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Abstract

The random order graph streaming model has received significant attention recently, with
problems such as matching size estimation, component counting, and the evaluation of bounded
degree constant query testable properties shown to admit surprisingly space efficient algorithms.

The main result of this paper is a space efficient single pass random order streaming algorithm
for simulating nearly independent random walks that start at uniformly random vertices. We
show that the distribution of k-step walks from b vertices chosen uniformly at random can be
approximated up to error ε per walk using (1/ε)O(k)2O(k2)·b words of space with a single pass over
a randomly ordered stream of edges, solving an open problem of Peng and Sohler [SODA ‘18].
Applications of our result include the estimation of the average return probability of the k-
step walk (the trace of the kth power of the random walk matrix) as well as the estimation of
PageRank. We complement our algorithm with a strong impossibility result for directed graphs.

http://arxiv.org/abs/2112.07532v1
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1 Introduction

The random order streaming model for computation on graphs has been the focus of much atten-
tion recently, resulting in truly sublinear algorithms for several fundamental graph problems, i.e.
algorithms whose space complexity is sublinear in the number of vertices (as opposed to edges)
in the input graph [KKS14, CJMM17, MMPS17, PS18, KMNT20]. This is in sharp contrast to
adversarially ordered streams, where Ω(n) space is often needed to solve even the most basic com-
putational problems on graphs [FKM+04]. This brings several fundamental problems on graph
streams (matching size, number of connected components, constant query testable properties in
bounded degree graphs) into the same regime as basic statistical queries such as heavy hitters,
frequency moment estimation and distinct elements [AMS96]—problems that can be solved using
space polylogarithmic in the length of the stream.

Sampling random walks has numerous applications in large graph analysis (e.g., [ST13, ACL06,
AP09, COP03]), so it has received quite a bit of attention in the adversarial streaming model [SGP11,
Jin19, CKP+21]. However, while these results are useful for dense graphs, they all require Ω(n)
space.

We show that the random order model allows us to break this barrier. For random order streams
we give an algorithm that generates b walks that are ε-approximate to k-step random walks from
uniformly random starting vertices1, using (1ε )

O(k) · 2O(k2) · b words of space, independent of the
graph size n. This solves an open problem of Peng and Sohler on estimating return probabilities
of random walks ([PS18], page 23).

The exponential dependence on poly(k) here seems likely to be necessary, at least up to the
power of k, as recent work [CKKP21] has shown that finding a length-ℓ component in a graph
where every component is of length at most ℓ requires ℓΩ(ℓ) space in a model close2 to random-
order streaming. Performing a k = Θ

(
ℓ2
)

random walk from a randomly chosen vertex would

suffice for this, and so we expect any such algorithm needs at least kΩ(
√
k) space.

Our algorithm immediately implies sublinear algorithms for graph analytics based on short
random walks, such as return probability estimation or PageRank. Consider PageRank with a
constant reset probability α. For a “topic” T ⊂ V —think, “news websites” or “websites about
gardening”—we can view the total PageRank of T as a measure of the importance of that topic
to the graph. Our walk sampling algorithm lets us estimate the total PageRank of T to within ε
using Oα,ε(1) space.

Our algorithmic results are for undirected graphs, because directed graphs are hard: we show
that sampling walks from directed graphs (or just estimating PageRank) requires Ω(n) space in
random order streams.

Our results. We now state our results formally. We will need the definition of ε-closeness of
distributions below:

1Previous work has considered this problem when the start vertex is adversarially chosen and given to the algorithm

before processing the stream. Unfortunately o(n) space is impossible in this setting, as if the start vertex is in, say, a

two-edge path, finding the second edge of the path will be difficult in the 50% of cases it arrives after the first. For

a formal lower bounds see Appendix E.
2This lower bound applies when edges are grouped into pairs, and the pairs arrive in a uniformly random order. It

does not necessarily imply lower bounds on fully random-order streaming, but it seems unlikely that this particular

structure would make the problem dramatically harder.
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Definition 1.1 (Pointwise ε-closeness of distributions). We say that a distribution p ∈ R
U
+ is

ε-close pointwise to a distribution q ∈ R
U
+ if for every u ∈ U one has

p(u) ∈ [1− ε, 1 + ε] · q(u).

We now define the notion of an ε-approximate sample of a k-step random walk:

Definition 1.2 (ε-approximate sample). Given G = (V,E) and a vertex u ∈ V we say that
(X0,X1, . . . ,Xk) is an ε-approximate sample of the k-step random walk started at u if the distribu-
tion of (X0,X1, . . . ,Xk) is ε-close pointwise to the distribution of the k-step walk started at u (see
Definition 1.1).

Main result. Our main result is an algorithm for generating nearly independent ε-approximate
samples of the k-step walk in the input graph G presented as a randomly ordered stream:

Theorem 1.3. There exists a constant c′ > 0 such that for every n-vertex graph G, for every

ε ∈ (n−1/1000, 1/2), b ≤ n1/100, and 1 ≤ k ≤ min
{

c′ logn
log(1/ε) ,

√
c′ log n

}
, the following holds:

The output of SimulateWalks(k, ε, b) (Algorithm 4 below) is (n−1/100 + 2−b)-close in TV
distance to the distribution of b independent ε-approximate samples of the k-step random walk in G
started at vertices chosen uniformly at random. The space complexity of SimulateWalks(k, ε, b)
is upper bounded by (1/ε)O(k) · 2O(k2) · b.

Using random walk sampling as a primitive, we give algorithms for two important graph prob-
lems: computing the average return probability of k-step random walks and estimating the PageR-
ank of a subset of nodes.

Return probability estimation. For every integer k ≥ 1 and u ∈ V let pku ∈ R
V denote the

distribution of the simple k-step random walk started at u. The average return probability of k-step
random walks in G is

rp(G) =
1

n

∑

u∈V
pku(u). (1)

We say that r̂p(G) estimates rp(G) with precision ε ∈ (0, 1) if

|rp(G)− r̂p(G)| ≤ ε. (2)

Remark 1.4. Note that if the input graph G consists of disjoint connected components with mixing
time bounded by o(k), then rp(G) is very close to the number of connected components in G. In
particular, if every component in G has size at most q, the mixing times are bounded by qO(1), so
this gives another algorithm for approximately counting the number of connected components in G
using space 2poly(q), which is comparable to [PS18].

In general, the average return probability can be viewed as a more robust measure of connectivity
than the number of components.

Our algorithm for approximating the average return probability is ApproxRP (Algorithm 1
below).

2



Algorithm 1 ApproxRP: approximate average k-step return probability over u ∈ V

1: procedure ApproxRP(k, ε) ⊲ k is the desired walk length, ε ∈ (0, 1) is a precision parameter
2: b← D

ε2
for a sufficiently large constant D > 0

3: (vi)i∈[b] ← SimulateWalks(k, ε, b)

4: return 1
b · |{i :∈ [b] : vik = vi0}| ⊲ Empirical return probability

5: end procedure

Corollary 1.5. There exists a constant c′ > 0 such that for every graph G = (V,E), |V | = n, |E| =
m, for every ε ∈ (n−1/1000, 1/2) and 1 ≤ k ≤ min

{
c′ logn
log(1/ε) ,

√
c′ log n

}
the following conditions hold.

Algorithm ApproxRP(ε, k) (Algorithm 1 below) computes an ε-approximation to the aver-
age return probability of a k-step random walk in G given as a random order stream using space
(1/ε)O(k) · 2O(k2) with probability at least 9/10 over the randomness of the stream and its internal
randomness.

The proof of Corollary 1.5 follows from Theorem 1.3 by standard concentration inequalities and
is presented in Appendix C.

Estimating PageRank. For a reset probability α ∈ (0, 1) the PageRank vector with reset prob-
ability α, denoted by pα ∈ R

V , satisfies

pα = α · 1
n
+ (1− α)Mpα,

where M is the random walk transition matrix of G. We give an algorithm (ApproxPageRank,
Algorithm 2 below) that, given a membership oracle for a subset T ⊆ V , computes an approximation
p̂α(T ) to pα(T ) =

∑
u∈T pα(u) such that

|p̂α(T )− pα(T )| ≤ ε. (3)

Our algorithm exploits the fact that PageRank with reset probability α is a mixture of distribu-
tions of random walks started with the uniform distribution over vertices of G whose length follows
the geometric distribution with parameter α. Specifically,

pα = (I − (1− α)M)−1 · α1
n

=
∑

k≥0

α(1 − α)kMk · 1
n

Therefore, an additive ε-approximation to the PageRank pα(T ) of a set T as per (3) can be obtained
by truncating the sum above to its first O( 1α log(1/ε)) terms and estimating them using Simulate-
Walks, our algorithm for generating independent samples of random walks. This is exactly what
ApproxPageRank (Algorithm 2 below) does.
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Algorithm 2 ApproxPageRank: approximate PageRank with reset probability α ∈ (0, 1) on
target set T up to ε additive error.

1: procedure ApproxPageRank(α, T, ε) ⊲ Approximate PageRank of T ⊆ V
2: ⊲ α is the reset probability, ε is the additive precision
3: ⊲ T is given by a membership oracle
4: b← D

ε2 for a sufficiently large constant D > 0
5: (vi)i∈[b] ← SimulateWalks(⌈ 2α log(1/ε)⌉, ε, b · ⌈ 2α · log(1/ε)⌉)
6: ⊲ Increase the number of sampled walks to account for different lengths
7: for j = 0 to ⌈ 2α log(1/ε)⌉ do
8: W (j)← walks vi with i between b · j + 1 and b · j truncated to j steps.
9: ⊲ W (j) are nearly independent collections of s walks of length j

10: end for
11: p̂← 0
12: for i = 1 to b do
13: J ← Geom(α) ⊲ J = j with probability α(1− α)j for every integer j ≥ 0
14: If J > ⌈ 2α log(1/ε)⌉ then continue
15: if ith walk in W (J) ends in T then ⊲ Use membership oracle for T
16: p̂← p̂+ 1

b
17: end if
18: end for
19: return p̂
20: end procedure

Corollary 1.6. There exists a constant c′ > 0 such that for every graph G = (V,E), |V | = n, |E| =
m, for every α ∈ (0, 1), every ε ∈

(
2−o(

√
logn), 1/2

)
such that 1

α ≤
√
logn

4 log(1/ε) the following conditions

hold.

For every T ⊆ V ApproxPageRank (Algorithm 2) approximates pα(T ) for constant α ∈ (0, 1)

up to additive error ε with probability at least 9/10 using (1/ε)O( 1
α
log(1/ε)) ·2O( 1

α2 log2(1/ε)) space given
a randomly ordered stream of edges of G, assuming a membership oracle for the target set T .

The proof of Corollary 1.6 follows from Theorem 1.3 by standard concentration inequalities and
is presented in Appendix C.

Lower bounds for directed graphs. PageRank was first studied for directed graphs, and so it
is natural to ask if it is possible to extend these algorithms to that setting. We show that it is not,
and in fact both sampling from the random walk distribution and approximating the PageRank
of a vertex set in a directed graph require Ω(n) bit of storage. This holds even if we restrict to
approximating the distribution of very short random walks.

Theorem 1.7. For any constant ε < 1/4, the following holds for all k ≥ 3 and all n: there is
a family of directed graphs with no more than n vertices and edges such that any random order
streaming algorithm that ε-approximates the distribution of length-k random walks on graphs drawn
from the family uses Ω(n) bits of space, with a constant factor depending only on ε.

Theorem 1.8. Let α be a given (constant) reset probability for PageRank. For any constants
ε < (1 − α)3 − 1

2 , δ < 1/4, the following holds for all n: there is a family of directed graphs with
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no more than n vertices and edges such that any random order streaming algorithm that returns a
ε additive approximation to the PageRank of vertex sets in these graphs with probability 1− δ uses
Ω(n) bits of space, with a constant factor depending only on α, ε, and δ.

Note that this second lower bound applies only when (1 − α)3 > 1/2, i.e. α must not be much
greater than 0.2. In applications α is typically 0.15, so this is a reasonable assumption.

1.1 Algorithmic Techniques

In what follows we discuss the main challenges involved in obtaining Theorem 1.3 and the key ideas
behind our approach. A natural approach would be to sample a large collection of vertices in the
graph uniformly at random, and to then try simulating k-step walks from them using the random
order of the stream. Most of these simulations will fail, but our hope is that with a reasonably
large (specifically, εO(k)2−O(k2)) probability τ , we will successfully output a nearly-uniform random
walk from each start vertex, and that, when we don’t succeed, we will know that we failed.

How could we simulate a walk from a given vertex v using the random stream? One idea might
be: starting with v, repeatedly take the next edge incident on the current vertex, and stop after k
steps (or output ⊥ if the stream terminates before the kth step). The intuition is that a random
walk has a 1/k! chance of appearing in the stream in order, but this approach has two problems.
First, it never traverses the same edge twice, while a random walk has a good chance of doing so
whenever it encounters a low-degree vertex. Second, even for walks where every edge is distinct,
the probability that it outputs a given path is not proportional to the probability of that path
arising as a random walk. For example, when starting at the endpoint of a path, a length-2 walk
occurs with probability 1/2 and is sampled with probability 1/2 (if the adjacent edge precedes the
next edge out); but when starting in the middle of a path, the first adjacent edge is more likely to
precede the next edge out, increasing the probability of sampling a length-2 walk to 2/3.

Repeated edges. We fix the first issue by associating each walk (e1, e2, . . . , ek) with a template
π, a sequence of numbers that encodes the amount of ‘backtracking’ that the walk (e1, e2, . . . , ek)
does. Formally, we define:

Definition 1.9 (Walk template). A k-walk template is a tuple π ∈ Πk, where Πk := [1] × [2] ×
[3]× . . .× [k].

Definition 1.10 (A walk conforming with a template). We say that a walk e = (e1, e2, . . . , ek) ∈ Ek

conforms with a template π ∈ Πk if for every j ∈ [k] one has

πj = min{i ∈ [k] : ei = ej}.

Similarly, for ℓ ∈ [k] we say that a walk e = (e1, e2, . . . , eℓ) ∈ Eℓ conforms with a template π ∈ Πk

if for every j ∈ [ℓ] one has
πj = min{i ∈ [ℓ] : ei = ej}.

Note that a walk (e1, e2, . . . , ek) conforms with a template π ∈ Πk if and only if for every j ∈ [k],
πj is the first time the edge ej appears in the walk.

Because every walk (e1, e2, . . . , ek) conforms with exactly one template, our random walk gener-
ation procedure can proceed by first sampling a template uniformly at random, and then generating
a walk that conforms with that template.

5



Debiasing the estimate. To address the second issue with the naive approach—that the prob-
ability we find a given walk is not proportional to the random walk probability—we modify the
walk procedure slightly to not always follow the next edge out of each vertex. Instead, we choose
our first edge out of the start vertex v uniformly at random from the edges incident to v in the first
η fraction of the stream, for a small parameter η; our second edge is chosen uniformly from the
edges incident to this vertex in the second η fraction of the stream, and so on. But this is subject
to conforming to the template—in step j, if πj 6= j, we ignore the jth η fraction of the stream and
instead reuse the πth

j edge we’ve already taken.

With this approach, we can correct differences in the probability of finding each walk. The
probability that we find a given walk is (i) 1/k!, the probability that we sample the right template,
times (ii) an η factor for each distinct edge in the walk, the probability that the stream is such
that it is possible for our algorithm’s random choices to find this walk, times (iii) the probability
that our algorithm makes the correct choices to find the walk. This last probability depends on the
stream, being the product over steps of the inverse number of edges incident to the previous vertex
in the appropriate η fraction of the stream. The key is that this probability p is known after we
see the stream; so if we knew the true random walk probability q for this walk, we could rejection
sample with probability proportional to q/p to output walks under the correct distribution.

So how can we estimate the correct probability q of a given random walk with small expected
error? The random walk probability q is

∏k
j=1

1
dj−1

, where dj−1 is the degree of the (j− 1)th vertex

in the walk (with d0 being the starting degree). We can estimate each dj by watching the stream
after we finish the sampling procedure; this will contain a (1 − kη) fraction of the stream. One
might expect this to introduce an error of about (1− kη)k ≈ e−k2η in our estimate of q, but in fact
the error can be much larger because a vertex may be visited as many as Θ(k) times in a walk.

For a constant-degree vertex, there is an ηk chance that we will miss at least one of its edges, in
which case our estimate will be off by a constant factor, which could in turn lead to a 2Θ(k) relative
error in q if the vertex appears Θ(k) times in the walk, for η2Θ(k) expected relative error. For this

reason we need to set η < 2−Θ(k), which leads to the final 2−O(k2) term in τ , and thus the 2O(k
2)

term in our space complexity.

Repetition and near-independence. The above argument leads to an O(k)-space algorithm
that, with probability 2−O(k2), outputs a nearly uniform random walk. To make this useful, we
need to repeat it at least s = 2O(k2) times so that we may actually find walks. The challenge here
is that these are not independent repetitions: the output of the algorithm depends on the random
order of the stream, which is shared by each copy of the algorithm.

Fortunately, the repetitions are nearly independent. Knowing the path taken in a given attempt
to sample a walk tells us something about the arrival times of the other edges incident to the vertices
visited in that walk, but it is independent of edges not incident to vertices on the path. If the graph
had no high degree vertices—say, the maximum degree were n1/4—this would be sufficient: the
probability that any given walk visits a degree-d vertex is at most kd/n < n−.7, so if s < n.01 we
will probably never visit two adjacent vertices.

For high-degree vertices we need a different analysis: a high-degree vertex v will with high
probability have many edges as possibilities in each stage, so knowing the behavior of s other
walks only has a small effect on which edges are likely to be followed after visiting v. Formally,
we introduce a hybrid algorithm where the behavior on high degree vertices is independent of the
stream, show that the distribution of the output of the original algorithm is close to that of the

6



u v w

Figure 1: A directed graph that makes it hard to find walks. Most walks in the graph start at one
of the vertices on the left and then go into u, then v, then w. But if vw arrives before uv it is
impossible to know that it should be part of all of these walks.

hybrid algorithm, then use the above argument for low degree vertices.

1.2 Lower Bound Techniques

Our lower bound is based on the following property of directed graphs: if a vertex has high in-
degree but low out-degree, that vertex can cause the vast majority of random walks in a graph
to be “channeled” into one path. If this path has multiple edges any algorithm that estimates
the random walk distribution or the PageRank vector will need to observe all of them, which is
inherently difficult as later edges in the path will not be recognized as significant unless they arrive
after all the earlier edges. This is depicted in Figure 1.

Formally, we give a method for encoding an instance of the Indexing problem in a graph stream,
similar to techniques used in [CCM16]. In the Indexing problem, Alice has an n bit string x and
Bob an index I. Alice must send Bob a message that allows him to guess the value of xI . It is
known that Alice must send Ω(n) bits if she wants to succeed at this task.

Ordinarily it is difficult to encode communication problems as random order graph streams, as
the fact that the edges may arrive in any order makes it difficult to assign parts of the graph to
different players. We evade this difficulty by making use of the fact that the indexing problem is
hard even if the players are guaranteed a uniform distribution on their inputs and only have to
succeed with probability 1/2 + ε for some constant ε.

In our method, Bob encodes his index as a single edge from a high in-degree vertex, and Alice
encodes her bits as n edges that it might point to, with each pointing to a vertex representing 0
or 1. Therefore, almost all random walks in the graph end at a vertex representing xI , and a large
fraction of the PageRank vector’s weight will be on this vertex.

As the edges are required to arrive in a uniformly random order, sometimes Alice’s edges may
arrive after Bob’s edge, in which case Bob is responsible for inserting them in the stream. them.
In that case he simply guesses what they should be. This means that half the time the graph will
encode a random answer rather than a solution to Indexing, but this is still sufficient for him to
succeed more than half the time. This encoding is illustrated in Figure 2.

7



x
I

1

0

(a) Encoding an instance of Indexing in a directed graph. The high in-degree vertex will have one outgoing
edge, encoding Bob’s index I, which will point to one of n vertices, each of which encodes one of Alice’s bits
x by pointing to one of two corresponding loops.

x{0,1,5,6,7,8} I y{2,3,4,9}

(b) Converting the encoding into a random-order stream. The edges that do not depend on Alice or Bob’s
input can be inserted using shared randomness, and so are ignored here. Those of Alice’s edges that should
arrive before Bob’s edge are encoded as normal, but those that arrive after are instead inserted by Bob by
chosing a random guess y for Alice’s input. Half of the time the edge encoding xI arrives before the edge
encoding I, and the other half of the time there is still a 0.5 chance of Bob guessing correctly, so the encoding
is “correct” with probability 0.75.

Figure 2: Encoding an instance of Indexing as a random-order graph stream.
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1.3 Related Work

For adversarial streams the problem of generating a k-step walk out of a given starting vertex was
first considered in a paper of [SGP11], where it is shown how to generate n walks of length k using
Õ(
√
k) passes over the stream and Õ(n) space. The work of [Jin19] gives a single pass algorithm

with space complexity Õ(n ·
√
k) undirected graphs, and shows that this is best possible. Another

recent work [CKP+21] gives two-pass algorithms for generating walks of length k in general (even
directed) graphs using Õ(n ·

√
k) space, which they also show it essentially best possible.

2 Basic Definitions and Claims

Basic notation. For any integer a ≥ 1 we write [a] = {1, 2, . . . , a}. For any set S we use U(S)
to denote the uniform distribution on S. For a pair of (discrete) random variables X and Y we let
dTV (X,Y ) denote the total variation distance between X and Y , which equals one half of the ℓ1
distance between their distributions. For a vertex v ∈ V we write d(v) to denote the degree of v in
G, and δ(v) to denote the set of its incident edges. For an integer k ≥ 0 and two vertices u, v ∈ V
we write pkv(u) to denote the probability that the simple random walk started at v reaches u after
k steps. We assume for simplicity that the graph does not have isolated vertices (all our algorithms
can be easily adapted to handle isolated vertices, so this is without loss of generality).

2.1 Stream Model

We assume that we receive the edges of the graph in a uniformly random order. We think of this
order as being generated by assigning each edge f ∈ E a “timestamp” tf ∈ [0, 1] uniformly at
random. The edges are then presented to the algorithm in ascending order of timestamp.

Typically a random-order stream does not come with such timestamps. However, as we show in
Appendix B, an algorithm can generate timestamps distributed appropriately using just O(log n)
extra space, for any desired 1/poly(n) accuracy (this will suffice, as we can set the accuracy to
e.g. 1/n100 and with very high probability the output of the algorithm will not be influenced by
changing any number of timestamps by that much).

We assume knowledge of m, the number of edges in the graph. This assumption, however,
can be removed by ‘guessing’ the right value of m (by running several copies of the algorithm in
parallel), at the expense of a mild loss in the space complexity.

2.2 Algorithm

Our walk sampling algorithm (SamplesWithReset, Algorithm 3 below) is quite simple: it sam-
ples a large enough set of nodes uniformly at random, together with independent uniformly ran-
dom templates for every sampled node. It then runs our random walk generation procedure
(WalkFromTemplate) from each such node, and outputs a sample of the runs that do not
return FAIL (i.e., those invocations of WalkFromTemplate that terminate with a valid walk).

9



Algorithm 3 SamplesWithReset: simulate s samples of k-step walk started from uniformly
random vertices, with reset (i.e., allowing walks to fail)

1: procedure SamplesWithReset(k, ε, s)
2: ⊲ k is the desired walk length, ε ∈ (0, 1) is a precision parameter
3: η ← ε8 · 2−Ck ⊲ For a large enough constant C > 0
4: vi0 ← independent uniform sample from V for i ∈ [s]
5: for i ∈ [s] do
6: Choose πi ∼ U(Πk) ⊲ Πk is the set of walk templates of length k, see Definition 1.9
7: vi ←WalkFromTemplate(vi0, π

i, k, η) ⊲ Run in parallel on the same stream
8: end for
9: return (vi)i∈[s]

10: end procedure

Algorithm 4 SimulateWalks: simulate a samples of k-step walk started from uniformly random
vertices

1: procedure SimulateWalks(ε, k, b)
2: ⊲ k is the desired walk length, ε ∈ (0, 1) is a precision parameter
3: s← b · 100η−k · k! ⊲ Increase number of starting nodes to account for failed walks
4: (vi)i∈[s] ← SamplesWithReset(k, ε, s)
5: if at least b of the walks (vi)i∈[s] succeeded then
6: return the first b successful walks
7: else
8: return FAIL
9: end if

10: end procedure

Overview of random walk generation (WalkFromTemplate). Our main random walk
generation procedure is WalkFromTemplate (Algorithm 5 below). The procedure gets as input
a starting vertex, a template π, the target length of the walk and a parameter η that corresponds
to the fraction of the stream that is used to generate a single step of the walk. Setting η small lets
us limit various correlations, but hurts the performance, since the probability of WalkFromTem-
plate terminating with a valid walk (as opposed to outputting FAIL) is about ηk.

The procedure WalkFromTemplate itself is natural: it partitions the first k · η fraction of
the stream into intervals of length η, and for every j ∈ [k] either it uses the jth interval to sample
a new edge (if the template π prescribes this, i.e. satisfies πj = j; see line 5 of Algorithm 5), or
it takes the corresponding previously traversed edge if the template π prescribes this, i.e. satisfies
πj < j, and the corresponding edge is in the neighborhood of the current vertex (see line 11 of
Algorithm 5). The sampling is done using reservoir sampling, and therefore is space efficient.

After k phases, having constructed a candidate walk (f1, f2, . . . , fk), the algorithm first uses
the empirical batches to infer a partition of the candidate walk into batches, and then uses this
information to perform rejection sampling. The goal of rejection sampling is to reduce the prob-
ability of picking up a walk to be proportional to the product of the inverse degrees of the first
k vertices in the walk, i.e. to the correct probability. To achieve this WalkFromTemplate
maintains the probability pk of having collected the walk (f1, . . . , fk). The algorithm then uses
the remainder of the stream to compute estimates (d̂j)

k−1
j=0 , of the degrees of the vertices on the

10



candidate walk, and keeps the candidate walk with probability proportional to p−1
k

∏k−1
j=1(1/d̂j) (see

line 20 of Algorithm 5).

The algorithm is formally described as Algorithm 5 below. For a stream σ and parameters
α, β ∈ [0, 1] we define

σ[α, β) = {e ∈ E : te ∈ [α, β)} .
Recall that we think of every edge e ∈ E as being assigned an independent uniformly random
timestamp te ∈ [0, 1], and the edges being presented in increasing order of these timestamps (see
Section 2.1 for more discussion of this assumption).

Algorithm 5 WalkFromTemplate: generate a random walk from starting vertex u0 that con-
forms with a template π

1: procedure WalkFromTemplate(u0, π, k, η) ⊲ k is the desired walk length, u0 is the
starting vertex

2: for j = 1 to k do
3: u← uj−1

4: if πj = j then
5: Hj ← edges in δ(u) ∩ σ[η · (j − 1), η · j)
6: If Hj = ∅ then return FAIL
7: fj ← U(Hj) ⊲ Implemented using reservoir sampling
8: γj ← 1

|Hj | · η
9: else

10: If fπj
6∈ δ(u) then return FAIL

11: fj ← fπj

12: γj ← 1
13: end if
14: uj ← endpoint of fj other than u
15: end for
16: for j ∈ [k] do ⊲ Compute degree estimates for vertices on the walk
17: d̂j−1 ← degree of uj−1 in {f1, . . . , fk} ∪ σ[η · k, 1]
18: end for
19: α←∏

j∈[k]min( η

γj d̂j−1
, 1) ⊲ Done in postprocessing

20: return (u0, . . . , uk) with probability α and return FAIL otherwise
21: end procedure

In what follows we prove that, if we set our parameters appropriately, each walk is output with
almost the correct probability.

We assume that parameters n, k and η satisfy the following:

(P1) k ≤ c log n/ log log n for a small constant c > 0

(P2) η ∈ (n−1/100, 2−Ck) for a sufficiently large constant C ≥ 8

3 Analysis of WalkFromTemplate

Lemma 3.1. For every integer k ≥ 1 and real number η satisfying (P1) and (P2), and every
π ∈ Πk, the following holds:

11



For every v ∈ V and every length k walk v = (v0, v1, . . . , vk−1, vk) from v0 = v, an invocation
of WalkFromTemplate(v, π, k, η) (Algorithm 5) outputs v with probability

p ∈
[
1, 1 + η1/7

]
· ηk ·

∏

j∈[k]

1

d(vj−1)
,

if v conforms with π and with probability 0 otherwise.

The following corollary is an immediate consequence of Lemma 3.1:

Corollary 3.2. For every integer k ≥ 1 and real number η satisfying (P1) and (P2), the following
holds for π sampled from U(Πk):

For every v ∈ V and every length k walk v = (v0, v1, . . . , vk−1, vk) from v0 = v, an invocation
of WalkFromTemplate(v, π, k, η) (Algorithm 5) outputs v with probability

p ∈
[
1, 1 + O

(
η1/7

)]
· 1
k!
· ηk ·

∏

j∈[k]

1

d(vj−1)
.

Proof. Per Definition 1.10 there exists a unique template π′ ∈ Πℓ that v conforms with. The walk
v conforms with any extension π of π′ to a template in Πk, and no other template. For every such
π the corresponding invocation of WalkFromTemplate(v0, π, k, η) constructs v at the end of the
first ℓ iterations of its main loop with probability

p ∈
[
1, 1 + O

(
η1/7

)]
· ηℓ ·

∏

j∈[ℓ]

1

d(vj−1)
(4)

by Lemma 3.1, and with probability zero for other π. Thus, the result follows since π is selected
uniformly at random from Πk.

3.1 Useful Technical Results

The following are results that will be useful in our analysis. Proofs are deferred to Appendix A.

Recall that for integer k ≥ 0 and two vertices u, v ∈ V we write pkv(u) to denote the probability
that the simple random walk started at v reaches u after k steps.

Claim 3.3. Let v ∈ V be chosen uniformly at random in a graph with no isolated vertices. Then
for every u ∈ V and k ≥ 0 one has Ev∼U(V )[p

k
v(u)] ≤ d(u)/n.

The following is a consquence of Bennett’s inequality.

Lemma 3.4. Let Y =
∑

i αiXi, where αi ∈ {0, 1} and Xi ∼ Ber(η) are independent for some
η ∈ (0, 1/50). Then for every d ≥∑i αi

Pr[Y ≥ d/2] ≤ (3η)d/5.

Lemma 3.5. Let E1, . . . , Ek, Z1, . . . , Zk be arbitrarily correlated random variables. Let η̃ ∈ (0, e−5k)
and the positive integers (qi)

k
i=1 be such that, for all i ∈ [k], Ei ∈ {0, 1}, E[Ei] ≤ η̃qi/5, Zi ∈ [0, 1],

and E[Zi] ≤ η̃. Then

E

[
k∏

i=1

(1 + Zi + qiEi)

]
≤ 1 + 3kη̃1/5.
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3.2 Proof of Lemma 3.1

We now prove Lemma 3.1, restated here for convenience of the reader.

Lemma 3.1. For every integer k ≥ 1 and real number η satisfying (P1) and (P2), and every
π ∈ Πk, the following holds:

For every v ∈ V and every length k walk v = (v0, v1, . . . , vk−1, vk) from v0 = v, an invocation
of WalkFromTemplate(v, π, k, η) (Algorithm 5) outputs v with probability

p ∈
[
1, 1 + η1/7

]
· ηk ·

∏

j∈[k]

1

d(vj−1)
,

if v conforms with π and with probability 0 otherwise.

Proof. There are three sources of randomness in WalkFromTemplate (Algorithm 5): the stream
σ, the reservoir sampling r to find the path, and the rejection sampling at the end. We first analyze
the event F that a given walk v is “collected”, meaning that is found but might be rejected in the
final rejection sampling step. We use F to denote the indicator variable associated with F .

For j ∈ [k] let ej = (vj−1, vj). Let

Γ :=
{
σ a stream : ∀j ∈ [k] such that πj = j one has tej ∈ [η(j − 1), η · j)

}
. (5)

This is the set of streams σ such that collecting v is possible: for every σ 6∈ Γ we have F = 0
always. Similarly, if v does not conform to π then F = 0. For any fixed σ ∈ Γ and v that conforms
to π, we have

Pr
r
[F ] =

∏

j∈[k]:πj=j

1

|Hj|
, (6)

where (as in Algorithm 5) Hj is the set of edges that could could be taken in stage j.

Define

p :=

k∏

j=1

γj = η|π| ·
∏

j∈[k]:πj=j

1

|Hj|
= η|π| Pr

r
[F ], (7)

where we let |π| := |{j ∈ [k] : πj = j}|. We note that |π| ≤ k for every π. This implies that, for
any stream σ ∈ Γ and π that v conforms to,

E
r

[
1

p
F

]
= η−|π|.

Since Pr[σ ∈ Γ] = η|π|, this means

E
σ,r

[
1

p
F

]
= 1. (8)

Define d̂(vj) to be the degree of vj in v ∪ σ[ηk, 1], so d̂j = d̂(vj) when F occurs, and define

q := ηk
∏k

i=1
1

d̂(vj−1)
and q∗ := ηk

∏k
i=1

1
d(vj−1)

. Note that, for any v, q∗ depends only on the graph

and is independent of the stream order and the randomness of the algorithm. If v is collected, then

it is output with probability α =
∏

j∈[k]min
(

η

γj d̂j−1
, 1
)
, which satisfies

q∗

p
≤ α ≤ q

p
. (9)
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The upper bound follows from ignoring the min(·, 1) in the expression, and the lower bound follows
from the fact that γj =

η
|Hj | ≥

η
d(vj−1)

and d̂(vj) ≤ d(vj) for all j, so

min

(
η

γj d̂(vj−1)
, 1

)
≥ min

(
η

γjd(vj−1)
, 1

)
=

η

γjd(vj−1)
.

We would like to bound the probability v is output over the streams and internal randomness,
which is

E
σ,r

[αF ]. (10)

Lower bound. By (9) and (8),

E
σ,r

[αF ] = E
σ,r

[
αp

1

p
F

]
≥ E

σ,r

[
q∗

1

p
F

]
= q∗ (11)

as q∗ is independent of the stream order and the randomness of the algorithm.

Upper bound. We have that

E
σ,r

[αF ] ≤ E
σ,r

[
q

p
F

]
= E

σ

[
q · 1σ∈Γ · E

r

[
1

p
F

∣∣∣∣σ
]]

= E
σ

[
q · 1σ∈Γ · η−|π|

]
= E

σ
[q|σ ∈ Γ].

So it suffices to show that q is not much bigger than q∗ on average over streams in Γ.

For any given i ∈ {0, 1, . . . , k − 1}, consider the distribution of the degree estimate d̂(vi) over
σ ∈ Γ. If vi has ℓ distinct incident edges among the walk v, then those edges will always count in
d̂(vi). Every other edge will count if and only if its timestamp is at least kη, which is an independent
binary random variable with expectation 1 − kη. Let Yi denote the number of edges that do not
count, so d̂(vi) = d(vi)− Yi and Yi ∼ B(d(vi)− ℓ, kη). We now analyze

E
σ

[
q

q∗

∣∣∣∣σ ∈ Γ

]
= E

σ

[
k−1∏

i=0

d(vi)

d̂(vi)

∣∣∣∣∣σ ∈ Γ

]
= E

σ

[
k−1∏

i=0

d(vi)

d(vi)− Yi

∣∣∣∣∣σ ∈ Γ

]
.

Define Ii to be the event that Yi ≥ d(vi)/2. By the Bennett inequality corollary Lemma 3.4, if the
constant in (P2) is chosen to be large enough,

Pr[Ii] ≤ (3kη)d(vi)/5.

On the other hand, when Ii does not occur and Yi < d(vi)/2 we have

d(vi)

d(vi)− Yi
=




∞∑

j=0

(Yi/d(vi))
j


 ≤ 1 + 2Yi/d(vi).

Let Zi = 2Yi/d(vi) when Ii holds and 0 otherwise. Since d̂(vi) ≥ 1, we always have d(vi)

d̂(vi)
≤ d(vi).

Therefore
d(vi)

d̂(vi)
≤ 1 + Zi + d(vi)Ii.

14



where Ii is the indicator for Ii. We can now apply Lemma 3.5 (if the constant in (P2) is chosen
to be large enough) to (I0, . . . , Ik−1), (Z0, . . . , Zk−1), and η̃ = 3kη, to say that

E
σ

[
q

q∗

∣∣∣∣σ ∈ Γ

]
= E

σ

[
k−1∏

i=0

d(vi)

d̂(vi)

∣∣∣∣∣σ ∈ Γ

]
≤ 1 + 3k(3kη)1/5.

Therefore the probability we output v satisfies

E
σ,r

[αF ] ≤ E
σ
[q|σ ∈ Γ] = q∗ E

σ

[
q

q∗

∣∣∣∣σ ∈ Γ

]
≤ (1 + 3k(3kη)1/5)q∗.

For η < 2−Ck for sufficiently large C, this is at most (1 + η1/7)q∗ as desired.

4 Near-Independence of Constructed Walks

In this section we prove that the walks constructed by SamplesWithReset(k, ε, s) (Algorithm 3)
are close to independent in total variation distance. We introduce a useful modified version of
SamplesWithReset and WalkFromTemplate, as well as some notation, before stating the
key formal lemmas.

Hybrid SamplesWithReset and WalkFromTemplate algorithms. As a first step we show
that the output distribution of SamplesWithReset (which relies on WalkFromTemplate) is
close in total variation distance to the output distribution of a modified version SamplesWithRe-
setHybrid (which in turn relies on a modified WalkFromTemplateHybrid) – see Algorithm 6
and Algorithm 8 below.

The main reason behind the introduction of this algorithm is that it will be easier to prove near-
independence of several walks generated on the same stream by SamplesWithResetHybrid than
to perform the same analysis directly on SamplesWithReset. The proof of closeness of the output
of SamplesWithReset and SamplesWithResetHybrid in distribution proceeds by the ‘hybrid
argument’, and to facilitate this argument the procedure WalkFromTemplateHybrid takes a
parameter j∗, and changes its behavior relative to WalkFromTemplate in the first j∗ iterations
of the outer loop. We note that WalkFromTemplateHybrid is not an actual algorithm that
can be run on a stream (it uses information that is not available as the stream comes in, such as
exact vertex degrees and exact vertex neighborhoods), and is only a useful construct that facilitates
analysis.

We first define
L = {u ∈ V : d(u) ≤ n1/4} (12)

to be the set of ‘low degree’ vertices in the graph (the threshold of n1/4 is somewhat arbitrary, but
in general this threshold cannot be too high; in particular, it needs to be bounded away from n
by at least an s2 factor, where s is the number of samples used in SamplesWithReset). For the
first j∗ iterations of the main loop WalkFromTemplateHybrid (Algorithm 8)

• if the current vertex u is a high degree vertex (belongs to V \ L), samples its next edge
uniformly at random from δ(u), without using the stream (see line 6)

• when estimating vertex degrees, uses (appropriately scaled) exact degrees for high degree
vertices (see line 21), for all j ≤ j∗.
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Algorithm 6 SamplesWithResetHybrid: simulate s samples of k-step walk started from uni-
formly random vertices, with reset (i.e., allowing walks to fail)

1: procedure SamplesWithResetHybrid(k, ε, s, j∗)
2: ⊲ k is the desired walk length, ε ∈ (0, 1) is a precision parameter
3: η ← ε8 · 2−Ck ⊲ For a large enough constant C > 0
4: vi0 ← independent uniform sample from V for i ∈ [s]
5: for i ∈ [s] do
6: Choose πi ∼ U(Πk) ⊲ Πk is the set of walk templates of length k, see Definition 1.9
7: vi ←WalkFromTemplateHybrid(vi0, π

i, k, η, j∗) ⊲ Run in parallel on the same
stream

8: end for
9: return (vi)i∈[s]

10: end procedure

Algorithm 7 SimulateWalksHybrid: : simulate b samples of k-step walk started from uniformly
random vertices

1: procedure SimulateWalksHybrid(k, ε, b, j∗)
2: ⊲ k is the desired walk length, ε ∈ (0, 1) is a precision parameter
3: η ← ε8 · 2−Ck ⊲ For a large enough constant C > 0
4: s← b · 100η−k · k! ⊲ Increase number of starting nodes to account for failed walks
5: vi0 ← independent uniform sample from V for i ∈ [s]
6: (vi)i∈[s] ← SamplesWithResetHybrid(k, ε, s, j∗)
7: if at least b of the walks (vi)i∈[s] succeeded then
8: return the first b successful walks
9: else

10: return FAIL
11: end if
12: end procedure
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The changes introduced in WalkFromTemplate (Algorithm 5) with respect to WalkFromTem-
plateHybrid are highlighted in red in Algorithm 8.

There is one other difference in the implementations of WalkFromTemplate and Walk-
FromTemplateHybrid, which does not affect the output but is convenient for the analysis: in
WalkFromTemplateHybrid, the rejection sampling is done progressively. The final acceptance
probability αk for a walk equals the acceptance probability α in WalkFromTemplate, and the
intermediate acceptance probabilities αj let us show that the intermediate states are spread out
comparably to a uniform random walk (proved in Lemma 4.6).

This means that the chance a random walk is still accepted after j steps is

αj :=

j∏

g=1

min(
η

γg d̂
j
g−1, 1

)

The following lemma shows that the output distribution of SamplesWithReset(k, ε, s) is close
to SamplesWithResetHybrid(k, ε, s, k) in total variation distance:

Lemma 4.1. Assuming (P1), (P2) and s ≤ n1/30, for every input graph G, we have that the output
of SamplesWithReset(k, ε, s) is O(s · n−1/10)-close in total variation distance to the output of
SamplesWithResetHybrid(k, ε, s, k).

The proof of Lemma 4.1 is presented in Section 4.2 below.

4.1 Notation

A length-ℓ “partial” walk v = (v0, . . . , vℓ) ∈ (V ∪ {⊥})ℓ+1 consists of at least 1 vertex of a random
walk, followed (possibly) by a series of ⊥. A collection of s partial walks is ~v = (vi)i∈[s].

Definition 4.2 (Sampled and collected vertices). We say that a partial walk v is “collected” by
an execution of WalkFromTemplateHybrid(k, ε, η, ℓ), if for each j, vj is the value set by the
algorithm or ⊥ if the algorithm returns FAIL before setting vj.

We say that a partial walk v is “sampled” by an execution of WalkFromTemplateHybrid in
the same situation, except that vj = ⊥ if the algorithm rejects vj by returning FAIL in round j.

For an invocation of SamplesWithResetHybrid(k, ε, s, ℓ), we say that ~v is collected or sam-
pled if (v1, . . . ,vs) are sampled or generated by the s executions of WalkFromTemplateHybrid,
respectively.

In other words, if the walk fails at the end of round j, the walk that is “collected” still includes
vj , while the walk that is sampled does not (if the walk succeeds, or if the algorithm returns FAIL
in line 9 or 13, they are identical).

Definition 4.3. For a length-ℓ partial walk v we define its neighborhood

Ψ(v) =
⋃

0≤j≤ℓ,vj∈L
δ(vj).

For a collection of walks ~v we define

Ψ(~v) =
⋃

v

Ψ(v).
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Algorithm 8 WalkFromTemplateHybrid: generate a random walk from starting vertex u0
that conforms with a template π, modified on high degree vertices

1: procedure WalkFromTemplateHybrid(v0, π, k, η, j
∗) ⊲ k is the desired walk length, u0 is

the starting vertex
2: for j = 1 to k do
3: u← vj−1

4: if πj = j then
5: If u ∈ V \ L and j ≤ j∗ then
6: Hj ← δ(u)
7: else
8: Hj ← edges in δ(u) ∩ σ[η · (j − 1), η · j)
9: If Hj = ∅ then return FAIL

10: fj ← U(Hj) ⊲ Implemented using reservoir sampling
11: If u ∈ V \ L and j ≤ j∗ then γj ← 1

d(u) else γj ← 1
|Hj | · η

12: else
13: If fπj

6∈ δ(u) then return FAIL
14: fj ← fπj

15: γj ← 1
16: end if
17: vj ← endpoint of fj other than u
18: for g ∈ [j] do ⊲ Compute degree estimates for vertices on the walk
19: d̂jg−1 ← degree of vg−1 in {f1, . . . , fj} ∪ σ[η · k, 1]
20: If vg−1 ∈ V \ L and g ≤ j∗ then

21: d̂jg−1 ← (1− kη)d(vg−1)
22: end for
23: αj ←

∏j
g=1 min{ η

γg ·d̂jg−1

, 1} ⊲ Observe that αj ≤ αj−1

24: return FAIL with probability 1− αj/αj−1

25: ⊲ Note that the chance of returning FAIL by step j is 1− αj .
26: end for
27: return (v0, . . . , vk)
28: end procedure
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Definition 4.4. For j ∈ 0, 1, . . . , k let Fj denote the following random variables:

1. The partial walks ~v≤j−1 := (vi≤j−1)i∈[s] sampled by SamplesWithResetHybrid(k, ε, s, j).

2. Timestamps of edges in Ψ(~v≤j−1), i.e.

{(f, tf ) : f ∈ Ψ(~v≤j−1)} .

3. The internal randomness of SamplesWithResetHybrid(k, ε, s, j) (Algorithm 6) used up to
step j − 1.

We let F0 = ∅.

Definition 4.5. For a collection of walks ~v and j ∈ [k] we define E∗
j := Ψ(~v≤j−1)∪{(vij−1, v

i′
j−1) |

i, i′ ∈ [s]} to contain all edges out of low degree vertices in the first j steps of any walk, combined
with all edges between vertices visited at position j − 1 in the different walks.

4.2 Proof of Lemma 4.1

Lemma 4.6. Let v ∈ V uniformly at random and π ∼ U(Πk), and consider the execution of
WalkFromTemplateHybrid(v, π, k, η, 0). We have for any u ∈ V and j ∈ [k] that

Pr[vj = u | vj 6= ⊥] ≤ 2d(u)/n.

Proof. Let pjv(u) be the probability that a j-step random walk from v ends at u. By Claim 3.3,

Ev∼U(V )

[
pjv(u)

]
≤ d(u)/n.

First, consider j = k. The distribution of vk is the same as for the last vertex uk output by
WalkFromTemplate(v, π, k, η). Therefore, per Corollary 3.2,

Pr[vk = u] ∈ [1, 1 +O(η1/7)] · λ · pkv(u)

for λ = 1
k!η

k independent of u and v. Now, conditioning on vk 6= ⊥ increases this probability by
at most a factor of 1/λ, as vk 6= ⊥ will always hold if the sampled template corresponds to a valid
walk out of v0 (which happens with probability at least 1/k!) and every edge on that walk is in the
right length-η window (which happens with probability ηk), and so Pr[vk 6= ⊥] ≥ λ. Therefore,

Pr[vk = u | vk 6= ⊥] ≤ (1 +O(η1/7))pkv(u) ≤ 2d(u)/n.

For j < k, we note that vj is distributed essentially the same as the last vertex uj output by Walk-

FromTemplate(v, π, j, η). (There is one difference: it would be identical if the the d̂ computed
in Line 17 of WalkFromTemplate used σ[ηj, 1] rather than σ[ηk, 1]. But this difference has no
bearing on the proof of Corollary 3.2, which just uses that this interval includes [η99/100, 1) but not
[0, ηj].) So we still have that vj is distributed within a 1 +O(η1/7) factor of being proportional to
a true j-step random walk, and the result holds.

Claim 4.7. For j ∈ [k] the posterior distribution of (tf )f∈E given Fj is a product distribution. For
every f ∈ E \ E∗

j the distribution of tf is uniform on [0, 1].
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Proof. The only edge timestamps that influence Fj are those of edges in Ψ(~v≤j−1), and so as we
are conditioning on the value of all of those, and the prior distribution of (tf )f∈E is a product
distribution of uniform distributions, the result follows.

Lemma 4.8. For every j ∈ [k], consider the execution of SamplesWithResetHybrid(k, ε, s, j−
1). Let H i

j be the value of Hj in invocation i of WalkFromTemplateHybrid. For every Fj , one

has with probability at least 1− n−2 over timestamps of edges in E \E∗
j that, for every i ∈ [s] such

that πi
j = j and vij−1 ∈ V \ L, we have that:

(1− n−1/9)η · d(vij−1) ≤ |H i
j| ≤ (1 + n−1/9)η · d(vij−1),

and
(1− n−1/9)η · d(vij−1) ≤ |H i

j \E∗
j | ≤ (1 + n−1/9)η · d(vij−1).

Finally, for every such i ∈ [s] with vij−1 ∈ V \ L and every g ∈ [k], the degree estimate d̂gj−1 in
invocation i satisfies

(1− n−1/9)(1− kη) · d(vij−1) ≤ d̂(vjj−1) ≤ (1 + n−1/9)(1 − kη) · d(vij−1).

Proof. For each such u = vij−1, the edges in S := δ(u) \ E∗
j have timestamps that are independent

and uniform in [0, 1].

Therefore |H i
j ∩ S| is distributed as the binomial variable B(|S|, η), so by the Chernoff bound

we have with 1− 1
n3 probability that

∣∣|H i
j ∩ S| − η|S|

∣∣ ≤
√

2η|S| log 2n3.

Suppose this happens. Every remaining edge, in E∗
j ∩δ(u), is between u and another vertex collected

in some walk in v; hence there are at most sk such edges.

Then by the triangle inequality:
∣∣|H i

j| − ηd(u)
∣∣ ≤

∣∣|H i
j| − |H i

j ∩ S|
∣∣+
∣∣|H i

j ∩ S| − η|S|
∣∣ +
∣∣ηd(u) − η|S|

∣∣

≤ sk +
√

2ηd(u) log 2n3 + ηsk

≤ ηd(u) ·
(

2sk

ηd(u)
+

√
2 log 2n3

ηd(u)

)

≤ n−1/9ηd(u).

where the last step uses that d(u) ≥ n1/4, η ≥ n−1/100, s ≤ n1/30, k ≤ log n, and n is sufficiently
large. The bound on |H i

j \ E∗
j | = |H i

j ∩ S| is the same, omitting the first of the three terms in the
triangle inequality. We then union bound over i ∈ [s].

We bound d̂gj−1 similarly: let a be the number of edges in S that lie in σ[ηk, 1], which is

B(|S|, (1 − kη)), and so with 1− 1
n3 probability

∣∣a− (1− kη)|S|
∣∣ ≤

√
2(1− kη)|S| log 2n3.

Then since d̂gj−1 only differs from a on E∗
j ∩ δ(u),

∣∣d̂gj−1 − (1− kη)d(u)
∣∣ ≤

√
2(1 − kη)d(u) log 2n3 + sk + (1− kη)sk ≤ n−1/9(1− kη)d(u)

and we again union bound over i.
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We first analyze the vertices collected in each step, ignoring the rejection probability. We then
include the rejection probability, to analyze the vertices sampled in each step.

Lemma 4.9. For j ∈ [k], let (uij)i∈[s] denote the vertices collected by SamplesWithResetHybrid(k, ε, s, j−
1) at step j, and (ũij)i∈[s] denote the vertices collected by SamplesWithResetHybrid(k, ε, s, j)

at step j. For every Fj the total variation distance between (uij)i∈[s] and (ũij)i∈[s] conditioned on

Fj is bounded by O(sn−1/9).

Proof. Define
I = {i ∈ [s] : vij−1 ∈ V \ L},

where for every i ∈ [s], vij−1 ∈ V ∪ {⊥} is the (j − 1)th vertex collected on the ith walk, where we

let vij−1 = ⊥ if the ith walk terminated before the (j − 1)th step. Note that I ⊆ [s], and is quite

possibly a proper subset: vij could be a low degree vertex, and we may also have vij = ⊥ for some

i ∈ [s]. Also note that (vi<j)i∈[s], the set of the first j − 1 vertices traversed by the constructed
walks, is a function of Fj (see Definition 4.4), and in particular I also is.

We now modify the sampling of edges incident on high degree vertices in the invocation of
SamplesWithResetHybrid(k, ε, s, j) to avoid E∗

j , and bound the corresponding loss in total

variation distance. Observe that for every choice of Fj for every i ∈ I,
∣∣∣δ(vij−1) ∩ E∗

j

∣∣∣ ≤ sk,

so the total variation distance between the uniform distribution over δ(vij−1) and the uniform

distribution over δ(vij−1) \ E∗
j is bounded by sk/n1/4. Define (xij)i∈[s] to match ũij for i /∈ I, and

for i ∈ I to be sampled from U(δ(vij−1) \ E∗
j as opposed to U(δ(vij−1)) in line 10 in the jth step of

SamplesWithResetHybrid(k, ε, s, j), so TV ((ũij)i∈[s], (x
i
j−1)i∈[s]) ≤ O(s2k · n−1/4).

We now perform a similar modification to the edges sampled by high degree vertices at the jth

step in the invocation of SamplesWithResetHybrid(k, ε, s, j − 1). Let H̃ i
j = H i

j \ E∗
j .

By Lemma 4.8, with 1− n−2 probability we have both

(1− n−1/9)η · d(vij−1) ≤ |H i
j| ≤ (1 + n−1/9)η · d(vij−1). (13)

and
(1− n−1/9)η · d(vij−1) ≤ |H̃ i

j| ≤ (1 + n−1/9)η · d(vij−1). (14)

for every i ∈ I.
Conditioned on this high probability event EH , we have using (13) and (14) that for every choice

of Fj for every i ∈ I the total variation distance between the uniform distribution over H i
j and the

uniform distribution over H̃ i
j is bounded by O(n−1/9). Therefore we can define (yij)i∈[s] to match

uij for i /∈ I, and for i ∈ I to sample from U(H̃ i
j) as opposed to U(H i

j) in line 10 in the jth step of

SamplesWithResetHybrid(k, ε, s, j − 1). This satisfies dTV ((u
i
j)i∈[s], (y

i
j)i∈[s]) ≤ O(sn−1/9).

Now, (xij)i∈[s] and (yij)i∈[s] are identically distributed conditioned on Fj and EH . To see this,
note that SamplesWithResetHybrid(k, ε, s, j − 1) and SamplesWithResetHybrid(k, ε, s, j)
behave identically for i /∈ I. For i ∈ I, xij ∼ U(δ(vij−1) \ E∗

j ) and yij ∼ U(H̃ i
j), both independently

of the algorithms’ behavior on i′ 6= i. Since H̃ i
j is a random binomial sample of δ(vij−1) \ E∗

j , y
i
j is

also uniform over δ(vij−1)\E∗
j conditioned on |H̃ i

j |, as long as H̃ i
j 6= ∅; thus it is conditioned on EH .

As a result, the outputs of the unmodified calls to SamplesWithResetHybrid(k, ε, s, j − 1)
and SamplesWithResetHybrid(k, ε, s, j) are O(s2kn−1/4 + n−2 + sn−1/9) = O(sn−1/9) close in
total variation distance.
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Lemma 4.10. For j ∈ [k], if (vij)i∈[s] denote the vertices sampled by SamplesWithResetHy-

brid(k, ε, s, j − 1) at step j, and (ṽij)i∈[s] denote the vertices sampled by SamplesWithResetHy-

brid(k, ε, s, j) at step j, then for every Fj the total variation distance between (vij)i∈[s] and (ṽij)i∈[s]
is bounded by O(sn−1/9).

Proof. By Lemma 4.9, the distribution of vertices collected in step j is O(sn−1/9) close in total
variation distance. Therefore it suffices to show that the rejection sampling is similarly close.

We condition on Fj . Let (uij)i∈[s] denote the vertices collected by SamplesWithResetHy-

brid(k, ε, s, j−1) at step j, and (ũij)i∈[s] denote the vertices collected by SamplesWithResetHy-

brid(k, ε, s, j) at step j. By Lemma 4.9 the total variation distance between (uij)i∈[s] and (ũij)i∈[s]
is bounded by O(sn−1/9). In what follows we analyze the rejection sampling step in line 24 of
WalkFromTemplateHybrid. We show that the fact that the degrees of vertices in V \ L are
estimated using their actual degrees (in line 21 of WalkFromTemplateHybrid) as opposed to
using the stream (in line 17 of WalkFromTemplate) leads to only O(s · n−1/9) contribution to
total variation distance.

We note that degree estimates computed for vertices in L (i.e., low degree vertices) are the
same in both invocations of SamplesWithResetHybrid, and consider vertices in V \L, i.e. high
degree vertices. Let u = uij−1 for some i ∈ [s], and suppose that u ∈ V \ L.

Define

λ =

j−1∏

g=1

min

(
η

γg d̂
j
g−1

, 1

)

min

(
η

γg d̂
j−1
g−1

, 1

) .

Since d̂j−1
g−1 ≤ d̂jg−1, λ ≤ 1. The probability that u is accepted by the rejection sampling is

αj

αj−1
= λmin

(
η

γj d̂
j
j−1

, 1

)
.

The only difference in the rejection sampling between the two executions is that γj and d̂jj−1 are

different. Let γj , d̃
j
j−1 be the values in the j∗ = j − 1 case, and γ̃j =

1
d(u) ,

̂̃
d
j

j−1 = (1 − kη)d(u) be

the values these take in the j∗ = j case. The total variation incurred by this change in rejection
sampling probability is thus

δ ≤

∣∣∣∣∣∣∣
λmin

(
η

γj d̂
j
j−1

, 1

)
− λmin




η

γ̃j
̂̃
d
j

j−1

, 1




∣∣∣∣∣∣∣

≤ λ

∣∣∣∣∣
η

γj d̂
j
j−1

− η

(1− ηk)

∣∣∣∣∣

≤
∣∣∣∣∣
|Hj|
d̂jj−1

− η

(1− ηk)

∣∣∣∣∣ .

Now, by Lemma 4.8, conditioned on Fj with at least 1− n−2 probability we have

|Hj| ∈ (1± n−1/9)ηd(u)
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and
d̂jj−1 ∈ (1± n−1/9)(1− kη)d(u)

so that

δ ≤ η

(1− ηk)
·
(
1 + n−1/9

1− n−1/9
− 1

)
= O(η/n1/9).

The net result is that every high degree vertex u has a rejection sampling step that is O(n−1/9)
close in the two cases. This means that all s rejection sampling steps are O(sn−1/9) close in the
two cases. Combining with with the collection being close (Lemma 4.9) gives the result.

Proof of Lemma 4.1: We use induction on Lemma 4.10. The result follows by noting that
SamplesWithReset(k, ε, s) is the same as SamplesWithResetHybrid(k, ε, s, 0) and applying
triangle inequality for total variation distance, to get a total variation distance of O(skn−1/9) ≤
O(sn−1/10) for k = O(log n).

4.3 Near-Independence of Hybrid Algorithm

To establish the near-independence of our walks, we compare the output distribution of Sam-
plesWithResetHybrid(k, ε, s, k) run on a random order stream σ to the output of an auxiliary
version of SamplesWithResetHybrid(k, ε, s, k), in which the invocations of WalkFromTem-
plateHybrid(vi0, π

i, k, η, k) are run on independent streams σ̃i.

Let ~v denote the s partial walks sampled (see Definition 4.2) by WalkFromTemplateHy-
brid(vi0, π

i, k, η, k) on stream σ, and let ~w denote the s partial walks that would be sampled if the
s invocations each used their own independent random streams (σ̃1, . . . , σ̃n).

Definition 4.11. We say a collection of (partial) walks ~w is “well-separated” if for all w,w′ ∈ ~w
we have Ψ(w) ∩Ψ(w′) = ∅.

Well-separatedness is equivalent to the conditions:

• No vertex in L is visited in more than one walk.

• No pair of adjacent vertices in L is visited in more than one walk.

Lemma 4.12. ~w is well-separated with 1−O(k · n−1/11) probability.

Proof. By induction on Lemma 4.10, the distribution of walks generated by SamplesWithRe-
setHybrid(k, ε, 1, k) and SamplesWithResetHybrid(k, ε, 1, 0) are O(kn−1/9) close in total vari-
ation distance. Therefore it suffices to show this lemma for for ~w drawn from s calls to Walk-
FromTemplateHybrid(vi0, π

i, k, η, 0) on independent random streams, i.e. j∗ = 0 rather than
j∗ = k.

Let pj(u) = Pr[wi
j = u] be the marginal probability of sampling vertex u in step j, which is

independent and identically distributed over i ∈ [s]. By Lemma 4.6, pj(u) ≤ d(u)/n for all u and
j.

Consider any j, j′ ∈ [k] and distinct i, i′ ∈ [s]. For any fixed u ∈ L, the probability that
wi
j = u = wi′

j′ is pj(u)
2 ≤ d(u)2/n2 ≤ 1/n3/2. Taking a union bound over (sk)2 choices of (i, j, i′, j′)

and n of u, the chance that any vertex in L is visited in more than one walk is at most (sk)2/n1/2.
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For any fixed edge (u, v) ∈ (L × L) ∩ E, the probability that wi
j = u and wi′

j′ = v is at most

pj(u)pj(v) ≤ 1/n3/2. Taking a union bound over the n · n1/4 total edges out of vertices in L, the
chance this ever happens is at most (sk)2/n1/4.

When ~w is well-separated, the edges whose timestamps are looked at by WalkFromTem-
plateHybrid(vi0, π

i, k, η, k) are different across each invocation i ∈ [s]. This lets us couple the
independent streams case to the dependent streams case.

Lemma 4.13. Assuming (P1), (P2) and s ≤ n1/30, for every input graph G

dTV (~w, ~v) ≤ n−1/12

Proof. We partition the internal randomness used by SamplesWithResetHybrid into s disjoint
independent random strings R1, . . . , Rs, such that for every i ∈ [s] the ith invocation of Walk-
FromTemplateHybrid uses string Ri.

Note that the behavior of the ith invocation of WalkFromTemplateHybrid is fully deter-
mined by its randomness Ri and by the timestamps of edges in Ψ(wi) (the low-degree vertices; see
Definition 4.3). Given these timestamps, WalkFromTemplateHybrid is invariant under other
changes to the stream.

Let E denote the event that the independent walk case ~w is “well-separated”, meaning the Ψ(wi)
do not overlap. Per Lemma 4.12, E holds with 1− O(kn−1/11) probability. When E holds, we can
“couple” the independent stream result ~w to the single stream result ~v because each element ~vi

depends on disjoint edges in the stream. That is, we use the timestamps used by the independent
walk algorithms to construct a single stream that is both correctly distributed (all of its timestamps
uniform and independent) such that, if every instance of WalkFromTemplateHybrid was run
on this stream, their executions would be identical to the executions of the original independent
copies of WalkFromTemplateHybrid whenever E holds.

We now give the details of coupling ~w and ~v under E . We construct a distribution D of a single
stream and internal randomness (σ,R) from (σ̃i, Ri)i∈[s]), such that the marginal distribution of
(σ,R) is that of the stream and randomness underlying ~v, and so that, if the stream and randomness
underling ~v is set to be (σ,R), ~w = ~v whenever E holds.

Given the independent streams (σ̃i)i∈[s], we can construct the dependent instance (σ,R) as

follows. We set R = R̃, and just need to fix the timestamps of edges in σ. For each edge f ∈ E,
we say that an edge f ∈ E is covered by i ∈ [s] if f ∈ Ψ(wi). For f ∈ E, let tf be the timestamp
of f in σ and t̃if be the timestamp of f in σ̃i. We set

tf =

{
t̃if if i is the smallest that covers f

U [0, 1] if f is not covered by any i ∈ [s].
(15)

Note that the resulting distribution of (tf )f∈E is indeed a product of uniform distributions over
[0, 1]. Indeed, one can think of (tf )f∈E using the principle of deferred decisions: starting with v10 ,
we run WalkFromTemplateHybrid from v10 , sampling timestamps of edges as soon as they are
needed, and then proceeding for v20 , v

3
0 , . . . , v

s
0. The first time the edge is covered by a walk, its

timestamp is sampled from the uniform distribution, independently of the other timestamps, as
required.

It remains to note that conditioned on E for every f ∈ E there exists at most one i ∈ [s]
such that f is covered by i. Therefore, when E holds, the timestamps of Ψ(wi) are the same in
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σ and σ̃i. Since the randomness is also the same, this means vi = wi for each i, or ~v = ~w.
Since E occurs with probability 1− kn−1/11, we have that the two outputs match with probability
1− kn−1/11 > 1− n−1/12, as desired.

5 Proof of Theorem 1.3

We now give

Proof of Theorem 1.3:

Correctness. Let S = (v10 , . . . , v
s
0), where vi0 ∼ U(V ) are chosen uniformly at random with

replacement. We consider four distribution on walks in our proof, which we define below.

Walks generated by SamplesWithReset on independent streams. Let σ1, . . . , σs be in-
dependent random order streams. Let ~v∗ = (vi

∗)i∈[s] denote walks generated by SamplesWith-

Reset(k, ε, s) (Algorithm 3), where the ith walk is generated on σi.

Walks generated by SamplesWithResetHybrid on independent streams. Let σ1, . . . , σs
be independent random order streams. Let ~x = (xi)i∈[s] denote walks generated by SamplesWith-

ResetHybrid(k, ε, s, k) (Algorithm 6), where the ith walk is generated on σi.

Walks generated by SamplesWithResetHybrid on a joint stream. Let ~y = (yi)i∈[s]
denote walks generated by SamplesWithResetHybrid(k, ε, s, k) (Algorithm 6), where every walk
is generate on the same stream σ.

Walks generated by SamplesWithReset on a joint stream. Let ~v = (vi)i∈[s] denote walks
generated by SamplesWithReset(k, ε, s) (Algorithm 3), where every walk is generate on the same
stream σ.

Proof outline. Note that ~v is the random variable that we obtain from our random order stream-
ing algorithm SamplesWithReset. We first show that it is close in distribution to ~v∗, and then
show that the distribution of ~v∗ is such that SimulateWalks has the desired property.

Step 1: showing that ~v∗ ≈ ~v. By Lemma 4.1,

dTV (~v, ~y) ≤ O(s · n−1/10)

Second, by Lemma 4.13,
dTV (~y, ~x) ≤ n−1/12.

Third, by Lemma 4.1 invoked with s = 1 applied to each independent stream, together with triangle
inequality for total variation distance, we have

dTV (~x, ~v∗) ≤
s∑

i=1

dTV (x
i,vi

∗) ≤ O(s · n−1/10).
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Indeed, running SamplesWithReset (respectively SamplesWithResetHybrid) with every in-
ternal invocation of WalkFromTemplate using a separate stream is equivalent to a concate-
nation of independent instances of SamplesWithReset (respectively SamplesWithResetHy-
brid) with s = 1. Combining these three equations, the triangle inequality gives

dTV (~v, ~v∗) ≤ O(sn−1/10) + n−1/12 < n−1/100

for sufficiently large n, which it will be when c′ is sufficiently small, as
√
c′ log n ≥ 1.

Step 2: verifying preconditions of Lemma 4.1 and Lemma 4.13. We now verify that (P1)
and (P2) hold. Let the constants c, C > 0 be the ones chosen in Lemma 3.1. First, (P1) is satisfied
since

k ≤
√

c′ log n ≤ c log n/ log log n

for a sufficiently small constant c′ > 0 by assumption. The upper bound in (P2) is satisfied since

η = ε8 · 2−Ck ≤ 2−Ck

by the choice of η in Algorithm 3. The lower bound in (P2) is satisfied since

η = ε8 · 2−Ck ≥ n−1/101 · 2−Ck = n−1/101−o(1) ≥ n−1/100,

since ε ≥ n−1/1000 and 2Ck = 2O(
√
logn) = no(1) by the assumption on k. Furthermore, we have

s = b · (1/ε)O(k) · 2O(k2) ≤ n1/100 · 2O(c′ logn) ≤ n1/30

since b ≤ n1/100 by assumption of the theorem and

k ≤ min

{
c′ log n
log(1/ε)

,
√

c′ log n

}

for a sufficiently small c′ > 0 by assumption of the theorem.

Step 3: showing that ~v∗ leads to the required distribution. The output of Simulate-
Walks (Algorithm 4) is the first b successful walks from SamplesWithReset, which is (per step
1) n−1/100-close to the first b successful walks from ~v∗, for s = b · 100η−k · k!.

For any fixed k-step walk w, let

p∗(w) :=
1

n

k−1∏

i=0

1

d(wi)

be the true probability that a k-step random walk from a uniform vertex equals w. By taking the
average of Corollary 3.2 over uniform initial vertices v, we have for any i ∈ [s] that

Pr[vi
∗ = w] ∈ [1, 1 +O(η1/7)] · η

k

k!
· p∗(w).

As a result,

Pr[vi
∗ = w | vi

∗ succeeds] ∈ [1, 1 +O(η1/7)] · p∗(w) (16)
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and

Pr[vi
∗ succeeds] ≥ ηk

k!
.

By construction, the vi
∗ are independent across i ∈ [s]. We expect at least ηk

k! s = 100b repetitions to
succeed, so by a Chernoff bound at least a will succeed with at least 1− 2−b probability. Therefore
the output of SimulateWalks is (n−1/100+2−b)-close to the distribution of a independent samples
from (vi

∗ = w | vi
∗ succeeds). By (16), each such sample is O(η1/7) < ε-close to a uniform random

walk.

Step 4: space complexity. The expected space complexity of a single invocation of Walk-
FromTemplate (Algorithm 5) is O(k), so the overall space complexity is (1/ε)O(k)2O(k2)b, as
required.

6 Digraph Lower Bound

In this section, we prove that both sampling random walks and approximating the PageRank of a
given vertex set are hard in directed graph streams.

Theorem 1.7. For any constant ε < 1/4, the following holds for all k ≥ 3 and all n: there is
a family of directed graphs with no more than n vertices and edges such that any random order
streaming algorithm that ε-approximates the distribution of length-k random walks on graphs drawn
from the family uses Ω(n) bits of space, with a constant factor depending only on ε.

Theorem 1.8. Let α be a given (constant) reset probability for PageRank. For any constants
ε < (1 − α)3 − 1

2 , δ < 1/4, the following holds for all n: there is a family of directed graphs with
no more than n vertices and edges such that any random order streaming algorithm that returns a
ε additive approximation to the PageRank of vertex sets in these graphs with probability 1− δ uses
Ω(n) bits of space, with a constant factor depending only on α, ε, and δ.

We will prove these by a reduction from INDEXn. In this one-way communication problem
Alice has a string x ∈ {0, 1}n while Bob has an index I ∈ [n]. Alice must send Bob a message
such that he can determine xI . We will show that a uniform instance of this problem can be
converted into a random graph stream such that approximating the random walk distribution or
the PageRank vector allows solving indexing.

The following is a well-known consequence of information theory—for completeness, we include
a proof in Appendix D.

Lemma 6.1. Let ε > 0 be any constant. Any protocol that solves INDEXn on a uniform input
with probability 1/2 + ε requires Ω(n) communication in expectation.

6.1 Graph Distribution

We start by defining a distribution on length-O(n) directed graph streams that Alice and Bob can
construct (with a prefix belonging to Alice and a postfix belonging to Bob, and interleaved edges
that they construct using shared randomness that are independent of their input) using their inputs
to INDEXn.
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We will show that the graph streams correspond to randomly choosing a graph and then uni-
formly permuting its edges, and any algorithm that generates a distribution that is ε-close to either
the random walk distribution or the PageRank distribution for some constant ε < 1/4 will be able
to use this to solve INDEXn.

Vertices. There will be βn vertices (ai)
βn
i=1 where β ∈ N>0 is a constant depending on ε, a single

vertex b, n vertices (ci)
n
i=1, and two pairs of vertices {d0, e0}, {d1, e1}. Every vertex in the graph

will have a path to either {d0, e0} or {d1, e1}, which will function as “sink” sets.

Fixed Edges. These edges will not depend on either player’s input. The players can use shared
randomness to insert them uniformly at random among their other edges.

They are (aib)
βn
i=1, i.e. a star of βn edges pointing into b and the four edges d0e0, e0d0, d1e1,

and e1d1 (i.e. meaning that each of {d0, e0} and {d1, e1} is a 2-vertex loop).

Alice’s edges. Let π be a uniformly random permutation of [n], and let J be drawn uniformly
from {0, . . . , n}. These will be used to define the boundary between Bob’s edges and Alice’s edges.

Recall that Alice’s input is a string x ∈ {0, 1}n. For each i ∈ [J ], Alice has the edge cπ(i)dxπ(i)
,

with cπ(1)dxπ(1)
first, cπ(2)dxπ(2)

second, and so on.

Bob’s edges Recall that Bob has the index I. His first edge will be bcI . Then, for each i ∈
{J + 1, . . . n}, he has the edge cπ(i)dyπ(i)

, where y is a random n-bit string.

Lemma 6.2. The graph stream described above is a uniformly random order graph stream.

Proof. Fix any value of Bob’s index I. If we were to randomly draw a string z ∈ {0, 1}n, randomly
order edges (cidzi)

n
i=1, and then insert bcI and then our fixed edges randomly in this stream, this

would give a uniformly random order graph stream (corresponding to drawing a graph from a fixed
distribution and then randomly permuting its edges).

But this would also be identically distributed to our graph stream, as the strings x and y are
both drawn uniformly at random from {0, 1}n. So we have a uniformly random graph stream.

Lemma 6.3. With probability 3/4, every vertex in (ai)
βn
i=1 has a length-3 path from it to {dxI

, exI
},

and (up to prefixes) that is the only path out of that vertex.

Proof. Each has an edge to b, which has a single edge to cJ . With probability 1/2, π(I) ≤ J , and
so the unique edge out of cJ points to dxI

. Otherwise, it points to dyI , which is dxI
with probability

1/2, as y is drawn at random.

We will now prove that both the random walk distribution and the PageRank vector on this
graph can be used to determine the answer to INDEXn. Note that there are no vertices with
out-degree 0 in this graph, so we do not need to concern ourselves with what a random walk or the
PageRank walk should do when encountering such a vertex.
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6.2 Random Walks

Lemma 6.4. Let A be any algorithm using S space such that, when given a sample from the
distribution on graph streams above, the output of A is ε-close in total variation distance to sampling
a k-step random walk from a random vertex in the graph given by the stream, where k ≥ 3. Then
there is a protocol for INDEXn on uniform inputs that uses S space and succeeds with probability
3/4 − ε− 6/β.

Proof. The protocol will be as follows:

1. Alice and Bob use their INDEX input to construct a corresponding random graph stream.

2. Using S bits of communication from Alice to Bob, they run A on the stream.

3. If the walk output by A ends in {dz, ez} for z ∈ {0, 1}, Bob answers z. Otherwise he answers
arbitrarily.

Now, by Lemma 6.3, with probability 3/4 any length-k random walk starting from a vertex in

(ai)
βn
i=1 will reach {dxI

, exI
}, and as that set has no out-edges it will stay there. The probability of

starting at one of these vertices is

βn

βn+ 1 + n+ 4
=

1

1 + 1/β + 5/nβ

=
1

1 + 6/β

≤ 1− 6/β

and so the probability that the distribution given by A ends in {dxI
, exI
} is at least

3/4 − ε− 6/β

proving the correctness of the protocol. The construction of the stream itself is done entirely with
public randomness, so this gives an S bit public randomness protocol. As we are working with a
fixed input distribution, this means that there is also an S bit private randomness protocol, by
fixing whichever set of public random bits maximizes the probability of success over the uniform
distribution.

We are now ready to prove Theorem 1.7.

Theorem 1.7. For any constant ε < 1/4, the following holds for all k ≥ 3 and all n: there is
a family of directed graphs with no more than n vertices and edges such that any random order
streaming algorithm that ε-approximates the distribution of length-k random walks on graphs drawn
from the family uses Ω(n) bits of space, with a constant factor depending only on ε.

Proof. Set β = 12
1/4−ε . Then, for each n, we can construct the family given by the stream distribution

described in section 6.1 from INDEXn′ , where n′ = Ω(n) while keeping the total number of vertices
and edges below n. By Lemma 6.4, any algorithm that ε-approximates the distribution of length-k
random walks on graphs drawn from this family gives a protocol for INDEXn′ that succeeds with
probability

3/4− ε− 6/β = 1/2 +
1/4 − ε

2
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and so by Lemma 6.1 it uses Ω(n′) = Ω(n) space, where the constant depends only on ε and β. So
as β depends only on ε the result follows.

6.3 PageRank

Lemma 6.5. With probability at least 3/4 over the construction of the graph stream, the PageRank
vector with reset probability α has support at least (1− 6/β)(1 − α)3 on {dxI

, exI
}.

Proof. Recall that the PageRank vector is the stationary distribution of the Markov chain in which
each step is a random walk step with probability (1−α) and a jump to a uniformly random vertex
with probability α. By Lemma 6.3, with probability 3/4 over the graph generation process, every

length-3 or greater walk from a vertex in (ai)
βn
i=1 reaches {dxI

, exI
}, and as this set has no out-edges,

it stays there.

Suppose this holds. Then starting from any point, after k ≥ 3 steps on the chain, sufficient
criteria to be in {dxI

, exI
} are that

(1) There has been at least one jump, but not in the last 3 steps.

(2) That jump went to a vector in (ai)
βn
i=1.

Criterion (1) will hold with probability at least

(1− (1− α)k−3)(1− α)3

which converges to (1−α)3 as k →∞. Conditioned on this, criterion (2) will hold with probability
βn

βn+1+n+2 ≥ 1 − 6/β. So as k → ∞, the probability that a walk on the chain is in {dxI
, exI
}

converges to at least
(1− 6/β)(1 − α)3

completing the proof.

Lemma 6.6. Let A be any algorithm using S space such that, when given a sample from the
distribution on graph streams above, it with probability 1− δ outputs an ε-additive approximation to
the PageRank of the set {d0, e0} with reset probability α, where ε < (1− 6/β)(1− α)3 − 1/2. Then
there is a protocol for INDEXn on uniform inputs that uses S space and succeeds with probability
3/4 − δ.

Proof. The protocol will be as follows:

1. Alice and Bob use their INDEX input to construct a corresponding random graph stream.

2. Using S bits of communication from Alice to Bob, they run A on the stream, estimating the
PageRank of {d0, e0}.

3. If the sample output by A is at least 1/2, Bob outputs 0. Otherwise he outputs 1.

Now, by Lemma 6.5, with probability 3/4, the PageRank vector of the graph has support at least

(1− 6/β)(1 − α)3
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on {dxI
, exI
} and so with probability 3/4− δ, the algorithm will report the correct answer.

The construction of the stream itself is done entirely with public randomness, so this gives an
S bit public randomness protocol. As we are working with a fixed input distribution, this means
that there is also an S bit private randomness protocol, by fixing whichever set of public random
bits maximizes the probability of success over the uniform distribution.

We are now ready to prove Theorem 1.8.

Theorem 1.8. Let α be a given (constant) reset probability for PageRank. For any constants
ε < (1 − α)3 − 1

2 , δ < 1/4, the following holds for all n: there is a family of directed graphs with
no more than n vertices and edges such that any random order streaming algorithm that returns a
ε additive approximation to the PageRank of vertex sets in these graphs with probability 1− δ uses
Ω(n) bits of space, with a constant factor depending only on α, ε, and δ.

Proof. Set β = 12
(1−α)3− 1

2
−ε

. Then, for each n, we can construct the family given by the stream

distribution described in section 6.1 from INDEXn′ , where n′ = Ω(n) while keeping the total number
of vertices and edges below n. By Lemma 6.6, as

(1− 6/β)(1 − α)3 − 1/2 ≥ (1− α)3 − 6/β − 1/2 ≥ 1

2
((1− α)3 − 1/2 + ε) > ε

this gives a protocol for INDEXn′ that succeeds with probability

3/4− δ > 1/2

and so by Lemma 6.1 it uses Ω(n′) = Ω(n) space, where the constant depends only on α, ε, and β.
So as β depends only on α and ε the result follows.

Acknowledgements

Michael Kapralov was supported by ERC Starting Grant 759471.

John Kallaugher and Eric Price were supported by NSF Award CCF-1751040 (CAREER).

John was also supported by Laboratory Directed Research and Development program at Sandia
National Laboratories, a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NA-0003525. Also supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Accelerated Research in Quantum Computing program.

References

[ACL06] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local graph partitioning using
pagerank vectors. In 47th Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
475–486. IEEE Computer Society, 2006.

31



[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages
20–29. ACM, 1996.

[AP09] Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 235–244. ACM, 2009.

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities -
A Nonasymptotic Theory of Independence. Oxford University Press, 2013.

[CCM16] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds
for communication and stream computation. Theory of Computing, 12(10):1–35, 2016.

[CJMM17] Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan.
The sparse awakens: Streaming algorithms for matching size estimation in sparse
graphs. In 25th Annual European Symposium on Algorithms, ESA 2017, September
4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 29:1–29:15. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

[CKKP21] Ashish Chiplunkar, John Kallaugher, Michael Kapralov, and Eric Price. Approximating
local graph structure in almost random order streams, 2021.

[CKP+21] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and
Huacheng Yu. Near-optimal two-pass streaming algorithm for sampling random walks
over directed graphs. In 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
volume 198 of LIPIcs, pages 52:1–52:19. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021.

[COP03] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms
for clustering problems. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, June 9-11, 2003, San Diego, CA, USA, pages 30–39. ACM, 2003.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley series
in telecommunications. Wiley, New York, 1991.

[DN03] Herbert A. David and Haikady N. Nagaraja. Order Statistics. John Wiley, Hoboken,
N.J, 3rd ed. edition, 2003.

[FKM+04] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. On graph problems in a semi-streaming model. In Automata, Languages and
Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-
16, 2004. Proceedings, volume 3142 of Lecture Notes in Computer Science, pages 531–
543. Springer, 2004.

[Jin19] Ce Jin. Simulating random walks on graphs in the streaming model. In 10th Innovations
in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San
Diego, California, USA, volume 124 of LIPIcs, pages 46:1–46:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

32



[KKS14] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size
from random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 734–751. SIAM, 2014.

[KMNT20] Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space
efficient approximation to maximum matching size from uniform edge samples. In
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,
Salt Lake City, UT, USA, January 5-8, 2020, pages 1753–1772. SIAM, 2020.

[MMPS17] Morteza Monemizadeh, S. Muthukrishnan, Pan Peng, and Christian Sohler. Testable
bounded degree graph properties are random order streamable. In 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14,
2017, Warsaw, Poland, volume 80 of LIPIcs, pages 131:1–131:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

[PS18] Pan Peng and Christian Sohler. Estimating graph parameters from random order
streams. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’18, page 2449–2466, USA, 2018. Society for Industrial and
Applied Mathematics.

[SGP11] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on
graph streams. J. ACM, 58(3):13:1–13:19, 2011.

[ST13] Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive
graphs and its application to nearly linear time graph partitioning. SIAM J. Comput.,
42(1):1–26, 2013.

33



A Omitted Proofs of Technical Results

Claim 3.3. Let v ∈ V be chosen uniformly at random in a graph with no isolated vertices. Then
for every u ∈ V and k ≥ 0 one has Ev∼U(V )[p

k
v(u)] ≤ d(u)/n.

Proof. The base case is given by k = 0: we have Ev∼U(V )[p
k
v(u)] = 1/n ≤ d(u)/n. The inductive

step is given by:

E
v∼U(V )

[
pk+1
v (u)

]
=

∑

w∈δ(u)

1

d(w)
E

v∼U(v)

[
pkv(w)

]

≤
∑

w∈δ(u)

1

d(w)
· d(w)

n

=
d(u)

n
.

We will require Bennett’s inequality.

Theorem A.1 (Bennett’s inequality, Theorem 2.9 in [BLM13]). Let X1, . . . ,Xn be independent
random variables with finite variance such that Xi ≤ b for some b > 0 almost surely for all i ∈ [n].
Let

S =
∑

i∈[n]
(Xi − E[Xi])

and let v =
∑

i∈[n] E[X
2
i ]. Then for any t > 0

Pr[S ≥ t] ≤ exp

(
− v

b2
h

(
bt

v

))
,

where h(u) = (1 + u) ln(1 + u)− u for u > 0.

In applying Bennett’s inequality, we will need the following two properties of h:

Claim A.2. The function v ·h
(
1
v

)
is monotone decreasing in v, where h(u) = (1+u) ln(1+u)−u

for u > 0.

Proof.

d

dv

(
v · h

(
1

v

))
=

d

dv

(
v ·
[(

1 +
1

v

)
ln

(
1 +

1

v

)
− 1

v

])

=
d

dv

(
(v + 1) ln

(
1 +

1

v

)
− 1

)

=
d

dv
((v + 1)(ln(v + 1)− ln v)− 1)

= ln (v + 1)− ln v + 1− 1− 1/v

= ln (1 + 1/v) − 1/v

≤ 0

since ln(1 + x) ≤ x for all x ∈ (−1,+∞).

34



Claim A.3. For every u ≥ 0 one has h(u) = (1 + u) ln(1 + u)− u ≥ 1
2u lnu.

Proof. When u = 0 both sides are equal, so it will suffice to verify that

d

du

(
(1 + u) ln(1 + u)− u− 1

2
u lnu

)
= −1

2
− 1

2
lnu+ ln(1 + u),

is nonnegative for all u ≥ 0. The latter claim can be verified by observing that the function on the
rhs above goes to +∞ as u→ 0+ and as u→ +∞, and its derivative

d

du

(
−1

2
− 1

2
lnu+ ln(1 + u)

)
= − 1

2u
+

1

1 + u

has exactly one zero at u = 1, where h(u) is positive: −1
2 − 1

2 lnu+ ln(1 + u)
∣∣
u=1

= −1
2 + ln 2 >

0.

Lemma 3.4. Let Y =
∑

i αiXi, where αi ∈ {0, 1} and Xi ∼ Ber(η) are independent for some
η ∈ (0, 1/50). Then for every d ≥∑i αi

Pr[Y ≥ d/2] ≤ (3η)d/5.

Proof. We have αiXi ≤ 1 with probability 1, and

v =
∑

i

E[(αiXi)
2] ≤

∑

i

E[αiXi] = ηd.

Noting that the function vh(xv ) is monotone decreasing in v for any x ≥ 0 (by applying Claim A.2
after rescaling v), we get, letting t = (1/2− η)d in Bennett’s inequality (Theorem A.1) with b = 1,
t = (1/2 − η)d, and v,

Pr

[
∑

i

αiXi ≥ d/2

]
= Pr

[
∑

i

αiXi − E[αiXi] ≥ (1/2 − η)d

]

≤ exp

(
−v · h

(
(1/2− η)d

v

))

≤ exp

(
−ηd · h

(
(1/2 − η)d

ηd

))

= exp

(
−ηd · h

(
1/2 − η

η

))

Noting that h(u) ≥ 1
2u lnu for all u ≥ 0 by Claim A.3, we get

Pr [Y ≥ d/2] ≤ exp

(
−1

2
ηd · 1/2 − η

η
· ln ((1/2 − η)/η)

)

≤ exp (−(d/5) · ln(1/3η))
≤ (3η)d/5
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Lemma 3.5. Let E1, . . . , Ek, Z1, . . . , Zk be arbitrarily correlated random variables. Let η̃ ∈ (0, e−5k)
and the positive integers (qi)

k
i=1 be such that, for all i ∈ [k], Ei ∈ {0, 1}, E[Ei] ≤ η̃qi/5, Zi ∈ [0, 1],

and E[Zi] ≤ η̃. Then

E

[
k∏

i=1

(1 + Zi + qiEi)

]
≤ 1 + 3kη̃1/5.

Proof. We expand the product and show that each monomial is small in expectation. There are 3k

terms, each of the form

E


∏

i∈S1

Zi

∏

j∈S2

qjEj




for disjoint sets S1, S2 ⊆ [k]. First, S1 = S2 = ∅ corresponds to the leading 1 term. Next, when
S1 6= ∅ but S2 = ∅, we have for any i∗ ∈ S1 that

E


Zi∗ ·

∏

i∈S1\{i∗}
Zi


 ≤ E[Zi∗ ] = η̃.

Finally, if S2 6= ∅, let j∗ ∈ S2 be of maximal qj∗, and define q = qj∗. Then

E


∏

i∈S1

Zi

∏

j∈S2

qjEj


 ≤


∏

j∈S2

qj


Pr[Ej∗ ] ≤ qk · η̃q/5

We now upper bound the last term on the rhs. The function

f(q) = qk · η̃q/5

has, for all positive integers q,

f(q + 1)/f(q) = (1 + 1/q)kη̃1/5 ≤ 2kη̃1/5 < (e5kη̃)1/5 ≤ 1.

Therefore f(q) is maximized (over positive integers) when q = 1 and f(q) = η̃1/5. Therefore every
term other than the leading 1 is at most η̃1/5. There are 3k terms, giving the result.

B Generating Timestamps in the Stream

In this section we show how an algorithm can generate n timestamps in a streaming manner,
corresponding to drawing n uniform random variables from (0, 1) and then presenting each in order
with poly(1/n) precision, using O(log n) bits of space.

Let (Xi)
n
i=1 denote n variables drawn independently from U(0, 1) and then ordered so that

Xi ≤ Xi+1 for all i ∈ [n−1]. By standard results on the order statistics (see e.g. page 17 of [DN03]),
the distribution of (Xi)

n
i=j+1 depends only on Xj , and in particular they are distributed as drawing

(n− j) samples from (Xj , 1).

So then, to generate (Xi)
n
i=1 with poly(1/n) precision in the stream it will suffice to, at each step

i+1, use Xi to generate Xi+1 (as sampling from the minimum of k random variables to poly(1/n)
precision can be done in O(log n) space). We will only need to store one previous variable at a
time, to poly(1/n) precision, and so this algorithm will require only O(log n) space.
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C Proofs of Corollary 1.5 and Corollary 1.6

Proof of Corollary 1.5: By Theorem 1.3 the output of SamplesWithReset is 2−Ω(D)-close in
total variation distance to a samples of ε-approximate samples of the k-step walk in G. We first
analyze the algorithm assuming full independence of (vi)i∈[a]. Under this assumption we have

(1−O(ε)) · rp(G) ≤ E
v
i [vik = vi0] ≤ (1 +O(ε)) · rp(G),

and get by Chebyshev’s inequality, using that a = D
ε2 for a sufficiently large constant D > 0,

Pr



∣∣∣∣∣∣
1

a

∑

i∈[a]
I[vik = vi0]− rp(G)

∣∣∣∣∣∣
> ε


 ≤ 99/100.

Since the true (vi)i∈[a] are 2−Ω(D)-close to independent, the success probability is lower bounded
by 9/10 as long as D is larger than an absolute constant, as required.

Proof of Corollary 1.6: We assume that the walks output by the invocation of ApproxPageR-
ank(Algorithm 2) are independent, and account for the 2−Ω(D) additional term in the failure
probability due to the total variation distance to independence at the end of the proof.

Define the truncated PageRank vector p̄α by

p̄α =

⌈ 2
α
log 1/ε⌉∑

k=0

α(1 − α)kMk · 1
n
,

and note that under the full independence assumption of the walks we get that the estimator p̂
computed by Algorithm 2 satisfies

E[p̂] = p̄α(T ).

We thus get by Chebyshev’s inequality, using that a = D
ε2

for a sufficiently large constant D > 0,

Pr [|p̂− p̄α(T )| > ε/2] ≤ 99/100.

We now note that

|pα(T )− p̄α(T )| ≤ ‖pα − p̄α‖1

=

∥∥∥∥∥∥∥

∑

k> 2
α
log 1/ε

α(1− α)kMk · 1
n

∥∥∥∥∥∥∥
1

≤ (1− α)
2
α
log 1/ε

≤ ε/2

since ε < 1/2 by assumption of the corollary.

It remains to note that since the walks output by the invocation of ApproxPageRankare
2−Ω(D)-close to independent, we have by combining the above two bounds that |p̂ − pα(T )| ≤ ε
with probability at least 99/100− 2−Ω(D) ≥ 9/10 as long as D is larger than an absolute constant,
as required.
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Finally, we verify that the preconditions of Theorem 1.3 are satisfied. We invoke Theorem 1.3
with k =

⌈
2
α log(1/ε)

⌉
. Letting c′ be the constant from Theorem 1.3, we get, using the assumption

that ε = 2−o(
√
logn), that

min

{
c′ log n
log(1/ε)

,
√

c′ log n

}
=
√

c′ log n.

Thus, using the assumption of the corollary that 1
α ≤

√
logn

4 log(1/ε) , we get

k =

⌈
2

α
log(1/ε)

⌉
≤
√

c′ log n,

as required.

D Proof of Lemma 6.1

In this section we give a proof of Lemma 6.1 through a standard information-theoretic argument.
We will need the following definitions and results from information theory (see, e.g. [CT91]).

For random variables X, Y , Z, with px = Pr[X = x], define

Entropy H(X) = EX [− log pX ]. For p ∈ [0, 1] we write H(p) for the entropy of a Bernoulli random
variable with parameter p.

Conditional Entropy H(X|Y ) = EY [EX [− log pX |Y ]].

Mutual Information I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

Conditional Mutual Information I(X;Y |Z) = H(X|Z) −H(X|Y,Z)

We will use the fact that H(p) is concave and uniquely maximized at p = 1/2, the fact that
I((Xi)

n
i=1;Y ) =

∑n
i=1 I(Xi;Y |(Xj)

i
j=1), and Fano’s data processing inequality.

Theorem D.1 (Fano’s inequality). Let X, Y be discrete random variables, and Pe = Pr[g(Y ) 6= X],
where g is some function on the support of Y and X is supported on X . Then

H(Pe) + Pe(log |X | − 1) ≥ H(X|Y )

Lemma 6.1. Let ε > 0 be any constant. Any protocol that solves INDEXn on a uniform input
with probability 1/2 + ε requires Ω(n) communication in expectation.

Proof. Suppose we had such a protocol. Then for each i ∈ [n], with X as xi, the ith bit of Alice’s
input, and Y as the message M she sends, and Pe as the probability that Bob gives the wrong
answer when I = i, we have

H(Pe) ≥ H(X|Y )

as Xi is supported on two elements. So for each i ∈ [n], if pi is the probability Bob succeeds when
I = i, we have

H(xi|M) ≤ H(1− pi) = H(pi)
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Then, as the protocol succeeds with probability 1/2 + ε, and Bob’s index I is uniform on [n],
1/2 + ε =

∑n
i=1 pi, so

I(x;M) =

n∑

i=1

I(xi;M |(xj)ij=1)

=

n∑

i=1

(
H(xi|(xj)ij=1)−H(xi|M, (xj)

i
j=1))

)

=
n∑

i=1

(
1−H(xi|M, (xj)

i
j=1)

)
as the xi are independent

≥ n−
n∑

i=1

H(xi|M)

≥ n−
n∑

i=1

H(pi)

≥ n

(
1−H

(
n∑

i=1

pi

))
by concavity

= n(1−H(1/2 + ε))

= Ω(n)

as ε is a non-zero constant. So in particular H(M) = Ω(n) and so M is at least n bits on average.

E Lower Bound for Chosen Vertices

In this appendix, we prove that, if instead of sampling a walk from a randomly chosen vertex we

need to sample a walk from a chosen vertex, any algorithm that gives better than a 1/2−2−2−⌊ k2⌋-
approximation to the distribution of length k ≥ 2 random walks on undirected graphs needs at
least Ω(n) space.

Theorem E.1. For any constant ε < 1/4 − 2−2−⌊ k2⌋, the following holds for all k ≥ 2 and all
n: there is a family of (undirected) graphs with n vertices and edges such that any algorithm that,
when given a specified vertex v and then the graph as a random order stream, ε-approximates the
distribution of length-k random walks on graphs drawn from the family uses Ω(n) bits of space, with
a constant factor depending only on ε.

The proof will be a simplified version of the hardness proof for digraphs given in Section 6. We
will prove that any algorithm giving such an approximation gives a protocol solving INDEXn−3 on
a random instance with probability a constant factor greater than 1/4. We restate the lower bound
on INDEXn here for convenience. Recall that for INDEXn Alice’s input is a string x ∈ {0, 1}n,
Bob’s an index I ∈ [n], and their objective is for Alice to send Bob a message such that Bob can
determine xI .

Lemma 6.1. Let ε > 0 be any constant. Any protocol that solves INDEXn on a uniform input
with probability 1/2 + ε requires Ω(n) communication in expectation.
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E.1 Graph Distribution

We start by defining a distribution on length-(n− 3) undirected graph streams that Alice and Bob
can construct (with a prefix belonging to Alice and a postfix belonging to Bob) using their inputs
to INDEXn−3.

We will show that the graph streams correspond to randomly choosing a graph and then uni-
formly permuting its edges, and any algorithm that generates a distribution that is ε-close to the

distribution of walks starting at a specified vertex for some constant ε < 1/4 − 2−2−⌊ k2⌋ will be
able to use this to solve INDEXn−3.

Vertices. There will be 1 vertex a, n − 3 vertices (bi)
n−3
i=1 , and two vertices c0, c1. a will be in a

2-edge component with one of c0, c1.

Alice’s edges. Let π be a uniformly random permutation of [n], and let J be drawn uniformly
from {0, . . . , n}. These will be used to define the boundary between Bob’s edges and Alice’s edges.

Recall that Alice’s input is a string x ∈ {0, 1}n. For each i ∈ [J ], Alice has the edge bπ(i)cxπ(i)
,

with bπ(1)cxπ(1)
first, bπ(2)cxπ(2)

second, and so on.

Bob’s edges Recall that Bob has the index I. His first edge will be abI . Then, for each i ∈
{J + 1, . . . n}, he has the edge bπ(i)cyπ(i)

, where y is a random n-bit string.

Lemma E.2. The graph stream described above is a uniformly random order graph stream.

Proof. Fix any value of Bob’s index I. If we were to randomly draw a string z ∈ {0, 1}n, randomly
order edges (biczi)

n
i=1, and then insert abI randomly in this stream, this would give a uniformly

random order graph stream (corresponding to drawing a graph from a fixed distribution and then
randomly permuting its edges).

But this would also be identically distributed to our graph stream, as the strings x and y are
both drawn uniformly at random from {0, 1}n. So we have a uniformly random graph stream.

Lemma E.3. With probability 3/4, a at one end of a 2-edge path with cxI
at the other end.

Otherwise it is at one end of a 2-edge path with cxI
at the other end.

Proof. There is an edge between a and bJ , and with probability 1/2, π(I) ≤ J , and so the only
other edge incident to bJ is incident to cxI

. Otherwise, it is incident to cyI , which is cxI
with

probability 1/2, as y is drawn at random.

We will now prove that the random walk distribution from a can be used to determine the
answer to INDEXn−3.

Lemma E.4. Let A be any algorithm using S space such that, when given a sample from the
distribution on graph streams above, the output of A is ε-close in total variation distance to sampling
a k-step random walk from a, where k ≥ 2. Then there is a protocol for INDEXn−3 on uniform

inputs that uses S space and succeeds with probability 3
4 − 2−2−⌊k2⌋ − ε.

Proof. The protocol will be as follows:
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1. Alice and Bob use their INDEX input to construct a corresponding random graph stream.

2. Using S bits of communication from Alice to Bob, they run A on the stream.

3. If the walk output by A ever reaches cb for some b ∈ {0, 1}, output i. Otherwise output a
random b ∈ {0, 1}.

Now, by Lemma E.3, a is at one end of a 2-edge path with one of c0, c1 at the other end, and there
is a 3/4 chance it is cxI

. So there is a

1− 2−⌊k2⌋

probability any walk from a reaches a vertex in c0, c1. If the walk output by A does this the protocol
succeeds with probability 3/4 and otherwise it succeeds with probability 1/2. So the correct answer
is returned with probability at least

(1− 2−⌊k2⌋)3
4
+ (2−⌊ k2⌋)1

2
− ε =

3

4
− 2−2−⌊ k2⌋ − ε

proving the correctness of the protocol. The construction of the stream itself is done entirely with
public randomness, so this gives an S bit public randomness protocol. As we are working with a
fixed input distribution, this means that there is also an S bit private randomness protocol, by
fixing whichever set of public random bits maximizes the probability of success over the uniform
distribution.

This then proves Theorem E.1, as any algorithm that can output a constant ε < 1/4− 2−2−⌊ k2⌋
approximation to the random walk distribution will give a protocol for INDEXn−3 that works with
a probability at least a constant greater than 1/2.
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