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Abstract
In the preprocessing model for uncertain data we are given a set of regions R which model the
uncertainty associated with an unknown set of points P . In this model there are two phases: a
preprocessing phase, in which we have access only to R, followed by a reconstruction phase, in
which we have access to points in P at a certain retrieval cost C per point. We study the following
algorithmic question: how fast can we construct the Pareto front of P in the preprocessing model?

We show that if R is a set of pairwise-disjoint axis-aligned rectangles, then we can preprocess R
to reconstruct the Pareto front of P efficiently. To refine our algorithmic analysis, we introduce a
new notion of algorithmic optimality which relates to the entropy of the uncertainty regions. Our
proposed uncertainty-region optimality falls on the spectrum between worst-case optimality and
instance optimality. We prove that instance optimality is unobtainable in the preprocessing model,
whenever the classic algorithmic problem reduces to sorting. Our results are worst-case optimal in
the preprocessing phase; in the reconstruction phase, our results are uncertainty-region optimal with
respect to real RAM instructions, and instance optimal with respect to point retrievals.
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1 Introduction

In many applications of geometric algorithms to real-world problems the input is inherently
imprecise. A classic example are GPS samples used in GIS applications, which have a
significant error. Geometric imprecision can be caused by other factors as well. For example,
if a measured object moves during measurement, it may have an error dependent on its
speed [18]. Another example comes from I/O-sensitive computations: exact locations may be
too costly to store in local memory [3]. Algorithms that can handle imprecise input well have
received considerable attention in computational geometry. We continue this line of research
by studying the efficient construction of the Pareto front of a collection of imprecise points.

Preprocessing model. Held and Mitchell [17] introduced the preprocessing model of uncer-
tainty as a model to study the amount of geometric information contained in uncertain points.
In this model, the input is a set of geometric (uncertainty) regions R = (R1, R2, . . . , Rn) with
an associated “true” planar point set P = (p1, p2, . . . , pn). For any pair (R, P ), we say that
P respects R if each pi lies inside its associated region Ri; we assume throughout the paper
that P respects R. The preprocessing model has two consecutive phases: a preprocessing
phase where we have access only to the set of uncertainty regions R and a reconstruction
phase where we can for each Ri ∈ R, request the true location pi in (traditionally constant)
C time. The value C can, for example, model the cost of disk retrievals for I/O-sensitive
computations [3]. We typically want to preprocess R in O(n logn) time to create some
linear-size auxiliary datastructure Ξ. Afterwards, we want to reconstruct the desired output
on P using Ξ faster than would be possible without preprocessing.

Löffler and Snoeyink [22] were the first to interpret R as a collection of imprecise
measurements of a true point set P . The size of Ξ and the running time of the reconstruction
phase, together quantify the information about (the Delaunay triangulation of) P contained
in R. This interpretation was widely adopted within computational geometry and motivated
many recent results for constructing Delaunay triangulations [4, 5, 11, 28], spanning trees [20,
30], convex hulls [15, 16, 23, 25] and other planar decompositions [21, 27] for imprecise points.

Output format. Classical work in the preprocessing model ultimately aims to preprocess
the data in such a way that one can achieve a (near-)linear-time reconstruction phase. Indeed,
if the final output structure has linear complexity and must explicitly contain the coordinates
of each value in P , then returning the result takes Ω(nC) time. However, this point of view
is limiting in two ways. First, certain geometric problems, such as the convex hull or the
Pareto front, may have sub-linear output complexity. Second, even if the output has linear
complexity, it may be possible to find its combinatorial structure without inspecting the true
locations of all points. Consider the example in Figure 1: on the left, we do not need to
retrieve any point; on the right, we do not need to retrieve p3 after we retrieve p4. Van der
Hoog et al. [27] propose an addition to the preprocessing model to enable a more fine-grained

p1 p2 p3 p4 p1 p2 p4

Figure 1 The Pareto front of P can be implied by the geometry of R (left) or not (right).
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analysis in these situations: instead of returning the desired structure on P explicitly, they
instead return an implicit representation of the output. This implicit representation can
take the form of a pointer structure which is guaranteed to be isomorphic to the desired
output on P , but where each value is a pointer to either a certain (retrieved) point, or to
an uncertain (unretrieved) point. In this paper, we study the efficient construction of the
Pareto front of a set of imprecise points P , from pairwise-disjoint axis-aligned rectangles R
as uncertainty regions, in the preprocessing model with implicit representation.

Algorithmic efficiency. To assess the efficiency of any algorithm we generally want to
compare its performance to a suitable lower bound. Two common types of lower bounds
are worst-case and instance lower bounds. The classical worst-case lower bound takes the
minimum over all algorithms A, of the maximal running time of A for any pair (R, P ).
The instance lower bound [1, 14] is the minimum over all A, for a fixed instance (R, P ),
of the running time of A on (R, P ). For the Pareto front the worst-case lower bound is
trivially Ω(nC); worst-case optimal performance (for us, in the reconstruction phase) is
hence easily obtainable. Instance-optimality, on the other hand, is unobtainable in classical
computational geometry [1]. Consider, for example, binary search for a value q amongst
a set X of sorted numbers. For each instance (X, q), there exists a naive algorithm that
guesses the correct answer in constant time. Thus the instance lower bound for binary search
is constant, even though there is no algorithm that can perform binary search in constant
time in a comparison-based RAM model [13]. Hence we introduce a new lower bound for the
preprocessing model, whose granularity falls in between the instance and worst-case lower
bound. Our uncertainty-region lower bound is the minimum over all algorithms A, for a fixed
input R, of the maximal running time of A on (R, P ) for any P that respects R. A detailed
discussion of algorithmic efficiency for the preprocessing model can be found in Section 2.

Related work. Bruce et al. [3] study the efficient construction of the Pareto front of two-
dimensional pairwise disjoint axis-aligned uncertainty rectangles in what would later be
the preprocessing model using implicit representation. As their paper is motivated by
I/O-sensitive computation, they assume that the retrieval cost C dominates polynomial
RAM running time and both their preprocessing and reconstruction phase use an unspecified
polynomial number of RAM instructions. In the reconstruction phase they have a retrieval-
strategy that iteratively selects a region Ri for which they retrieve pi to construct Ξ∗ (since
Ξ∗ is an implicit representation, they do not have to retrieve each pi ∈ P ). Their result is
instance optimal under their assumption that C dominates the RAM running time of all
parts of their algorithm. We study the same problem without their assumption on C.

Results and organization We discuss in Section 2 the three possible lower bounds for the
preprocessing model: worst case, instance, and our new uncertainty-region lower bound. In
Section 3 we present the necessary geometric preliminaries. Then, in Section 4, we prove an
uncertainty-region lower bound on the time required for the reconstruction phase. In Section 5
we then show how to preprocess R in O(n logn) time to create an auxiliary structure Ξ. We
also explain how to reconstruct the Pareto front of P as an implicit representation Ξ∗ from
Ξ. Our results are worst-case optimal in the preprocessing phase; our reconstruction results
are uncertainty-region optimal in the RAM instructions, instance optimal with respect to
the retrieval cost C and an O(logn) factor removed from instance optimal with respect to
both. This is the first two-dimensional result in the preprocessing model with better than
worst-case optimal performance.
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p1 p2 p3 p4 p5 p6

p7 pn

pn

Figure 2 Thrice a collection of grey uncertainty regions where the Pareto front, EMST or
Delaunay triangulation of the grey points is implied by the regions; plus an orange region Rn.
Depending on the placement of pn, it can neighbor any grey point in the final structure.

2 Algorithmic optimality

We briefly revisit the definitions of worst-case and instance lower bounds in the preprocessing
model and then formally introduce our new uncertainty-region lower bound.

Worst-case lower bounds. The worst-case comparison-based lower bound of an algorithmic
problem P considers each algorithm1 plus datastructure pair (A,Ξ) which solves P in a
competitive setting with respect to their maximal running time:

Worst-case lower bound(P) := min
(A,Ξ)

max
(R,P )

Runtime(A,Ξ,R, P ) .

The number L of distinct outcomes for all instances (R, P ) implies a lower bound on
the maximal running time for any algorithm A: regardless of preprocessing, auxiliary
datastructures and memory used, any comparison-based pointer machine algorithm A can
be represented as a decision tree where at each algorithmic step, a binary decision is
taken [2, 7, 13]. Since there are at least L different outcomes, there must exists a pair (R, P )
for which A takes logL steps before A terminates (this lower bound is often referred to as
the information theoretic lower bound or sometimes the entropy of the problem [1, 6, 7]).

Instance lower bounds. A stronger lower bound, is an instance lower bound [14] (or instance
optimal in the random-order setting in [1]). For an extensive overview of instance optimality
we refer to Appendix A. For a given instance (R, P ), its instance lower bound is:

Instance lower bound(P,R, P ) = min
(A,Ξ)

Runtime(A,Ξ,R, P ) .

An algorithm A is instance optimal, if for every instance (R, P ) the runtime of A matches the
instance lower bound. Löffler et al. [21] define proximity structures that include quadtrees,
Delaunay triangulations, convex hulls, Pareto fronts and Euclidean minimum spanning trees.
We prove the following:

I Theorem 1. Let the unspecified retrieval cost C not dominate O(logn) RAM instructions
and R be any set of pairwise disjoint uncertainty rectangles. Then there exists no algorithm
A in the preprocessing model with implicit representation that can construct a proximity data
structure on the true points which is instance optimal.

Proof. Let R′ = (R1, R2, . . . Rn−1) be a set of uncertainty regions for which the implicit
data structure Ξ∗ can be known in the preprocessing phase. Denote by Rn an uncertainty

1 We refer to comparison-based algorithms algorithms on an intuitive level: as RAM computations that
do not make use of flooring. For a more formal definition we refer to any of [1, 2, 10, 13].
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region for which pn can neighbor any pi ∈ (p1, . . . pn−1). See Figure 2 for an example of
the Pareto front, the EMST and the Delaunay triangulation (with it, Voronoi diagrams)
and Figure 3 for the convex hull. For the set of grey points (p1, . . . pn−1), their respective
structure is known while the orange point pn can neighbor any of the grey points. Via
the information theoretic lower bound, there is no algorithm A that for every instance can
decide the correct neighbor of pn in O(C) time. Yet for every instance, there exists a naive
algorithm that correctly guesses the constantly many neighbors of pn and verifies this guess
in O(C) time. J

pn pn pn

Figure 3 A collection of n− 1 grey pairwise-disjoint uncertainty rectangles, for which the convex
hull of their underlying points is implied by the convex hull of their bottom left vertices. The region
Rn is shown in orange. Depending on the placement of pn, it can neighbor any grey point in the
convex hull of all the points.

Uncertainty-region lower bounds. Worst-case optimality is easily attainable by any algo-
rithm and we proved that instance optimality is not attainable in the preprocessing model.
Yet the examples in Figure 1 and 2 intuitively have a lower bound of Θ(1) and Θ(logn+C),
which is trivial to match via binary search. We capture this intuition for a fixed input R:

Uncertainty-region lower bound(P,R) := min
(A,Ξ)

max
(P respects R)

Runtime(A,Ξ,R, P ) ,

and say an algorithm A is uncertainty-region optimal if for every R, A has a running time
that matches the uncertainty-region lower bound. Denote by L(R) the number of distinct
outcomes for all P that respect R. Via the information theoretic lower bound we know:

∀R, log |L(R)| ≤ Uncertainty-region lower bound(P,R) .

For constructing proximity structures in the preprocessing model with implicit representations,
the value of logL(R) can range from anywhere between 0 and n logn. Consequently, an
optimal algorithm cannot necessarily afford to explicitly retrieve the entire point set P .

3 Geometric preliminaries

Throughout the paper, we use the notation R®, RQ for original and truncated regions
respectively (which we define later). When the set is clear from context, we drop the
superscript. Let R = (R1, R2, . . . , Rn) be a sequence of n pairwise disjoint closed axis-aligned
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R4

R5 R2R1R3

R1

R3 R4
pkpi R2

BR BTrunc(R)

Figure 4 Left: a collection of uncertainty regions. Green is positive, red is negative and yellow is
potential. The horizontal halfslab of a green region is shown. Right: A collection of uncertainty
regions before and after truncation, note that we re-indexed the regions and flagged one.

uncertainty rectangles, with underlying point set P . For ease of exposition, we assume
R and P lie in general position (no points or region vertices share a coordinate). We
denote by [Ri, Rj ] := (Ri, Ri+1, . . . , Rj) a subsequence of j − i + 1 regions and similarly
by [pi, pj ] = (pi, pi+1, . . . , pj) a subsequence of points. For brevity, with slight abuse of
notation, we may refer to points as degenerate rectangles; hence any set R may contain
points. Whenever we place points on a vertex, we mean placing it arbitrarily close to said
vertex. A region Ri precedes a region Rj if i < j. Conversely, Rj succeeds Ri.

For two points p and q, we say that p (Pareto) dominates q if both its x- and y-coordinates
are greater than or equal to the respective coordinates of q. A point p (Pareto) dominates
a rectangle R, if p dominates its top right vertex. We define the Pareto front of P as the
boundary of the set of points that are dominated by a point in P . That is, the Pareto front
is the set of points in P that are not dominated by any other point in P , connected by a
rectilinear staircase. For any region or point R, we define its horizontal halfslab as the union
of all horizontal halflines that are directed leftward, whose apex lies in or on R. We define
the vertical halfslab symmetrically using downward vertical halflines. Given a set R without
knowledge of P , we say a region Ri ∈ R is (Figure 4, left):

a negative region if for all choices of P , the point pi is not part of the Pareto front of P ;
a positive region if for all choices of P , the point pi is part of the Pareto front; or
a potential region if it is neither positive nor negative.

I Lemma 2. A region Ri ∈ R is negative if and only if ∃Rj ∈ R such that the top right
vertex of Ri is dominated by the bottom left vertex of Rj . A non-negative region Ri is positive
if and only if 6 ∃Rk ∈ R such that Ri intersects either halfslab of Rk.

Proof. Let Ri and Rj be two axis-aligned rectangular uncertainty regions where the top
right vertex of Ri is dominated by the bottom left vertex of Rj . All choices of pi ∈ Ri are
dominated by the top right vertex of Ri, similarly all choices of pj ∈ Rj dominate the bottom
left vertex of Rj hence via transitivity pj always dominates pi which implies that Ri is a
negative region. If there is no region whose bottom left vertex dominates the top right vertex
of Ri, then pi appears on the Pareto front of P if all regions have their point lie on the
bottom left vertex and pi lies on the top right vertex of Ri. Hence Ri is then not negative.

If Ri is non-negative, and there exists a region Rk that contains Ri in its horizontal or
vertical halfslab then Ri cannot be positive since if pk is placed on the top right vertex of
Rk and pi on the bottom left vertex, pk must dominate pi.

Suppose that Ri is not positive and not negative. Then per definition there exists a point
placement of pi, and another true point pl, such that pl dominates pi. In this case, pl also
dominates the bottom left vertex of Ri, yet the uncertainty region Rl cannot be entirely
contained in the quadrant that dominates the top right vertex of Ri, else Ri is negative.
Hence Rl must have a halfslab that intersects Ri which proves the lemma. J
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Evans and Sember [15] and Nagai et al. [25] study convex hulls and Pareto fronts of imprecise
points. They note that for a set of pairwise-disjoint convex regions R, there is a connected
area of negative points. They call this area the guaranteed dominated region. We refer to the
boundary of the guaranteed dominated region as the guaranteed boundary BR. We note that
for Pareto fronts, the guaranteed boundary is the Pareto front of the bottom left vertices in
R. Intuitively, discovering the exact location of a point below BR does not provide additional
useful information, only discovering that a point lies below BR does.

I Lemma 3. Let R be a set of pairwise disjoint non-negative rectangles. The intersection of
a region Ri ∈ R with BR is a staircase with no top right vertex.

Proof. Per definition, non-negative regions have a top right vertex that lies above BR. Their
bottom left vertex lies either on BR, or below BR (since BR is the Pareto front of all bottom
left vertices). Hence the closure of each uncertainty region intersects BR. The intersection
between a connected staircase and an axis-aligned rectangular region is always a connected
staircase. Each top vertex of BR corresponds to a bottom left vertex of a region in R. Each
Ri cannot cannot contain such a top vertex since regions are pairwise disjoint. J

We formalise the above intuition by defining a procedure Trunc. Given an original set R®

of n® pairwise disjoint axis-aligned rectangles, Trunc(R®) returns a truncated set RQ where
some regions may be flagged (marked with a boolean). Refer to Figure 4. Specifically, each
negative region in R® gets removed, each potential region Ri, whose bottom left vertex is
below BR® , gets flagged and replaced by the part of Ri above BR® . By Lemma 3 this results
in a rectangular area. All remaining regions are rectangles which touch BR® . Since they are
also disjoint, their intersections with BR® induce a well-defined order, and Trunc re-indexes
the remaining regions according to top left to bottom right ordering of their bottom left
vertices. We obtain a set RQ = (R1, R2, . . . RnQ) = Trunc(R®) with nQ ≤ n®. Observe that
BR® = BRQ . We say RQ is a truncated set if it is the result of a truncation of some set R®.

Dependency graphs. Given a truncated set R = RQ, we define a (directed) dependency
graph denoted by G(R) as follows. The nodes of the graph correspond to the regions in R.
We have two types of directed edges which we refer to as horizontal and vertical arrows. A
region Ri has a vertical arrow to Rj if Rj succeeds Ri and is vertically visible from Ri (that
is, there exists a vertical segment connecting Ri and Rj that does not intersected any other
region in R). A region Ri has a horizontal arrow to Rj if Rj precedes Ri and is horizontally
visible from Ri. Refer to Figure 5. Observe that, if R is a truncated set, any point region
p ∈ R has no outgoing arrows, since after truncation the halfslabs of p do not intersect the
interior of any rectangle in R. We note an important property of the dependency graph:

I Lemma 4. Let Ri ∈ R such that Ri is a source in G(R). Then all Rl ∈ R with i < l

cannot have an incoming dependency arrow from a region Rk with k < i and vice versa.

Figure 5 A truncated set and its horizontal and vertical arrows.
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Proof. Consider such regions Rk, Ri and Rl. Per the ordering of R, the bottom left vertex
of Rk lies left and above the bottom left vertex of Ri. Per definition, Rk can only have a
vertical arrow to Rl. The region Rk has a vertical arrow to Rl only if its bottom facet lies
above Rl. However, then either its bottom facet intersects Ri (contradicting the assumption
that the regions are pairwise disjoint) or it lies above Ri (contradicting the assumption that
Ri is a source node in G(R)). The argument for arrows from Rl to Rk is symmetrical. J

I Corollary 5. Let R be a truncated set and let Ri and Rj be source nodes in G(R). There
is no region in R\[Ri, Rj ] that has a directed path in G(R) to any region in [Ri, Rj ].

The Pareto cost function. We show that for any set R®, we can construct the Pareto front
of the underlying point set using only RQ = Trunc(R®). To show that we can use RQ to
construct Ξ∗ in uncertainty-region optimal time, we define the Pareto cost function denoted
by CP(RQ, P ). In Section 4 we show that CP(RQ, P ) is the uncertainty-region lower bound
for constructing Ξ∗ and in Section 5 we show that this lower bound is tight.

Before we can define the Pareto cost function, we define additional concepts (Figure 6).
By C we denote the unspecified cost for a retrieval. Whenever we write log we refer to the
logarithm base 2. Let R = RQ be a truncated set. For all regions Ri ∈ R, we denote by
Vi the subset of [Ri, Rn] that is vertically visible from Ri (including Ri itself) and by Hi

the subset of [R1, Ri] that is horizontally visible from Ri (including Ri itself). Given P , we
denote by Vi(P ) ⊆ Vi: the union of {Ri} with the subset of Vi of regions that are dominated
by a point pj with j ≤ i. The set Hi(P ) is defined symmetrically taking points pj with i ≤ j.

Intuitively, the truncation operator represents the foresight about the Pareto front of P .
Now, given a truncated set R and P we construct a set R̃(P ) ⊂ R that intuitively represents
which regions of R were geometrically interesting in hindsight. Consider for a given P , all
regions that are intersected by the Pareto front of P . Let Rj be such a region, then given
the Pareto front of P\{pj}, Rj covers some area above this Pareto front. Hence, the point pj
could be part of the Pareto front of P if it lies in this area. Intuitively, all regions intersected
by the Pareto front of P are hereby suitable for further inspection; however, if the regions
are positive regions this further inspection might not be required to construct Ξ∗. Similarly,
if the region Rj lies above the Pareto front of the points P\{pj}, the point pj cannot be
dominated by a point in P\{pj} and hence we can conclude it lies on the Pareto front of
P without further inspection. This is why we define R̃(P ) as the subset of R where each
region Ri ∈ R̃(P ) is intersected by the Pareto front of P and one of three conditions holds:
1. Ri is flagged;
2. Ri intersects and edge e with endpoint pj ∈ P and i 6= j; and/or
3. Ri is not a sink in G(R).
We define the Pareto cost function as: CP(R, P ) =

∑
Ri∈R̃(P ) C + log |Vi(P )|+ log |Hi(P )|.

4 Lower bounds

One is free to compute any auxiliary Ξ in the preprocessing phase, in order to reconstruct a
structure Ξ∗, isomorphic to the Pareto front, as efficiently as possible. There exists a choice of
input R® where all regions are positive: namely whenever R® = RQ = Trunc(R®) and G(R®)
is a graph with no edges. In this case, for every choice of P that respects R®, the Pareto front
of P is isomorphic to BR® hence it is possible to construct Ξ∗ in the preprocessing phase.
If R® has m elements, constructing BR® has a well-known O(m logm) worst case lower bound.



I. van der Hoog, I. Kostitsyna, M. Löffler, B. Speckmann. 9

In the reconstruction phase an algorithm can use any auxiliary structure Ξ to aid
its computation. In the remainder of this section we consider any truncated set R =
RQ = Trunc(R®) of n elements, together with any auxiliary datastructure. We provide an
information-theoretical lower bound, which depends on R and P , for both the number of
RAM instructions and disk retrievals required to construct Ξ∗ regardless of Ξ.

4.1 A lower bound for disk retrievals
Bruce et al. study in their paper the reconstruction of the Pareto front of P in a variant
of (what would later be) the preprocessing model with implicit representation. Bruce et al.
present an iterative retrieval strategy that is instance optimal. Their strategy performs at
most three times more retrievals than any algorithm must use to discover the Pareto front of
P and they prove that this factor-3 redundancy is the best anyone can do. Their strategy
describes the regions that must be considered in a geometric sense, not an algorithmic sense.
That is, at each iteration they can identify a triplet of regions to query. But they have no
algorithmic procedure to identify these three regions as such, nor a way to beforehand specify
which regions should be considered. In their model this is justifiable as they assume that
the retrieval cost C vastly dominates any RAM instructions and hence identifying the triple
each iteration is trivial. In this paper, we drop the assumption that C is enormous and are
interested in a retrieval strategy which not only minimizes the number of retrievals, but
which can also elect which points to retrieve efficiently.

We note that the query strategy of Bruce et al. produces a result of the same quality
as the lemma below and naturally, our proofs share some elements which we fully wish to
attribute to the work of [3]. The novelty in our result is that for each pair (R, P ) we are
able to characterize the regions which require a disk retrieval using R̃(P ). Which will help
us in the reconstruction phase, when we want to identify these regions efficiently.

I Lemma 6. Let R be a truncated set and let P be any point set that respects R. Any
algorithm that constructs Ξ∗ of P must perform at least 1

3 |R̃(P )| retrievals.

Proof. Let Ri ∈ R̃(P ). Per definition, Ri is not dominated by a point in P . Hence given
P\pi, there exists a choice of pi such that pi appears on the Pareto front of P . Any algorithm
A must spend a disk retrieval on pi, if there also exists a choice of pi such that it does not
appear on the Pareto front, given P\pi. We consider the three cases for when Ri ∈ R̃(P ):

Let Ri be flagged. Then there exists a choice of pi such that pi lies below BR and hence
does not appear on the Pareto front of P . Else let Ri be intersected by an edge that has as
an endpoint a point pj with j 6= i. Then e is either a vertical edge whose top vertex is pj
or a horizontal edge whose right vertex is pj . In both cases, there exists a choice of pi for
which it does not appear on the Pareto front of P since it would be dominated by pj (this

Ri

Figure 6 A region Ri and the set Vi in orange. Middle: for a given set of points, the set Vi(P ) is
shown in red. Right: the set Vi(P ) changes for different P , but always includes Ri.
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is achieved by placing pi left of the vertical edge, or below the horizontal edge). Lastly let
neither first two cases apply and Ri have at least one outgoing edge in G(R). Then there is
at least one region R′ ∈ Hi ∪Vi, the argument for this case is illustrated by Figure 7. Denote
by R′ a region in Hi (the case for Vi is symmetrical). Moreover, let R′ be the region in Hi

with the highest index. We ‘charge’ the region R′ one disk retrieval. First we show that each
region in R gets charged at most twice, then we show this charge is justified.

Suppose that R′ gets charged by two regions Ri, Rj with R′ ∈ Hi and R′ ∈ Hj (the
argument for when R′ lies in two vertical halfslabs is symmetrical) and let i < j. If R′
lies in Hi and Hj , then Ri must lie in the horizontal halfslab of Rj , which contradicts the
assumption that R′ was the region in Hj with the highest index (see Figure 7, middle).

Second we show that this charge is justified. Consider R′ and the two regions Ri and Rl
(l < i) that charge R′ and all points in P\{p′, pi, pl}. Since case (2) does not apply to Ri
and Rl, there is no point p ∈ P\{pi, pl} whose horizontal or vertical halfslab intersects Ri or
Rl, thus no point in P\{pi, pl} can dominate R′, Ri or Rl. This implies that regardless of all
other points, there a choice for pi, pl, p′ where all three points appear on the Pareto front of
P (the point placement where pi and pl appear on the bottom left vertex of their respective
regions and R′ appears on the top right vertex). However, there also exists a choice where p′
is dominated by pl or pi. Any algorithm must therefore consider at least p′, pi or pl in order
to find out and this is why the charge is justified. J

4.2 A lower bound on RAM instructions
In Section 2 we defined the uncertainty-region lower bound. By an information-theoretical
lower bound (algebraic decision tree or entropy [1, 7]), we have, for any R, that the
Uncertainty-region lower bound is at least logL(R), where L(R) is the number of combina-
torially different Pareto fronts of point sets that respect R. We prove the following:

I Lemma 7. Let R be a truncated set and P be any point set that respects R. Then∑
Ri∈R̃(P )

log |Vi(P )|+ log |Hi(P )| ≤ 2 · logL(R) .

Proof. We show that
∑
Ri∈R̃(P ) log |Vi(P )| ≤ logL(R). By a symmetric argument we have∑

Ri∈R̃(P ) log |Hi(P )| ≤ logL(R) and the lemma follows. Consider for a fixed set P all
regions Ri ∈ R̃(P ) for which |Vi(P )| ≥ 2 (recall that Ri ∈ Vi(P )) and sort them from lowest
index to highest. For ease of exposition we denote these regions as (R1, R2, . . . , Rm). We
create m different, pairwise disjoint vertical slabs as follows: the first slab is bound by the
left facets of R1 and R2, the second by facets of R2 and R3 and the m’th slab is a halfplane
(Figure 8). In the degenerate case that a slab has width 0 (this can occur, when after
truncation regions can have left vertices that share a coordinate) we give it width ε.

Let Ri = R1 and Rj = R2. For all regions Rk ∈ Vi(P ), per definition i ≤ k < j. Each
of these truncated regions has thus a bottom left endpoint that lies left of the bottom left

Rl

Ri

Rl

Ri Rj

R′ R′

Figure 7 Left: The region Rl charges the blue region and Ri the green. Middle: for Rj , either
Ri ∈ Hj or there is another region (yellow) with higher index in Hj .
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|Vi(P )| |Vj(P )| |Vk(P )||Vs(P )|

Figure 8 Left: A pair (R, P ) such that the grey points form the Pareto front. Given the Pareto
front, we can extract Vi(P ) for each i. Middle: based on the sets Vi(P ), we create vertical slabs
irrespective of the original points P . Right: In each vertical slab, we can create Vi(P ) combinatorially
distinct (partial) Pareto fronts using only points in the vertical slab.

vertex of Rj and right of the bottom vertex of Ri which implies that their bottom left vertex
lies in the first vertical slab. The result of this observation is, that given R, there are at
least |Vi(P )| combinatorially different Pareto fronts contained within the first vertical slab.
These Pareto fronts are obtained by placing the points of the regions in Vi(P )\Ri on their
respective bottom left endpoints, and by letting pi dominate any prefix of these points.

Let Rj = R2 and Rk = R3. Via the same argument each region in Vj(P ) has its bottom
endpoint in the second vertical halfslab. Hence with the same argument as above, there are
at least |Vj(P )| combinatorially different Pareto fronts contained within the second halfslab.
Moreover, we created |Vi(P )| different combinatorial outcomes by placing only points in the
first vertical halfslab, using only points preceding pj . This means that these combinations
can be generated, whilst no point preceding pj dominates any point following pj . This implies
that the total number of combinatorially different Pareto fronts contained in both the first
and second halfslab is |Vi(P )| · |Vj(P )|. By applying this argument recursively it follows that:∏
Ri∈R̃(P ) |Vi(P )| ≤ L(R), which concludes the proof. J

Given Lemma 6 and Lemma 7 we can immediately conclude the following:

I Theorem 8. Let R be a truncated set and P be any set that respects R. Then CP(R, P )
is fewer than three times the uncertainty-region lower bound of R.

We wish to briefly note that for each i, Vi(P ) and Hi(P ) have at most n elements and thus
by Lemma 6, CP(R, P ) is a factor logn removed from the instance lower bound.

5 Reconstructing a Pareto front

Theorem 8 gives an uncertainty-region lower bound for any truncated set R. In this section,
we show that this lower bound is tight. To that end, we first define additional geometric
concepts. First, we introduce the notion of canonical rectangles. Then we define the notion
of subproblems. Finally, we show how to use the subproblems of a canonical set to quickly
select only regions which lie in R̃(P ). We wish to emphasise that in the reconstruction phase
we have implicit access to the point set P , meaning that for each region Ri, we can request
pi in O(C) time. Thus reading all points in P takes Ω(nC) time, which we aim to avoid.

5.1 Geometric preliminaries for reconstruction
Let R be a truncated set of n regions and let P respect R. Denote by V next

i the region
strictly right of the vertical slab of Ri with the lowest index; Hprev

i is defined symmetrically
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negative needs truncation remove for culled set can be compounded

Figure 9 Left: R® with BR® in red. Middle: the set of regions after truncation. The yellow
region is a source and a sink, it splits the problem into two. Right: The canonical set.

using the highest index (refer to Figure 11). For each i, let pxMax
i (respectively pyMax

i ) be
the point in P with maximal x-coordinate (y-coordinate) among points pk with k ≤ i (with
k ≥ i). Throughout this section, we denote by fi(P ) the region succeeding Ri with the
lowest index that is not dominated by a point pk with k ≤ i. The region gi(P ) is the region
preceding Ri with highest index not dominated by a point pk with k ≥ i.

Let Ri ∈ R be both a source and sink in G(R). By Lemma 4, pi appears on the Pareto
front and connects the Pareto front of [p1, pi−1] and [pi+1, pn]. Thus, we can split the problem
of computing the Pareto front of P into two, and solve each half independently. We say that
a truncated set R is culled if G(R) contains no region that is both a source and a sink. Let
[Ri, Rj ] be a sequence of sinks in G(R), and R∗ be the smallest rectangle that contains Ri
and Rj . Note that R∗ is disjoint from regions in R\[Ri, Rj ] and contains all [Ri, Rj ]. We
can use R∗ to capture a “streak” of points which do, or do not, appear on the Pareto front:

I Lemma 9. Let [Ri, Rj ] be a sequence of sinks in G(R). If there is no pk ∈ P preceding pi
that dominates pi then there is no point preceding pi that dominates any point in [pi, pj ]. If
some pk preceding pi dominates pj , then pk dominates all points in [pi, pj ]. Similar statements
hold for pk succeeding pj.

Proof. Any pk that dominates any point ps with s ∈ 〈i, j〉, but not pi or pj itself must lie
in the interior of R∗, but R∗ contains only points whose regions are sinks in G(R). This
contradiction implies all claims of the lemma. J

This lemma implies that if both pi and pj are not dominated by other points in P then all
the points in [pi, pj ] appear on the Pareto front of P as a contiguous subsequence, and all
regions Rk ∈ [Ri, Rj ] are not part of R̃(P ). Theorem 8 states we cannot “afford” to spend
any disk retrievals on (pi, pi+1, . . . , pj). Instead, we should add a pre-stored chain referencing
[pi, pj ] to Ξ∗ in constant time. This is why for any maximal sequence of sinks [Ri, Rj ] in a
truncated and culled set R, we define their compound region R∗ and we replace [Ri, Rj ] in
R with R∗ (refer to Figure 9 (right)). Let R? be the resulting set of regions. The region R∗
is a sink in G(R?) and a region R has an outgoing arrow to R∗ in G(R?) if and only if it
had an outgoing arrow in G(RQ) to at least one region in [Ri, Rj ]. Since R∗ is just another
rectangle disjoint from all other rectangles in Rcomp, the definition of truncated and culled
still applies to Rcomp. We say a set R? is a canonical set if it is truncated, culled, and if
there are no two consecutive regions that are sinks in G(R?). In the remainder, we assume
R is a truncated set and R0 = R? is its respective canonical set as the reconstruction input.

Subproblems. Let R be a truncated set. We say two indices i < j form a subproblem with
respect to a dependency graph G(R) if Ri and Rj are sources in G(R) and if there does
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not exist a region Rk with i < k < j that is also a source. With slight abuse of notation,
we say that [Ri, Rj ] is a subproblem of G(R). At later stages we will consider some altered
dependency graph G(R′) and will refer to subproblems [Rl, Rm] of G(R′).

The algorithm sketch. The core of our algorithm is rather straightforward: it is an iterative
strategy, where at each iteration t we have an (implicitly truncated) set Rt and a queue of
subproblems of G(Rt). Each iteration, we dequeue a subproblem [Ri, Rj ] of G(Rt), retrieve
pi, pj to replace Ri and Rj and (implicitly) re-truncate. We maintain the following invariant:

I Invariant 1. For each iteration, when we consider a subproblem [Ri, Rj ] we have a pointer
to the region R which stores pxMax

i−1 and the region R′ which stores pyMax
j+1 .

Observe that for all subproblems [Ri, Rj ] of G(R0 = R?), the point pxMax
i−1 = pi−1 and

pyMax
j+1 = pj+1. We sketch Algorithm 1. We want to prove that its runtime matches the value

CP(R, P ) of Theorem 8. This would trivially be true, if for each subproblem [Ri, Rj ] of
G(Rt), Ri, Rj ∈ R̃(P ). Unfortunately that is not always the case, and thus we resort to a
more involved argument to prove the following theorem. In the remainder of this section, we
show that the algorithm’s running time is O(A(R,R?, P )).

I Theorem 10. Let R be a truncated set and let R? be its respective canonical set, Ξ be
built on R? and Algorithm 1 run on R? as input. Let Algorithm 1 consider for each iteration
t, a subproblem [Ri(t), Rj(t)] with i(t) < j(t) − 1. Let RA1(R?, P ) =

⋃
t{Ri(t), Rj(t)}. Let

Vi(P ) and Hi(P ) refer to subsets of R, not R?. Then:

A(R,R?, P ) =
∑

Ri∈RA1(R?,P )

(
1
2C + log |Vi(P )|+ log |Hi(P )|

)
≤ CP(R, P ) .

Algorithm 1: Algorithm sketch, assuming R0 is canonical.
Result: The pointer structure Ξ∗. (Runtime)
Q← subproblems (G(R0))
(Preprocessing)

while Q 6= ∅ do
[Ri, Rj ]← Q.DeQueue() (O(1))
pi, pj ← Retrieve(Ri, Rj) (2C +O(1))
pxMax
i , pyMax

j ← Compare((pi, pxMax
i−1 ), (pj , pyMax

j+1 )) (2C +O(1))
if pi not dominated by xMax

i , pyMax
j then

Ξ∗.Append(pi after pxMax
i−1 ) (O(1))

if pj not dominated by pxMax
i , pyMax

j then
Ξ∗.Append(pyMax

j+1 after pj) (O(1))
fi(P )← gallopingSearch(pxMax

i , Vi)
(O(log |Vi(P )|))
gj(P )← gallopingSearch(pyMax

j , Hj)
(O(log |Hj(P )|))
Rt+1 ← ImplicitTruncate(Rt −Ri −Rj + pi + pj) (O(1))
DetermineSubproblems(Rt+1, fi(P ), gj(P )) (O(1))
foreach subproblem [Rc, Rd] of G(Rt+1 ∩ [Ri = pi, Rj = pj ]) do

Q.Queue([Rc, Rd]) (O(1), charged to
[Rc, Rd])
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Proving Theorem 10. This theorem describes an intuitive “runtime allowance” that Algo-
rithm 1 has. We first prove 3 Lemmas about subproblems encountered by Algoritm 1.

I Lemma 11. Let R be a canonical set and Ri ∈ R. Algorithm 1 encounters a subproblem
[Ri, ·] or [·, Ri] if and only if Ri is intersected by the Pareto front of P .

Proof. The region Ri is not intersected by the Pareto front of P if and only if Ri is dominated
by a point pj ∈ P . Let pj appear on the Pareto front of P (via transitivity of domination,
we can always obtain such a pj). The iterative procedure must consider pj before pi since
Rj prevents Ri from being a source in the dependency graph. But when Rj is considered,
Ri is truncated. The graph must always have at least one source. Thus, since Ri will never
be removed after truncation, it must eventually become a source. J

I Lemma 12. Let R0 be a canonical set. Algorithm 1 encounters only subproblems [Ri, Rj ]
where either: j = i + 1 or Ri ∈ R̃(P ) or Rj ∈ R̃(P ), and Ri 6∈ R̃(P ) if and only if
|Vi(P )| = |Hi(P )| = 1 (the same holds for Rj).

Proof. If R0 is a canonical set, then there cannot by any subproblem [Ri, Rj ] of G(R0) where
Ri and Rj are both sinks in G(R0). As a consequence, for each [Ri, Rj ] either Ri ∈ R̃(P ) or
Rj ∈ RP and Ri 6∈ R̃(P ) implies Vi(P ) = Hi(P ) = {Ri}.

In later iterations, we cannot immediately guarantee that Rt is canonical, and the
allowance for spending computation time is hence lost. Via Lemma 11 we know that Ri and
Rj are both intersected by the Pareto front of P . Thus, the regions Ri, Rj 6∈ R̃(P ) implies
that Ri and Rj are both sinks in the original graph G(R) (as R̃(P ) is defined on the original
truncated set). Thus Ri 6∈ R̃(P ) implies Vi(P ) = Hi(P ) = {Ri}.

What remains is to show that for each subproblem either Ri or Rj does lie in R̃(P ). Let
i < j− 1. Then if Ri and Rj are both sinks, then by Lemma 4 the region Ri+1 or Rj−1 must
also be a source which contradicts the assumption that [Ri, Rj ] is a subproblem. J

I Lemma 13. Let R be a canonical set. Algorithm 1 encounters only subproblems [Ri, Rj ]
followed by [Ri = {pi}, Rk] if Rk ∈ R̃(P ).

Proof. By the argument of Lemma 12, Rk is intersected by the Pareto front of P . Moreover
after the iteration t where the algorithm considers [Ri, Rj ], the region Ri has no outgoing
edges in each iteration t′ with t < t′. Hence if [Ri = {pk}, Rk] is a subproblem, the region
Rk has at least one outgoing arrow and thus Rk ∈ R̃(P ). J

These three Lemmas imply the following theorem that we later use for a charging scheme:
when we relate algorithm runtime to CP (R, P ) :

Proof of Theorem 10. Recall that CP(R, P )) =
∑
Rk∈R̃(P ) C + log |Vk(P )| + log |Hk(P )|.

Let [Ri, Rj ] be the first subproblem considered that has Ri as its left boundary. By
Lemma 12, at least Ri or Rj is in R̃(P ) hence we charge 1

2C time to either the term
(C + log |Vi(P )| + log |Hi(P )|) or (C + log |Vj(P )| + log |Hj(P )|) in the sum of CP (R, P ).
Moreover, Ri 6∈ R̃(P ) implies log |Vi(P )| = log |Vj(P )| = 0 hence including these two terms,
does not increase the sum’s value. For subsequent subproblems [Ri, Rk], Lemma 13 guarantees
that Rk ∈ R̃(P ). Hence the term: ( 1

2C+log |Vk(P )|+log |Hk(P )|) in the sum of A(R,R?, P )
can be charged to the term (C + log |Vk(P )|+ log |Hk(P )|) in the sum of CP (R, P ). J
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Figure 10 The construction of the subproblem tree. Left we see a subproblem of a canonical
set with the vertical arrows drawn. In the middle we see the children of this subproblem with the
horizontal arrows drawn. On the right we continued the recursion one additional step.

The subproblem tree. Theorem 10 shows that if we are able to execute our described
algorithm in the specified running time, then we prove that CP(R, P ) is tight and we have
obtained an uncertainty-region optimal algorithm. However, in order to achieve this running
time, in each iteration we must determine the new subproblems efficiently. This is why we
define a subproblem tree on the original dependency graph G(R). The subproblem tree,
denoted by TR, is a range tree on the interval [1, n] ⊂ Z (Figure 10). The root node of
the subproblem tree stores the interval [1, n]. If R is a canonical set, the subproblems of
R partition R, and the root node has a child for each subproblem [Ri, Rj ] where the child
stores the interval [i, j] and a pointer to Ri and Rj . We construct the subsequent children as
follows: for each node [i, j], we remove all outgoing arrows from Ri and Rj and we create a
child node for each subproblem of G([Ri, Rj ]) without these arrows. Note that each node
has at least two children: as removing the outgoing arrows from Ri and Rj creates at least
one additional source Rk with k ∈ 〈i, j〉 and Ri and Rj remain sources in G([Ri, Rj ]).

5.2 Preprocessing phase
Here, we elaborate on the preprocessing procedure. First, we transform a set R® of m axis-
aligned pairwise disjoint rectangles into a truncated set RQ with n elements in O(m logm)
total time. Next, we construct a canonical set R? and the auxiliary datastructure Ξ
(which consists of the subproblem tree TRQ and some additional pointers) in O(n logn) time.
Specifically, we define Ξ as follows:

Defining Ξ. Given a canonical set R?, let Ξ consist of G(R?) and the tree TR? augmented
with the following attributes stored for every region Ri ∈ R (Figure 11):
1. A binary search tree on Vi and Hi from G(R?).
2. A pointer to V next

i and Hprev
i in R?.

3. A pointer to the region Rj with highest j, such that Ri ∈ Vj (the back pointer) and a
pointer to the region Rj with lowest index j, such that Ri ∈ Hj (the forward pointer).

4. A pointer to the highest node in TR? that stores an interval [·, i], and a pointer to the
highest node in TR? that stores an interval [i, ·].

5. If Ri is a compound region, an array of all the regions compound in Ri.

Creating a truncated set. We consider the bottom left vertices of all regions inR®, construct
BR® , together with a range tree on the horizontal edges of BR® [9] in O(m logm) time. For
each region R ∈ R® we detect whether R is negative by performing a point location with
its top right vertex on the interior of BR® ; if it is negative then it is discarded. If a region
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R ∈ R® is not negative then by Lemma 3 we know that R ∩ BR® is a staircase of constant
complexity which we compute in logarithmic time using binary search on BR® . We flag each
non-negative R ∈ R® whose interior intersects BR, and store its region after truncation. This
results in a set RQ of n pairwise disjoint axis-aligned rectangles, which we sort and re-index
based on their intersection with BRQ in O(m logm) time and conclude:

I Lemma 14. For any set R® of m axis-aligned, pairwise disjoint axis-aligned rectangles we
can construct its truncated set RQ of n rectangles in O(m logm) time.

Recall that for any truncated set RQ we denote by Hi the set of regions Rj in R with j < i

which are horizontally visible from Ri and by Vi the set of regions Rj with j > i which are
vertically visible from Ri. In the remainder of the preprocessing phase, we spend O(n logn)
time to transform RQ into a canonical set R?, construct G(RQ) and G(R?) and construct
the datastructure Ξ.

I Observation 1. For any truncated set RQ, a region Rj ∈ RQ is vertically visible from a
region Ri ∈ RQ if and only if there exists a face or edge in the vertical decomposition of R
which is vertically adjacent to both Ri and Rj.

Using Observation 1 we obtain the following through standard Computational Geometry:

I Lemma 15. For any truncated set RQ of n axis-aligned, pairwise disjoint rectangles we
can construct its canonical set R? and Ξ in O(n logn) time.

Proof. A vertical or horizontal decomposition has a number of faces and edges which is
linear in the number of input vertices and can be constructed in O(n logn) time [9]. Given
the vertical decomposition of RQ, we can traverse it in linear time to store for each region
Ri the set Vi. Similarly we can identify and store Hi for each Ri, and in O(n logn) total
time we construct a binary search tree on each set Hi and Vi to obtain Attribute 1. For
each set Vi, we identify V next

i in logarithmic time by searching by searching for the left-most
bottom-left endpoint right of the vertical slab through Ri to obtain Attribute 2.

Through this procedure, we construct the dependency graph G(RQ) in O(n logn) time
by iterating over all nodes in this graph. In linear time, we can identify the connected
components of G(RQ) and the regions which are both a source and sink in G(RQ). From
Lemma 4 we know that we can solve each connected component of G(RQ) independently
and that the solutions must be concatenated through the regions that are both a source and
sink. We store the connected components of G(RQ) as a doubly linked list and remove all
sources and sinks from RQ to create a culled set.

fi(P )

V next
i

Ri

back pointer

gj(P )

Rj
Hprev

j

forward pointer

Figure 11 Two choices of P for the same set R. The sets Ri(P ) and Rj(P ) are shown in orange
and blue respectively. Left: we show V next

i and the backward pointer and fi(P ). Right: we show
Hprev

j and the forward pointer and gj(P ).
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To transform a culled set into a canonical set, we identify all sinks in the graph in linear
time (by checking if |Vi| = |Hi| = 1) and we iterate over all regions in order of their index.
Neighboring sinks get recursively grouped into a compound region and this procedure creates
a canonical set in linear time. For each region compounding k regions, we construct Attribute
5 in O(k) time. After having compound all regions, we do a linear-time scan to re-index all
the (compound) regions so that all indices are consecutive and we obtain a canonical set
R?. During this linear time scan, we identify for each Ri the region of its back pointer and
forward pointer (Attribute 3) in logarithmic time, through searching through the vertical
and horizontal decomposition. Moreover, whenever we compound a set [Ri, Ri+k] into a
region R, we make sure to remove [Ri, Ri+k] from G(RQ) and replace it with R (where all
arrows pointing to a region in [Ri, Ri+k] now point to R). In this way, we simultaneously
create G(R?).

Lastly, we want to obtain from a canonical set R? its subproblem tree TR? in O(n) time
using prior constructed G(R?). This can be done as follows: first we identify the subproblems
of G(R?) in linear time. Then for each subproblem [Ri, Rj ] of G(R) we (temporarily) remove
all outgoing arrows from Ri and Rj from the graph and for each node that has an arrow
from Ri or Rj we check if it becomes a source node in constant time. This gives us the child
nodes of the node that stores [i, j] in the TR? . During this process, we store for each region
Ri a pointer to the largest interval [i, ·] in the TR? (which must always exist) in constant
additional time per region (Attribute 4). Applying this procedure recursively takes time
linear in the number of edges in G(R), which itself is linear in the number of cells of the
vertical and horizontal decomposition of RQ, which concludes the lemma. J

Lemma 14 and 15 and the observation that n ≤ m immediately imply Theorem 16.

I Theorem 16. For any set R® of m axis-aligned, pairwise disjoint axis-aligned rectangles
we can construct its trucated set R and its canonical set R? and Ξ in O(m logm) time.

5.3 Reconstruction phase

We want to run Algorithm 1 whilst maintaining Invariant 1, in O(A(R,R?, P )) time (The-
orem 10). First, we argue that the reporting (appending) step of the algorithm is correct:

I Lemma 17. For any iteration t, for any subproblem [Ri, Rj ] of G(Rt), the point pi appears
on the Pareto front of P if and only if pi is not dominated by pxMax

i or pyMax
j .

Proof. Let pi be not dominated by pxMax
i and pyMax

j , but dominated by some point pk.
Then k < i or k > j, because Ri and Rj are both sources in G(Rt). If k < i then the
x-coordinate of pk is greater than of pi, and thus pxMax

i 6= pi. Then, the point pxMax
i has

greater x-coordinate than pi, it lies in some region R′ 6= Ri, and since R′ precedes Ri and
contains pxMax

i , its bottom facet must lie above the top facet of Ri. Thus pxMax
i dominates pi

which is a contradiction. If j < k then pyMax
j 6= pj and the symmetrical argument applies. J

The previous lemma implies that if Invariant 1 is maintained, we can iteratively identify
points that appear on the Pareto front. Lemma 4 guarantees that for each iteration t, for
each subproblem [Ri, Rj ], the Pareto front of {pxMax

i } ∪ [pi, pj ] ∪ {pyMax
j } is a connected

subchain of the Pareto front of P . Hence we can safely append pi after pxMax
i . What remains

to show is that we can maintain Invariant 1 and identify the subproblems of Rt efficiently.
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X

Rk

fi(P )

fi(P )

gj(P )
gj(P )

X

Rk

Ri
Rj

Figure 12 An illustration of the argument of Lemma 20. If Rk loses the incoming arrow from X,
there must be a directed path from fi(P ) or gi(P ) to Rk, or either Rk = fi(P ), Rk = gj(P ).

Identifying subproblems. Consider an iteration t in which we handle subproblem [Ri, Rj ],
and let [Rk, Rl] be any subproblem of G(Rt+1) that is not already a subproblem of G(Rt). It
must be that i ≤ k ≤ l ≤ j (Lemma 4). We need to quickly identify these new subproblems.

I Lemma 18. For any truncated set Rt, for any subproblem [Ri, Rj ] of G(Rt), either
fi(P ) ∈ Vi or fi(P ) = V next

i .

Proof. Any region in [Ri, Rj ] that is dominated by a point preceding pi is dominated by
pxMax
i . The point pxMax

i−1 cannot dominate Ri, as else Ri would have been removed during
a truncation. Hence, fi(P ) is V next

i or a region preceding it. Suppose for the sake of
contradiction that fi(P ) is a region preceding V next

i and not in Vi. Consider any vertical ray
from a point in Ri, right of pxMax

i that intersects fi(P ) (such a ray must always exist, since
fi(P ) precedes V next

i and is not dominated by pxMax
i ). Since fi(P ) 6∈ Vi, this ray must also

intersect a region R′ ∈ Vi (else this ray would be a line of sight to fi(P ), which would imply
fi(P ) ∈ Vi). However, then R′ must precede fi(P ) which contradicts the assumption that
fi(P ) was the lowest-indexed region succeeding Ri, not dominated by pxMax

i . J

I Corollary 19. Let Rt be a truncated set, [Ri, Rj ] be a subproblem. Given Invariant 1 and
Ξ, we can identify fi(P ) in O(log |Vi(P )|) time using the folklore galloping search.

Proof. The datastructure Ξ stores for Ri the set Vi as a balanced binary search tree (Attribute
1). The set Vi(P ) is a prefix of Vi which ends at fi(P ) ∈ Vi (or, in the case that Vi(P ) = Vi,
fi(P ) = V next

i )). Thus, given Invariant 1, we can use pxMax
i to identify Vi(P ) in O(log |Vi(P )|)

time by using the folklore galloping (exponential) search by Bentley and Chi-Chih Yao. If
Vi(P ) = Vi, we refer to V next

i which is stored in Ξ (Attribute 2). J

Next, we prove a lemma that helps us to identify the subproblems of G(Rt+1):

I Lemma 20. Let [Ri, Rj ] be a subproblem of G(Rt) and denote by v the lowest node in TR
such that the interval [i, j] is stored in v. For any descendent [a, b] of v, there is no region
R′ ∈ [Ra, Rb] that is a source node in G(Rt+1) other than possibly Ra, Rb, fi(P ) or gj(P ).

Proof. If fi(P ) equals or succeeds gj(P ) then per definition of fi(P ) and gj(P ) all regions
in (Ri, Rj) apart from fi(P ) = gj(P ) are dominated and therefore removed after truncation
of Rt+1. Hence, they cannot be sources in G(Rt+1) (Figure 12). Let [a, b] be a descendent of
v, Rk be a region with k ∈ 〈a, b〉 succeeding fi(P ) and preceding gj(P ). Per construction of
TR each such Rk has at least one incoming arrow from a region X ∈ [Ra, Rb]. The region Rk
can only become a source in G(Rt+1) if either pi or pj dominates X (else, X was dominated
by pxMax

i or pyMax
j before iteration t and does not exist in G(Rt)).

We consider the case where pi dominates X (Figure 12). If pi dominates X, then X

lies strictly left of the vertical line through pi, and Rk intersects the vertical halfslab of X.
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fi(P )

Ri

fi(P )

Ri

p
q

Figure 13 Left: the first case of the proof of Lemma 21, where p must dominate the remaining
regions with an arrow to fi(P ). Right: the second case, where either q sees fi(P ), dominates fi(P )
or the purple region keeps its horizontal arrow to fi(P ).

Similarly if fi(P ) 6= Rk then Rk must lie at least partly right of the vertical line through pi
and below the bottom facet of fi(P ). This means that if Rk lies in the vertical halfslab of X
then it must also lie in the vertical halfslab of fi(P ). The region fi(P ) is therefore a node in
G(Rt) with a directed path to Rk, so Rk is not a source node in G(Rt+1). J

Algorithm 1 runtime. We further specify the iterative procedure of our algorithm. Our
algorithm maintains a queue of subproblems. In iteration t, we dequeue a subproblem [Ri, Rj ]
of G(Rt) and we denote by v the lowest node in TR such that the interval [i, j] is stored
in v. We can obtain v in constant time via Attribute 4. By Lemma 4, processing [Ri, Rj ]
does not affect other subproblems which are in the queue before we process [Ri, Rj ]. If the
algorithm has not yet retrieved pi nor pxMax

i−1 , it retrieves both points using Invariant 1 in 2C
time and computes pxMax

i in constant time. Similarly we compute pyMax
j in with at most 2C

additional time. By Lemma 17, we check in O(1) time if pi and pj appear on the Pareto
front, and if so we add them as the respective successor of pxMax

i−1 or predecessor pyMax
j+1 . If

we have just retrieved pi, we use galloping search to identify fi(P ) in O(log |Vi(P )|) time
(Corollary 19), we set the back pointer (Attribute 3) to null and (for later use) we store a
reference in Ri to fi(P ). If we did not retrieve pi this iteration, we retrieved it in a prior
iteration and we use the pre-stored result fi(P ) in O(1) time. We do the same for gj(P ) in
O(C + log |Hj(P )|) time. We briefly remark the following claim.

I Lemma 21. Let [Ri, Rj ] be a subproblem of G(Rt) and fi(P ) precede gj(P ). Then the
region fi(P ) is a source in G(Rt+1) if and only if: (1) the forward pointer of fi(P ) is null
or (2) the region resulting from the forward pointer has been retrieved in an iteration t′ < t.

Proof. Suppose that the pointer is null and suppose that there is no region Rk for which
fi(P ) ∈ Hk(P ). Then fi(P ) has no incoming horizontal arrows. If there is a region Rk for
which fi(P ) ∈ Hk(P ) then there is a point p retrieved in an iteration earlier such that p
is horizontally visible from fi(P ) that set the pointer to null Figure 13, Left. The point p
dominates all remaining regions with a horizontal arrow to fi(P ). If the region resulting from
the forward pointer has been retrieved in an iteration t′ < t, all regions with a horizontal
pointer to fi(P ) must have been considered by the algorithm, so fi(P ) is not dominated. By
definition, all regions preceding fi(P ) in [Ri, Rj ] are dominated by pxMax

i , thus, if fi(P ) has
no incoming horizontal arrows it must be a source in G(Rt+1).

If the pointer is not null and the region resulting from the forward pointer has not yet
been retrieved in an earlier iteration then fi(P ) must have at least one incoming horizontal
arrow. Indeed, suppose that all regions with a horizontal pointer to fi(P ) that are not yet
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Figure 14 Left: Case 1 where fi(P ), gj(P ) lie in the same grandchild [a, b]. Right they don’t.

retrieved are dominated by a point q retrieved prior to the current iteration. Then either q
dominates fi(P ), contradicting the assumption that fi(P ) precedes gj(P ), or the retrieval of
q would have set the forward pointer of fi(P ) to null. J

For ease of exposition, we assume fi(P ) and gj(P ) are not compound regions. For compound
regions, we refer to Appendix B. We distinguish between two cases based on which children
of v contain fi(P ) and gj(P ) (Figure 14). Note that we never add a subproblem [Ra, Rb] if
a = b+ 1 (as such a subproblem does not satisfy the premise of Theorem 10). Instead, we
charge retrieving and comparing pa and pb immediately with at most 4C overhead.

Case 1: fi(P ) and gj(P ) are contained in the same grandchild [a, b] of v. We check in
constant time whether fi(P ) and gj(P ) are sources in G(Rt) (by Lemma 21). Note that
either fi(P ) or gj(P ) must be a source. Let Rk = fi(P ) and Rl = gj(P ).

If both fi(P ) and gj(P ) are sources, then by Lemma 20 the only three subproblems
in G(Rt+1) and [Ri, Rj ] are: [Ri = pi, Rk], [Rk, Rl] and [Rl, Rj = pj ]. In this case
pxMax
k−1 = pxMax

i and pyMax
l+1 = pyMax

j . If k = l− 1, we immediately retrieve pk and pl in 2C
time as the aforementioned overhead. Else we add to [Rk, Rl] a reference to pxMax

k−1 and
pyMax
l+1 to maintain Invariant 1 and add the subproblem [Rk, Rl] to the queue.
If fi(P ) is a source and gj(P ) is not, by the same reasoning the only subproblems are
[Ri, Rk] and [Rk, Rj ]. We check if k = j − 1 as before. If not, we maintain Invariant 1 in
constant time just as above by adding [Rk, Rk] to the queue with a reference to pxMax

i .
This case is symmetric to the previous, as fi(P ) is not a source and gj(P ) is.

Case 2: fi(P ) ∈ [Ra, Rb] and gj(P ) ∈ [Re, Rf ] for distinct children [a, b] and [e, f ] of v.
In this case, per construction of TR? , each child [c, d] of v with b ≤ c < d ≤ e is a subproblem
of G(Rt+1). We wish to briefly note, that either c < d− 1, or [c, d] neighbors a child of v
for which this is true (else, regions could have been compounded). Hence by Theorem 10 if
c = d− 1 we charge 2C time to the neighbor to immediately retrieve pc and pd and possibly
add them to Ξ∗ (again as the aforementioned overhead). If c < d− 1, then per construction
of TR? , the point pc appears on the Pareto front of P . Note that since [c, d] is a child of v,
pxMax
c−1 can only be pc−1 or pxMax

i . We charge O(1) time to the future processing of [Rc, Rd]
to provide four pointers to [Rc, Rd] (to maintain Invariant 1) and add [Rc, Rd] to the queue.

What remains is to handle [a, b] and [e, f ] and we describe the procedure for [a, b]. We
check in constant time if fi(P ) is a source using Lemma 21. If it is, then by Lemma 20 the
only subproblems of G(Rt+1) contained in [Ri, Rb] are [Ri, fi(P )] and [fi(P ), Rb]. We briefly
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check if [fi(P ), Rb] is a subproblem of length 2. If so we retrieve the corresponding points
to see if they appear on the Pareto front. Else we add [fi(P ), Rb] to the queue in constant
time via the same procedure as Case 1. If fi(P ) is not a source, then [Ri, Rb] is the only
subproblem of G(Rt+1) in [Ri, Rb] and we handle it similarly. We conclude:

I Theorem 22. Algorithm 1 constructs Ξ∗ in O(A(R,R?, P )) = Θ(CP(R, P )) time.
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A Reviewing lower bounds

The folklore worst-case lower bound definition of an algorithmic problem P with input X is:

Worst-case lower bound(P) := min
A

max
X

Runtime(A,X) ,

where each A is an algorithm that solves P for some definition of solving. Afshani, Barbay
and Chan [1] observe that there are three common techniques to prove lower bounds within
computational geometry:

direct arguments based on counting, or information theory;
topological arguments, as used by e.g. Yao [29] or Ben-Or [2] (sometimes referred to as
algebraic decision tree arguments); or
arguments based on Ramsey theory, as used by e.g. Moran, Snir and Manber [24].

The latter two techniques decompose algorithms into decision trees and reason about their
depth. In traditional computation models decisions are binary; therefore, without additional
information about the decision tree structure of the specific problem P , the best possible lower
bound on its tree depth is Ω(log(#leaves)), which is equivalent to the information-theoretic
bound. We mention that an additional technique for obtaining lower bounds is an adversarial
argument as by Erickson [12] or the more recent Chan [8]. Here, we restrict our attention to
information-theoretic arguments.

Models of computation. Applying these techniques to bound the running time of the
algorithms A, requires a precise definition of the model of computation used for the algorithmic
analysis. The classical argument by Ben-Or [2] assumes that the computation can be modeled
by an algebraic decision tree, where in each node a binary decision is taken at which the
algorithm branches based on an algebraic test.

Afshani, Barbay and Chan investigate a stronger definition for an algorithmic lower bound.
They reason that the computational power that comes from the abstract algebraic decision
tree model, where algebraic test functions are only bounded in the number of arguments
and not their degree, is too large for a more fine-grained analysis of algorithmic running
time. They restrict the class of algorithms that they consider for their competitive analysis
to algebraic decision trees where each test is a multilinear function (a function that is linear,
separate in each of its variables) with a constant number of variables. We share the sentiment
that a computational model that allows arbitrary algebraic computations in constant time is
unrealistically powerful, but note that the alternative model is perhaps too restrictive, as
it becomes difficult, if not impossible, to express computations such as higher-dimensional
range searching using only multilinear functions.

Recently, Erickson, van der Hoog and Miltzow [13] note that computations that involve
data structures do not only need to make decisions, but also need to be able to access
memory. Memory is inherently discrete: a model that supports only real-valued algebraic
decisions can either not access memory, or has the ability to access discrete values with
real-valued computations which would imply that P = PSPACE [26]. Fueled by the desire
to analyse algorithms within computational geometry, they (re)define the real RAM. We
use their definition of RAM to be able to define lower bounds for the preprocessing model
(as the preprocessing model inherently can access memory as it needs to be able to use an
auxiliary data structure Ξ). For completeness, we summarize their definition and how it
enables an information theoretic lower bound, even when dealing with a pre-stored structure
Ξ at the end of this section.
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Better than worst-case optimality. A natural more refined lower bound than the worst-case
lower bound is the instance lower bound. Given an algorithmic problem P with input X,
the instance lower bound is defined as:

Instance lower bound(P, X) := min
A

Runtime(A,X) .

We recall the example in the introduction where we perform a binary search to see whether a
value q is contained in a sorted sequence of numbers X. For each instance (X, q), there exists
a “lucky” algorithm that guesses the location of q in X in constant time. Thus, the instance
lower bound for binary search is constant, even though there is no algorithm that can perform
binary search in constant time in a comparison-based RAM model. Fine-grained algorithmic
analysis is desirable, yet instance optimality is unobtainable. It is therefore unsurprising
that there is a rich tradition of finding algorithmic analyses that capture an algorithmic
performance that is better than worst-case optimality. Many attempts parametrize the
algorithmic problem, to better enable its analysis. For example, there is output-sensitive
analysis as used by Kirkpatrick and Seidel [19] where the algorithm runtime depends on the
size k of the output. Other parameters can include geometric restrictions such as fatness, the
spread of the input, or the number of reflex vertices in a (simple) polygon. Such parameters
are hard to apply in the preprocessing model with implicit representation, as the auxiliary
structure Ξ allows one to bypass the natural lower bound that these parameters bring. For
example: an output-sensitive lower bound is not applicable, as output of any size can be
computed in the preprocessing phase to be referred to in the reconstruction phase in O(1)
time.

Better than worst-case optimality without additional parameters. Afshani, Barbay and
Chan propose an alternative definition of instance optimality which is not inherently unob-
tainable. They restrict the algorithms A that solve P and consider the input I together with
a permutation σ. They analyse the running time of A, conditioned on that it receives input
X in the order given by σ. They then compare algorithmic running time based on the worst
choice of σ:

Instance lower bound in the order oblivious setting(P, X) := min
A

max
σ

Runtime(A,X, σ) .

Intuitively, a permutation σ can force the algorithm to make poor decisions by placing
the input in a bad order and they assume that an algorithm receives “the worst order
of processing the input” to avoid the unreasonable computational power that a guessing
algorithm has. The instance lower bound in the order oblivious setting for our binary search
example would be Ω(n), as there exists a σ for which X is not a sorted set. Given q and
(X,σ), any algorithm then has to spend linear time to check if q is in X.

This definition of lower bound would strictly speaking be applicable to the preprocessing
model: given P and a permutation σ an algorithm can then only retrieve points in the order
σ. However, we would argue that this lower bound is not very compatible with the spirit of
the model. Per definition, one is free to preprocess R, Therefore, during preprocessing it
would not be unreasonable for an algorithm to decide on a favourable order to retrieve the
points in P . This is why, amongst many alternative stricter-than-worst-case lower bound
definitions, we propose another, specifically for the preprocessing model.

Uncertainty-region lower bound(P,R) := min
(A,Ξ)

max
(P respects R)

Runtime(A,Ξ,R, P ) ,

Denote for any fixed algorithmic problem P , by L(R) the number of combinatorially distinct
outcomes of P given R. In the remainder of this section we recall the RAM definition of [13]
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to show that regardless of (A,Ξ), Ω(logL(R)) is an uncertainty region lower bound for the
time required by A to solve P.

Recalling the real RAM definition. If the reader is confident in the ability of the RAM
model to support such a lower bound, we advise the reader skips ahead. Erickson, van
der Hoog and Miltzow define the real RAM in two steps. First, they define computations
based on the (discrete) word RAM, so that discrete memory can be accessed without
unreasonable computational power. Then, they augment the word RAM with separate
real-valued computations that only work on values stored within the discrete memory cells.
Their operations include memory manipulation, real arithmetic and comparisons (which
verifies if the real value stored in a memory cell is greater than 0). For an extensive overview
of the computations that they allow, we refer to Table 1 in [13]. They say a program on
the real RAM consists of a fixed, finite indexed sequence of read-only instructions. The
machine maintains an integer program counter, which is initially equal to 1. At each time
step, the machine executes the instruction indicated by the program counter. Every real
RAM operation increases the program counter by one, apart from a comparison operation
which ends in a goto statement that can set the program counter to any discrete value. This
model thereby immediately allows the classical information theoretic lower bound argument,
even if there is some pre-stored data Ξ within memory. Indeed, let P be an algorithmic
problem such that there are L distinct outcomes and fix a program (algorithm) that reports
the correct outcome. Each outcome may be described by the sequence of instructions that
lead to it, together with a halt instruction that tells the program to stop and output the
result. Hence, the program only terminates on the correct outcome, if it arrived there via
a goto statement from a comparison instruction (all other instructions only increase the
program counter by 1, hence without comparisons the algorithm terminates at the first
outcome in the sequence). It follows, that any sequence of instructions can be converted into
a binary tree where each node is a comparison instruction and where the leaves of the tree
are lines in the sequence that store an outcome with a halt instruction. Hence regardless of
Ξ, there is an outcome stored as a leaf in the tree where the program that requires Ω(logL)
comparison instructions until it arrives at that leaf.

B Handling compound regions

We describe the algorithmic procedure for when Algorithm 1 encounters a subproblem [Ri, Rj ]
where fi(P ) or gi(P ) is a compound region. Let fi(P ) be a compound region. Then per
definition fi(P ) is a sink in the original graph: G(R0). Consequently, the region R′ in the
canonical set R0 that succeeds R must have no more remaining incoming vertical arrows (as
else, R would not have been visible from the just processed Ri). The region R′ itself cannot
be a compound region, since else R and R′ could have been compounded together. We set
fi(P ) to be R′ instead, and continue as normal.

We set the compound region R aside, with a reference to pxMax
i and add it to a separate

queue that we handle at the algorithm’s termination in O(1) time. We charge this O(1) time
to this iteration t where we added it to the special queue. Per definition, for each region Ri,
there is a unique fi(P ), so Ri gets charged at most once in this manner. It is possible that
in a later iteration t′, when a subproblem [Ri′ , Rj′ ] is considered by Algorithm 1, the region
R is gj′(P ). In this case, we do not add R to the queue again but we do store a reference to
pyMax
j′ and we charge [Ri′ , Rj′ ], O(1) time for storing this reference.
For any compound region R, that is not dominated by a point in P , there must be an
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iteration t where a subproblem is considered such that fi(P ) = R or gj(P ) = R and thus it
must be in the special queue. When we process the special queue, we do the following: we
use pxMax

i to identify the prefix of the original regions stored in R that are dominated by
points preceding R in O(log |Vi(P )|) time using galloping search (we charge the prior fi(P ),
and just as above a region can only get charged once).

At this point, we wish to briefly remark upon any possible ambiguity regarding the
runtime O(log |Vi(P )|). In the premise of Theorem 10 we defined the sets Vi(P ) as subsets
of the truncated set R, not the canonical set R0 = R? that serves as the input of the
algorithm. Note that O(log |Vi(P )|) is smaller than O(log |V ∗i (P )|) where V ∗i (P ) is a subset
of R? since R? can compound regions in Vi(P ) together. Throughout Section 5.3, we
performed a galloping search over the outgoing edges in the graph G(R?), hence we spent
O(log |V ∗i (P )|) ≤ O(log |Vi(P )|) time per search. Here, we perform a galloping search over
regions in Vi that are compounded (not in R?), and this is the first point where we use
the larger O(log |Vi(P )|) runtime. We wish to emphasise that the runtime of Section 4.1
is hereby correct: as O(log |Vi(P )|) is an over-estimation of the actual time spent on the
galloping search. We continue the argument:

Whenever gj(P ) = R, we similarly use pyMax
j to identify the suffix of the original regions

stored in R that are dominated by points in P succeeding R. For the at most 2 regions
that are intersected by the vertical line through pxMax

i and the horizontal line through
pyMax
j respectively, we explicitly retrieve their points in order to determine whether they
are dominated or not. We charge this 2C retrieval time to Ri and Rj . By Lemma 9, the
remaining sequence of original regions (if any) must appear on the Pareto front, and we do not
need to retrieve their points. When the algorithm terminates, we append the non-dominated
interval in constant time by providing the pointers in the array of Attribute 5, and we charge
this constant time to the aforementioned iteration.
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