
JoCG 14(1), 287–308, 2023 287

Journal of Computational Geometry jocg.org

CONSTRUCTING MANY FACES IN ARRANGEMENTS OF LINES AND
SEGMENTS∗

Haitao Wang†

Abstract. We present new algorithms for computing many faces in arrangements of lines
and segments. Given a set S of n lines (resp., segments) and a set P of m points in the
plane, the problem is to compute the faces of the arrangements of S that contain at least
one point of P .

For the line case, we give a deterministic algorithm of O(m2/3n2/3 log2/3(n/
√
m) +

(m + n) log n) time. This improves the previousy best deterministic algorithm [Agarwal,
1990] by a factor of log2.22 n and improves the previously best randomized algorithm [Agar-
wal, Matoušek, and Schwarzkopf, 1998] by a factor of log1/3 n in certain cases (e.g., when
m = Θ(n)).

For the segment case, we present a deterministic algorithm of O(n2/3m2/3 log n +
τ(nα2(n) + n logm + m) log n) time, where τ = min{logm, log(n/

√
m)} and α(n) is the

inverse Ackermann function. This improves the previously best deterministic algorithm
[Agarwal, 1990] by a factor of log2.11 n and improves the previously best randomized algo-
rithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of log n in certain cases (e.g.,
when m = Θ(n)). We also give a randomized algorithm of O(m2/3K1/3 log n + τ(nα(n) +
n logm + m) log n logK) expected time, where K is the number of intersections of all seg-
ments of S.

In addition, we consider the query version of the problem, that is, preprocess S
to compute the face of the arrangement of S that contains any given query point. We
present new results that improve the previous work for both the line and the segment
cases. In particulary, for the line case, we build a data structure of O(n log n) space in
O(n log n) randomized time, so that the face containing the query point can be obtained in
O(
√
n log n) time with high probability (more specifically, the query returns a binary search

tree representing the face so that standard binary-search-based queries on the face can be
handled in O(log n) time each and the face itself can be output explicitly in time linear in
its size).

∗This research was supported in part by NSF under Grants CCF-2005323 and CCF-2300356. A prelimi-
nary version of this paper appeared in Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2022).
†Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA,

haitao.wang@utah.edu

http://jocg.org/

JoCG 14(1), 287–308, 2023 288

Journal of Computational Geometry jocg.org

1 Introduction

We consider the problem of computing many faces in arrangements of lines and segments.
Given a set S of n lines (resp., segments) and a set P of m points in the plane, the problem
is to compute the faces of the arrangement of S that contain at least one point of P . These
are classical problems in computational geometry and have been studied in the literature.
There has been no progress on these problems for more than two decades. In this paper, we
present new algorithms that improve the previous work.

We assume that each point of P is in the interior of a face of the arrangement of S.
If a face of the arrangement contains more than one point of P , we only need to output the
face once. Hence, our goal is to compute the at most m faces of the arrangement of S that
are “specified” by the points of P . Note that faces in an arrangement of lines are convex,
but they may not even be simply connected in an arrangement of segments.

The line case. For the line case where S consists of n lines, it has been proved that the
combinatorial complexity of all faces of the arrangement that contain at least one point of P
is bounded by O(m2/3n2/3 +n) [12] (which matches the Ω(m2/3n2/3 +n) lower bound [22]),
as well as bounded by O(n

√
m) and O(n+m

√
n) [22]. To compute these faces, a straight-

forward approach is to first construct the arrangement of S and then find the faces using
point locations [20, 26]. This takes O(n2 + m log n) time in total. Edelsbrunner, Guibas,
and Sharir [19] gave a randomized algorithm of O(m2/3−δn2/3+2δ log n + n log n logm) ex-
pected time for any δ > 0. Later Agarwal [1] presented an improved deterministic algo-
rithm of O(m2/3n2/3 log5/3 n log1.11(m/

√
n) + (m+ n) log n) time; Agarwal, Matoušek, and

Schwarzkopf [2] proposed a randomized algorithm of O(m2/3n2/3 log(n/
√
m)+(m+n) log n)

expected time. On the other hand, the problem has a lower bound of Ω(m2/3n2/3 +n log n+
m) time due to the above Ω(m2/3n2/3 + n) lower bound [22] on the combinatorial complex-
ity of all these faces and also because computing a single face in line arrangements requires
Ω(n log n) time.1

We propose a new deterministic algorithm of O(m2/3n2/3 log2/3(n/
√
m) + (m +

n) log n) time. In certain cases (e.g., when m = Θ(n)), our result improves the deter-
ministic algorithm of [1] by a factor of log2.22 n and improves the randomized algorithm of
Edelsbrunner, Guibas, and Sharir [2] by a factor of log1/3 n.

Our algorithm follows the framework of Agarwal [1], which uses a cutting of S to
divide the problem into a collection of subproblems. To solve each subproblem, Agarwal [1]
derived another algorithm of O(n log n+m

√
n log2 n) time. Our main contribution is a more

efficient algorithm of O(n log n + m
√
n log n) time. Using our new algorithm to solve the

subproblems induced by the cutting, the asserted result can be achieved. The algorithm
of Agarwal, Matoušek, and Schwarzkopf [2] also follows a similar framework, but it uses
the random sampling technique [13] instead of cuttings to divide the problem, and a ran-
domized algorithm of O(n log n + m

√
n log n) expected time was proposed in [2] to solve

each subproblem. In particular, our algorithm runs in O(n log n) time for m = O(
√
n log n),

1A special case of the problem is to compute the lower envelope of all lines, which has an Ω(n logn) time
lower bound.

http://jocg.org/

JoCG 14(1), 287–308, 2023 289

Journal of Computational Geometry jocg.org

which matches the Ω(n log n) lower bound for computing a single face (for comparison, the
randomized algorithm of [2] runs in O(n log n) expected time for m = O(

√
n)).

The segment case. For the segment case where S consists of n line segments, it is known
that the combinatorial complexity of all faces of the arrangement that contain at least one
point of P is upper bounded by O(m2/3n2/3 + nα(n) + n logm) [5] and O(

√
mnα(n)) [18],

as well as lower bounded by Ω(m2/3n2/3 +nα(n)) [19], where α(n) is the inverse Ackermann
function. To compute these faces, as in the line case, a straightforward approach is to
first construct the arrangement of S and then find the faces using point locations [20, 26].
This takes O(n2 +m log n) time in the worst case. More precisely, the arrangement can be
constructed in O(n log n+K) time [6,9] or by simpler randomized algorithms of O(n log n+
K) expected time [10, 13, 29]; throughout the paper, we use K to denote the number of
intersections of all segments of S.

Edelsbrunner, Guibas, and Sharir [19] gave a randomized algorithm and the expected
time of the algorithm is O(m2/3−δn2/3+2δ log n + nα(n) log2 n logm), for any δ > 0. Agar-
wal [1] presented an improved deterministic algorithm of O(m2/3n2/3 log n log2.11(n/

√
m) +

n log3 n+m log n) time. Agarwal, Matoušek, and Schwarzkopf [2] derived a randomized al-
gorithm of O(n2/3m2/3 log2(K/m)+(nα(n)+n logm+m) log n) expected time and another
algorithm of O(m2/3K1/3 log2(K/m) + (nα(n) +n logm+m) log n) expected time2. On the
other hand, the lower bound Ω(m2/3n2/3 + n log n + m) for the line case is also applicable
here (and we are not aware of any better lower bound). Note that computing a single face in
an arrangement of segments can be done in O(nα(n) log n) expected time by a randomized
algorithm [10] or in O(nα2(n) log n) time by a deterministic algorithm [4] (which improve
the previous O(n log2 n) time algorithm [28] and O(nα(n) log2 n) time algorithm [19]; but
computing the upper envelope can be done faster in O(n log n) time [25]).

We propose a new deterministic algorithm of O(n2/3m2/3 log n+τ(nα2(n)+n logm+
m) log n) time, where τ = min{logm, log(n/

√
m)}. In certain cases (e.g., when m = Θ(n)

and K = Θ(n2)), our result improves the deterministic algorithm of [1] by a factor of
log2.11 n and improves the randomized algorithm of [2] by a factor of log n. In particular,
the algorithm runs in O(nα2(n) log n) time for m = O(1), which matches the time for
computing a single face [4], and runs in O(m log n) time for m = Θ(n2), which matches the
performance of the above straightforward approach. Our algorithm uses a different approach
than the previous work [1,2]. In particular, our above algorithm for the line case is utilized
as a subroutine.

IfK = o(n2), we further obtain a faster randomized algorithm of O(m2/3K1/3 log n+
τ(nα(n)+n logm+m) log n logK) expected time, where τ = min{logm, log(n/

√
m)}. This

improves the result of [2] by a factor of log n for relative large values of K, e.g., when
m = Θ(n) and K = Ω(n1+ε) for any constant ε ∈ (0, 1]. Our above deterministic algorithm
(with one component replaced by a faster randomized counterpart) is utilized as a subroutine.

2It appears that their time analysis [2] is based on the assumption that K is known. If K is not known,
their algorithm could achieve O(m2/3K1/3 log2(K/m) + (m+n logm+nα(n)) logn logK) expected time by
the standard trick of “guessing”, which is also used in this paper.

http://jocg.org/

JoCG 14(1), 287–308, 2023 290

Journal of Computational Geometry jocg.org

The face query problem. We also consider a related face query problem in which we wish
to preprocess S so that given a query point p, the face of the arrangement containing p can
be computed efficiently.

For the line case, inspired by our techniques for computing many faces and utilizing
the randomized optimal partition tree of Chan [7], we construct a data structure of O(n log n)
space in O(n log n) randomized time, so that the face Fp(S) of the arrangement of S that
contains a query point p can be computed and the query time is bounded by O(

√
n log n)

with high probability. More specifically, the query algorithm returns a binary search tree
representing the face Fp(S) so that standard binary-search-based queries on Fp(S) can be
handled in O(log n) time each, and Fp(S) can be output explicitly in O(|Fp(S)|) time.
Previously, Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, andWelzl [17] built
a data structure of O(n log n) space in O(n3/2 log2 n) randomized time, and the query time
is bounded by O(

√
n log5 n) with high probability, which is further reduced to O(

√
n log2 n)

in [23] using compact interval trees. Thus, our result improves their preprocessing time
by a factor of

√
n log n and improves their query time by a factor of log1.5 n. We further

obtain a tradeoff between the storage and the query time. For any value r < n/ logω(1) n,
we construct a data structure of O(n log(n/r) + nr) space in O(n log n + nr) randomized
time, and the query time is bounded by O(

√
n/r log n) with high probability.

For the segment case, Edelsbrunner et al. [17] also gave a data structure for the face
query problem with the following performance: the preprocessing takes Õ(n5/3) randomized
time, the space is Õ(n4/3), and the query time is bounded by Õ(n1/3) + O(κ) with high
probability, where the notation Õ hides a polylogarithmic factor and κ is the size of the
query face (note that κ can be Θ(nα(n)) in the worst case [19] and the face may not be
simply connected). Their preprocessing algorithm uses the query algorithm for the line
case as a subroutine. If we follow their algorithmic scheme but instead use our new query
algorithm for the line case as the subroutine, then the preprocessing time can be reduced to
Õ(n4/3), while the space is still Õ(n4/3) and the query time is still bounded by Õ(n1/3)+O(κ)
with high probability.

Outline. The rest of the paper is organized as follows. We define notation and introduce
some concepts in Section 2. Our algorithms for computing many faces are described in
Sections 3 and 4. The query problem is discussed in Section 5.

2 Preliminaries

We define some notation that is applicable to both the line and segment cases. Let S be a
set of n line segments (a line is considered a special line segment) and let P be a set of m
points in the plane. For a subset S′ ⊆ S, we use A(S′) to denote the arrangement of S′.
For any point p ∈ P , we use Fp(S′) to denote the face of A(S′) that contains p. A face of
A(S′) is nonempty if it contains a point of P . Hence, the problem of computing many faces
is to compute all nonempty cells of A(S). Note that if a nonempty face contains more than
one point of P , then we only need to output the face once.

For any compact region A and a set Q of points in the plane, we often use Q(A) to

http://jocg.org/

JoCG 14(1), 287–308, 2023 291

Journal of Computational Geometry jocg.org

denote the subset of Q in A, i.e., Q(A) = Q ∩A.

Cuttings. Let H be a set of n lines in the plane. For a compact region A in the plane,
we use HA to denote the subset of lines of H that intersect the interior of A (we also say
that these lines cross A). A cutting for H is a collection Ξ of closed cells (each of which is
a triangle) with disjoint interiors, which together cover the entire plane [8, 27]. The size of
Ξ is the number of cells in Ξ. For a parameter r with 1 ≤ r ≤ n, a (1/r)-cutting for H is a
cutting Ξ satisfying |Hσ| ≤ n/r for every cell σ ∈ Ξ.

A cutting Ξ′ c-refines another cutting Ξ if every cell of Ξ′ is contained in a single cell
of Ξ and every cell of Ξ contains at most c cells of Ξ′. A hierarchical (1/r)-cutting (with two
constants c and ρ) is a sequence of cuttings Ξ0,Ξ1, . . . ,Ξk with the following properties. Ξ0

is the entire plane. For each 1 ≤ i ≤ k, Ξi is a (1/ρi)-cutting of size O(ρ2i) which c-refines
Ξi−1. In order to make Ξk a (1/r)-cutting, we set k = Θ(log r) so that ρk−1 < r ≤ ρk.
Hence, the size of Ξk is O(r2). If a cell σ ∈ Ξi−1 contains a cell σ′ ∈ Ξi, we say that σ is the
parent of σ′ and σ′ is a child of σ. As such, one could view Ξ as a tree structure in which
each node corresponds to a cell σ ∈ Ξi, 0 ≤ i ≤ k.

For any 1 ≤ r ≤ n, a hierarchical (1/r)-cutting of size O(r2) for H (together with
the sets Hσ for every cell σ of Ξi for all i = 0, 1, . . . , k) can be computed in O(nr) time by
Chazelle’s algorithm [8].

3 Computing many cells in arrangements of lines

In this section, we consider the line case for computing many cells. Let S be a set of n lines
and P be a set of m points in the plane. Our goal is to compute the nonempty cells of the
arrangement A(S). Recall that each point of P lies in the interior of a face of A(S). For
ease of exposition, we make a general position assumption that no line of S is vertical and no
three lines of S are concurrent. Degenerate cases can be handled by standard techniques [21].
Under the assumption, each point of P is in the interior of a face of A(S).

First of all, if m ≥ n2/2, then the problem can be solved in O(m log n) time using
the straightforward algorithm mentioned in Section 1 (i.e., first compute A(S) and then
find the nonempty cells using point location). In what follows, we assume that m < n2/2.
Our algorithm follows the high-level scheme of Agarwal [1] by using a cutting of S to
divide the problem into many subproblems. The difference is that we develop an improved
algorithm for solving each subproblem. In the following, we first present an algorithm of
O(n log n + m

√
n log n) time in Section 3.1, and then use it to solve each subproblem and

thus obtain our main algorithm with the asserted time in Section 3.2.

http://jocg.org/

JoCG 14(1), 287–308, 2023 292

Journal of Computational Geometry jocg.org

p∗

S∗
+(p

∗)

S∗
−(p

∗)

H+(p
∗)

H−(p
∗)

F ∗
p (S)

Figure 1: Illustrating the dual plane: The (red) thick edges between the two inner common tangents (the
dotted segments) constitute F ∗p (S), which is dual to Fp(S).

3.1 The first algorithm

We say that S and P are in the primal plane and we consider the problem in the dual plane.
Let S∗ be the set of dual points of S and let P ∗ be the set of dual lines of P .3 Consider a
point p ∈ P and the face Fp(S) of A(S) that contains p. In the dual plane, the dual line p∗

of p partitions S∗ into two subsets and the portions of the convex hulls of the two subsets
between their inner common tangents are dual to the face Fp(S) [1, 17]; e.g., see Fig 1.

Let S∗+(p∗) denote the subset of S∗ above p∗ and S∗−(p∗) the subset of S∗ below p∗

(note that p∗ is not vertical). We use H+(p∗) to denote the half hull of the convex hull of
S∗+(p∗) facing p∗ (e.g., if p∗ is horizontal, then H+(p∗) is the lower hull; see Fig 1). Similarly,
we use H−(p∗) to denote the half hull of the convex hull of S∗−(p∗) facing p∗ and we call it
the upper hull. As such, Fp(S) is dual to the portions of H+(p∗) and H−(p∗) between their
inner common tangents, and we use F ∗p (S) to denote the dual of Fp(S). Our algorithm to
be presented below will implicitly determine H+(p∗) and H−(p∗). More precisely, each of
them is maintained in a binary search tree of height O(log n) that can support standard
binary search in O(log n) time. After that, their inner common tangents can be computed
in O(log n) time [23] and then F ∗p (S) can be output in additional O(|F ∗p (S)|) time. Again,
if F ∗p (S) is the same for multiple points p ∈ P , then F ∗p (S) will be output only once. In
the following, depending on the context, a convex hull (resp., upper hull, lower hull) may
refer to a binary search tree that represents it. For example, “computing H+(p∗)” means
“computing a binary search tree that represents H+(p∗)”.

We compute a hierarchical (1/r)-cutting Ξ0,Ξ1, . . . ,Ξk for the lines of P ∗ with k
and a constant ρ as defined in Section 2, and with r to be determined later, along with the
subsets P ∗σ of lines of P ∗ crossing σ for all cells σ of Ξi for all i = 0, 1, . . . , k. This can be
done in O(mr) time [8]. Recall that k = O(log r). For each point l∗ ∈ S∗, we find the cell
σ ∈ Ξi containing l∗ for all i = 0, 1, . . . , k and store l∗ in the set S∗(σ), i.e., S∗(σ) = S∗ ∩ σ.
Computing the sets S∗(σ) for all cells σ ∈ Ξi, i = 0, 1, . . . , k, takes O(n log r) time by point
locations [8]. More specifically, for each point l∗ ∈ S∗, starting from Ξ0, which is the only
cell that is the entire plane, suppose we know the cell σ of Ξi that contains l∗; then since σ

3We use the following duality [14]: A point (a, b) in the primal plane is dual to the line y = ax− b in the
dual plane; a line y = cx+ d in the primal plane is dual to the point (c,−d) in the dual plane.

http://jocg.org/

JoCG 14(1), 287–308, 2023 293

Journal of Computational Geometry jocg.org

has O(1) cells, locating the cell of Ξi+1 containing l∗ takes O(1) time. As such, performing
point locations for each point l∗ as above takes O(log r) time. As each point of S∗ is stored
in a single cell of Ξi, for each 0 ≤ i ≤ k, the total size of S∗(σ) for all cells σ of the cutting
is O(n log r). Suppose we sort all points of S∗ by x-coordinate initially; then we can obtain
the sorted lists of all sets S∗(σ) of all cells in O(n log r) time in total. Indeed, if we perform
point locations for points of S∗ following their sorted order, then points of each S∗(σ) are
automatically sorted. Using the sorted lists, for each cell σ ∈ Ξi, i = 0, 1, . . . , k, we compute
the convex hull of S∗(σ) in O(|S∗(σ)|) time (and store it in a balanced binary search tree).
All above takes O(mr+ n log r+ n log n) time in total, which is O(mr+ n log n) time since
r ≤ m and m < n2/2.

Next, for each cell σ of the last cutting Ξk, if |S∗(σ)| > n/r2, then we further
triangulate σ (which itself is a triangle) into Θ(|S∗(σ)|·r2/n) triangles each of which contains
at most n/r2 points of S∗. As points of S∗(σ) are already sorted by x-coordinate, the
triangulation can be easily done in O(|S∗(σ)|) time, as described next. By sweeping the
points of S∗(σ) from left to right, we can partition σ into d|S∗(σ)| ·r2/ne+1 trapezoids each
of which contains no more than n/r2 points of S∗ (note that the “+1” is because we need
to add a partition line through the middle vertex of the triangle). Then, we partition each
trapezoid into two triangles. In this way, σ is triangulated into at most 2d|S∗(σ)| · r2/ne+ 2
triangles each containing at most n/r2 points of S∗. Processing all cells of Ξk as above takes
O(n) time in total. For convenience, we use Ξk+1 to refer to the set of all new triangles
obtained above. Since Ξk has O(r2) cells, by our way of computing the triangles of Ξk+1,
the size of Ξk+1 is bounded by O(r2). For each triangle σ′ ∈ Ξk+1, if σ′ is in the cell σ of
Ξk, then we also say that σ is the parent of σ′ and σ′ is a child of σ (note that the number of
children of σ may not be O(1)). We also define S∗(σ′) = S∗∩σ′, and compute and store the
convex hull of S∗(σ′). This takes O(n) time for all triangles σ′ of Ξk+1, due to the presorting
of S∗.

For reference purpose, we consider the above the preprocessing step of our algorithm.

For each line p∗ ∈ P ∗, we process it as follows. Without loss of generality, we assume
that p∗ is horizontal (this assumption is only to make the discussion more convenient since
otherwise we could simply rotate the plane so that p∗ becomes horizontal). Let Ψ(p∗) denote
the set of all cells σ of Ξi crossed by p∗, for all i = 0, 1, . . . , k. Let Ψk+1(p∗) denote the set
of all cells σ of Ξk+1 crossed by p∗. For each cell σ ∈ Ψk+1(p∗), we use σ+(p∗) to denote
the portion of σ above p∗, and let S∗(σ+(p∗)) = S∗ ∩ σ+(p∗). Next we define a set Ψ+(p∗)
of cells of Ξi, i = 0, 1, . . . , k + 1. For each cell σ′ ∈ Ψ(p∗), suppose σ′ is in Ξi for some
i ∈ [0, k]. For each child σ of σ′ (thus σ ∈ Ξi+1), if σ is completely above the line p∗, then
σ is in Ψ+(p∗). We have the following lemma.

Lemma 1. S∗+(p∗) is the union of
⋃
σ∈Ψ+(p∗) S

∗(σ) and
⋃
σ∈Ψk+1(p∗) S

∗(σ+(p∗)).

Proof. First of all, by definition, all points of S∗(σ) for all cells σ ∈ Ψ+(p∗) are above p∗ and
thus are in S∗+(p∗); similarly, all points of S∗(σ+(p∗)) for all cells σ ∈ Ψk+1(p∗) are above
p∗ and thus are in S∗+(p∗). Hence, both

⋃
σ∈Ψ+(p∗) S

∗(σ) and
⋃
σ∈Ψk+1(p∗) S

∗(σ+(p∗)) are
subsets of S∗+(p∗).

On the other hand, consider a point l∗ ∈ S∗+(p∗). By definition, l∗ is above the line

http://jocg.org/

JoCG 14(1), 287–308, 2023 294

Journal of Computational Geometry jocg.org

p∗. It suffices to prove that l∗ must be in either
⋃
σ∈Ψ+(p∗) S

∗(σ) or
⋃
σ∈Ψk+1(p∗) S

∗(σ+(p∗)).
If l∗ is in a cell σ of Ψk+1 that is crossed by p∗ (thus σ ∈ Ψk+1(p∗)), then since l∗ is above p∗,
l∗ must be in S∗(σ+(p∗)) and thus is in

⋃
σ∈Ψk+1(p∗) S

∗(σ+(p∗)). Otherwise, l∗ is not in any
cell of Ξk+1 crossed by p∗. Hence, l∗ must be in a cell σ ∈ Ξi+1 that is not crossed by p∗ but
whose parent cell σ′ ∈ Ξi is crossed by p∗, for some i ∈ [0, k], because Ξ0, which consists of
a single cell that is the entire plane, is crossed by p∗. As such, σ′ is in Ψ(p∗). Further, since
σ is not crossed by p∗ and σ contains l∗, which is above p∗, σ must be completely above p∗.
Therefore, σ must be in Ψ+(p∗), and thus l∗ is in

⋃
σ∈Ψ+(p∗) S

∗(σ).

Lemma 1 implies that if we have convex hulls of S∗(σ) for all cells σ ∈ Ψ+(p∗)
and convex hulls of S∗(σ+(p∗)) for all cells σ ∈ Ψk+1(p∗), then H+(p∗) is the lower hull
of all these convex hulls; define H+(p∗) as the set of these convex hulls. Thanks to our
preprocessing step, we have the following lemma.

Lemma 2. We can obtain (binary search trees representing) the convex hulls of H+(p∗) for
all lines p∗ ∈ P ∗ in O(mr +mn/r) time.

Proof. First of all, the sets Ψ(p∗) for all lines p∗ ∈ P ∗ can be obtained in O(mr) time when
we compute the cutting [8]. This also means that the total size |Ψ(p∗)| for all p∗ ∈ P ∗ is
O(mr); as a matter of fact, the total size |Ψ(p∗)| for all p∗ ∈ P ∗ is equal to

∑k
i=0

∑
σ∈Ξi

|P ∗σ |,
which is O(mr) [8].

For each cell σ′ ∈ Ψ(p∗), suppose σ′ is in Ξi, for some i ∈ [0, k]. We check every
child σ (in Ξi+1) of σ′ to determine whether it is in Ψ+(p∗). This computes the set Ψ+(p∗).
For the runtime, since σ′ has O(1) children σ ∈ Ξi+1 for i < k, all cells σ of Ψ+(p∗) that
are not in Ξk+1 can be obtained in a total of O(mr) time for all p∗ ∈ P ∗. For the time we
spend on computing cells of Ψ+(p∗) that are in Ξk+1, observe that each cell σ of Ξk+1 will be
checked t times in the entire algorithm for all p∗ ∈ P ∗, where t is the number of lines of P ∗

crossing the parent σ′ ∈ Ξk of σ. According to the property of the cutting Ξk, t = O(m/r).
Hence, each cell σ of Ξk+1 will be checked O(m/r) times in the entire algorithm. As Ξk+1

has O(r2) cells, the total time for finding cells of Ψ+(p∗) that are in Ξk+1 is bounded by
O(mr). As such, computing the set Ψ+(p∗) takes O(mr) time. Recall that for each cell
σ ∈ Ξi, i = 0, 1, . . . , k, a binary search tree representing the convex hull of S∗(σ) has been
computed in the preprocessing step. Hence, convex hulls of all cells of Ψ+(p∗) are available.

We proceed to compute the convex hulls of S∗(σ+(p∗)) for all cells σ ∈ Ψk+1(p∗). We
first compute the set Ψk+1(p∗), using an algorithm similar to above. For each cell σ′ ∈ Ψ(p∗),
which is already computed above, if σ′ is in Ξk, then we check every child of σ′ and determine
whether it is in Ψk+1(p∗). In this way, the sets Ψk+1(p∗) for all lines p∗ ∈ P ∗ can be computed
in O(mr) time. This also implies that

∑
p∗∈P ∗ |Ψk+1(p∗)| = O(mr). Next, for each p∗ ∈ P ∗,

for each cell σ ∈ Ψk+1(p∗), we compute the convex hull of S∗(σ+(p∗)), which can be done
in O(|S∗(σ)|) time since points of S∗(σ) are already sorted. As |S∗(σ)| ≤ n/r2 for all cells
σ ∈ Ξk+1, Ψk+1(p∗) ⊆ Ξk+1, and

∑
p∗∈P ∗ |Ψk+1(p∗)| = O(mr), the total time for computing

the convex hulls of S∗(σ+(p∗)) for all cells σ ∈ Ψk+1(p∗) for all lines p∗ ∈ P ∗ is O(mr ·n/r2),
which is O(mn/r).

http://jocg.org/

JoCG 14(1), 287–308, 2023 295

Journal of Computational Geometry jocg.org

In summary, binary search trees representing convex hulls of H+(p∗) for all lines
p∗ ∈ P ∗ can be obtained in O(mr +mn/r) time in total.

With the preceding lemma, our next goal is to compute the lower hull of all convex
hulls of H+(p∗). To this end, the observation in the following lemma is critical.

Lemma 3. For each p∗ ∈ P ∗, the convex hulls of H+(p∗) are pairwise disjoint.

Proof. According to the definition ofH+(p∗), each convex hull is inside a cell either in Ψ+(p∗)
or in Ψk+1(p∗). Hence, to prove the lemma, it suffices to show that cells of Ψ+(p∗)

⋃
Ψk+1(p∗)

are pairwise disjoint. Note that each cell of Ψ+(p∗)
⋃

Ψk+1(p∗) is a cell in Ξi, for some
i ∈ [0, k + 1].

Assume to the contrary that two different cells σ1 and σ2 of Ψ+(p∗)
⋃

Ψk+1(p∗) are
not disjoint. Then, by the properties of the hierarchical cutting, one of σ1 and σ2 must be
an ancestor of the other. Without loss of generality, we assume that σ1 is an ancestor of σ2,
and thus σ2 is contained in σ1. Suppose σ1 is in Ξi and σ2 is in Ξj with 0 ≤ i < j ≤ k + 1.
As i < k + 1, by definition, σ1 cannot be in Ψk+1(p∗) and thus must be in Ψ+(p∗). Hence,
σ1 must be completely above the line p∗. As σ2 is contained in σ1, σ2 is also above p∗. As
such, σ2 cannot be in Ψk+1(p∗) and thus is in Ψ+(p∗). By the definition of Ψ+(p∗), the line
p∗ must cross the parent cell σ′ of σ2. On the other hand, since σ1 is an ancestor of σ2 and
σ1 6= σ2, either σ1 = σ′ or σ1 is an ancestor of σ′. In either case, σ1 must contain σ′. Since
σ1 is above the line p∗, we obtain that σ′ is also above p∗. This incurs contradiction because
p∗ crosses σ′.

With the convex hulls computed in Lemma 2 and the property in Lemma 3, the next
lemma computes the lower hull H+(p∗) for all p∗ ∈ P ∗.

Lemma 4. For each p∗ ∈ P ∗, suppose the convex hulls of H+(p∗) are available; then we
can compute (a binary search tree representing) the lower hull H+(p∗) in O(|H+(p∗)| log n)
time.

Proof. Without loss of generality, we assume that p∗ is horizontal. Let t = |H+(p∗)|. Note
that the size of each convex hull of H+(p∗) is at most n. Also, since convex hulls of H+(p∗)
are pairwise disjoint by Lemma 3, it holds that t ≤ n.

Because we are to compute the lower hull of the convex hulls of H+(p∗), it suffices to
only consider the lower hull of each convex hull ofH+(p∗). Note that since binary search trees
for all convex hulls of H+(p∗) are available, we can obtain binary search trees representing
their lower hulls in O(t log n) time by first finding the leftmost and rightmost vertices of the
convex hulls and then performing split/merge operations on the trees.

The first step is to compute the portions of each lower hull H of H+(p∗) that is
vertically visible to p∗ (we say that a point q ∈ H is vertically visible to p∗ if the vertical
segment connecting q to p∗ does not cross any other lower hull of H+(p∗)). In fact, the
visible portions constitute exactly the lower envelope of the lower hulls of H+(p∗), denoted
by L(H+(p∗)) (e.g., see Fig. 2). Below we describe an algorithm to compute L(H+(p∗)) in
O(t log n) time.

http://jocg.org/

JoCG 14(1), 287–308, 2023 296

Journal of Computational Geometry jocg.org

p∗

H+(p
∗)

Figure 2: Illustrating the lower envelope L(H+(p∗)) (the thick red edges) of the convex hulls of H+(p∗).
The dashed segment inside each convex hull is the representative segment.

As convex hulls ofH+(p∗) are pairwise disjoint by Lemma 3, the number of (maximal)
visible portions of all lower hulls of H+(p∗) is at most 2t − 1. For each convex hull H of
H+(p∗), consider the segment connecting the leftmost and rightmost endpoints of H, and
call it the representative segment of H (e.g., see Fig. 2). Let Q be the set of representative
segments of all convex hulls of H+(p∗). Because convex hulls of H+(p∗) are pairwise disjoint,
an easy but crucial observation is that segments of Q are pairwise disjoint and the lower
envelope L(Q) of the segments of Q corresponds to L(H+(p∗)) in the following sense: if ab
is a maximal segment of L(Q) that lies on a representative segment of a convex hull H of
H+(p∗), then the vertical projection of ab onto the lower hull of H is a maximal portion
of the lower hull of H on L(H+(p∗)), and that portion can be obtained in O(log n) time
by splitting the binary search tree for the lower hull of H at the x-coordinates of a and b,
respectively. As such, once L(Q) is computed, L(H+(p∗)) in which each maximal portion is
represented by a binary search tree can be obtained in additional O(t log n) time. As |Q| = t
and segments of Q are pairwise disjoint, L(Q) can be constructed in O(t log t) time by an
easy plane sweeping algorithm. Hence, L(H+(p∗)) can be computed in O(t log n) time in
total.

With L(H+(p∗)) in hand, we can now compute the lower hull H+(p∗) in additional
O(t log n) time, as follows. As discussed above, L(H+(p∗)) consists of at most 2t− 1 pieces
sorted from left to right, each of which is a portion of a lower hull ofH+(p∗) and is represented
by a binary search tree. We merge the first two pieces by computing their common tangent,
which can be done in O(log n) time [30] as the two pieces are separated by a vertical line.
After the merge, we obtain a binary search tree that represents the lower hull of the first two
pieces of L(H+(p∗)). Next, we merge this lower hull with the third piece of L(H+(p∗)) in
the same way. We repeat this process until all pieces of L(H+(p∗)) are merged, after which
a binary search tree representing H+(p∗) is obtained. The runtime is bounded by O(t log n)
as each merge takes O(log n) time and L(H+(p∗)) has at most 2t− 1 pieces.

In summary, once the convex hulls of H+(p∗) are available, we can compute the lower
hull H+(p∗) in O(|H+(p∗)| log n) time.

Applying Lemma 4 to all lines of P ∗ will compute the lower hulls H+(p∗) for all
p∗ ∈ P ∗. One issue is that after we apply the algorithm for one line p∗ ∈ P ∗, convex hulls of
H+(p∗) may have been destroyed due to the split and merge operations during the algorithm.
The destroyed convex hulls may be used later when we apply the algorithm for other lines
of P ∗. The remedy is to use fully persistent binary search trees with path-copying [16, 31]

http://jocg.org/

JoCG 14(1), 287–308, 2023 297

Journal of Computational Geometry jocg.org

to represent convex hulls so that standard operations on the trees (e.g., merge, split) can
be performed in O(log n) time each and after each operation the original trees are still kept
intact (so that future operations can still be performed on the original trees as usual). In
this way, whenever we apply the algorithm for a line of P ∗, we always have the original trees
representing the convex hulls available, and thus the runtime of the algorithm in Lemma 4
is not affected (although O(log n) extra space will be incurred after each operation on the
trees).

For the time analysis, by Lemma 2, computing convex hulls of H+(p∗) for all lines
p∗ ∈ P ∗ takes O(mr + mn/r) time. Then, applying Lemma 4 to all lines of P ∗ takes
O(
∑

p∗∈P ∗ |H+(p∗)| · log n) time in total, which is bounded by O(mr log n) due to the fol-
lowing lemma.

Lemma 5.
∑

p∗∈P ∗ |H+(p∗)| = O(mr).

Proof. The lemma actually has been implied by the time analysis of Lemma 2. We provide
a direct proof here. Notice that |H+(p∗)| = |Ψ+(p∗)| + |Ψk+1(p∗)|. Below we will bound
both

∑
p∗∈P ∗ |Ψ+(p∗)| and

∑
p∗∈P ∗ |Ψk+1(p∗)|.

Recall that Ψk+1(p∗) ⊆ Ξk+1. Consider a cell σ ∈ Ξk+1. If σ ∈ Ψk+1(p∗), then σ′

must be crossed by the line p∗, where σ′ is the parent cell of σ in Ξk. Hence, the number of
lines p∗ ∈ P ∗ such that σ is in Ψk+1(p∗) is no more than the number lines of P ∗ crossing σ′,
which is O(m/r). As Ξk+1 has O(r2) cells,

∑
p∗∈P ∗ |Ψk+1(p∗)| is bounded by O(r2 ·m/r),

which is O(mr).

To bound
∑

p∗∈P ∗ |Ψ+(p∗)|, we partition Ψ+(p∗) into two subsets, Ψ1
+(p∗), which

consists of those cells of Ψ+(p∗) that are in Ξk+1, and Ψ2
+(p∗) = Ψ+(p∗) \Ψ1

+(p∗).

• For each cell σ ∈ Ψ1
+(p∗), by definition, σ′ must be crossed by the line p∗, where σ′ is

the parent cell of σ in Ξk. Hence, the number of lines p∗ ∈ P ∗ such that σ is in Ψ1
+(p∗)

is no more than the number lines of P ∗ crossing σ′, which is O(m/r). Following the
same analysis as above, we can derive that

∑
p∗∈P ∗ |Ψ1

+(p∗)| = O(mr).

• For each cell σ ∈ Ψ2
+(p∗), σ is in Ξi for some i ∈ [1, k]. By definition, σ′ must be crossed

by the line p∗, where σ′ is the parent cell of σ in Ξi−1. Hence, the number of lines
p∗ ∈ P ∗ such that σ is in Ψ1

+(p∗) is no more than the number lines of P ∗ crossing σ′,
which is O(m/ρi−1), where ρ is the constant associated with the hierarchical cutting as
explained before. As Ξi has O(ρ2i) cells,

∑
p∗∈P ∗ |Ψ1

+(p∗)| is big-O of
∑

1≤i≤km/ρ
i−1 ·

ρ2i =
∑

1≤i≤kmρ
i+1, which is O(mr) as k = Θ(logρ r) and ρ is a constant. As such,∑

p∗∈P ∗ |Ψ1
+(p∗)| = O(mr).

Therefore, we obtain that
∑

p∗∈P ∗ |Ψ+(p∗)| = O(mr).

In summary, computing lower hulls H+(p∗) for all p∗ ∈ P ∗ can be done in a total of
O(n log n + n log r + mr log n + mn/r) time. Analogously, we can also compute the upper
hulls H−(p∗) for all p∗ ∈ P ∗. Then, for each line p∗ ∈ P ∗, we compute the two inner
common tangents of H+(p∗) and H−(p∗), which can be done in O(log n) time [23]. With

http://jocg.org/

JoCG 14(1), 287–308, 2023 298

Journal of Computational Geometry jocg.org

the two inner common tangents as well as the two hulls H+(p∗) and H−(p∗), the dual face
F ∗p (S), or the face Fp(S) in the primal plane, can be implicitly determined. More precisely,
given H+(p∗) and H−(p∗), we can obtain a binary search tree representing Fp(S) in O(log n)
time. The tree can be used to support standard binary search on Fp(S), which is a convex
polygon. Outputting Fp(S) explicitly takes O(|Fp(S)|) additional time.

To avoid reporting a face more than once, we can remove duplication in the following
way. Due to the general position assumption, an easy observation is that Fp1(S) = Fp2(S)
for two points p1 and p2 of P if and only if the leftmost vertex of Fp1(S) is the same as that
of Fp2(S). Also note that the leftmost and rightmost vertices of Fp(S) are dual to the two
inner common tangents of H+(p∗) and H−(p∗), respectively. Hence, for any two points p1

and p2 of P , we can determine whether they are from the same face of A(S) by comparing
the corresponding inner common tangents. In this way, the duplication can be removed in
O(m logm) time, which is O(m log n) as m < n2/2. After that, we can report all distinct
faces. Note that outputting all distinct faces explicitly takes O(n+m

√
n) time as the total

combinatorial complexity of m distinct faces in A(S) is bounded by O(n+m
√
n) [22].

To recapitulate, computing the distinct faces Fp(S) implicitly for all p ∈ P takes
O(n log n + n log r + mr log n + mn/r) time and reporting them explicitly takes additional
O(n + m

√
n) time. Setting r = min{m,

√
n/ log n} leads to the total time bounded by

O(n log n+m
√
n log n).

Theorem 1. Given a set S of n lines and a set P of m points in the plane, the faces of the
arrangement of the lines containing at least one point of P can be computed in O(n log n+
m
√
n log n) time.

Remark. The algorithm runs in O(n log n) for m = O(
√
n log n), which matches the

Ω(n log n) lower bound for computing a single face. For comparison, Agarwal [1] gave an
algorithm of O(n log n + m

√
n log2 n) time, and Agarwal, Matoušek, and Schwarzkopf [2]

presented a randomized algorithm of O(n log n+m
√
n log n) expected time.

3.2 The second algorithm

We now present our main algorithm, which follows the scheme of Agarwal [1], but replaces
a key subroutine by Theorem 1.

We first compute a (1/r)-cutting Ξ for the lines of S in O(nr) time [8], with the
parameter r to be determined later. We then locate the cell of Ξ containing each point of P ;
this can be done in O(m log r) time for all points of P [8]. Consider a cell σ of Ξ. Recall that
σ is a triangle. Let P (σ) = P ∩ σ. Let Sσ be the subset of lines of S crossing σ. Consider
a point p ∈ P (σ). Recall the definition in Section 2 that Fp(Sσ) denotes the face of the
arrangement A(Sσ) that contains p. Observe that the face Fp(S) is Fp(Sσ) if Fp(Sσ) does
not intersect the boundary of σ. The zone of σ in A(Sσ) is defined as the collection of face
portions F ∩σ for all faces F ∈ A(Sσ) that intersect the boundary of σ.4 If Fp(S) 6= Fp(Sσ),

4This definition of zone slightly differs from the traditional definition where each entire face that intersects
the boundary of σ is included.

http://jocg.org/

JoCG 14(1), 287–308, 2023 299

Journal of Computational Geometry jocg.org

then Fp(S) is divided into multiple portions, each of which is a face in the zone of some cell
of Ξ (and Fp(Sσ) is one of these portions). Hence, to find all nonempty faces of A(S), it
suffices to compute, for every cell σ ∈ Ξ, the faces of A(Sσ) containing the points of P (σ)
and the zone of σ. The nonempty faces of A(S) that are split among the zones can be
obtained by merging the zones along the edges of cells of Ξ.

To compute the faces of A(Sσ) containing the points of P (σ), we apply Theorem 1,
which takes O(nσ log nσ +mσ

√
nσ log nσ) time, with nσ = |Sσ| and mσ = |Pσ|. Computing

the zone for σ can be done in O(nσ log nσ) time, e.g., by the algorithm of [3] or a recent
simple algorithm [32]. Since nσ = O(n/r),

∑
σ∈Ξmσ = m, and Ξ has O(r2) cells, the total

time for solving the subproblem for all cells of Ξ is

O

(∑
σ∈Ξ

nσ log nσ +mσ

√
nσ log nσ

)
= O

(
r2 · (n/r) · log(n/r) +

√
n/r · log(n/r) ·

∑
σ∈Ξ

mσ

)
= O

(
nr log(n/r) +m

√
n/r · log(n/r)

)
.

After all cells of Ξ are processed as above, we merge the zones of all cells, which can
be done in time linear in the total size of the zones of all cells of Ξ because zones of different
cells of Ξ are disjoint [1]. The total size of all zones is O(nr) as the size of the zone for each
cell is O(n/r) and Ξ has O(r2) cells.

In summary, the total time of the algorithm is bounded by O(m log r+nr log(n/r)+
m
√
n/r · log(n/r)). By setting r = max{m2/3/(n1/3 · log1/3(n/

√
m)), 1}, we obtain that the

total time is bounded by O((nm log(n/
√
m))2/3 + (n + m) log n). Indeed, since m < n2/2,

m2/3/(n1/3 · log1/3(n/
√
m)) < n and logm = O(log n). If m2/3/(n1/3 · log1/3(n/

√
m)) <

1, then r = 1 and m <
√
n log n, and thus m log r + nr log(n/r) + m

√
n/r · log(n/r) =

m + n log n + m
√
n log n = O(n log n); otherwise, r = m2/3/(n1/3 · log1/3(n/

√
m)) and

m log r + nr log(n/r) + m
√
n/r · log(n/r) = O((nm log(n/

√
m))2/3 + m log n). Combining

with the O(m log n) time algorithm for the case m ≥ n2/2, we obtain the following result.

Theorem 2. Given a set S of n lines and a set P of m points in the plane, the faces
of the arrangement of the lines containing at least one point of P can be computed in
O(n2/3m2/3 log2/3 n√

m
+ (n+m) log n) time.

4 Computing many cells in arrangements of segments

In this section, we consider the segment case for computing many faces. Let S be a set of
n line segments and P be a set of m points in the plane. The problem is to compute all
distinct non-empty faces of A(S). Note that these faces will be output explicitly. For ease of
exposition, we make a general position assumption that no segment of S is vertical, no three
segments of S are concurrent, no two segments of S share a common endpoint, and no point
of P lies on a segment of S. Degenerate cases can be handled by standard techniques [21].

In the following, we first present our deterministic algorithm and then give the ran-
domized result, which uses the deterministic algorithm as a subroutine.

http://jocg.org/

JoCG 14(1), 287–308, 2023 300

Journal of Computational Geometry jocg.org

4.1 The deterministic algorithm

If m ≥ n2/2, then the problem can be solved in O(m log n) time using the straightforward
algorithm mentioned in Section 2 (i.e., first compute A(S) and then find the non-empty
cells using point locations). In what follows, we assume that m < n2/2, and thus logm =
O(log n). Let E denote the set of the endpoints of all segments of S. Let L denote the set
of supporting lines of all segments of S.

Initially, we sort the points of E (resp., P) by x-coordinate. We compute a (1/r)-
cutting Ξ for L in O(nr) time [8], for a sufficiently large constant r. We then locate the cell
of Ξ containing each point of P ; this can be done in O(m log r) time for all points of P [8].
Consider a cell σ of Ξ. Recall that σ is a triangle. Let P (σ) = P ∩σ and E(σ) = E ∩σ. Let
Sσ be the subset of segments of S intersecting σ. Note that |Sσ| = O(n/r) and Ξ has O(r2)
cells. If |E(σ)| > n/r2, then we triangulate σ into at most 2d|E(σ)| ·r2/ne+2 triangles each
of which contains at most n/r2 points of E. This can be done by first sorting all points of
E(σ) and then using a sweeping algorithm as described in Section 3.1. Due to the presorting
of E, the sorting of E(σ) for all cells σ of Ξ can be done in O(n) time (indeed, as discussed
in Section 3.1, if we perform the point locations for points of E in the sorted order, then
points of E(σ) for each cell σ are automatically sorted) and thus the triangulation takes
O(n) time in total for all cells of Ξ. By slightly abusing notation, we still use Ξ to denote
the set of all new triangles for all original cells (if an original cell was not triangulated, then
we also include it in the new Ξ). The new Ξ now has the following properties: each cell of
Ξ is intersected by O(n/r) segments of S, Ξ has O(|E|/(n/r2) + r2) = O(r2) cells, and each
cell of Ξ contains at most n/r2 points of E.

For each cell σ ∈ Ξ, if |P (σ)| > m/r2, then we further triangulate σ into at most
2d|P (σ)| · r2/me+ 2 triangles each of which contains at most m/r2 points of P . Due to the
presorting of P , the triangulation can be done in O(m) time in total for all cells of Ξ, in the
same way as above for E(σ). By slightly abusing notation, we still use Ξ to denote the set of
all new triangles. The new Ξ now has the following properties: each cell of Ξ is intersected
by O(n/r) segments of S, Ξ has O(r2) cells, each cell of Ξ contains at most n/r2 points of
E, and each cell of Ξ contains at most m/r2 points of P .

For each cell σ ∈ Ξ, we define Sσ, E(σ), and P (σ) in the same way as before. We
say that a segment of Sσ is a short segment of σ if it has an endpoint in the interior of σ and
is a long segment otherwise. Let S1(σ) denote the set of long segments of σ and S2(σ) the
set of short segments of σ. Since S1(σ) ⊆ Sσ and |Sσ| = O(n/r), we have |S1(σ)| = O(n/r).
Also note that |S2(σ)| ≤ |E(σ)|. As |E(σ)| ≤ n/r2, it holds that |S2(σ)| ≤ n/r2.

For each cell edge e of Ξ, we define its zone as the set of faces of A(S) intersected by
e, which can be computed in O(nα2(n) log n) time [4] (note that computing the zone in an
arrangement of segments can be reduced to computing a single face and the size of the zone
is O(nα(n)) [18]). Consider a point p ∈ P (σ) for any cell σ ∈ Ξ. Recall the definition in
Section 2 that Fp(Sσ) denotes the face of the arrangement A(Sσ) that contains p. If Fp(Sσ)
does not intersect any edge of σ, then Fp(S) is Fp(Sσ). If Fp(Sσ) intersects an edge of σ,
then Fp(S) must be a face of the zone of an edge of σ (and that face contains p).

In light of the above discussion, our algorithm works as follows. We first compute the

http://jocg.org/

JoCG 14(1), 287–308, 2023 301

Journal of Computational Geometry jocg.org

zones for all cell edges of Ξ and explicitly store them in a point location data structure [20,26].
This takesO(nr2α2(n) log n) time in total. Next, for each cell σ ∈ Ξ, for each point p ∈ P (σ),
using the point location data structure, we determine in O(log n) time whether p is in a
face of the zone of any edge of σ. If yes, we explicitly output the face, which is Fp(S).
Otherwise, the face Fp(Sσ) is Fp(S). Let P ′(σ) denote the subset of points p of P (σ) in
the above second case (i.e., Fp(Sσ) is Fp(S)). The remaining problem is to compute the
faces of A(Sσ) containing at least one point of P ′(σ). To solve this subproblem, observe
that the face Fp(Sσ) is in the intersection of Fp(S1(σ)) and Fp(S2(σ)), which may contain
multiple connected components. Hence, more precisely, Fp(Sσ) is the connected component
of Fp(S1(σ))∩Fp(S2(σ)) that contains p. Let L1(σ) be the set of the supporting lines of all
segments of S1(σ). Because all segments of S1(σ) are long segments, we have the following
lemma.

Lemma 6. For any point p ∈ P ′(σ), Fp(Sσ) is the connected component of Fp(L1(σ)) ∩
Fp(S2(σ)) that contains p.

Proof. Recall that Fp(Sσ) is the connected component of Fp(S1(σ))∩Fp(S2(σ)) that contains
p. As p ∈ P ′(σ), we know that Fp(Sσ) is in the interior of σ. For any segment s ∈ S1(σ),
suppose that we extend s to a full line. As s is a long segment, the extension of s does not
intersect the interior of σ and thus does not intersect Fp(Sσ). This implies the lemma.

Due to the above lemma, to compute the faces of A(Sσ) containing the points of
P ′(σ), we do the following: (1) compute the faces of A(L1(σ)) containing the points of
P ′(σ); (2) compute the faces of A(S2(σ)) containing the points of P ′(σ); (3) compute the
faces Fp(Sσ) for all points p ∈ P ′(σ) by intersecting the faces obtained in the first two steps
and computing the connected components containing the points of P ′(σ). We discuss how
to implement the three steps below.

1. The first step can be done by applying our algorithm for the line case in Theorem 2,
because L1(σ) is a set of lines. As |L1(σ)| = |S1(σ)| = O(n/r) and |P ′(σ)| ≤ |P (σ)| ≤
m/r2, the runtime of the algorithm is bounded by

O

(
n2/3m2/3

r2
log2/3 n√

m
+
(n
r

+
m

r2

)
log

n

r

)
.

In addition, the total size of all computed faces is

O

(
n2/3m2/3

r2
+
n

r

)
, (1)

by applying the upper bound O(m2/3n2/3 + n) on the combinatorial complexity of m
distinct faces in an arrangement of n lines [12]. This bound will be needed later in the
time analysis of the third step.

2. For the second step, we apply our algorithm recursively on S2(σ) and P ′(σ), so the
problem size becomes (n/r2,m/r2) as |S2(σ)| ≤ n/r2 and |P ′(σ)| ≤ m/r2.

http://jocg.org/

JoCG 14(1), 287–308, 2023 302

Journal of Computational Geometry jocg.org

Also, the total size of all computed faces is bounded by

O

(
n2/3m2/3

r8/3
+
n

r2
α(
n

r2
) +

n

r2
log

m

r2

)
, (2)

by applying the (m2/3n2/3 +nα(n) +n logm) upper bound on the combinatorial com-
plexity of m distinct faces in an arrangement of n segments [5]. This bound will be
needed later in the time analysis of the third step.

3. The third step can be done by applying the blue-red merge algorithm of [19], which
takes O((β + ρ + |P ′(σ)|) log(β + ρ + |P ′(σ)|)) time, where β is the total size of all
faces computed in the first step, which is bounded by (1), and ρ is the total size
of all faces computed in the second step, which is bounded by (2). As m < n2/2,
logm = O(log n). Hence, the runtime of the third step is

O

((
n2/3m2/3

r2
+
n

r
+
n

r2
α(
n

r2
) +

n

r2
log

m

r2
+
m

r2

)
log n

)
.

Since Ξ has O(r2) cells, the total time of the first and third steps for all cells of Ξ is
O(n2/3m2/3 log n+ nr log n+m log n+ nα(n/r2) log n+ n log(m/r2) log n).

In summary, the runtime of the overall algorithm excluding the recursive calls is

O
(
nr2α2(n) log n+ n2/3m2/3 log n+ nr log n+m log n+ n log(m/r2) log n

)
.

Let T (n,m) be the total time of the overall algorithm. If m = 1, we apply the
algorithm for computing a single face [4], and thus T (n,m) = O(nα2(n) log n). If m ≥ n2/2,
we use the straightforward approach and thus T (n,m) = O(m log n). Since r is a constant,
we obtain the following (with big-O notation omitted)

T (n,m) =

nα2(n) log n m = 1,

n2/3m2/3 log n+ (nα2(n) + n logm+m) log n+ r2 · T (n
r2
, m
r2

) 2 ≤ m < n2/2,

m log n m ≥ n2/2.

Note that after at most O(logm) recursions, we will reach subproblems T (n,m) with m =
1, and after at most O(log(n/

√
m)) recursions, we will reach subproblems T (n,m) with

m ≥ n2/2. Hence, the depth of the recursion is O(min{logm, log(n/
√
m)}). Therefore, the

recurrence relation solves to T (n,m) = O(n2/3m2/3 log n+ τ(nα2(n) + n logm+m) log n),
where τ = min{logm, log(n/

√
m)}.

The following theorem summarizes the result.

Theorem 3. Given a set S of n line segments and a set P of m points in the plane, the faces
of the arrangement of the segments containing at least one point of P can be computed in
O(n2/3m2/3 log n+ τ(nα2(n) +n logm+m) log n) time, where τ = min{logm, log(n/

√
m)}.

http://jocg.org/

JoCG 14(1), 287–308, 2023 303

Journal of Computational Geometry jocg.org

Remark. The algorithm runs in O(nα2(n) log n) time for m = O(1), which matches the
time for computing a single face [4], and runs in O(m log n) time for m = Ω(n2), which
matches the performance of the straightforward approach.

4.2 The randomized algorithm

In this section, we present a randomized algorithm, whose running time is a function of K,
the number of intersections of all segments of S. The algorithm is faster than Theorem 3
when K = o(n2)

We again assume that m < n2/2 since otherwise the problem can be solved in
O(m log n) by the straightforward approach. We resort to a result of de Berg and Schwarzkopf [15].
Given any r ≤ n and K, de Berg and Schwarzkopf [15] gave a randomized algorithm that
can construct a (1/r)-cutting Ξ for the line segments of S in O(n log r + Kr/n) expected
time and the size of Ξ is O(r + Kr2/n2). For each cell σ ∈ Ξ (which is a triangle5), σ is
intersected by O(n/r) segments of S.

We set r = n2/(n + K), and thus 1 < r ≤ n and the size of Ξ is bounded by
O(r). By building a point location data structure on Ξ [20, 26], we find, for each point of
P , the cell of Ξ containing it. This takes O(r +m log r) time in total. For each cell σ ∈ Ξ,
define P (σ) = P ∩ σ. If |P (σ)| > m/r, then in the same way as in Section 3.1, we further
triangulate σ into 2 · d|P (σ)| · r/me+ 2 triangles each of which contains at most m/r points
of P ; we now consider these triangles as cells of Ξ but σ is not a cell of Ξ anymore. As
before, if we presort P in O(n log n) time, then the triangulation for all cells of Ξ can be
done in O(n) time in total.

The high-level scheme of the algorithm is similar in spirit to that in Section 3.2 for
the line case. For each cell σ ∈ Ξ, let Sσ denote the subset of segments of S intersecting σ.
We define the zone of σ as the collection of face portions of F ∩ σ for all faces F ∈ A(Sσ)
that intersect the boundary of σ. By definition, each face of the zone must intersect the
boundary of σ. As in the line case in Section 3.2, to compute all nonempty faces of A(S),
it suffices to compute, for every cell σ ∈ Ξ, the faces of A(Sσ) containing the points of P (σ)
and the zone of σ. The nonempty faces of A(Sσ) that do not intersect the boundary of σ
are output directly as they are nonempty faces of A(S). The nonempty faces of A(S) that
are split among the zones can be obtained by merging the zones along the edges of cells of
Ξ.

Computing the zone for σ can be done in O(nσα(nσ) log nσ) randomized time [10],
where nσ = |Sσ|. Then, for each point p ∈ P (σ), we determine whether p belongs to a face
of the zone of σ. This can be done by first building a point location data structure on the
zone [20,26] and then using point location queries. As the size of the zone is O(nσα(nσ)), this
step takes O(nσα(nσ) + mσ log nσ) time, where mσ = |P (σ)|. Finally, we merge all zones
for all cells of Ξ (which is a straightforward task as zones of different cells are disjoint).
As nσ = O(n/r), mσ ≤ m/r, and Ξ has O(r) cells, the total time spent on zones is
O(nα(n/r) log(n/r) +m log(n/r)).

5In the algorithm description [15], each cell of the cutting is a constant-sized convex polygon, but we can
further triangulate it without increasing the complexity asymptotically.

http://jocg.org/

JoCG 14(1), 287–308, 2023 304

Journal of Computational Geometry jocg.org

For the subproblem of computing the faces of A(Sσ) containing the points of P (σ),
we apply Theorem 3. Since we are satisfied with a randomized procedure, in the algo-
rithm of Theorem 3, we can replace the O(nα2(n) log n) time deterministic algorithm [4]
for computing the zone of a cell edge by a slightly faster O(nα(n) log n) time randomized
algorithm [10], and thus the total expected time of the algorithm for Theorem 3 is the same
as before except that the factor α2(n) becomes α(n). Applying this result, we can solve the
subproblem for σ in O(n

2/3
σ m

2/3
σ log nσ + τσ(nσα(nσ) + nσ logmσ +mσ) log nσ) time, where

τσ = min{logmσ, log(nσ/
√
mσ}. As nσ = O(n/r), mσ ≤ m/r, and Ξ has O(r) cells, the

overall time for solving the subproblem for all cells of σ ∈ Ξ is

O

(
n2/3m2/3

r1/3
log

n

r
+ τ ′

(
nα(

n

r
) + n log

m

r
+m

)
log

n

r

)
,

where τ ′ = min{log(m/r), log(n/
√
mr)}.

As r > 1, we have n/r < n,m/r < m, and τ ′ < τ , where τ = min{logm, log(n/
√
m)}.

Plugging in r = n2/(n + K) leads to the total time of the entire algorithm bounded by
O(m2/3K1/3 log n+ τ(nα(n) + n logm+m) log n).

The above algorithm works based on the assumption that K is known. As we do
not know K, we overcome the problem by the standard trick of “guessing”. We start with
K ′ = K0 for a constant K0, and run the algorithm with K ′. If the algorithm takes too long,
then our guess is too low and we double K ′. Using this doubling strategy, the algorithm is
expected to stop within a constant number of rounds after K ′ is larger than K for the first
time. Hence, the total time is asymptotically the same as if we had plugged in the right
value of K, except for the O(τ(nα(n) + n logm+m) log n) overhead term, which increases
by a factor of O(logK).

We conclude this section with the following theorem.

Theorem 4. Given a set S of n line segments and a set P of m points in the plane,
the faces of the arrangement of the segments containing at least one point of P can be
computed in O(m2/3K1/3 log n + τ(nα(n) + n logm + m) log n logK) expected time, where
τ = min{logm, log(n/

√
m)} and K is the number of intersections of all segments of S.

5 The face query problem

In this section, we consider the face query problem. Let S be a set of lines in the plane. The
problem is to build a data structure on S so that given a query point p, the face Fp(S) of the
arrangement A(S) that contains p can be computed efficiently. Since Fp(S) is convex, our
query algorithm will return the root of a binary search tree storing Fp(S) so that binary-
search-based queries on Fp(S) can be performed in O(log n) time each (e.g., given a query
point q, decide whether q ∈ Fp(S); given a line `, compute its intersection with Fp(S)).
Fp(S) can be output explicitly in O(|Fp(S)|) additional time using the tree.

We work in the dual plane as in Section 3.1 and also follow the notation there. Let
S∗ denote the set of dual points of S. For a query point p in the primal plane, let p∗ denote

http://jocg.org/

JoCG 14(1), 287–308, 2023 305

Journal of Computational Geometry jocg.org

its dual line. Define S∗+(p∗), S∗−(p∗), H+(p∗), H−(p∗), and F ∗p (S) in the same way as in
Section 3.1.

Inspired by the algorithm of Lemma 4, we resort to the randomized optimal partition
tree of Chan [7], which is originally for simplex range counting queries in d-dimensional space
for any constant d ≥ 2. We briefly review the partition tree in the planar case. Let P be a
set of n points in the plane. For any value r < n/ logω(1) n, an r-partial partition tree T (r)
for P is to recursively subdivides the plane into triangles (also referred to as cells) so that
each node v of T (r) corresponds to a triangle 4v and a subset Pv of P with Pv = P ∩4v.
If v is an internal node, then v has O(1) children whose triangles form a disjoint partition of
4v. Hence, each point of P appears in Pv for only one node v in each level of T (r). 4v and
the cardinality |Pv| are stored at v. But Pv is not explicitly stored at v unless v is a leaf, in
which case |Pv| ≤ r. The space of T (r) is O(n) and its height is O(log(n/r)). T (r) can be
built by a randomized algorithm of O(n log n) expected time. Given a query half-plane h,
the range query algorithm [7] finds two sets V 1

h and V 2
h of nodes of T (r) with the following

property: (1) for each node v ∈ V 1
h , the triangle 4v is inside h; (2) for each node v ∈ V 2

h ,
v is a leaf and 4v is crossed by the bounding line of h; (3) P ∩ h is the union of Pv for all
nodes v ∈ V 1

h as well as the intersection Pv ∩ h for all nodes v ∈ V 2
h ; (4) the triangles 4v

for all v ∈ V1(h) ∪ V2(h) are pairwise disjoint; (5) |V1(h)| + |V2(h)| = O(
√
n/r) holds with

high probability. The query algorithm finds V1(h) and V2(h) in O(
√
n/r) time with high

probability.

Preprocessing. To solve our problem, in the preprocessing we build an r-partial partition
tree T (r) on the points of S∗, which takes O(n) space and O(n log n) expected time. Let
S∗v = S∗ ∩ 4v for each node v ∈ T . We further enhance T (r) as follows. For each node
v ∈ T (r), we compute the convex hull Hv of S∗v and store Hv at v by a binary search tree.
To this end, we can presort all points of S∗ by x-coordinate. Then, we sort S∗v for all nodes
v ∈ T (r), which can be done in O(n log n) time in total due to the presorting of S∗ (indeed,
as discussed in Section 3.1, if we perform the point locations for points of S∗ in the sorted
order, then points of S∗v for each v are automatically sorted). Consequently, computing the
convex hull Hv can be done in O(|S∗v |) time. As such, computing convex hulls for all nodes
of T (r) takes O(n log n) time in total. With these convex hulls, the space of T (r) increases
to O(n log(n/r)), because the height of T (r) is O(log(n/r)) and the subsets S∗v for all nodes
v in the same level of T (r) form a partition of S∗.

Next, we perform additional preprocessing for each leaf v of T (r). Note that |S∗v | ≤ r.
Let Sv denote the subset of the lines of S in the primal plane dual to the points of S∗v . We
compute explicitly the arrangement A(Sv). For each face F ∈ A(Sv), its leftmost and
rightmost vertices divide the boundary of F into an upper portion and a lower portion; for
each portion, we use a binary search tree to store it. We also build a point location data
structure on A(Sv) [20, 26]. This finishes the preprocessing for v, which takes O(r2) time
and space. As T (r) has O(n/r) leaves, the preprocessing for all leaves takes O(nr) time and
space.

Overall, the preprocessing takes O(n log n+nr) expected time and O(n log(n/r)+nr)
space.

http://jocg.org/

JoCG 14(1), 287–308, 2023 306

Journal of Computational Geometry jocg.org

Queries. Consider a query point p. Without loss of generality, we assume that p∗ is
horizontal. Using the partition tree T (r), we compute the lower hull H+(p∗) as follows.

Let h be the upper half-plane bounded by the line p∗. We apply the range query
algorithm [7] on h and find two sets V 1

h and V 2
h of nodes of T (r), as discussed above. Due

to the property (3) of V 1
h and V 2

h discussed above, H+(p∗) is the lower hull of the convex
hulls Hv of all v ∈ V 1

h and the convex hulls H ′v of the subset of points of S∗v above the line
p∗ for all v ∈ V 2

h . For each v ∈ V 1
h , the convex hull Hv is available due to the preprocessing.

For each v ∈ V 2
h , H

′
v can be obtained in O(log n) time as follows. Using the point location

data structure on A(Sv), we find the face Fp(Sv) of A(Sv) containing p, and then H ′v is dual
to the lower portion of the boundary of Fp(Sv),6 whose binary search tree is computed in
the preprocessing. Due to the property (4) of V 1

h and V 2
h , all convex hulls Hv, v ∈ V 1

h , and
H ′v, v ∈ V 2

h , are pairwise disjoint. Thus, we can apply Lemma 4 to compute H+(p∗) from
these convex hulls in O((|V 1

h | + |V 2
h |) log n) time. As |V 1

h | + |V 2
h | = O(

√
n/r) holds with

high probability, the time for computing H+(p∗) is O(
√
n/r log n) with high probability.

Analogously, we can compute the upper hull H−(p∗). Afterwards, Fp(S) can be
obtained as a binary search tree in O(log n) time by computing the inner common tan-
gents of H+(p∗) and H−(p∗), as explained in Section 3.1. The query time is bounded by
O(
√
n/r log n) with high probability. Further, Fp(S) can be output explicitly in additional

|Fp(S)| time.

As discussed in Section 3.1, once the binary search tree for Fp(S) is constructed,
binary search trees representing convex hulls of some nodes of T (r) may be destroyed unless
fully persistent trees are used. To handle future queries, we need to restore those convex
hulls. Different from the algorithm in Section 3.1, depending on applications, persistent trees
may not be necessary here because do a single query at once. For example, if Fp(S) needs to
be output explicitly, then after Fp(S) is output, we can restore those destroyed convex hulls
by “reversing” the operations that are performed during the algorithm of Lemma 4. The time
is still bounded by O(

√
n/r log n) with high probability. Hence in this case persistent trees

are not necessary. Also, if Fp(S) only needs to be implicitly represented but Fp(S) will not
be needed anymore before the next query is performed, then we can also restore the convex
hulls as above without using persistent trees. However, if Fp(S) only needs to be implicitly
represented and Fp(S) still needs to be kept even after the next query is performed, then
we have to use persistent trees.

We summarize our result in the following theorem.

Theorem 5. Given a set S of n lines in the plane, for any r < n/ logω(1) n, we can preprocess
it in O(n log n + nr) randomized time and O(n log(n/r) + nr) space so that for any query
point p, we can produce a binary search tree representing the face of A(S) that contains
p and the query time is bounded by O(

√
n/r log n) with high probability. Using the binary

search tree, standard binary-search-based queries can be performed on the face in O(log n)
time each, and outputting the face explicitly can be done in time linear in the number of
edges of the face.

6In fact, the lower portion of the boundary of Fp(Sv) may be only part of the dual of H ′v. However, since
Fp(S) ⊆ Fp(Sv), using the lower portion of Fp(Sv) as the dual of H ′v to compute H+(p∗) and then compute
Fp(S) will give the correct answer.

http://jocg.org/

JoCG 14(1), 287–308, 2023 307

Journal of Computational Geometry jocg.org

Remark. Using the random sampling techniques [11, 24], a tradeoff between the prepro-
cessing and the query time was also provided in [17] roughly with the following perfor-
mance: the preprocessing takes O(n3/2r1/2 log3/2 r log2 n) randomized time, the space is
O(nr log r log n), and the query time is bounded by O(

√
n/r log2 n) with high probability

(combining with the compact interval trees [23]). Hence, our result improves on all three
aspects, albeit on a smaller range of r.

Setting r = log n in Theorem 5 leads to the following result.

Corollary 1. Given a set S of n lines in the plane, we can preprocess it in O(n log n)
randomized time and O(n log n) space so that for any query point p, we can produce a binary
search tree representing the face of A(S) that contains p and the query time is bounded by
O(
√
n log n) with high probability. Using the binary search tree, standard binary-search-based

queries on the face can be performed in O(log n) time each, and outputting the face explicitly
can be done in additional time linear in the number of edges of the face.

As discussed in Section 1, using our result in Corollary 1, the algorithm in [17] for
the face query problem in the segment case can also be improved accordingly.

References

[1] Pankaj K. Agarwal. Partitioning arrangements of lines II: Applications. Discrete and Computational
Geometry, 5:533–573, 1990.

[2] Pankaj K. Agarwal, Jiří Matoušek, and Otfried Schwarzkopf. Computing many faces in arrangements
of lines and segments. SIAM Journal on Computing, 27:491–505, 1998.

[3] Panagiotis Alevizos, Jean-Daniel Boissonnat, and Franco P. Preparata. An optimal algorithm for the
boundary of a cell in a union of rays. Algorithmica, 5:573–590, 1990.

[4] Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos. Computing faces in segment and simplex
arrangements. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing (STOC),
pages 672–682, 1995.

[5] Boris Aronov, Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. The number of edges of
many faces in a line segment arrangement. Combinatorica, 12:261–274, 1992.

[6] Ivan J. Balaban. An optimal algorithm for finding segments intersections. In Proceedings of the 11th
Annual ACM Symposium on Computational Geometry, pages 211–219, 1995.

[7] Timothy M. Chan. Optimal partition trees. Discrete and Computational Geometry, 47:661–690, 2012.

[8] Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete and Computational Geometry,
9:145–158, 1993.

[9] Bernard Chazelle and Herbert Edelsbrunner. An optimal algorithm for intersecting line segments in
the plane. Journal of the ACM, 39:1–54, 1992.

[10] Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, Micha Sharir, and Jack Snoeyink. Com-
puting a face in an arrangement of line segments and related problems. SIAM Journal on Computing,
22:1286–1302, 1993.

[11] Kenneth L. Clarkson. New applications of random sampling in computational geometry. Discrete and
Computational Geometry, 2:195–222, 1987.

[12] Kenneth L. Clarkson, Herbert Edelsbrunner, Leonidas J. Guibas, Micha Sharir, and Emo Welzl. Com-
binatorial complexity bounds for arrangement of curves and spheres. Discrete and Computational
Geometry, 5:99–160, 1990.

http://jocg.org/

JoCG 14(1), 287–308, 2023 308

Journal of Computational Geometry jocg.org

[13] Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in computational geometry,
II. Discrete and Computational Geometry, 4:387–421, 1989.

[14] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational Geometry
— Algorithms and Applications. Springer-Verlag, Berlin, 3rd edition, 2008.

[15] Mark de Berg and Otfried Schwarzkopf. Cuttings and applications. International Journal of Compu-
tational Geometry and Applications, 5:343–355, 1995.

[16] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data structures
persistent. Journal of Computer and System Sciences, 38:86–124, 1989.

[17] Herbert Edelsbrunner, Leonidas J. Guibas, John Hershberger, Raimund Seidel, Micha Sharir, Jack
Snoeyink, and Emo Welzl. Implicitly representing arrangements of lines or segments. Discrete and
Computational Geometry, 4:433–466, 1989.

[18] Herbert Edelsbrunner, Leonidas J. Guibas, János Pach, Richard Pollack, Raimund Seidel, and Micha
Sharir. Arrangements of curves in the plane topology, combinatorics, and algorithms. Theoretical
Computer Science, 92:319–336, 1992.

[19] Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. The complexity and construction of
many faces in arrangement of lines and of segments. Discrete and Computational Geometry, 5:161–196,
1990.

[20] Herbert Edelsbrunner, Leonidas J. Guibas, and J. Stolfi. Optimal point location in a monotone subdi-
vision. SIAM Journal on Computing, 15:317–340, 1986.

[21] Herbert Edelsbrunner and Ernst P. Mücke. Simulation of simplicity: A technique to cope with degen-
erate cases in geometric algorithms. ACM Transactions on Graphics, 9:66–104, 1990.

[22] Herbert Edelsbrunner and Emo Welzl. On the maximal number of edges of many faces in an arrange-
ment. Journal of Combinatorial Theory, Series A, 41:159–166, 1986.

[23] Leonidas J. Guibas, John Hershberger, and Jack Snoeyink. Compact interval trees: A data structure
for convex hulls. International Journal of Computational Geometry and Applications, 1:1–22, 1991.

[24] David Haussler and Emo Welzl. ε-nets and simplex range queries. Discrete and Computational Geom-
etry, 2:127–151, 1987.

[25] John Hershberger. Finding the upper envelope of n line segments in O(n logn) time. Information
Processing Letters, 33:169–174, 1989.

[26] David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12:28–35,
1983.

[27] Jĭrí Matoušek. Range searching with efficient hierarchical cuttings. Discrete and Computational Ge-
ometry, 10:157–182, 1993.

[28] Joseph S. B. Mitchell. On computing a single face in an arrangement of line segments. Manuscript,
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, 1990.

[29] Ketan Mulmuley. A fast planar partition algorithm, I. Journal of Symbolic Computation, 10:253–280,
1990.

[30] Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. Journal of
Computer and System Sciences, 23:166–204, 1981.

[31] Neil Sarnak and Robert E. Tarjan. Planar point location using persistent search trees. Communications
of the ACM, 29:669–679, 1986.

[32] Haitao Wang. A simple algorithm for computing the zone of a line in an arrangement of lines. In
Proceedings of the 5th SIAM Symposium on Simplicity in Algorithms (SOSA), pages 79–86, 2022.

http://jocg.org/

	Introduction
	Preliminaries
	Computing many cells in arrangements of lines
	The first algorithm
	The second algorithm

	Computing many cells in arrangements of segments
	The deterministic algorithm
	The randomized algorithm

	The face query problem

