
Dynamic Geometric Set Cover, Revisited*

Timothy M. Chan† Qizheng He† Subhash Suri‡ Jie Xue§

Abstract

Geometric set cover is a classical problem in computational geometry, which has been extensively
studied in the past. In the dynamic version of the problem, points and ranges may be inserted and deleted,
and our goal is to efficiently maintain a set cover solution (satisfying certain quality requirement) for the
dynamic problem instance. In this paper, we give a plethora of new dynamic geometric set cover data
structures in 1D and 2D, which significantly improve and extend the previous results. Our results include
the following:

• The first data structure for (1 + ε)-approximate dynamic interval set cover with polylogarithmic
amortized update time. Specifically, we achieve an update time of O(log3 n/ε), improving the
O(nδ/ε) bound of Agarwal et al. [SoCG’20], where δ > 0 denotes an arbitrarily small constant.

• A data structure for O(1)-approximate dynamic unit-square set cover with 2O(
√
logn) amortized

update time, substantially improving the O(n1/2+δ) update time of Agarwal et al. [SoCG’20].

• A data structure for O(1)-approximate dynamic square set cover with O(n1/2+δ) randomized
amortized update time, improving the O(n2/3+δ) update time of Chan and He [SoCG’21].

• A data structure for O(1)-approximate dynamic 2D halfplane set cover with O(n17/23+δ)
randomized amortized update time. The previous solution for halfplane set cover by Chan and
He [SoCG’21] is slower and can only report the size of the approximate solution.

• The first sublinear results for the weighted version of dynamic geometric set cover. Specifically,
we give a data structure for (3 + o(1))-approximate dynamic weighted interval set cover with
2O(

√
logn log logn) amortized update time and a data structure for O(1)-approximate dynamic

weighted unit-square set cover with O(nδ) amortized update time.

1 Introduction
Geometric set cover is a classical problem in computational geometry, with a long history and applications
[4, 5, 9, 10, 12, 13, 14, 16, 19, 21, 27, 28, 29]. A typical formulation involves a set of points S in Rd and a
family R of subsets of S, often called ranges, defined by a simple class of geometric objects. For instance,
the sets may be defined by intervals of R1 in one dimension or balls, hypercubes or halfspaces in higher
dimensions. The goal is to find a smallest subfamily of R covering all the points of S. In the weighted
set cover problem, each range is associated with a non-negative weight, and the goal is to find a minimum
weight set cover. In general, these problems are NP-complete even for the simplest of geometric families
such as unit disks or unit squares in two dimensions, but they often allow efficient approximation algorithms
with better (worst-case) performance than the general (combinatorial) set cover.

Recently, an exciting line of research was launched by Agarwal et al. [2] on dynamic geometric
set covering with the introduction of sublinear time data structures for fully dynamic maintenance of
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approximate set covers for intervals in one dimension and unit squares in two dimensions. These sublinear
bounds are in sharp contrast with the Ω(f) update time bottleneck faced by the general (combinatorial) set
cover problem in dynamic setting [1, 7, 22], where f is the number of sets containing an element, because
inserting an element at a minimum requires updating all the sets that contain it. The implicit form of sets
in geometric set covering—an interval or a disk, for instance, takes only O(1) pieces of information to add
or delete—provides a natural yet challenging problem setting in which to explore the possibility of truly
sublinear (possibly polylogarithmic) updates of both the elements and the sets. Indeed, following the work
of Agarwal et al. [2], Chan and He [15] pushed the envelope further and managed to achieve sublinear
update time for arbitrary axis-aligned squares, and if only the size of an approximate solution is needed, for
disks in the plane and halfspaces in three dimensions as well.

In spite of these recent developments, the state of the art for dynamic geometric set covering is far from
satisfactory even for the simplest of the set systems: covering points on the line by intervals or covering
points in the plane by axis-aligned squares. For instance, the best update bound for the former is O(nδ/ε)
for a (1 + ε) approximation, and for the latter is O(n2/3+δ) for an O(1) approximation, where δ > 0 is an
arbitrarily small constant. More importantly, none of these schemes are able to handle the case of weighted
set covers. In this paper, we make substantial progress on these fronts.

1.1 Results. We present a large collection of new results, as summarized in Table 1, which substantially
improve all the main results of Agarwal et al. [2] on unweighted intervals in 1D and unweighted unit squares
in 2D, as well as the main result of Chan and He [15] on unweighted arbitrary squares in 2D. Throughout
the paper, all the update bounds are amortized, and δ > 0 denotes an arbitrarily small constant; constant
factors hidden in O notation may depend on δ. In particular, our results include the following:

1. For unweighted intervals in 1D, we obtain the first dynamic data structure with polylogarithmic update
time and constant approximation factor. We achieve 1 + ε approximation with O(log3 n/ε) update
time, which improves Agarwal et al.’s previous update bound of O(nδ/ε). (The dynamic hitting set
data structure for 1D intervals in [2] does have polylogarithmic update time but not the set cover data
structure.)

2. For unweighted unit squares in 2D, we obtain the first dynamic data structure with no(1) update time
and constant approximation factor. (All squares are axis-aligned throughout the paper.) The precise
update bound is 2O(

√
logn), which significantly improves Agarwal et al.’s previous update bound of

O(n1/2+δ).

3. For unweighted arbitrary squares in 2D, we obtain a dynamic data structure with O(n1/2+δ) update
time (with Monte Carlo randomization) and constant approximation factor. This improves Chan and
He’s previous (randomized) update bound of O(n2/3+δ).

4. For unweighted halfplanes in 2D, we obtain the first dynamic data structure with sublinear update time
and constant approximation factor that can efficiently report an approximate solution (in time linear
in the solution size). The (randomized) update bound is O(n17/23+δ) = o(n0.74). Although Chan and
He’s previous solution [15] can more generally handle halfspaces in 3D, it has a larger (randomized)
update bound of O(n12/13+δ) and can only output the size of an approximate solution. (Specializing
Chan and He’s solution to halfplanes in 2D can lower the update time a bit, but it would still be worse
than the new bound.)

Note that although for the static problem, PTASs were known for unweighted arbitrary squares and disks in
2D [28] (and exact polynomial-time algorithms were known for halfplanes in 2D [23]), the running times of
these static algorithms are superquadratic. Thus, for any of the 2D problems above, constant approximation
factor is the best one could hope for under the current state of the art if the goal is sublinear update time.



Ranges Approx. Previous update time New update time
Unweighted 1D intervals 1 + ε nδ [2] log3 n

Unweighted 2D unit squares O(1) n1/2+δ [2] 2O(
√

logn)

Unweighted 2D arbitrary squares O(1) n2/3+δ [15] n1/2+δ

Unweighted 2D halfplanes O(1) n12/13+δ (∗) [15] n17/23+δ

Weighted 1D intervals 3 + ε none 2O(
√

logn log logn)

Weighted 2D unit squares O(1) none nδ

Table 1: Summary of data structures for approximate dynamic geometric set cover. Here, δ > 0 denotes an
arbitrarily small constant; hidden constant factors in the approximation and update bounds may depend on ε
and δ. For unweighted 2D arbitrary squares and 2D halfplanes, the previous and new results are randomized.
In the entry marked (∗), the algorithm can only return the size of the solution, not the solution itself.

A second significant contribution of our paper is to extend the dynamic set cover data structures to
weighted instances, thus providing the first nontrivial results for dynamic weighted geometric set cover.
(Although there were previous results on weighted independent set for 1D intervals and other ranges by
Henzinger, Neumann, and Wiese [24] and Bhore et al. [8], no results on dynamic weighted geometric set
cover were known even in 1D. This is in spite of the considerable work on static weighted geometric set
cover [13, 21, 23, 27, 29].) In particular, we present the following results:

5. For weighted intervals in 1D, we obtain a dynamic data structure with no(1) update time and constant
approximation factor. The update bound is 2O(

√
logn log logn) and the approximation factor is 3+o(1).

6. For weighted unit squares in 2D, we also obtain a dynamic data structure with O(nδ) update time
and constant approximation factor (where the constant depends on δ and weights are assumed to be
polynomially bounded integers). Even when compared to Agarwal et al.’s unweighted result [2], our
result is a substantial improvement, besides being more general.

For the cases of (unweighted or weighted) unit squares in 2D and unweighted halfplanes in 2D, the
same results hold for the hitting set problem—given a set of points and a set of ranges, find the smallest (or
minimum weight) subset of points that hit all the given ranges—because hitting set is equivalent to set cover
for these types of ranges by duality.

1.2 Techniques. We give six different methods to achieve these results. Many of these methods require
significant new ideas that go beyond minor modifications of previous techniques:

1. For the unweighted 1D intervals, Agarwal et al. [2] obtained their result with O(nδ) update time
by a “bootstrapping” approach, but extra factors accumulate in each round of bootstrapping. To
obtain polylogarithmic update time, we refine their approach with a better recursion, whose analysis
distinguishes between “one-sided” and “two-sided” intervals.

2. For the unweighted 2D unit squares, it suffices to solve the problem for quadrants (i.e., 2-sided
orthogonal ranges) due to a standard reduction. We adopt an interesting geometric divide-and-conquer
approach (different from more common approaches like k-d trees or segment trees). Roughly, we
form an r×r nonuniform grid, where each column/row hasO(n/r) points, and recursively build data
structures for each grid cell and for each grid column and each grid row. Agarwal et al.’s previous
data structure [2] also used an r× r grid but did not use recursion per column or row; the boundary of
a quadrant intersects O(r) out of the r2 grid cells and so updating a quadrant causes O(r) recursive



calls, eventually leading to O(n1/2+δ) update time. With our new ideas, updating a quadrant requires
recursive calls in only O(1) grid columns/rows and grid cells, leading to no(1) update time.

3. For unweighted 2D arbitrary squares, our method resembles Chan and He’s previous method [15],
dividing the problem into two cases: when the optimal value opt is small or when opt is large. Their
small opt algorithm was obtained by modifying a known static approximation algorithm based on
multiplicative weight updates [5, 9, 14, 17], and achieved Õ(opt2) update time.1 Their large opt
algorithm employed quadtrees and achieved Õ(n1/2+δ + n/opt) update time. Combining the two
algorithms yielded Õ(n2/3) update time, as the critical case occurs when opt is near n1/3. We modify
their large opt algorithm by incorporating some extra technical ideas (treating so-called “light” vs.
“heavy” canonical rectangles differently, and carefully tuning parameters); this allows us to improve
the update time to O(n1/2+δ) uniformly for all opt, pushing the approach to its natural limit.

4. For unweighted 2D halfplanes, we handle the small opt case by adapting Chan and He’s previous
method [15], but we present a new method for the large opt case. We propose a geometric
divide-and-conquer approach based on the well-known Partition Theorem of Matoušek [25]. The
Partition Theorem was originally formulated for the design of range searching data structures,
but its applicability to decompose geometric set cover instances is less apparent. The key to the
approximation factor analysis is a simple observation that the boundary of the union of the halfplanes
in the optimal solution is a convex chain with O(opt) edges, and so in a partition of the plane into b
disjoint cells, the number of intersecting pairs of edges and cells is O(opt + b).

For weighted dynamic geometric set cover, none of the previous approaches generalizes. Essentially all
previous approaches for the unweighted setting make use of the dichotomy of small vs. large opt: in the
small opt case, we can generate a solution quickly from scratch; on the other hand, in the large opt case,
we can tolerate a large additive error (in particular, this enables divide-and-conquer with a large number of
parts). However, all this breaks down in the weighted setting because the cardinality of the optimal solution
is no longer related to its value. A different way to bound approximation factors is required.

5. For weighted 1D intervals, our key new idea is to incorporate dynamic programming (DP) into the
divide-and-conquer. In addition, we use a common trick of grouping weights by powers of a constant,
so that the number of distinct weight groups is logarithmic.

6. For weighted 2D unit squares, we again use a geometric divide-and-conquer based on the r × r grid,
but the recursion gets even more interesting as we incorporate DP. (We also group weights by powers
of a constant.) To keep the approximation factor O(1), the number of levels of recursion needs to be
O(1), but we can still achieve O(nδ) update time.

1.3 Preliminaries. Throughout the paper, we use opt to denote the size of the optimal set cover (in the
unweighted case), and [r] to denote the set {1, . . . , r}. In a size query, we want to output an approximation
to the size opt. In a membership query, we want to determine whether a given object is in the approximate
solution maintained by the data structure. In a reporting query, we want to report all elements in the
approximate solution (in time sensitive to the output size). As in the previous work [2, 15], in all of our
results, the set cover solution we maintain is a multi-set of ranges (i.e., each range may have multiple
duplicates). We denote by A tB the disjoint union of two multi-sets A and B.

1The Õ notation hides polylogarithmic factors.



2 Unweighted Interval Set Cover
Let (S, I) be a dynamic (unweighted) interval set cover instance where S is the set of points in R and I is
the set of intervals, and let ε > 0 be the approximation factor. Our goal is to design a data structure D that
maintains a (1 + ε)-approximate set cover solution for the current instance (S, I) and supports the desired
queries (i.e., size, membership, report queries) to the solution. Without loss of generality, we may assume
that the point range of (S, I) is [0, 1], i.e., the points in S are always in the range [0, 1].

Let r and α < 1 be parameters to be determined. Consider the initial instance (S, I) and let
n = |S| + |I|. We partition the range [0, 1] into r connected portions (i.e., intervals) J1, . . . , Jr such that
each portion Ji contains O(n/r) points in S and O(n/r) endpoints of intervals in I. Define Si = S ∩ Ji
and Ii = {I ∈ I : I ∩ Ji 6= ∅ and Ji * I}. When the instance (S, I) changes, the portions J1, . . . , Jr
remain unchanged while the Si’s and Ii’s will change along with S and I. Thus, we can view each (Si, Ii)
as a dynamic interval set cover instance with point range Ji. We then recursively build a dynamic interval
set cover data structure Di which maintains a (1 + ε̃)-approximate set cover solution for (Si, Ii), where
ε̃ = αε. We call (S1, I1), . . . , (Sr, Ir) sub-instances and call D1, . . . ,Dr sub-structures. Besides the
recursively built sub-structures, we also need three simple support data structures. The first one is the data
structure A in the following lemma that can help compute an optimal interval set cover in output-sensitive
time.

LEMMA 2.1. ([2]) One can store a dynamic (unweighted) interval set cover instance (S, I) in a data
structure A with O(n log n) construction time and O(log n) update time such that at any point, an optimal
solution for (S, I) can be computed in O(opt · log n) time with the access to A.

The second one is a dynamic data structure B built on I which can report, for a given query interval J , an
interval I ∈ I that contains J (if such an interval exists); as shown in [2], there exists such a data structure
withO(log n) update time,O(log n) query time, andO(n log n) construction time. The third one is a (static)
data structure L which can report, for a given query point q ∈ R, the portion Ji that contains q; for this one,
we can simply use a binary search tree built on J1, . . . , Jr which hasO(log r) query time. Our data structure
D simply consists of the sub-structures D1, . . . ,Dr and the support data structures. It is easy to construct
D in O(n log2 n) time. To see this, we define |(S, I)| as the total number of points in S and endpoints
of intervals in I that are contained in the point range [0, 1] of (S, I). We have |(S, I)| ≤

∑r
i=1 |(Si, Ii)|

and |(Si, Ii)| ≤ |(S, I)|/2 for all i ∈ [r] (as r is sufficiently large). Now let C(m) denote the time for
constructing the data structure on an instance (S, I) with |(S, I)| = m. We then have the recurrence
C(m) =

∑r
i=1C(mi) +O(m logm), where m ≤

∑r
i=1mi and mi ≤ m/2 for all i ∈ [r]. This recurrence

solves to C(m) = O(m log2m). Since |(S, I)| = O(n), D can be constructed in O(n log2 n) time, i.e., in
Õ(n) time.

Updating the sub-structures and reconstruction. Whenever the instance (S, I) changes due to an
insertion/deletion on S or I, we first update the support data structures. After that, we update the sub-
structures Di for i ∈ [r] that (Si, Ii) changes. An insertion/deletion on S only changes one Si and an
insertion/deletion on I changes at most two Ii’s (because an interval has two endpoints). Also, we observe
that if the inserted/deleted interval I is “one-sided” in the sense that one endpoint of I is outside the point
range [0, 1], then that insertion/deletion only changes one Ii. This observation is critical in the analysis of
our data structure. Besides the update, our data structure D will be periodically reconstructed. Specifically,
the (i + 1)-th reconstruction happens after processing ni/r updates from the i-th reconstruction, where ni
denotes the size of (S, I) at the point of the i-th reconstruction. (The 0-th reconstruction is just the initial
construction of D.)

Constructing a solution. We now describe how to construct an approximately optimal set cover Iappx for
the current (S, I) using our data structure D. Denote by opt the size of an optimal set cover for the current



(S, I); we define opt =∞ if (S, I) does not have a set cover. Set δ = min{n, c · (r + εr)/(ε− αε)} for a
sufficiently large constant c. If opt ≤ δ, then we are able to use the algorithm of Lemma 2.1 to compute an
optimal set cover for (S, I) in O(δ · log n) time (with the help of the support data structure A). Therefore,
we simulate that algorithm within that amount of time. If the algorithm successfully computes a solution,
we use it as our Iappx. Otherwise, we construct Iappx as follows. For each i ∈ [r], if Ji can be covered by
an interval I ∈ I, we define I∗i = {I}, otherwise let I∗i be the (1 + ε̃)-approximate solution for (Si, Ii)
maintained in the sub-structure Di. (If for some i ∈ [r], Ji cannot be covered by any interval in I and the
sub-structure Di tells us that the current (Si, Ii) does not have a set cover, then we immediately decide that
the current (S, I) has no feasible set cover.) Then we define Iappx =

⊔r
i=1 I∗i , which is clearly a set cover

of (S, I). Note that for each i ∈ [r], we can find in O(log n) time an interval I ∈ I that covers Ji using the
support data structure B (if such an interval exists).

Answering queries to the solution. We show how to store the solution Iappx properly so that the desired
queries for Iappx can be answered efficiently. If Iappx is computed by the algorithm of Lemma 2.1, then the
size of Iappx is at most δ and we have all elements of Iappx in hand. In this case, we simply build a binary
search tree on Iappx which can answer the desired queries with the required time costs. On the other hand,
if Iappx is defined as Iappx =

⊔r
i=1 I∗i , the size of Iappx can be large and we are not able to retrieve all

elements of Iappx. However, in this case, each I∗i either consists of a single interval that covers Ji or is the
solution maintained in the sub-structureDi. To support the size query, we only need to compute |I∗i | (which
can be done by recursively making size queries to the sub-structures) and calculate |Iappx| =

∑r
i=1 |I∗|; we

then simply store this quantity so that a size query can be answered in O(1) time. To support membership
queries, we compute an index set P ⊆ [r] consisting of the indices i ∈ [r] such that I∗i consists of a single
interval covering Ji. Then we collect all intervals in the I∗i ’s for i ∈ P , the number of which is at most r.
We store these intervals in a binary search tree T which can answer membership queries in O(log r) time.
To answer a membership query I ∈ I, we first check if I is stored in T . After that, we find the (up to)
two instances Ii’s that contains I , and make membership queries to the sub-structures Di to check whether
I ∈ I∗i (if i ∈ [r]\P ). Finally, to answer the reporting query, we first report the intervals stored in T and
then for every i ∈ [r]\P , we make recursively a reporting query to Di, which reports the intervals in I∗i .

Now we analyze the query time. If the solution Iappx is computed by the algorithm of Lemma 2.1, then
it is stored in a binary search tree and we can answer a size query, a membership query, and a reporting query
inO(1) time, O(log |Iappx|) time, andO(|Iappx|) time, respectively. So it suffices to consider the case where
we construct the solution as Iappx =

⊔r
i=1 I∗i . In this case, answering a size query still takes O(1), because

we explicitly compute |Iappx|. To analyze the time cost for a membership query, we need to distinguish one-
sided and two-sided queries. We use Q1(n) and Q2(n) to denote the time cost for a one-sided membership
query (i.e., one endpoint of the query interval is outside the point range) and a two-sided membership query
(i.e., both endpoints of the query interval are inside the point range), respectively, when the size of the
current instance is n. Then for Q1(n), we have the recurrence Q1(n) ≤ Q1(O(n/r)) + O(log r), which
solves to Q1(n) = O(log n), as we only need to recursively query on one Di (which is again a one-sided
query). For Q2(n), we have the recurrence Q2(n) ≤ max{Q2(O(n/r)), 2Q1(O(n/r))}+O(log r), which
also solves to Q2(n) = O(log n), as we may need to have a recursive two-sided query on one Di or have
recursive one-sided queries on two Di’s. Therefore, a membership query can be answered in O(log n) time.
Finally, to answer a reporting query, we first report the intervals stored in T and recursively query the data
structures Di for all i ∈ [r]\P such that I∗i 6= ∅. Thus, in the recurrence tree, the number of leaves is
bounded by |Iappx| since at each leaf node we need to report at least one element. Since the height of the
recurrence tree is O(logr n) and at each node of the recurrence tree the work can be done in O(log r) time
plus O(1) per outputted element, the overall time cost for a reporting query is O(|Iappx| · log n).



Correctness. First, we observe that D makes a no-solution decision iff the current instance (S, I) has no
set cover. Indeed, if we make a no-solution decision, then Ji is not covered by any interval in I and the
sub-instance (Si, Ii) has no set cover for some i ∈ [r]; in this case, (S, I) has no set cover because the
points in Si can only be covered by the intervals in Ii or by an interval that covers Ji. On the other hand,
if we do not make a no-solution decision, then the set Iappx we construct is a feasible solution for (S, I).
Now it suffices to show that the solution Iappx is a (1 + ε)-approximation of an optimal set cover for (S, I).
Let Iopt be an optimal set cover for (S, I). We have to show |Iappx| ≤ (1 + ε) · |Iopt|. If Iappx is computed
by the algorithm of Lemma 2.1, then |Iappx| = |Iopt|. Otherwise, we know that |Iopt| > δ, which implies
|Iopt| > c · (r + εr)/(ε− αε) for a sufficiently large constant c, because we cannot have |Iopt| > n. In this
case, we show the following.

FACT 2.1. |Iappx| ≤ (1 + ε̃) · |Iopt|+O(r).

Proof. For i ∈ [r], let opti be the size of an optimal set cover of (Si, Ii) if I∗i is the solution of (Si, Ii)
maintained by Di, and let opti = 1 otherwise. Then for all i ∈ [r], we have |I∗i | ≤ (1 + ε̃) · opti.
Since |Iappx| =

∑r
i=1 |I∗i |, we have |Iappx| ≤ (1 + ε̃) ·

∑r
i=1 opti. It suffices to show that

∑r
i=1 opti =

|Iopt| + O(r). Let ni be the number of intervals in Iopt that are contained in Ji for i ∈ [r]. Clearly,
|Iopt| ≥

∑r
i=1 ni. We claim that opti ≤ ni + 2, which implies

∑r
i=1 opti = |Iopt| + O(r). If Ji can be

covered by some interval in I, then opti = 1 ≤ ni + 2. Otherwise, we take all ni intervals in Iopt that
are contained in Ji and the (at most) two intervals in Iopt with one endpoint in Ji which have maximal
intersections with Ji (i.e., the interval containing the left end of Ji with the rightmost right endpoint and the
interval containing the right end of Ji with the leftmost left endpoint). These ni + 2 intervals form a set
cover of (Si, Ii) and thus opti ≤ ni + 2.

Using the above observation and the fact |Iopt| > c · (r+ εr)/(ε−αε) = c · (r+ εr)/(ε− ε̃), we conclude
that |Iappx| ≤ (1 + ε) · |Iopt|.

Update time. To analyze the update time of our data structure D, it suffices to consider the first period
(including the first reconstruction). The first period consists of n0/r operations, where n0 is the size of the
initial (S, I). The size of (S, I) during the first period is always in between (1−1/r)n0 and (1+1/r)n0 and
is hence Θ(n0), since r is a sufficiently large constant. We first observe that, excluding the recursive updates
for the sub-structures, each update of D takes O(r log n/(ε − αε) + r log2 n) (amortized) time, where n
is the size of the current instance (S, I). Updating the support data structures takes O(log n) time. When
constructing the solution Iappx, we need to simulate the algorithm of Lemma 2.1 withinO(δ·log n) time, i.e.,
O(r log n/(ε− αε)) time. The time for storing the solution Iappx is also bounded by O(r log n/(ε− αε)),
because we only need to explicitly store Iappx when it is computed by the algorithm of Lemma 2.1, in which
case its size is at most δ = O(r/(ε − αε)). Finally, the reconstruction takes O(r log2 n) amortized time,
because the time cost of the (first) reconstruction is O(n1 log2 n1) = O(n0 log2 n0) and the first period
consists of n0/r operations.

Next, we consider the recursive updates for the sub-structures. The depth of the recursion is O(logr n).
If we set α = 1 − 1/ logr n, the approximation parameter is Θ(ε) in any level of the recurrence. We
distinguish three types of updates according to the current operation. The first type is caused by an
insertion/deletion of a point in S (we call it point update). The second type is caused by an insertion/deletion
of an interval in I whose one endpoint is outside the point range [0, 1] of (S, I) (we call it one-sided interval
update). The third type is caused by an insertion/deletion of an interval in I whose both endpoints are inside
the point range (we call it two-sided interval update). In a point update, we only need to recursively update
one sub-structure (which is again a point update), because an insertion/deletion on S only changes one Si.
Similarly, in a one-sided interval update, we only need to do a recursive one-sided interval update on one
sub-structure, because the inserted/deleted interval belongs to one Ii. Finally, in a two-sided interval update,



we may need to do a recursive two-sided interval update on one sub-structure (when the two endpoints of
the inserted/deleted interval belong to the same range Ji) or two recursive one-sided interval updates on two
sub-structures (when the two endpoints belong to different Ji’s). Let U(n), U1(n), U2(n) denote the time
costs of a point update, a one-sided interval update, a two-sided interval update, respectively, when the size
of the current instance is n. Then for U(n), we have the recurrence

U(n) ≤ U(O(n/r)) +O(r log2 n/ε),

which solves to U(n) = O(r logr n log2 n/ε). Similarly, for U1(n), we have the same recurrence, solving
to U1(n) = O(r logr n log2 n/ε). Finally, the recurrence for U2(n) is

U2(n) ≤ max{U2(O(n/r)), 2U1(O(n/r))}+O(r log2 n/ε)

= max{U2(O(n/r)), O(r logr n log2 n/ε)}+O(r log2 n/ε).

A simple induction argument shows that U2(n) = O(r logr n log2 n/ε). Setting r to be a sufficiently large
constant, our data structure D can be updated in O(log3 n/ε) amortized time.

THEOREM 2.1. There exists a dynamic data structure for (1 + ε)-approximate unweighted interval set
cover with O(log3 n/ε) amortized update time and O(n log2 n) construction time, which can answer size,
membership, and reporting queries in O(1), O(log n), and O(k log n) time, respectively, where n is the size
of the instance and k is the size of the maintained solution.

3 Unweighted Unit-Square Set Cover
It was shown in [2] that dynamic unit-square set cover can be reduced to dynamic quadrant set cover.
Specifically, dynamic unit-square set cover can be solved with the same update time as dynamic quadrant
set cover, by losing only a constant factor on the approximation ratio. Therefore, it suffices to consider
dynamic quadrant set cover. Note that the problem is still challenging, as we need to simultaneously deal
with all four types of quadrants.

Similar to interval set cover, quadrant set cover also admits an output-sensitive algorithm:

LEMMA 3.1. ([2]) One can store a dynamic (unweighted) quadrant set cover instance (S,Q) in a data
structure A with Õ(n) construction time and Õ(1) update time such that at any point, a constant-
approximate solution for (S,Q) can be computed in Õ(opt) time with the access to A.

Let (S,Q) be a dynamic (unweighted) quadrant set cover instance where S is the set of points in R2 and
Q is the set of quadrants. Suppose µ = O(1) is the approximation factor of the algorithm of Lemma 3.1. Our
goal is to design a data structure D that maintains a (µ + ε)-approximate set cover solution for the current
instance (S,Q) and supports the desired queries to the solution, for a given parameter ε > 0. Without loss
of generality, we may assume that the point range of (S,Q) is [0, 1]2, i.e., the points in S are always in the
range [0, 1]2. We say a quadrant in Q is trivial (resp., nontrivial) if its vertex is outside (resp., inside) the
point range [0, 1]2. Note that a trivial quadrant is “equivalent” to a horizontal/vertical halfplane in terms of
the coverage in [0, 1]2.

Let r and α < 1 be parameters to be determined. Consider the initial instance (S,Q) and let
n = |S|+ |Q|. We partition the point range [0, 1]2 into r×r rectangular cells using r−1 horizontal lines and
r − 1 vertical lines such that each row (resp., column) of r cells contains O(n/r) points in S and O(n/r)
vertices of the quadrants in Q. Let �i,j be the cell in the i-th row and j-th column for (i, j) ∈ [r]2. We
denote byRi the i-th row (i.e.,Ri =

⋃r
j=1�i,j) for i ∈ [r] and by Cj the j-th column (i.e., Cj =

⋃r
i=1�i,j)

for j ∈ [r]. Define Si,j = S ∩�i,j , Si,• = S ∩Ri, and S•,j = S ∩Cj , for i, j ∈ [r]. Next, we decomposeQ
into small subsets as follows. We say a quadrantQ left intersects a rectangleR if R * Q and Q contains the



left boundary of R. Among a set of quadrants that left intersect a rectangle R, the maximal one refers to the
quadrant whose vertex is the rightmost, or equivalently, whose intersection with R is maximal. Similarly,
we can define the notions of “right intersect”, “top intersect”, and “bottom intersect”. For i, j ∈ [r], we
define Qi,j ⊆ Q be the subset consisting of all nontrivial quadrants whose vertices lie in �i,j and the (up
to) four nontrivial maximal quadrants that left, right, top, bottom intersect �i,j ; we call the latter the four
special quadrants in Qi,j . Similarly, for i ∈ [r] (resp., j ∈ [r]), we define Qi,• ⊆ Q (resp., Q•,j ⊆ Q) be
the subset consisting of all nontrivial quadrants whose vertices lie in Ri (resp., Cj) and the four nontrivial
maximal quadrants that left, right, top, bottom intersect Ri (resp., Cj); we call the latter the four special
quadrants in Qi,• (resp., Q•,j). When the instance (S,Q) changes, the cells �i,j (as well as the rows Ri
and columns Cj) remain unchanged while the sets Si,j , Si,•, S•,j (resp., Qi,j , Qi,•, Q•,j) will change along
with S (resp., Q). We view each (Si,j ,Qi,j) as a dynamic quadrant set cover instance with point range
�i,j , and recursively build a sub-structure Di,j that maintains a (µ + ε̃)-approximate set cover solution for
(Si,j ,Qi,j), where ε̃ = αε. Similarly, we view each (Si,•,Qi,•) (resp., (S•,j ,Q•,j)) as a dynamic quadrant
set cover instance with point rangeRi (resp., Cj), and recursively build a sub-structureDi,• (resp.,D•,j) that
maintains a (µ + ε̃)-approximate set cover solution for (Si,•,Qi,•) (resp., (S•,j ,Q•,j)). For convenience,
we call (Si,j ,Qi,j) the cell sub-instances, (Si,•,Qi,•) the row sub-instances, and (S•,j ,Q•,j) the column
sub-instances. Besides the data structures recursively built on the sub-instances, we also need some simple
support data structures. The first one is the data structure A required for the output-sensitive algorithm for
quadrant set cover (Lemma 3.1). The second one is a dynamic data structure B built onQ, which can report,
for a given query rectangle R, the maximal quadrant in Q that left/right/top/bottom intersects R. The third
one is a dynamic data structure C built on Q, which can report, for a given query rectangle R, a quadrant
in Q that contains R (if such a quadrant exists). The fourth one is a plane point-location data structure
L, which can report, for a given query point q ∈ [0, 1]2, the cell �i,j that contains q. As shown in [2],
all these support data structures can be built in Õ(n) time and updated in Õ(1) time. Our data structure
D consists of the recursively built sub-structures Di,j , Di,•, D•,j and the support data structures A, B, C,
L. It is easy to construct D in Õ(2O(logr n) · n) time. To see this, we notice that the size of each sub-
instance is of size O(n/r). Also, the total size of all (row, column, cell) sub-instances is bounded by O(n).
Therefore, if we denote by C(n) the construction time of the data structure when the size of the instance
is n, we have the recurrence C(n) =

∑r
i=1

∑r
j=1C(ni,j) +

∑r
i=1C(ni,•) +

∑r
j=1C(n•,j) + Õ(n) for

some ni,j , ni,•, n•,j satisfying
∑r

i=1

∑r
j=1 ni,j +

∑r
i=1 ni,• +

∑r
j=1 n•,j = O(n) and ni,j = O(n/r),

ni,• = O(n/r), n•,j = O(n/r) for all i, j ∈ [r]. The recurrence solves to C(n) = Õ(2O(logr n) · n).

Update of the sub-structures and reconstruction. Whenever the instance (S,Q) changes due to an
insertion/deletion on S or Q, we first update the support data structures. After that, we update the sub-
structuresDi,j ,Di,•,D•,j for which the underlying sub-instances change. Observe that an insertion/deletion
on S only changes one Si,j , one Si,•, and one S•,j (so at most three sub-instances). An insertion/deletion of
a trivial quadrant does not change any sub-instances, while an insertion/deletion of a nontrivial quadrant
changes at most O(r) sub-instances. Besides the update, our data structure D will be periodically
reconstructed. Specifically, the (i + 1)-th reconstruction happens after processing ni/r updates from the
i-th reconstruction, where ni denotes the size of (S,Q) at the point of the i-th reconstruction. (The 0-th
reconstruction is just the initial construction of D.)

Constructing a solution. We now describe how to construct an approximately optimal set cover Qappx for
the current (S,Q) using our data structure D. Denote by opt the size of an optimal set cover for the current
(S,Q); we define opt = ∞ if (S,Q) does not have a set cover. Set δ = min{n, c(r2 + εr2)/(ε − αε)},
where c is a sufficiently large constant. If opt ≤ δ, then we are able to use the algorithm of Lemma 3.1 to
compute a µ-approximate set cover solution for (S,Q) in Õ(δ) time. Therefore, we simulate that algorithm



within that amount of time. If the algorithm successfully computes a solution, we use it as our Qappx.
Otherwise, we know that opt > δ. In this case, we construct Qappx by combining the solutions maintained
by the sub-structures as follows.

Consider the trivial quadrants inQ. There are (up to) four maximal trivial quadrants that left, right, top,
bottom intersect the point range [0, 1]2, which we denote by Q↑, Q↓, Q←, Q→, respectively. Let i− ∈ [r]
(resp., j− ∈ [r]) be the smallest index such that Ri− * Q↑ (resp., Cj− * Q←), and i+ ∈ [r] (resp.,
j+ ∈ [r]) be the largest index such that Ri+ * Q↓ (resp., Cj+ * Q→). Note that i− ≤ i+, because
otherwise S ⊆ [0, 1]2 ⊆ Q↑ ∪Q↓ and thus opt ≤ 2 (which contradicts with the fact opt > δ). For the same
reason, j− ≤ j+. We include Q←, Q→, Q↑, Q↓ in our solution Qappx. By doing this, all points in Ri (resp.,
Cj) for i < i− or i > i+ (resp., j < j− or j > j+) are covered. The remaining task is to cover the points in
the complement X of the Q← ∪Q→ ∪Q↑ ∪Q↓ in [0, 1]2; these points lie in the cells �i,j for i− ≤ i ≤ i+
and j− ≤ j ≤ j+.

[0, 1]2

X

L↑

L↓

L← L→

Figure 1: The rectangular annulus (the grey area) are partitioned into four rectangles.

We cover the points in X using two collections of quadrants. The first collection covers all points in the
cells �i,j contained in X , i.e., the cells �i,j for i− < i < i+ and j− < j < j+. Specifically, if the cell �i,j
can be covered by a single quadrant Q ∈ Q, we define Q∗i,j = {Q}, otherwise we define Q∗i,j ⊆ Qi,j as the
(µ + ε̃)-approximate set cover solution for the sub-instance (Si,j ,Qi,j) maintained by Di,j . (If there exists
a cell �i,j for i− < i < i+ and j− < j < j+ that is not covered by any single quadrant Q ∈ Q and the sub-
structure Di,j tells us that the sub-instance (Si,j ,Qi,j) has no solution, then we make a no-solution decision
for (S,Q).) We include in our solutionQappx all quadrants in

⋃i+−1
i=i−+1

⋃j+−1
j=j−+1

Q∗i,j , which cover the points
in �i,j for i− < i < i+ and j− < j < j+. Now the only points uncovered are those lie in the rectangular
annulus, which is the complement of the union of the cells �i,j ⊆ X in X (see Figure 1). We partition
this rectangular annulus into four rectangles L↑, L↓, L←, L→ (again see Figure 1), which are contained in
Ri− , Ri+ , Cj− , Cj+ , respectively. We obtain a set cover for the points in each of L↑, L↓, L←, L→ using the
corresponding row/column sub-structure as follows. Consider L↑. We temporarily insert the three virtual
quadrants Q↑, Q←, Q→ to the sub-instance (Si−,•,Qi−,•) (these quadrants will be deleted afterwards) and
update the sub-structure Di−,• so that Di−,• now maintains a solution for (Si−,•,Qi−,• ∪ {Q↑, Q←, Q→}).
This solution covers all points in Si−,•. We then remove the quadrants Q↑, Q←, Q→ from the solution (if
any of them are used), and the set Q∗↑ of the remaining quadrants should cover all points in L↑. In a similar
way, we can construct sets Q∗↓,Q∗←,Q∗→ that cover the points in L↓, L←, L→, respectively, by using the
sub-structures Di+,•,D•,j− ,D•,j+ . (If any of those sub-structures tells us the corresponding sub-instance
has no solution, then we make a no-solution decision for (S,Q).) We include in Qappx all quadrants in
Q∗ = Q∗↑ ∪Q∗↓ ∪Q∗← ∪Q∗→. This completes the construction of Qappx. To summarize, we define

Qappx = {Q↑, Q↓, Q←, Q→} t Q∗ t

 ⊔
(i,j)∈P

Q∗i,j

 , (3.1)

where P = {(i, j) : i− < i < i+, j− < j < j+}. From the construction, it is easy to verify that Qappx is a
set cover for (S,Q).



Answering queries to the solution. We show how to store the solution Qappx properly so that the desired
queries for Qappx can be answered efficiently. If Qappx is computed using the output-sensitive algorithm of
Lemma 3.1, then |Qappx| ≤ δ and we have all elements of Qappx. In this case, we simply build a binary
search tree on Qappx, which can answer the desired queries with the required time costs. On the other hand,
if Qappx is defined using Equation 3.1, we cannot compute Qappx explicitly. Instead, we simply compute
the size of Qappx. We have |Qappx| = 4 + |Q∗| +

∑
(i,j)∈P |Q∗i,j |, where |Q∗| and |Q∗i,j | can be obtained

by querying the sub-structures Di−,•,Di+,•,D•,j− ,D•,j+ and Di,j’s. By storing |Qappx|, we can answer
the size query in O(1) time. In order to answer membership queries, we need some extra work. The
main difficulty is that one quadrant Q ∈ Q∗ may belong to many Q∗i,j’s, but we cannot afford recursively
querying all sub-structures Di,j . To overcome this difficulty, the idea is to store the special quadrants in
Q∗i,j’s separately. Recall that Qi,j consists of all nontrivial quadrants in Q whose vertices are in �i,j and

four special quadrants Q�i,j← , Q
�i,j
→ , Q

�i,j
↑ , Q

�i,j
↓ . We collect all special quadrants in Q∗i,j for (i, j) ∈ P , the

number of which is at most 4|P | = O(r2). We then store these special quadrants in a binary search tree
T which can support membership queries. To answer a membership query Q ∈ Q, we first compute its
multiplicity in {Q↑, Q↓, Q←, Q→} t Q∗, which can be done by O(1) recursive membership queries on the
sub-structuresDi−,•,Di+,•,D•,j− ,D•,j+ . Then it suffices to compute the multiplicity of Q in

⊔
(i,j)∈P Q∗i,j .

Note that although there can be manyQi,j’s containingQ, all of them containQ as a special quadrant except
the one containing the vertex of Q. So we only need to query T to obtain the multiplicity of Q contained
Q∗i,j’s as a special quadrant, and recursively query the cell sub-structure Di,j for the cell �i,j that contains
the vertex of Q. Handling reporting queries is easy and is similar to that for dynamic interval set cover
presented in Section 2. We first report the four quadrants Q↑, Q↓, Q←, Q→, and then report the quadrants in
Q∗ and Q∗i,j’s by recursively querying the sub-structures which maintain nonempty solutions.

Now we analyze the query time. If the solution Qappx is computed by the algorithm of Lemma 3.1,
then it is stored in a binary search tree and we can answer a size query, a membership query, and a reporting
query inO(1) time,O(log |Qappx|) time, andO(|Qappx|) time, respectively. So it suffices to consider the case
where we construct Qappx using Equation 3.1. In this case, answering a size query still takes O(1), because
we explicitly compute |Qappx|. To answer a membership queryQ ∈ Q, we need to doO(1) recursive queries
on the sub-structures (the cell �i,j containing the vertex of Q can be found in O(log r) time using the point
location data structure L). Besides, we need to query the binary search tree T that stores special quadrants,
which takes O(log r) time. All the other work takes O(1) time. Note that the instances maintained in the
sub-structuresDi,•,D•,j ,Di,j have sizeO(n/r). So if we useQ(n) to denote the time cost for a membership
query when the size of the instance is n, we have the recurrence Q(n) = O(1) · Q(O(n/r)) + O(log r),
which solves to Q(n) = 2O(logr n) log r. Finally, to answer a reporting query, we first report the elements of
{Q↑, Q↓, Q←, Q→} and recursively query the relevant sub-structures which maintain nonempty solutions.
Thus, in the recurrence tree, the number of leaves is bounded by |Qappx| since at each leaf node we need
to report at least one element. Since the height of the recurrence tree is O(logr n) and at each node of
the recurrence tree the work can be done in O(1) time, the overall time cost for a reporting query is
O(|Qappx| · logr n).

Correctness. First, we show that D makes a no-solution decision iff the current instance (S,Q) does not
have a feasible set cover. The “if” part is clear because the set Qappx we construct is always a set cover for
(S,Q). To see the “only if” part, we notice there are two points that D can make a no-solution decision.
The first point is when the sub-instance (Si,j ,Qi,j) has no set cover for some cell �i,j for i− < i < i+ and
j− < j < j+ that is not covered by any single quadrant Q ∈ Q. In this case, there is some point a ∈ Si,j
that cannot be covered by any quadrant in Qi,j . Note that Qi,j contains all nontrivial quadrants in Q which
partially intersect �i,j and the intersection is maximal (among all quadrants in Q that partially intersect
�i,j). Therefore, a cannot be covered by any nontrivial quadrant in Q which partially intersects �i,j (and



all nontrivial quadrant inQ intersecting�i,j must intersect�i,j partially). Also, a cannot be covered by any
trivial quadrant in Q because a ∈ �i,j ⊆ X . So the no-solution decision made here is correct. The second
point is when constructing Q∗. It is easy to see that if any of the sub-structures Di−,•,Di+,•,D•,j− ,D•,j+
reports “no solution”, then (S,Q) has no set cover. For example, if Di−,• reports “no solution”, then the
points in Si−,• cannot be covered by the quadrants in Qi−,• ∪ {Q↑, Q←, Q→} and thus the points in L↑
cannot be covered by the quadrants in Q. Therefore, the no-solution decision made here is correct.

Now it suffices to show Qappx is a (µ + ε)-approximate solution for (S,Q). If Qappx is constructed by
the algorithm of Lemma 3.1, then it is a µ-approximate solution. So suppose Qappx is constructed using
Equation 3.1. Let opt be the size of an optimal set cover for (S,Q). Our key observation is the following.

LEMMA 3.2. |Qappx| ≤ (µ+ ε̃) · opt +O(r2).

Proof. Let Qopt be an optimal set cover of (S,Q). Define n↑, n↓, n←, n→ as the number of quadrants in
Qopt whose vertices are in L↑, L↓, L←, L→, respectively. Also, define ni,j as the number of quadrants in
Qopt whose vertices are in �i,j . We have opt = |Qopt| ≥ n↑ + n↓ + n← + n→ +

∑i+

i=i−
∑j+

j=j− ni,j . On
the other hand, by Equation 3.1, we have

|Qappx| = 4 + |Q∗|+
i+∑
i=i−

j+∑
j=j−

|Q∗i,j |

= 4 + |Q∗↑|+ |Q∗↓|+ |Q∗←|+ |Q∗→|+
j+∑
j=j−

|Q∗i,j |.

We show that |Q∗↑| ≤ (µ+ ε̃) · (n↑ + 7), |Q∗↓| ≤ (µ+ ε̃) · (n↓ + 7), |Q∗←| ≤ (µ+ ε̃) · (n← + 7), |Q∗→| ≤
(µ+ ε̃) · (n→ + 7), and |Q∗i,j | ≤ (µ+ ε̃) · (ni,j + 4) for i− < i < i+ and j− < j < j+, which implies the
inequality in the lemma. All these inequalities are proved similarly, so we only show |Q∗↑| ≤ (µ+ε̃)·(n↑+7)
here. Recall thatQ∗↑ is the solution maintained by Di−,• for (Si−,•,Qi−,• ∪ {Q↑, Q←, Q→}), excluding the
quadrants Q↑, Q←, Q→. Now we create a set of at most n↑+ 7 quadrants inQi−,•∪{Q↑, Q←, Q→}, which
consists of all quadrants in Qopt whose vertices are in L↑, the (up to) four maximal nontrivial quadrants in
Q that top, bottom, left, right intersect Ri− , and the three quadrants Q↑, Q←, Q→. These n↑ + 7 quadrants
cover all points in Si−,•, becauseQopt is a set cover of (S,Q). SinceDi−,• maintains a (µ+ ε)-approximate
solution for (Si−,•,Qi−,• ∪ {Q↑, Q←, Q→}), we have |Q∗↑| ≤ (µ+ ε̃) · (n↑ + 7).

Recall that we construct Qappx using Equation 3.1 only when opt ≥ δ ≥ c(r2 + εr2)/(ε − αε). By the
above lemma and the fact that c is sufficiently large, we have

|Qappx| − (µ+ ε̃) · opt ≤ c′ · r2 ≤ (ε− αε)opt = (ε− ε̃)opt,

which implies |Qappx| ≤ (µ+ ε) · opt.

Update time. To analyze the update time of our data structure D, it suffices to consider the first period
(including the first reconstruction). The first period consists of n0/r operations, where n0 is the size of the
initial (S,Q). The size of (S,Q) during the first period is always in between (1− 1/r)n0 and (1 + 1/r)n0

and is hence Θ(n0) (later we shall choose a super-constant r). We first observe that, excluding the recursive
updates for the sub-structures, each update of D takes Õ(r2/(ε − αε) + r2 · 2O(logr n)) (amortized) time.
Updating the support data structures can be done in Õ(1) time. When constructing the solution Qappx, we
need to simulate the algorithm of Lemma 3.1 within Õ(δ) = Õ(r2/(ε−αε)) time. IfQappx is defined using
Equation 3.1, we need to do some extra work. First, we need to obtain the quadrants Q↑, Q↓, Q←, Q→,



which can be done in Õ(1) time using the support data structure B. Then we need to compute |Q∗|,
which involvesO(1) size queries to the sub-structuresDi−,•,Di+,•,D•,j− ,D•,j+ and hence takesO(1) time.
Finally, we need to compute |Q∗i,j | and retrieve the special quadrants inQ∗i,j for all (i, j) ∈ P (and build the
query structure for these special quadrants). To check whether a cell �i,j is coverable can be done in Õ(1)
time using the support data structure C. After knowing whether each cell is coverable, to compute |Q∗i,j | and
retrieve the special quadrants can be done via O(r2) size and membership queries to the sub-structuresDi,j ,
which takes Õ(r2 · 2O(logr n)) time. The reconstruction of D takes Õ(2O(logr n) · r) amortized time, because
the time cost of the (first) reconstruction is Õ(2O(logr n1) · n1), i.e., Õ(2O(logr n0) · n0), while the first period
consists of O(n0/r) operations.

Next, we consider the recursive updates of the sub-structures. Similarly to the analysis of our dynamic
interval set cover data structure, we distinguish three types of updates according to the current operation. The
first type is point update, which is caused by the insertion/deletion of a point in S. The second type is trivial
quadrant update (or trivial update for short), which is caused by the insertion/deletion of a trivial quadrant
in Q (recall that a quadrant is trivial if its vertex is outside the point range [0, 1]2 of (S,Q)). The third type
is nontrivial quadrant update (or nontrivial update for short), which is caused by the insertion/deletion of
a nontrivial quadrant in Q. We first consider the recursive updates required for all three types of updates.
Recall that when constructing the solution Qappx using Equation 3.1, we need to temporarily insert some
virtual quadrants to Qi−,•,Qi+,•,Q•,j− ,Q•,j+ (and delete them afterwards). This involves a constant
number of recursive updates, which are all trivial updates because the virtual quadrants inserted are all
trivial. Besides these recursive updates, a point update requires three recursive (point) updates, because
the insertion/deletion of a point in S changes one cell sub-instance, one row sub-instance, and one column
sub-instance. A trivial update does not require any other recursive updates, because the insertion/deletion
of trivial quadrant in Q does not change any sub-instance. Finally, we consider a nontrivial update. Let Q
be the nontrivial quadrant inserted/deleted and suppose the vertex of Q is contained in the cell �i,j . Then
we may need to update the cell sub-structures Di,1, . . . ,Di,r and D1,j , . . . ,Dr,j , in which the update of
Di,j is a nontrivial update and the others are all trivial updates since the vertex of Q is outside the point
ranges of all cell sub-instances except (Si,j ,Qi,j). Also, we need to update the row (resp., column) sub-
structures, in which the update of Di,• (resp., D•,j) are nontrivial updates and the others are all trivial
updates. To summarize, a point update requires O(1) recursive point updates and O(1) recursive trivial
updates, a trivial update requires O(1) recursive trivial updates, and a nontrivial update requires O(1)
recursive nontrivial updates and O(r) recursive trivial updates. The depth of the recursion is O(logr n).
If we set α = 1− 1/ logr n, the approximation factor parameter is Θ(ε) in any level of the recurrence. Let
U(n), U1(n), U2(n) denote the time costs of a point update, a trivial update, a nontrivial update, respectively,
when the size of the current instance is n. The we have the recurrences

U(n) = O(1) · U(O(n/r)) +O(1) · U1(O(n/r)) + Õ(r2/ε+ r2 · 2O(logr n)),

U1(n) = O(1) · U1(O(n/r)) + Õ(r2/ε+ r2 · 2O(logr n)),

U2(n) = O(1) · U2(O(n/r)) +O(r) · U1(O(n/r)) + Õ(r2/ε+ r2 · 2O(logr n)).

The recurrence for U1(n) solves to U1(n) = Õ((r2/ε) · 2O(logr n)). Based on this, we further solve the
recurrences for U(n) and U2(n), and obtain U(n) = Õ((r2/ε) · 2O(logr n)) and U2(n) = Õ((r3/ε) ·
2O(logr n)). Setting r = 2O(

√
logn), the amortized update time of D is then Õ((r3/ε) · 2O(logr n)) =

2O(
√

logn). The time cost of a membership query is 2O(logr n) = 2O(
√

logn), while the time cost of a reporting
query is O(|Qappx| · logr n) = O(|Qappx| ·

√
log n). Also, the construction time is Õ(2O(logr n) · n) =

2O(
√

logn) · n. We conclude the following.

THEOREM 3.1. There exists a dynamic data structure for O(1)-approximate unweighted unit-square set
cover with 2O(

√
logn) amortized update time and 2O(

√
logn) · n construction time, which can answer size,



membership, and reporting queries in O(1), 2O(
√

logn), and O(k
√

log n) time, respectively, where n is the
size of the instance and k is the size of the maintained solution.

4 Unweighted Square Set Cover
In this section, we present a data structure for O(1)-approximate dynamic (axis-aligned) square set cover,
improving the previous near O(n2/3) time result by Chan and He [15].

Let (S, I) be a dynamic (unweighted) square set cover instance where S is the set of points in R2 and I
is the set of squares. Let n = |S|+ |I| denote the total number of points and squares.

4.1 Algorithm for small opt. Based on the randomized multiplicative weight update (MWU) method [5,
9, 17], Chan and He [15] provided an O(1)-approximation algorithm with Õ(opt2) query time and Õ(1)
update time, assuming the points and objects have been preprocessed in standard range searching data
structures. When opt is small, this algorithm runs in sublinear time. We will use this algorithm as a
subroutine later.

LEMMA 4.1. There exists a data structure for the dynamic set cover problem for O(m) points and O(n)
squares in 2D that supports updates in Õ(1) time and can find an O(1)-approximate solution with high
probability (w.h.p.) in Õ(opt2) time.

4.2 Algorithm for large opt. When opt is large, we can afford a larger additive error. The previous paper
[15] utilized this observation and used a quadtree to partition the problem into subproblems, paying O(1)
additive error per subproblem when combining the solutions. We refine their approach and further improve
the update time to near O(n1/2).

Previous data structures. Our data structure is based on the previous data structure by [15], so we will first
briefly redescribe their approach, and then introduce our new ideas. For simplicity, assume all coordinates
are integers bounded by U = poly(n). This assumption can be removed using the technique in [15], namely
by using the BBD tree. We also assume an O(1)-approximation t of opt is known, by running our algorithm
for all possible guesses t = 2i in parallel (our algorithm is able to detect whether the guess is wrong).

Their key idea is to construct a standard quadtree, starting with a bounding square cell and recursively
divide into four square cells. We stop subdividing when a leaf cell Γ has size at most b, for a parameter b to
be set later, where the size of Γ is defined as the total number of points in S and vertices of squares in I that
are inside Γ. This yields O(nb ) cells per level, and thus O(nb logU) cells in total.

Since the quadtree cells are also squares, there are only two types of intersections between a quadtree
cell Γ and an input square in I. Call a square s short in the cell Γ, if at least one of its vertices is in Γ,
otherwise long, as shown in Fig. 2. A key observation is that it suffices to keep (at most) 4 “maximal” long
squares in each cell, since their union covers the union of all long squares of the cell. We useMΓ to denote
the set of maximal long squares in the cell Γ.

Figure 2: Short square (left) and long square (right). The quadtree cell is shaded.

Now we only need to maintain a data structure DΓ for each leaf cell Γ, that supports the following type
of query:



Given any query rectangle r in Γ, compute an O(1)-approximate set cover solution for the
points in S ∩ r, using only the short squares in Γ.

To compute an approximate set cover solution for Γ, it suffices to first include the 4 maximal long squares
MΓ of Γ in the approximate solution (thus paying O(1) additive error), and then query for an O(1)-
approximate solution IappxΓ

in the complement region�Γ ofMΓ, which is a rectangle as shown in Figure 3,
using only the short squares. DΓ is implemented using 2D range trees [3, 20] with branching factor a = bδ

built on the points within Γ, where δ is a sufficiently small constant. In this way, we form a set of canonical
rectangles with total size O(aO(1)b(loga b)

2) = O(b1+O(δ)), such that any query rectangle in the cell Γ can
be decomposed into O((loga b)

2) = (1
δ )O(1) = O(1) canonical rectangles. Then IappxΓ

is obtained by
taking the union of the O(1)-approximate solutions in the O(1) canonical rectangles that �Γ decomposes
to, and doing this only loses a constant factor.

Figure 3: The complement region of the (at most) 4 maximal long squares of a cell.

The global approximate solution Iappx is formed by taking the union of the approximate solutions
in each leaf cell Γ, which is IappxΓ

plus the at most 4 maximal long squares of Γ, i.e., we let Iappx =⊔
Γ(IappxΓ

tMΓ).
To analyze the approximation factor, let IoptΓ contain the squares in the optimal solution that are short

in the cell Γ. We have
∑

Γ |IoptΓ | ≤ 4 · opt, since an input square is short in at most 4 leaf cells containing
its 4 vertices. The size of our approximate solution Iappx can be upper-bounded as follows:

|Iappx| ≤
∑

Γ

(
|IappxΓ

|+ |MΓ|
)
≤
∑

Γ

(
O
(
|IoptΓ |

)
+ 4
)
≤ O(opt) + Õ

(n
b

)
.

As long as we set b = Ω̃( n
opt), this is an O(1)-approximation.

New approach. Now we describe the parts that we will change. In the previous algorithm of [15], an
O(1)-approximate solution within each canonical rectangle in each cell is maintained, using the staticO(1)-
approximate set cover algorithm with near-linear running time [5, 14]. An observation from [15] is that for
a canonical rectangle r with size bi, although there may exist a lot of squares that cut across r, it suffices to
keep only O(bi) “maximal” long squares with respect to r among them, which can be found in Õ(bi) time
using range searching. So the running time for the static algorithm is Õ(bi).

To further improve the update time, our new idea is to classify the canonical rectangles into two
categories, based on their sizes. Call a canonical rectangle heavy, if its size exceeds g, otherwise light,
where g is a parameter to be set later.

For each heavy canonical rectangle r with size g′ ≥ g, we maintain another level of subquadtree, using
the previous algorithm as stated before, which subdivides it into Õ(λ) subcells each with size O(g

′

λ ), where



λ is a parameter to be set later. For each subcell Λ in the subquadtree, maintain the setMΛ of the at most 4
maximal long squares, and an O(1)-approximate set cover solution IappxΛ

for the complement region.
For the light canonical rectangles, we don’t maintain the approximate solution, but rather choose to

compute it from scratch during the query.
For each cell Γ, the data structure DΓ can be constructed in O(b1+O(δ)) time, since the total size of the

heavy canonical rectangles in the cell is at most O(b1+O(δ)), and the static approximate set cover algorithm
runs in near-linear time.

Update. When we insert or delete a square s, for each leaf cell Γ that contains a vertex of s, we update
the subquadtree for each heavy canonical rectangle in Γ. For a heavy canonical rectangle with size g′ ≥ g,
this takes O((λ+ g′

λ ) · g′O(δ)) time (as analyzed in the previous paper). Summing over all heavy canonical
rectangles, the total time is at mostO((λ · bg + b

λ) ·bO(δ)), as the total size of the (heavy) canonical rectangles
is bounded by O(b1+O(δ)). We also update the set of maximal long squares MΓ for each leaf cell Γ, in
Õ(nb ) time.

When we insert or delete a point p, we update the data structure DΓ for the leaf cell Γ containing p. For
each canonical rectangle r in Γ that contains p, we may need to update O(1) maximal long squares that cut
across r, which takes O((λ+ b

λ) · bO(δ)) time for the heavy ones, and O(bO(δ)) time for the light ones.

Query. When we perform a query, we need to compute the approximate solution IappxΓ
in the complement

region �Γ of the maximal long squares for each cell Γ. The region �Γ can be decomposed into O(1)
canonical rectangles. For each light canonical rectangle r, let opti denote the size of the optimal solution,
we compute an O(1)-approximate solution from scratch, using either the small opt algorithm as described
earlier in Sec. 4.1 in Õ(opt2i ) time, or the static algorithm [5, 14] in Õ(g) time (since the size of r is at
most g), whichever is faster (by running them in parallel). For each heavy canonical rectangle, the size of
the precomputed approximate solution (which is implicitly represented by the subquadtree) can be retrieved
in O(1) time, but it has additive error O(λ). So if the result is O(λ), we need to recompute an O(1)-
approximate solution from scratch, using the small opt algorithm in Õ(opt2i ) time, which is bounded by
Õ(opti · λ) since opti = O(λ).

The total query time is

Õ

(∑
i

min{opt2i , g}+
∑
i

opti · λ+
n

b

)
,

which is at most Õ(opt · √g + opt · λ+ n
b ), since

∑
i opti = opt.

To balance the query and update times, when opt ≤
√
n, set b = n

opt , g = n
opt2

and λ =
√
n

opt (note

that the requirements b ≥ g ≥ λ ≥ 1 and b = Ω̃( n
opt) are satisfied); both the query and update time are

O(n1/2+δ)—interesting, we get the same bound uniformly for all the terms. When opt >
√
n, the previous

algorithm by [15] already obtains O(n1/2+δ) query and update time, by setting b =
√
n.

The actual solution Iappx can be reported by taking the union of all solutions in the leaf cells of the
quadtree, which takes Õ(opt) time.

THEOREM 4.1. There exists a dynamic data structure for O(1)-approximate unweighted square set cover
with O(n1/2+δ) query and update time and O(n1+δ) construction time w.h.p., for any constant δ > 0.

5 Unweighted 2D Halfplane Set Cover
In this section, we present a data structure forO(1)-approximate dynamic 2D halfplane set cover. Previously,
Chan and He [15] provided a dynamic set cover structure for 3D halfspace with O(n12/13+δ) update time,



which clearly also holds for 2D halfplanes, but their scheme is unable to actually find a set cover—it only
reports its size. This is because their idea for the “large opt” case is based on estimating the size of the
solution by summing over a small random sample of the terms. We not only improve the update time, but
can also find the approximate set cover solution.

Let (S,H) be a dynamic (unweighted) 2D halfplanes set cover instance where S is a set of points in R2

and H is a set of halfplanes, with m = |S| and n = |H|. We use N = n + m to denote the global upper
bound on the instance size.

5.1 Algorithm for small opt. We first note that there is an algorithm that is efficient when opt is small,
which will be used later as a subroutine. The idea is to modify the small opt algorithm for axis-aligned
squares by Chan and He [15], which is based on an efficient implementation of the randomized multiplicative
weight update (MWU) method [5, 9, 14, 17], using (≤ b)-levels and various geometric data structures. Here
we briefly redescribe their algorithm, and note the changes that we make in order to work for 2D halfplanes.

The following pseudocode shows how the randomized MWU algorithm works. Here, the depth of a
point refers to the number of ranges containing it. An 1

t -net of S is a subset of S that covers all points of
depth at least |S|t . (The reason that this algorithm yields an O(1)-approximation for the 2D halfplane and
3D halfspace cases is that there exists 1

t -nets of size O(t) [26].)

Algorithm 1 MWU for set cover

1: Guess a value t ∈ [opt, 2 opt].
2: Define a multiset Ĥ where each object i inH initially has multiplicity mi = 1.
3: loop . call this the start of a new round
4: Fix ρ := c0t log(n+m)

|Ĥ|
and take a random sample R of Ĥ with sampling probability ρ.

5: while there exists a point p ∈ S with depth in R at most c02 log(n+m) do
6: for each object i containing p do . call lines 6–8 a multiplicity-doubling step
7: Double its multiplicity mi, i.e., insert mi new copies of object i into Ĥ.
8: For each copy, independently decide to insert it into R with probability ρ.
9: if the number of multiplicity-doubling steps in this round exceeds t then

10: Go to line 3 and start a new round.
11: Terminate and return a 1

8t -net of R.
12: end loop

To efficiently implement this MWU algorithm, we need to solve two subproblems: 1) finding a low-
depth point p, and 2) weighted range sampling.

Finding a low-depth point. Let b := c0
2 log(n + m) where c0 is a sufficiently large constant. To find a

low-depth point in line 5, we compute (from scratch) the (≤ b)-level L≤b(R) of R, which is the collection
of all cells in the arrangement of the halfplanes inR of depth at most b. It is known that L≤b(R) hasO(|R|b)
cells (after triangulation) and can be constructed in Õ(|R|b) time [18], which is Õ(t).

To find a point p ∈ S with depth inR at most b, we perform a triangle range query for each (triangulated)
cell ofL≤b(R), to test if the cell contains a point p ∈ S. It is known that we can construct a 2D triangle range
searching structure D̃ [25] on the point set S, with O(m

1/2+δ

z1/2 ) query time for emptiness/counting/sampling
and Õ(z) insertion/deletion time, for a given trade-off parameter z ∈ [1,m]. As there are Õ(t) multiplicity-
doubling steps, the total cost is Õ(t2 · m1/2+δ

z1/2 ).



Weighted range sampling. The algorithm is similar to the previous part, but this time we work in the dual.
We use h∗ to denote the dual point of a halfplane h, and p∗ denote the dual halfplane of a point p.

Let Q be the set of all points p for which we have performed multiplicity-doubling steps thus far. Note
that |Q| = Õ(t). Each time we perform a multiplicity-doubling step, we compute (from scratch) the (≤ b)-
level L≤b(Q∗). The multiplicity of a halfplane h ∈ H is equal to 2depth of h∗ in Q∗ , and all dual points h∗ in a
cell of L≤b(Q∗) share the same multiplicity. It is known that the multiplicities are bounded by (n+m)O(1),
so each h∗ is covered by L≤b(Q∗).

To generate a multiplicity-weighted sample of the halfplanes containing p for line 8, after p has been
inserted to Q, we examine all cells of L≤b(Q∗) contained in p∗. For each such cell γ, we use triangle range
counting to compute its size, using a 2D triangle range searching structure D̃∗ built on the dual point set
H∗ as described before. Knowing the sizes and multiplicities for all such Õ(t) cells, we can then generate
the weighted sample in time O(n

1/2+δ

z1/2 ) times the size of the sample, again using the data structure D̃∗. The
random sample R in line 4 with size Õ(t) is generated similarly.

As we perform Õ(t2) triangle range counting queries, and the total size of the samples is Õ(t), the total
cost is Õ(t2 · n1/2+δ

z1/2 + t · n1/2+δ

z1/2 ) = Õ(t2 · n1/2+δ

z1/2 ).

LEMMA 5.1. There exists a data structure for the dynamic set cover problem for O(m) points and O(n)
2D halfplanes that supports updates in Õ(z) time and can find an O(1)-approximate solution w.h.p. in

Õ(opt2 · (n+m)1/2+δ

z1/2 ) time, for any constant δ > 0 and trade-off parameter z ∈ [1, n + m]. The data
structure can be constructed in Õ((n+m) · z) time.

Alternative algorithm. As an alternative to implement the small opt algorithm, we can also slightly modify
the small opt algorithm by Chan and He [15] for halfspaces in 3D (which uses partition trees), and obtain
an algorithm for 2D halfplanes. The only difference is that we use partition trees in 2D instead of 3D.

LEMMA 5.2. There exists a data structure for the dynamic set cover problem for O(m) points and O(n)
2D halfplanes that supports updates in Õ(1) time and can find an O(1)-approximate solution w.h.p. in
Õ(opt · (n + m)1/2+δ) time, for any constant δ > 0. The data structure can be constructed in Õ(n + m)
time.

5.2 Main algorithm. Here we first present a solution that only supports halfplane insertions and deletions
as well as point deletions; the ways to support point insertions are more technical, and will be explained in
the last part.

Data structures. To construct the data structure, our idea is to recursively apply Matoušek’s Partition
Theorem [25] as stated below, and decompose the problem into subproblems.

THEOREM 5.1. (MATOUŠEK’S PARTITION THEOREM) Given a set S of m points in R2, for any positive
integer b ≤ m, we can partition S into b subsets Si each with size O(mb ) and find b disjoint triangular cells
∆i ⊃ Si, where each cell is a triangle, such that any halfplane crosses (i.e., the boundary intersects) O(

√
b)

cells. The partition can be constructed in O(m1+δ) time.

The original version of Matoušek’s theorem does not guarantee disjointness of cells, but a later version
by Chan [11] does.

Intuitively, with subproblems defined with this partition, any inserted/deleted halfplane h only affects
a small fraction of the subproblems. More precisely, we use Theorem 5.1 to partition the set of points S
into b disjoint cells ∆1, . . . ,∆b, each containing a subset Si of O(mb ) points, where b is a parameter to be

set later. Any halfplane h will cross O(
√
b) cells, so each cell is crossed by O(n·

√
b

b ) = O( n√
b
) halfplanes



in H on average. Call a cell good if it crosses ≤ g · n√
b

halfplanes in H (for a sufficiently large constant

g), otherwise bad. The halfplanes in H cross O(n ·
√
b) cells in total, so the total number of bad cells is

O( n
√
b

gn/
√
b
) = O( bg ).

We construct the standard range searching data structures D̃ and D̃∗ required by the small opt algorithm
in Section 5.1 on the problem instance (S,H) in Õ((n + m) · z) time, and maintain an (implicit) O(1)-
approximate solution Happx for (S,H). For each good cell ∆i, let Hi be the set of halfplanes crossing
∆i, we recursively construct a data structure Di for the subproblem (Si,Hi). If there exists a halfplane
that completely contains ∆i, then record any one of them. We also construct a data structure Dbad for the
subproblem (Sbad,H) where Sbad =

⋃
i: cell i bad Si, which contains all points in the union of the bad cells.

In the worst case, the union of bad cells may cross all halfplanes in H, so the number of halfplanes in
the subproblem will not necessarily decrease. However the total number of points decreases by a constant
fraction, since |Sbad| =

∑
i: cell i bad |Si| ≤ O( bg ·

m
b ) = O(mg ).

The construction time satisfies the recurrence

T (m,n) = b · T
(
O
(m
b

)
,
gn√
b

)
+ T

(
O

(
m

g

)
, n

)
+ Õ(m+ nb) + Õ((n+m) · z).

Set b = N δ0 where δ0 > 0 is a sufficiently small constant, and set z = (n + m)1/3 to later balance the
terms in the update time. For simplicity of analysis we assume that initially we have m ≤ n, and then this
condition holds for all subproblems as we recurse. The running time is dominated by the costs at the lowest
level, so the recurrence solves to T (m,n) = Õ(m · ( n√

m
)4/3) = O(m1/3n4/3 ·NO(δ)).

Update. When we insert or delete a halfplane h, we recurse in the O(
√
b) good cells ∆1, . . . ,∆τ crossed

by h, in order to recompute the approximate solutions Happx(Si) for 1 ≤ i ≤ τ . We also recurse
in the subproblem (Sbad,H) containing the union of bad cells, and recompute the approximate solution
Happx(Sbad). We update the range searching data structure D̃∗ required by the small opt algorithm, using
Õ(z) time.

To reconstruct the approximate solutionHappx we proceed as follows. If opt , |Hopt| ≤ c2 ·b logN for

a sufficiently large constant c2, we use the Õ(opt2 · (n+m)1/2+δ

z1/2 ) time algorithm for small opt (Lemma 5.1)

to recompute Happx from scratch. The condition opt
?
≤ c2 · b logN can be tested by the small opt

algorithm itself. Otherwise opt > c2 · b logN , and we can afford a larger additive error, so we return
the union of the O(1)-approximate solutions for the good cells Si and the union of the bad cells Sbad, i.e. let
Happx =

⊔
i: cell i goodHappx(Si)tHappx(Sbad), which is stored implicitly. (One special case is when there

exists a halfplane h that contains the cell ∆i, we include h instead ofHappx(Si) in the solutionHappx.)
We rebuild the entire data structure after every g · n√

b
halfplane updates, so that good cells will not

become bad. The amortized cost per update is T (m,n)

gn/
√
b

+ Õ(b2 · (n+m)1/2+δ

z1/2 )+ Õ(z) = O(m1/3n1/3 ·NO(δ)).
When we delete a point p, if p is contained in a good cell ∆i, we recurse in the subproblem within

∆i in order to recompute the approximate solution Happx(Si). Otherwise p is contained in a bad cell, so
we recurse in the subproblem (Sbad,H) and recompute the approximate solution Happx(Sbad). Then we
recompute Happx, using the procedure described above. We update the range searching data structure D̃
required by the small opt algorithm, using Õ(z) time.

Let U(m,n) denote the update time for an instance with m points and n halfplanes. Since point
deletions are easier, we mainly focus on halfplane updates. It satisfies the recurrence

U (m,n) = O
(√

b
)
· U
(
O
(m
b

)
,
gn√
b

)
+ U

(
O

(
m

g

)
, n

)
+O

(
m1/3n1/3 ·NO(δ)

)
,

which solves to U(m,n) = O(m1/3n1/3 ·NO(δ)).



Figure 4: The boundary of the optimal solution must form a convex chain (see left). For simplicity we
only include the upper halfplanes; the lower halfplanes are similar. Each triangular cell of the partition only
intersects the convex chain O(1) times (see right).

Approximation factor analysis. The key observation here is that the boundary of the optimal solution
Hopt for (S,H) must form a convex chain, as shown in Figure 4. As each cell is a triangle, it can
only intersect the optimal convex chain O(1) times, thus the b disjoint cells ∆1, . . . ,∆b will partition
Hopt into O(b) disjoint pieces. (Unfortunately, such nice property does not hold in 3D.) If we take
the union of the optimal solutions in all the cells, the additive error is at most O(b), i.e., we have∑

1≤i≤b |Hopt(Si)| ≤
∑

1≤i≤b(|Hopt ∩∆i|+O(1)) ≤ |Hopt|+O(b). Similarly, we have∑
i: cell i good

|Hopt(Si)|+ |Hopt(Sbad)| ≤ |Hopt|+ c1b

for some constant c1.
Let c0 denote the constant multiplicative error factor guaranteed by the small opt algorithm. Suppose

that for some constant multiplicative error factor c ≥ max{c0, c1}, we have |Happx(Si)| ≤ c · |Hopt(Si)|
for all good cells i, and also |Happx(Sbad)| ≤ c · |Hopt(Sbad)|. Then if opt > c2 · b logN , we set Happx to
be the union of the approximate solutions in the subproblems, and obtain

|Happx| ≤
∑

i: cell i good

|Happx(Si)|+ |Happx(Sbad)|

≤ c ·

 ∑
i: cell i good

|Hopt(Si)|+ |Hopt(Sbad)|


≤ c · (|Hopt|+ c1b)

≤
(

1 + 1
logN

)
· c · |Hopt|.

Otherwise we will use the small opt algorithm to compute Happx from scratch, which guarantees that
|Happx| ≤ c0 · |Hopt|.

The recursion depth of the data structure is O(loggN) = O(logN). The multiplicative error
factor multiplies by a factor of at most 1 + 1

logN at each level, so the global multiplicative error is
c · (1 + 1

logN )O(logN) = O(1).

Reporting the actual solution. If the O(1)-approximate solution Happx is explicitly stored (computed by
the small opt algorithm), then we can directly report the solution in O(opt) time. Otherwise Happx is
implicitly stored as the union of the approximate solutions in the subproblems, and we recursively report the
approximate solutionsHappx(Si) for each good cell i, as well asHappx(Sbad) for the bad cells. The running
time is proportional to the output size, i.e., O(opt).



LEMMA 5.3. There exists a data structure for O(1)-approximate dynamic 2D halfplane set cover that
supports halfplane insertion/deletions and point deletions in amortized O(n2/3+δ) time w.h.p. for any
constant δ > 0, and can answer size and reporting queries in O(1) and O(opt) time, respectively.

Point insertions. The issue with point insertions is we need to rebuild the whole structure everyO(mb ) point
insertions to ensure the cell sizes are bounded by O(mb ), which is costly when m is too small. We resolve
this issue by reducing the fully dynamic problem to partially dynamic, using the logarithmic method [6] but
with a larger base N δ and a non-trivial base case, and finally obtain sublinear update time for all four types
of updates.

Specifically, we use the logarithmic method to partition the set of points S into O(1
δ ) subsets Si, where

the i-th subset contains mi ∈ [ N
(Nδ)i+1 ,

N
(Nδ)i

) points (i = 0, . . . , f ) for some f = O(1
δ ), for a sufficiently

small constant δ. We build a partially dynamic data structure Di that supports halfplane insertion/deletions
and point deletions, on the instance (Si,H); an exception is the last data structure Df , which will be fully
dynamic. We obtain the global approximate set cover solution by taking the union of the approximate
solutions for each of the subproblems, losing only a constant approximation factor since there are only
O(1

δ ) = O(1) subproblems. The logarithmic method guarantees that the subset Si is rebuilt only after every
Θ(mi

Nδ ) point insertions.
To implement the fully dynamic data structure Df , we use the small opt algorithm (Lemma 5.1), with

Õ(m2
f ·
√

n
z + z) = Õ(m

4/3
f n1/3) update time, by setting z = m

4/3
f n1/3 (here and in the following we

ignore the NO(δ) factors by a slight abuse of the Õ notation).
To implement the partially dynamic data structure Di (i < f) for the subproblem (Si,H), we suggest

two different methods depending on the size mi.
For mf < mi ≤ n2/3, we modify our partially dynamic solution which we introduced earlier. In

particular, at each node of the recursion tree we build the data structure required by the second small opt
algorithm (Lemma 5.2), instead of the first small opt algorithm. Another change is that we stop recursing
when the current number of halfplanes n′ becomes at most n√

Bi
(which also ensures the the current number

of points m′ ≤ m
Bi

), for a parameter Bi to be set later. Following a similar analysis, we obtain update

time Õ(
√
Bi · mBi ·

√
n√
Bi

) = Õ(m
√
n

B
3/4
i

) (the cost is dominated by the lowest level) and construction time

Õ(Bi · n√
Bi

) = Õ(n
√
Bi). Recall that the whole data structure needs to be rebuilt after every Θ(mi

Nδ )

point insertions. By setting Bi =
m

8/5
i

n2/5 + 1 (verify that 1 ≤ Bi ≤ mi), the amortized update time is

Õ(m
√
n

B
3/4
i

+ n
√
Bi

mi
) = Õ( n

4/5

m
1/5
f

+ n
mf

).

For mi > n2/3, we use our partially dynamic solution, but this time using a common parameter zi in
the small opt algorithms at all nodes of the recursion tree. The construction time becomes T (m′, n′) =

Õ(m′ · n√
m′
· zi), and the update time becomes U(m′, n′) = Õ(

√
m′ ·

√
n′/
√
m′

zi
+ zi +

√
m′ · zi).

Adding the amortized cost for rebuilding (after every Θ(mi
Nδ ) point insertions), the amortized update time is

Õ(T (mi,n)
mi

+ U(mi, n)) = Õ(
m

1/4
i n1/2

√
zi

+ (
√
mi + n√

mi
) · zi), which is Õ(n2/3) by setting zi =

m
1/2
i

n1/3 ≥ 1.

Finally setting mf near n7/23 (up to N δ factors) to balance the Õ(m
4/3
f n1/3) and Õ( n

4/5

m
1/5
f

+ n
mf

) terms,

we obtain amortized update time O(n17/23+O(δ)).

THEOREM 5.2. There exists a data structure for O(1)-approximate dynamic 2D halfplane set cover with
amortized O(n17/23+δ) update time w.h.p. for any constant δ > 0, and can answer size and reporting
queries in O(1) and O(opt) time, respectively.

The exponent 17/23 < 0.74 is likely further improvable with more work. The main message is that



sublinear update time is achievable for the fully dynamic problem while supporting efficient reporting
queries.

6 Weighted Interval Set Cover
In this section, we present the first dynamic data structure with sub-linear update time and constant factor
approximation of weighted interval set cover. Let (S, I) be a dynamic weighted interval set cover instance
where S is the set of points in R and I is the set of weighted intervals. For each interval I ∈ I, we use
w(I) ≥ 0 to denote the weight of I . We assume that the point range of (S, I) is [0, 1], i.e., the points in S
are always in the range [0, 1]. We say an interval I ∈ I is two-sided if both of the endpoints of I lie in the
interior of the point range [0, 1], and one-sided if at least one endpoint of I is outside [0, 1].

We first observe that the approach we used for unweighted dynamic interval set cover (Section 2) can
be easily extended to the weighted case to obtain an nO(1)-approximation. Recall that in Section 2, we
partitioned [0, 1] into r connected portions J1, . . . , Jr each of which contains O(n/r) points in S and
O(n/r) endpoints of intervals in I. Then we defined Si = S∩Ji and Ii = {I ∈ I : I∩Ji 6= ∅ and Ji * I}.
Each (Si, Ii) was viewed as a dynamic interval set cover instance (called a sub-instance) with point range
Ji, and we recursively built a sub-structure Di for (Si, Ii). In Section 2, we construct a set cover Iappx for
(S, I) by distinguishing two cases: when the optimum is small, we compute Iappx using the output-sensitive
algorithm of Lemma 2.1; when the optimum is large, Iappx is constructed by (essentially) taking the union of
the solution maintained in the Di’s. The output-sensitive algorithm of Lemma 2.1, unfortunately, does not
work for the weighted case. Therefore, here we always construct Iappx in a way similar to that used for the
large-optimum case. Specifically, for each Ji, we find a minimum-weight interval I ∈ I such that Ji ⊆ I (if
it exist) and let wi be the cost of the set cover of (Si, Ii) maintained by Di. If wi ≤ w(I), we define I∗i as
the set cover of (Si, Ii) maintained by Di, otherwise we define I∗i = {I}. We then define Iappx =

⊔r
i=1 I∗i .

We observe the following fact.

FACT 6.1. If each sub-structure Di maintains a t-approximate set cover of the sub-instance (Si, Ii), then
Iappx is an rt-approximate set cover of the instance (S, I).

Proof. For i ∈ [r], let opti denote the cost of an optimal set cover of (Si, I). Clearly, opti ≤ opt for
all i ∈ [r] and thus

∑r
i=1 opti ≤ r · opt. We then show that cost(I∗i ) ≤ t · opti, which implies that

cost(Iappx) =
∑r

i=1 cost(I∗i ) ≤ rt · opt. If an optimal set cover of (Si, I) consists of a single interval in
I that covers Ji, then we have cost(I∗i ) = opti. Otherwise, an optimal set cover of (Si, I) is a set cover of
(Si, Ii), and hence cost(I∗i ) ≤ t · opti.

The above fact shows that the approximation ratio of our data structure satisfies the recurrence A(n) =
r · A(O(n/r)), which solves to A(n) = nO(1). Furthermore, as analyzed in Section 2, the data structure
can be updated in Õ(r) amortized time. Setting r to be a constant, we get an nO(1)-approximation data
structure for dynamic weighted interval set cover with Õ(1) amortized update time. In particular, we can
maintain an estimation opt∼ of the optimum opt of (S, I) in Õ(1) amortized update time, which satisfies
opt ≤ opt∼ ≤ nO(1)opt. With this observation, we now discuss our (3 + ε)-approximation data structure.
Since our data structure here is somehow involved (compared to the unweighted one in Section 2), we shall
first (informally) describe the underlying basic ideas, followed by the formal definitions and analysis.

6.1 Main ideas. The main reason why the data structure in Section 2 only achieves an nO(1)-
approximation is that it decomposes the entire problem into r sub-problems and combines the solutions
of the sub-problems in a trivial way. However, these sub-problems are not independent: one interval in I
can be used in all of the r sub-problems in the worst case. As such, each level of the recursion can possibly
increase the approximation ratio by a factor of r. In order to handle this issue, our first key idea is to combine
the solutions of the sub-problems using dynamic programming. To see why DP is helpful, let us assume at



this point that each sub-structure Di maintains an optimal solution for the sub-instance (Si, Ii). Under this
assumption, we show how DP can be applied to obtain a 3-approximate solution for the instance (S, I).

Let x1, . . . , xr+1 be the endpoints of J1, . . . , Jr sorted from left to right (so the endpoints of Ji are xi
and xi+1). Consider an interval I ∈ I. If I contains at least one point in {x1, . . . , xr+1}, we “chop” I into
at most three pieces as follows. Let i− (resp., i+) be the smallest (resp., largest) index such that xi− ∈ I
(resp., xi+ ∈ I). Then xi− and xi+ partition I into three pieces: the left piece (the part to the left of xi−),
the middle piece (the part in between xi− and xi+), and the right piece (the part to the right of xi+). We give
each piece a weight equal to w(I). Let I ′ be the resulting set of intervals after chopping the intervals in I,
i.e., I ′ consists of all pieces of the chopped intervals in I and all unchopped intervals in I. It is clear that
the optimum of the instance (S, I ′) is within [opt, 3opt], where opt is the optimum of (S, I).

Now we observe a good property of the interval set I ′: each interval in I ′ is either contained in Ji
for some i ∈ [r] (e.g., the unchopped intervals and the left/right pieces) or is equal to [xi− , xi+ ] for some
i−, i+ ∈ [r + 1] (e.g., the middle pieces); we call the intervals of the first type short intervals and those of
the second type long intervals. Let I ′long ⊆ I ′ be the set of long intervals and I ′i ⊆ I ′ be the set of short
intervals contained in Ji. Then in any set cover of (S, I ′), for each i ∈ [r], either Ji is covered by a long
interval or the points in Si are covered by short intervals in I ′i. Furthermore, in an optimal set cover of
(S, I ′), if the points in Si are covered by short intervals in I ′i, then those short intervals must be an optimal
set cover of (Si, I ′i). Note that the instance (Si, I ′i) is in fact equivalent to the sub-instance (Si, Ii), because
I ′i = {I ∩ Ji : I ∈ Ii} (where the weight of I ∩ Ji is equal to the weight of I) and the points in Si
are all contained in Ji. Thus, by assumption, an optimal set cover of (Si, I ′i) is already maintained in the
sub-structure Di. Based on this observation, we can use DP to compute an optimal set cover of (S, I ′) as
follows. For a long interval I = [xi− , xi+ ] ∈ I ′long, we write π(I) = i− − 1. For each i from 1 to r, we
compute an optimal set cover for (

⋃i
j=1 Sj , I ′). To this end, we consider how the points in Si are covered.

Clearly, we can cover the points in Si using a long interval I ∈ I ′long satisfying Ji ⊆ I . In this case, the best

solution is the union of {I} and an optimal set cover of (
⋃π(I)
j=1 Sj , I ′) which has already been computed as

π(I) < i. Alternatively, we can cover the points in Si using the short intervals in I ′i. In this case, the best
solution is the union of an optimal set cover for (

⋃i−1
j=1 Sj , I ′) and an optimal set cover for (Si, I ′i), where

the former has already been computed and the latter is maintained in the sub-structure Di. We try all these
possibilities and take the best solution found, which is an optimal set cover for (

⋃i
j=1 Sj , I ′). When the DP

procedure completes, we get an optimal set cover of (S, I ′), which in turn gives us a 3-approximation of an
optimal set cover of (S, I).

Although the above approach seems promising, there are two issues we need to resolve. First, the above
DP procedure takes O(r · |I ′long|) time, but |I ′long| = Ω(n) in the worst case. This issue can be easily
handled by observing that there are only O(r2) different intervals in I ′long. Indeed, every interval in I ′long
is equal to [xi− , xi+ ] for some i−, i+ ∈ [r + 1]. Among a set of identical intervals in I ′long, only the one
with the minimum weight is useful. Therefore, we only need to keep O(r2) minimum-weight intervals in
I ′long. Furthermore, these minimum-weight intervals can be computed in Õ(r2) time using a range-min data
structure without computing I ′long. Specifically, we identify each interval I = [a, b] ∈ I with a weighted
point (a, b) ∈ R2 with weight w(I). The minimum-weight [xi− , xi+ ] in I ′long is just the middle piece of the
minimum-weight interval whose left endpoint lies in Ji−−1 and right point lies in Ji++1, which corresponds
to the minimum-weight point in the rectangular range [xi−−1, xi− ]× [xi+ , xi++1]. Thus, if we maintain the
corresponding weighted points of the intervals in I in a dynamic 2D range-min data structure, the minimum-
weight intervals in I ′long can be computed in Õ(r2) time and the DP procedure can be done in Õ(r3) time.

The second issue is more serious. We assumed that each sub-structure Di maintains an optimal solution
for the sub-instance (Si, Ii). Clearly, this is not the case, as the sub-structures are recursively built and
hence can only maintain approximate solutions for the sub-instances. In this case, the approximation ratio
may increase by a constant factor at each level of the recursion: an interval in I is chopped into three pieces



and its left/right pieces can be further chopped by the sub-structures in lower levels. To handle this issue,
we need to prevent the sub-structures from chopping the intervals that are already chopped in higher levels
of the recursion. A key observation is the following: if an interval is chopped in the current level, then its
left/right pieces are both one-sided intervals in the sub-instances. Therefore, if we only chop the two-sided
intervals, we should be able to avoid the issue that an interval is chopped more than once. However, this
strategy brings us a new difficulty, i.e., handling the one-sided intervals when constructing the set cover.

We overcome this difficulty as follows. We call a one-sided interval in I left (resp., right) one-sided
interval if it covers the left (resp., right) end of the point range [0, 1]. First, observe that we need at most
one left one-sided interval and one right one-sided interval in our solution, simply because the coverage of
the left (resp., right) one-sided intervals is nested and thus only the rightmost (resp., leftmost) one in the
solution is useful. So a naı̈ve idea is to enumerate the left/right one-sided interval used in our solution.
(Clearly, we cannot afford to do this because there might be Ω(n) one-sided intervals. But at this point let
us ignore the issue about running time – we will take care of it later.) If L ∈ I and R ∈ I are the left and
right one-sided intervals in our solution, then the remaining task is to cover the points in S\(L∪R). It turns
out that we can still apply the DP approach above to compute a set cover for the points in S\(L ∪R) using
the intervals in I ′. To see this, suppose the right endpoint of L lies in Ji− and the left endpoint of R lies in
Ji+ . Then the points to be covered are those lying in the portions Ji−\L, Ji−+1, . . . , Ji+−1, Ji+\R. Same as
before, in a set cover of (S\(L ∪ R), I ′), for each portion Ji where i− < i < i+, either Ji itself is covered
by a long interval in I ′long or the points in Si are covered by short intervals in I ′i; in the latter case we can
use the solution of (Si, Ii) maintained in the sub-structure Di. The only difference occurs in the portions
Ji−\L and Ji+\R. We can either cover Ji− (resp., Ji+) using a long interval in I ′long or cover the points in
Si−\L (resp., Si+\R) using short intervals in I ′i− (resp., I ′i+). However, we do not have a good set cover for
(Si−\L, I ′i−) (resp., (Si+\R, I ′i+)) in hand: the solution maintained in the sub-structure Di− (resp., Di+) is
for covering all points in Si− (resp., Si+) and hence might be much more expensive than an optimal solution
of (Si−\L, I ′i−) (resp., (Si+\R, I ′i+)). We resolve this by temporarily inserting the interval L (resp., R)
with weight 0 to I ′i− (resp., I ′i+) and update the sub-structure Di− (resp., Di+). Note that with the weight-0
interval L (resp., R), the points in Si− ∩ L (resp., Si+ ∩ R) can be covered “for free” and thus the solution
maintained in Di− (resp., Di+) should be a good set cover of (Si−\L, I ′i−) (resp., (Si+\R, I ′i+)). Once we
have the set covers for the points in Ji−\L, Ji−+1, . . . , Ji+−1, Ji+\R using short intervals, we can use the
same DP as above to compute a set cover of (S\(L ∪ R), I ′), which together with L and R gives us a set
cover solution of (S, I). One can verify that if the sub-structures D1, . . . ,Dr are recursively built, then the
set cover we obtain is a 3-approximate solution of (S, I), essentially because when an interval is chopped
(into up to three pieces) in the current level, its left/right pieces become one-sided intervals in the next level
of recursion and can no longer cause any error.

Next, we discuss how to avoid enumerating all the left/right one-sided intervals. The key idea is that if
we have a set of left (resp., right) one-sided intervals whose weights are similar, say in a range [w, (1+ε)w],
then we can simply keep the one that has the maximum coverage, i.e., the rightmost (resp., leftmost) one,
and discard the others. Indeed, instead of using a left/right one-sided interval we discard, we can always use
the one we keep, which increases the total weight by at most εw. Using the estimation opt∼ of the optimum,
we can actually classify the one-sided intervals in I into Õ(1/ε) groups where the intervals in each group
have similar weights. In each group, we only keep the interval with the maximum coverage. In this way,
we obtain a set of Õ(1/ε) candidate one-sided intervals, and we only need to enumerate these candidate
intervals, which can be done much more efficiently.

6.2 The data structure. Now we are ready to formally present our data structure and analysis. Let
ε > 0 be the approximation factor. Our goal is to design a data structure D that maintains a (3 + ε)-
approximate set cover solution for the dynamic weighted interval set cover instance (S, I) and supports the
size, membership, and report queries to the solution. Let J1, . . . , Jr, S1, . . . , Sr, and I1, . . . , Ir be defined



in Section 2. For each i ∈ [r], we recursively build a sub-structure Di on the sub-instance (Si, Ii) with
approximation factor ε̃ = αε for some parameter α < 1. Next, we compute two sets L and R of one-sided
intervals in I as follows. Recall that we have the estimation opt∼ satisfying opt ≤ opt∼ ≤ nO(1)opt. Set
opt− = (ε/4) · opt∼/nc for a sufficiently large constant c so that we have opt− ≤ ((ε − αε)/4) · opt
assuming α = Ω(1) (which is the case when we choose α). Define δ0 = 0 and δi = opt− · (1 + ε̃/2)i−1 for
i ≥ 1. Let m be the smallest number such that δm ≥ (3 + ε)opt∼. Note that m = Õ(1

ε̃ log 1
ε̃ ). For i ∈ [m],

let Li ∈ I be the left one-sided interval with the rightmost right endpoint satisfyingw(Li) ∈ [δi−1, δi]. Then
we define L = {L1, . . . , Lm}. Similarly, let Ri ∈ I be the right one-sided interval with the leftmost left
endpoint satisfying w(Ri) ∈ [δi−1, δi], and define R = {R1, . . . , Rm}. The sets L and R can be computed
in Õ(m) time using a (dynamic) 2D range-max/range-min data structure. Indeed, if we map each interval
I = [a, b] ∈ I into the point (a,w(I)) ∈ R2 with weight b, then the interval Li just corresponds to the
maximum-weight point in the range (−∞, 0]× [δi−1, δi]. Besides L and R, we need another set Ilong ⊆ I
defined as follows. Recall that x1, . . . , xr+1 are the endpoints of J1, . . . , Jr sorted from left to right. For
an interval I ∈ I that contains at least one point in {x1, . . . , xr+1}, its middle piece refers to the interval
[xi− , xi+ ] where xi− (resp., xi+) is the leftmost (resp., rightmost) point in {x1, . . . , xr+1} that is contained
in I . For every i−, i+ ∈ [r + 1] where i− < i+, we include in Ilong the minimum-weight interval in I
whose middle piece is [xi− , xi+ ]. Note that |Ilong| = O(r2). Also, we can compute Ilong in Õ(r2) time
using a (dynamic) 2D range-min data structure. Indeed, if we map each interval I = [a, b] ∈ I into the point
(a, b) ∈ R2 with weight w(I), then the minimum-weight interval in I whose middle piece is [xi− , xi+ ] just
corresponds to the minimum-weight point in the range [xi−−1, xi− ]× [xi+ , xi++1].

Update of the sub-structures and reconstruction. Whenever the instance (S, I) changes, we need to
update the sub-structures for which the underlying sub-instances change. An insertion/deletion on S or I
can change at most two sub-instances. We also need to re-compute the sets L, R, and Ilong. As before, our
data structure will be periodically reconstructed. Specifically, the (i + 1)-th reconstruction happens after
processing ni/r updates from the i-th reconstruction, where ni denotes the size of (S, I) at the point of the
i-th reconstruction. (The 0-th reconstruction is just the initial construction of D.)

Constructing a solution. For each pair (L,R) where L ∈ L and R ∈ R, we construct a set cover I∗(L,R)
of (S, I) that includes L and R as follows. Suppose the right (resp., left) endpoint of L (resp., R) lies in
Ji− (resp., Ji+). If i− > i+, we simply let I∗(L,R) = {L,R}. If i− = i+, we temporarily insert the
intervals L and R with weight 0 to the sub-instance (Si, Ii) where i = i− = i+ and let I∗i be the set
cover of (Si, Ii ∪ {L,R}) maintained by Di excluding the weight-0 intervals L and R. We then define
I∗(L,R) = {L,R}∪I∗i . Now assume i− < i+. We temporarily insert the interval L (resp., R) with weight
0 to the sub-instance (Si− , Ii−) (resp., (Si+ , Ii+)) and let I∗i− (resp., I∗i+) be the set cover of (Si− , Ii−∪{L})
(resp., (Si+ , Ii+ ∪ {R})) maintained by Di− (resp., Di+) excluding the weight-0 interval L (resp., R).
For i− < i < i+, let I∗i be the set cover of (Si, Ii) maintained by Di. We construct I∗(L,R) using
the DP procedure described before. Let OPT[0, . . . , i+], I∗long[0, . . . , i+], P [0, . . . , i+] be three tables to be
computed. Set OPT[i] = 0, I∗long[i] = ∅, and P [i] = ∅ for all i < i−. For each i from i− to i+, we fill out
the entries OPT[i], I∗long[i], P [i] as follows. We find the interval I ∈ Ilong satisfying Ji ⊆ I that minimizes
OPT[π(I)]+w(I) where π(I) ∈ [r] is the index such that the left endpoint of the middle piece of I is xπ(I)+1

(or equivalently, the left endpoint of I contains in Jπ(I)). If OPT[π(I)] + w(I) ≤ OPT[i − 1] + cost(I∗i ),
then let OPT[i] = OPT[π(I)] + w(I), I∗long[i] = I∗long[π(I)] ∪ {I}, and P [i] = P [π(I)]. Otherwise, let
OPT[i] = OPT[i − 1] + cost(I∗i ), I∗long[i] = I∗long[i − 1], and P [i] = P [i − 1] ∪ {i}. Then we define
I∗(L,R) = {L,R} t I∗long t (

⊔
i∈P I∗i ) where I∗long = I∗long[i+] and P = P [i+]. It is clear that the cost of

I∗(L,R) is equal to w(L) +w(R) + OPT[i+]. Also, as one can easily verify, the DP procedure guarantees
the following property of I∗(L,R).



FACT 6.2. Let P ⊆ {i−, . . . , i+} and I ′ ⊆ I such that for any i ∈ {i−, . . . , i+}\P , Ji ⊆ I for some
I ∈ I ′. Then cost(I∗(L,R)) ≤ w(L) + w(R) + cost(I ′) +

∑
i∈P cost(I∗i ).

We construct I∗(L,R) for all L ∈ L and R ∈ R. (Clearly, we cannot afford to construct I∗(L,R)
explicitly as the size of I∗(L,R) can be large. So what we do is to only compute the DP tables, which
implicitly represents I∗(L,R).) Finally, among all I∗(L,R), we take the one of the smallest cost as the set
cover solution Iappx for (S, I).

Answering queries to the solution. How to store the solution Iappx for answering queries is essentially
the same as the unweighted case in Section 2. We explicitly calculate and store the cost of Iappx, and
the membership and reporting queries are handled by recursively querying the sub-structures. By the
same analysis as in Section 2, we can answer the size, membership, reporting queries in O(1), O(log n),
O(|Iappx| log n) time, respectively.

Correctness. It is easy to see that Iappx is a set cover of (S, I). In order to show w(Iappx) ≤ (3 + ε) · opt,
we introduce a new approximation criterion called (c1, c2)-approximation. We define the (c1, c2)-cost of a
set cover I∗ of (S, I) as the total weight of the one-sided intervals in I∗ times c1 plus the total weight of
the two-sided intervals in I∗ times c2. We say a set cover of (S, I) is a (c1, c2)-approximate solution if its
(normal) cost is smaller than or equal to the (c1, c2)-cost of any set cover of (S, I). We shall show that Iappx
is a (1+ ε

2 , 3+ε)-approximate solution for (S, I), which implies w(Iappx) ≤ (3+ε) ·opt. By induction, we
can assume that each sub-structure maintains a (1 + ε̃

2 , 3 + ε̃)-approximate solution for (Si, Ii). Consider a
set cover Iopt of (S, I) with minimum (1 + ε

2 , 3 + ε)-cost. Note that the (1 + ε
2 , 3 + ε)-cost of Iopt is at most

(3 + ε) · opt and hence the (normal) cost is at most (3 + ε) · opt. Let L and R be the left and right one-sided
intervals used in I∗. We have w(L) ≤ (3 + ε) · opt ≤ δm, and thus w(L) ∈ [δu−1, δu] for some u ∈ [m].
Similarly, w(R) ∈ [δv−1, δv] for some v ∈ [m]. By construction, we have L ∩ [0, 1] ⊆ Lu ∩ [0, 1] and
R ∩ [0, 1] ⊆ Rv ∩ [0, 1]. Thus, I ′opt = (Iopt\{L,R}) ∪ {Lu, Rv} is also a set cover of (S, I). Furthermore,
we notice the following.

FACT 6.3. The (1, 3 + ε̃)-cost of I ′opt is at most the (1 + ε
2 , 3 + ε)-cost of Iopt.

Proof. The (1, 3 + ε̃)-cost of I ′opt is equal to w(Lu) + w(Rv) + (3 + ε̃) · cost(Iopt\{L,R}). Clearly,
(3 + ε̃) · cost(Iopt\{L,R}) is the (0, 3 + ε̃)-cost of Iopt. We shall show that w(Lu) + w(Rv) is at most the
(1 + ε

2 , (ε− αε)/2)-cost of Iopt, which implies the claim in the fact. We have

w(Lu) ≤ (1 + ε̃/2) · w(L) + δ1 ≤ (1 + ε̃/2) · w(L) + ((ε− αε)/4) · opt,

and similarly w(Rv) ≤ (1 + ε̃/2) · w(R) + ((ε − αε)/4) · opt. It follows that w(Lu) + w(Rv) ≤
(1 + ε̃/2) · (w(L) +w(R)) + ((ε− αε)/2) · opt. Note that ((ε− αε)/2) · opt ≤ ((ε− αε)/2) · cost(Iopt)
and ((ε−αε)/2) · cost(Iopt) is the ((ε−αε)/2, (ε−αε)/2)-cost of Iopt. Also, (1 + ε̃/2) · (w(L) +w(R))
is at most the (1 + ε̃

2 , 0)-cost of Iopt. Thus, w(Lu) +w(Rv) is at most the (1 + ε
2 , (ε− αε)/2)-cost of Iopt.

Now it suffices to show that cost(I∗(Lu, Rv)) is at most the (1, 3 + ε̃)-cost of I ′opt. Suppose the right
(resp., left) endpoint of Lu (resp., Rv) lies in Ji− (resp., Ji+). If i− > i+, then I∗(Lu, Rv) = {Lu, Rv} and
hence cost(I∗(Lu, Rv)) is at most the (1, 0)-cost of I ′opt. The remaining cases are i− < i+ and i− = i+.
Here we only analyze the case i− < i+, because the other case i− = i+ is similar and simpler. Recall
that when computing I∗(Lu, Rv), we temporarily inserted the interval Lu (resp., Rv) with weight 0 to the
sub-instance (Si− , Ii−) (resp., (Si+ , Ii+)) and let I∗i− (resp., I∗i+) be the set cover of (Si− , Ii−∪{L}) (resp.,
(Si+ , Ii+ ∪ {R})) maintained by Di− (resp., Di+) excluding the weight-0 interval L (resp., R). Also, for
i− < i < i+, we let I∗i be the set cover of (Si, Ii) maintained by Di. Let P ⊆ {i−, . . . , i+} consist of all



indices i such that Ji * I for all I ∈ I ′opt and I ′ ⊆ I ′opt consist of all intervals that contain at least one point
in {x1, . . . , xr+1}. Now let us define another set cover I ′′opt = {Lu, Rv} t I ′ t (

⊔
i∈P I∗i ). Note that the

sets P and I ′ satisfy the condition in Fact 6.2. Thus, by applying Fact 6.2, we have

cost(I∗(Lu, Rv)) ≤ w(Lu) + w(Rv) + cost(I ′) +
∑
i∈P

cost(I∗i ) = cost(I ′′opt).

With the above inequality, it suffices to show that cost(I ′′opt) is at most the (1, 3+ε̃)-cost of I ′opt. Equivalently,
we show that cost(I ′) +

∑
i∈P cost(I∗i ) is at most the (0, 3 + ε̃)-cost of I ′opt\{Lu, Rv}.

Let I ′i = I ′opt ∩ Ii for all i ∈ P . Note that I ′i is a set cover of (Si, Ii) for i ∈ P\{i−, i+}. By
assumption, cost(I∗i ) is at most the (1 + ε̃/2, 3 + ε̃)-cost of I ′i for i ∈ P\{i−, i+}. Also, it is easy to see
that if i− ∈ P (resp., i+ ∈ P ), then cost(I∗i−) (resp., cost(I∗i+)) is at most the (1 + ε̃/2, 3 + ε̃)-cost of I ′i−
(resp., I ′i+), because I ′i− ∪L (resp., I ′i+ ∪R) is a set cover of (Si− , Ii− ∪ {L}) (resp., (Si+ , Ii+ ∪ {R})) of
the same cost as I ′i− (resp., I ′i+) when w(L) = 0 (resp., w(R) = 0). Let costi be the (1 + ε̃/2, 3 + ε̃)-cost
of I ′i for i ∈ P . By the above observation, we have

∑
i∈P cost(I∗i ) ≤

∑
i∈P costi. Each interval in I ′

belongs to (at most) two sub-instances as one-sided intervals, so its weight is counted in
∑

i∈P costi with a
multiplier at most 2 · (1 + ε̃/2) = 2 + ε̃. Each interval in I ′opt\(I ′ ∪ {Lu, Rv}) belongs to one sub-instance,
so its weight is counted in

∑
i∈P costi with a multiplier at most 3 + ε̃. As a result, the weight of each

interval in I ′opt\{Lu, Rv} is counted in cost(I ′) +
∑

i∈P costi with a multiplier at most 3 + ε̃. Because
cost(I ′) +

∑
i∈P cost(I∗i ) ≤ cost(I ′) +

∑
i∈P costi, we know that cost(I ′) +

∑
i∈P cost(I∗i ) is at most

the (0, 3 + ε̃)-cost of I ′opt\{Lu, Rv}. It follows that cost(I ′′opt) is at most the (1, 3 + ε̃)-cost of I ′opt, which
in turn implies Iappx is a (1 + ε

2 , 3 + ε)-approximate solution of (S, I).

Update time. We first observe that, except recursively updating the sub-structures, the (amortized) time
cost of all the other work is Õ(r3m2). Specifically, computing the sets L and R can be done in Õ(m) time
and computing Ilong takes Õ(r2) time. Using DP to compute each I∗(L,R) can be done in O(r3) time, and
hence constructing Iappx takes O(r3m2) time. Storing Iappx for answering the queries can be done in Õ(r)

time. The reconstruction of the data structure takes Õ(r) amortized time. Next, we consider the recursive
updates of the sub-structures. The depth of the recursion is O(logr n). If we set α = 1 − 1/ logr n, the
approximation factor is Θ(ε) in any level of the recursion. When inserting/deleting a point or a interval,
we need to update at most two sub-structures whose underlying sub-instances change. Besides, when
computing I∗(L,R), we need to temporarily insert L and R with weight 0 to two sub-instances (and delete
them afterwards), which involves a constant number of recursive updates. So the total number of recursive
updates is O(m2) = Õ((1

ε̃ log 1
ε̃ )2) = Õ((1

ε log 1
ε )2). Therefore, if we use U(n) to denote the update time

when the instance size is n, we have the recurrence

U(n) = Õ

((
1

ε
log

1

ε

)2
)
· U(O(n/r)) + Õ

(
r3 ·

(
1

ε
log

1

ε

)2
)
,

which solves to U(n) = (log n · 1
ε log 1

ε )O(logr n) · r3. By setting r = 2
√

logn log logn+
√

logn log(1/ε), we have

U(n) = 2O(
√

logn log logn+
√

logn log(1/ε)).

THEOREM 6.1. There exists a dynamic data structure for (3 + ε)-approximate weighted interval set cover
with 2O(

√
logn log logn+

√
logn log(1/ε)) amortized update time and Õ(n) construction time, which can answer

size, membership, and reporting queries in O(1), O(log n), and O(k log n) time, respectively, where n is
the size of the instance and k is the size of the maintained solution.



7 Weighted Unit-Square Set Cover
In this section, we present the first sublinear result for dynamic weighted unit-square set cover, which gets
O(1)-approximation. It suffices to consider dynamic weighted quadrant set cover, since the reduction from
dynamic unit-square set cover to dynamic quadrant set cover [2] still works in the weighted case.

Let (S,Q) be a dynamic weighted quadrant set cover instance where S is the set of points in R2 and Q
is the set of weighted quadrants, and let n = |S|+ |Q| denote the instance size. We use w(q) to denote the
weight of a quadrant q, and w(Q) for the total weight of a set Q of quadrants. W.l.o.g., assume the points
in S lie in the point range [0, 1]2. For simplicity, we assume the weights are positive integers bounded by
U = poly(n).

Our idea is based on our unweighted solution for quadrant set cover as explained in Sec. 3, which
recursively solve for smaller sub-instances and properly combine them to obtain the global solution. In
particular, we will again partition the space into r× r rectangular grid cells. However, our previous solution
relies on an output-sensitive algorithm (Lemma 3.1), but such algorithm is not known in the weighted case.
Therefore, we will introduce some new ideas.

Data structures. We construct a data structure D that supports a more powerful type of query:

Given a query rectangle t, compute an O(1)-approximate weighted set cover for the points in
S ∩ t, using the quadrants in Q.

For a quadrant q ∈ Q intersecting a rectangular range Γ, we say it is trivial (resp., nontrivial) with
respect to Γ if the vertex of q is outside (resp., inside) Γ. Similar to the observation in the unweighted
case, our idea is that it suffices to only keep a small subset of the trivial quadrants. In particular, among
all trivial quadrants with weights ∈ [1, 2i), there are (at most) four maximal quadrants in Γ, which we
denote asMΓ,i. (In the special case that there exist quadrants with weight in [1, 2i) that completely contain
Γ, MΓ,i will contain any one among them.) We store M[0,1]2,i for i = 1, . . . , logU , and only keep the
nontrivial quadrants with respect to [0, 1]2 in Q. The intuition is suppose among all trivial quadrants in
the optimal solution Qopt for Γ, the maximum weight is w, then for an O(1)-approximate solution we can
just includeMΓ,dlogwe, and then compute an O(1)-approximate solution in the complement region, using
only the nontrivial quadrants. The union of the quadrants inMΓ,dlogwe will contain the union of all trivial
quadrants in Qopt.

To build the data structure D, we partition the space into r × r (nonuniform) grid cells using r − 1
horizontal/vertical lines, such that each row (resp., column) has size O(nr ), where the size of a range Γ is
defined as the total number of points in S and vertices of quadrants inQ inside Γ. Let �i,j be the cell in the
i-th row and j-th column for (i, j) ∈ [r]2. We define sub-instances for the rows/columns of the partition.
In particular, let Ri =

⋃r
j=1�i,j denote the i-th row and Cj =

⋃r
i=1�i,j denote the j-th column of the

partition. Create a sub-instance (Si,•,Qi,•) for each row i, where Si,• = S∩Ri contains all points in the row,
and Qi,• contains all quadrants that are nontrivial with respect to the row. Similarly, create a sub-instance
(S•,j ,Q•,j) for each column j. Recursively construct the data structures Di,• for each of the r rows, and
similarly D•,j for each of the r columns. Also store the sets of maximal quadrantsMRi,k andMCj ,k in the
rows and columns, for k = 1, . . . , logU .

Let �i,j,k,l =
⋃k
i′=i

⋃l
j′=j �i′,j′ denote the grid-aligned rectangular region from row i to k and from

column j to l. For each of these O(r4) grid-aligned rectangles �i,j,k,l, we also maintain an (implicit)
O(1)-approximate set cover solution Qappx(�i,j,k,l) within it, so that its weight w(Qappx(�i,j,k,l)) can be
retrieved in O(1) time.

Dynamic programming. In the following, we show that given the substructures D•,j for the columns
that support rectangular ranged queries, we can efficiently compute an O(1)-approximate solution
Qappx(�i,j,k,l) for each of the O(r4) grid-aligned rectangles �i,j,k,l, using dynamic programming.



Figure 5: Decomposing a set cover solution into four subsets, based on the four directions of the quadrants.
The boundary of the union of each of these subsets forms an orthogonal staircase curve.

Consider any grid-aligned rectangle �i,j,k,l. Any set cover solution Qsol(�i,j,k,l) can be decom-
posed into four subsets QNW

sol ,QSW
sol ,QNE

sol ,QSE
sol , based on the four directions of the quadrants (north-

west/southwest/ northeast/southeast). The boundary of the union of each of these subsets forms an or-
thogonal staircase curve (as shown in Figure 5), which we denote as UNW

sol , U
SW
sol , U

NE
sol , U

SE
sol , respectively.

Let `0, . . . , `r denote the r + 1 vertical lines that define the grid (including the boundary), and obtain
vertical line `−i by slightly shifting `i to the left. We use f [i0][q↖ ][q↙ ][q↗ ][q↘ ] to denote the weight of an
O(1)-approximate set cover Qappx that covers all points in �i,j,k,l and to the left of `i0 , such that when we
decompose Qappx into four orthogonal staircase curves UNW

appx, U
SW
appx, U

NE
appx, U

SE
appx, `−i0 intersects them at

quadrants q↖ , q↙ , q↗ , q↘ , respectively. (For the special case that `′i0 does not intersect UNW
appx, we let q↖ to

be a special “null” element. Similarly for q↙ , q↗ , q↘ .)
We decompose each quadrant q ∈ Q into two parts: if q has direction west (resp., east), the long part is

aligned with the rightmost (resp., leftmost) vertical grid line that intersects q, and the short part covers the
remaining space, which is fully contained in a column (i.e., nontrivial with respect to the column). In this
way, each quadrant is duplicated twice, so the approximation factor will multiply by at most 2.

For each vertical grid line `i, among all long quadrants aligned with `i, it suffices to keep the
lowest (resp., highest) quadrant with direction north (resp., south) with weight ∈ [2k, 2k+1), for each
k = 1, . . . , logU . We keep O(r logU) long quadrants in total. The approximation factor will only multiply
by a constant.

To compute f [i0][q′
↖

][q′
↙

][q′
↗

][q′
↘

] (corresponding to the set cover solutionQ′appx) where the quadrants
q′
↖
, q′
↙
, q′
↗
, q′
↘

are long (it suffices to only consider the long quadrants after the decomposition, since `i0 is
a grid line), we guess that the four orthogonal staircase curves U ′NW

appx , U
′SW
appx, U

′NE
appx, U

′SE
appx corresponding to

Q′appx intersect `−i0−1 at the four long quadrants q↖ , q↙ , q↗ , q↘ . The set cover solutionQappx corresponding
to f [i0−1][q↖ ][q↙ ][q↗ ][q↘ ] already covers all points to the left of the vertical line `i0−1, so to obtainQ′appx,
we only need to cover the points between the two grid lines `i0−1 and `i0 . In particular, the region within
�i,j,k,l and between the vertical lines `i0−1 and `i0 that are not covered by the long quadrants q′

↖
, q′
↙
, q′
↗
, q′
↘

is a rectangle t′, and we need to cover t′ using the short quadrants in column i0.
In other words, f [i0][q′

↖
][q′
↙

][q′
↗

][q′
↘

] can be computed by the formula

f [i0][q′
↖

][q′
↙

][q′
↗

][q′
↘

] = min
q↖ ,q↙ ,q↗ ,q↘

(
f [i0 − 1][q↖ ][q↙ ][q↗ ][q↘ ] + w(Qappx(t′))

+
∑

d∈{↖,↙,↗,↘}

I[q′d 6= qd] · w(q′d)
)
.

The weight of an O(1)-approximate set cover solution Qappx(t′) for the rectangle t′ can be obtained



by querying the column substructure D•,i0 . The final solution is the one with minimum weight among
f [r][q↖ ][q↙ ][q↗ ][q↘ ] for all possible long quadrants q↖ , q↙ , q↗ , q↘ .

We maintain pointers during the dynamic programming process about how the minimum weight is
obtained, so that the actual solution can be easily recovered.

To compute the solution for each grid-aligned rectangle �i,j,k,l we need to perform (r logU)O(1)

queries, since there are only O(r logU) choices for each of the long quadrants q′
↖
, q′
↙
, q′
↗
, q′
↘

. There are
O(r4) such grid-aligned rectangles, so the total running time is (r logU)O(1) ·Q(O(nr )), which is O(nO(δ))
as calculated later.

Construction time. Let T (n) denote the construction time for the data structure D when the instance size
is n. The construction time satisfies the recurrence

T (n) =

2r∑
i=1

T (ni) + Õ(n) +O(nO(δ)),

where ni = O(nr ) is the instance size of a row/column, and we have
∑2r

i=1 ni ≤ 2n. Set r = N δ where
N is the global upper bound on the instance size and δ > 0 is an arbitrarily small constant. The recurrence
solves to T (n) = Õ(n).

Query. Given a query rectangle t, we first guess that the maximum weight among all trivial quadrants
with respect to [0, 1]2 used in the optimal solution Qopt(t) is within [2k−1, 2k), and include M[0,1]2,k

in the approximate solution Qappx(t). Let t′ denote the complement region of the union of quadrants in
M[0,1]2,k, it suffices to query for the rectangular region t0 = t∩ t′. There are O(logU) possible choices for
k = 1, . . . , logU , so we need to perform O(logU) queries and then take the minimum among the results.

The query rectangle t0 can be decomposed into a grid-aligned rectangle �i,j,k,l and at most four
rectangles L←, L→, L↑, L↓ which are contained within a row/column, as shown in Figure 1. To compute the
approximate set coverQappx(t0), it suffices to take the union of the approximate solutions within�i,j,k,l and
L←, L→, L↑, L↓, i.e., letQappx(t0) = Qappx(�i,j,k,l)∪Qappx(L←)∪Qappx(L→)∪Qappx(L↑)∪Qappx(L↓).
The approximation factor will only grow by a factor of 5.
Qappx(�i,j,k,l) has already been maintained, so we can retrieve its weight in O(1) time. To compute

Qappx(L↑) (and similarly for L←, L→, L↓), we perform a query on the rectangle L↑ using the substructure
Di−1,• for row i− 1, since the rectangle L↑ is contained in row i− 1.

Let Q(n) denote the query time for instance size n. It satisfies the recurrence

Q(n) = O(logU) ·
(

4 ·Q
(
O
(n
r

))
+O(1)

)
. (7.2)

The recursion depth is O(logr n) = O(1
δ ) = O(1), so we have Q(n) = O(logU)O( 1

δ
) = logO(1) n.

The approximation factor grows by a constant factor at each level, so the whole approximation factor is
O(1)O( 1

δ
) = O(1).

Update. When we insert/delete a quadrant q, recursively update the substructures Di∗,• and D•,j∗ for the
i∗-th row and j∗-th column that contain the vertex of q. Update the sets of maximal quadrantsMRi,k and
MCj ,k in the rows and columns, for i, j ∈ [r] and k = 1, . . . , logU . Recompute the O(1)-approximate
set cover solutions Qappx(�i,j,k,l) for each of the O(r4) grid-aligned rectangles �i,j,k,l, using dynamic
programming in (r logU)O(1) ·Q(O(nr )) time.

When we insert/delete a point p, recursively update the substructures Di∗,• and D•,j∗ for the i∗-th row
and j∗-th column that contain p, and also recompute Qappx(�i,j,k,l) for each of the O(r4) grid-aligned
rectangles �i,j,k,l.



We reconstruct the entire data structure after every n
r updates, so that the row and column sizes are

always bounded by O(nr ). The amortized cost per update is T (n)
n/r = Õ(r).

Let U(n) denote the update time for instance size n. It satisfies the recurrence

U(n) = 2U
(
O
(n
r

))
+ (r logU)O(1) · Q

(
O
(n
r

))
+ Õ(r),

which solves to U(n) = O(nO(δ)).

THEOREM 7.1. There exists a dynamic data structure for O(1)-approximate weighted unit-square set
cover with O(nδ) amortized update time and Õ(n) construction time, for any constant δ > 0 (assuming
polynomially bounded integer weights).

Remark. It is possible to remove the assumption of polynomially bounded weights with more work. One
way is to directly modify the recursive query algorithm, as we now briefly sketch:

First, we solve the approximate decision problem, of deciding whether the optimal value is approxi-
mately less than a given value W0. To this end, it suffices to consider O(log n) choices for k instead of
O(logU) (namely, k = dlog W0

cn e, . . . , dlogW0e for a large constant c), since replacing a quadrant with
weight less than W0

cn with another one weight less than W0
cn causes only additive error O(W0

cn ), which is tol-
erable even when summing over all O(n) quadrants. (We don’t explicitly store the maximal quadrants in
MΓ,i for all i = 1, . . . , logU , but can generate them on demand by orthogonal range searching.)

Having solved the approximate decision problem, we can next obtain an O(n)-approximation of the
optimal value, by binary search on the quadrant weights (since the total weight in the optimal solution is
within anO(n) factor of the maximum quadrant weight in the optimal solution); this requiresO(log n) calls
to the decision oracle. Knowing an O(n)-approximation, we can finally obtain an O(1)-approximation, by
another binary search; this requires O(log log n) additional calls to the decision oracle. Thus, we get the
same recurrence as Equation 7.2, but with logU replaced by logO(1) n. We still obtain O(nδ) update time
in the end.

8 Conclusion and Future Work
We have described improved dynamic data structures for various versions of the geometric set cover
problem, and in particular, achieving very low (polylogarithmic or no(1)) update time for 1D intervals and
2D unit squares, in both the unweighted and weighted settings. Besides obtaining further improvements of
our update time bounds, there are a number of interesting directions to explore for future work:

• We have given sublinear results for unweighted 2D halfplanes with regards to reporting queries, but
could similar results be obtained for unweighted 3D halfspaces and 2D disks? As mentioned, previous
work by Chan and He [15] can only handle size queries.

• Are there data structures with sublinear update time for the dynamic hitting set problem for ranges
such as 2D arbitrary squares? We can use duality to reduce hitting set to set cover in the unit square
case, but not in the arbitrary square case (not even for “nearly unit” squares with side lengths in
[1, 1 + ε]).

• Are there data structures with sublinear update time for 2D arbitrary rectangles with polylogarithmic
approximation factor? (Demanding constant approximation factor would be unreasonable, because
of the lack of known efficient static O(1)-approximation algorithms, but there are static O(log n)-
approximation algorithms with near-linear running time for 2D rectangles [5].)



• In view of the recent developments in fine-grained complexity and reductions [30], could one prove
nΩ(1) conditional lower bounds on the update time for dynamic approximate geometric set cover, e.g.,
for arbitrary squares or other ranges, based on the conjectured hardness of standard problems such as
3SUM, all-pairs shortest paths, or orthogonal vectors?
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