
Near-Optimal Spanners for General Graphs in (Nearly) Linear Time

Hung Le1 and Shay Solomon2

1University of Massachusetts Amherst
2Tel Aviv University

Abstract

Let G = (V,E,w) be a weighted undirected graph on |V | = n vertices and |E| = m edges, let k ≥ 1
be any integer, and let ε < 1 be any parameter. We present the following results on fast constructions
of spanners with near-optimal sparsity and lightness,1 which culminate a long line of work in this area.
(By near-optimal we mean optimal under Erdos’ girth conjecture and disregarding the ε-dependencies.)

• There are (deterministic) algorithms for constructing (2k − 1)(1 + ε)-spanners for G with a
near-optimal sparsity of O(n1/k · log(1/ε)/ε)). The first algorithm can be implemented in the
pointer-machine model within time O(mα(m,n) · log(1/ε)/ε) + SORT(m)), where α(·, ·) is the
two-parameter inverse-Ackermann function and SORT(m) is the time needed to sort m integers.
The second algorithm can be implemented in the Word RAM model within time O(m log(1/ε)/ε)).

• There is a (deterministic) algorithm for constructing a (2k−1)(1+ε)-spanner for G that achieves
a near-optimal bound of O(n1/k · poly(1/ε)) on both sparsity and lightness. This algorithm can
be implemented in the pointer-machine model within time O(mα(m,n) · poly(1/ε) + SORT(m))
and in the Word RAM model within time O(mα(m,n) · poly(1/ε)).

The previous fastest constructions of (2k−1)(1+ε)-spanners with near-optimal sparsity incur a runtime
of is O(min{m(n1+1/k) + n log n, k · n2+1/k}), even regardless of the lightness. Importantly, the greedy
spanner for stretch 2k − 1 has sparsity O(n1/k) — with no ε-dependence whatsoever, but its runtime
is O(m(n1+1/k + n log n)). Moreover, the state-of-the-art lightness bound of any (2k − 1)-spanner
(including the greedy spanner) is poor, even regardless of the sparsity and runtime.

1The sparsity (respectively, lightness) is a normalized notion of size (resp., weight), where we divide the size (resp.,
weight) by the size n− 1 of a spanning tree (resp., the weight w(MST) of a minimum spanning tree MST).

ar
X

iv
:2

10
8.

00
10

2v
1

 [
cs

.D
S]

 3
0

Ju
l 2

02
1

Contents

1 Introduction 2
1.1 Technical Highlights . 5

2 Preliminaries 8

3 An O(mα(m,n) + SORT(m))-time Algorithm 8

4 A Linear Time Algorithm in the Transdichotomous Model 12
4.1 Index sorting in linear time . 15

5 Optimally Sparse and Light Spanners in O(mα(m,n)) Time 16
5.1 The construction of Hheavy . 16
5.2 Proof of Theorem 1.2 . 19
5.3 Construction of Hσ

i and Ci+1 . 20
5.3.1 Proof of Lemma 5.6 . 23
5.3.2 The construction of X . 24
5.3.3 Proof of Lemma 5.15 . 30

1

1 Introduction

Let G = (V,E,w) be a weighted undirected graph on |V | = n vertices and |E| = m edges. We say that H
is a t-spanner for G, for a parameter t ≥ 1, if H preserves all pairwise distances of G to within a factor of
t; the parameter t is called the stretch of the spanner. (A more detailed definition appears in Section 2.)
The most basic requirement from a low-stretch spanner is to be sparse, i.e., of small size; the normalized
notion of size, sparsity, is the ratio of the spanner size to the size n− 1 of a spanning tree. A generalized
requirement is to have a small weight; the weight of a spanner is the sum of its edge weights, and the
normalized notion of weight, lightness, is the ratio of the spanner weight to the weight w(MST(G)) of a
minimum spanning tree MST(G) for G.

Sparse and light spanners have been studied extensively over the years, and have found a wide variety
of applications across different areas, from distributed computing and motion planning to computational
biology and machine learning. As prime examples, they have been used in achieving efficient broadcast
protocols [ABP90, ABP92], for synchronizing networks and computing global functions [Awe85, PU89a,
Pel00], in gathering and disseminating data [BKR+02, VWF+03, DK02], and to routing [WCT02, PU89b,
ABLP89, TZ01b].

The holy grail is to achieve optimal tradeoffs between stretch and sparsity and between stretch and
lightness, within a small running time. For unweighted graphs, this goal has been achieved already in
the mid 90s, via a simple yet clever clustering approach due to Halperin and Zwick [HZ96]: A linear-time
construction of (2k − 1)-spanners with the optimal (under Erdos’ girth conjecture [Erd64]) sparsity of
O(n1/k); we note that, for unweighted graphs, the sparsity and lightness parameters coincide.

The fundamental question underlying this work is whether one can achieve this goal in general
weighted graphs. Chechik and Wulff-Nilsen [CW16] gave a poly-time construction of (2k − 1)(1 + ε)-
spanners with a near-optimal bound of O(n1/k ·poly(1/ε)) on both sparsity and lightness; by near-optimal
we mean optimal under Erdős’ girth conjecture and disregarding the ε-dependencies. Although the run-
time of the construction of [CW16] is polynomial, it is far from linear. Is it possible to achieve a fast
— ideally linear time — spanner construction with the same guarantees? This question is open even
disregarding the lightness: All known spanner constructions with near-optimal sparsity incur a rather
high runtime.

Next, we survey the main results on spanners for general graphs, starting with sparse spanners and
proceeding to light spanners. Subsequently, we present our contribution.

Sparse spanners. Graph spanners were introduced in the late 80s [PS89, PU89a]; initially, the fo-
cus was on the stretch-sparsity tradeoff. For unweighted graphs, the aforementioned construction of
[HZ96] gives an optimal result. We shall henceforth consider general n-vertex m-edge weighted graphs.
The “greedy spanner” is perhaps the most basic spanner construction, introduced in the seminal work
of Althöfer et al. [ADD+93]. For any integer parameter k ≥ 1, it provides a (2k − 1)-spanner with
sparsity O(n1/k). On the negative side, the running time of the greedy spanner is rather high, namely
O(m(n1+1/k + n log n)).

The celebrated paper of Baswana and Sen [BS03] presents a randomized algorithm for constructing
(2k − 1)-spanners with sparsity O(n1/k · k), within time O(m · k). Roditty, Thorup and Zwick [RTZ05a]
derandomized the Baswana-Sen [BS03] algorithm, without any loss in parameters. This result is optimal
except for an extra factor of k that appears in both the spanner size and the runtime bound.

Building on Miller et al. [MPVX15], Elkin and Neiman [EN18] gave a randomized algorithm for
constructing (2k − 1)(1 + ε)-spanners with sparsity O(n1/k · log k · log(1/ε)/ε), within time O(m), for
any ε < 1; in fact, their runtime analysis overlooks the time consumed by a certain bucketing procedure,
which, at least naively, requires Ω(SORT(m)) time, where SORT(m) is the time needed to sort m integers.
Alstrup et al. [ADF+19] achieved a deterministic algorithm with the same guarantees; we note that

2

time Ω(SORT(m)) is also needed by the construction of [ADF+19] for the same reason. These results
demonstrate that by incurring an arbitrarily small multiplicative error of 1 + ε to the stretch bound, one
can achieve, within linear time (modulo the overlooked time needed for integer sorting), a near-optimal
sparsity bound, except for an extra log k factor. Additional results are summarized in Table 1.

Stretch Sparsity Lightness Construction Time Ref

(2k − 1) O
(
n1/k

)
O (n/k) O

(
mn1+1/k + n log n

)
[ADD+93]

(2k − 1)(1 + ε) O
(
n1/k

)
O
(
kn1/k

)
O
(
mn1+1/k + n log n

)
[CDNS92]

(2k − 1) O(n1/k) — O
(
kn2+1/k

)
[RZ11]

(2k − 1) O
(
k · n1/k

)
— O

(
kmn1/k

)
[TZ01a]R

(2k − 1)(1 + ε) O
(
n1/k

)
O
(
kn1/k

)
O
(
kn2+1/k

)
[ES16]

(2k − 1)(1 + ε) O
(
n1/k

)
O
(
n1/k · k/ log k

)
O
(
mn1+1/k + n log n

)
[ENS15]

(2k − 1)(1 + ε) O
(
n1/k

)
O
(
n1/k

)
nΘ(1) [CW18]

(2k − 1)(1 + ε) O
(
n1/k

)
O
(
n1/k

)
O
(
mn1+1/k + n log n

)
[FS20]

(2k − 1)(1 + ε) O
(
n1/k

)
O
(
n1/k

)
O(n2+1/k+ε′) [ADF+19]

(2k − 1) O
(
k · n1/k

)
— O (km) [BS07]R [RTZ05b]

(2k − 1)(1 + ε) O
(
k · n1/k

)
O
(
kn1/k

)
O (SORT(m) + km+ n log n) [ES16]

(2k − 1)(1 + ε) O(log k · n1/k) O
(
k · n1+1/k

)
O(SORT(m) + n · log n) [EN18]R

(2k − 1)(1 + ε) O
(
log k · n1/k

)
— O(SORT(m)) [EN18, ADF+19]

(2k − 1)(1 + ε) O
(
log k · n1/k

)
O
(
log k · n1/k

)
O(SORT(m) + n · log n) [ADF+19]

(2k − 1)(1 + ε) O(n1/k) — O(mα(m,n) + SORT(m)) Theorem 1.1 P

(2k − 1)(1 + ε) O(n1/k) — O(m) Theorem 1.1 W

(2k − 1)(1 + ε) O(n1/k) O(n1/k) O(mα(m,n) + SORT(m)) Theorem 1.2 P

(2k − 1)(1 + ε) O(n1/k) O(n1/k) O(mα(m,n)) Theorem 1.2 W

Table 1: Table summarizing known and new spanner constructions for general weighted graphs, for stretch
values of 2k− 1 and (2k− 1)(1 + ε). In the top and middle parts of the table we list rather slow and fast
known spanner constructions, respectively. Our new results appear at the bottom. Results marked with
R correspond to randomized constructions. We use the superscript marks P and W to distinguish between
the new algorithms that apply to the pointer-machine versus the Word RAM models, respectively.

As shown in Table 1, the previous state-of-the-art runtime for constructing (2k − 1)(1 + ε)-spanners
with near-optimal sparsity is O(min{m(n1+1/k) + n log n, k · n2+1/k}), even regardless of the lightness.

Question 1. Can one achieve a (nearly) linear time spanner construction with near-optimal sparsity?

We answer Question 1 in the affirmative by presenting two algorithms for constructing spanners with
near-optimal sparsity in near-linear time. Specifically, we prove the following result. (Refer to Table 1
for a detailed comparison between our and previous results.)

Theorem 1.1. For any weighted undirected n-vertex m-edge graph G, any integer k ≥ 1 and any ε < 1,
one can deterministically construct (2k − 1)(1 + ε)-spanners with a near-optimal sparsity of O(n1/k ·
log(1/ε)/ε). This construction can be implemented:

• In the pointer-machine model within time O(mα(m,n) · log(1/ε)/ε+ SORT(m)).2

2In the pointer machine model, one can perform binary comparisons between data, arithmetic operations on data, derefer-
encing of pointers, and equality tests on pointers. The model does not permit pointer arithmetic or tests other than equality
on pointers and thus is less powerful than the RAM model [Tar79].

3

• In the Word RAM model within time O(m log(1/ε)/ε).3

We remark that α(m,n) = O(1) when m = Ω(n log∗ n). In fact, α(m,n) = O(1) even when m =
Ω(n log∗(c) n) for any constant c, where log∗(`)(.) denotes the iterated log-star function with ` stars; that
is, O(mα(m,n)) is bounded by O(m+ n log∗(c) n) for any constant c. Thus the running time in the first
item of Theorem 1.1 is linear in m in almost the entire regime of graph densities, i.e., except for very
sparse graphs. Moreover, even when α(m,n) is super-linear, it can still be viewed as constant for most
practical purposes. However, there is a significant qualitative difference between truly linear-time and
nearly linear-time algorithms, and shaving this factor for the entire regime of graph densities, as provided
by the second item of Theorem 1.1, is of fundamental theoretical importance.

The previous linear-time algorithms for constructing sparse spanners in general weighted graphs
[MPVX15, EN18, ADF+19] achieve a sub-optimal sparsity bound of O(n1/k · log k · log(1/ε)/ε), and,
as mentioned, their runtime is actually O(SORT(m)). Moreover, these constructions, as well as all other
spanner constructions with runtime o(km) (including ours), use a hierarchical clustering approach that
involves constructing a so-called cluster graph in each level of the hierarchy. Importantly, the cluster graph
is a simple graph (without self loops and parallel edges), and all the previous works either overlooked the
time needed to guarantee that the cluster graph is simple or they included an extra factor of α(m,n) in
the runtime bound — due to the usage of the classic Union-Find data structure [Tar75]. We demonstrate
that this factor can be shaved via a novel clustering approach, which we name MST-clustering; refer to
Section 1.1 for a discussion on the technical details.

Light spanners. Like sparsity, the lightness of spanners has been extremely well-studied. Althöfer
et al. [ADD+93] showed that the lightness of the greedy (2k − 1)-spanner is O(n/k). Despite extensive
research, the state-of-the-art lightness bound of any known (2k − 1)-spanner construction (including the
greedy spanner) remains poor, even regardless of the sparsity and runtime. It is thus only natural to
explore the lightness bound for a slightly increased stretch of (2k−1)(1 + ε), where ε < 1 is an arbitrarily
small parameter of our choice. Chandra et al. [CDNS92] showed that the greedy (2k− 1)(1 + ε)-spanner
has lightness O(k · n1/k · (1/ε)2). There was a sequence of works from recent years on light spanners
[ES16, ENS14, CW16, FS20, EN18, ADF+19, LS21]. In particular, a construction of (2k − 1)(1 + ε)-
spanners with a near-optimal lightness ofO(n1/k·poly(1/ε)) within a runtime ofO(mα(m,n) was presented
recently [LS21], where α(·, ·) is the inverse-Ackermann function; on the negative side, the sparsity of the
construction of [LS21] is unbounded. As mentioned, the construction of [CW16] achieves a near-optimal
bound of O(n1/k ·poly(1/ε)) on both sparsity and lightness, but its runtime is far from linear. The result of
Filtser and Solomon [FS20] implies that the greedy spanner achieves the same bounds as the construction
of [CW16], but the runtime O(m(n1+1/k + n log n)) of the greedy spanner is also rather high.

Question 2. Can one achieve a (nearly) linear time spanner construction with a near-optimal bound on
both the sparsity and lightness?

We answer Question 2 in the affirmative by presenting an algorithm for constructing (2k − 1)(1 + ε)-
spanners with near-optimal sparsity and lightness in near-linear time, which culminates a long line of
work in this area. Specifically, we prove the following result.

3The Word RAM model is similar to the classic unit-cost RAM model, except that (1) For a word length w ≥ 1 the
contents of all memory cells are integers up to 2w. (2) Some additional instructions are available; in particular, the available
unit-time operations are those from the restricted instruction set : addition and subtraction, (noncyclic) bit shifts by an
arbitrary number of positions, and bitwise boolean operations, but not multiplication. (3) It is also assumed that w ≥ logn.
We note that if the running time of the algorithm depends on the input size but not on the word size, then the model is
further called Transdichotomous model; the running time of our algorithms do not depend on the word size.

4

Theorem 1.2. For any weighted undirected n-vertex m-edge graph G, any integer k ≥ 1 and any ε < 1,
one can deterministically construct (2k−1)(1+ε)-spanners with a near-optimal bound of O(n1/k ·poly(1/ε))
on both sparsity and lightness. This construction can be implemented:

• In the pointer-machine model within time O(mα(m,n) · poly(1/ε) + SORT(m)).

• In the Word RAM model within time O(mα(m,n) · poly(1/ε)).

We obtain the result of Theorem 1.2 by strengthening the framework of [LS21] for fast constructions
of light spanners to achieve a near-optimal bound on the sparsity as well. To this end, we plug the ideas
used in the proof of Theorem 1.1, in conjunction with numerous new insights, on top of the framework
of [LS21] in a highly nontrivial way. Our MST-clustering approach plays a key role not just in the proof
of Theorem 1.1, but also in the proof of Theorem 1.2; refer to Section 1.1 for more details.

1.1 Technical Highlights

Our spanner construction is inspired by the constructions of [MPVX15], [EN18] and [ADF+19], which
we briefly review next. All these constructions achieve a runtime of O(m), modulo the time needed for
sorting the edge weights; we shall elaborate on this point later. The construction of [MPVX15] achieves
stretch O(k) with sparsity O(n1/k log(k))), while the two other constructions achieve the same sparsity
but with a stretch of (2k − 1)(1 + ε). (For clarity, we shall ignore the dependency on ε in the sparsity
bounds.)

The construction of [MPVX15]4 starts by dividing the edge set into µk
def.
= O(log k) sets {E1, E2, . . . , Eµk},

such that for each set Eσ, σ ∈ [1, µk], any two edge weights are either within a factor of 2 from each
other or they are separated by at least a factor of kc for some constant c. The algorithm then focuses
on constructing a spanner Hσ for each edge set Eσ separately; the sparsity of Hσ is O(n1/k), which
ultimately leads to a sparsity bound of O(µk · n1/k) = O(log(k) · n1/k) of the final spanner H. In the
construction of Hσ, the edge set Eσ is further divided into smaller subsets {Eσ1 , Eσ2 , . . .}, where edges in
the same set Eσi have the same weights up to a factor of 2, and the weights of edges in Eσi are at least
kc times greater than the weights of edges in Eσi−1, for each i. The construction of [MPVX15] uses a
hierarchy of clusters and an unweighted cluster graph Ri for each level i of the hierarchy. The vertex set
of Ri corresponds to a subset of level-i clusters that are incident to at least one edge in Eσi , and the edge
set of Ri corresponds to a subset of edges in Eσi interconnecting level-i clusters. A preprocessing step is
applied to the construction of Ri to remove parallel edges, which are edges in Eσi connecting the same
two level-i clusters, and self-loops, which are edges in Eσi whose both endpoints are in the same level-i
cluster. The construction of [MPVX15] then builds an O(k)-spanner for the (unweighted) graph Ri to
obtain a subset of edges Si of Eσi to add to Hσ. Next, vertices in Ri are grouped into a set U of subgraphs
of (unweighted) diameter Θ(k); each subgraph in U is then transformed into a level-(i+ 1) cluster. The
construction then continues to level i + 1, then to level i + 2, etc., until all the edges in the graph have
been considered. The construction of the (unweighted) O(k)-spanner of Ri and the set of subgraphs U is
randomized and based on sampling from an exponential distribution.

The construction of [EN18] builds on that of [MPVX15]. First, it partitions the edge set into µk,ε =
O(log(k)/ε) sets of edges instead of O(log k) sets as in [MPVX15]; the idea is that for each set Eσ,
σ ∈ [1, µk,ε], any two edge weights are either within a factor of 1 + ε from each other, or are separated
by at least a factor of kc for some constant c. Next, the construction of [EN18] uses the same idea
of [MPVX15] to construct the spanner of Ri and the set of subgraphs U . However, the stretch of the
spanner is improved to (2k−1), which readily implies a stretch of (4k−2)(1+ε) for the final spanner. We

4The algorithm used in [MPVX15] is parallel, and our interpretation of it is in the standard sequential model.

5

note that the stretch is (4k− 2)(1 + ε) instead of (2k− 1)(1 + ε), due to a subtlety involving randomness
in [MPVX15]. With a more sophisticated analysis, [EN18] resolves this subtlety and reduces the stretch
to (2k − 1)(1 + ε). The sparsity of the final spanner is O(µk,ε · nk) = O(log(k) · n1/k), ignoring the
dependence on ε.

Unlike the constructions of [MPVX15, EN18], the construction of [ADF+19] is deterministic. A
central idea in the construction of [ADF+19], inspired by an earlier work [ES16], is to use a modified
version of the Halperin-Zwick algorithm [HZ96] in the construction of the spanner of Ri. The spanner of
Ri has stretch (2k − 1), which implies the final stretch of (2k − 1)(1 + ε). The sparsity of the spanner
remains O(µk,ε · nk) = O(log(k) · n1/k), as in [MPVX15, EN18].

We note the following points regarding the aforementioned constructions.

1. First, the sparsity incurs an extra factor of O(log k), i.e., it is O(log(k) · n1/k) rather than O(n1/k).
This is inevitable, since subgraphs in U of Ri have a diameter of Θ(k), hence the weights of edges
in Eσi+1 and Eσi must be at least a factor of kc apart from each other, which ultimately leads to a
factor O(log k) in the number of sets that the edge set E is partitioned to.

2. Second, each set Eσ is partitioned into O(logU) sets {Eσ1 , Eσ2 , . . .}, where U is the maximum edge
weight. Thus, at least naively, the partition of Eσ can be constructed in time O(m+ logU) rather
than O(m), where U could be unbounded. One way to avoid the dependency on U is to sort all edge
weights of Eσ, which requires time SORT(m). We note that the computation of the partition of Eσ

into subsets has been overlooked in the aforementioned constructions [MPVX15, EN18, ADF+19].
In the Word RAM model, we use the simple observation that O(logU) is roughly the word size to
guarantee that such a partition can be computed within O(m) time.

3. Third, the aforementioned constructions involve constructing a cluster graph Ri associated with
each level i of the hierarchy. While the details of maintaining Ri are not precisely described in
these constructions, we observe that Ri can be efficiently maintained using the Union-Find data
structure. However, the total runtime would be O(mα(m,n)) rather than O(m). We next show
that the non-optimal sparsity bound of O(n1/k log k) achieved by the previous works can be used
to remove the factor α(m,n). Observe that mα(m,n) = O(m) when m = Ω(n log log(n)). If
m = O(n1+1/k log k), we can simply return the whole graph as the output spanner. Otherwise,
m = Ω(n1+1/k log k) = Ω(n log logn) for every k ≥ 2, in which case the total time to construct a
spanner of size O(n1+1/k log k) is O(mα(m,n)) = O(m). However, the same argument fails when
aiming for the near-optimal sparsity bound of O(n1/k) that we achieve (e.g., O(n1+1/k) = O(n) when
k = Ω(log n)). To construct a spanner with a sparsity of O(n1/k) in O(m) time, one must overcome
the “Union-Find barrier”. We note that even in the cell-probe model, which is stronger than the
Word RAM model, one cannot avoid the factor α(m,n) in the Union-Find data structure [FS89].

Our first construction is in the pointer-machine model; there we overcome the “(unweighted) di-
ameter barrier” of Θ(k) of subgraphs in U constructed from Ri: Subgraphs in our construction have
(unweighted) diameters of O(1). As a consequence, we demonstrate that it suffices to partition E into

µε
def.
= O(1

ε log(1/ε)) sets instead of O(log k/ε) sets, which ultimately leads to the optimal sparsity of

O(n1/k), ignoring the dependence on ε. The key idea behind our construction is rather simple — we
prove that it suffices to construct level-(i + 1) clusters from level-i clusters such that the total number
of clusters is reduced by Ω(|V (Ri)|). We then use the Halperin-Zwick algorithm [HZ96] to construct a
(2k − 1)-spanner for Ri. Next, we construct the set of subgraphs U greedily, with each having diameter
O(1). By using the Union-Find data structure in the construction of Ri, the total running time of our
algorithm is O(mα(m,n)), plus an additive term of SORT(m) needed for computing the partition of Eσ as
discussed above. Note that we cannot use the trick that we provided earlier to remove the α(m,n) factor

6

since our spanner construction does not have any slack on the sparsity. Our construction is deterministic,
it improves the aforementioned constructions [MPVX15, EN18, ADF+19] — yet is arguably simpler.

Our linear-time spanner construction in the Word RAM model is based on a novel clustering approach,
which we name MST-clustering. Specifically, we guarantee that the subgraphs induced by clusters are
subtrees of a minimum spanning tree (MST) of the graph, denoted by MST, and hence, every Union op-
eration is performed along the edges of MST. That is, each Union operation is of the form Union(u, v),
where (u, v) is an edge in MST. As a result, we are able to determine all the Union operations even
before the cluster construction takes place. This allows us to use a refined Union-Find data struc-
ture, by Gabow-Tarjan [GT85], which has O(1) amortized cost per Union/Find operation. To the best
of our knowledge, this is the first time that the MST serves as the union tree in the Gabow-Tarjan
Union-Find data structure, other than in applications that directly concern MST.

The idea of using the MST in the context of clustering in spanner constructions is quite surprising.
In many of the known spanner constructions, clusters in the cluster hierarchy need to satisfy a diameter
constraint. That is, clusters at level-i should have a diameter of at most f(Li), for some function f , often
a linear function, where Li is an upper bound on the edge weights in Eσi . In particular, the approaches
of [MPVX15, EN18, ADF+19, LS21] utilize the fact that some edges (not in MST) have been added
during the construction of clusters at lower levels, and use these edges to construct clusters that satisfy
the diameter constraint. By restricting ourselves to only use MST for clustering, it seems much more
challenging (and perhaps impossible at first) to guarantee the diameter constraint for level-i clusters.
Our key insight is that it is still possible to do so, and to this end we rely on the cycle property of MST,
both for arguing that clusters have small diameters and for constructing clusters efficiently.

Finally, we show how to construct a spanner with near-optimal sparsity and lightness. Our construc-
tion builds on the fast construction of spanners with near-optimal lightness in [LS21]. The construction
of [LS21] has a preprocessing step and a main construction step. In the preprocessing step, every edge of

weight at most w(MST)
mε is added to the spanner. Clearly the number of edges added in this step could be

as large as Ω(n2) (for dense graphs). Our first observation is that, except for MST edges, edges added in
the preprocessing step are not involved in the main construction step, and hence we can apply our sparse
spanner construction from Theorem 1.1 to reduce the number of edges added in the preprocessing step
to O(n1+1/k). The main construction step is based on a cluster hierarchy. However, clusters in [LS21]
are “equipped” with a potential function, and the challenge of the cluster construction is to guarantee
a sufficient reduction in the potential values between two consecutive levels of the hierarchy. A cluster
graph is also used to select a subset of edges in Eσi to add to the spanner. Again, the number of edges
added in this step could be as large as Ω(n2). In order to obtain a spanner with near-optimal guarantees
on both sparsity and lightness, we employ the insight that we developed in this paper for the construction
of sparse spanners, by constructing clusters in such a way that, between two consecutive levels, there is
a sufficient reduction not just in the potential values, but also in the number of clusters. This, in turn,
makes the task of constructing clusters much more challenging; indeed, a-priori, it is unclear that it is
possible to achieve both objectives via a single (fast) spanner construction.

The spanner construction of [LS21] constructs level-(i+1) clusters in 5 steps; each level-(i+1) cluster
corresponds to a subgraph of a cluster graph Ri. We note that the cluster graph Ri in this construction
is different from the cluster graph used in the sparse spanner constructions in that its MST, denoted by
M̃STi, is derived from the MST of G. We observe that among the 5 steps used in [LS21], there are two
steps where the reduction in the number of clusters is not guaranteed. Furthermore, the clusters formed
in these two steps are subgraphs of M̃STi. Thus, our idea is to apply the insights we developed in the
sparse spanner construction in the Word RAM model to this setting. However, there are two subtleties
in the construction of [LS21] that we need to address. First, the cluster graph Ri has weights on both
edges and vertices. As a result, M̃STi also has weights on both edges on vertices. Second, clusters in

7

the construction of [LS21] contain virtual vertices; these vertices are not in the input graph and are
introduced to support the design of the potential function for clusters. We show an analogous version of
the cycle property for M̃STi. We use this property, in addition to several other technical ideas, to transfer
insights that we developed in the construction of sparse spanners in the Word RAM model to the cluster
construction in this setting. As a result, our spanner construction that achieves near-optimal bounds
on both sparsity and lightness is much more involved than our two aforementioned constructions (which
prove Theorem 1.1) with near-optimal sparsity but possibly huge lightness.

2 Preliminaries

We denote by G = (V,E,w) a graph G with vertex set V , edge set E, and weight function w : E(G)→ R+

on its edges. We denote by MST(G) the minimum spanning tree of G; there could be MSTs for G, but
we may assume w.l.o.g. that there is only one (e.g., by using lexicographic rules to break ties for edges of
the same weight). When the graph is clear from the context, we abbreviate MST(G) as MST. We denote
by w(G) =

∑
e∈E w(e) the weight of G, i.e., the sum of all edge weights in G.

We use dG(u, v) to denote the distance between two vertices u and v in G. The diameter of G is the
maximum pairwise distance in G, and is denoted by Dm(G).

For a subset of vertices X ⊆ V , we denote by G[X] the subgraph of G induced by X. We also define
a subgraph of G induced by an edge set F by G[F] = (V, F)

Let H be a spanning subgraph of G (with edge weights inherited from G). The stretch of H is

defined as maxu6∈v∈V
dH(u,v)
dG(u,v) ; H is called a t-spanner of G if its stretch is at most t. The next well-known

observation, which states that the stretch of H is realized by an edge of G, follows from the triangle
inequality.

Observation 2.1. maxu6=v∈V (G)
dH(u,v)
dG(u,v) = max(u,v)∈E(G)

dH(u,v)
dG(u,v) .

We say that H is a spanner for a subset of edges X ⊆ E if max(u,v)∈X
dH(u,v)
dG(u,v) ≤ t.

Our constructions use the aforementioned linear-time construction of (2k−1)-spanners for unweighted
graphs by Halperin-Zwick [HZ96], which we record in the following theorem for further use.

Theorem 2.2 ([HZ96]). For any unweighted n-vertex m-edge graph G and any integer k ≥ 1, a (2k−1)-

spanner of G with O(n1+ 1
k) edges can be constructed deterministically in O(m+ n) time.

3 An O(mα(m,n) + SORT(m))-time Algorithm

In this section we prove the first item of Theorem 1.1. By scaling, we assume that the minimum edge
weight is 1. We partition the edge set E into µε = log1+ε

(
1
ε

)
= Θ(log(1/ε)

ε) sets {Eσ}1≤σ≤µε such that
each Eσ can be written as Eσ = ∪i∈N+Eσi with:

Eσi = {e ∈ E :
Li

(1 + ε)
≤ w(e) ≤ Li, i ∈ N}, where Li = L0/ε

i, L0 = (1 + ε)σ. (1)

Thus, for any edge set Eσ, any two edge weights are either roughly the same (up to a factor of 1 + ε) or
far apart (separated by at least a factor of 1/ε). For technical convenience, we shall define L−1 = 0.

We note that the time needed to compute the partition of E into the sets {Eσ}1≤σ≤µε is upper
bounded by O(m+ SORT(m′)) = O(SORT(m)), where m′ is the number of non-empty sets. Indeed, this
computation can be carried out naively in linear time, except for the time needed to sort the indices of
the non-empty sets in {Eσi }1≤σ≤µε,i∈N. In the runtime analysis that follows we shall disregard this initial
time investment, under the understanding that we include it in the final runtime bound.

8

We now construct a (2k − 1)(1 + O(ε))-spanner Hσ for each set Eσ with sparsity O(n1/k) in O(m ·
α(m,n)) time. A (2k − 1)(1 +O(ε))-spanner H for G with sparsity O(n1/k · log(1/ε)

ε) is then obtained as

the union of all Hσ’s: H = ∪1≤σ≤µεH
σ, within time O(m · α(m,n) · log(1/ε)

ε).
We focus on the construction of Hσ, for a fixed σ ∈ [1, µε]. Initially Hσ

0 = (V, ∅). The construction
is carried out in what we call levels: at level i, we shall construct a subgraph Hσ

i such that Hσ
≤i is

a (2k − 1)(1 + O(ε))-spanner for the edge set Eσ≤i. Here Hσ
≤i = ∪0≤j≤iH

σ
j and Eσ≤i = Eσ0≤j≤i. By

induction, Hσ def.
= ∪i≥0H

σ
i would provide a (2k− 1)(1 +O(ε))-spanner for the edge set Eσ. Consequently,

H = ∪1≤σ≤µεH
σ will provide a (2k−1)(1 +O(ε))-spanner for E =

⋃
1≤σ≤µε E

σ, and, by Observation 2.1,
also for G . All graphs Hσ

i share the same vertex set V and hence are distinguished by the edge set.
A cluster is a set of vertices. Our construction uses a hierarchical clustering, where for each i ≥ 0,

the construction at level i is associated with a set of clusters Ci such that:

• (P1) Each cluster C ∈ Ci is a subset of V . Furthermore, clusters in Ci induce a partition of V .
• (P2) Each cluster C ∈ Ci induces a subgraph Hσ

≤i[C] of diameter ≤ gLi−1 for some constant g.

C0 is the set of n singletons of V and hence trivially satisfies both Properties (P1) and (P2) (recall
that L−1 = 0). The cluster sets {C0, C1, . . .} provide a hierarchy of clusters H. In particular, for any
i ≥ 1, Ci−1 is a refinement of Ci: any cluster C ∈ Ci is the union of a subset of clusters in Ci−1.

Representing Ci by Disjoint Sets. We shall use the classic Union-Find data structure [Tar75] in
our clustering procedure, for representing clusters in Ci, grouping subsets of clusters to larger clusters (via
the Union operation), and checking whether a pair of vertices belongs to the same cluster (via the Find
operation). In particular, each cluster C ∈ Ci will have a representative vertex, denoted by r(C), that
can be accessed from any vertex v ∈ C by calling Find(v); we define r(v) := Find(v). The amortized
time per each Union or Find operation is O(α(a, b)), where a is the total number of Union and Find
operations and b is the number of vertices in the data structure.

Constructing Hσ
i . We assume that |Eσi | ≥ 0; otherwise, we will skip the construction at level i and

set Ci+1 = Ci. We say that a cluster at level i is isolated if none of its vertices is incident on any edge
of Eσi ; otherwise it is non-isolated. Let X be the set of all non-isolated level-i clusters. We say that two
edges (u, v) and (u′, v′) in Eσi are parallel if r(u) = r(u′) (i.e., u and u′ are in the same level-i cluster) and
r(v) = r(v′) (i.e., v and v′ are in the same level-i cluster). We say that (u, v) is a self-loop if r(u) = r(v)
(i.e., u and v are in the same level-i cluster). Let Si be obtained from Eσi by removing from it all self-loops
and keeping only the lightest edge in every maximal set of parallel edges of Eσi ; we refer to the edges of
Si as the source edges.

We then construct an unweighted graph Ri, called the representative graph, as follows: V (Ri) =
{r(C) : C ∈ X} and E(Ri) = {(r(u), r(v)) : (u, v) ∈ Si}. The vertices and edges of Ri are referred to
as the representative vertices and representative edges, respectively; note that each representative edge
corresponds to a unique source edge. Let E′i ← HalperinZwick(Ri, 2k − 1) be the edge set obtained
by applying the spanner algorithm of Theorem 2.2 to Ri. Let S′i be the subset of source edges in Si
corresponding to the representative edges in E′i. Our graph Hσ

i has S′i as its edge set.

Lemma 3.1. dHσ
≤i

(u, v) ≤ (2k − 1)(1 + O(ε))w(u, v) for every edge (u, v) ∈ Eσi , assuming ε ≤ 1/(2g).

Furthermore, S′i can be constructed in O(|Eσi |α(m,n)) time.

Proof: Let (u, v) be an arbitrary edge in Eσi . We first consider the case where (u, v) ∈ Si. Then, there
is an edge (r(u), r(v)) ∈ Ri. By Theorem 2.2, there is a path P between r(u) and r(v) in (V (Ri), E

′
i) that

contains at most 2k−1 edges. We write P = (r(x0) = r(u), (r(x0), r(x1)), r(x1), (r(x1), r(x2)), . . . , r(xp) =

9

r(v)) as an alternating sequence of representative vertices and edges, where x0 = u, xp = v and p ≤ 2k−1.
Let (y2

` , y
1
`+1) be the source edge in S′i that corresponds to the representative edge (r(x`), r(x`+1)), for

each ` ∈ [0, p− 1]. Denote by C` the level-i cluster with r(C`) = r(x`). Let y1
0 = u and y2

p = v. Let

Q = Q0(y1
0, y

2
0) ◦ (y2

0, y
1
1) ◦Q1(y1

1, y
2
1) . . . ◦ (y2

p−1, y
1
p) ◦Qp(y1

p, y
2
p) (2)

be a path from u to v, where Q`(y
1
` , y

2
`) is a shortest path between y1

` and y2
` in Hσ

≤i−1[C`], for each

0 ≤ ` ≤ p, and ◦ is the path concatenation operator. By property (P2), w(Q`(y
1
` , y

2
`)) ≤ gLi−1 = gεLi.

It follows that

w(Q) ≤ (2k − 1)Li + (2k)gεLi ≤ (2k − 1)(1 + 2gε)Li

≤ (2k − 1)(1 + 2gε)(1 + ε)w(u, v) (since w(u, v) ≥ Li/(1 + ε))

≤ (2k − 1)(1 + (4g + 1)ε)w(u, v) (since ε ≤ 1)

(3)

Thus, the stretch of (u, v) is at most (2k − 1)(1 + (4g + 1)ε).
Next, we consider the complementary case that (u, v) 6∈ Si. By definition, the edge (u, v) is not

in Si either because it is a self-loop or it is parallel to another edge (u′, v′) that belongs to Si, with
w(u′, v′) ≤ w(u, v). In the former case, property (P2) implies the existence of a path from u to v in
Hσ
≤i−1 of weight at most gLi−1 = gεLi ≤ Li

1+ε ≤ w(u, v) when ε < 1
2g . Thus, in this case the

stretch of edge (u, v) is 1. For the latter case, let Cu and Cv be the level-i clusters containing u and
v, respectively, and without loss of generality assume that u′ ∈ Cu and v′ ∈ Cv. By property (P2),
Dm(Hσ

≤i−1[Cu]),Dm(Hσ
≤i−1[Cv])) ≤ gLi−1 = gεLi. The same argument used for deriving Equation (3),

when applied to the edge (u′, v′) rather than (u, v), yields:

dH≤i(u
′, v′) ≤ (2k − 1)(1 + (4g + 1)ε)w(u′, v′) ≤ (2k − 1)(1 + (4g + 1)ε)w(u, v). (4)

By the triangle inequality,

dH≤i(u, v) ≤ dH≤i(u
′, v′) + Dm(H≤i−1[Cu]) + Dm(H≤i−1[Cv])

≤ (2k − 1)(1 + (4g + 1)ε)w(u, v) + 2gεLi (by Equation (4))

≤ (2k − 1)(1 + (4g + 1)ε)w(u, v) + 4gεw(u, v) (since w(u, v) ≥ Li/(1 + ε) ≥ Li/2)

= (2k − 1)(1 + (8g + 1)ε)w(u, v) (since k ≥ 1)

Thus, the stretch of edge (u, v) is (2k − 1)(1 + (8g + 1)ε) = (2k − 1)(1 + O(ε)). Summarizing, we have
shown that in all cases the stretch of edge (u, v) is at most (2k − 1)(1 +O(ε)), as required.

By construction of the representative graph Ri, all clusters corresponding to vertices of Ri are non-
isolated, hence no vertex of Ri is isolated, yielding |V (Ri)| = O(|E(Ri)|) = O(|Eσi |). Thus, the construc-
tion of the edge set Si and the representative graph Ri, via the usage of the Union-Find data structure,
takes total time of O(|Eσi |α(m,n)). The set of edges S′i by Theorem 2.2 can be constructed in time
O(|E(Ri)|+ |V (Ri)|) = O(|Eσi |) time. Thus, the total running time to construct S′i is O(|Eσi |α(m,n)). �

Constructing Ci+1. Every cluster C ∈ Ci \ X becomes a level-(i + 1) cluster. We next focus on the
level-i clusters of X . Recall that V (Ri) is the set of all representatives of clusters in X . We construct a
collection U of vertex-disjoint subgraphs of Ri in the following two steps:

(1) Initially, we greedily construct a maximal set of vertex-disjoint stars of Ri, and initialize U as this
edge set; thus, each subgraph U ∈ U contains a vertex and all of its neighbors in Ri.

10

(2) We scan the remaining vertices in V (Ri) that haven’t been grouped to any subgraph in U . For
every such remaining vertex v ∈ V (Ri), it must have at least one neighbor that is contained in a
subgraph U ∈ U (by the maximality of U); we add to U the vertex v and an edge (v, u) leading to
such a neighbor u of v (chosen arbitrarily if there are multiple such neighbors).

For each subgraph U in the resulting edge set U , we form a level-(i+ 1) cluster CU ∈ Ci by taking the
union of all the clusters whose representatives are V (U) as CU .

Lemma 3.2. All clusters in Ci+1 satisfy Properties (P1) and (P2) when ε ≤ 1/(2g) and g ≥ 9, and they
can be constructed in time O(|Eσi | · α(m,n)). Furthermore, every cluster CU ∈ Ci+1 that is formed from
a subgraph U ∈ U , as described above, is the union of at least 2 level-i clusters.

Proof: Property (P1) holds trivially. To prove that Property (P2) holds, we first note that each subgraph
U ∈ U (with vertices in Ri) has hop diameter at most 4, which follows directly from the above two-step
construction of U . Any edge connecting two vertices in U corresponds to a source edge in Si, and thus
also in Eσi , and as such has length at most Li, which implies that CU induces a subgraph of diameter at
most 5(gLi−1) + 4Li = 5gεLi + 4Li ≤ 9Li = gLi, since ε ≤ 1/g and g ≥ 9. Thus, Property (P2) holds.

The construction of the edge set Si and the representative graph Ri takes total time of O(|Eσi |α(m,n))
using the Union-Find data structure. As for the construction of the collection U of vertex-disjoint
subgraphs of Ri, Step (1) of this construction, i.e., which constructs a maximal set of vertex-disjoint stars,
involves a greedy linear-time algorithm, whereas Step (2) naively takes linear time, so together they are
implemented within time O(|E(Ri)|) = O(|Eσi |). Constructing the corresponding clusters {CU : U ∈ U}
can be implemented within the same amount of time in the obvious way. The construction of clusters in
Ci+1 that are clusters in Ci \ X requires no extra time.

Finally, we argue that any cluster CU ∈ Ci+1 that is formed from a subgraph U ∈ U contains at
least 2 level-i clusters. Indeed, any cluster formed in Step (1) of the construction of U contains at
least 2 level-i clusters, by the maximality of U and since no vertex in Ri is isolated. Any remaining
level-i cluster must be grouped in Step (2) of the construction of U to clusters formed in Step (1), and
this too holds by the maximality in Step 1 of the construction of U and since no vertex in Ri is isolated. �

We are now ready to prove the first item of Theorem 1.1.
Proof: [Proof of the first item of Theorem 1.1] Recall that H = ∪1≤σ≤µεH

σ. Let ∆i+1 = |Ci| − |Ci+1|.
Recall that C0 is the set of n singletons, i.e., |C0| = n. Thus,

∑
i≥0 ∆i+1 ≤ |C0| = n.

By Lemma 3.2, ∆i+1 ≥ |V (Ri)|
2 . Furthermore, Theorem 2.2 yields |S′i| = O(|V (Ri)|1+1/k), hence

|S′i| = O(n1/k) ·∆i+1. Thus, we have:

|E(Hσ)| = | ∪i≥0 E(Hσ
i)| =

∑
i≥0

|S′i| =
∑
i≥0

O(n1/k) ·∆i+1 = O(n1+1/k). (5)

The sparsity of H is O(n1/k · log(1/ε)
ε) by Equation (5). The stretch of H is at most (2k− 1)(1 +O(ε))

by Lemma 3.1; we can reduce the stretch down to (2k − 1)(1 + ε) by scaling ε ← ε/c, for a sufficiently
large constant c, which will affect the sparsity and runtime bounds by constant factors. The time needed
to construct Hσ is O(

∑
i≥0 |Eσi | · α(m,n)) = O(m · α(m,n)) by Lemma 3.1 and Lemma 3.2. Thus, the

overall time needed to construct H, when also considering the runtime O(SORT(m)) for computing the

partition of E into the sets {Eσ}1≤σ≤µε , is O(m · α(m,n) · log(1/ε)
ε + SORT(m)). �

11

4 A Linear Time Algorithm in the Transdichotomous Model

In this section, we prove the second item of Theorem 1.1. We follow the same framework as in Section 3;
our focus, as before, is on constructing a (2k−1)(1+O(ε))-spanner Hσ for Eσ, for a fixed σ ∈ [1, µε]. The
construction is carried out in levels, where Hσ

i is constructed at level i, and uses a hierarchy of clusters
such that each cluster C ∈ Ci satisfies two properties that are similar to those used in Section 3, namely
Properties (P1) and (P2).

We also use a Union-Find data structure to represent clusters in Ci. However, our construction relies
on a special case of Union-Find , where the set of Union operations are pre-specified at the outset of the
construction. Gabow and Tarjan [GT85] designed a data structure for this special case of Union-Find in
the Transdichotomous model; this result is summarized in the following theorem.

Theorem 4.1 (Gabow and Tarjan [GT85]). Let T be a rooted tree with n vertices. One can design
a Union-Find data structure in the Transdichotomous model that maintains disjoint sets of V (T) and
supports m Union and Find operations in O(m+n) total time, in which each Union operation is of the
form Union(v, pT (v)) for some non-root vertex v ∈ V (T). Here pT (v) denotes the parent of v in T .

We emphasize that the Union-Find data structure of Gabow and Tarjan in Theorem 4.1 only works
in the Transdichotomous model. The tree T in Theorem 4.1 is called a union tree of the Union-Find data
structure. We use Link(v) to specifically denote the Union operation of the form Union(v, pT (v)).

The construction of Section 3 achieves a super-linear running time. To improve this runtime to linear
in m, we plug the following new ideas on top of the construction of Section 3.

The second term in the super-linear runtime O(m · α(m,n) · log(1/ε)
ε + SORT(m)), namely SORT(m),

stems from the time needed to compute the partition of E into the sets {Eσ}1≤σ≤µε , which boils down to
sorting the indices of the non-empty sets in {Eσ}1≤σ≤µε . In the Word RAM model, we employ a rather

simple trick to carry out such an index sorting in time O(m · log(1/ε)
ε); the details of this optimization

appear in Section 4.1.
The main obstacle lies in shaving the factor α(m,n) from the first term O(m · α(m,n) · log(1/ε)

ε). For
this optimization, the two key ideas are the following:

• Idea 1. We use an MST for G as the union tree for the Union-Find data structure. In the Trans-
dichotomous model, Fredman and Willard [FW94] designed an algorithm to construct a minimum
spanning tree in O(m) time. Let MST be an arbitrary minimum spanning tree for G; we root MST

at an arbitrary vertex r.

• Idea 2. We guarantee that every level-i cluster C ∈ Ci induces a subtree of MST of diameter at most
gLi−1, for some constant g. As we will show in the sequel, by forcing clusters to induce subtrees of
MST, we are able to use Link operations to form level-(i+ 1) clusters from level-i clusters, which is
the source of our speed-up. The crux of our construction is in realizing idea 2.

Theorem 4.1 guarantees that each of the Union and Find operations takes O(1) amortized time. As a
result, we shave the α(m,n) factor in the running time of the algorithm from Section 3.

Next we proceed to the details of the linear-time construction. The construction will satisfy the
following two properties of clusters in Ci, the first of which is identical to Property (P1) of Section 3
whereas the second is an adaptation of Property (P2).

• (P1’) Each cluster C ∈ Ci is a subset of V . Furthermore, clusters in Ci induce a partition of V .
• (P2’) Each cluster C ∈ Ci induces a (connected) subtree MST[C] of MST with diameter at most
gLi−1, for some constant g (the same constant used in Idea 2 above which is different than the one
used in (P2)).

12

We will add all edges of MST to the spanner, by setting Hσ
0 as MST, which adds one unit to the sparsity

and lightness. Property (P2’) is inherently more restrictive than Property (P2), as it aims at guaranteeing
the same (perhaps up to a constant factor) diameter bound, but when restricted to subtrees of MST.

Representing Ci. As in Section 3, we use the Union-Find data structure to represent clusters in Ci,
but we use the data structure provided by Theorem 4.1, which guarantees constant amortized cost. As
a result, we will maintain the property that the representative r(C) of any cluster C ∈ Ci is always set
to be the root of the subtree MST[C]. By setting the representative of a cluster C to be its root, C can be
united with other clusters via Link(r(C)), which is crucial for applying the result of Theorem 4.1. The
children of C can be united to C by the same way.

Constructing Hσ
i . The construction is the same as the construction of Hσ

i in Section 3. Specifically,
we construct a set of level-i clusters X , the representative graph Ri, and the edge set S′i, which is obtained
by running the spanner algorithm of Theorem 2.2 to Ri. Since the Union and Find operations now admit
O(1) (amortized) time, we derive the following lemma, whose proof follows along similar lines as those in
the proof of Lemma 3.1.

Lemma 4.2. dH≤i(u, v) ≤ (2k − 1)(1 + O(ε))w(u, v) for every edge (u, v) ∈ Eσi , assuming ε < 1/(2g).
Furthermore, S′i can be constructed in O(|Eσi |) time.

Constructing Ci+1. Our construction of Ci+1 relies on the notion of cluster forest defined below; see
Figure 1 for an illustration.

Definition 4.3 (Cluster Forest). Let Y ⊆ Ci be a set of level-i clusters. A cluster forest for Y, denoted
by FY , is a directed forest with a weight function ω on the edges such that:

(1) Each node ϕC ∈ FY corresponds to a cluster C ∈ Y,

(2) There is a directed edge (ϕC1 → ϕC2) in the forest FY if C2 contains the parent, say pMST(v), of the
representative, say v, of C1. Furthermore, ω(ϕC1 → ϕC2) = w(v, pMST(v)).

By definition, every edge of a cluster forest FY corresponds to an MST edge. Let MST i = FCi be the
cluster forest defined for the entire set Ci of level-i clusters; by Property (P2’), it holds that MST i is a
tree. We stress that MST i is only used in the analysis of our algorithm; indeed, computing MST i, at
least naively, would require Ω(|Ci|) time, which is too costly.

For a set Y of level-i clusters, we say that the cluster forest FY is Li-bounded if every edge in it has
weight at most Li. The following lemma is the crux of our construction.

Recall that X denotes the set of all non-isolated level-i clusters in the representative graph Ri.

Lemma 4.4. Let Ai be the set of MST i edges of weight at most Li, and let Y be the set of nodes that
are incident on at least one edge in Ai. Let FY be the forest with node set Y and edge set Ai. Then the
following two conditions hold:

(1) X ⊆ Y.

(2) Every tree in Fpruned
Y has at least 2 nodes.

Proof: Condition (2) follows directly from the construction. We next prove that Condition (1) holds.
Let ϕCu be the node corresponding to a level-i cluster Cu in X . By the definition of X , there is an

edge (u, v) ∈ Eσi such that u ∈ ϕCu . Let Cv be the level-i cluster containing v and ϕCv be the node
corresponding to Cv. If (u, v) ∈ MST, then ϕCu ∈ Y, and we’re done.

13

Figure 1: (a) Level-i clusters induce subtrees of MST enclosed by oval curve, and (b) a cluster forest FY .

We henceforth assume that (u, v) 6∈ MST. Consider the fundamental cycle Cuv of MST formed by
MST[u, v] and edge (u, v). By the cycle property of MST, every edge e ∈ MST[u, v] satisfies w(e) ≤ w(u, v).
Recall that MST i is a tree by Property (P2’). Moreover, by the definition of MST i, each edge in
MST i[ϕCu , ϕCv] corresponds to an edge in MST[u, v], and so has weight at most w(u, v) ≤ Li. Hence ϕCu
is incident to an edge of Ai by the definition of Ai, which yields ϕCu ∈ Y. �

We now construct the set of level-(i + 1) clusters Ci+1 as follows. Let FY be the cluster forest for
Y provided by Lemma 4.4. We construct Ci+1 as follows. Every level-i cluster C ∈ Ci \ Y becomes a
level-(i + 1) cluster. Then, we construct a collection U of subtrees of FY , such that each subtree U ∈ U
contains at least two nodes and has hop-diameter at most 4. For each subtree U , we form a level (i+ 1)
cluster CU = ∪ϕC∈V(U)C. We note that U can be constructed greedily via the same algorithm used in
Section 3, within time O(|Y|).

In the following lemma we assume that the set of clusters Y is given to us. In the proof of Theorem 1.1
where we use Lemma 4.5, we will specify the construction of Y.

Lemma 4.5. All clusters in Ci+1 satisfy Properties (P1’) and (P2’) when ε ≤ 1/(2g) and g ≥ 9, and they
can be constructed in time O(|Y|). Furthermore, every cluster CU ∈ Ci+1 that is formed from a subgraph
U ∈ U, as described above, is the union of at least 2 level-i clusters.

Proof: The proof of this lemma follows similar lines to those in the proof of Lemma 3.2 from Sec-
tion Section 3, hence we aim for conciseness. As mentioned, U can be constructed within time O(|Y|).

Recall that every edge in FY corresponds to an edge of the form v → pMST(v) for some vertex v ∈ V .
Thus, for each subgraph U ∈ U, the level-(i + 1) cluster CU can be constructed by calling |V(U)| − 1
Link operations. Therefore, {CU : U ∈ U} can be constructed in time O(

∑
U∈U |U|) = O(|Y|). Note that

we do not pay any running time for constructing clusters in Ci+1 that are clusters in Ci \ Y. Therefore
Ci+1 can be constructed in O(|Y|) time.

14

Property (P1’) holds trivially. Property (P2’) follows from the fact that each subgraph U ∈ U has
hop diameter at most 4 and that each edge between two nodes in U corresponds to an edge in MST of
length at most Li since every edge of FY has a weight at most Li by construction.

Note that U is constructed using same two-step algorithm used in Section 3. Thus, the same argument
in Lemma 3.2 applies to this case. Specifically, any cluster formed in Step (1) of the construction of U
contains at least 2 nodes, since no vertex in FY is isolated, and any remaining node must be grouped in
Step (2) of the construction of U to sugraphs formed in Step (1). �

We are now ready to prove the second item of Theorem 1.1.
Proof: [Proof of the second item of Theorem 1.1] Recall that H = ∪1≤σ≤µσH

σ. We employ a similar
charging argument to the one used in Section 3 to bound |E(Hσ)|. Let ∆i+1 = |Ci| − |Ci+1|. Note that

|C0| = n, hence
∑

i≥0 ∆i+1 ≤ n. By Lemma 4.5 and Lemma 4.4, we have ∆i+1 ≥ |Y|
2 = Ω(|X |) =

Ω(|V (Ri)|). (Note that |X | = |V (Ri)|.) Thus, Equation (5) of Section 3 holds in this case as well. It

follows that the sparsity of H is O(n1/k · log(1/ε)
ε). The stretch is (2k − 1)(1 + O(ε)) by Lemma 4.2; we

can reduce the stretch down to (2k − 1)(1 + ε) by scaling ε ← ε/c, for a sufficiently large constant c,
which will affect the sparsity and runtime bounds by constant factors. The runtime to construct Hσ is
O(
∑

i≥0 |Eσi |) = O(m) by Lemma 4.2.
We now bound the time to construct the clusters in Ci+1. The main difficulty is that the size of Y

constructed in Lemma 4.4 could be much larger than |Eσi |, hence we cannot bound the runtime by |Eσi |
as we did in Section 3. Here we employ a more delicate argument. At the outset of the construction, we
divide the edges of MST into levels as we did for Eσi . The level-i edges of MST, denoted by Bi, include every
edge of length larger than Li−1 and at most Li. The time to construct Bi is O(n log(1/ε)), following the
same index-sorting argument used for constructing Eσi efficiently in Section 4.1.

At the outset of the construction of Ci+1, we assume that we are given the set of edges Di−1 that
contains every edge of weight at most Li−1 ofMST i. For level i = 0, we set Di−1 = ∅. Let Bi be the set
of edges of MST i corresponding to edges in Bi. The edge set Bi can be constructed in O(|Bi|) time as
follows. For each edge (u, v) ∈ Bi, we add an edge (ϕCu , ϕCv) to Bi, where Cu and Cv are the two level-i
clusters containing u and v, respectively, which can be found via Find(u) and Find(v).

The set of edges Ai defined in Lemma 4.4 is Di−1 ∪ Bi. Note that |Ai| ≤ |Y| since FY is acyclic.
Thus, the running time to construct Ai is O(|Y|), as we have both Di−1 and Bi stored in a list data
structure. To construct the set of Di for the construction at the next level, we simply identify edges in
FY that are between two different subgraphs U in the construction of Ci+1. Thus, the running time to
construct Di is also O(|Y|). The running time to construct Ci+1 is O(|Y|) by Lemma 4.5. It follows that

the total running time of the construction of clusters at level i is O(|Y|). Since ∆i+1 ≥ |Y|2 , the time to
construct Ci+1 is bounded by O(∆i+1), where ∆i+1 = |Ci| − |Ci+1|. It follows that the total running time
to construct clusters over all levels is

∑
i≥0O(∆i+1) = O(n).

In summary, the running time to construct H is O((m+ n) · log(1/ε)
ε) = O(m · log(1/ε)

ε). �

4.1 Index sorting in linear time

First, we assume that the word size is w̄ ≥ log(n) and all edge weights are bounded above by 2w̄, as
per the Word RAM model. The total number of different indices is given by log1+ε 2w̄ = Θ(w̄/ε). It
follows that the number of integers is n′ ≤ w̄/ε. In this range of values, predecessor search can be done
in O(log(n′)/ log w̄) = O(log(1/ε)) time using the fusion tree data structure [FW90] (see also [PT06]).
Consequently, the time needed to compute the partition of E into the sets {Eσ}1≤σ≤µε , which involves
index sorting via predecssor search, is bounded by O(m log(1/ε)). Partitioning the set of edges of MST

15

into levels can be done in the same way; the running time is O(n log(1/ε)) as there are n − 1 edges in
MST. Summarizing, the running time of these partitioning steps is bounded by O((m + n) log(1/ε)) =
O(m log(1/ε)).

5 Optimally Sparse and Light Spanners in O(mα(m,n)) Time

Le and Solomon [LS21] recently show that a (2k − 1)(1 + ε)-spanner with lightness Oε(n
1/k) can be

constructed in Oε(mα(m,n)) time; the notation Oε(.) hides a polynomial factor of 1/ε. However, their
spanner is not sparse, i.e., in the worst case, the number of edges of the spanner is Ω(m), which could
be Ω(n2) for dense graphs. Here we use the insights we develop in Section 3 and Section 4 on top of
the construction of [LS21] to obtain a (2k− 1)(1 + ε)-spanner that is both sparse and light as claimed in
Theorem 1.2.

First, we briefly recap the algorithm of Le and Solomon [LS21], called LS algorithm. LS algorithm

first divides E into two sets of edges: Elight = {e ∈: w(e) ≤ w(MST)
mε } and Eheavy = E \ Elight. Every edge

in Elight shall be added to the final spanner, and this only incurs an additive +1
ε in the lightness since:

w(Elight) ≤ m ·
w(MST)

mε
≤ w(MST)

ε
. (6)

For edges in Eheavy, LS algorithm constructs a (2k − 1)(1 + ε)-spanner Hheavy that has two properties:

(1) w(Hheavy) ≤ Oε(n1+1/k)w(MST)

(2) dG(u, v) ≤ dHheavy
(u, v) ≤ (2k − 1)(1 + ε)dG(u, v) ∀(u, v) ∈ Eheavy

(7)

The final spanner of the graph is H = Hheavy ∪Elight. By Equation (6) and Equation (7), it follows that
w(H) = (Oε(n

1/k) + 1
ε)w(MST) = Oε(n

1/k)w(MST), and hence the lightness of H is Oε(n
1/k).

Our first observation is that in LS algorithm, Hheavy does not contain any other edge of Elight, except
for MST edges. It follows that if we construct a (2k−1)(1+ε)-spanner Hlight for the subgraph of G induced
by Elight∪MST by applying the construction in Theorem 1.1, and setH = Hlight∪Hheavy∪MST, thenH is still
a (2k− 1)(1 + ε)-spanner of G. Furthermore, w(H) ≤ w(Elight) +w(Hheavy) +w(MST) = Oε(n

1/k)w(MST).
Thus, the lightness of H is Oε(n

1/k). Observe that Hlight ∪ MST has sparsity Oε(n
1/k). It follows that, to

guarantee that H has sparsity Oε(n
1/k), we need to construct Hheavy such that its sparsity and lightness

are both Oε(n
1/k). Our construction crucially makes use of the cycle property of MST following the same

spirit of the construction in Section 4.

5.1 The construction of Hheavy

We assume that Eheavy has no edges of weight at least w(MST) since we could safely remove them from
Eheavy without affecting the stretch of the construction. The spanner Hheavy constructed by LS algorithm
is a subgraph of Gheavy, which is a subgraph G induced by Eheavy ∪ E(MST). However, the construction
operates on a graph G̃ obtained fromGheavy by subdividing edges of MST using virtual vertices. Specifically,

we define w̄ = w(MST)/ε, and for each edge of e ∈ MST, if w(e) ≥ w̄, we subdivide e into dw(e)
w̄ e edges, each of

weight at most w̄, whose total weight is w(e). Let M̃ST be the subdivided MST and G̃ = (Ṽ, E(M̃ST)∪Eheavy).
That is, G̃ and G share the same set of edges Eheavy. Vertices in Ṽ \V are called virtual vertices. Le and
Solomon [LS21] observed that:

Observation 5.1 (Observation 3.4 in [LS21]). |Ṽ | = O(m).

16

We now divide Eheavy further into subsets {Eσ}1≤σ≤µε with µε = O(1
ε log(1/ε)), as we did in Section 3

(Equation (1)):

Eσi =

{
e :

Li
1 + ε

≤ w(e) ≤ Li
}

with Li = L0/ε
i, L0 = (1 + ε)σw̄ . (8)

We note that constructing every Eσi can be done in O(m) by simply sorting all indices i such that
Eσi 6= ∅. This is because the maximum index imax is O(log(n)) (Claim 3.5 in [LS21]) and hence, the
sorting step takes only O(log(n) log log(n)) = O(n) time.

The construction then focuses on each set Eσ separately. That is, we construct a (2k− 1)(1 +O(ε))-
spanner Hσ for each set Eσ in O(mα(m,n)) time, and set Hheavy = ∪1≤σ≤µεH

σ. It follows that the
running time to construct Hheavy is O(mα(m,n)/ε). Here we slightly abuse notation as Hσ is a subgraph
of G̃ instead of being a subgraph of Gheavy. However, the difference between G̃ and Gheavy lies only in
MST vs M̃ST, and by assuming that Hσ contains M̃ST, we can transform Hσ to a subgraph of Gheavy by
replacing each path of subdividing virtual vertices with the corresponding original edge of MST.

For notational convenience, we set Hσ
0 = (Ṽ, E(M̃ST)). The construction of Hσ happens in levels: at

level i, we construct a subgraph Hσ
i such that Hσ

≤i is a (2k− 1)(1 +O(ε))-spanner for edges in Eσ≤i. Here
Hσ
≤i = ∪0≤j≤iH

σ
j and Eσ≤i = ∪0≤j≤iE

σ
j . Recall that Eσ0 = ∅ since every edge in Eheavy has a weight of at

least w̄/ε. By induction, Hσ def.
= ∪i≥0H

σ
i is a (2k − 1)(1 +O(ε))-spanner for G̃.

Similar to the construction of a sparse spanner in Section 3, we construct a hierarchy of clusters,
and each level i ≥ 1 of the construction is associated with a set of clusters Ci satisfying the following
properties:

(1) Each cluster C ∈ Ci is a subset of V . Furthermore, clusters in Ci induce a partition of Ṽ .
(2) Each cluster C ∈ Ci is the union of Ω(1/ε) clusters in Ci−1 for any i ≥ 2.
(3) Each cluster C ∈ Ci induces a subgraph Hσ

≤i−1[C] of diameter at most gLi−1 for some constant g.

By property (3), clusters at level 1 are subgraphs of H0, which is M̃ST. The construction is described
in the following lemma.

Lemma 5.2 (Lemma 3.8 in [LS21]). In time O(m), we can construct a set of level-1 clusters C1 such
that, for each cluster C ∈ C1, the subtree M̃ST[C] of M̃ST induced by C satisfies L0 ≤ Dm(M̃ST[C]) ≤ 14L0.

Thus, by choosing g ≥ 14, property (3) is satisfied for clusters in C1. Property (1) follows directly
from Lemma 5.2, and property (2) is not applicable.

A crucial component in LS algorithm is a potential function Φ : 2Ṽ → R+ that associates each cluster
C ∈ Ci with a potential value Φ(C). Let Φi =

∑
C∈Ci Φ(C) be the total potential value at level i. The

potential values of level 1 clusters are defined as follows:

Φ(C) = Dm(M̃ST[C]) ∀C ∈ C1 (9)

By Lemma 5.2, we have that:

Φ1 =
∑
C∈C1

Dm(M̃ST[C]) ≤ w(MST) (10)

Next, Le and Solomon [LS21] define a potential change ∆i+1 = Φi−Φi+1. Let imax be the maximum
level, and define Φimax+1 = 0. The idea is to bound the weight of the to-be-constructed spanner Hσ

i by
the potential change Oε(n

1/k)∆i+1 (modulo a small additive term that we will describe later). It follows
that we can bound the weight of Hσ, again modulo a small additive term, as follows.

w(Hσ) ≤ Oε(n1/k)

imax∑
i=0

∆i+1 = Oε(n
1/k)(Φ1 − Φimax+1) = Oε(n

1/k)Φ1 = Oε(n
1/k)w(MST) (11)

17

In [LS21], Le and Solomon showed the following lemma, which is the key to their construction.

Lemma 5.3 (Lemma 2.6 and Theorem 1.9 [LS21]). For each level i ≥ 1, there is an algorithm that
can compute a subgraph Hσ

i induced by a subset of Eσi , as well as the set of level-(i + 1) clusters Ci+1

satisfying properties (1)-(3) given a set of clusters Ci at level i, such that:

(1) w(Hσ
i) = Oε(n

1/k)∆i+1 + ai for some ai ≥ 0 such that
∑

1≤i≤imax
ai = Oε(n

1/k)w(MST).
(2) for every (u, v) ∈ Eσi , dHσ

≤i
(u, v) ≤ (2k − 1)(1 + (10g + 1)ε)w(u, v).

Furthermore, the total running time of the construction of all levels is O(mα(m,n)) in the pointer-
machine model.

In Lemma 5.3, ai is a corrective term added to handle some edge cases where ∆i+1 = 0 or even
negative. The stretch is (2k− 1)(1 + (10g+ 1)ε) instead of (2k− 1)(1 + ε), but we can obtain the stretch
(2k − 1)(1 + ε) by scaling ε← ε

10g+1 . Note that Lemma 5.3 does not provide any bound on the number
of edges of Hσ

i .
To bound the sparsity of Hσ in our construction, we distinguish between isolated clusters and non-

isolated clusters. A cluster C ∈ Ci is non-isolated if it contains at least one endpoint of an edge in E(Hσ
i),

and otherwise, is isolated. By examining the construction of Le and Solomon carefully, we have that:

Lemma 5.4 (Le and Solomon [LS21]). Let Yi ⊆ Ci be the set of all non-isolated clusters. Then |E(Hσ
i)| =

Oε(n
1/k)|Yi|.

By property (2), the number of clusters is geometrically decreasing when ε is sufficiently smaller than
1, and hence, the total number of clusters at all levels is O(|C|1). This implies that:

|E(Hσ)| =
∑
i≥1

|E(Hσ
i)| =

∑
i≥1

Oε(n
1/k)|Ci| = Oε(n

1/k)|C1| = Oε(n
1/k)|Ṽ | (12)

However, |Ṽ | could be up to Ω(m) as it contains virtual vertices (Observation 5.1). Thus, Equa-
tion (12) does not provide any meaningful bound on the number of edges of Hσ.

We now describe our idea to modify LS algorithm and to bound the number of edges in Hσ
i . For each

cluster C ∈ Ci, we introduce two new types of clusters: non-virtual clusters, denoted by Ni, and virtual
clusters, denoted by Mi. A cluster C ∈ Ci is virtual if C only contains virtual vertices, i.e., C ⊆ Ṽ \ V ;
otherwise C is non-virtual. Since a non-isolated cluster contains at least one non-virtual vertex, which is
the endpoint of an edge in E(Hσ

i), we have:

Observation 5.5. Yi ⊆ Ni.

Following the same idea of the construction in Section 4, our goal is to construct a set of cluster Ci+1

such that (in addition to properties in Lemma 5.3) |Ni| − |Ni+1| = Ω(|Yi|). For notational convenience,
we define Nimax+1 = ∅. By the same argument in Section 4 and using Lemma 5.4, we could show that
|E(Hσ)| = Oε(n

1/k)|N1|. Recall by the definition of non-virtual clusters that |N1| ≤ n. It follows that
|E(Hσ)| = Oε(n

1+1/k), which implies the desired sparsity bound. These ideas are formalized in the
following lemma, whose proof is provided in Section 5.3.

Lemma 5.6. For each level i ≥ 1, there is an algorithm that can compute a subgraph Hσ
i induced by a

subset of Eσi , as well as the set of level-(i + 1) clusters Ci+1 satisfying properties (1)-(3) given a set of
clusters Ci at level i, such that:

(1) w(Hσ
i) = Oε(n

1/k)∆i+1 + ai for some ai ≥ 0 such that
∑

1≤i≤imax
ai = Oε(n

1/k)w(MST).
(2) for every (u, v) ∈ Eσi , dHσ

≤i
(u, v) ≤ (2k − 1)(1 + (10g + 1)ε)w(u, v).

18

(3) |E(Hσ
i)| = Oε(n

1/k)|Yi|.
(4) |Ni| − |Ni+1| ≥ |Yi|/2.

Furthermore, the total running time of the construction of all levels is Oε(mα(m,n)) in the pointer-
machine model.

In the next section, we prove Theorem 1.2, assuming that Lemma 5.6 holds.

5.2 Proof of Theorem 1.2

Recall that H = Hlight∪Hheavy∪MST, where Hlight is a (2k−1)(1 + ε)-spanner of Elight. By Theorem 1.1,
Hlight can be constructed in O(mα(m,n)poly(1/ε) + SORT(m)) in the pointer-machine model, and in
O(mpoly(1/ε)) time in the Transdichotomous model. MST can be constructed in O(mα(m,n)) by the
pointer-machine model by Chazelle’s algorithm [Cha00]. By Lemma 5.6, the running time to construct
Hσ is O(mα(m,n)poly(1/ε)), which implies the running time to construct H is O(mα(m,n)poly(1/ε))µε =
O(mα(m,n)poly(1/ε)). Thus, the running time to construct H is O(mα(m,n)poly(1/ε) + SORT(m)) in
the pointer-machine model and is O(mα(m,n)poly(1/ε)) in the Transdichotomous model.

We now focus on bounding the sparsity and lightness of H. By Item (1) in Lemma 5.6, we have that:

w(Hσ) =

imax∑
i=0

w(Hσ
i) =

imax∑
i=0

Oε(n
1/k)∆i+1 + ai

= Oε(n
1/k)(Φ1) +

imax∑
i=0

ai = Oε(n
1/k)w(MST),

(13)

by Equation (10) and Item (2) of Lemma 5.6. Furthermore, by Item (4) of Lemma 5.6, it follows that:

|E(Hσ)| =
imax∑
i=0

|E(Hσ
i)| =

imax∑
i=0

Oε(n
1/k)|Yi| (by Item (3) of Lemma 5.6)

=

imax∑
i=0

Oε(n
1/k)(|Ni| − |Ni+1|) (by Item (4) of Lemma 5.6)

= Oε(n
1/k)|N1| = Oε(n

1+1/k).

(14)

It follows that w(Hheavy) =
∑

σ∈[1,µε]
w(Hσ) = Oε(n

1/k)w(MST) and |E(Hheavy)| =
∑

σ∈[1,µε]
|E(Hσ)| =

Oε(n
1+1/k) since µε = O(log(1/ε)1/ε).

Observe that w(Hlight) ≤ w(Elight) ≤ w(MST)/ε by Equation (6). Furthermore, |E(Hlight)| = Oε(n
1+1/k)

by Theorem 1.2. We then conclude that:

w(H) ≤ w(Hlight) + w(Hheavy) = Oε(n
1/k)w(MST)

|E(H)| = |E(Hlight)|+ |E(Hheavy)| = Oε(n
1+1/k).

That is, the sparsity and lightness of H are both Oε(n
1/k).

We now bound the stretch of H. Let (u, v) be any edge in G. If (u, v) is in Elight, then the stretch of
(u, v) is (2k−1)(1 + ε) in Hlight. If (u, v) ∈ MST, then the stretch is 1 since H contains MST as a subgraph.
Otherwise, (u, v) ∈ Eheavy, and this means there exist σ ∈ [1, µε] and i ∈ [1, imax] such that (u, v) ∈ Eσi .
By Item (1) in Lemma 5.6, the stretch of (u, v) in Hσ

≤i, and hence in Hheavy, is (2k − 1)(1 + (10g + 1)ε).
In summary, the stretch in H of any edge (u, v) ∈ E(G) is at most (2k − 1)(1 + (10g + 1)ε). By scaling
ε← ε/(10g+ 1), we obtain a spanner of stretch (2k− 1)(1 + ε), and with the same lightness and sparsity
bounds. �

19

5.3 Construction of Hσ
i and Ci+1

In this section, we construct Hσ
i and Ci+1 with properties claimed in Lemma 5.6. Without loss of

generality, we assume that ε is sufficiently small, and in particular, ε is smaller than 1/(c · g) for any
constant c. We now introduce new notation used in this section.

Notation. We consider graphs with weights on both edges and vertices in this section. We define the
augmented weight of a path to be the total weight of all edges and vertices along the path. The augmented
distance between two vertices in G is defined as the minimum augmented weight of a path between them
in G. The augmented diameter of G is denoted by Adm(G), which is the maximum pairwise augmented
distance in G.

Cluster graphs. The construction of Ci+1 is done via a cluster graph Gi(Vi, E ′i, ω) that has weights
on both edges and nodes (we use nodes to refer to vertices of Gi). Each node ϕC ∈ Vi corresponds to a
level-i cluster C and has weight:

ω(ϕC) = Φ(C) (15)

That is, the weight of each node is the potential value of its corresponding cluster. The edge set E ′i is the
union of two edge sets Ei ∪ M̃STi:

• Each edge e = (ϕCu , ϕCv) ∈ Ei corresponds to an edge (u, v) ∈ Eσi ∪ E(M̃ST) where Cu and Cv are
level-i clusters containing u and v, respectively. Furthermore, ω(e) = w(u, v).

• Ei corresponds to a subset of edges of Eσi and M̃STi corresponds to a subset of edges of M̃ST, the
subdivided MST. M̃STi induces a minimum spanning tree of Gi, and we abuse notation by denoting
M̃STi the spanning tree of Gi by edges in M̃STi.

We refer readers to Lemma 3.16 in [LS21] for the construction of Gi. At a high level, the construction
removes edges that are self-loops, parallel edges, and those that have stretch at most (2k− 1)(1 + 6gε) in
M̃STi as these edges already have a good stretch.

Lemma 5.7 (Lemma 3.16 and Lemma 3.22 [LS21]). Gi can be constructed in O((|Vi| + |Eσi |)α(m,n))
time. Furthermore, if the subset of edges of Eσi corresponding to Ei has stretch (2k−1)(1+sε) in Hσ

≤i for
some constant s that only depends on g, then every edge in Eσi has stretch (2k−1)(1+max{s+4g, 10g}ε)
in Hσ

≤i when ε ≤ 1
max{s+4g,10g} .

Lemma 5.7 implies that it suffices for the construction to focus on constructing a spanner for the
subset of edges of Eσi that correspond to edges in Ei.

Level-(i+ 1) clusters. Instead of constructing level-(i+ 1) directly from level-i clusters, we construct
a collection X of vertex-disjoint subgraphs of Gi. Each subgraph X ∈ X has the vertex set denoted by
V(X) and the edge set denoted by E(X), and is mapped to a level-(i + 1) cluster, denoted by CX , as
follows:

CX = ∪ϕC∈V(X)C (16)

That is, CX is the union of all level-i clusters corresponding to the nodes of X . Note that X has weights
on both edges and nodes. We then define the potential value of CX as follows.

Φ(CX) = Adm(X) (17)

That is, the potential value of CX is the augmented diameter of the corresponding subgraph. Recall that
the potential value will then be the weight of the node corresponding to CX in the cluster graph Gi+1

20

in the construction of the next level, see Equation (15). Furthermore, inductively, we can show that, if
ω(ϕC) is an upper bound on Dm(Hσ

≤i−1[C]), then Adm(X) is an upper bound on Dm(Hσ
≤i[CX]). As a

result, guaranteeing properties (1)-(3) for level-(i + 1) clusters can be translated into guaranteeing the
following properties for subgraphs in X:

• (P1’). {V(X)}X∈X is a partition of Vi.
• (P2’). |V(X)| = Ω(1

ε).
• (P3’). Li ≤ Adm(X) ≤ gLi.

Lemma 5.8 (Lemma 3.14 [LS21]). Let X be any subgraph in X satisfying properties (P1’)-(P3’). Suppose
that every edge (ϕCu , ϕCv) ∈ E(X) corresponds to an edge (u, v) that is added to Hσ

i . Then, CX satisfies
all properties (1)-(3).

We remark that Lemma 5.8 is based on the assumption that (u, v) is added to Hσ
i , which we have

not constructed yet.

Constructing level(i + 1) clusters. Lemma 5.8 translates the construction of clusters in Ci+1 to
the construction of the set of subgraphs X satisfying (P1’)-(P3’). The main difficulty is not only to
satisfy these properties; but also to guarantee that the weight of Hσ

i is bounded by the potential change
∆i+1 (and a small additive term) as claimed in Item (1) of Lemma 5.6. Recall by Equation (15) and
Equation (17) that:

Φi =
∑
C∈Ci

Φ(C) =
∑
ϕC∈Vi

ω(ϕC)

Φi+1 =
∑

CX∈Ci+1

Φ(CX) =
∑
X∈X

Adm(X)
(18)

Thus, if we define the local potential change of X as follows:

∆i+1(X) =
∑

ϕC∈V(X)

ω(ϕX)− Adm(X), (19)

then it follows that:

Claim 5.9 (Claim 3.15 [LS21]). ∆i+1 =
∑
X∈X ∆i+1(X).

That is, the potential change ∆i+1 can be decomposed into local potential changes of subgraphs in
X. This meanss we could bound the weight of Hσ

i locally via bounding the total weight of edges incident
to nodes in X by the local potential change of X .

Partitioning Vi and X. We say that a partition V = {Vhighi ,V low+

i ,V low−i } of Vi is a degree-specific

partition if every node ϕC ∈ Vhighi is incident to Ω(1/ε) edges in Ei and every node ϕC ∈ V low
+

i ∪V low−i is

incident to O(1/ε) edges in Ei. That is, Vhighi is the set of high-degree nodes of Vi and V low+

i ∪ V low−i is

the set of low-degree nodes of Vi. The difference between V low+

i and V low−i will be made clear later.

We say that a partition {Xhigh,Xlow+
,Xlow−} of a collection X of subgraphs of Gi conforms with a

degree-specific partition V if

(i) Every subgraph X ∈ Xlow− has V(X) ⊆ V low−i , and ∪X∈Xlow−V(X) = V low−i .

(ii) For every node ϕC ∈ Vhighi , there exists a subgraph X ∈ Xhigh such that ϕC ∈ V(X), and that every

subgraph X ∈ Xhigh contains at least one node in Vhighi .

21

Observe that property (ii) implies that V(X) ⊆ V low+

i for every X ∈ Xlow+
. Also, it is possible that a

subgraph X ∈ Xhigh contains a node in V low+

i .
The construction of X in [LS21] is described by the following lemma.

Lemma 5.10 (Lemma 3.17 [LS21]). Given Gi, we can construct in time O((|Vi|+ |Ei|)ε−1) (i) a degree-

specific partition V = {Vhighi ,V low+

i ,V low−i } of Vi and (ii) a collection X of subgraphs of Gi along with a

partition {Xhigh,Xlow+
,Xlow−} conforming V such that:

(1) Let ∆+
i+1(X) = ∆(X) +

∑
e∈M̃STi∩E(X)w(e). Then, ∆+

i+1(X) ≥ 0 for every X ∈ X, and∑
X∈Xhigh∪Xlow+

∆+
i+1(X) =

∑
X∈Xhigh∪Xlow+

Ω(|V(X)|ε2Li). (20)

(2) There is no edge in Ei between a node in Vhighi and a node in V low−i . Furthermore, if there exists an

edge (ϕCu , ϕCv) ∈ Ei such that both ϕCu and ϕCv are in V low−i , then V low−i = Vi and |Ei| = O(1
ε2

);
this case is called the degenerate case.

(3) For every subgraph X ∈ X, X satisfies the three properties (P1’)-(P3’) with constant g = 31, and
|E(X) ∩ Ei| = O(|AX |) where AX is the set of nodes in X incident to an edge in E(X) ∩ Ei.

We call ∆i+1(X) the corrected potential change of X . We remark that ∆i+1(X) could be negative
but ∆i+1(X) is always positive by Item (1) of Lemma 5.10. Furthermore, Item (1) in Lemma 5.10 only

tells us about the corrected potential changes of subgraphs in Xhigh ∪Xlow+
; there is no guarantee on the

corrected potential changes of subgraphs in Xlow− other than non-negativity, and as a result, we could
not bound the total weight of edges incident to a subgraph X ∈ Xlow− by the local potential change of
X . However, Item (2) means that subgraphs in Xlow− do not need to “pay for” their incident edges (by

their corrected potential changes)—these edges can be paid for by subgraphs in Xhigh∪Xlow+
—unless the

degenerate case happens, which only incurs a small weight (of O(1/ε2) edges). Furthermore, subgraphs

in Xlow− do not contain any edge in Ei by Item (2) of Lemma 5.10 unless the degenerate case happens.

Observation 5.11 (Observation 3.20 in [LS21]). If the degenerate case does not happen, for every edge

(ϕ1, ϕ2) with one endpoint in V low−i , the other endpoint must be in V low+

i , and hence, E(X) ∩ Ei = ∅ if

X ∈ Xlow−.

We remark that Item (3) in Lemma 5.10 is slightly different from the corresponding item in Lemma
3.17 [LS21], which is Item (5), in that |E(X) ∩ Ei| is bounded by O(|V(X)|). Here we need a slightly
stronger bound, and Item (3) can be seen directly from the construction of [LS21]. For completeness,
we will show this item in the construction in Section 5.3.2.

While the construction in Lemma 5.10 provides a mean to construct Hσ
i and bounding its weight

by (corrected) potential changes via Item (1), it does not give us a sufficient reduction in the number
of non-virtual clusters as claimed by Items (3) and (4) in Lemma 5.6. The reduction in the number
of non-virtual clusters was used to bound the total number of edges of Hσ in Section 5.2. Our main
contribution is a modification of the construction by Le and Solomon [LS21] using the cycle property of
MST to achieve the reduction in the number of non-virtual clusters.

We call a node ϕC virtual if it corresponds to a virtual cluster C; otherwise, we call ϕC non-virtual.
We say that ϕC is isolated if C is isolated, and otherwise, is non-isolated. By definition, a non-isolated
node is a non-virtual node.

We abuse notation by denoting Ni and Mi the sets of non-virtual nodes and virtual nodes of Vi,
respectively. We denote by Yi the set of non-isolated nodes in Vi. We will show later that Yi is exactly

22

the set of nodes defined in Lemma 5.4. That is, every node in Yi corresponds to a level-i cluster that
contains at least one endpoint of an edge in Hσ

i .
We say that a subgraph X ∈ X is non-virtual if it contains at least one non-virtual node, and

otherwise, is virtual. A non-virtual subgraph corresponds to a non-virtual level-(i+ 1) cluster. Our main
contribution is the construction of X described by the following lemma.

Lemma 5.12. We can construct in O((|Vi|+ |Ei|)ε−1) a degree-specific partition V of Vi and a collection
X of subgraphs of Gi that satisfy all properties in Lemma 5.10 with g = 42. Furthermore, if we denote by
Ni+1 the set of non-virtual subgraphs in X, then |Ni| − |Ni+1| ≥ |Yi|/2.

In the following section, we prove Lemma 5.6 assuming that Lemma 5.12 holds. The proof of
Lemma 5.12 is deferred to Section 5.3.2.

5.3.1 Proof of Lemma 5.6

We use the same algorithm in [LS21] to construct Hσ
i . The algorithm has three steps. Initially Hσ

i has
no edge.

• Step 1. For every subgraph X ∈ X, we add to Hσ
i every edge in Eσi that corresponds to an edge

in E(X) ∩ Ei. The purpose of this step is to guarantee the assumption of Lemma 5.8.
• Step 2. Wee use Halperin-Zwick algorithm (Theorem 2.2) to construct a (2k − 1)-spanner for

edges between Vhighi only. Specifically, we create an unweighted graph Ki that has Vhighi as the

vertex set and the subset of edges of Ei between Vhighi as the edge set. Then, we run Halperin-Zwick

algorithm [HZ96] on Ki to obtain an edge set Eprunedi . We then add every edge in Eσi corresponding

to an edge in Eprunedi to Hσ
i .

• Step 3. We add to Hσ
i every edge that corresponding to an edge of Ei incident to a node in

V low+

i ∪ V low−i .

Le and Solomon (Lemma 3.22 and Lemma 4.5 in [LS21]) showed that w(Hσ
i) = Oε(n

1/k)∆i+1 +ai for
ai satisfying Lemma 5.6, and that the stretch of every edge (u, v) ∈ Eσi is at most (2k−1)(1+(10g+1)ε) in
Hσ
i . Since their proof only uses properties stated in Lemma 5.10, and that our construction in Lemma 5.12

also satisfies Lemma 5.10, Items (1) and (2) in Lemma 5.6 hold in our construction as well. We remark
that the additive term ai is used to handle the degenerate case in Item (2) of Lemma 5.10, since in that
case, ∆i+1 ≤ 0.

We now focus on proving Items (3) and (4) of Lemma 5.6. First, we observe that for every node ϕC
that is incident to an edge e ∈ Ei, the corresponding edge of e in Eσi is added to Hσ

i , unless ϕC ∈ Vhighi

and Halperin-Zwick algorithm does not pick e to Eprunedi . In this exceptional case, another edge incident

to ϕC must be picked to Eprunedi ; otherwise, ϕC is not connected to any node in the graph induced by

Eprunedi , contradicting that the output is a spanner. It follows that Yi corresponds to level-i clusters that
have at least one incident edge in Hσ

i . Thus, Item (4) of Lemma 5.6 follows from Lemma 5.12.
By Item (3) in Lemma 5.10, the total number of edges added in Step 1 is O(1)

∑
X∈XAX = O(1)|Yi|.

The number of edges added in Step 2 is |Eprunedi | = O(|Vhighi |1+1/k) = O(n1/k)|Vhighi | = O(n1/k)|Yi| since

Vhighi ⊆ Yi by the definition of non-isolated nodes. In Step 3, for each node ϕC ∈ V low
+

i ∪ V low−i , we add

at most O(1/ε) incident edges to Hσ
i since nodes in V low+

i ∪ V low−i have degree O(1/ε). Thus, the total
number of edges added in Step 3 is O(1/ε)|Yi|. Item (3) of Lemma 5.6 now follows.

For the running time, we first note that constructing Gi takesO((|Vi|+|Ei|)α(m,n)) time by Lemma 5.7.
The set of subgraphs X is constructed in Oε(|Vi|+ |Ei|) time by Lemma 5.12. In the construction of H i

σ,
Steps 1 and 3 take O(|Vi| + |Ei|) by a straightforward implementation. Step 2 takes O(|Vi| + |Ei|) time

23

by Theorem 2.2. Thus, the total running time of the construction at level i is O((|Vi|+ |Ei|)α(m,n)). It
follows that the total running time over all levels is:

∑
i≥1

Oε ((|Vi|+ |Ei|)α(m,n)) = Oε

(
∑
i≥1

|Vi|+m)α(m,n)

= Oε

(
(|Ṽ |+m)α(m,n)

)
(by property (P2))

= Oε (mα(m,n)) (by Observation 5.1)

Lemma 5.6 now follows. �

5.3.2 The construction of X

Recall that M̃ST is the tree obtained by subdividing MST edges by virtual vertices. For each edge e ∈ MST,
we denote by Pe the corresponding path of MST subdivided from e. We call Pe the subdivided path of e.
Since each virtual cluster C ∈ Ci only contains virtual vertices, C induces a subpath of the subdivided
path Pe of some edge e ∈ MST. We call Pe the parent path of C, and e the parent edge of C; see Figure 2(a).
We also refer to Pe as the parent path and to e as the parent edge of the virtual node ϕC corresponding
to C.

C

Pe

e

C

e

Z Z~

e

Z

𝜑
C0 𝜑

C1

𝜑
Ck-1

u0
v0

u1
v1

uk-1
vk-1

Pe' e'

e

(a) (b) (c) (d)

𝜑 e𝜑

Figure 2: Virtual clusters are yellow shaded and non-virtual clusters are green shaded. (a) A virtual
cluster C, its parent path Pe, and the edge e that corresponds to Pe. (b) The fundamental cycle Z of
M̃STi formed by an edge e. (c) The corresponding cycle Z̃ in G̃heavy corresponding to Z. Shaded nodes
are u0, v0, u1, v1, . . . , uk−1, vk−1. (d) The cycle Z of Gheavy corresponding to Z̃ obtained by replacing each
subdivided path Pe′ with the corresponding edge e′ in MST. Solid (black) edges are MST edges, and red
(dashed) edges are non-MST edges.

Our goal is to construct X satisfying all properties in Lemma 5.10, and such that there is a significant
reduction in the number of non-isolated clusters as claimed in Lemma 5.6. To guarantee this additional
constraint, we rely on a specific structure of Gi described in the following lemma, which is an analogous
version of the cycle property of the minimum spanning tree.

Lemma 5.13. Let e = (ϕ1, ϕ2) be any edge in Ei, and Z the fundamental cycle of M̃STi formed by e. For
any virtual node ϕ ∈ Z, w(eϕ) ≤ ω(e) where eϕ is the parent edge of ϕ.

24

Proof: Recall that G̃heavy is obtained from Gheavy by subdividing MST edges, and that Gheavy =
(V,Eheavy ∪ E(MST)). Let e be the edge in Gheavy corresponding to e. We construct a cycle Z̃ of G̃heavy

from Z as follows. Write
Z = (ϕC0 , e0, ϕC1 , e1, . . . , ϕCk−1

, ek−1, ϕC0)

as an alternating sequence of nodes and edges that starts from and ends at the same node ϕC0 . (See
Figure 2(a) and (b) for an illustration.) For notational convenience, we regard the last node ϕC0 as ϕCk
with the subscript modulo k. Let (ui, vi) be the edge in G̃heavy corresponding to ei, and Qi be the shortest
path from v(i−1) (mod k) to ui in Hσ

≤i[Ci] for any 0 ≤ i ≤ k−1. Then Z̃ = (u0, v0)◦Q1 ◦ (u1, v1)◦Q2 ◦ . . .◦
(uk−1, vk−1) ◦Qk−1 is a cycle of G̃; here ◦ is the path concatenation operator. Observe that Z̃ contains
the parent path, say Pe, of ϕ. Let Z be the cycle of Gheavy obtained from Z̃ by replacing each subdivided
path say Pe′ in Z̃ with the corresponding MST edge e′; see Figure 2(d). Note that both e and eϕ belong
to Z.

Observe by property (P3) that Dm(Hσ
≤i[Ci]) ≤ gεLi < Li/(1 + ε) ≤ ω(e) = w(e) when ε ≤ 1/(2g).

Thus, the weight of any non-MST edge in Z is at most w(e). That is, any edge of weight larger than w(e)
in Z must be an MST edge. If there exists such an edge, then the edge of maximum weight in Z is an MST

edge, contradicting the cycle property of MST. Thus, e is an edge of maximum weight in Z, which gives
w(eϕ) ≤ w(e) = ω(e) as claimed. �

Note by definition that a non-isolated node is a non-virtual node. We say that a subgraph X is
good if it either contains no non-isolated node or if it contains one non-isolated node, it has at least two
non-virtual nodes (one of which is the non-isolated node). If every subgraph in X is good, then we could
show that the number of non-virtual clusters is reduced by at least |Yi|/2. In LS construction, which
has five steps, only subgraphs formed in Steps 2 and 5 (more precisely, Step 5B) may not be good. For
Step 5B, only need to make a minor modification and argue that the resulting subgraph is good using
Lemma 5.13. For Step 2, we need an entirely different construction. As a result, our construction also has
five steps. Steps 1,3, 4 and 5A are the same as the LS construction, and are taken verbatim from [LS21]
for completeness. Notation introduced in this section is summarized in the following table.

Notation Meaning

Elight {e ∈ E(G) : w(e) ≤ w/ε}
Eheavy E \ Elight

Eσ
⋃
i∈N+ Eσi

Eσi {e ∈ E(G) : Li
1+ε < w(e) ≤ Li}

Hσ
i A spanner constructed for edges in Eσi

Hσ
≤i Hσ

≤i = ∪j≤iHσ
i

g constant in property (P3), g = 42

Non-virtual cluster A cluster containing at least one non-virtual vertex

Non-virtual node A node in Vi corresponding to a non-virtual cluster

Ni the set of non-virtual clusters (nodes) at level i

Mi the set of virtual clusters (nodes) at level i

Non-isolated cluster A cluster containing an endpoint of an edge added to Hσ
i

Non-isolated node A node in Vi corresponding to a non-isolated cluster

25

Yi the set of non-isolated clusters (nodes) at level i; Yi ⊆ Ni
Gi = (Vi, M̃STi ∪ Ei, ω) cluster graph

Ei corresponds to a subset of edges of Eσi

X a collection of subgraphs of Gi
X ,V(X), E(X) a subgraph in X, its vertex set, and its edge set

Good subgraph X X contains no non-isolated node or at least two non-virtual nodes

Φi
∑

c∈Ci Φ(c)

∆i+1 Φi − Φi+1

∆i+1(X) (
∑

φC∈X Φ(C))− Φ(CX)

∆+
i+1(X) ∆i+1(X) +

⋃
e∈E(X)∩M̃STi w(e)

CX
⋃
φC∈X C

{Vhighi ,V low+
,V low−i } a degree-specific partition of Vi

{Xhigh,Xlow+
,Xlow−} A partition of X conforming a degree-specific partition.

Table 2: Notation introduced in this section

Lemma 5.14 (Step 1, Lemma 5.1 [LS21]). Let Vhighi be the set of nodes incident to at least 2g/ε edges

in Ei, and Vhigh+
i be the set of all nodes in Vhighi and their neighbors that are connected via edges in Ei.

We can construct in O(|Vi|+ |Ei|) time a collection of node-disjoint subgraphs X1 of Gi such that:

(1) Each subgraph X ∈ X1 is a tree.

(2) ∪X∈X1V(X) = Vhigh+
i .

(3) Li ≤ Adm(X) ≤ 13Li, assuming that ε ≤ 1/g.
(4) |V(X)| ≥ 2g

ε .

Let F̃
(2)
i be the forest obtained from M̃STi by removing every node in Vhigh+

i (defined in Lemma 5.14).

LS algorithm deals with branching nodes of F̃ (2) in Step 2. We say that a node in a tree T̃ is T̃ -branching
if it has degree at least 3 in T̃ . A node in a forest F̃ is F̃ -branching if it is T̃ -branching in some tree T̃
of F̃ . We will omit the prefixes T̃ and F̃ in the branching notation whenever the tree and the forest are
clear from the context.

Similar to LS algorithm, our goal is to group all branching nodes of F̃
(2)
i into subgraphs. However,

we need to guarantee that subgraphs formed in this step are good, which a priori, are not guaranteed to
be good in LS construction.

Lemma 5.15. We can construct in O(|Vi|) time a collection X2 of subtrees of F̃
(2)
i and a subset of nodes

Z of F̃
(2)
i such that, for every X ∈ X2:

(1) X is a tree, has an X -branching node, and is good.
(2) Li ≤ Adm(X) ≤ 20Li.
(3) |V(X)| = Ω(1

ε) when ε ≤ 2/g.

(4) Let F̃
(3)
i be obtained from F̃

(2)
i by removing every node contained in subgraphs of X2 and in Z.

Then, for every tree T̃ ⊆ F̃ (3)
i , either (4a) Adm(T̃) ≤ 6Li or (4b) T̃ is a path.

(5) Nodes in Z are augmented to subgraphs in X1 such that for every subgraph Y ∈ X1 that are aug-
mented, Yaug remains a tree and Adm(Yaug) ≤ 24Li where Yaug is Y after the augmentation.

26

There are two differences in the construction of Step 2 in our construction compared to the construc-
tion in LS algorithm. First, the graphs constructed are good. Second, for some edges cases where we
could not group branching nodes into subgraphs satisfying Item (1), we show that they could be aug-
mented to subgraphs in X1. These nodes are in Z in Item (5), and our construction guarantees that the
augmentation does not change the structure of subgraphs in X1. That is, subgraphs in X remain trees,
and their diameters are not increased by much. The increase in the diameter from 13Li in Lemma 5.14
to 24Li in Item (5) in Lemma 5.15 does not affect the overall argument of Le and Solomon [LS21]; this
only affects the choice of g, which we have the freedom to choose as large as we want. The augmented
diameter of X in Item (2) in Lemma 5.15 is also slightly larger than the diameter of subgraphs in [LS21],
which is at most 2Li. This change also only affects the choice of g. The proof of Lemma 5.15 will be
delayed to Section 5.3.3.

Step 3: Augmenting X1 ∪ X2. We say that a path of augmented diameter at least 6L in the forest

F̃
(3)
i in Item (4) of Lemma 5.15 a long path. In this step, we further augment graphs formed in Steps 1

and 2. The purpose is to guarantee that for any long path after this step, at least one endpoint of the
path is connected to a node in a subgraph of X1 ∪ X2 via an M̃STi edge.

The construction. Let A be the set of all nodes in a long path of F̃
(3)
i that is M̃STi-

branching. For each node ϕ ∈ A, let X ∈ X1∪X2 be (any) subgraph such that ϕ is connected
to a node in X via an M̃STi edge e. We then add ϕ and e to X .

Lemma 5.16 (Lemma 5.3. [LS21]). The augmentation in Step 3 can be implemented in O(|Vi|) time,
and increases the augmented diameter of each subgraph in X1 ∪ X2 by at most 4Li when ε ≤ 1/g.

Furthermore, let F̃
(4)
i be the forest obtained from F̃

(3)
i by removing every node in A. Then, for every tree

T̃ ⊆ F̃ (4)
i , either:

(1) Adm(T̃) ≤ 6Li or
(2) T̃ is a path such that (2a) every node in T̃ has degree at most 2 in M̃STi and (2b) at least one endpoint

ϕ of T̃ is connected via an M̃STi edge to a node ϕ′ in a subgraph of X1 ∪ X2, unless X1 ∪ X2 = ∅.

We emphasize that in Item (2a) of Lemma 5.16, the degree bound is in M̃STi. This is important

for the construction in Step 5. Step 4 deals with long paths of F̃
(4)
i , the forest in Lemma 5.16. The

construction uses Red/Blue Coloring. The coloring guarantees that for any long path in F̃
(4)
i , the nodes

in the prefix/suffix of augmented length at most Li get red color, while other nodes get blue color.

Red/Blue Coloring. The coloring applies to each long path P̃ ∈ F̃ (4)
i . Specifically, a node

gets red color if its augmented distance to at least one of the two endpoints of P̃ is at most
Li; otherwise, it gets blue color.

Lemma 5.17 (Step 4, Lemma 5.4 [LS21]). We can construct in O((|Vi|+ |Ei|)ε−1) time a collection X4

of subgraphs of Gi such that every X ∈ X4:

(1) X contains a single edge in Ei.
(2) Li ≤ Adm(X) ≤ 5Li.
(3) |V(X)| = Θ(1

ε) when ε� 1
g .

(4) ∆+
i+1(X) = Ω(ε2|V(X)|Li).

(5) Let F̃
(5)
i be obtained from F̃

(4)
i by removing every node contained in subgraphs of X4. If we apply

Red/Blue Coloring to each path of augmented diameter at least 6Li in F̃
(5)
i , then there is no edge

in Ei that connects two blue nodes in F̃
(5)
i .

27

Item (5) of Lemma 5.17 guarantees that for any edge with one endpoint in a long path of F̃
(5)
i , at

least one of the endpoints must have red color. F̃
(5)
i has the following structure.

Observation 5.18 (Observation 5.7 [LS21]). Every tree T̃ ⊆ F̃ (5)
i of augmented diameter at least 6Li is

connected via M̃STi edge to a node in some subgraph X ∈ X1∪X2∪X4, unless there is no subgraph formed
in Steps 1-4, i.e., X1 ∪ X2 ∪ X4 = ∅.

We observe that any tree T̃ ⊆ F̃
(5)
i of diameter at least 6Li must be a path, and that, by Item (2a)

in Lemma 5.16, only endpoints of T̃ could have an edge in M̃STi to a node outside T̃ . We call such an
endpoint a connecting endpoint of T̃ . Note that T̃ could have up to two connecting endpoints.

Step 5 has two smaller steps. In Step 5A, we augment trees of F̃
(5)
i of low augmented diameter to

existing subgraphs. In Step 5B, we form new subgraphs from long paths, and augment the prefix/suffix
to an existing subgraph in previous steps.

Step 5. Let T̃ be a path in F̃
(5)
i obtained by Item (5) of Lemma 5.17. We construct two sets of

subgraphs, denoted by Xintrnl
5 and Xpref

5 .

• (Step 5A) If T̃ has augmented diameter at most 6Li, let e be an M̃STi edge connecting T̃ and a node
in some subgraph X ∈ X1 ∪X2 ∪X4, assuming that X1 ∪X2 ∪X4 6= ∅. We add both e and T̃ to X .

• (Step 5B) Otherwise, T̃ is a path. We break T̃ into subpaths of augmented diameter at least Li
and at most 7Li by applying the construction in Lemma 5.19 below. For any subpath P̃ broken
from T̃ , if P̃ is connected to a node in a subgraph X via an edge e ∈ M̃STi, we add P̃ and e to X ;
otherwise, P̃ becomes a new subgraph. We add P̃ to Xpref

5 if it is a prefix/suffix of T̃ ; otherwise, we

add P̃ to Xintrnl
5 .

Lemma 5.19. Let P̃ be a path of augmented diameter at least 6Li in F̃
(5)
i . We can break P̃ into a

collection of paths P such that each path P̃ ′ ∈ P has two properties:

(1) Li ≤ Adm(P̃ ′) ≤ 7Li.
(2) If P̃ ′ contains a non-isolated node, then it contains at least two non-virtual nodes, or a connecting

endpoint of P̃ .

The running time of the construction is O(|V(P̃)|).

Proof: Recall that by Item (2a) in Lemma 5.16, every node in P̃ has degree 2 in M̃STi. This means, if an
endpoint of P̃ is non-connecting, then it is a non-virtual node. Recall by the definition of a virtual node
ϕC , its corresponding cluster C is virtual, and hence, structurally, C induced a subpath of the parent
path Pe.

We construct path graph P from P̃ that contains non-virtual nodes and the endpoints of P̃ as follows.
Each edge e = (ϕ,ϕ′) ∈ P corresponds to a path between ϕ and ϕ′ in T̃ whose internal nodes are virtual.
Note that all virtual nodes on the path between ϕ and ϕ′ in T̃ share the same parent path Pe. Let Qe
be the minimal subpath of Pe whose endpoints are in the clusters corresponding to ϕ and ϕ′. We then
assign a weight ω(e) = w(Qe). Observe that ω(e) ≤ w(Pe) = w(e) where e is the MST edge from which
Pe is subdivided. See Figure 3(a) and (b) for an illustration.

Note by Item (2a) of Lemma 5.15, every node in P̃ has degree at most 2 in M̃STi. If ϕ is a non-isolated
node in P̃ , then it is incident to an edge, say e′, in Ei by definition. One of the incident edges of ϕ is part
of the fundamental cycle of M̃STi formed by e′. It follows from Lemma 5.13 that at least one edge in P
of ϕ must have a weight at most Li.

28

(a)
(b)

(d) (c)

Pe

Qe
e

5

R~

P~

P

F

Q Q
1 2Q~1 Q~2

R~1 R~2

Figure 3: An illustration for the proof of Lemma 5.19. Small circles are virtual vertices; black (solid)
edges are M̃ST edges and red (dashed) edges are edges in Ei. (a) Non-isolated nodes in P̃ are those incident
to red edges. Nodes grouped in previous steps are in the blue-shaded region. The path Qe corresponds to
an e in P is highlighted. Qe is a subpath of the parent path Pe of the virtual clusters in the construction
of e. (b) The path P obtained from P̃ in figure (a) by the construction in the proof of Lemma 5.19; the
only virtual node in P is the (connecting) endpoint of P. Suppose that every edge in Qe in figure (a)
has weight 1, then e has weight 5 since Qe has 5 edges. In general, ω(e) = w(Qe). (c) Forest F obtained
from P by removing every edge of weight at least 2Li. A in this case includes two paths Q1 and Q2. (d)
Two paths Q̃1 and Q̃2 in P constructed from Q1 and Q2, respectively. Two other paths R̃1 and R̃2 are
broken from the path R̃ in (a).

Let F be the forest induced by edges of weight at most 2Li in P. We further remove singletons from
F . Observe that a singleton in F is either a connecting endpoint of P, or an isolated node. We then
greedily break each path in F that contains at least three edges into subpaths of at least two edges and
at most three edges each. As a result, we obtain a collection A of subpaths of P that contain at least two
nodes each. See Figure 3(c).

We now construct P as follows. (Step 1) For each path Q ∈ A, we construct the corresponding subpath
Q̃ of P̃ by replacing each edge in Q by the corresponding subpath in P̃ . We then add Q̃ to P. (Step 2)
After Step 1, remaining nodes in P̃ that are not grouped to a path in P induces a collection of subpaths,
say Q, of P̃ . Observe by the construction of F that, each subpath in the collection Q corresponds to a
subpath of P, which only contains virtual nodes and isolated nodes, that has at least one edge of weight
at least 2Li. Now for each path R̃ ∈ Q, observe that Adm(R̃) ≥ 2Li − 2w̄ − 2gεLi ≥ 2Li − 4gεLi ≥ Li
when ε ≤ 1/2g. The negative term −2w̄−2gεLi is due to that the two nodes neighboring the endpoints of
R̃ are grouped to subpaths in P. We then break R̃ into subpaths of augmented diameter at least Li and
at most 2Li and add them to P. This completes the construction of P. See Figure 3(d) for an illustration.

The running time follows directly from the construction. To bound the augmented diameter of paths
in P, we observe that path Q̃ in Step 1 has augmented diameter at most 3(2Li) + 4εgLi ≤ 7Li when
ε ≤ 1/4g. The additive term 4εgLi is due to (at most) four endpoints of (at most) three edges in Q̃.
Thus, every path in P has an augmented diameter of at most max{7Li, 2Li} = 7Li. The lower bound Li
follows directly from the construction; this implies Item (1). Item (2) follows from the construction of A. �

We note that in Step 5B in LS algorithm, T̃ is broken into subpaths of augmented length at least
Li and at most 2Li instead of at least Li and at most 7Li as in our construction. The increase in the

29

augmented diameter ultimately affects the choice of g. Other properties of subgraphs in Xintrnl
5 and Xpref

5

remains the same.

Lemma 5.20 (Lemma 5.8 [LS21]). We can implement the construction of Xintrnl
5 and Xpref

5 in O(|Vi|)
time. Furthermore, every subgraph X ∈ Xintrnl

5 ∪ Xpref
5 satisfies:

(1) X is a subpath of M̃STi.
(2) Li ≤ Adm(X) ≤ 7Li.
(3) |V(X)| = Θ(1

ε).

We note that the degenerate case in the above construction happens when X1 ∪ X2 ∪ X4 = ∅. When

the degenerate case happens, F̃
(5)
i has the following structure.

Lemma 5.21 (Lemma 5.10 [LS21]). If X1 ∪ X2 ∪ X4 = ∅, then F̃
(5)
i = M̃STi, and M̃STi is a single (long)

path. Moreover, every edge e ∈ Ei must be incident to a node in P̃1 ∪ P̃2, where P̃1 and P̃2 are the prefix
and suffix subpaths of M̃STi of augmented diameter at most Li. Furthermore, |Ei| = O(1/ε2).

We are now ready to prove Lemma 5.12.

Proof of Lemma 5.12. The degree-specific partition V of Vi and the partition of X conforming V are
constructed as follows. If the degenerate case happens, then V low−i = Vi (and hence Vhighi = V low+

i = ∅).
In this case, Xlow− = Xintrnl

5 ∪ Xpref
5 , while Xhigh = Xlow+

= ∅. Otherwise, Vhighi to be the set of all

nodes that are incident to at least 2g/ε edges in Ei in Lemma 5.14, V low−i = ∪X∈Xintrnl
5
V(X) and V low+

i =

Vi \ (Vhighi ∪ V low−i). The partition of X is {Xhigh = X1, Xlow+
= X2 ∪ X4 ∪ Xpref

5 ,Xlow− = Xintrnl
5 }.

We note that Items (1) and (2) in Lemma 5.10 hold by the same proof in [LS21]. For Item (3),
subgraphs in X satisfy all properties (P1’)-(P3’) with constant g = 42 instead of 31 since the construction
of Step 2 in Lemma 5.15 increases the augmented diameter of subgraphs in X1 by 11Li (on top of the
upper bound 31Li). We remark that the augmented diameter of other subgraphs is smaller than the
augmented diameters of subgraphs in X1, and hence, the increased diameter due to our construction does
not affect g. The fact that |E(X) ∩ Ei| = O(|AX |) where AX is the set of nodes in X incident to an edge
in E(X) ∩ Ei follows from that X is a tree for all cases, except in Step 4 (Lemma 5.17). However, in this
case, X has a single edge in Ei, and hence |E(X) ∩ Ei| ≤ 1 = O(|AX |).

It remains to show the reduction in the number of non-virtual clusters as claimed in Lemma 5.12. All
we need to show is that for every subgraph X that contains a non-isolated node, it contains at least two
non-virtual nodes. That is, X is good. This holds for subgraphs in X1∪X4, since every subgraph in this set
contains at least one edge in Ei, whose endpoints are non-isolated by the definition of a non-isolated node.
Every subgraph in X2 is good by Item (1) in Lemma 5.15. Observe that each subgraph X ∈ Xintrnl

5 ∪Xpref
5

corresponds to a subpath of T̃ in Step 5B that does not contain the connecting endpoint. By Item (2)
in Lemma 5.19, X contains at least two non-virtual nodes, if it contains at least one non-isolated node,
and hence X is good. Lemma 5.12 now follows. �

5.3.3 Proof of Lemma 5.15

In this section, we provide the proofs of Lemma 5.15, which we restate below.

Lemma 5.15. We can construct in O(|Vi|) time a collection X2 of subtrees of F̃
(2)
i and a subset of nodes

Z of F̃
(2)
i such that, for every X ∈ X2:

(1) X is a tree, has an X -branching node, and is good.

30

(a) (b)

T~
Qe
Pe

e

5
T

Figure 4: Virtual clusters are yellow shaded and non-virtual clusters are green shaded. Virtual vertices
are small circles. (a) A tree T̃ considered in the construction of Step 2 (Lemma 5.15). (b) The tree
T constructed from non-virtual nodes and connecting nodes of T̃ in the proof of Lemma 5.15. If every
edge in the path Qe has weight 1 as in figure (a), then the weight of e in figure (b) is 5. In general,
ω(e) = w(Qe). Every virtual node in T is a connecting node. Subgraphs in the rectangular dashed curves
are subgraphs formed in previous steps.

(2) Li ≤ Adm(X) ≤ 20Li.
(3) |V(X)| = Ω(1

ε) when ε ≤ 2/g.

(4) Let F̃
(3)
i be obtained from F̃

(2)
i by removing every node contained in subgraphs of X2 and in Z.

Then, for every tree T̃ ⊆ F̃ (3)
i , either (4a) Adm(T̃) ≤ 6Li or (4b) T̃ is a path.

(5) Nodes in Z are augmented to subgraphs in X1 such that for every subgraph Y ∈ X1 that are aug-
mented, Yaug remains a tree and Adm(Yaug) ≤ 24Li where Yaug is Y after the augmentation.

Proof: Let T̃ be a tree of augmented diameter at least 6Li in F̃ (2). We say that a node ϕ ∈ T̃ is a
connecting node if it has an MST edge to a subgraph X ∈ X1.

We now construct a tree T in the same way we construct a path P in Lemma 5.19. T is a tree
that contains non-virtual nodes and connecting nodes of T̃ , which may or may not be virtual. Note that
branching nodes of T̃ are non-virtual. Each edge e = (ϕ,ϕ′) ∈ T corresponds to a path between ϕ and
ϕ′ in T̃ whose internal nodes are virtual. Note that all virtual nodes on the path between ϕ and ϕ′ in T̃
share the same parent path Pe. Let Qe be the minimal subpath of Pe whose endpoints are in the clusters
corresponding to ϕ and ϕ′. We then assign a weight ω(e) = w(Qe). Observe that ω(e) ≤ w(Pe) = w(e)
where e is the MST edge from which Pe is subdivided. See Figure 4 for an illustration.

Claim 5.22. If a node ϕ in T̃ is non-isolated and non-connecting, then ϕ is incident to an edge of weight
at most Li in T .

Proof: By definition of a non-isolated node, ϕ is incident to an edge, say e′, in Ei by definition. One of
the incident edges of ϕ belongs the fundamental cycle of M̃STi formed by e′. It follows from Lemma 5.13
that at least one edge in T of ϕ must have a weight at most ω(e′) ≤ Li. �

31

We first apply the following construction to obtain a collection of trees, say A, and then we will
post-process the trees to obtain X2 as claimed in Lemma 5.15. We say that a tree T̃ in F̃ (2) a long tree
if its augmented diameter is at least 6Li. The construction of A is similar to Step 2 in LS algorithm,
except that the radius of the BFS step in our construction is slightly larger.

• (Step i) Pick a long tree T̃ of F̃
(2)
i with at least one T̃ -branching node, say ϕ. If T̃ has a T̃ -

branching node that is non-isolated, we then choose ϕ to be a non-isolated node. We traverse T̃
by BFS starting from ϕ and truncate the traversal at nodes whose augmented distance from ϕ is
at least 2Li. The augmented radius (with respect to the center ϕ) of the subtree induced by the
visited nodes is at least Li and at most 2Li + w̄ + gεLi ≤ 2Li + 2gεLi. We then create a new tree
T̃ ′ induced by the visited nodes.

After the construction in Step i, every tree in T̃ either has augmented diameter at most 6Li or is a
path.

An important property that we would like to have is that every tree in A either contains no non-isolated
node or at least two non-virtual nodes. To this end, we need to post-process A. Our postprocessing relies
on the following structure of trees in A.

(a) (b)

T~

T

'

𝜑𝜑

𝜑𝜑'

'

T~

T

'

𝜑

𝜑

𝜑

𝜑'

'

T~''

Figure 5: Two cases in the proof of Claim 5.23. (a) ϕ′ is a virtual node in T . Then it is a connecting
node, and is grouped to T̃ ′. (b) ϕ′ is a non-virtual node. Then it is grouped in T̃ ′′ that is adjacent to T̃ ′.
T̃ ′′ contains at least two non-virtual nodes (3 non-virtual nodes in this figure).

Claim 5.23. Let T̃ ′ ∈ A be a tree that contains exactly one non-isolated node, no connecting node, and
no other non-virtual node. Then T̃ ′ is adjacent to a tree T ′′ ∈ A that has at least two non-virtual nodes.

Proof: Let ϕ be the non-isolated node in T̃ ′. Observe that the center of T̃ ′ is a branching node, and
hence, is non-virtual. It follows that ϕ must be the center of T̃ ′ since otherwise, T̃ ′ contains two non-
virtual nodes, contradicting the assumption of the claim. Let ϕ′ be the neighbor in T of ϕ whose edge
(ϕ′, ϕ) has weight at most Li by Claim 5.22. By construction, the radius of the traversal is at least
2Li > Li+2εgLi when ε ≤ 1/4g. If ϕ′ is a virtual node (see Figure 5(a)), then it must be connecting, and

32

hence ϕ′ belong to T̃ ′, contradicting that T̃ ′ has no connecting node. Otherwise, ϕ′ is a non-virtual node
and is grouped into another tree, say T̃ ′′ ∈ A (see Figure 5(b)). Observe that T̃ ′ and T̃ ′′ are adjacent,
i.e., connected by an edge in M̃STi, since all nodes between ϕ and ϕ′ have degree 2 as they are virtual
nodes. We claim that T̃ ′′ must have at least two non-virtual nodes. If ϕ′ is not a center of T̃ ′′, then
T̃ ′′ contains at least two non-virtual nodes since its center is a non-virtual node. Otherwise, ϕ′ is the
center of T̃ ′′, and hence, ϕ would have been merged to T̃ ′′ during the construction of T̃ ′′, a contradiction. �

Our construction in the next step is as follows.

• (Step ii) Pick a tree T̃ ′ in A that has one non-isolated node and no other non-virtual node. If T̃ ′

contains a connecting node, say ϕ. Let Y ∈ X1 be a subgraph such that ϕ has an M̃STi edge e to
a node in Y. We then add T̃ ′ and e to Y, and add the set of nodes of T̃ ′ to Z. Otherwise, T̃ ′ is
adjacent to another tree T̃ ′′ ∈ A that has at least two non-virtual nodes by Claim 5.23. We then
add T̃ ′ and the M̃STi edge connecting T̃ ′ and T̃ ′′ to T̃ ′′. We then repeat this step until it no longer
applies. The set X2 is the set of trees in A after this step completed.

We now prove all properties in Lemma 5.15. Step i is the same as Step 2 in LS algorithm and hence
can be implemented in O(Vi) following [LS21] (Lemma 5.2). Step ii can be implemented in O(|V(F̃ (2))|) =
O(Vi) by following each step of the construction. Thus, the total running time is O(|Vi|).

Item (1) of Lemma 5.15 and Item (4) follows directly from the construction. By the construction in
Step i, every tree has an augmented diameter at least 2Li and at most (2Li + 2εLi). The augmentation
in Step ii is done via a star-like way, and hence, increases the diameter of each tree in A by at most
2(2Li+ 2εgLi) + 2w̄ ≤ 2(2Li+ 2εgLi) + 2gεLi = 4Li+ 6εLi. (Here we use the fact that w̄ ≤ Li−1 = εLi ≤
gεLi.) Thus, the final diameter is at most 2Li + 2εgLi + 4Li + 6εLi ≤ 6Li + 8εLi ≤ 14Li < 20Li when
ε ≤ 1/g; this implies Item (2) of Lemma 5.15.

For Item (3), note that each tree X ∈ X2 has augmented diameter at least 2Li, and that every
edge/node has a weight at most max{w̄, gεLi} = gεLi. It follows that |V(X)| ≥ 2Li

gεLi
= Ω(1/ε), as

claimed.
For Item (5), we observe that each subgraph Y ∈ X1 is augmented in Step ii via an M̃STi edges an

in a star-like way. Thus, Adm(Yaug) ≤ Adm(Y) + 2(2Li + 2εgLi) + 2w̄ ≤ Adm(Y) + 4Li + 6εgLi ≤
13Li + 4Li + 6gεLi ≤ 23Li < 24Li when ε ≤ 1/g. This complete the proof of Lemma 5.15. �

Acknowledgments. Hung Le is supported by a start up funding of University of Massachusetts at
Amherst and the National Science Foundation under Grant No. CCF-2121952. Shay Solomon is partially
supported by the Israel Science Foundation grant No.1991/19 and by Len Blavatnik and the Blavatnik
Family foundation.

References

[ABLP89] Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Compact distributed
data structures for adaptive routing (extended abstract). In STOC, pages 479–489. ACM,
1989. 2

[ABP90] B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive analysis of communication protocols.
In Proc. of 9th PODC, pages 177–187, 1990. 2

[ABP92] B. Awerbuch, A. Baratz, and D. Peleg. Efficient broadcast and light-weight spanners. Tech-
nical Report CS92-22, Weizmann Institute, October, 1992. 2

33

[ADD+93] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete Computational Geometry, 9(1):81–100, 1993. 2, 3, 4

[ADF+19] S. Alstrup, S. Dahlgaard, A. Filtser, M. Stöckel, and C. Wulff-Nilsen. Constructing light span-
ners deterministically in near-linear time. In 27th Annual European Symposium on Algorithms
(ESA 2019), pages 4:1–4:15, 2019. 2, 3, 4, 5, 6, 7

[Awe85] Baruch Awerbuch. Communication-time trade-offs in network synchronization. In Proc. of
4th PODC, pages 272–276, 1985. 2

[BKR+02] R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and A. Vahdat. Opus: an overlay peer
utility service. In Prof. of 5th OPENARCH, 2002. 2

[BS03] Surender Baswana and Sandeep Sen. A simple linear time algorithm for computing a (2k-1)-

spanner of o(n1+1/k) size in weighted graphs. In ICALP, volume 2719 of Lecture Notes in
Computer Science, pages 384–296. Springer, 2003. 2

[BS07] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for
computing sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532–
563, 2007. 3

[CDNS92] B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph spanners.
In Proceedings of the Eighth Annual Symposium on Computational Geometry, 1992. 3, 4

[Cha00] B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity.
Journal of the ACM, 47(6):1028–1047, 2000. 19

[CW16] S. Chechik and C. Wulff-Nilsen. Near-optimal light spanners. In Proceedings of the 27th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’16, pages 883–892, 2016. 2,
4

[CW18] Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. ACM Trans. Algo-
rithms, 14(3):33:1–33:15, 2018. preliminary version published in SODA 2016. 3

[DK02] Amin Vahdat Dejan Kostic. Latency versus cost optimizations in hierarchical overlay net-
works. Technical report, Duke University, (CS-2001-04), 2002. 2

[EN18] M. Elkin and O. Neiman. Efficient algorithms for constructing very sparse spanners and
emulators. ACM Transactions on Algorithms, 15(1), 2018. Announced at SODA ‘17. 2, 3, 4,
5, 6, 7

[ENS14] Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. In Proc. of 41th ICALP,
pages 442–452, 2014. 4

[ENS15] Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. SIAM J. Discret. Math.,
29(3):1312–1321, 2015. preliminary version published in ICALP 2014. 3

[Erd64] P. Erdős. Extremal problems in graph theory. Theory of Graphs and Its Applications (Proc.
Sympos. Smolenice), pages 29–36, 1964. 2

[ES16] M. Elkin and S. Solomon. Fast constructions of lightweight spanners for general graphs. ACM
Transactions on Algorithms, 12(3), 2016. 3, 4, 6

34

[FS89] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing, STOC’89. ACM Press,
1989. 6

[FS20] Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. SIAM J.
Comput., 49(2):429–447, 2020. preliminary version published in PODC 2016. 3, 4

[FW90] M. L. Fredman and D. E. Willard. BLASTING through the information theoretic barrier
with FUSION TREES. In Proceedings of the 22nd Annual ACM Symposium on Theory of
computing, STOC’ 90, 1990. 15

[FW94] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. Journal of Computer and System Sciences, 48(3):533–551, 1994.
Announced at FOCS‘90. 12

[GT85] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. Journal of Computer and System Sciences, 30(2):209–221, 1985. 7, 12

[HZ96] S. Halperin and U. Zwick. Linear time deterministic algorithm for computing spanners for
unweighted graphs, 1996. Manuscript. 2, 6, 8, 23

[LS21] Hung Le and Shay Solomon. Towards a unified theory of light spanners I: Fast (yet opti-
mal) constructions. arXiv preprint arXiv:2106.15596, 2021. https://arxiv.org/abs/2106.
15596. 4, 5, 7, 8, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 33

[MPVX15] Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms
for spanners and hopsets. In Guy E. Blelloch and Kunal Agrawal, editors, Proceedings of
the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015,
Portland, OR, USA, June 13-15, 2015, pages 192–201. ACM, 2015. 2, 4, 5, 6, 7

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia,
PA, 2000. 2

[PS89] D. Peleg and A. A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–116, 1989.
2

[PT06] M. Pătraşcu and M. Thorup. Time-space trade-offs for predecessor search. In Proceedings of
the 38th annual ACM Symposium on Theory of Computing, STOC’ 06. ACM Press, 2006. 15

[PU89a] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM J. Comput.,
18(4):740–747, 1989. 2

[PU89b] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. J.
ACM, 36(3):510–530, 1989. 2

[RTZ05a] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate
distance oracles and spanners. In International Colloquium on Automata, Languages, and
Programming, pages 261–272. Springer, 2005. 2

[RTZ05b] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate
distance oracles and spanners. In Automata, Languages and Programming, 32nd International
Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, pages 261–272,
2005. 3

35

https://arxiv.org/abs/2106.15596
https://arxiv.org/abs/2106.15596

[RZ11] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. 3

[Tar75] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22(2):215–225, 1975. 4, 9

[Tar79] Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain disjoint
sets. J. Comput. Syst. Sci., 18(2):110–127, 1979. 3

[TZ01a] Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Proc. of 33rd STOC, pages
183–192, 2001. 3

[TZ01b] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proc. of 13th SPAA, pages
1–10, 2001. 2

[VWF+03] Jürgen Vogel, Jörg Widmer, Dirk Farin, Martin Mauve, and Wolfgang Effelsberg. Priority-
based distribution trees for application-level multicast. In Proceedings of the 2nd Workshop
on Network and System Support for Games, NETGAMES 2003, Redwood City, California,
USA, May 22-23, 2003, pages 148–157, 2003. 2

[WCT02] Bang Ye Wu, Kun-Mao Chao, and Chuan Yi Tang. Light graphs with small routing cost.
Networks, 39(3):130–138, 2002. 2

36

	1 Introduction
	1.1 Technical Highlights

	2 Preliminaries
	3 An O(m(m,n) + SORT(m))-time Algorithm
	4 A Linear Time Algorithm in the Transdichotomous Model
	4.1 Index sorting in linear time

	5 Optimally Sparse and Light Spanners in O(m(m,n)) Time
	5.1 The construction of Hheavy
	5.2 Proof of thm:2
	5.3 Construction of Hi and Ci+1
	5.3.1 Proof of lm:NewConstruction
	5.3.2 The construction of X
	5.3.3 Proof of lm:Clustering-Step2

