
Incremental SSSP for Sparse Digraphs Beyond the Hopset Barrier

Rasmus Kyng∗,
ETH Zurich

kyng@inf.ethz.ch

Simon Meierhans∗,
ETH Zurich

mesimon@inf.ethz.ch

Maximilian Probst Gutenberg∗,
ETH Zurich

maximilian.probst@inf.ethz.ch

Abstract

Given a directed, weighted graph G = (V,E) undergoing edge insertions, the incremental
single-source shortest paths (SSSP) problem asks for the maintenance of approximate distances
from a dedicated source s while optimizing the total time required to process the insertion
sequence of m edges.

Recently, Gutenberg, Williams and Wein [STOC’20] introduced a deterministic Õ(n2) algo-
rithm for this problem, achieving near linear time for very dense graphs. For sparse graphs,
Chechik and Zhang [SODA’21] recently presented a deterministic Õ(m5/3) algorithm, and an
adaptive randomized algorithm with run-time Õ(m

√
n + m7/5). This algorithm is remarkable

for two reasons: 1) in very spare graphs it reaches the directed hopset barrier of Ω̃(n3/2) that
applied to all previous approaches for partially-dynamic SSSP [STOC’14, SODA’20, FOCS’20]
and 2) it does not resort to a directed hopset technique itself.

In this article we introduce propagation synchronization, a new technique for controlling
the error build-up on paths throughout batches of insertions. This leads us to a significant
improvement of the approach in [SODA’21] yielding a deterministic Õ(m3/2) algorithm for the
problem. By a very careful combination of our new technique with the sampling approach
from [SODA’21], we further obtain an adaptive randomized algorithm with total update time
Õ(m4/3). This is the first partially-dynamic SSSP algorithm in sparse graphs to bypass the
notorious directed hopset barrier which is often seen as the fundamental challenge towards
achieving truly near-linear time algorithms.

∗The research leading to these results has received funding from grant no. 200021 204787 of the Swiss National
Science Foundation.

ar
X

iv
:2

11
0.

11
71

2v
1

 [
cs

.D
S]

 2
2

O
ct

 2
02

1

1 Introduction

The single source shortest paths (SSSP) problem is among the first algorithmic problems taught
in undergraduate courses. Its broad applicability has caused its numerous variants to be well
studied. One such variant is the fully or partially dynamic SSSP problem, where distances have to
be maintained in a changing environment.

A dynamic graph refers to an initial graph G = (V,E) and a sequence of insertions and
deletions, where an insertion causes an element to be added to the edge set E, and a deletion
removes an element from said edge set. In the partially dynamic setting, these changes are limited
to either just insertions or just deletions, and we call the graph incremental or decremental
respectively.

Partially dynamic graph algorithms are interesting for numerous reasons. They often serve
as a proxy for the harder fully dynamic setting to develop new techniques, and even more of-
ten, reductions from the fully dynamic setting to a partially dynamic setting exist. Additionally,
partially dynamic SSSP in particular is often a crucial building block for solving more complex dy-
namic problems, such as All-Pairs Shortest Paths (APSP) [Kin99, RZ11], maintaining the diameter
[AHR+19, CG20] or maintaining a matching in a bipartite graph [BHR19]. Finally, algorithms de-
veloped for partially dynamic graphs can be used as building blocks when constructing static graph
algorithms, most prominently, a recent decremental SSSP algorithm has served as a key component
in the first near-linear time algorithm for approximate, undirected min-cost flow [BGS21].

In this article, we tackle the approximate SSSP problem for sparse, weighted, directed and
incremental graphs. Given a dedicated source s, we aim to maintain distance estimates d̂(s, v)
for all v ∈ V throughout a sequence of edge insertions, such that the approximation guarantee
d(s, v) ≤ d̂(s, v) < (1 + ε)d(s, v) always holds. In the randomized setting, the edge insertions
are assumed to be generated by an adaptive adversary, meaning that the adversary may adapt
the sequence of insertions based on information about the state of our algorithm revealed by its
answers to queries. This enables the usage of the developed algorithms as a black box subroutine.

1.1 Prior Work

We discuss prior work that is directly related to the incremental SSSP problem. For a more detailed
overview of related work, we refer the reader to Appendix A. Below, we let m denote the total
number of edges, n the number of vertices and W the ratio between the largest and smallest edge
weight. For (1 + ε)-approximate algorithms, we assume that ε > 0 is constant to ease presentation.

Lower Bounds. Solving the fully dynamic SSSP problem in time O(n3−ε), for a graph incurring
O(n) updates, would imply a solution to the APSP problem in truly subcubic time O(n3−ε) in a
trivial way. It is widely believed that this is impossible [Wil15, WW18].

If exact distances have to be maintained, the advantage of the partially dynamic setting is
believed to be limited to reducing the runtime of a combinatorial algorithm to Ω(mn1−o(1)), since
numerous popular conjectures, such as the APSP hypothesis, the BMM conjecture and the OMv
conjecture, forbid the existence of a faster such algorithm [RZ04, AW14, HKNS15]. Conditional
on the k-Cycle hypothesis, this holds for any algorithm, not just combinatorial ones [PGVWW20].
All known lower bound techniques carry over from the incremental to the decremental setting by
playing the insertion sequence backwards. These lower bounds are matched by the ES-tree, which
we introduce in the next paragraph.

1

The ES-tree and its Variants. Research on the partially dynamic SSSP problem was initiated
by the ES-tree data structure developed by Even and Shiloach [SE81], which was subsequently
extended to weighted, directed graphs by Henzinger and King [HK95]. For maximum edge weight
W , it can maintain exact distances in O(mnW) total update time. Edge rounding techniques
improve said update time to Õ(mn log(W)/ε), trading the exactness for a (1 + ε)-approximation
guarantee. The ES-tree remains an integral building block for faster approximation schemes.

Decremental SSSP beyond the ES-tree. The O(mn) barrier was first surpassed in the decre-
mental setting. Henzinger, Krinninger and Nanongkai [HKN14, HKN15] provided a randomized,
oblivious Õ(mn0.9 logW) algorithm, which was improved on by Bernstein, Probst Gutenberg and
Wulff-Nilsen [GWN20a, BGWN20] culminating in a randomized Õ(min{n2 log4W,mn2/3 log3W})
algorithm against an oblivious adversary.

The Directed Hopset Barrier. All these improvements over the classic ES-tree for sparse
directed graphs stem from using hop sets of hop h, which are a small collection of edges (typically
we aim for set sizes Õ(m) and are interested in the case where m ∼ n) that when added to the graph
ensure that there always is an approximate shortest path in the new graph that consists of at most
h edges. Lower bounds for h currently achieve Ω(n1/11) [Hes03, HP18]. While hop sets with hop
O(
√
n) and Õ(n) edges are almost trivial to construct, hop sets with hop n0.5−ε for any constant

ε > 0 are not known to exist. In a recent breakthrough result, giving the first near-linear time
algorithm to construct hop sets with hop n0.5+o(1), the authors explicitly state that their techniques
are unlikely to achieve an improvement in the hop [JLS19]. We refer to this lack of progress on
directed hopsets as the directed hopset barrier, and point out that all current approaches relying on
hopsets require at least Ω̃(n3/2) total update time if the directed hopset barrier cannot be broken.
This follows since these approaches rely on running an ES-tree on the union of the graph and the
hopset where the running time of the ES-tree becomes Θ̃(nh) for very sparse graphs. We refer the
reader to Appendix B for an introductory explanation of the usage of an ES-tree with a hop set.

Incremental SSSP beyond the ES-tree. While the algorithm of Henzinger, Krinninger and
Nanongkai [HKN14, HKN15] seems to translate over to incremental graphs, Probst Gutenberg,
Vassilevska Williams and Wein [PGVWW20] were the first to explicitly study the incremental set-
ting, introducing a deterministic algorithm with total update time Õ(n2 logW). This result only
left room for polynomial improvements on sparse graphs, for which Chechik and Zhang [CZ21] re-
cently proposed a deterministic algorithm with total update time Õ(m5/3 logW) and a randomized
version with total update time Õ((mn1/2+m7/5) logW) which works against an adaptive adversary.

Partially-Dynamic Single-Source Reachability (SSR) and Strongly-Connected Compo-
nents (SCC). Bernstein, Probst, and Wulff-Nilsen [BPWN19] introduced the first near linear
algorithms for decremental SSR and SCC. While incremental SSR can also be solved in near linear
time with a link-cut tree, incremental SCC poses more of a challenge. The deterministic algorithms
of Haeupler et al. [HKM+12] and Bender et al. [BFGT15] achieve total update time O(m3/2)
for incremental SCC, and Bender et al. [BFGT15] present another deterministic algorithm for
dense graphs with total update time Õ(n2). Very recently, Bernstein, Dudeja and Pettie [BDP21]
improved the bound for sparse graphs to Õ(m4/3) using randomization.

2

1.2 Our Contribution

We first give a simple deterministic algorithm.

Theorem 1. We construct a deterministic algorithm for the (1 + ε)-approximate SSSP problem
in incremental, directed and weighted graphs with total update time Õ(m3/2 log(W)/ε). Distance
queries are answered in time O(1) and an approximate shortest path πs,x is reported in time
O(|πs,x|).

This algorithm matches the directed hop set barrier Ω̃(n3/2) for very sparse graphs, and should
be compared to the previously best deterministic algorithm that achieves Õ(m5/3 log(W)/ε) update
time [CZ21].

Furthermore, we present a significantly faster randomized algorithm.

Theorem 2. We construct a randomized algorithm for the (1 + ε)-approximate SSSP problem in
incremental, directed and weighted graphs with total expected update time Õ(m4/3 log(W)/ε2) that
answers all distance queries correctly with high probability 1−O(1/n) against an adaptive adversary.
Distance queries are answered in time O(1) and an approximate shortest path πs,x is reported in
time O(|πs,x|).

For m = O(n9/8−ε) this algorithm surpasses the directed hop set barrier. It is the first algorithm
in the partially dynamic setting to do so. It dominates the previous state-of-the-art randomized
result of Chechik and Zhang [CZ21] in the entire sparsity range m = O(n3/2). For denser graphs the
Õ(n2 logW) algorithm of Probst Gutenberg, Vassilevska Williams and Wein [PGVWW20] remains
dominant.

Improving over the Hopset Barrier. Whereas the randomized algorithm of Chechik and
Zhang [CZ21] seemed to approach the best total update time Ω̃(n3/2) perceivable under the directed
hopset barrier, our randomized algorithm breaks this barrier for sparse graphs. Since all current
lower bound techniques from the decremental setting carry over to the incremental one, this could
either be interpreted as a sign that it is possible to 1) improve hopsets and break the hop set
barrier, 2) design techniques in the decremental setting that avoid an approach relying on hopsets
altogether, and/or 3) that current conditional lower bound tools lack some key distinguishing
property between the incremental and the decremental world.

Relation to Incremental SCC. In conjunction with the Õ(n2) algorithm by Probst Gutenberg,
Vassilevska Williams and Wein [PGVWW20], our results for incremental single source shortest
paths exactly match the bounds for incremental SCC: Õ(min(m3/2, n2)) in the deterministic case,
and Õ(min(m4/3, n2)) when using randomization against an adaptive adversary. Although this
might be a coincidence, we wonder whether there is a deeper connection between these two problems.

2 Preliminaries

We consider an incremental weighted and directed graph G = (V,E), undergoing edge insertions,
but never deletions. Each edge e = (u, v) can have any integer weight ω(u, v) between 1 and some
maximum weight W . We use n = |V | as shorthand for the number of vertices and m for the total
number of edges added to the graph. We assume throughout that the graph remains simple. This

3

is w.l.o.g. since our run-times do not scale in the number of vertices so a multi-edge can be inserted
by splitting it via a vertex.

Distances d(u, v) refer to the minimal cumulative weight
∑l−1

i=1 ω(vi, vi+1) achieved by any path
u = v1, ..., vl = v connecting u and v and ∞ if there is no such path. For a path segment
σ = v1, ..., vl, we let dσ(vi, vj) denote

∑j−1
k=i ω(vk, vk+1) for i < j. We use the shorthand d̂(v) for

distance estimates d̂(s, v).
Further, we define the suffix of a path segment σ = v1, ..., vl.

Definition 2.1. The suffix(σ, vi) of a path segment σ = v1, ..., vl is the segment vi, ..., vl.

Short paths are easy to maintain using standard ES-trees. We use the following fact that is
standard in the literature.

Theorem 2.2 (ES-tree, see [BR11]). Let the number of hops h denote the number of edges on
a path. There exists a deterministic algorithm for maintaining single source shortest paths in
incremental weighted directed graphs to hop h in time O(mh log(nW)/ε), maintaining d̂(v) such
that d(s, v) ≤ d̂(v) < (1 + ε)d(s, v) for each v if there exists a shortest path connecting s and v with
at most h hops, and d(s, v) ≤ d̂(v) otherwise.

Throughout the article, we often write xt to denote a variable x at the point in time when the
algorithm has finished processing the t-th insertion. We let x0 denote the variable after prepro-
cessing the initial input graph G, and Eend is the final edge set after all insertions were processed.
When we want to emphasize that a variable x belongs to a data structure DS, we indicate it with
a subscript, writing xDS .

We use lg(n) as a short-hand for log2(n).

3 Algorithms Overview

Lazy ES-tree. The ES-tree data structure has been very influential in the design of dynamic
shortest path data structures. It stores the distance from the dedicated source s for each vertex,
and whenever an edge (u, v) is inserted it checks if vertex v profits from using this edge, and if so
it recursively explores all the outgoing edges of v. A standard technique to create faster algorithms
is to relax this behaviour, and only recursively explore if the stored distance of v has decreased by
a significant amount over time, which we denote as εδ. This reduces the propagation of changes
significantly and the resulting algorithm is called a lazy ES-tree. Frequently, separate lazy ES-trees
are maintained for different path length ranges [τ, 2τ), enabling δ to be chosen depending on τ .

Partial Dijkstra. In our algorithm, we additionally use a procedure PartialDijkstra(Vinput, ε)
that takes a set of vertices Vinput and then runs Dijkstra on the induced graph G[Vfixed], with
Vfixed being Vinput initially, where we then add additional vertices v to Vfixed on-the-go if relaxing
an edge with tail in Vfixed would decrease the distance estimate of v by at least εδ. By carefully
implementing this procedure, we ensure that no path in the final graph G[Vfixed] accumulates error.

We invoke this procedure on special sets of vertices Vinput regularly to mitigate large error on
path segments due to the Lazy ES-tree implementation. For example a path πs,x might have an
additive error of εδ/2 on each edge due to the Lazy ES-tree update scheme. But inserting the first
three vertices on πs,x into Vinput and invoking PartialDijkstra(Vinput, ε) effectively removes the
entire error on the path πs,x. Our algorithm chooses sensible sets Vinput.

4

The Deterministic Algorithm of Chechik and Zhang [CZ21]. Let us briefly review the
deterministic algorithm in [CZ21]: the algorithm checks for each inserted edge e = (u, v) whether
vertex v profits by εδ, i.e. d̂(v) ≥ d̂(u) + ω(u, v) + εδ. If not, then the algorithm moves to the
next insertion. Otherwise, it sets d̂(v) = d̂(u) + ω(u, v) and calls PartialDijkstra({v}, ε). This
triggers the Dijkstra-like propagation discussed above until nobody profits by εδ anymore. Since
PartialDijkstra rules out error in-between explored vertices, it is natural to hope that after B
calls to PartialDijkstra({v}, ε) the error on any s − x path might only increase by Bεδ. Then
we could batch B =

√
m insertions to a phase where we update as described before for error

tolerance δ ≈ d(s, x)/
√
m within each phase. Upon ending a phase, we run Dijkstra to recompute

all exact distance estimates from scratch, which is called a rebuild. Observe that there are a total of
m/B =

√
m phases. If one distinguishes between path length ranges, this would yield an Õ(m3/2)

algorithm. Chechik and Zhang [CZ21] show that the error accumulation is no more than B2εδ, and
balancing the parameters yields their deterministic Õ(m5/3) algorithm.

Unfortunately, this analysis is tight, and the reason for this behaviour is simple: although
the way we set up the algorithm ensures that the error on each existing path scales linearly, the
adversary can insert new edges that connect multiple paths which then ramps up more error. In
fact, after B insertions, there might be many paths that have error ∼ B each, and then another
B insertions can connect these paths to achieve combined error ∼ B2 on a single path. We sketch
such an unfavourable sequence of edge insertions in Figure 1.

Figure 1: The dotted red edges e1, ..., eB−1 are inserted consecutively during a single phase, the
others were there before. The edges fi have weight ω(fi) = i(1+ εδ

2)B/2+i+1 and the edges ei,j have

weight ω(ei,j) = ω(fi)−(B/2−j+1)(1+ εδ
2)−1. All the other edges, including the newly inserted red

dotted ones, have weight one. All the vertices on the long path not incident to any edge fi start out
having distance infinity. Then, the edge insertions cause the vertices on any segment to be lowered
in distance estimate, one by one, in reverse order. Finally, the second half of the edge insertions
connects the segments. Throughout all these insertions, d̂(x) = ω(fB/2) = B2(1 + εδ

2)/4 +B/2 + 1
does not change, although there now is a path of length B2/4 + B/2 + 1. This means that after
roughly m1/3 insertions, the additive error may reach m2/3εδ, making it necessary to exit the current
phase and rebuild.

5

Propagation synchronization. If we closely inspect the insertion pattern sketched in Figure
1, we note that the only way for error to build up in a path present since the last rebuild is if
the distance estimate decreases happen in a very structured way: from the end to the start of the
path segment, consecutively, and one by one. Had the insertions been done in any other order,
the changes would have been propagated through. A very simple algorithm fueled by this insight
would just add all vertices that were decreased in the current phase to Vinput, which would rule out
any build up of error on a segment present throughout the execution. But this operation is com-
putationally expensive. However, by generalizing the pattern seen in the counterexample, we show
that it suffices to add each such vertex to lgB sets Vinput, drastically reducing the computational
cost.

Concretely, during the i-th insertion in a phase, we compute the maximum integer j ∈ N0

such that i is divisible by 2j . We then add all the vertices that decreased significantly in distance
estimate since time step i − 2j to Vinput. On the one hand, this behaviour makes sure that a
significant decrease causes a vertex to enter at most lgB sets Vinput. On the other hand, after
less than B insertions happened in a phase, this scheme allows us to group the insertions into lgB
batches, such that all the vertices touched by insertions of a given batch were in Vinput together at
some point. At this moment, the propagation of these vertices are synchronized.

To illustrate this effect, we take a closer look at a segment v1, ..., vB/2−1 present throughout
the phase from the worst case example sketched in Figure 1, taking B a power of 2 (see Figure
2). The vertices vi get decreased one after another, from the end of the path segment to the front.
But now, using our scheme, at time B/4, all the vertices decreased so far enter Vinput, limiting the
accumulation of error on their part of the segment to εδ, because we propagate through vertices in
Vinput no matter what. Iterating this argument limits the build up of error to O(εδ logB).

Figure 2: Zoom in on a segment present throughout a phase from the worst case example depicted
in Figure 1. V i

input denotes the set Vinput passed to PartialDijkstra in step i of the phase. Each
batch of vertices within a curly bracket contributes at most εδ additive error, since all these vertices
are in Vinput at some common moment. Therefore, this segment accumulates at most O(εδ lgB)
total additive error.

Generalizing this behaviour to arbitrary insertion patterns allows us to show that merely 2εδ
error gets accumulated per batch, tallying up to 2εδ lgB. Thus, error is mainly contributed by
connecting many different path segments where each segment makes only a small overall contri-
bution. This technique essentially recovers the original intuition that error accumulation should

6

be (near-)linear in the number of insertions. Moreover, the error on any high error path can be
directly attributed to edges inserted to the path.

Lemma 4.9. Let πs,x be a shortest path from the source s to x, after b < B insertions happened

during a phase starting at time t. Then d̂t+b(x) ≤ dt+b(s, x) + 2Bεδ lgB +Bεδ.

We point out, however, that many details in proving Lemma 4.9 were swept under the rug in
this exposition and it turns out that a very careful argument is required to prove the statement.

This result is the foundation of our deterministic algorithm, since it allows us to wait for
considerably longer before we have to rebuild. In particular, after B edges have been inserted, we
incur an additive error of at most 3εδB lgB, whereas the additive error scaled with B2εδ before.
As mentioned when introducing the ES-tree, we will build separate algorithms for distinct distance
ranges. For a particular distance range [τ, 2τ) the runtime is given by Õ(mτ/εδ + m2/B), where
the first term is contributed by the operations performed throughout phases, and the second by
the rebuilds. Setting B ≈

√
m and δ ≈ τ/

√
m makes sure the error is no more than εδB lnB ≈ ετ

whilst balancing the terms, and yields our deterministic algorithm.

Theorem 1. We construct a deterministic algorithm for the (1 + ε)-approximate SSSP problem
in incremental, directed and weighted graphs with total update time Õ(m3/2 log(W)/ε). Distance
queries are answered in time O(1) and an approximate shortest path πs,x is reported in time
O(|πs,x|).

Randomization to Accelerate Rebuilding. Fully rebuilding after
√
m insertions is expensive,

but seems necessary in the deterministic case. That is because, even when the adversary never
inserts an edge with additive error more than εδ, and thus PartialDijkstra is never called, there
might be a high error path after

√
m insertions. It is difficult to certify if these

√
m insertions are

part of the same shortest path.
To further speed-up our algorithm, we resort to randomization where we shorten phases to

B = m1/3 insertions, increase sensitivity to δ ≈ εd(s, x)/m1/3 and aim to spend only Õ(m2/3) time
per rebuild. Note that this almost immediately implies a Õ(m4/3) algorithm.

A First Attempt at Randomization. Again, we use a simple example to illustrate the main
idea of the randomized rebuild. We start by considering the problem of certifying large error on
some path. Consider therefore that we ran the first phase, and at the end of the phase, we have
to identify for a vertex x whether its shortest path has a total of at least εd(s, x) additive error on
the path. If so, the described technique is guaranteed to reduce d̂(x) by at least a bit.

We partition the interval [0, d̂(x)] into O(m1/3) equal-sized sub-intervals [8iδ, 8(i+ 1)δ) for all i,
and then sample a single such interval [8iδ, 8(i+ 1)δ) uniformly at random, and insert all vertices
with distance estimate d̂(v) ∈ [8iδ, 8(i + 1)δ) into a set V ? and invoke PartialDijkstra(V ?, ε).
Now assume the shortest path πs,x from s to x carries εd(s, x) additive error. Since the error on any
single edge is bounded by εδ, the error must be well distributed among the distance ranges. This
allows us to show that with constant probability, the error on the path segment on πs,x that crosses
the sampled set V ? carries ≥ εδ additive error. Therefore, this procedure causes a propagation that
decreases the distance estimates up to d̂(x) with good probability. Repeating this process Θ(log n)
times allows us to conclude that d̂(x) got decreased with high probability.

7

A Path with Gaps. Now, consider a path πs,x from s to x that eventually becomes the shortest
path but still has m1/3 edges missing, waiting to be inserted in the upcoming phase to build a high
error path. This partitions the path into m1/3 + 1 segments, and let us assume that each segment
carries additive error 2εδ so combined they carry ∼ 2εd(s, x) error.

The above sampling procedure still might sample a segment and would remove the error there
but after Θ(log n) samples we cannot correctly conclude that there is no path with huge error build-
up. An adaptive adversary could now just observe which segments were sampled and increase the
weight of the edge that connects the fixed segment to the upcoming one, only losing 2εδ additive
error on the whole path per fixed segment. To deal with this issue, Chechik and Zhang [CZ21] fix
many segments, paying with a decrease of the potential Φ =

∑
v∈V d̂(v). This strategy is enabled

by inserting fewer edges per phase, causing more error per segment and thus a more significant
potential drop1. However, this remedy increases the runtime drastically.

Fix Now, Propagate Later. Our techniques offer a solution to this issue. We run our algorithm
against an oblivious adversary, and show how to recover adaptiveness later. Reconsidering the
troublesome example where m1/3 + 1 segments contribute roughly 2εδ error each, we discover that
fixing a single segment might just be enough in this setting. Since the insertion sequence of an
oblivious adversary is fixed, they have no way of adapting to which of the segments we fixed.
However, if they do not adapt their sequence, the decrease of the fixed segment slowly propagates
to the end of the path throughout the m1/3 insertions. That is, since the edge connecting the fixed
segment to the next carries more than εδ error when inserted, causing a propagation that fixes the
next segment, and so on. See Figure 3 for an illustration of this crucial concept.

Unfortunately, proving this propagation is quite involved, and requires new technical insights
into the structure of the problem. In particular, we need a more careful argument about our
synchronized propagation technique to bound the additive error building up on segments throughout
the insertion of the new edges. Here, we omit these details and only focus on the central approach.

Hiding the State from an Adaptive Adversary. To deal with an adaptive adversary, we hide
which segment we fixed during the last rebuild. A simple technique that allows us to do so is to
maintain two data structures DS and D̃S, one from which we report distances, and an internal one
whose state is hidden from the adversary. Whenever distances differ significantly between the two,
we simply synchronize the two data structures DS and D̃S by setting all distance estimates to the
minimum observed among the two data structures. Then, we trigger a rebuild on D̃S that remains
hidden from the adversary. Such a rebuild only happens if the potential ΦD̃S =

∑
v∈V d̂D̃S(v) has

decreased drastically or many insertions happened, and therefore a very limited number of times.
This combination of randomization and synchronized propagation yields our fastest algorithm.

Theorem 2. We construct a randomized algorithm for the (1 + ε)-approximate SSSP problem in
incremental, directed and weighted graphs with total expected update time Õ(m4/3 log(W)/ε2) that
answers all distance queries correctly with high probability 1−O(1/n) against an adaptive adversary.
Distance queries are answered in time O(1) and an approximate shortest path πs,x is reported in
time O(|πs,x|).

1They also shorten phases in case the potential gets decreased a lot. We omit this technical detail and we believe
it could be removed.

8

Figure 3: We distinguish between three important times: t+ b denotes the time for which we want
to certify low error, Bef(t) denotes the time just before the last randomized rebuild before t + b,
and t the time right after said randomized rebuild. At time Bef(t), four segments are lined up to
be connected to a high error s − x path. During the randomized rebuild, the second segment is
randomly chosen and fixed subsequently. But then, when the bold red edge is added between time
t and t+ b, it carries a lot of additive error because of our fix, causing propagations to ultimately
remove the error from the remainder of the path. Notice that an adaptive adversary could just
increase the weight of the bold red edge, foiling our fixing attempt.

Conclusion. The newly introduced synchronized propagation technique linearizes the build-up
of error, enabling us to significantly improve on the state of the art for sparse digraphs. It also
directly relates the additive error of a path to edge insertions to the same path, but it remains
difficult to use this insight in the construction of an algorithm.

4 A Deterministic Algorithm

Our deterministic algorithm introduces the key concept of synchronized propagation, which we will
also heavily make use of in our randomized scheme.

4.1 Algorithm Description

As usual in the context of lazy ES-trees, we maintain Õ(logW) data structures for different distance
ranges, where W denotes the maximum weight on any edge. Namely, for each power of two τ = 2i

between
√
m and nW , we maintain a data structure responsible for paths of length [τ, 2τ). Each

such data structure keeps distance estimates up to a maximum of (1 + ε)2τ , and returns infinity if
a queried vertex is at this maximum distance. For short paths with length less than 2

√
m we use

a standard ES-tree (Theorem 2.2). Whenever a query has to be answered, the minimum distance
among all data structures is returned.

We split the execution of our deterministic algorithm for maintaining such a distance range
[τ, 2τ) into multiple phases. After each phase, our distance estimates might have deteriorated, and
we call Dijkstra with source s to restore exact distance estimates. We call this a rebuild. Each
individual phase consists of B = b

√
m/(6 lg n)c edge insertions.

Let us next explain how we deal with the i-th edge insertion to our data structure (the cor-
responding pseudo-code is in Algorithm 1): when the i-th edge e = (u, v) is inserted, we check if⌈
d̂(v)/εδ

⌉
>
⌈
(d̂(u) + ω(u, v))/εδ

⌉
, where δ = τ/

√
m is an error tolerance parameter depending on

the path length range τ . If so, we set d̂(v) = d̂(u) + ω(u, v). Afterwards, if we added the b-th edge

9

Algorithm 1: insert(u, v, ω(u, v))

1: Global variables b and last touched(v) get initialized to 0.
Whenever a rebuild happens they are re-set to 0 thereafter.

2: //insert edge
3: b← b+ 1
4: if

⌈
d̂(v)/εδ

⌉
>
⌈
(d̂(u) + ω(u, v))/εδ

⌉
then

5: d̂(v)← d̂(u) + ω(u, v)
6: last touched(v)← b
7: //synchronized propagation
8: j ← max(j ∈ N0 : ∃k ∈ N s.t. b = k · 2j)
9: k ← b/2j

10: Vinput ← {v ∈ V : (k − 1)2j < last touched(v) ≤ k2j = b}
11: Vtouched ← PartialDijkstra(Vinput, ε)
12: for all v ∈ Vtouched do
13: last touched(v)← b

in this phase, we do the following. Let

j = max(j ∈ N0 : ∃k ∈ N s.t. b = k · 2j)

and let k be the corresponding k such that b = k ·2j . We measure the decrease in distance estimate
of each vertex in steps of size εδ, and we let Vinput denote the set of vertices that decreased to or
past such an εδ step in distance estimate since the edge insertion (k − 1)2j of the current phase
was processed. Note that this includes all the vertices that accumulated a εδ decrease within this
time frame. We call PartialDijkstra(Vinput, ε) (Algorithm 2) to propagate changes from these
vertices, as well as along all edges that would end up with additive error εδ or more.

Algorithm 2: PartialDijkstra(Vinput, ε)

1: Initialize priority queue Q← Vinput sorted by d̂(v) for v ∈ Vinput.
2: Vtouched = ∅
3: while Q 6= ∅ do
4: extract min u from Q
5: for all v : (u, v) ∈ E do

6: if
⌈
d̂(v)/εδ

⌉
>
⌈
(d̂(u) + ω(u, v))/εδ

⌉
then

7: d̂(v)← d̂(u) + ω(u, v)
8: Vtouched ← Vtouched ∪ {v}
9: add v to Q if v /∈ Q

10: else if v ∈ Q then
11: d̂(v)← min(d̂(v), d̂(u) + ω(u, v))
12: return Vtouched

10

4.2 Runtime

Lemma 4.1. A single decrease past an εδ step causes a vertex v to enter O(logB) sets Vinput.

Proof. Say the decrease happened at step b since the start of a phase. To arrive at a contradiction,
we assume this decrease caused v to enter into Vinput at step i1 = k12

j and i2 = k22
j of the phase

for k1 < k2. But then (k2 − 1)2j < b ≤ k12
j which is a contradiction since k1 and k2 are integers.

The conclusion directly follows from the fact that the decrease causes v to enter a set Vinput at
most once for each 2j , and 2j ≤ B.

Lemma 4.2. The total runtime of the algorithm is O(m3/2 log3(n)/ε+m3/2 log(W) log2(n)/ε).

Proof. We first analyse a specific data structure for some distance range τ . Two parts contribute
to the runtime.

Firstly, we call Dijkstra on the whole graph after a batch of B insertions, using O(m2 log(n)/B)
time.

Secondly, for any edge (u, v) we spend up to O(logB) time whenever d̂(u) gets decreased past an
εδ step immediately and throughout subsequent calls to PartialDijkstra(Vinput, ε) by Lemma 4.1.
While doing so, we spend at most another log n factor for sorting the priority queues. Since the
total number of decreases past such steps is bounded by the initial potential Ψ =

∑
(u,v)∈Eend d̂(u) =

O(mτ) divided by εδ, such decreases can happen at most O(mτ/εδ) times.

Therefore the total runtime is O(m
2 log(n)
B + mτ log2(n)

εδ). Using the definitions δ = τ/
√
m and

B = b
√
m/(6 log n)c we get O(m

3/2 log2(n)
ε) per such data structure.

We maintain O(log n+ logW) data structures in total and keep the distances of paths shorter
than 2

√
m in time O(m3/2/ε) using Theorem 2.2. The claimed runtime follows.

4.3 Correctness

It is left to show that the described algorithm maintains the approximation guarantee. To do
so, we focus on a path length in a specific range [τ, 2τ), and show that the data structure re-
sponsible for said range does so. We first prove an important yet simple lemma about the
PartialDijkstra(Vinput, ε) routine.

Lemma 4.3. Consider the graph right after calling Vtouched = PartialDijkstra(Vinput, ε) for
some vertex set Vinput. Let σ = v1, ..., vl be a path segment such that for all i ∈ [l] : vi ∈ Vfixed
where Vfixed = Vtouched ∪ Vinput. Then

d̂(vl) ≤ d̂(v1) + dσ(v1, vl)

where dσ(v1, vl) denotes the length of the path.

Proof. For some i ∈ [l− 1], consider the moment the vertex vi leaves the priority queue. Note that
this is well defined, since each vertex vi ∈ Vfixed was added to the priority queue at some point, and
therefore has to leave it for the algorithm to terminate. At that moment, either vi+1 has already
left beforehand, and thus d̂(vi+1) ≤ d̂(vi) or we set d̂(vi+1) = min(d̂(vi+1), d̂(vi) + ω(vi, vi+1). The
lemma follows directly by iterative applications of this inequality.

Next we show a simple and standard invariant, that often is useful in relaxed ES-trees. It
summarizes the fact that an additive error of εδ on any edge causes a propagation, fixing said error.

11

Invariant 4.4. If (u, v) ∈ E, then d̂(v) ≤ d̂(u) + ω(u, v) + εδ.

Proof. Whenever an edge (u, v) is added to the graph and v decreases by εδ in distance esti-
mate, we have v ∈ Vinput for the subsequent call to PartialDijkstra(Vinput, ε). Thereafter,
whenever a vertex distance estimate decreases by any amount, we check its out-neighbourhood
and decrease the distance estimates of vertices in it if they violate the invariant as part of the
PartialDijkstra(Vinput, ε) routine.

With these basics out of the way, we focus on path segments that were already present in their
current form at the start of a given phase, and aim to show that they can only accumulate a very
limited amount of error. To do so, we define the slack of a segment, which is the maximum additive
error any vertex on the segment witnesses with respect to the last vertex on the segment.

Figure 4: Illustration of Definition 4.5. All displayed edges have weight 1, but sometimes distance
estimates increase by more than 1 along the path, and sometimes they even decrease. The current
slack of the segment is slack(σ) = 3, since the vertex witnessing the most error has distance 4 to
the last vertex, but the difference in distance estimates is 9 − 2 = 7. If we measure slack with
respect to some fixed height H = 8, the segment just has slack(σ,H) = 2. Slack with respect to
fixed heights will only become important in the analysis of our randomized algorithm.

Definition 4.5. Given a path segment σ = v1, ..., vl of length dσ(v1, vl), we define its slack at time
t as

slackt(σ) := max
i∈[l]

(d̂t(vl)− d̂t(vi)− dσ(vi, vl))

and the slack with respect to some fixed height H as

slackt(σ,H) := max
i∈[l]

(H − d̂t(vi)− dσ(vi, vl)).

We sometimes omit the time if it is clear from the context.

Remark 4.6. The definition of slack is with regard to the distance estimates maintained by the
data structure. When we want to emphasize that we are using slack defined with regard to a data
structure DS, we use the variable name of the data structure as a subscript, for example we write
slacktDS(σ).

12

In the following, we want to show that the slack only accumulates slowly on paths that are
already present in the graph at the start of a phase. For now we focus on a batch of insertions within
a quite specific time interval, such that they get fixed by a a call to PartialDijkstra(Vinput, ε)
in the end.

Lemma 4.7. Consider the i-th insertion during a phase that started at time t, along with the
associated values j and k computed by our algorithm. If an existing path segment σ = v1, ..., vl had
slackt+t1(σ) ≤ µ for t1 = (k − 1)2j and µ ≥ 0, we have slackt+t2(σ) ≤ µ+ 2εδ for t2 = i = k2j.

Proof. Consider any vertex vp for 1 ≤ p ≤ l and let dσ(u, v) denote distances on the considered
path. We aim to show

d̂t+t2(vl) ≤ d̂t+t2(vp) + dσ(vp, vl) + µ+ 2εδ.

We assume d̂t+t1(vl) > d̂t+t2(vp) + dσ(vp, vl) + µ + εδ. Otherwise we are done, using d̂t+t2(vl) ≤
d̂t+t1(vl) since our algorithm only ever decreases distance estimates. Consider the set Vfixed =
Vtouched ∪ Vinput for Vtouched = PartialDijkstra(Vinput, ε) as computed during the processing of
the i-th edge insertion. By our assumption, we have vp ∈ Vtouched and thus vp ∈ Vfixed, since
its distance estimate decreased by at least εδ. Let vp, ..., vq be a maximal subsegment starting at
vp such that all vertices are contained in Vfixed. Either vq = vl and thus all the vertices on this
remainder of the path are in Vfixed, or vq+1 is the first vertex not in Vfixed. If vq = vl, we have

d̂t+i(vl) ≤ d̂t+i(vp) + dσ(vp, vl)

by Lemma 4.3 and are done. Otherwise we obtain

d̂t+t2(vl) ≤ d̂t+t1(vl) ≤ d̂t+t1(vq+1) + dσ(vq+1, vl) + µ

< d̂t+t2(vq+1) + dσ(vq+1, vl) + µ+ εδ

≤ d̂t+t2(vq) + dσ(vq, vl) + µ+ 2εδ

≤ d̂t+t2(vp) + dσ(vp, vl) + µ+ 2εδ

where the third inequality is due to vq+1 /∈ Vtouched, the fourth inequality is justified by Invariant 4.4
and the last inequality is justified by Lemma 4.3.

We directly use the previous lemma to give a guarantee for an arbitrary number of insertions.

Lemma 4.8. Consider a path segment σ = v1, ..., vl that was present at the start of a given phase
at time t. After b ≤ B insertions we have slackt+b(σ) ≤ 2εδ lgB.

Proof. Let us segment the b insertions into consecutive disjoint batches. We let b1 = 2blg bc, and

bi = 2blg(b−
∑
q<i bq)c, denote the number of insertions belonging to the i-th batch. Then, for the last

insertion of the i-th batch, our algorithm computes j =
⌊
lg(b−

∑
j<i bj)

⌋
and k = 1+(

∑
q<i bq)/2

j ,

yielding (k − 1)2j =
∑

q<i bq.

At the start of a phase the path has slackt(σ) ≤ 0, and each batch increases the slack by at
most 2εδ by Lemma 4.7. Since each batch at least halves the number of remaining insertions, we
conclude that we have slackt+b(σ) ≤ 2εδ lgB at the end.

13

Now consider a shortest s − x path πs,x. Our strategy is to simply break it up into segments
that were already present at the start of a phase, yielding a bound on the total stretch.

Lemma 4.9. Let πs,x be a shortest path from the source s to x, after b < B insertions happened

during a phase starting at time t. Then d̂t+b(x) ≤ dt+b(s, x) + 2Bεδ lgB +Bεδ.

Proof. We segment the path into at most B segments, which were already present at the start of
the phase. Then we apply Invariant 4.4 at most B − 1 times to bound the newly inserted edges
and apply Lemma 4.8 B times to bound the segments already present at the start of the phase.
Chaining the inequalities yields the result.

By summarizing the above, we achieve our deterministic result.

Theorem 1. We construct a deterministic algorithm for the (1 + ε)-approximate SSSP problem
in incremental, directed and weighted graphs with total update time Õ(m3/2 log(W)/ε). Distance
queries are answered in time O(1) and an approximate shortest path πs,x is reported in time
O(|πs,x|).

Proof. Follows by combining the correctness guarantee of Lemma 4.9 with the runtime guarantee of
Lemma 4.2. To answer queries in constant time, we store an extra variable per vertex maintaining
its minimum observed distance estimate among all data structures. Storing the vertex that caused
the last decrease for every vertex in every data structure enables us to maintain an approximate
shortest path tree T , which allows path reporting in time O(|πs,x|).

5 A Randomised Algorithm

We now give the technical details of our main result: a Monte-Carlo randomized algorithm that
achieves expected total update time Õ(m4/3 logW/ε2).

5.1 Algorithm Description

For each power of two τ = 2i between m1/3 and nW , we maintain a data structure responsible for
paths of length [τ, 2τ). Shorter paths are handled by a standard ES-tree, as in our deterministic
algorithm.

We describe the algorithm for maintaining a (1 + ε) distance approximation for shortest paths
πs,x of length d(s, x) ∈ [τ, 2τ) for a dedicated source s. Our algorithm uses the parameters δ =
τ/m1/3 for controlling the error per edge and B =

⌊
m1/3

⌋
denoting the maximum number of

insertions per phase. For each vertex v ∈ V , we maintain a distance estimate d̂(v), which initially
is set to d̂(v) = min{d(s, v), τmax} where we let τmax = (2 + 200 lg nε)τ + 1 denote the maximum
distance estimate. During queries τmax is treated as infinity. Whenever a query has to be answered,
the minimum distance estimate among all data structures is returned.

Our algorithm maintains two distinct lazy ES-trees DS and D̃S employing synchronized propa-
gation. We refer to variables in DS with xDS and to variables in D̃S with xD̃S respectively. When
queried, we answer with the distance estimates stored in DS. Our randomized data structures only
differ from our deterministic algorithm in the nature and frequency of rebuild phases, and we still
use insert (Algorithm 1) to insert, this time for both data structures DS and D̃S separately for
each edge.

14

If either the last rebuild happened B insertions ago, or the potential ΦD̃S =
∑

v∈V d̂D̃S(v) got

decreased by m1/3τ/4ε since before the last rebuild, we enter another rebuild. In the context of
our randomized algorithm, we also call rebuilds global fixing phases. Notice that global fixing
phases might happen back to back, without insertions in-between, if the previous global fixing
phase decreased the potential ΦD̃S enough. We describe a global fixing phase next.

Global Fixing Phase. First, we replace each distance estimate of a vertex v in DS and D̃S by
the minimum of the two. Then we repeat the following for d2000 log n/εe iterations: Uniformly
sample some i from 0, ..., d2m1/3 + 200εm1/3 lg n− 8e, and let

V ?
j = {v ∈ V : d̂t+b

D̃S
(v) ∈ [iδ, (i+ 8)δ)}

where j denotes the iteration count.

Finally, we call PartialDijkstra(
⋃d2000 logn/εe
j=1 V ?

j , ε) (Algorithm 2) on D̃S to propagate on

these vertices all at once in data structure D̃S. Pseudo-code for the global fixing phase is given in
Algorithm 3. We state the following observation which is straight-forward from the algorithm.

Observation 5.1. Our randomized algorithm preserves Invariant 4.4.

Algorithm 3: GlobalFixingPhase

1: //synchronization
2: for all v ∈ V do
3: x = min(d̂DS(v), d̂D̃S(v))

4: d̂DS(v)← x; d̂D̃S(v) ← x

5: //referred to as time Bef(t)

6: //fixing a segment in D̃S
7: V ? = ∅
8: for all j = 1, ..., d2000 log n/εe do
9: sample i uniformly from 0, ...,

⌈
2m1/3 + 200εm1/3 lg n− 8

⌉
10: V ?

j = {v ∈ V : iδ ≤ d̂D̃S(v) ≤ (i+ 8)δ}
11: V ? ← V ? ∪ V ?

j

12: call PartialDijkstra(V ?, ε) on D̃S

5.2 Runtime

Lemma 5.2. The combined runtime of all data structures is Õ(m4/3 log(W)/ε2) in expectation.

Proof. As previously, we analyse the run time of a single data structure for some distance range
[τ, 2τ) first. Let us analyze the following parts:

• The time spent in DS and D̃S: for any edge (u, v) we spend up to O(logB) time whenever

d̂(u) gets decreased by εδ immediately and throughout subsequent calls from Insert to
PartialDijkstra(Vinput, ε) by Lemma 4.1. In doing so, we spend at most another O(log n)

15

factor for sorting the priority queues. There can be at most O(mτ/εδ) such decreases, since
the potential Ψ =

∑
(u,v)∈Eend d̂DS(u) +

∑
(u,v)∈Eend d̂D̃S(u) is at most O(mτ) at the start,

and decreases by εδ whenever such a decrease happens. For our choice of δ, we can therefore
bound the total update time required by such updates with O(m4/3 log2(n)/ε).

• The time spent in a global fixing phase caused by the insertion counter reaching B =
⌊
m1/3

⌋
:

We have that there are at most O(m2/3) such fixing phases since we have ≤ m insertions.
Each global fixing phase has an expected extra runtime, i.e. runtime not payed for by a po-
tential decrease which is accounted for in the data structures, of O(m2/3 log2(n)/ε). That is,
since there are Ω(m1/3) distance estimate ranges that could be sampled, and thus the sum of
the degrees of the vertices in one of them is O(m2/3) in expectation. We sample O(log(n)/ε)
such regions. This yields a total expected extra runtime of O(m2/3 log2(n)/ε) where we spend
another O(log n) factor for sorting priority queues. The other edges that get explored during
a global fixing phases phase are paid for by a decrease of the potential Ψ, as argued above.
Computing the minimum of the distance estimates between DS and D̃S can be easily amor-
tized over previous changes to the variables, if we store a list of all the variables in DS and
D̃S that changed since the last global fixing phase, and only perform this operation on them.

• Global fixing phases caused by a potential decrease: Since the potential ΦD̃S =
∑

v∈V d̂D̃S(v)

is in O(nτ) ⊆ O(mτ) at the start, at most O(m2/3/ε) decreases by m1/3τ/4ε can happen.
As argued in the previous item, this yields an expected extra runtime of O(m2/3 log2(n)/ε2).
Thus a single data structure can be maintained in O(m4/3 log2(n)/ε2) total update time.

We use Õ(logW) separate data structures for different path lengths and a single standard
ES-tree for paths with length less than 2m1/3 by Theorem 2.2. The claimed runtime follows.

5.3 Correctness

Setup of the Proof. Some insertions are followed by one or multiple global fixing phases, while
others are not. Let t1, t2, . . . , tk be the time stages where the global fixing phase is run at least
once, where we also consider the initialization phase a fixing phase, so t1 = 0. Then, we analyze
our data structure by looking at the time steps [ti, ti+1) for all i. The last batch ends with the
last insertion to the graph, and for convenience tk+1 is set equal to the number of insertions plus
one. We first state the main lemma of our proof, denoting the data structure responsible for path
lengths in [τ, 2τ) as DS [τ,2τ) in this paragraph.

Lemma 5.3. For i ∈ [k], time step ti + b < ti+1 where b ∈ N≥0, and vertex x such that 2m1/3 ≤
dti+b(s, x) ∈ [τ, 2τ). The probability that

d̂ti+bDS[τ,2τ)(x) ≥ dti+b(s, x) + 100ετ lg n (1)

is less than 1/n5 against an adaptive adversary.

From this, it is simple to conclude the correctness of our algorithm.

Lemma 5.4. With high probability 1−O(1/n)

d̂DS[τ,2τ)(x) < d(s, x) + 100ετ lg n ≤ (1 + 100ε lg n)d(s, x)

holds for all paths so that d(s, x) ∈ [τ, 2τ) after fully processing any insertion against an adaptive
adversary.

16

Proof. There are at most m ≤ n2 insertions, and after each insertion n−1 paths could have to much
error. The result follows from Lemma 5.3 by union bound, since we maintain distances shorter than
2m1/3 via a standard ES-tree (Theorem 2.2).

Combined with the runtime guarantee, we conclude our main theorem.

Theorem 2. We construct a randomized algorithm for the (1 + ε)-approximate SSSP problem in
incremental, directed and weighted graphs with total expected update time Õ(m4/3 log(W)/ε2) that
answers all distance queries correctly with high probability 1−O(1/n) against an adaptive adversary.
Distance queries are answered in time O(1) and an approximate shortest path πs,x is reported in
time O(|πs,x|).

Proof. Follows from Lemma 5.2 and Lemma 5.4 after scaling ε. To answer queries in constant time,
we store an extra variable per vertex maintaining its minimum observed distance estimate among
all data structures. Storing the vertex that caused the last decrease for every vertex in every data
structure enables us to maintain an approximate shortest path tree T , which allows path reporting
in time O(|πs,x|).

Proof of Lemma 5.3. We denote throughout the rest of the proof the time ti specified in the
lemma by t, and simply write DS instead of DS [τ,2τ) to prevent clutter. To make our case, we
also need to refer to a special moment in time whilst processing the t-th iteration. Namely, we let
Bef(t) denote the time before the random propagation on D̃S during the last global fixing phase
whilst processing insertion t happened. Before we give our proof in full generality, let us initially
make the following two strong, simplifying assumptions:

• An Oblivious Adversary: In particular, we want to use in the proof the key property of an
oblivious adversary that the adversary has to fix the update sequence before the algorithm is
initialized.

• Distance Estimates are reasonable after time step Bef(t): We assume for every x ∈ V so that

dBef(t)(s, x) ∈ [τ, 2τ),

d̂
Bef(t)
DS (x) < dBef(t)(s, x) + 100ετ lg n.

Given these two assumptions, the crux to the rest of the analysis is to condition on the random
bits evaluated at time Bef(t). We then define a new data structure D̂S for the purpose of the

analysis only. We define D̂S to have the state of DS at time Bef(t) and thereafter we simulate

our deterministic algorithm from Section 4 with no rebuilds. Note that D̂S and DS are in identical
states up until the next global fixing phase after time t occurs, i.e. until time ti+1.

Next, observe that by conditioning on the randomness at time Bef(t), by the fact that D̂S is
updated by a deterministic algorithm thereafter, and since we assume an oblivious adversary which
has to fix its update sequence in advance, the states of D̂S until the rest of the algorithms are
determined at this point in time.

This allows us to find a time step after t, say the time step t+ b such that we have

d̂t+b
D̂S

(x) ≥ dt+b(s, x) + 100ετ lg n

for a fixed vertex x with dt+b(x) ∈ [τ, 2τ). If no such time step t + b exists, then we can conclude

that for the rest of the algorithm, distance estimates in D̂S are always within the correct bounds

17

for vertex x. Since DS has the same distance estimates as D̂S until the first global fixing phase
after time t, we have that the same is true for D̂S in the time frame [t, ti+1), and we are done.

Let us therefore focus on the case where t + b exists. For the rest of the proof, we fix t + b to
be the minimal time step where the inequality (1) is satisfied for vertex x. We also fix πs,x to be
the shortest path from s to x at time t+ b in the graph G.

We distinguish again by cases:

• If t+ b ≥ t+B: Since we always run a global fixing phase after B time steps, and therefore
t+B ≥ ti+1, the lemma follows immediately.

• If t+ b < t+B: In this case, we use the following key lemma.

Lemma 5.5. Given t+ b < B exists, in the time frame [Bef(t), t+ b], the data structure D̃S
decreased the potential ΦD̃S by at least m1/3τ/4ε with probability ≥ 1− n−5.

Given this lemma, it is clear that the potential reduction must have triggered a new global
rebuilding phase, the latest at stage t+ b. Therefore, ti+1 ≤ t+ b which concludes the proof.

Here, the final step omitted so far is to prove Lemma 5.5. This requires an extremely careful
analysis that we present in the rest of this section.

Removing the Simplifying Assumptions from the Proof. Before we start our analysis of
the potential reduction, let us briefly address the simplifying assumptions we made, and argue that
we do not in fact need them:

• An Oblivious Adversary: To see that our proof also works against an adaptive adversary, it
only remains to observe that we report distances and paths exclusively based on the informa-
tion in the data structure DS. Thus, the adversary cannot use the query output to guess the
random bits chosen in the last global rebuilding phase that are used to run the data structure
D̃S. Once D̃S reports the large potential decrease, we immediately run a new global fixing
phase that selects new (hidden) random bits for D̃S after revealing information based on the
old random bits to the adversary.

• Distance Estimates are reasonable after time step Bef(t): We implicitly used at this point
that at the end of stage t, the distances are reasonable, so that in our proof, if we enter
the last case (where t + b exists with t + b < t + B), we have that b > 0. The reason this
was required in our proof so far is that the next Global Fixing Phase was per definition,
the earliest at the stage t + 1 since after time step Bef(t), we did not change DS at stage t
anymore.

However, the proof that for every x ∈ V so that dBef(t)(s, x) ∈ [τ, 2τ),

d̂
Bef(t)
DS (x) < dBef(t)(s, x) + 100ετ lg n

is analogous to the proof we just discussed. The analysis then shows that, with high proba-
bility, the potential ΦD̃S got decreased by at least m1/3τ/4ε between Bef(t) and t, and thus
Bef(t) does not refer to a moment within the last global fixing phase while processing t, since
another global fixing phase is triggered by such a decrease. This is a contradiction.

18

Overview of the proof of the potential reduction. Our proof of Lemma 5.5 can be logically
divided into four steps:

1. The slack of the path: Given that the path πs,x has high additive error in data structure D̂S
at time t + b, not all that error can be contributed by the newly inserted edges. Therefore,
segments already present at time t must contribute a significant cumulative amount of error.

2. The slack of a segment: Since our synchronized propagation technique severely limits the
build up of error on segments present throughout b < B insertions, some of these segments
must have already carried slack at time Bef(t), when the data structures D̂S and D̃S were
equivalent.

3. Tense vertices: During the remainder of the global fixing phase, one such segment looses a
large part of its slack in data structure D̃S.

4. Tense segments: This fixed segment renders it impossible to build the path πs,x with high

error in D̃S. But then a lot of vertices moved closer to the source in D̃S since time Bef(t),
causing a large decrease in the potential ΦD̃S . Such a potential decrease causes another global
fixing phase, yielding ti + b ≥ ti+1.

Figure 5: Given a high error path at time t + b in data structure D̂S, we show that the black
segments already contributed error at time Bef(t), when D̂S and D̃S were last made identical.
Then, our algorithm fixed one of these segments with high probability during the rest of the global
fixing phase between Bef(t) and t (depicted in bold). However, this only happens in D̃S while we

do not implement this fix for D̂S. In D̃S, this leads to propagations eliminating most of the error
on the remainder of the path when the dotted red edges are inserted. Finally, a path loosing this
much error causes a drop in potential by at least εm1/3τ/4, and therefore ti + b ≥ ti+1.

For an illustration of these steps, see Figure 5. Due to some technicalities, it is simpler to
present these steps in the following order: 2, 3, 4, 1. Since we want to show that the potential ΦD̃S

19

gets decreased by at least m1/3τ/4ε in the time frame [{Bef(t)}, t+ b], we assume no global fixing
phases happened in this time frame. Otherwise we are done since t + b < t + B and thus such a
global fixing phase can only be caused by a m1/3τ/4ε decrease in potential.

The slack of a segment. In this paragraph, we argue that a segment with large slack at time
t + b already carried some slack at time t, where we measure the slack with respect to some fixed
distance estimate level H, tackling the challenge of segments moving around. Notice that a segment
cannot move away from the source in distance estimate over time, since distance estimates only
ever decrease. Therefore, when we want to argue about a segment’s state at a previous moment,
its vertices can only have had higher distance estimates. This means that finding an upper bound
for the position at some previous moment suffices. First, we tighten and rephrase Lemma 4.7,
making the accumulation of error precise. Note that we now state it from the perspective of going
backwards in time: we presume something about a later state, and show a statement about a
previous state.

Since we assume no global fixing phase happened between t and t+ b, the data structures D̂S
and D̃S are identical in their behaviour during this time interval, and the following arguments are
equivalent for both.

Lemma 5.6. Consider the i-th insertion during an insertion phase that started at time t, along
with the associated values j and k computed by our algorithm. If a path segment σ = v1, ..., vl,
present throughout the phase, has slackt+t2

D̂S
(π,H) ≥ µ after insertion t2 = k2j = i of the phase for

µ ≥ 2εδ and H ≤ d̂t+t2
D̂S

(vl), it had slackt+t1
D̂S

(π,H) ≥ µ − 2εδ after insertion t1 = (k − 1)2j of the

phase. This statement equivalently holds for data structure D̃S.

Proof. Let vj be a vertex that witnesses the slack µ at time t+ t2, i.e. a vertex such that we have

µ ≤ H − d̂t+t2
D̂S

(vj)− dσ(vj , vl)

and in particular, using H ≤ d̂t+t2
D̂S

(vl),

µ ≤ d̂t+t2
D̂S

(vl)− d̂t+t2D̂S
(vj)− dσ(vj , vl).

Consider the set Vfixed = Vtouched ∪ Vinput after the last call to PartialDijkstra(Vinput, ε). Let
vj , ..., vq be a maximal sub-segment starting at vj such that all its vertices are elements of Vfixed.
We first observe that vq 6= vl, as otherwise

2εδ ≤ µ ≤ d̂t+t2
D̂S

(vl)− d̂t+t2D̂S
(vj)− dσ(vj , vl) ≤ 0

would hold by Lemma 4.3 which is a contradiction. We calculate

µ ≤ H − d̂t+t2
D̂S

(vj)− dσ(vj , vl)

≤ H − d̂t+t2
D̂S

(vq)− dσ(vq, vl)

≤ H − d̂t+t2
D̂S

(vq+1)− dσ(vq+1, vl) + εδ

≤ H − d̂t+t1
D̂S

(vq+1)− dσ(vq+1, vl) + 2εδ

where the second inequality follows from Lemma 4.3, the third by Invariant 4.4, and the last by
vk+1 /∈ Vtouched.

20

Next we apply the previous lemma to a segment with high slack, and show that some of that
slack was already present before the global fixing phase. Importantly, the slack is measured with
respect to H = d̂t+b

D̂S
(vl) throughout, fixing its position in distance estimate. See Figure 6 for a

depiction of our next lemma.

Figure 6: Illustration of Lemma 5.7 and Lemma 5.8. A segment with large slack with respect to the
distance estimate of the last vertex, denoted as H, had additive error in the same distance range
at time Bef(t). It is crucial for our analysis that the segment did not only have high slack at time
Bef(t), but this slack was built up by additive error below the distance estimate level H.

Lemma 5.7. Consider a path segment σ = v1, ..., vl already present during the last global fixing
phase at time t, such that after b insertions in the current phase slackt+b

D̂S
(σ) ≥ µ for µ ≥ 3εδ lg n.

We have slackt
D̂S

(σ, d̂t+b
D̂S

(vl)) ≥ µ − 2εδ lg n. This statement equivalently holds for data structure

D̃S.

Proof. Let us segment the b insertions into consecutive, disjoint batches. We let b1 = 2blg bc, and

bi = 2blg(b−
∑
j<i bj)c, denote the number of insertions belonging to the i-th batch. Clearly, there are

at most lgB ≤ lg n batches. We work our way from the last batch to the first, and iteratively use
Lemma 5.6. We obtain that, after the i-th batch, we must have had

slackt+ti
D̂S

(σ, d̂t+b
D̂S

(vl)) ≥ µ− 2(p− i)εδ

for ti = b−
∑i

j=1 bi. The lemma follows from b ≤ m1/3.

We conclude this paragraph by giving a version of the previous lemma that only applies to D̃S,
and relates slack at time t+ b to slack at time Bef(t).

Lemma 5.8. Consider a path segment σ = v1, ..., vl already present during the last global fixing
phase at time t, such that after b insertions in the current phase slackt+b

D̃S
(σ) ≥ µ for µ ≥ 3εδ lg n.

We have slack
Bef(t)

D̃S
(σ, d̂t+b

D̃S
(vl)) ≥ µ− 3εδ lg n.

Proof. By Lemma 5.7 we have

slacktD̃S(σ, d̂t+b
D̃S

(vl)) ≥ µ− 2εδ lg n.

21

Since the global fixing phase between Bef(t) and t just consists of a single call to PartialDijkstra,
it adds at most εδ error. This follows directly from Lemma 4.3 and Invariant 4.4, using the same
argument as in the proof of Lemma 5.6. Therefore, we have

slack
Bef(t)

D̃S
(σ, d̂t+b(vl)) ≥ µ− 2εδ lg n− εδ.

Tense vertices. In this paragraph we argue that segments with high slack in D̃S are likely to be
(partially) fixed by a global fixing phase, and the more slack they have, the more likely it gets.

We introduce the crucial concept of a tense vertex. Informally speaking, a tense vertex is a
vertex where a lot of error gets accumulated in a small forward neighbourhood on the path, and
fixing this error causes the rest of the path to snap back by inducing a propagation all the way to
the end of the path segment.

Definition 5.9 (Tense Vertex). For a segment σ = v1, ..., vl, a vertex vj is called tense, if for all

v ∈ suffix(σ, vj), such that d̂
Bef(t)

D̃S
(v) ≥ d̂Bef(t)

D̃S
(vj) + 2δ, we have

d̂
Bef(t)

D̃S
(v) ≥ d̂Bef(t)

D̃S
(vj) + dσ(vj , v) + εδ.

A tense vertex vj is hit, if

{v ∈ V : d̂
Bef(t)

D̃S
(v) ∈ [d̂

Bef(t)

D̃S
(vj), d̂

Bef(t)

D̃S
(vj) + 2δ]} ⊆

2000 logn/ε⋃
j=1

V ?
j .

where the set
⋃2000 logn/ε
j=1 V ?

j is sampled during the last global fixing phase between time Bef(t) and
t.

We first show that hitting a tense vertex eliminates the slack on the remainder of the segment.

Lemma 5.10. Let vj be a tense vertex on a segment σ = v1, ..., vl at moment Bef(t). If it gets hit
between Bef(t) and t, we have slackt

D̃S
(σ′) ≤ 0 for σ′ = suffix(σ, vj).

Proof. All vertices in σ′ that are not already in Vinput would profit by at least εδ by the definition of a
tense vertex. Therefore the branching condition in Line 6 in Algorithm 2 causes v ∈ Vtouched∪Vinput
for each v ∈ σ′ given Vtouched = PartialDijkstra(Vinput, ε). The claimed error bound follows from
Lemma 4.3.

Bearing this in mind, we show that the number of tense vertices on a segment with large slack
scales linearly with said slack. We first define the collection of potentially tense vertices for a
segment with respect to a parameter r. We introduce r to measure how much the path gets pulled
back, if one of them was tense and got hit. Later, we show that under favourable conditions, many
of these vertices are actually tense.

Definition 5.11 (Potentially Tense Vertex Collection). Consider a parameter r ∈ R≥0 and a
segment σ = v1, ..., vl already present during the last global fixing phase at time t with

slack
Bef(t)

D̃S
(σ, d̂t+b

D̂S
(vl))− r = µ > 0.

22

Let q = bµ/εδc. We construct a collection of potentially tense vertices w′0, ..., w
′
bq/2c−1, where w′j is

defined to be the last vertex along the path segment that has additive error at least (q − 2j)εδ + r
with respect to d̂t+b

D̂S
(vl), i.e. the last vertex by regular order for which

d̂t+b
D̂S

(vl) ≥ d̂
Bef(t)

D̃S
(w′j) + dσ(w′j , vl) + (q − 2j)εδ + r (potentially tense)

holds. These are the potentially tense vertices of the segment σ with respect to parameter r at time
t+ b.

We first show some basic properties of these vertices. We start by stating the following property
which follows straight-forwardly from the definition of potentially tense vertices as it gets weakened
as j gets larger.

Property 5.12. Let w′j and w′k be potentially tense vertices of segment σ = v1, ..., vl with respect
to r at time t+ b for j < k. Then either w′j = w′k or w′j is before w′k on the path.

Further, by re-arranging the formula in the definition of potentially tense vertices we obtain the
following property.

Property 5.13. Let w′j be a potentially tense vertex of segment σ = v1, ..., vl with respect to r at

time t+ b. Then d̂
Bef(t)

D̃S
(w′j) ≤ d̂

t+b

D̂S
(vl)− dσ(w′j , vl)− (q − 2j)εδ − r.

Lemma 5.14. Let w′j be a potentially tense vertex of segment σ = v1, ..., vl with respect to r at

time t+ b. Then d̂
Bef(t)

D̃S
(w′j) ≥ d̂

t+b

D̂S
(vl)− dσ(w′j , vl)− (q − 2j)εδ − r − εδ.

Proof. For the sake of contradiction, let us assume

d̂t+b
D̂S

(vl) > d̂
Bef(t)

D̃S
(w′j) + dσ(w′j , vl) + (q − 2j)εδ + r + εδ. (2)

Since w′j is the last vertex for which d̂t+b
D̂S

(vl) ≥ d̂
Bef(t)

D̃S
(w′j) + dσ(w′j , vl) + (q − 2j)εδ + r holds, we

must have by definition that for the successor wnext of w′j on the segment σ

d̂t+b
D̂S

(vl) < d̂
Bef(t)

D̃S
(wnext) + dσ(wnext, vl) + (q − 2j)εδ + r. (3)

Combining inequalities (2) and (3), we obtain

d̂
Bef(t)

D̃S
(wnext)− d̂Bef(t)

D̃S
(w′j) > εδ + ω(w′j , wnext)

by moving and cancelling terms, which is a contradiction to Invariant 4.4.

Lemma 5.15. Let w′j and w′k be potentially tense vertices of segment σ = v1, ..., vl with respect to

r at time t+ b for j < k. Then d̂
Bef(t)

D̃S
(wk)− d̂

Bef(t)

D̃S
(wj) ≥ εδ and thus they are distinct.

Proof. We use Property 5.13 with w′j to derive d̂
Bef(t)

D̃S
(w′j) ≤ d̂

t+b

D̂S
(vl)−dσ(w′j , vl)−(q−2j)εδ−r and

Lemma 5.14 with w′k to obtain d̂
Bef(t)

D̃S
(w′k) ≥ d̂

t+b

D̂S
(vl)−dσ(w′k, vl)− (q− 2k)εδ− r− εδ. Subtracting

the former from the latter inequality gives

d̂
Bef(t)

D̃S
(w′k)− d̂

Bef(t)

D̃S
(w′j) ≥ dσ(w′j , w

′
k) + 2(k − j)εδ − εδ ≥ εδ.

23

Lemma 5.16. Let w′j be a potentially tense vertex of segment σ = v1, ..., vl with respect to r at
time t+ b with j < bq/2c − 1, so that w′j is not tense. Then dσ(w′j , w

′
j+1) ≥ δ.

Proof. We denote the next vertex along the path after w′j+1 as wnext. Note that such a vertex
always exists, since

d̂
Bef(t)

D̃S
(vl) = d̂

Bef(t)

D̂S
(vl) ≥ d̂t+bD̂S (vl) > d̂

Bef(t)

D̃S
(w′j)

by the description of our algorithm and (potentially tense). By Definition 5.11 we have

d̂t+b
D̂S

(vl) < d̂
Bef(t)

D̃S
(v) + dσ(v, vl) + (q − 2(j + 1))εδ + r

for all v ∈ suffix(σ,wnext), since w′j+1 is the last vertex that fulfills inequality (potentially tense).
Chaining this inequality with the guarantee given by (potentially tense) for w′j yields

d̂
Bef(t)

D̃S
(w′j) + dσ(w′j , vl) + (q − 2j)εδ + r < d̂

Bef(t)

D̃S
(v) + dσ(v, vl) + (q − 2j)εδ + r − 2εδ

⇐⇒ d̂
Bef(t)

D̃S
(w′j) < d̂

Bef(t)

D̃S
(v)− dσ(w′j , v)− 2εδ. (error suffix)

But by assumption w′j is not tense, and thus there exists a vertex v? after w′j on the path such that

d̂
Bef(t)

D̃S
(v?) > d̂

Bef(t)

D̃S
(w′j) + 2δ (dist 1)

and

d̂
Bef(t)

D̃S
(v?) ≤ d̂Bef(t)

D̃S
(w′j) + dσ(w′j , v

?) + εδ (dist 2)

⇐⇒ d̂
Bef(t)

D̃S
(v?)− dσ(w′j , v

?)− εδ ≤ d̂Bef(t)

D̃S
(w′j)

by Definition 5.9. We claim that we can conclude that dσ(w′j , v
?) ≤ dσ(w′j , w

′
j+1). This follows

since if v? ∈ suffix(σ,wnext), the last inequality combined with (error suffix) where we set v = v?

would form a contradiction. Finally, we have

d̂
Bef(t)

D̃S
(w′j) + 2δ < d̂

Bef(t)

D̃S
(v?) ≤ d̂Bef(t)

D̃S
(w′j) + dσ(w′j , v

?) + εδ

=⇒ 2δ − εδ < dσ(w′j , v
?) ≤ dσ(w′j , w

′
j+1)

by chaining (dist 1) with (dist 2) which concludes the proof for ε < 1.

We combine our results in the following lemma.

Lemma 5.17. Let r ∈ R≥0 be a parameter and σ = v1, ..., vl be a segment already present during
the last global fixing phase at time t such that

slack
Bef(t)

D̃S
(σ, d̂t+b

D̂S
(vl))− r = µ ≥ 4εdσ(v1, vl)

where b is the number of insertions that happened since the last global fixing phase during the

processing of insertion t and 0 ≤ r ≤ slack
Bef(t)

D̃S
(σ, d̂t+b

D̂S
(vl)) is a parameter. Let q = bµ/εδc, then

there is a subset of {w′j} of size at least q/4− 3 consisting of vertices wj that are tense with regard
to time Bef(t). Moreover, all such vertices wj satisfy:

24

1. |d̂Bef(t)

D̃S
(wi)− d̂Bef(t)

D̃S
(wj)| ≥ εδ for all i 6= j

2. d̂
Bef(t)

D̃S
(wj) ≤ d̂t+bD̂S (vl)− r

3. d̂t+b
D̃S

(vl) ≤ d̂t+bD̂S (vl)− r if wj gets hit.

Proof. We first show that at least q/4 − 3 of the vertices w′j are tense. By Lemma 5.15 our
constructed potentially tense vertices are distinct, and thus we have bq/2c distinct potentially
tense vertices. To arrive at a contradiction, we assume that p ≥ q/4 + 2 of the potentially tense
vertices wi are not actually tense. To use Lemma 5.16, we focus on the first bq/2c − 1 potentially
tense vertices. These then must contain at least q/4 + 1 vertices that are not actually tense. From
Lemma 5.16 we conclude, that the segment has length d(v1, vl) > qδ/4 + δ, since there are q/4 + 1
distinct parts of length greater than δ. But then

d(v1, vl) > qδ/4 + δ ≥ (µ/εδ − 1)δ/4 + δ ≥ µ/4ε

which is a contradiction to 4εd(v1, vl) ≤ µ. Finally, let us prove the properties of tense vertices wi:

1. The first property directly follows from Lemma 5.15.

2. The second property is a direct consequence of condition (potentially tense) in Definition 5.11.

3. For the third property, if any wi = w′j gets hit, we have

d̂t+b
D̃S

(vl) ≤ d̂tD̃S(vl) ≤ d̂tD̃S(w′j) + dσ(w′j , vl) ≤ d̂t+bD̂S (vl)− (q − 2j)εδ − r ≤ d̂t+b
D̂S

(vl)− r

where the first inequality follows from the fact that distance estimates only ever decrease in
D̃S, the second from Lemma 5.10, the third from (potentially tense) in Definition 5.11, and
the fourth from j ≤ bq/2c − 1.

Tense segments Let’s remind ourselfs that πs,x is a shortest s−x path given by s = v1, ..., vl = x

at time t+ b, that carries additive error d̂(x)− dt+b(s, x) ≥ 100ετ lg n.

It is comprised of at most b + 1 maximal segments σi = v
(i)
1 , ..., v

(i)
li

, that were already present

during the last global fixing phase, as well as at most b newly inserted edges ei = (v
(i)
li
, v

(i+1)
1)

connecting them. A simple way to obtain the segments is to just remove all the edges that were
inserted since time t from the path, and look at what is left over. As one might expect, the index i
increases as we go along the path. Notice that some segments σi could just contain a single vertex.
We refer to the number of such segments with p+ 1 ≤ B. We define tense segments, which are to
the path what tense vertices are to a segment.

Definition 5.18. For each segment σi where i ∈ [p], we define

ri = arg min
r∈R

(
∀j > i,∀v ∈ σj : d̂t+b

D̂S
(v) ≥ d̂t+b

D̂S
(v

(i)
li

) + dπs,x(v
(i)
li
, v)− r + 5(j − i)εδ lg n

)
.

For the segment σp+1 we define rp+1 = 0. If ri < slackt+b
D̂S

(σi), we say the segment σi is tense.

25

Lemma 5.19. For all i ∈ {1, ..., p+ 1}, we have ri ≥ 0.

Proof. The case i = p + 1 follows by definition. For the other cases, assume the contrary ri < 0

and consider the vertex v
(i+1)
1 . By the definition of ri, we have

d̂t+b
D̂S

(v
(i+1)
1) ≥ d̂t+b

D̂S
(v

(i)
li

) + dπs,x(v
(i)
li
, v

(i+1)
1)− ri + 5εδ lg n ≥ d̂t+b

D̂S
(v

(i)
li

) + dπs,x(v
(i)
li
, v

(i+1)
1) + 5εδ lg n

which is a contradiction to Invariant 4.4 since dπs,x(v
(i)
li
, v

(i+1)
1) = ω(v

(i)
li
, v

(i+1)
1).

We first show that a segment that moves a lot in distance estimate, cannot contribute more
than 3εδ lg n additive error.

Lemma 5.20. Let σi = v
(i)
1 , ..., v

(i)
li

be a segment such that ∀v ∈ σi : d̂
Bef(t)

D̃S
(v) ≥ d̂t+b

D̃S
(v

(i)
1) +

dπs,x(v
(i)
1 , v) + 4εδ lg n. Then d̂t+b

D̃S
(v

(i)
li

) ≤ d̂t+b
D̃S

(v
(i)
1) + dπs,x(v

(i)
1 , v

(i)
li

) + 3εδ lg n.

Proof. Assume, for the sake of contradiction, that d̂t+b
D̃S

(v
(i)
li

) > d̂t+b
D̃S

(v
(i)
1) +dπs,x(v

(i)
1 , v

(i)
l) + 3εδ lg n.

Then, the segment has slackt+b
D̃S

(σi) ≥ d̂t+bD̃S (vli)− d̂
t+b

D̃S
(v

(i)
1)− dπs,x(v

(i)
1 , v

(i)
li

) > 3εδ lg n and thus the

assumptions of Lemma 5.8 are fulfilled. By Lemma 5.8, we have

slack
Bef(t)

D̃S
(σi, d̂

t+b

D̃S
(v

(i)
li

)) ≥ d̂t+b
D̃S

(v
(i)
li

)− d̂t+b
D̃S

(v
(i)
1)− dπs,x(v

(i)
1 , v

(i)
li

)− 3εδ lg n

and therefore there exists a vertex v
(i)
j ∈ σi witnessing this slack, so that

d̂t+b
D̃S

(v
(i)
li

)− d̂Bef(t)

D̃S
(v

(i)
j)− dπs,x(v

(i)
j , v

(i)
li

) ≥ d̂t+b
D̃S

(v
(i)
li

)− d̂t+b
D̃S

(v
(i)
1)− dπs,x(v

(i)
1 , v

(i)
li

)− 3εδ lg n.

=⇒ d̂t+b
D̃S

(v
(i)
1) ≥ d̂Bef(t)

D̃S
(v

(i)
j)− dπs,x(v

(i)
1 , v

(i)
j)− 3εδ lg n. (witness)

By assumption of the lemma, we have

d̂
Bef(t)

D̃S
(v

(i)
j) ≥ d̂t+b

D̃S
(v

(i)
1) + dπs,x(v

(i)
1 , v

(i)
j) + 4εδ lg n. (assumption)

Chaining inequalities (witness) and (assumption) yields

d̂t+b
D̃S

(v
(i)
1) ≥ d̂t+b

D̃S
(v

(i)
1) + εδ lg n

0 ≥ εδ lg n

which is a contradiction.

Next we use the previously derived lemma, to show that if tense vertices in a tense segment get
hit, all the vertices on the remainder of the path get reduced in distance estimate at some point.

Lemma 5.21. Let σi = v
(i)
1 , ..., v

(i)
li

be a tense segment so that

slackt+b
D̂S

(σ)− ri = µi ≥ 4dπs,x(v
(i)
1 , v

(i)
li

) + 3εδ lg n.

Let q = µi/εδ − 3 lg n. Then the segment contained q/4− 3 tense vertices wj in data structure D̃S
at time Bef(t). For all such vertices wj, we have further

26

1. |d̂Bef(t)

D̃S
(wj)− d̂Bef(t)

D̃S
(wk)| ≥ εδ for all j 6= k

2. d̂
Bef(t)

D̃S
(wj) ≤ d̂t+bD̂S (v

(i)
li

)− ri

3. d̂t+b
D̃S

(x) ≤ d̂t+b
D̂S

(v
(i)
li

) + dπs,x(v
(i)
li
, x)− ri + 4ετ lg n if wj gets hit.

Proof. We first calculate

slack
Bef(t)

D̃S
(σ, d̂t+b

D̃S
(v

(i)
li

))− ri = slacktD̂S(σ, d̂t+b
D̃S

(v
(i)
li

))− ri

≥ slackt+b
D̂S

(σ, d̂t+b
D̃S

(v
(i)
li

))− ri − 2εδ lg n

= µi − 2εδ lg n

where the first equality holds directly from the description of our algorithm, the inequality holds
because of Lemma 5.7, and the last equality is just the definition of µi. Now that we related the
slack from data structure D̂S at time t+ b to slack in the data structure D̃S at time Bef(t), we can

use Lemma 5.17 and obtain a statement about tense vertices in D̃S. We use the tense vertices wj as
given by Lemma 5.17. The first two points of this lemma directly follow directly from Lemma 5.17.
Further, the third point of Lemma 5.17 yields

d̂t+b
D̃S

(v
(i)
li

) ≤ d̂t+b
D̂S

(v
(i)
li

)− ri (4)

if one of the tense vertices wj gets hit. We condition on wj being hit. To show that this implies the
third point of our lemma, we set up an induction on index k for value i ≤ k ≤ p+ 1 with induction
hypothesis

d̂t+b
D̃S

(v
(k)
lk

) ≤ d̂t+b
D̂S

(v
(i)
li

) + dπs,x(v
(i)
li
, v

(k)
lk

)− ri + 4(k − i)εδ lg n.

The base case is clear, since for k = i this is just inequality (4). Now consider some step i < k+ 1.
Then

d̂t+b
D̃S

(v
(k+1)
1) ≤ d̂t+b

D̃S
(v

(k)
lk

) + ω(v
(k)
lk
, v

(k+1)
1) + εδ

≤ d̂t+b
D̂S

(v
(i)
li

) + dπs,x(v
(i)
li
, v

(k+1)
1)− ri + 4(k − i)εδ lg n+ εδ (step)

≤ d̂t+b
D̂S

(v
(i)
li

) + dπs,x(v
(i)
li
, v

(k+1)
1)− ri + 5(k − i)εδ lg n

where the first inequality is due to Invariant 4.4, and the second is an application of the induction
hypothesis. By Definition 5.18 we have for all v ∈ σk+1

d̂t+b
D̂S

(v) ≥ d̂t+b
D̂S

(v
(i)
li

) + dπs,x(v
(i)
li
, v)− ri + 5(k + 1− i)εδ lg n.

Subtracting the previous two inequalities yields again for every v ∈ σk+1

d̂t+b
D̂S

(v)− d̂t+b
D̃S

(v
(k+1)
1) ≥ dπs,x(v

(i)
li
, v)− dπs,x(v

(i)
li
, v

(k+1)
1) + 5εδ lg n

=⇒ d̂t+b
D̂S

(v) ≥ d̂t+b
D̃S

(v
(k+1)
1) + dπs,x(v

(k+1)
1 , v) + 5εδ lg n.

27

Since d̂
Bef(t)

D̃S
(v) = d̂

Bef(t)

D̂S
(v) ≥ d̂t+b

D̂S
(v) because distance estimates only ever decrease, this means

that we satisfy the assumptions of Lemma 5.20, and can thus conclude

d̂t+b
D̃S

(v
(k+1)
lk+1

) ≤ d̂t+b
D̃S

(v
(k+1)
1) + dπs,x(v

(k+1)
1 , v

(k+1)
lk+1

) + 3εδ lg n.

By plugging in inequality (step) for d̂t+b
D̃S

(v
(k+1)
1) this yields

d̂t+b
D̃S

(v
(k+1)
lk+1

) ≤ d̂t+b
D̂S

(v
(i)
li

) + dπs,x(v
(i)
li
, v

(k+1)
lk+1

))− ri + 4(k + 1− i)εδ lg n

which concludes our induction. Since v
(p+1)
lp+1

= x and p+ 1 ≤ B ≤ m1/3, we have

4(p+ 1− i)εδ lg n ≤ 4ετ lg n

for δ = τ/m1/3 and we conclude the proof.

The slack of the path. Finally, we address the very first point in our overview and analyse the
total slack of some well-picked segments on the path πs,x at time t+ b, which will allow us to argue
about the number of tense vertices on πs,x.

To help define our sequence, we first define the forward segment of a segment.

Definition 5.22. Given a segment σi, we define the forward segment of σi to be the segment σj
with i < j for

j = min
(
j ∈ i+ 1, ..., p+ 1 : ∃v ∈ σj : d̂t+b

D̂S
(v) = d̂t+b

D̂S
(v

(i)
li

) + dπs,x(v
(i)
li
, v)− ri + 5(j − i)εδ lg n

)
.

We define the forward-pair of σi denoted by forward(σi) to be the tuple (σj , v
?
j), where v?j ∈ σj is

an arbitrary but fixed vertex such that

d̂t+b
D̂S

(v?j) = d̂t+b
D̂S

(v
(i)
li

) + dπs,x(v
(i)
li
, v?j)− ri + 5(j − i)εδ lg n.

Next, we construct a (sub-)sequence of segments, using the previous definition. The construction
of this sequence makes sure that there are many tense segments among them.

Definition 5.23. We define a (sub-)sequence of segments σi(j). We start with σi(1) = σ1, and set
(σi(j+1), v

?
i(j+1)) = forward(σi(j)) until σi(j) = σp+1. Let p′+1 be the number of such segments. For

convenience, we define v?i(1) to be some vertex v in σ1 that witnesses its slack, i.e. slackt+b
D̂S

(σ1) =

d̂t+b
D̂S

(v
(1)
l1

)− d̂t+b
D̂S

(v)− dπs,x(v, v
(1)
l1

).

We observe that v?i(j) is a vertex that witnesses the slack of segment σi(j) by careful inspection
of the definitions.

Property 5.24. For j ∈ [p′ + 1]: slackt+b
D̂S

(σi(j)) = d̂t+b
D̂S

(v
(i(j))
l)− d̂t+b

D̂S
(v?i(j))− dπs,x(v?i(j), v

(i(j))
l).

Next we construct an upper bound for the distance estimate of the last vertex in a segment,
which is important to show that the cumulative slack is high.

28

Lemma 5.25. For 2 ≤ j ≤ p′ + 1 we have

d̂t+b
D̂S

(v?i(j)) ≤ dπs,x(s, v?i(j)) +

j−1∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) + (i(j)− 1)5εδ lg n.

Proof. We show this claim by induction on j. For j = 2 we have

d̂t+b
D̂S

(v?i(2)) = d̂t+b
D̂S

(v
(1)
l1

) + dπs,x(v
(1)
l1
, v?i(2))− ri(1) + 5(i(2)− 1)εδ lg n

≤ slackt+b
D̂S

(σi(1))− ri(1) + dπs,x(s, v?i(2)) + 5(i(2)− 1)εδ lg n.

where the first equality is by the defining property of v?i(2) and the second follows from the definition

of slack, i.e. slackt+b
D̂S

(σi(1)) + d(s, v
(1)
l1

) ≥ d̂t+b
D̂S

(v
(1)
l1

).

For some 2 < j + 1 < p′ + 1 we similarly get

d̂t+b
D̂S

(v?i(j+1)) = d̂t+b
D̂S

(v
(i(j))
li(j)

) + dπs,x(v
(i(j))
li(j)

, v?i(j+1))− ri(j) + 5(i(j + 1)− i(j))εδ lg n

= d̂t+b
D̂S

(v?i(j)) + slackt+b
D̂S

(σi(j)) + dπs,x(v?i(j)v
?
i(j+1))− ri(j)5(i(j + 1)− i(j))εδ lg n

≤ dπs,x(s, v?i(j)) +

j−1∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) + (i(j)− 1)5εδ lg n

where the second equality is due to Property 5.24 and the inequality is due to the induction
hypothesis. This concludes our proof.

Finally, we show that the sum of the slack of our segments is large.

Lemma 5.26.
∑p′+1

k=1 slack
t+b

D̂S
(σi(k))− ri(k) ≥ 95ετ lg n

Proof. We have

d̂t+b
D̂S

(x) = slackt+b
D̂S

(σi(p′+1)) + d̂t+b
D̂S

(v?i(p′+1)) + dπs,x(v?i(p′+1), x)

by Property 5.24. If there is just one segment, we are done after subtracting d(s, x) from both sides
since rp+1 = 0.

Otherwise, combining this with our previous Lemma 5.25, we obtain

d̂t+b
D̂S

(x) ≤ dπs,x(s, x) +

p′+1∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) + (i(p′ + 1)− 1)5εδ lg n

by direct calculation using ri(p′+1) = rp+1 = 0 by definition. Subtracting d(s, x) from both sides
we get

100τ lg n ≤ d̂t+b
D̂S

(x)− dπs,x(s, x) ≤
p′+1∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) + (i(p′ + 1)− 1)5εδ lg n

≤
p′+1∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) + 5ετ lg n

where the second inequality follows from i(p′ + 1) ≤ m1/3. We conclude our result by subtracting
5ετ lg n on both sides.

29

Lemma 5.27. For all j ∈ [p′ + 1]

d̂t+b
D̂S

(v
(i(j))
li(j)

)− ri(j) ≤ dπs,x(s, v
(i(j))
li(j)

) +

j∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) + 5ετ lg n

Proof. For j = 1 this directly holds since

d̂t+b
D̂S

(v
(i(j))
li(1)

) ≤ dπs,x(s, v
(i(1))
li(1)

) + slackt+b
D̂S

(σi(1))

by the definition of slack. For any other j, we have

d̂t+b
D̂S

(v?i(j)) ≤ dπs,x(s, v?i(j)) +

j−1∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) + (i(j)− 1)5εδ lg n.

≤ dπs,x(s, v?i(j)) +

j−1∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) + 5ετ lg n

by Lemma 5.25 and i(j) ≤ m1/3. Combined with

slackt+b
D̂S

(σi(j)) = d̂t+b
D̂S

(v
(i(j))
l)− d̂t+b

D̂S
(v?i(j))− dπs,x(v?i(j), v

i(j)
l)

d̂t+b
D̂S

(v?i(j)) = d̂t+b
D̂S

(v
(i(j))
l)− dπs,x(v?i(j), v

i(j)
l)− slackt+b

D̂S
(σi(j))

obtained from Property 5.24 by reordering terms, we obtain our result by plugging in this derived

value for d̂t+b
D̂S

(v?i(j)) and adding dπs,x(v?i(j), v
i(j)
l) + slackt+b

D̂S
(σi(j))− ri(j) on both sides.

The probability of failure. We have now developed the necessary machinery to analyze the
probability that our algorithm fails to maintain distance estimates correctly. We will show that it is
negligible. To bound the probability of failure, we construct some tense segments that cumulatively
contain a lot of tense vertices, and then show that if any of them was hit the potential would have
decreased a lot. Finally, we argue that with high probability, a tense vertex is hit.

Lemma 5.28. Given the path πs,x as fixed throughout the section, we have that D̃S at time Bef(t)
contains at least m1/3 lg n tense vertices wj with respect to how we chose πs,x. Further, we have for

every j 6= k, that |d̂Bef(t)

D̃S
(wj)− d̂Bef(t)

D̃S
(wk)| ≥ εδ and d̂t+b

D̃S
(x) ≤ d̂t+b

D̂S
(x)− ετ if one of them gets hit

between Bef(t) and t.

Proof. We let

p? = min

(
p ∈ [p′ + 1] :

p∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) ≥ 60ετ lg n

)
.

By Lemma 5.26 this is well defined. Next, we set

r′i(p?) = ri(p?) +

p?∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) − 60ετ lg n

30

and r′i(j) = ri(j) for j 6= p?. Then

p?∑
k=1

slackt+b
D̂S

(σi(k))− r′i(k) = 60ετ lg n

Next, we make sure to fulfill the preconditions of Lemma 5.21. Therefore, we only look at

elements of the sum
∑p

i=k slack
t+b

D̂S
(σi(k))−ri(k) so that slackt+b

D̂S
(σi(k))−ri(k) ≥ 4εd(v

(i(k))
1 , v

(i(k))
li(k))

)+

3εδ lg n. The summands that are not fulfilling this condition sum up to at most

p′+1∑
k=1

4εdπs,x(v
(i(k))
1 , v

(i(k))
li(k))

) + 3εδ lg n ≤
p+1∑
k=1

4εdπs,x(v
(k)
1 , v

(k)
l(k)

) + 3εδ lg n

≤ 4εdπs,x(s, x) + 3ετ lg n

≤ 11εδ lg n.

Since the summands that are not fulfilling this condition sum up to at most 11ετ lg n, the remaining
ones sum up to at least 49ετ lg n. We apply Lemma 5.21 to the all the remaining segments, and
obtain that there are at least m1/3 lg n tense vertices in total among these segments, so that

d̂t+b
D̃S

(x) ≤ d̂t+b
D̂S

(v
(i(j))
li(j)

) + dπs,x(v
(i(j))
li(j)

, x)− r′i(j) − 4ετ lg n (reduction)

if a tense vertex in segment σi(j) got hit. Next, we show that (reduction) actually reduces the

distance estimate of t in D̃S. By Lemma 5.27 we have

d̂t+b
D̂S

(v
(i(j))
li(j)

)− ri(j) ≤ dπs,x(s, v
(i(j))
li(j)

) +

j∑
k=1

slackt+b
D̂S

(σi(k))− ri(k) + 5ετ lg n

d̂t+b
D̂S

(v
(i(j))
li(j)

)− r′i(j) ≤ dπs,x(s, v
(i(j))
li(j)

) +

j∑
k=1

slackt+b
D̂S

(σi(k))− r′i(k) + 5ετ lg n

≤ dπs,x(s, v
(i(j))
li(j)

) + 65ετ lg n. (level)

where the second step follows from the fact that r′i(j) = ri(j) for j 6= p?. Combining (reduction)

with (level) yields

d̂t+b
D̃S

(x) ≤ dπs,x(s, x) + 70ετ lg n

which means that if any of the tense vertices in these segments got hit, we have d̂t+b
D̃S

(x) ≤ d̂t+b
D̂S

(x)−ετ
since d̂t+b

D̃S
(x) ≥ dπs,x(s, x) + 100ετ lg n.

The tense vertices in the same segment have εδ pairwise difference in distance estimates and the

tense vertices of segment σi(j) have distance estimate less than d̂t+b
D̂S

(v
(i(j)
li(j)

)− r′i(j) by Lemma 5.21.

But then for i(j) < i(k) we have that all the vertices in v ∈ σi(k) have distance estimate

d̂t+b
D̂S

(v) ≥ d̂t+b
D̂S

(v
(i(j))
li(j)

) + dπs,x(v
(i)
li(j)

, v)− ri(j) + 5(i(k)− i(j))εδ lg n

≥ d̂t+b
D̂S

(v
(i(j))
li(j)

)− r′i(j) + 5εδ lg n

by Definition 5.18 and since r′i(j) = ri(j) for j 6= p?. This shows that they are sufficiently far apart
and concludes our proof.

31

Lemma 5.29. Consider some vertex x with d̂t+b
D̂S

(x)− d̂t+b
D̃S

(x) ≥ ετ at time t+b. Then the potential

φD̃S =
∑

v∈V d̂
t+b

D̃S
(v) decreased by at least 1

4εm
1/3τ since time Bef(t).

Proof. Note that d̂t+b
D̂S

(v) is a lower bound for d̂t
D̂S

(v), and thus for d̂
Bef(t)

D̃S
(v) = d̂t

D̂S
(v) as well.

Consider the vertex u that caused the final decrease of v. We must have d̂tlast+t
G̃

(u) ≤ d̂tlast+t
G̃

(v)−
ω(u, v) and as well as

d̂t+b
D̃S

(u) ≥ d̂t+b
G̃

(v)− ω(u, v)− εδ

and

d̂t+b
D̂S

(u) ≥ d̂t+b
D̂S

(v)− ω(u, v)− εδ

Thus, we have

d̂
Bef(t)

D̃S
(u) = d̂tD̂S(u) ≥ d̂t+b

D̂S
(v)− ω(u, v)− εδ

≥ d̂t+b
D̃S

(v) + ετ − ω(u, v)− εδ

≥ d̂t+b
D̃S

(u) + ετ − εδ

Therefore we can iterate the argument τ/2δ = m1/3/2 times and obtain that all these vertices
decreased by at least ετ/2. They are clearly source vertices of at least one edge each. Therefore
the potential decrease is at least εm1/3τ/4 as desired.

Having shown the previous lemma, it just remains to prove it is unlikely none of all these tense
vertices got hit. We conclude with the proof of Lemma 5.5.

Proof of Lemma 5.5. By Lemma 5.28 there are at least m1/3 lg n vertices wi tense vertices, such
that |d̂Bef(t)(wi) − d̂Bef(t)(wj)| ≥ εδ for i 6= j. Therefore, there were at least εm1/3 lg n distinct
distance estimate ranges [rk, rk + δ) of width δ containing tense vertices. The probability that we
sample a single i from

0, ...,
⌈
2m1/3 + 200εm1/3 lg n− 8

⌉
so that [rk, rk + 3δ] ⊆ [i, i + δ) for some k, and thus the tense vertices in [rk, rk + δ] get hit is at
least ε/200. After 1/ε independent sampling steps, the expected number of sampled tense vertices
is at least 1/200. By Markov’s inequality, the probability of not having sampled a single one of
them is at most 199/200. We repeat this procedure 2000 log n times, and bound the probability of
never having sampled such an i with 1/n5 using a standard Chernoff bound argument. If such a
tense vertex is sampled, we have a decrease of 1

4εm
1/3τ in potential by Lemma 5.29.

Finally, we notice that our proof only uses the randomness introduced by the last global fixing
phase, which is not revealed to the adversary. Therefore, an adaptive adversary has no advantage
over an oblivious one.

32

References

[ACK17] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs
shortest paths with worst-case update-time revisited. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 440–452.
SIAM, 2017. 38

[AHR+19] Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and
Nicole Wein. Algorithms and Hardness for Diameter in Dynamic Graphs. In Chris-
tel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,
46th International Colloquium on Automata, Languages, and Programming (ICALP
2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 13:1–13:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. 1

[AW14] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong
lower bounds for dynamic problems. In 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 434–443, 2014. 1

[BBG+20] Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon
Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-dynamic
graph sparsifiers against an adaptive adversary. arXiv preprint arXiv:2004.08432,
2020. 38

[BC16] Aaron Bernstein and Shiri Chechik. Deterministic decremental single source shortest
paths: beyond the o (mn) bound. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 389–397. ACM, 2016. 38

[BC17] Aaron Bernstein and Shiri Chechik. Deterministic partially dynamic single source
shortest paths for sparse graphs. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 453–469. SIAM, 2017. 38

[BDP21] Aaron Bernstein, Aditi Dudeja, and Seth Pettie. Incremental SCC Maintenance
in Sparse Graphs. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors,
29th Annual European Symposium on Algorithms (ESA 2021), volume 204 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 14:1–14:16, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 2

[Ber16] Aaron Bernstein. Maintaining shortest paths under deletions in weighted directed
graphs. SIAM Journal on Computing, 45(2):548–574, 2016. 38

[Ber17] Aaron Bernstein. Deterministic partially dynamic single source shortest paths in
weighted graphs. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, page 44. Schloss Dagstuhl-Leibniz-Zentrum fur Infor-
matik GmbH, Dagstuhl Publishing, 2017. 38

[BFGT15] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E. Tarjan. A
new approach to incremental cycle detection and related problems. ACM Trans.
Algorithms, 12(2), December 2015. 2

33

[BGS21] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. De-
terministic decremental sssp and approximate min-cost flow in almost-linear time.
Accepted to FOCS’2021, 2021. 1, 38

[BGWN20] Aaron Bernstein, Maximilian Probst Gutenberg, and Christian Wulff-Nilsen. Near-
optimal decremental sssp in dense weighted digraphs. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), pages 1112–1122, 2020.
2

[BHG+21] Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Vir-
ginia Vassilevska Williams, and Nicole Wein. New techniques and fine-grained
hardness for dynamic near-additive spanners. In Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1836–1855. SIAM, 2021.
38

[BHR19] Aaron Bernstein, Jacob Holm, and Eva Rotenberg. Online bipartite matching with
amortized o(log 2 n) replacements. J. ACM, 66(5), September 2019. 1

[BPWN19] Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. Decremental
strongly-connected components and single-source reachability in near-linear time. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, page 365–376, New York, NY, USA, 2019. Association for Computing
Machinery. 2

[BR11] Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining
approximate shortest paths under deletions. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 1355–1365. Society
for Industrial and Applied Mathematics, 2011. 4, 39

[CG20] Keerti Choudhary and Omer Gold. Extremal distances in directed graphs: Tight
spanners and near-optimal approximation algorithms. In Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 495–514, 2020. 1

[Che18] Shiri Chechik. Near-optimal approximate decremental all pairs shortest paths. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 170–181. IEEE, 2018. 38

[Chu21] Julia Chuzhoy. Decremental all-pairs shortest paths in deterministic near-linear
time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 626–639, 2021. 38

[CK19] Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source
shortest paths with applications to vertex-capacitated flow and cut problems. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 389–400. ACM, 2019. 38

[CS21] Julia Chuzhoy and Thatchaphol Saranurak. Deterministic algorithms for decre-
mental shortest paths via layered core decomposition. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2478–2496. SIAM,
2021. 38

34

[CZ21] Shiri Chechik and Tianyi Zhang. Incremental single source shortest paths in sparse
digraphs. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2463–2477, 2021. 2, 3, 5, 8

[DI04] Camil Demetrescu and Giuseppe F Italiano. A new approach to dynamic all pairs
shortest paths. Journal of the ACM (JACM), 51(6):968–992, 2004. 38

[EFHGWN21] Jacob Evald, Viktor Fredslund-Hansen, Maximilian Probst Gutenberg, and Chris-
tian Wulff-Nilsen. Decremental APSP in Unweighted Digraphs Versus an Adap-
tive Adversary. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors,
48th International Colloquium on Automata, Languages, and Programming (ICALP
2021), volume 198 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 64:1–64:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. 38

[GWN20a] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Decremental sssp in
weighted digraphs: Faster and against an adaptive adversary. In Proceedings of the
Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20,
page 2542–2561, USA, 2020. Society for Industrial and Applied Mathematics. 2

[GWN20b] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Deterministic algorithms
for decremental approximate shortest paths: Faster and simpler. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
2522–2541. SIAM, 2020. 38

[GWN20c] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-dynamic all-pairs
shortest paths: Improved worst-case time and space bounds. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2562–
2574. SIAM, 2020. 38

[Hes03] William Hesse. Directed graphs requiring large numbers of shortcuts. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’03, page 665–669, USA, 2003. Society for Industrial and Applied Mathematics. 2

[HK95] Monika Henzinger and Valerie King. Fully dynamic biconnectivity and transitive
closure. In Proceedings of IEEE 36th Annual Foundations of Computer Science,
pages 664–672, 1995. 2, 38

[HKM+12] Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen, and
Robert E. Tarjan. Incremental cycle detection, topological ordering, and strong
component maintenance. ACM Trans. Algorithms, 8(1), January 2012. 2

[HKN14] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time
decremental algorithms for single-source reachability and shortest paths on directed
graphs. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of
Computing, STOC ’14, page 674–683, New York, NY, USA, 2014. Association for
Computing Machinery. 2, 38

35

[HKN15] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Improved algo-
rithms for decremental single-source reachability on directed graphs. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,
Automata, Languages, and Programming, pages 725–736, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg. 2

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. Unifying and strengthening hardness for dynamic problems via the
online matrix-vector multiplication conjecture. In Proceedings of the Forty-Seventh
Annual ACM Symposium on Theory of Computing, STOC ’15, page 21–30, New
York, NY, USA, 2015. Association for Computing Machinery. 1

[HP18] Shang-En Huang and Seth Pettie. Lower Bounds on Sparse Spanners, Emulators,
and Diameter-reducing shortcuts. In David Eppstein, editor, 16th Scandinavian
Symposium and Workshops on Algorithm Theory (SWAT 2018), volume 101 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 26:1–26:12, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 2

[JLS19] Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Parallel reachability in almost
linear work and square root depth. In 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pages 1664–1686, 2019. 2

[Kin99] Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths
and transitive closure in digraphs. In 40th Annual Symposium on Foundations of
Computer Science (Cat. No.99CB37039), pages 81–89, 1999. 1

[KL19] Adam Karczmarz and Jakub Lacki. Reliable hubs for partially-dynamic all-pairs
shortest paths in directed graphs. In 27th Annual European Symposium on Algo-
rithms (ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. 38

[K L20] Adam Karczmarz and Jakub Lacki. Simple label-correcting algorithms for partially
dynamic approximate shortest paths in directed graphs. In Symposium on Simplicity
in Algorithms, pages 106–120. SIAM, 2020. 38

[PGVWW20] Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein. New
algorithms and hardness for incremental single-source shortest paths in directed
graphs. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020, page 153–166, New York, NY, USA, 2020. Association
for Computing Machinery. 1, 2, 3

[RZ04] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In Susanne
Albers and Tomasz Radzik, editors, Algorithms – ESA 2004, pages 580–591, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg. 1

[RZ11] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica,
61(2):389–401, 2011. 1

[SE81] Yossi Shiloach and Shimon Even. An on-line edge-deletion problem. J. ACM,
28(1):1–4, January 1981. 2, 38

36

[Tho04] Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative
cycles. In Scandinavian Workshop on Algorithm Theory, pages 384–396. Springer,
2004. 38

[Tho05] Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of comput-
ing, pages 112–119, 2005. 38

[vdBN19] Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths
and beyond: Subquadratic and worst-case update time. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pages 436–455. IEEE,
2019. 38

[Wil15] Virginia Vassilevska Williams. Hardness of Easy Problems: Basing Hardness on
Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited
Talk). In Thore Husfeldt and Iyad Kanj, editors, 10th International Symposium
on Parameterized and Exact Computation (IPEC 2015), volume 43 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 17–29, Dagstuhl, Germany,
2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 1

[WW18] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between
path, matrix, and triangle problems. J. ACM, 65(5), August 2018. 1

37

A Related Work

Here we also give an overview of more broadly related work. We use the same notational conventions
as in the Section 1.1.

Directed APSP. For the partially-dynamic All-Pairs Shortest Paths problem, a near-optimal
algorithm with approximation (1 + ε) and running time Õ(mn polylog(W)) was given by Bernstein
[Ber16] that works against an oblivious adversary. Recent work in this setting has therefore focused
on removing the oblivious adversary assumption [KL19, EFHGWN21] both of which currently
achieve total update time Õ(n2+1/3 polylog(W)) in sparse graphs where m = Õ(n). For dense
graphs, a deterministic Õ(n3 polylog(W)) update time algorithm exists [K L20].

There is also significant research on the All-Pairs Shortest Paths problem in the fully dynamic
setting. Most notably, an algorithm by Italiano and Demetrescu [DI04] that achieves amortized
update time Õ(n2) per update which was thereafter improved in logarithmic factors, simplified and
generalized by Thorup [Tho04]. There has also been significant research on fully dynamic APSP
with worst-case update times [Tho05, ACK17, vdBN19, GWN20c, BHG+21].

Undirected SSSP. The undirected partially-dynamic version of the SSSP problem, in a ma-
jor breakthrough, was solved by Henzinger, Krinninger and Nanongkai [HKN14] who gave the
first near-optimal m1+o(1) polylog(W) time (1 + ε) approximation algorithm although only against
an oblivious adversary. Recent efforts to derandomize/ strengthen the adversary model [BC16,
BC17, Ber17, CK19, GWN20b, BBG+20, CS21] has been an extensive branch of research and
has recently culminated in a deterministic algorithm [BGS21] that also achieves total update time
m1+o(1) polylog(W). We point out that while some of the algorithms mentioned in this paragraph
only work in decremental graphs, we believe that both the results [HKN14] and [BGS21] extend
rather seamlessly to the incremental setting.

Undirected APSP. Finally, we remark that there is also extensive literature about the partially-
dynamic APSP problem in undirected graphs. For (1 + ε)-approximation, a near-optimal deter-
ministic algorithm follows from [BGS21] with total update time mn1+o(1) polylog(W). In the
decremental setting, there are also results for larger approximations: a recent result by Chechik
[Che18] achieves near-optimal update time mn1/k+o(1) polylog(W) and reports distance with a
(1 + ε)(2k − 1) stretch, the algorithm assumes an oblivious adversary. Against an adaptive ad-
versary, two recent results [Chu21, BGS21] obtain m1+o(1) polylog(W) update time for reporting
no(1)-approximate shortest path distances.

B The Hop Set Barrier and the ES-tree

In this section we explain the usage of the ES-tree [SE81, HK95] in conjunction with a hop set
for the unfamiliar reader. Although we present them in the incremental setting, these techniques
naturally extend to the decremental one.

For a graph with integer edge weights up to W , the ES-tree data structure initially stores the
distance of each vertex to a dedicated source s. Then, whenever an edge (u, v) is inserted, it checks
if v profits from using this edge. If so, v gets decreased and such checks are run recursively for all
out-edges of decreased vertices until nobody profits anymore. It is easy to see that this technique

38

maintains distances to the source exactly. The total update time is O(mnW) because the tail
of each edge starts out at some distance upper bounded by (n − 1)W , and the edge is explored
whenever this distance decreases by at least one.

A hop set with hop h is a collection of short cut edges that guarantee the existence of a shortest
path using at most h edges between any two vertices u and v. Since such a set implies maximum
distance hW , the run-time immediately improves to O(mhW) by adding the short cut edges to the
graph.

Finally, standard edge rounding techniques yield a (1 + ε)-approximation scheme with total
update time Õ(mh logW/ε) [BR11]. To obtain this, we distinguish between path length ranges
[τ, 2τ) as in the algorithms presented in this article. For a particular range, all edge weights ω(e)
are rounded to ω̃(e) = dhω(e)/ετe. We set the maximum maintained distance estimate to 3 dh/εe
and use a standard ES-tree as discussed above. For a s−x path v1, ..., vl with l ≤ h in the distance
range d(s, x) ∈ [τ, 2τ), we have

d(s, x) =

l−1∑
i=1

ω(vi, vi+1) ≤
l−1∑
i=1

(ετ/h)ω̃(vi, vi+1) ≤
l−1∑
i=1

ω(vi, vi+1) + ετ/h ≤ d(s, x) + ετ.

Thus, we obtain a (1 + ε)-approximation by maintaining separate data structures for all possible
path length ranges [2i, 2i+1) and reporting the minimum among the distance estimates after scaling
them back with τε/h.

Conditional on the barrier h = Ω̃(
√
n), this technique cannot achieve total update timeO(n3/2−c)

for any small positive constant c, even for very sparse graphs. This is referred to as the hop set
barrier.

39

	1 Introduction
	1.1 Prior Work
	1.2 Our Contribution

	2 Preliminaries
	3 Algorithms Overview
	4 A Deterministic Algorithm
	4.1 Algorithm Description
	4.2 Runtime
	4.3 Correctness

	5 A Randomised Algorithm
	5.1 Algorithm Description
	5.2 Runtime
	5.3 Correctness

	A Related Work
	B The Hop Set Barrier and the ES-tree

