial
difference is that forward greedy algorithms proceed by iteratively adding bidders to a set of accepted
bidders, A, and they can myopically decide which bidder i to add based on the marginal increase in
value relative to the set of accepted bidders up to this point, i.e., v(A ∪ {i}) − v(A). On the other
hand, backward greedy algorithms need to myopically eliminate the “least appealing” bidders. The
main challenge is that it is hard for backward greedy algorithms to gauge the marginal contribution
of each bidder relative to the accepted bidders since it cannot foresee who the accepted bidders
are going to be. The backward greedy algorithm corresponding to our clock auction functions as
follows: in each round we set a gradually more demanding threshold regarding what would make
each bidder “acceptable” and then reject the first bidder who does not pass that threshold.

Overcoming the dependence on randomization. Prior work leverages randomization in two
fundamental ways. First, many of the mechanisms gradually construct two (overlapping) subsets of
bidders and then choose which one of these two sets will be accepted, uniformly at random. This
guarantees that the expected value of the outcome will be at least half of the maximum value among
the two subsets, and it, crucially, maintains the monotonicity of the allocation rule, thus not com-
promising the incentives of the mechanism (see, e.g., [10, 20] for more details). Second, some recent
mechanisms randomly sample some of the bidders, and then use the values of the sampled bidders
to determine an estimate of the optimal value [8, 1]. Then, using this estimate as a benchmark,
they approach the non-sampled bidders and offer them take-it-or-leave-it prices. Deterministic auc-
tions cannot use random sampling to estimate the optimal value, but our auctions overcome this
issue by gradually adjusting the estimate until they reach a reasonable approximation. Our results
are in contrast to previous work that has uncovered simple instances where the performance of
deterministic clock auctions is asymptotically different than that of randomized ones [13].

1In fact, many of the known strategyproof budget-feasible auctions for submodular valuations closely resemble
these classic results, and are based on forward greedy algorithms.

3

1.2 Related Work

Budget-feasible clock auctions Prior to this work, there were only a few examples of budget-
feasible clock auctions in the literature. Ensthaler and Giebe [15] and Jarman and Meisner [21]
focused on the very special case where v(S) = |S|. Badanidiyuru et al. [6] and Balkanski and
Hartline [7] designed budget-feasible posted-price mechanisms, which are a special type of clock
auction, but the former only obtained a O(log n) approximation for monotone submodular valuations
and the latter considered a Bayesian setting where the costs are drawn from a prior distribution
known to the auctioneer. All other known budget-feasible mechanisms take the form of sealed-bid
auctions, and the vast majority of these auctions cannot be implemented as clock auctions, with just
a few exceptions [8, 18, 1]. The mechanisms in [8, 1] rely on randomization by using randomized
sampling to learn the costs of some subset of the bidders and then use this information to determine
posted prices for the remaining bidders. We have also verified that the two auctions in [18] can be
implemented as clock auctions, but their guarantees are restricted to the case of additive valuations.

Other budget-feasible auctions Starting from the results of Singer [30] several budget-feasible
auctions have been proposed. For the special case of additive valuations, Chen et al. [10] improved
the approximation by providing a 2+

√
2-approximate deterministic mechanism and a 3-approximate

randomized mechanism. They also proved a lower bound of 2 for any randomized mechanism and a
lower bound of 1+

√
2 for any deterministic one.2 Gravin et al. [18] proved a matching upper bound

for randomized mechanisms and additive valuations and also provided a 3-approximate determin-
istic mechanism. For monotone submodular functions, Chen et al. [10] gave a 7.91-approximate
randomized mechanism and Jalaly and Tardos [20] further improved this result, obtaining a ran-
domized mechanism that achieves the best known approximation of 5. In this paper we achieve an
improved approximation of 4.75, while also providing the first polynomial time auction to achieve
any constant approximation for monotone submodular valuations without using randomization.

Beyond monotone submodular valuations, finding mechanisms with small constant approxi-
mation factors has proven more elusive. For non-monotone submodular valuations, Amanatidis
et al. [1] gave a 505-approximate randomized mechanism. Using similar techniques Bei et al. [8]
had previously managed to design a randomized mechanism obtaining a 768-approximation for
XOS valuations. For the class of subadditive valuations, Dobzinski et al. [12] gave a O(log2 n)-
approximate randomized mechanism and a O(log3(n))-approximate deterministic one. Bei et al. [8]
improved the former by giving a O(log n/ log log n)-approximate randomized mechanism.3 Section 4
improves the best known approximation for non-monotone submodular from 505 to 64, while pro-
viding the first deterministic auction to achieve any constant approximation for this class. Section 5
improves the best known deterministic approximation for subadditive valuations from O(log3(n))
to O(log n/ log log n), matching the best known randomized approximation for this class.

Some prior work has also designed mechanisms for the more tractable large-market model, which
assumes that every bidder represents a vanishing portion of the optimal value. This assumption
sidesteps some of the main obstacles that arise in budget-feasible mechanism design and enables
better approximation for additive [2] and monotone submodular valuations [20].

2These lower bounds are the best known even for the much more general class of subadditive valuation functions.
3The results for XOS and subadditive valuations are obtained in the demand oracle model, not in the value oracle

model our mechanisms for submodular valuations use. It takes an exponential number of value queries in expectation
to obtain a (randomized) n1−ǫ-approximation for XOS function maximization for any fixed ǫ > 0 [1, Theorem 6.2].

4

“Simple” mechanisms and other clock auctions Our work also adds to the developing liter-
ature on simplicity in mechanism design (e.g., [4, 29, 11]). Even if a mechanism is strategyproof,
it may not be readily used in practice [3], e.g., because the participants may not understand or
trust that the mechanism is strategyproof [22, 24]. Designing simple mechanisms often requires
that the algorithmic processes are straightforward so that the participants can understand them.
Clock auctions, however, present an extremely simple, even obviously strategyproof, interface to the
bidders regardless of how sophisticated the algorithmic techniques computing the clock prices are.
Clock auctions then provide a striking balance of algorithmic richness with practical applicability.

Motivated by the highly desirable characteristics of clock auctions, there is a growing literature
examining their performance in a variety of settings, including procurement settings without budget
constraints [23], forward auction settings where the bidders have private values for being served and
there is a publicly known constraint system over the sets of feasible bidders [13, 17], and double
auction settings where the auctioneer is interacting with both buyers and sellers [14, 25].

2 Preliminaries

We consider a procurement setting with a set N of n bidders each of which is capable of providing
some service to the auctioneer. Each bidder i ∈ N has a private cost ci ≥ 0 which indicates the
minimum payment that i would require in order to provide her service. The auctioneer has a budget
B that they can spend on services, and a non-negative valuation function v: 2N → R

≥0 that defines
the value the auctioneer receives from acquiring the services of the bidders in each subset S ⊆ N .

We say that the valuation function of the auctioneer v is monotone if v(S) ≤ v(T) for any
S ⊆ T ⊆ N and submodular if v(S) + v(T) ≥ v(S ∩ T) + v(S ∪ T) for all S, T ⊆ N . An equivalent
definition of submodularity is that a function v is submodular if it satisfies the following diminishing
returns property: v(X ∪ {i}) − v(X) ≥ v(Y ∪ {i}) − v(Y) for all sets X ⊆ Y ⊂ N and all i /∈ Y .
We say a valuation function is subadditive if v(S ∪ T) ≤ v(S) + v(T) for all S, T ⊆ N . For any sets
S, T ⊆ N , we denote the marginal contribution of T when added to S as v(T | S) = v(S∪T)−v(S).

A (descending) clock auction offers a sequence of non-increasing prices computed using only
public information, one in each phase of the auction, to bidders. In other words, let pi,t denote
the price the mechanism offers to bidder i in phase t. Then, we have pi,t ≤ pi,t−1 for all bidders i
and phases t. Upon receiving their offer, each bidder may choose to exit or continue the auction.
Bidders who choose to continue are said to “accept” the lower price and are called active bidders.
We denote the set of active bidders at the end of phase t as At with At ⊆ At−1 ⊆ · · · ⊆ A1 ⊆ N .
When the auction ends in phase t̂, some subset of the active bidders is selected as the winning set
W and the service of each i ∈ W is acquired at her most recently accepted price. An auction that
chooses a winning set W and charges each i ∈W a price pi,t̂ is budget feasible if

∑

i∈W pi,t̂ ≤ B.
We measure the performance of our mechanisms by comparing them against the optimal value

achievable by a computationally unbounded auctioneer that also knows every bidder’s true cost. If
the auctioneer knew the private costs c = (ci)i∈N of the bidders, she would be able to select the
subset W of services with the maximum total value under the budget constraint, paying each bidder
i a price pi = ci. For some instance I, let O(I) denote the optimal set of bidders to be served in
instance I and OPT denote v(O(I)). Similarly, letM(I) denote the set of bidders served in instance
I by some mechanism M. We say that M achieves an approximation factor ρ ≥ 1 for a class of
instances I if it always extracts at least a 1/ρ fraction of the optimal value, i.e., ρ ≥ supI∈I

OPT

v(M(I)) .

5

3 Monotone Submodular Valuations

In this section we develop a deterministic clock auction that achieves a 4.75 approximation for
any monotone submodular valuation function. This is the first deterministic strategyproof budget-
feasible mechanism that achieves a constant approximation for monotone submodular valuation
functions in polynomial time, and we achieve this with a clock auction. At the core of our clock
auction is a novel backward greedy technique for maximizing submodular functions that iteratively
eliminates bidders from consideration.

Our clock auction, called Iterative-Pruning, proceeds in phases that iteratively eliminate
bidders. In each phase t we aim to find a set of bidders St with value at least ˜OPT, where ˜OPT is
initially a low, rough estimate of the optimal value OPT that is then gradually increased and refined.
At each phase, the mechanism iteratively considers the remaining bidder i with maximum marginal
contribution v({i} | St) to St. It then offers price pi = min{pi, v({i} | St) · B

˜OPT
} to bidder i, which is

the minimum of the last price offered to bidder i and the marginal contribution of i to the bidders
St, scaled in order to reach the target value ˜OPT with budget B. If bidder i accepts, the mechanism
adds i to St, otherwise it eliminates i from the set of active bidders A. Phase t terminates either
when v(St) ≥ ˜OPT, or when there are no more bidders to offer a price to, i.e., A \ (St−1 ∪ St) = ∅.

At the beginning of a new phase t > 1, the target ˜OPTt is updated to be two times the previous
target ˜OPTt−1. We set aside St−1, the bidders who accepted the price they were offered in the
previous phase, t− 1. If all the active bidders are either in St−1 or St at the end of a phase t, then
t is the last phase of the mechanism. We implement sets in our mechanisms as lists that maintain
the order in which the bidders were added to them. We say that the prefix of length k of set S is
the subset comprising bidders from the first to the k-th index of the list representing S.

MECHANISM 1: Iterative-Pruning, a deterministic budget-feasible clock auction for monotone

submodular valuation functions

Input: Budget B, valuation function v : 2N → R

1 initialize A← N , S0 ← ∅, S1 ← {argmaxi∈N v({i})}, ˜OPT← v(S1), t← 1, pi ← B for all i ∈ N
2 while A \ (St−1 ∪ St) 6= ∅ do

3 update t← t+ 1, ˜OPT← 2 ˜OPT and initialize St ← ∅ // start a new phase

4 while v(St) < ˜OPT and A \ (St−1 ∪ St) 6= ∅ do

5 let i← argmaxi∈A\(St−1∪St)v({i} | St)

6 update pi ← min
{
pi, v({i} | St) · B

˜OPT

}

7 if bidder i accepts price pi then

8 update St ← St ∪ {i} // add bidder i to current solution

9 else

10 update A← A \ {i} // permanently eliminate bidder i

11 Let W1 ← St−1 and W 2 ← St

12 if
∑

i∈W1
pi > B then // enforce budget feasibility of W1

13 let j∗ ← the last bidder added to St−1

14 update pj∗ ← min{pj∗ , v({j∗} | St) · B
˜OPTt
}

15 update W1 ←W1 \ {j∗}
16 if bidder j∗ accepts price pj∗ then

17 update W 2 ←W 2 ∪ {j∗} // move the last bidder j∗ to W 2

18 return Maximize-Value(W1,W 2, p)

6

ALGORITHM 2: Maximize-Value, an algorithm for maximizing value subject to knapsack constraint

Input: W1, W 2 and the prices pi for all i ∈W1 ∪W 2

1 let W2 ← the longest budget-feasible prefix of W 2

2 let W3 ← W2 ∪ T , where T is the longest prefix of W1 such that W2 ∪ T is budget-feasible

3 Let W ∈ {W1,W3} be the set with the largest value v(W)

4 return W and the corresponding prices

After the last phase has concluded, the mechanism lets W1 and W 2 denote the sets generated
during the last two phases. If W1 is not budget feasible based on the latest prices, the last bidder
added to it is removed. That bidder is offered a (weakly) lower price, and if the bidder accepts that
lower price it is added to W 2.

At this point, the prices are finalized and what remains is to choose a subset W of active bidders
that is budget-feasible (with respect to the final prices), aiming to maximize v(W). Maximizing a
submodular function subject to a knapsack constraint is hard to approximate beyond 1−1/e [16, 33],
but we show that the Maximize-Value algorithm achieves the desired approximation by just
choosing the best out of two simple candidates: i) the set W1 and ii) the set W3. The set W3

contains the longest budget-feasible prefix of W 2, denoted W2, and then uses any leftover budget
to also hire the longest possible prefix of bidders from W1 that this leftover budget can buy. Note
that, since the prices have been finalized, one can actually replace the call to Maximize-Value

with their favorite algorithm for submodular maximization or, even better, just use that algorithm
within Maximize-Value to determine another budget-feasible candidate set W4 and just return the
set from {W1,W3,W4} that gives the highest value for each instance. What is particularly exciting
about clock auctions is that one can just plug in any algorithm that they like without affecting the
incentives and appealing properties of the auction, which is unlike most other auction formats.

Our main result for this section is that, apart from being a deterministic clock auction, Iterative-

Pruning also achieves the best-known approximation for monotone submodular valuations.

Theorem 1. Let v be a monotone submodular valuation function, then Iterative-Pruning is a
polynomial-time deterministic budget-feasible clock auction that achieves a 4.75 approximation.

The fact that Iterative-Pruning is budget feasible is easy to verify since the sets considered by
Maximize-Value are budget feasible by design, based on the final prices (see Appendix A.4). Due
to space limitations we also defer the argument that its running time is O(n2 log n) to Appendix A.5,
and instead focus on the more challenging argument for proving the approximation factor.

Let t̂ denote the last phase before the mechanism terminates and let ˜OPTt denote the target
value ˜OPT of each phase t. Also, let Q = {Q ⊆ N \ (W1 ∪ W 2) :

∑

i∈Q ci ≤ B} be the

collection of all budget-feasible subsets of bidders in N \ (W1 ∪W 2) (the rejected bidders), and let
R = argmaxQ∈Qv(Q | W1 ∪W 2) be the set in Q that adds the largest marginal value to W1 ∪W 2.

To prove the approximation factor, we later argue that OPT ≤ v(W1 ∪W 2) + v(R | W1 ∪W 2),
and show that our auction achieves a 4.75-approximation of the benchmark on the right hand side.
The following lemma plays a central role in this argument, as it provides an upper bound on the
portion of the optimal value lost through rejections, i.e., the second term of the benchmark.

Lemma 2. For any monotone submodular valuation function v, if t̂ is the last phase of Iterative-

Pruning, we have

v(R | W1 ∪W 2) ≤
(
3

2
− 1

2t̂−2

)

· ˜OPTt̂.

7

Proof. We denote the last bidder that is added to St̂−1 (who is offered a new price in line 14) as j∗.
We then partition R into Ra and Rb where Ra consists of the bidders of R that were rejected in the
first t̂− 2 phases and Rb consists of bidders in R rejected in phases t̂− 1 and t̂ and j∗ if j∗ ∈ R. We
say bidders in Ra have total cost fa · B and those in Rb have total cost fb ·B where fa + fb ≤ 1.

For any j ∈ Rb that is rejected in phase t̂ − 1, let Tj ⊆ St̂−1 be the subset when j is rejected.
Note that Tj does not include j∗ since j is considered before the addition of j∗, so Tj ⊆ W1, and
we have:

v({j} | W1 ∪W 2) ≤ v({j} | W1) ≤ v({j} | Tj) ≤ ˜OPTt̂−1

cj
B
≤ ˜OPTt̂

cj
B
.

where the first two inequalities are by submodularity. Similarly, for any j ∈ Rb that is rejected in
phase t̂, we have:

v({j} | W1 ∪W 2) ≤ v({j} | W 2) ≤ v({j} | Tj) ≤ ˜OPTt̂
cj
B
.

If the last bidder j∗ of W1 is rejected to make W1 budget feasible (in line 14), it must be that it
rejected the new price the mechanism offers, i.e.,

v({j∗} | W1 ∪W 2) ≤ v({j∗} | W 2) ≤ ˜OPTt̂
cj∗

B
.

Since the sum of the costs of the bidders in Rb is equal to fb ≤ 1 fraction of budget, i.e.,
∑

j∈Rb
cj = fbB. we have:

v(Rb | W1 ∪W 2) ≤
∑

j∈Rb

v({j} | W1 ∪W 2) ≤
∑

j∈Rb

˜OPTt̂
cj
B
≤ fb ˜OPTt̂.

Now let S−
t denote the longest budget-feasible prefix of St. We then have v(S−

t) ≤ ˜OPTt for all

t. We also define St̂−2 =
⋃t̂−2

t=2 S
−
t . For any bidder j ∈ Ra, by the definition of the mechanism we

have cj > v({j} | Tk) · B
˜OPTk

for some Tk ⊆ S−
k where 2 ≤ k ≤ t̂−2 is the phase where j was rejected.

Notice that we don’t include S1 since no bidder can be rejected in phase 1. By submodularity, we
have v({j} | Tk) ≥ v({j} | St̂−2). Together with the fact that ˜OPTk ≤ ˜OPTt̂−2 for all k ≤ t̂−2, we get
that for all j ∈ Ra, v({j} | St̂−2) ≤ ˜OPTt̂−2 · ciB . Similarly, since the sum of the costs of the bidders
in Ra equals to fa fraction of the budget, i.e.,

∑

j∈Ra
ci = faB,

v(Ra | St̂−2) ≤
∑

j∈Ra

v({j} | St̂−2) ≤
∑

j∈Ra

˜OPTt̂−2 ·
cj
B
≤ fa ˜OPTt̂−2.

Recall that St̂−2 =
⋃t̂−2

t=2 S
−
t , by submodularity we have v(St̂−2) ≤

∑t̂−2
t=2 v(S

−
t) ≤

∑t̂−2
t=2

˜OPTt =
∑t̂

t=4
˜OPTt−2 . By monotonicity,

v(Ra) ≤ v(Ra | St̂−2) + v(St̂−2) ≤ fa ˜OPTt̂−2 +
t̂∑

t=4

˜OPTt−2 ≤
(

fa + 2− 1

2t̂−4

)

˜OPTt̂−2 ⇒

v(Ra) ≤
(
fa
4

+
1

2
− 1

2t̂−2

)

˜OPTt̂

Combining the analysis of Ra and Rb, we have:

v(R | W1 ∪W 2) ≤ v(Ra | W1 ∪W 2) + v(Rb | W1 ∪W 2) ≤ v(Ra) + v(Rb | W1 ∪W 2) ⇒

v(R | W1 ∪W 2) ≤ max
fa,fb : fa+fb=1

(

fb +
fa
4

+
1

2
− 1

2t̂−2

)

˜OPTt̂ ≤
(
3

2
− 1

2t̂−2

)

˜OPTt̂.

8

Next, we bound the loss in value from potentially discarding the last bidder added to St in order
to ensure budget feasibility.

Lemma 3. Assume that v is a submodular valuation function and let it denote the final bidder
added to St in phase t. For all t ≥ 2, if St is not budget feasible

v(St \ {it}) ≥
2t−1

2t−1 + 1
· ˜OPTt.

Proof. Observe that for every bidder i we have v({i}) ≤ ˜OPT1 (by definition of ˜OPT1), so v({i}) ≤ ˜OPTt
2t−1

for every t ≥ 1. Thus, to strictly exceed the target ˜OPTt in any phase t ≥ 2 we must add at least
2t−1 +1 bidders to the set St. But since our algorithm considers bidders in weakly decreasing order
of marginal contribution, by submodularity we then have that v({it} | St \ {it}) ≤ 1

2t−1+1 · v(St).

Consequently, v(St \ {it}) ≥ 2t−1

2t−1+1
· St ≥ 2t−1

2t−1+1
· ˜OPTt.

Proof Sketch for Theorem 1. Iterative-Pruning is clearly deterministic. Next, note that the
sequence of prices offered to a bidder i is descending since at each update of pi, it is the minimum of
the previous price pi and another price. Moreover, once a bidder rejects a price, it exits the auction
and is not considered anymore. Thus, Iterative-Pruning is a clock-auction.

Throughout the proof, we assume t̂ ≥ 3 and W 2 is budget-feasible, i.e., W 2 = W2. We show
our auction actually achieves a better approximation in the cases where t̂ < 3 or W 2 is not budget
feasible in Appendices A.2 and A.3, respectively.

Let W1,W2, and W3 denote the sets defined in the Maximize-Value algorithm. We use
Benchmark to refer to the value of v(W1∪W2)+ v(R | W1∪W2), with the assumption W2 = W 2.
By submodularlity and monotonicity, and since the optimal solution needs to be budget feasible,
we have that OPT ≤ v(W1 ∪W2) + v(R | W1 ∪W2). Then, to prove that Iterative-Pruning gives
a ρ approximation it is sufficient to show that

v(W1 ∪W2) + v(R | W1 ∪W2)

max{v(W1), v(W3)}
≤ ρ.

Assume, for contradiction, the negation of the above inequality holds true, then it must be that
v(W1), v(W3) both have value less than 1

ρ times Benchmark. We show that for any ρ ≥ 4.75
this assumption leads to a contradiction. For notational simplicity, we use α and β to denote the
constants for which v(W1) = α ˜OPTt̂ and v(R | W1 ∪W2) = β ˜OPTt̂.

• First, from the fact that v(W1) is strictly less than 1
ρ of the Benchmark, we get

v(W1) = α ˜OPTt̂ <
1

ρ
(v(W1 ∪W2) + v(Rb | W1 ∪W2)) ⇒

v(W1 ∪W2)
˜OPTt̂

> (ρα− β) . (1)

• Then, since v(W3) is strictly less than 1
ρ of the Benchmark, and v(W3) ≥ v(W2), we get

v(W2) ≤ v(W3) <
1

ρ

(
v(W1 ∪W2) + β ˜OPTt̂

)
⇒ v(W1 ∪W2) > ρv(W2)− β ˜OPTt̂. (2)

The marginal contribution of each bidder i ∈W2 in the order that they were added is at least pi ˜OPTt̂
B

so v(W2) ≥
˜OPTt̂
B

∑

i∈W2
pi. Thus if we let u = 1−

∑
i∈W2

pi

B be the fraction of the budget left unused

9

by W2, by Inequality (2) we have

v(W1 ∪W2) > ρ(1− u) ˜OPTt̂ − β ˜OPTt̂ ⇒
v(W1 ∪W2)

˜OPTt̂
> ρ(1− u)− β (3)

• Furthermore, for the value of W3, using submodularity, we get:

v(W3) = v(W2 | T) + v(T) ≥ v(W2 | W1) + v(T) = v(W1 ∪W2)− α ˜OPTt̂ + v(T)

Using the fact that v(W3) is less than 1
ρ of the Benchmark once again, we get

v(W1 ∪W2)− α ˜OPTt̂ + v(T) <
1

ρ
(v(W1 ∪W2) + β ˜OPTt̂) (4)

Also, note that for every bidder i we have v({i}) ≤ ˜OPT1 (by definition of ˜OPT1), so v({i}) ≤ ˜OPTt
2t−1

for every t ≥ 1. Let T ′ be the shortest prefix of W1 such that
∑

i∈T ′ pi > uB, i.e., the prefix whose
current prices exceed a u fraction of the budget. As each of these bidders was added to St̂−1 in
phase t̂ − 1, the ratio of their marginal contribution over the price that they were offered was at

least
˜OPTt̂−1

B , so their total value, v(T ′) is at least u ˜OPTt̂−1. If we remove the last bidder from T ′, we
retrieve the set T (the longest prefix of W1 whose prices add up to at most uB and, hence, can be

afforded in addition to W2). Since that bidder’s marginal contribution is at most
˜OPTt̂−1

2t̂−2
the value

of T must be at least

v(T) ≥
(

u− 1

2t̂−2

)

˜OPTt̂−1 =

(

u− 1

2t̂−2

)
˜OPTt̂
2

.

Substituting this into (4) gives

(

1− 1

ρ

)

v(W1 ∪W2) <
β

ρ
+ α− v(T) <

β

ρ
+ α−

(

u− 1

2t̂−2

)
˜OPTt̂
2
⇒

v(W1 ∪W2)
˜OPTt̂

<
2ρα + 2β − ρu+ ρ

2t̂−2

2ρ− 2
(5)

In summary, from the assumption that v(W1), v(W2), and v(W3) all have value less than 1
ρ times

the Benchmark, we get Inequalities (1), (3) and (5), respectively. The first two inequalities yield
lower bounds for the v(W1∪W2)/ ˜OPTt̂ ratio, while the third one provides an upper bound. We prove
that for any value ρ ≥ 4.75 these three inequalities are incompatible, leading to a contradiction.

Due to space limitations, we defer the rest of this proof to Appendix A.1, where we first show
that without loss of generality we can assume that u = 1−α. Then, using Lemma 3 we obtain that

α ≥ 2t̂−2

2t̂−1+2
and from Lemma 2 we get that β ≤ 3

2 − 1
2t̂−1

. Using these two inequalities we verify the

incompatibility of Inequalities (1), (3) and (5) for ρ ≥ 4.75, concluding the proof.

We complement our upper bound of 4.75 for the approximation factor of Iterative-Pruning

with a lower bound of 4.5. The proof is deferred to Appendix A.6.

Lemma 4. For any constant ǫ > 0, there exists a monotone submodular valuation function v for
which Iterative-Pruning returns a solution S such that OPT > (4.5 − ǫ)v(S).

10

4 Non-Monotone Submodular Valuations

In this section, we develop a deterministic clock auction that achieves a constant factor approxima-
tion for submodular valuation functions (not necessarily monotone) and runs in polynomial time.
This is the first deterministic budget-feasible mechanism for general submodular valuation func-
tions that achieves a constant factor approximation, even for non-polynomial time mechanisms, and
we achieve this with a clock auction that runs in polynomial time. The mechanism combines the
backward greedy technique from the previous section and techniques for maximizing non-monotone
submodular functions.

Similarly to Iterative-Pruning from the previous section, Simultaneous-Iterative-Pruning,
formally described below as Mechanism 3, proceeds in phases and aims to find a set of bidders with
value at least ˜OPTt at each phase t. The main difference with Iterative-Pruning is that, instead
of constructing a single tentative set St of bidders at each phase t, Simultaneous-Iterative-

Pruning constructs two disjoint tentative sets S1
t and S2

t of bidders at each phase. This tech-
nique of constructing two disjoint sets of bidders to handle non-monotone valuation functions in
budget-feasible mechanism design was introduced by Amanatidis et al. [1] with a mechanism called
Simultaneous Greedy. Simultaneous-Iterative-Pruning integrates this technique in the
Iterative-Pruning mechanism designed for monotone valuation functions.

At each iteration of phase t, the mechanism considers bidder i and set of bidders Sk
t ∈ {S1

t , S
2
t }

such that the marginal contribution v({i} | Sk
t) of i to Sk

t is maximized. It then offers price

pi = min
{

pi, v({i} | Sk
t) · B

˜OPT

}

to bidder i, adds bidder i to Sk
t if i accepts price pi, and permanently

eliminates bidder i otherwise. A phase terminates when either S1
t or S2

t reaches the target ˜OPTt,
or when there are no more bidders to offer a price to. At the beginning of a new phase t, the
mechanism sets aside both S1

t−1 and S2
t−1.

MECHANISM 3: Simultaneous-Iterative-Pruning, a deterministic budget-feasible clock auction

for non-monotone submodular valuation functions

Input: Budget B, valuation function v : 2N → R

1 initialize A← N , S1
0 , S

2
0 , S

1
1 ← ∅, S2

1 ← {argmaxi∈N v({i})}, ˜OPT← v(S2
1), t← 1, pi ← B for all i ∈ N

2 while A \ (S1
t−1 ∪ S2

t−1 ∪ S1
t ∪ S2

t) 6= ∅ do

3 update t← t+ 1, ˜OPT← 2 ˜OPT and initialize S1
t , S

2
t ← ∅ // Start a new phase

4 while max{v(S1
t), v(S

2
t)} < ˜OPT and A \ (S1

t−1 ∪ S2
t−1 ∪ S1

t ∪ S2
t) 6= ∅ do

5 let (i, k)← argmax
i∈A\(S1

t−1
∪S2

t−1
∪S1

t
∪S2

t),k∈[2]v(i | Sk
t)

6 update pi ← min
{
pi, v({i} | Sk

t) · B
˜OPT

}

7 if bidder i accepts price pi then

8 Sk
t ← Sk

t ∪ {i} // Add bidder i to current solution

9 else

10 A← A \ {i} // Permanently discard bidder i

11 let T k
j ← UnconstrainedSubMax(v, Sk

j), for j ∈ {t− 1, t} and k ∈ {1, 2}
12 let S ← argmaxS′∈{S1

t−1
,S2

t−1
,T 1

t
,T 2

t
,T 1

t−1
,T 2

t−1
}v(S

′)

13 if
∑

i∈S pi > B then // ensure budget feasibility

14 update S ← S \ {i} where i is the last bidder added to S

15 return S and prices pi for each bidder i ∈ S

11

After the last phase t, the mechanism runs an unconstrained submodular maximization algorithm
that achieves a 2-approximation, for example the algorithm of Buchbinder et al. [9], over valuation
function v and ground set of bidders Sk

j to obtain sets T k
j such that T k

j ≥ 1
2 maxT⊆Sk

j
v(T) for each

set of bidder Sk
j constructed in one of the last two phases of the mechanism. Finally, we return the

set S of bidders of maximum value among 6 solutions constructed during the last two phases, but
without the last bidder added to S if S is not budget feasible.

Our main result for this section is that, apart from being a deterministic clock auction,
Simultaneous-Iterative-Pruning also achieves the best-known approximation for non-monotone
submodular valuations.

Theorem 5. Let v be a submodular valuation function, then Simultaneous-Iterative-Pruning

is a polynomial-time deterministic budget-feasible clock auction that achieves a 64-approximation.

The proof that it is budget feasible is identical to the proof of Lemma 11 which shows the
budget feasibility of Iterative-Pruning. For the running time, the proof that the outer-while loop
terminates in polynomial time is identical to the proof that Iterative-Pruning is a polynomial
time mechanism. Finally, for the UnconstrainedSubMax subroutine, we use a 2-approximation
algorithm for unconstrained non-monotone submodular maximization, such as the algorithm by
Buchbinder et al. [9] which is polynomial time. Thus, Simultaneous-Iterative-Pruning is a
polynomial-time mechanism.

We now turn toward showing that the mechanism achieves a 64-approximation. Lemma 6
bounds the loss from optimal bidders who were eliminated in each phase t. However, the proof
for this bound on the loss from eliminated optimal bidders is different from the proof from the
previous section which assumes monotonicity. To handle non-monotone valuation functions, the
proof exploits the fact that we construct two sets S1

t and S2
t at each phase. For non-monotone

valuation functions, it is also not sufficient to lower bound the value of active optimal bidders,
which can be larger than the value of all active bidders. Next, Lemma 7 uses the sets T k

j obtained
by running an unconstrained non-monotone submodular maximziation algorithm to approximate
the value of active optimal bidders.

We begin by bounding the loss from optimal bidders who were eliminated in each round t.

Lemma 6. Assume that v is a submodular valuation function and let O−
t denote the subset of

optimal bidders rejected in phase t. Then, for all t ≤ t̂, we have that

v(O−
t) ≥ 6 ˜OPTt.

Proof. By submodularity and non-negativity, we know that

v(O−
t) ≤ v(O−

t) + v(O−
t ∪ S1

t ∪ S2
t) ≤ v(O−

t ∪ S1
t) + v(O−

t ∪ S2
t).

We can bound the terms v(O−
t ∪ Sj

t) for j ∈ {1, 2} separately. By submodularity, we know that

v(O−
t ∪ S1

t) ≤ v(S1
t) +

∑

i∈O−

t

v(i | S1
t).

On the other hand, each i ∈ O−
t was rejected because when it was offered a new price, this price

was too low. Let S1,i
t denote the set S1

t at the point when i was offered a new price. Then we have

12

that v(i | S1,i
t) ≥ v(i | S1

t). Thus, we have

v(O−
t ∪ S1

t) ≤ v(S1
t) +

∑

i∈O−

t

ci ·
˜OPTt
B
≤ v(S1

t) + ˜OPTt.

Similarly,
v(O−

t ∪ S2
t) ≤ v(S2

t) + ˜OPTt.

Since for every phase t ≥ 1 we know v({i}) ≤ ˜OPTt we have that v(Sj
t) ≤ 2 ˜OPTt for j ∈ {1, 2}.

Combining these inequalities, we have that v(O−
t) ≤ 6 ˜OPTt for all t, completing the proof.

By consequence of Lemma 6, if we let O+
t denote the set of bidders in the optimal solution which

remain active at the end of phase t we obtain the following corollary

Corollary 1. Assume that v is a submodular valuation function and let O+
t denote the set of bidders

in the optimal solution which are not rejected by the end of phase t, we then have

v(O+
t) ≥ OPT− 12 ˜OPTt.

Proof. By submodularity and Lemma 6 we have

v(O+
t) ≥ v(O)−

∑

t′∈[t]
v(O−

t′) ≥ OPT−
∑

t′∈[t]
6 ˜OPTt′ .

Since the value of ˜OPT increases by a factor of two in each phase, we can rewrite our above bound
as v(O+

t) ≥ OPT− 12 ˜OPTt, completing the proof.

With Corollary 1 in hand, we can now give a bound on the approximation obtained from the
best set in {S1

t̂−1
, S2

t̂−1
, T 1

t̂
, T 2

t̂
, T 1

t̂−1
, T 2

t̂−1
}.

Lemma 7. For any submodular valuation function v, we have

max
S′∈{S1

t̂−1
,S2

t̂−1
,T 1

t̂
,T 2

t̂
,T 1

t̂−1
,T 2

t̂−1
}
v(S′) ≥ OPT

32

where t̂ is the last phase of the mechanism.

Proof. There are two cases based on when the last phase t̂ of the mechanism occurs. First, if
˜OPTt̂ ≥ OPT

16 , then we have max{v(S1
t̂−1

), v(S2
t̂−1

)} ≥ ˜OPTt̂
2 ≥ OPT

32 .

Otherwise, ˜OPTt̂ ≤ OPT

16 , which is the main case. Since all of the bidders in O+
t̂

remain active at

the end of phase t̂, we know that any bidder i ∈ O+
t̂

must be contained in one of our four candidate
solutions: S1

t̂−1
, S2

t̂−1
, S1

t̂
, S2

t̂
. But then, by submodularity we have that

v(O+
t̂
∩ S1

t̂−1
) + v(O+

t̂
∩ S2

t̂−1
) + v(O+

t̂
∩ S1

t̂
) + v(O+

t̂
∩ S2

t̂
) ≥ v(O+

t̂
) (6)

After our auction completes offering new prices to all active bidders (i.e., the outer while loop
terminates), we apply an unconstrained optimizer. After applying the unconstrained 2-approximate

13

non-monotone submodular function maximizer, e.g. from Buchbinder et al. [9], to each of our four
candidate solutions to obtain T k

t̂−1
and T k

t̂
for k ∈ [2]. We then have

2v(T 1
t̂−1

) + 2v(T 2
t̂−1

) + 2v(T 1
t̂
) + 2v(T 2

t̂
) ≥ v(O+

t̂
). (7)

Let T ∗ = argmaxT∈{T 1
t̂−1

,T 2
t̂−1

,T 1
t̂
,T 2

t̂
}v(T). From Equation (7) we can then observe

8v(T ∗) ≥ v(O+
t̂
). (8)

Next, combining Equation (8) and Corollary 1 gives

v(T ∗) ≥ OPT

8
− 3

2
˜OPTt̂ ≥

OPT

32
(9)

where the last inequality is since ˜OPTt̂ ≤ OPT

16 .

We are now ready to complete the proof of Theorem 5 by showing that Simultaneous-

Iterative-Pruning achieves a 64-approximation to the optimal value.

Proof for Theorem 5. Simultaneous-Iterative-Pruning is clearly deterministic. Next, note
that the sequence of prices offered to a bidder i is descending since each update of pi is the minimum
of the previous price and another price. Moreover, once a bidder rejects a price, it exits the auction
and is not considered anymore. Thus, Simultaneous-Iterative-Pruning is a clock-auction.

There are two cases based on S. If S is initialized to Sk
j or T k

j with j = 1, then we have
S = {argmaxi∈N v({i})} and since

∑

i∈S pi = B, the mechanism does not remove a bidder from S
and we have v(S) ≥ v(T ∗) ≥ OPT

32 by Lemma 7.
Otherwise, j > 1, and note that by definition of ˜OPT1 and by submodularity, for any set T and

bidder i, we have v(i | T) ≤ maxi′ v(i
′) = ˜OPT1 ≤ ˜OPTt

2 ≤ max{v(S1
t),v(S

2
t)}

2 for all t ≥ 2. Let i be the
potential bidder that was removed from S before S is returned. Then,

v(S) ≥ v(S ∪ {i}) − 1

2
·max{v(S1

t), v(S
2
t)} ≥

1

2
max

S′∈{S1
t̂−1

,S2
t̂−1

,T 1
t̂
,T 2

t̂
,T 1

t̂−1
,T 2

t̂−1
}
v(S′) ≥ OPT

64

where the second inequality is since S ∪ {i} = argmaxS′∈{S1
t̂−1

,S2
t̂−1

,T 1
t̂
,T 2

t̂
,T 1

t̂−1
,T 2

t̂−1
}v(S

′) and the last

inequality is by Lemma 7.

5 Subadditive Valuations

In this section we present a secondary result demonstrating how our method of gradually refining
an estimate of OPT while maintaining value monotonicity can be used to derandomize the (random-
ized) budget-feasible auction of Bei et al. [8]. This auction achieves the best known approximation
of O(log n/ log log n) for subadditive valuations, and our deterministic auction matches this bound.
The resulting deterministic auction improves upon the previous best deterministic auction of Dobzin-
ski et al. [12] which achieves only a O(log3 n)-approximation. We note that, unlike our auctions for
submodular valuation functions that use value queries, the following auction uses demand queries.
This is due to the fact that, as we highlighted above, no non-trivial approximation can be achieved
using a polynomial number of value queries when maximizing an XOS function [1, Theorem 6.2]
and all XOS functions are subadditive.

14

MECHANISM 4: A deterministic budget-feasible clock auction for subadditive valuation functions

Input: Budget B, valuation function v : 2N → R

1 initialize A← N , Sprev ← ∅, Scurr ← ∅, t← 0
2 while A \ (Sprev ∪ Scurr) 6= ∅ do

3 t← t+ 1 // start a new phase

4 Sprev ← argmaxS∈{Sprev,Scurr}{v(S)}
5 update price pi of each bidder i ∈ A \ Sprev to B/t
6 if bidder i rejects new price then

7 update A← A \ {i} // permanently eliminate bidder i

8 Let Scurr be the feasible subset of A \ Sprev returned by the 2-approximation algorithm of
Badanidiyuru et al. [5] at the current price level

9 let Sfinal ← argmaxS∈{Sprev,Scurr}{v(S)}
10 return Sfinal and prices pi for each bidder i ∈ Sfinal

Notice that our auction for subadditive valuations follows a similar template to our auctions
for submodular valuations. While for submodular valuations we gradually increase a benchmark
value for the subset of bidders we include in our temporary solution, in Mechanism 4 we gradually
increase a benchmark size for the subset of bidders we include in our temporary solution. Notably,
in both settings we maintain two solutions which ensures that the value that our auction obtains is
monotone non-decreasing. This is a key tool that allows for the approximation guarantees of all of
our auctions. We note that the analysis of the approximation factor of our auction follows almost
directly from the analysis in Bei et al. [8]. We include a detailed proof of the approximation factor
for completeness, below.

Theorem 8. Let v be a subadditive valuation function, then Mechanism 4 is a polynomial-time
deterministic budget-feasible clock auction that obtains a O(log n/ log log n)-approximation.

Proof. Let O = {1, 2, 3, . . . ,m} denote the optimal set of bidders indexed in non-increasing cost
order, i.e., c1 ≥ c2 ≥ . . . cm. We divide the agents from O into disjoint subsets Z1, . . . , Zr+1 such
that Z1 contains the ⌊Bc1 ⌋ first bidders. For all i ≥ 2, let j(i) denote the bidder in O of largest cost

not contained in any Zk for all k < i. We then may define Zi as the
⌊

B
cj(i)

⌋

first bidders beginning

at j(i) (or fewer if we exhaust all bidders).
We now proceed via case-analysis on the sets {Zi}i∈[r+1]. First suppose that there exists some

set Zi with v(Zi) ≥ log logn
10 logn · v(O). We argue that the mechanism then outputs a set of value at

least log logn
40 logn · v(O). By definition, each bidder in Zi has cost less than or equal to cj(i), and note

that we offer price B/k to all bidders in round k. But then we must offer prices weakly above the
cost of all bidders in Zi for all rounds up to and including |Zi|. Thus all of the bidders in Zi will
be active at the point when the price of B

|Zi| is offered to all bidders in the auction. Hence, if no

bidders in Zi are included in Sprev we will identify a set of value at least 1
2v(Zi) in this phase of the

auction. Since our auction obtains value equal to the set of highest value identified in any phase,
we are done. Suppose not, that is, suppose that some portion of Zi is contained in Sprev. Since, in
each phase, we identify some feasible set giving a 2-approximation to the highest achievable value
given the current prices, we know that v(Sprev ∩ Zi) ≤ 2v(Sprev). Moreover, we know that the set
Scurr that we select in phase |Zi| is such that v(Zi \ Sprev) ≤ 2v(Scurr). But then, by subadditivity,
we have that

v(Zi) ≤ v(Sprev ∩ Zi) + v(Zi \ Sprev) ≤ 2v(Sprev) + 2v(Scurr) ≤ 4 ·max {v(Sprev), v(Scurr)} .

15

Finally, since our auction obtains value equal to the highest value identified in any phase, we know

that we obtain a set of value log logn
40 logn ·v(O). Thus, we obtain a O

(
logn

log logn

)

-approximation whenever

there exists some set Zi with v(Zi) ≥ log logn
10 logn · v(O).

We now deal with the other case. That is, suppose that for all i ∈ [r + 1] we have that
v(Zi) <

log logn
10 logn · v(O). By subadditivity, we know that

r+1∑

i=1

v(Zi) ≥ v(O).

But then, it must be that (r + 1) · log logn10 logn · v(O) > v(O), which implies that

r >
10 log n

log log n
− 1 ≥ 5 log n

log log n
≥ 5 logm

log logm
. (10)

We know that O is budget feasible, i.e.,
∑

i∈m ci ≤ B. Also, by construction we have cj(i) >
B

|Zi|+1 for all i ∈ [r]. Combining these gives

B ≥
m∑

j=1

cj

≥ c1 + |Z1| · cj(2) + |Z2| · cj(3) + · · ·+ |Zr| · cj(r+1)

>
B

|Z1|+ 1
+
|Z1| · B
|Z2|+ 1

+ · · ·+ |Zr−1| ·B
|Zr|+ 1

.

Note that the only possibly empty set is Zr+1 by construction. Thus, for all i < r+1 we know that
2|Zi| ≥ |Zi|+ 1. We then may conclude that

1 ≥ 1

|Z1|+ 1
+
|Z1|
|Z2|+ 1

+ · · ·+ |Zr−1|
|Zr|+ 1

≥ 1

2|Z1|
+
|Z1|
2|Z2|

+ · · ·+ |Zr−1|
2|Zr|

≥ 1

2
· r
[

1

|Z1|
· |Z1|
|Z2|

· · · · · |Zr−1|
|Zr|

]1/r

,

where the last step uses the AM-GM inequality. Simplifying gives 2 ≥ r ·
(

1
|Zr|

)1/r
, i.e., |Zr| ≥

(
r
2

)r
.

On the other hand, we have that m ≥ |Zr|. Combining these two with Equation (10) we then have

logm ≥ r · log r

2

≥ 5 logm

log logm
·
(

log logm− log log logm+ log
5

2

)

which is a contradiction. In other words, it must be that there exists some Zi with v(Zi) ≥
log logn
10 logn · v(O), completing the proof.

16

6 Conclusion

With the auctions that we propose in this paper, we significantly improve our understanding of
budget-feasible mechanism design in two important ways:

First, our auctions achieve improved approximation factors in a deterministic fashion and resolve
one of the main open problems in the area. In contrast to some prior work that depends on
randomized sampling in order to estimate the optimal value, we instead introduce a deterministic
discovery process with a primal-dual flavor. We start with a low estimate of the optimal value, which
we use in order to determine the initial prices offered to the bidders. Then, depending on the bidders’
responses to these prices (i.e., depending on which bidders accept the prices offered to them), we
update our estimate and repeat this process. This way, our auction gradually refines its estimate
of the optimal value, while simultaneously discovering the appropriate prices for approximating the
optimal value in a budget-feasible way.

Second, our solutions takes the form of a clock auctions. Unlike sealed-bid auctions, where
the bidders directly report their costs to the auctioneer, clock auctions can only assess these costs
indirectly, by offering a sequence of descending prices to the bidders. The price discovery process
described above meets this restriction, and gradually develops a better understanding of the bid-
ders’ true costs. The fact that our solutions are clock auctions implies that they satisfies a list of
highly desirable properties, making them more attractive for practical applications. Another impli-
cation, which is particularly interesting from a theoretical perspective, is that they yield non-trivial
backward greedy algorithms for submodular maximization, which nicely complement the existing
literature on submodular maximization, which is dominated by forward greedy algorithms.

Limitations of posted-price mechanisms To complement our positive results regarding the
ability of budget-feasible clock auctions to achieve a constant factor approximation, we also con-
sidered the special class of clock auctions that take the form of posted-price mechanisms. These
mechanisms approach the bidders in some order and offer them a take-it-or-leave-it price. This ap-
proach proved useful for the design of randomized clock auctions that can use sampling to estimate
the optimal value [8, 1]. We were able to verify that, without the estimate that the randomized
sampling provides, these mechanisms are insufficient for achieving any non-trivial approximation,
suggesting that the approach of Bei et al. [8] and Amanatidis et al. [1] could not be extended toward
a deterministic solution. Due to space constraints, these results have been deferred to Appendix B.

Future directions Our results provide an optimistic view toward the design of practical budget-
feasible auctions, and they give rise to interesting open problems such as the following:

• Is there a separation between the performance of the best possible budget-feasible clock auction
and the best possible strategyproof budget-feasible mechanism?

• Do there exist budget-feasible clock auctions that can achieve a constant factor approximation
beyond submodular valuations (e.g., for subadditive valuations)?

Regarding the first question, there is no known separation between clock auctions and general
strategyproof mechanisms, even for interesting special classes of valuations, such as additive ones.
Note that the best known approximation guarantees (for both randomized and deterministic auc-
tions), for the case of additive valuations, are currently due to Gravin et al. [18]. Although these
auctions are presented as sealed-bid mechanisms, we were able to verify that they are one of the

17

few examples that can also be implemented as clock auctions. As a result, for the special case of
additive valuations, the state of the art approximations can be achieved by clock auctions.

Regarding the second question, for the more general class of strategyproof mechanisms, we
know that there exists a constant factor mechanism, through a non-constructive argument, based
on Yao’s lemma due to Bei et al. [8]. Therefore, designing a specific strategyproof auction that
achieves this guarantee remains open. However, focusing our attention on the more restrictive class
of clock auctions can help us gain some traction on this problem. For example, this restriction
would make it more tractable to prove larger lower bounds; something that would have been much
more demanding for the richer class of strategyproof mechanisms.

18

Appendix A Proofs missing from Section 3

A.1 Proof of Theorem 1

Proof. Iterative-Pruning is clearly deterministic. Next, note that the sequence of prices offered
to a bidder i is descending since at each update of pi, it is the minimum of the previous price pi and
another price. Moreover, once a bidder rejects a price, it exits the auction and is not considered
anymore. Thus, Iterative-Pruning is a clock-auction.

Throughout the proof, we assume t̂ ≥ 3 and W 2 is budget-feasible, i.e., W 2 = W2. We show
our auction actually achieves a better approximation in the cases where t̂ < 3 or W 2 is not budget
feasible in Appendices A.2 and A.3, respectively.

Let W1,W2, and W3 denote the sets defined in the Maximize-Value algorithm. We use
Benchmark to refer to the value of v(W1∪W2)+ v(R | W1∪W2), with the assumption W2 = W 2.
By submodularlity and monotonicity, and since the optimal solution needs to be budget feasible,
we have that OPT ≤ v(W1 ∪W2) + v(R | W1 ∪W2). Then, to prove that Iterative-Pruning gives
a ρ approximation it is sufficient to show that

v(W1 ∪W2) + v(R | W1 ∪W2)

max{v(W1), v(W3)}
≤ ρ.

Assume, for contradiction, the negation of the above inequality holds true, then it must be that
v(W1), v(W3) both have value less than 1

ρ times Benchmark. We show that for any ρ ≥ 4.75
this assumption leads to a contradiction. For notational simplicity, we use α and β to denote the
constants for which v(W1) = α ˜OPTt̂ and v(R | W1 ∪W2) = β ˜OPTt̂.

• First, from the fact that v(W1) is strictly less than 1
ρ of the Benchmark, we get

v(W1) = α ˜OPTt̂ <
1

ρ
(v(W1 ∪W2) + v(Rb | W1 ∪W2)) ⇒

v(W1 ∪W2)
˜OPTt̂

> (ρα− β) . (11)

• Then, since v(W3) is strictly less than 1
ρ of the Benchmark, and v(W3) ≥ v(W2), we get

v(W2) ≤ v(W3) <
1

ρ

(
v(W1 ∪W2) + β ˜OPTt̂

)
⇒ v(W1 ∪W2) > ρv(W2)− β ˜OPTt̂. (12)

The marginal contribution of each bidder i ∈W2 in the order that they were added is at least pi ˜OPTt̂
B

so v(W2) ≥
˜OPTt̂
B

∑

i∈W2
pi. Thus if we let u = 1−

∑
i∈W2

pi

B be the fraction of the budget left unused
by W2, by Inequality (12) we have

v(W1 ∪W2) > ρ(1− u) ˜OPTt̂ − β ˜OPTt̂ ⇒
v(W1 ∪W2)

˜OPTt̂
> ρ(1− u)− β (13)

• Furthermore, for the value of W3, using submodularity, we get:

v(W3) = v(W2 | T) + v(T) ≥ v(W2 | W1) + v(T) = v(W1 ∪W2)− α ˜OPTt̂ + v(T)

Using the fact that v(W3) is less than 1
ρ of the Benchmark once again, we get

v(W1 ∪W2)− α ˜OPTt̂ + v(T) <
1

ρ
(v(W1 ∪W2) + β ˜OPTt̂) (14)

19

Also, note that for every bidder i we have v({i}) ≤ ˜OPT1 (by definition of ˜OPT1), so v({i}) ≤ ˜OPTt
2t−1

for every t ≥ 1. Let T ′ be the shortest prefix of W1 such that
∑

i∈T ′ pi > uB, i.e., the prefix whose
current prices exceed a u fraction of the budget. As each of these bidders was added to St̂−1 in
phase t̂ − 1, the ratio of their marginal contribution over the price that they were offered was at

least
˜OPTt̂−1

B , so their total value, v(T ′) is at least u ˜OPTt̂−1. If we remove the last bidder from T ′, we
retrieve the set T (the longest prefix of W1 whose prices add up to at most uB and, hence, can be

afforded in addition to W2). Since that bidder’s marginal contribution is at most
˜OPTt̂−1

2t̂−2
the value

of T must be at least

v(T) ≥
(

u− 1

2t̂−2

)

˜OPTt̂−1 =

(

u− 1

2t̂−2

)
˜OPTt̂
2

.

Substituting this into (14) gives

(

1− 1

ρ

)

v(W1 ∪W2) <
β

ρ
+ α− v(T) <

β

ρ
+ α−

(

u− 1

2t̂−2

)
˜OPTt̂
2
⇒

v(W1 ∪W2)
˜OPTt̂

<
2ρα + 2β − ρu+ ρ

2t̂−2

2ρ− 2
(15)

In summary, the constraints that we get from the assumption that v(W1), v(W2), and v(W3)
are not high enough are the following three:

v(W1 ∪W2)
˜OPTt̂

> ρα− β.

v(W1 ∪W2)
˜OPTt̂

> ρ(1− u)− β.

v(W1 ∪W2)
˜OPTt̂

<
2ρα+ 2β − ρu+ ρ

2t̂−2

2ρ− 2
.

The rest of the proof shows that these three constraints are incompatible, leading to a contra-
diction. We first show that it suffices to prove the constraints are incompatible when u = 1−α: we
break into casework depending on whether α ≥ 1− u or if α ≤ 1− u.

• For the first case, assume α ≥ 1− u. Then the second constraint becomes redundant and the
third constraint is least restrictive when u is minimized, we can therefore without loss of generality
assume that u = 1− α.

• Now assume that α ≤ 1 − u. In this case the first lower bound becomes redundant and we
can focus on the second lower bound and the upper bound. Take any values of α, β, and u and let
L be the value of the lower bound and U be the value of the upper bound for this choice of α, β,
and u. If the constraints are compatible, i.e., L ≤ U , then we note that increasing the value of u
by some δ > 0 (while keeping α and β fixed), then the new lower bound would be equal to L − ρδ
and the new upper bound would be U − ρ

2ρ−2δ. It is easy to verify that as long as ρ > 1.5, the
distance between the upper bound the lower bound would increase. From prior work, we know that
an approximation factor of

√
2 + 1 or better is not possible even for additive valuations [10], so we

can safely assume that ρ > 1.5. Therefore, the constraints are least restrictive if we let u take the
largest possible value which, for this case, is once again equal to 1− α.

20

With the case analysis above, we have shown that proving that the constraints are incompatible
when u = 1−α implies that they are incompatible in general. Substituting u = 1− α in the upper

bound, it becomes
3ρα+2β−ρ+ ρ

2t̂−2

2ρ−2 . Combining it with the lower bound, we get

ρα− β <
3ρα+ 2β − ρ+ ρ

2t̂−2

2ρ− 2
⇒

2ρ2α− 2ρβ − 2ρα+ 2β < 3ρα+ 2β − ρ+
ρ

2t̂−2
⇒

(2ρ2 − 5ρ)α− 2ρβ < −ρ+ ρ

2t̂−2

From Lemma 3 we get v(W1) ≥ 2t̂−2

2t̂−2+1
˜OPTt̂−1 =

2t̂−2

2t̂−1+2
˜OPTt̂, therefore α ≥ 2t̂−2

2t̂−1+2
. We also have

that v(R | W1 ∪W2) ≤
(
3
2 − 1

2t̂−1

)

˜OPTt̂ from Lemma 2, i.e., β ≤ 3
2 − 1

2t̂−1
. Substituting the lower

bound for α and the upper bound for β we get

(2ρ2 − 5ρ)

(

2t̂−2

2t̂−1 + 2

)

− 2ρ

(
3

2
− 1

2t̂−2

)

< −ρ+ ρ

2t̂−2
⇒

(2ρ2 − 5ρ)22t̂−4 − 2ρ
(

3(2t̂−1 + 2)2t̂−3 − (2t̂−1 + 2)
)

< −ρ(2t̂−1 + 2)2t̂−2 + ρ(2t̂−1 + 2) ⇒

(2ρ2 − 5ρ)22t̂−4 − 2ρ
(

3(22t̂−4 + 2t̂−2)− (2t̂−1 + 2)
)

< −ρ(22t̂−3 + 2t̂−1) + ρ(2t̂−1 + 2) ⇒

(2ρ2 − 9ρ)22t̂−4 − 2t̂−1ρ+ 2ρ < 0.

Further simplifying the inequality,

(2ρ2 − 9ρ)22t̂−4 < 2t̂−1ρ− 2ρ ⇒ (2ρ− 9)22t̂−4 < 2t̂−1 − 2

2ρ− 9 <
1

2t̂−3
− 1

22t̂−5
⇒ ρ <

1

2t̂−2
− 1

22t̂−4
+ 4.5,

where the term 1
2t̂−2
− 1

22t̂−4
is maximized at t̂ = 3, at which we have:

ρ < 0.25 + 4.5 = 4.75.

Therefore, for any ρ ≥ 4.75 it is impossible to satisfy all the three constraints listed above,
leading to a contradiction.

A.2 The Analysis of the Approximation for t̂ ≤ 2

Lemma 9. If t̂ ≤ 2, Then Iterative-pruning auction would guarantee a 4 approximation of the
optimal value.

Proof. From Lemma 2 we bound the optimal solution as follows

OPT ≤ v(W1 ∪W2) + v(R | W1 ∪W2) ≤ 2max{v(W1), v(W2)}+ v(R | W1 ∪W2)

When t̂ = 2, W1 is budget feasible without removing any of its bidders since W1 is initialized to
S1 which is simply the maximum value item offered the entire budget. We can also assume W2 is

21

budget feasible or else we get a 3.75 approximation by Appendix A.3. Thus we can simply pick the
greater value set out of W1 and W2, so to get a 4 approximation it suffices to show

2max{v(W1), v(W2)}+ v(R | W1 ∪W2)

max{v(W1), v(W2)}
≤ 4

In this case, following the analysis of v(R | W1 ∪W2) in Lemma 2 we get a stronger bound of
v(R | W1 ∪W2) ≤ ˜OPTt̂ when t̂ = 2. This is because the auction only consists of two phases so we
can omit the (12 − 1

2t̂−2
) ˜OPTt̂ loss from Ra from rounds before t̂ − 1. We also know v(W1) =

1
2

˜OPTt̂
since no bidders had to be removed from W1 to make it budget feasible. Therefore for t̂ = 2,

2max{v(W1), v(W2)}+ v(R | W1 ∪W2)

max{v(W1), v(W2)}
≤

˜OPTt̂ + ˜OPTt̂
1
2

˜OPTt̂
= 4

A.3 The Analysis of the Approximation for Non-Budget-Feasible W 2

Lemma 10. If W 2 is not budget feasible, then Iterative-Pruning auction would guarantee a
3.75 approximation of the optimal value by outputting W3.

Proof. First note that by definition we have v(W3) ≥ v(W2). From Lemma 2 we can upper bound
the optimal solution as follows:

OPT ≤ v(W1 ∪W 2) + v(R | W1 ∪W 2) ≤ v(W1) + v(W 2) + v(R | W1 ∪W 2)

To upper bound the value of W 2, notice that the maximum possible value of v(W 2) is obtained
if, during the construction of St̂, adding the last bidder makes W 2 exceed the budget. Further,
the last bidder added to St̂−1, j

∗, accepted the new price and was added to W 2. Removing the
two bidder from W 2 we get W2. The largest budget-feasible prefix of W 2, is bounded by ˜OPTt̂, i.e.,

v(W2) < ˜OPTt̂. Note that for every bidder i we have v({i}) ≤ ˜OPT1 =
˜OPTt

2t−1 for every t ≥ 1. Then the
value of W 2 should be no more than W2 combined with two extra bidders, by submodularity the
value of W 2 is at most

v(W 2) ≤ v(W2) + 2 ˜OPT1 <

(

1 +
1

2t̂−2

)

˜OPTt̂.

By lemma 3 we have:

v(W3) ≥ v(W2) ≥
2t̂−1

2t̂−1 + 1
St̂ ≥

2t̂−1

2t̂−1 + 1
˜OPTt̂.

And by lemma 2, we also get the the marginal contribution of R is

v(R | W1 ∪W 2) ≤
(
3

2
− 1

2t̂−2

)

˜OPTt̂.

Therefore the approximation would be:

OPT

v(W3)
≤ v(W1) + v(W 2) + v(R | W1 ∪W 2)

v(W2)
<

1
2 + 1 + 1

2t̂−2
+ 3

2 − 1
2t̂−2

2t̂−1

2t̂−1+1

⇒

22

OPT

v(W3)
<

3

2t̂−1

2t̂−1+1

≤ 3.75.

for any t̂ ≥ 3.

A.4 Budget feasibility of Iterative-Pruning

Lemma 11. Iterative-Pruning is a budget-feasible mechanism.

Proof. Since we return either W1,W2, or W3, it suffices to show each set is budget feasible.
W1 is initialized to St̂−1 at the end of the last phase. If the last bidder j∗ added to W1 during

phase t̂− 1 was not removed from W1 by the mechanism, then by the condition of the if statement,
∑

i∈W1
pi ≤ B and W1 is budget feasible.

Otherwise, W1 = St̂−1 \ {j∗} and, by the condition of the inner while loop, we have v(St̂−1 \
{j∗}) < ˜OPTt̂−1. Let Si

t̂−1
be the set St at the beginning of the iteration of phase t̂− 1 where bidder

i is considered. The prices p⋆i paid to each i ∈ W1 are the last price they were offered, so we have

p⋆i ≤ pti = v(i | Si
t̂−1

) · B
˜OPTt̂−1

where pt̂−1
i is the price pi at phase t̂− 1. We get that

∑

i∈W1

p⋆i ≤
∑

i∈W1\{j∗}
v(i | W1) ·

B
˜OPTt̂−1

= v(W1 \ {j∗}) ·
B

˜OPTt̂−1

≤ B

and W1 is budget feasible.
W2 is budget feasible by definition as it is the largest budget feasible prefix of W 2. Similarly

W3 is also budget feasible by definition as it is W2 joined with the largest prefix of W1 that will
not exceed the available budget not used by W2. Thus each of W1,W2, and W3 are budget feasible
sets, making Iterative-Pruning a budget feasible mechanism.

A.5 Running time of Iterative-Pruning

Lemma 12. Iterative-Pruninghas O(n2 log n) running time.

Proof. We first compute the time of completing one round of the auction (i.e., one iteration of the
outer while loop) and then upper bound the total number of rounds. Observe that the inner while
loop completes at most n times per iteration of the outer while loop since a bidder is either removed
from A or added to St on each iteration. The body of the inner while loop completes in O(n) time
as at most n value queries are made to find the bidder of largest marginal contribution. Thus, in
total, lines 3 through 10 take O(n2) time per iteration of the outer while loop.

We now move to bound the number of iterations of the outer while loop. Observe that if at some
iteration of the outer while loop the estimate ˜OPT exceeds the actual value of the optimal solution
then the inner while loop will only terminate when A \ (St−1 ∪ St) = ∅, which, by consequence, will
also terminate the outer while loop. However, we have that ˜OPT begins as the single highest value of
any individual bidder and, by submodularity, OPT is at most n times this initial value. Thus, since
˜OPT doubles in each round, there are at most O(log n) iterations of the outer while loop. Thus, in

total, the first phase of the auction terminates in O(n2 log n) time.
Since the pruning phase (lines 11 through 17 and Maximize-Value) completes in O(n) time

(even if the sum of clock prices needs to be computed again), the entirety of the auction completes
in O(n2 log n) time.

23

A.6 Proof of Lemma 4

Proof. Consider an instance with the following 4 sets of bidders A1, A2, A3, A4. A1 consists of a
single bidder i1 with v({i1}) = 1 and ci1 = B. A2 consists of 3 bidders i2, i3, i4 where v({i2}) =

v({i3}) = v({i4}) = 2
3 + ǫ. The costs of the bidders in A2 are ci2 = ci3 = 0, ci4 = (2/3+ǫ)B

2 . A3

consists of 4
3ǫ identical bidders with value ǫ and cost 0. Finally A4 consists of 8

ǫ bidders with value ǫ
2

and cost (ǫ/2+δ)B
4 where δ ≪ ǫ. All of the bidders have additive value with each other except for i2

and the bidders in A3 which are “capped additive” (i.e., budget additive) with cap 4/3 = v(A3). In
other words, for any S ⊆ A3 ∪ {i2} we have v(S) = min

{∑

i∈S v({i}), 4/3
}

and for any output set

S ⊆ A1∪A2∪A3∪A4 we have that v(S) =
∑

i∈S;i/∈A3∪{i2} v({i})+min
{
∑

i∈S;i∈A3∪{i2} v({i}), 4/3
}

.

Now run Iterative-Pruning with a budget B and these bidders. The mechanism would start
by initializing S1 to A1 with ˜OPT1 = 1 since i1 has the highest individual value out of all the bidders.
Then the mechanism would set ˜OPT2 = 2 and approach all of the bidders in A2 offering a price of
(2/3+ǫ)B

2 to each of them leading to all of them being accepted to S2.
Since v(A2) ≥ ˜OPT2, the mechanism would set ˜OPT3 = 4 and move onto constructing S3. First i1

would be offered a price of B
4 causing it to reject. Then the auction would approach all of the bidders

in A3 with a price of ǫB
4 causing them all to accept and be added to S3. Finally the mechanism

would approach each bidder in A4 with a price of ǫB
8 causing them all to reject since (ǫ/2+δ)B

4 > ǫB
8 .

Since every item not in S2 or S3 has been rejected at this point, the initial while loop concludes
giving us W1 = S2 = A2 and W2 = S3 = A3. By offering each of i2, i3, i4 a price of (2/3+ǫ)B

2 we

exceed the total budget for W1 and accordingly update the price of i4 to (2/3+ǫ)B
4 . Then i4 rejects

this price so we are left with W1 = {i2} ∪ {i3} and W2 = A3.
Moving to the Maximize-Value subroutine, we have T = {i2} so W3 = {i2}∪A3. Thus we are

left with v(W1) = 4/3 + 2ǫ, v(W2) = 4/3 and v(W3) = 4/3 leading the mechanism to return W1.
However, the optimal budget feasible solution consists of {i2} ∪ {i3} ∪ A3 ∪ A4 \ {i−} where i− is
the last item in A4 since all of the bidders in {i2}∪{i3}∪A3 have 0 cost and the cost of A4/{i−} is
B(1+ 2δ

ǫ − ǫ
8 +

δ
4) < B. i1, i4 have much worse marginal densities per cost than the bidders in A4 so

they are left out of OPT in favor of A4. Thus we have OPT = v({i2}∪{i3}∪A3∪A4) =
2
3+ǫ+ 4

3+4−ǫ/2
giving an approximation factor of 6+ǫ/2

4/3+2ǫ which is no better than a 4.5 approximation for arbitrary
ǫ.

Appendix B Limitations of posted-price mechanisms

The existence of deterministic budget feasible clock auctions that achieve a constant approximation
raises the question of whether there exist even simpler families of budget feasible mechanisms with
which one can obtain constant approximations mechanisms. In this section, we study deterministic
posted-price mechanisms, which are arguably the simplest family of mechanisms. We show that
even for the special cases of additive valuation functions (Section B.1) and symmetric valuation
functions (Section B.2), there are no deterministic posted-price mechanisms that achieve a constant
approximation. Recall that posted-price mechanisms approach sellers in some order and make “take-
it-or-leave-it” offers. In other words, a posted-price mechanism offers each seller i a single price pi
(the price offers can differ for each seller), which i accepts if pi ≥ ci and rejects otherwise. For a
posted-price mechanism to be budget feasible, the sum of the prices of the accepted offers must not
exceed the budget.

24

B.1 Additive Valuation Functions

We first examine the special case of additive valuation functions. A valuation function v is additive
if for all S ⊆ N we have that v(S) =

∑

i∈S vi. We show that deterministic posted-price mechanisms
cannot achieve an approximation factor better than Ω (

√
n).

Theorem 13. No deterministic posted-price mechanism can achieve an approximation better than√
n/2 for instances with additive valuation functions.

Proof. We consider a family of instances with n bidders where there is a single bidder with value√
n and each remaining bidder has value 1. We denote the high value bidder bh and in each instance

cbh = B. The family of instances differ only on the costs of the small value bidders. We perform
case analysis on the offers that any mechanism makes to the bidders.

Case 1 Suppose the mechanism M offers some positive price to a small value bidder before it
makes an offer to bidder bh. Let i denote the first small value bidder the mechanism makes a
positive offer pi to. Consider the instance where ci = pi and all the other sellers have cost B. Then,
regardless of the other offers, to maintain budget feasibility the mechanism can only obtain value
1, where the optimal solution is to output bidder bh and obtain value

√
n. We then have:

α ≥ OPT

v(M)
=

√
n

1
>
√
n/2.

Case 2 Suppose the mechanismM offers each bidder before bh price 0 and offers the entire budget
B to bidder bh. Consider the instance where all the small bidders have cost 1

n−1 . The mechanism
will then obtain total value equal to

√
n. On the other hand, the optimal solution would be to

output the n− 1 smaller bidders and the value would be n− 1. We then have:

α ≥ OPT

v(M)
=

n− 1√
n

>
√
n/2.

Case 3 Suppose the mechanismM offers each bidder before bh price 0 and offers price ph < B to
bidder bh. Consider the instance where the cost of each seller is B. Then the mechanism can only
obtain value 1, whereas the optimal solution is to output bidder bh, obtaining a value of

√
n. We

then have:

α ≥ OPT

v(M)
=

√
n

1
>
√
n/2.

B.2 Symmetric Submodular Valuation Functions

We now consider another special subclass of submodular valuation functions. A function v : 2N →
R
≥0 is symmetric submodular if there exist r1 ≥ r2 ≥ · · · ≥ rn ≥ 0, such that v(S) =

∑|S|
i=1 ri for all

S ⊆ 2N . This class of functions was studied in the work of Vickrey [34] on multi-unit auctions and
was studied in the context of budget feasible procurement by Singer [30] and Badanidiyuru et al.
[6]. We show that within this restricted family of instances, where the goal of the auctioneer is to
maximize the number of sellers that accept the prices offered to them, no deterministic posted-price
mechanism can achieve a constant approximation. 4

4We also note that our lower bound also applies to symmetric additive valuations, i.e., where ri = 1 for all i ∈ [n]

25

Instance 1
4B

log n
,
4B

log n
, · · · , 4B

log n
︸ ︷︷ ︸

= logn
4

B,B, . . . , B

Instance 2
4B

log n
,
4B

log n
, · · · , 4B

log n
︸ ︷︷ ︸

= logn
4

2B

log n
,
2B

log n
, . . . ,

2B

log n
︸ ︷︷ ︸

= logn
2

B,B, . . . , B

Instance k
4B

log n
,
4B

log n
, · · · , 4B

log n
︸ ︷︷ ︸

= logn
4

2B

log n
,
2B

log n
, . . . ,

2B

log n
︸ ︷︷ ︸

= logn
2

. . .
B

2k log n
,

B

2k log n
, . . . ,

B

2k log n
︸ ︷︷ ︸

= 2k−3 log n

B,B, . . . , B

.

.

.

Figure 1: Seller costs for the instances used in the construction of Lemma 14

Theorem 14. No deterministic posted-price mechanism can achieve an approximation factor better
than logn

4 for instances with symmetric submodular valuation functions.

Proof. Consider a specific symmetric function v(S) = |S|. We define a family of instances, where in
instance k, we partition the bidders into k+1 groups. Each of the j ≤ k groups contains 2j−3 log n
bidders each with cost B

2j−3 logn
. Notice that each group is budget feasible since 2j−3 log n· B

2j−3 logn
=

B. Then the k + 1-th group contains all the remaining bidders each with cost B. For example,
instance 1 has logn

4 bidders with cost 4B
logn , and all the remaining bidders have a cost of B. We can

see that the optimal solution in instance k is to output all sellers in group k, let OPTk denote the
optimal value of instance k, we have:

OPTk = 2k−3 log n.

In order to achieve the logn
4 approximation factor in any instance k, a mechanism M needs to

output at least OPT

logn/4 ≥ 2k−1 sellers in instance k. Therefore to simultaneously achieve the logn
4

approximation factor in instance 1 through k,M needs to output 2j−1 bidders in instance j for all
j ∈ [1, k] and the minimum amount the mechanism needs to pay is then

4B

log n
+

k∑

j=2

2j−2 · 4B

2j−1 log n
=

2B

log n
· (k + 1)

by purchasing exactly 2j−1 − 2j−2 = 2j−2 bidders from group j.

Solving 2B
logn · (k + 1) = B we get that k = logn

2 − 1 = log
√
n − 1. In other words, to satisfy

log
√
n− 1 instances, we need to use all of our budget. Now let no be the total number of bidders

with cost less than B in the log
√
n− 1-th instance. We then have:

no =

log
√
n−1

∑

j=1

2j−3 log n,

and by geometric sum we have:

no =
log n

4
· 2

log
√
n−1 − 1

2− 1
=

√
n/2 log n− log n

4
<

√
n log n

8

26

Now consider a instance with log
√
n − 1 groups as we defined, (each group j ∈ [1, log

√
n] has

2j−3 log n sellers and each seller costs B
2j−3 logn

), and remaining sellers all have a cost B
n−no

, we get:

OPT = n− no > n−
√
n log n

8

However, the mechanism would have used up the budget in the process of guaranteeing the
approximation factor in the log

√
n instances we defined, therefore it has no remaining budget to

purchase any seller. But then, the total value the mechanism must obtain is

v(M) = 2log
√
n−2 =

√
n

4
.

Therefore, the approximation factor is at least:

α =
OPT

v(M)
≥ n−√n log n/8√

n/4
= 4
√
n− log n

2
>

log n

4

completing the proof (since the valuation function v is a symmetric submodular function).

We now present a mechanism that achieves a O(log n) approximation to the optimal welfare
with symmetric submodular valuations. Note that we assume that ci ≤ B for all agents i.

MECHANISM 5: A posted-price mechanism for symmetric submodular valuations.

Input: A public budget B, and an arbitrarily ordered set of bidders {i}[n] with private costs ci
a public additive valuation function v.

1 Initialize a← 0
2 Initialize W ← ∅
3 set aside an arbitrary agent j
4 for i ∈ [n] \ {j} do

5 if a = 0 then

6 Offer pi ← B
2 lnn

to agent i
7 else

8 Offer pi ← B
a·2 lnn

to agent i
9 if agent i accepts then

10 a← a+ 1
11 W ←W ∪ {i}
12 if a = 0 then

13 Offer pj ← B to agent j
14 return W

Theorem 15. Mechanism 5 obtains a O(log n) approximation to the optimal value for instances
with symmetric submodular valuations.

Proof. First, if all the agents accept our offer, the total payment would be

(1 + 1 + 1/2 + 1/3 + · · ·+ 1/(n − 1))
B

2 ln n
≤ ln (n− 1) + 2

2 lnn
B < B

Therefore, at anytime of the execution of the mechanism, we would not exhaust the budget. Let
ri be the marginal gain of adding the the ith agent to the winning set. Now consider the following
cases:

27

Case 1 If no agent accepts the offer, the mechanismM would return the agent j giving v(M) = r1,
since each agent is offered and then rejected at a price of B

2 lnn , we have for each agent i, ci > B
2 lnn .

We can fit at most 2 ln n + 1 more agents. OPT ≤ ∑2 lnn+1
i=1 ri. By the definition of symmetric

submodular, r1 ≥ r2 ≥ · · · ≥ rn, we have OPT ≤∑2 lnn+1
i=1 ri ≤ (2 ln n+ 1) · r1

α =
OPT

v(M)
=

(2 ln n+ 1) · r1
r1

< 2 ln n+ 1.

Case 2 Now let k be the number of agent returned byM, we first have v(M) =
∑k

i=1 ri ≥ k · rk.
Now for any agent j rejected after the kth accepted agent, the price offered is B

k·2 lnn , therefore we
have that cj > pj =

B
k·2 lnn . For any agent i rejected before agent k, we have ci > pi > pj =

B
k·2 lnn ,

therefore the optimal solution can at fit less than k · 2 ln n + k agents. OPT <
∑k·2 lnn+k

i=1 ri ≤
v(M) + (k · 2 lnn)rk. We have:

α =
OPT

v(M)
=

v(M) + (k · 2 ln n)rk
v(M)

= 1 +
(k · 2 ln n)rk

v(M)
< 1 +

(k · 2 ln n)rk
k · rk

= 2 lnn+ 1

28

References

[1] Georgios Amanatidis, Pieter Kleer, and Guido Schäfer. Budget-feasible mechanism design for
non-monotone submodular objectives: Offline and online. In Proceedings of the 2019 ACM
Conference on Economics and Computation, pages 901–919, 2019.

[2] Nima Anari, Gagan Goel, and Afshin Nikzad. Mechanism design for crowdsourcing: An optimal
1-1/e competitive budget-feasible mechanism for large markets. In 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, pages 266–275. IEEE, 2014.

[3] Lawrence M Ausubel, Paul Milgrom, et al. The lovely but lonely Vickrey auction.

[4] Moshe Babaioff, Nicole Immorlica, Brendan Lucier, and S. Matthew Weinberg. A simple and
approximately optimal mechanism for an additive buyer. J. ACM, 67(4):24:1–24:40, 2020.

[5] Ashwinkumar Badanidiyuru, Shahar Dobzinski, and Sigal Oren. Optimization with demand
oracles. In Proceedings of the 13th ACM conference on electronic commerce, pages 110–127,
2012.

[6] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Yaron Singer. Learning on a budget:
posted price mechanisms for online procurement. In Proceedings of the 13th ACM conference
on electronic commerce, pages 128–145, 2012.

[7] Eric Balkanski and Jason D Hartline. Bayesian budget feasibility with posted pricing. In
Proceedings of the 25th International Conference on World Wide Web, pages 189–203, 2016.

[8] Xiaohui Bei, Ning Chen, Nick Gravin, and Pinyan Lu. Worst-case mechanism design via
Bayesian analysis. SIAM Journal on Computing, 46(4):1428–1448, 2017.

[9] Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on Computing, 44
(5):1384–1402, 2015.

[10] Ning Chen, Nick Gravin, and Pinyan Lu. On the approximability of budget feasible mechanisms.
In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms,
pages 685–699. SIAM, 2011.

[11] Xi Chen, George Matikas, Dimitris Paparas, and Mihalis Yannakakis. On the complexity of sim-
ple and optimal deterministic mechanisms for an additive buyer. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2036–2049. SIAM, 2018.

[12] Shahar Dobzinski, Christos H Papadimitriou, and Yaron Singer. Mechanisms for complement-
free procurement. In Proceedings of the 12th ACM conference on Electronic commerce, pages
273–282, 2011.

[13] Paul Dütting, Vasilis Gkatzelis, and Tim Roughgarden. The performance of deferred-acceptance
auctions. Mathematics of Operations Research, 42(4):897–914, 2017.

[14] Paul Dütting, Inbal Talgam-Cohen, and Tim Roughgarden. Modularity and greed in double
auctions. Games and Economic Behavior, 105:59–83, 2017.

29

[15] Ludwig Ensthaler and Thomas Giebe. A dynamic auction for multi-object procurement under
a hard budget constraint. Research Policy, 43(1):179–189, 2014.

[16] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45
(4):634–652, 1998.

[17] Vasilis Gkatzelis, Evangelos Markakis, and Tim Roughgarden. Deferred-acceptance auctions
for multiple levels of service. In Proceedings of the 2017 ACM Conference on Economics and
Computation, pages 21–38, 2017.

[18] Nick Gravin, Yaonan Jin, Pinyan Lu, and Chenhao Zhang. Optimal budget-feasible mechanisms
for additive valuations. ACM Trans. Economics and Comput., 8(4):21:1–21:15, 2020. doi:
10.1145/3417746. URL https://doi.org/10.1145/3417746.

[19] Thibaut Horel, Stratis Ioannidis, and S Muthukrishnan. Budget feasible mechanisms for ex-
perimental design. In Latin American Symposium on Theoretical Informatics, pages 719–730.
Springer, 2014.

[20] Pooya Jalaly and Éva Tardos. Simple and efficient budget feasible mechanisms for monotone
submodular valuations. ACM Trans. Economics and Comput., 9(1):4:1–4:20, 2021.

[21] Felix Jarman and Vincent Meisner. Ex-post optimal knapsack procurement. Journal of Eco-
nomic Theory, 171:35–63, 2017. ISSN 0022-0531. doi: https://doi.org/10.1016/j.jet.2017.06.
001. URL https://www.sciencedirect.com/science/article/pii/S0022053117300637.

[22] John H Kagel, Ronald M Harstad, and Dan Levin. Information impact and allocation rules
in auctions with affiliated private values: A laboratory study. Econometrica: Journal of the
Econometric Society, pages 1275–1304, 1987.

[23] Anthony Kim. Welfare maximization with deferred acceptance auctions in reallocation prob-
lems. In Algorithms-ESA 2015, pages 804–815. Springer, 2015.

[24] Shengwu Li. Obviously strategy-proof mechanisms. American Economic Review, 107(11):
3257–87, 2017.

[25] Simon Loertscher and Leslie M Marx. Asymptotically optimal prior-free clock auctions. Journal
of Economic Theory, 187:105030, 2020.

[26] Alejandro Martínez-Marquina, Muriel Niederle, and Emanuel Vespa. Failures in contingent
reasoning: The role of uncertainty. American Economic Review, 109(10), 2019.

[27] Paul Milgrom and Ilya Segal. Clock auctions and radio spectrum reallocation. Journal of
Political Economy, 128(1):1–31, 2020.

[28] Aaron Roth and Grant Schoenebeck. Conducting truthful surveys, cheaply. In Proceedings of
the 13th ACM Conference on Electronic Commerce, pages 826–843, 2012.

[29] Aviad Rubinstein. On the computational complexity of optimal simple mechanisms. In Pro-
ceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
21–28, 2016.

30

https://doi.org/10.1145/3417746
https://www.sciencedirect.com/science/article/pii/S0022053117300637

[30] Yaron Singer. Budget feasible mechanisms. In 2010 IEEE 51st Annual Symposium on Foun-
dations of Computer Science, pages 765–774. IEEE, 2010.

[31] Yaron Singer. How to win friends and influence people, truthfully: influence maximization
mechanisms for social networks. In Proceedings of the fifth ACM international conference on
Web search and data mining, pages 733–742, 2012.

[32] Yaron Singer and Manas Mittal. Pricing mechanisms for crowdsourcing markets. In Proceedings
of the 22nd international conference on World Wide Web, pages 1157–1166, 2013.

[33] Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32(1):41–43, 2004.

[34] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal
of finance, 16(1):8–37, 1961.

31

	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Monotone Submodular Valuations
	4 Non-Monotone Submodular Valuations
	5 Subadditive Valuations
	6 Conclusion
	A Proofs missing from Section 3
	A.1 Proof of Theorem 1
	A.2 The Analysis of the Approximation for 2
	A.3 The Analysis of the Approximation for Non-Budget-Feasible W2
	A.4 Budget feasibility of Iterative-Pruning
	A.5 Running time of Iterative-Pruning
	A.6 Proof of Lemma 4

	B Limitations of posted-price mechanisms
	B.1 Additive Valuation Functions
	B.2 Symmetric Submodular Valuation Functions

