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Abstract

In this paper we study the computational complexity of solving a class of block structured integer
programs (IPs) - so called multistage stochastic IPs. A multistage stochastic IP is an IP of the form
max{cTx | Ax = b, l ≤ x ≤ u, x integral} where the constraint matrix A consists of small block matrices
ordered on the diagonal line and for each stage there are larger blocks with few columns connecting the blocks
in a tree like fashion. Over the last years there was enormous progress in the area of block structured IPs. For
many of the known block IP classes - such as n-fold, tree-fold, and two-stage stochastic IPs, nearly matching
upper and lower bounds are known concerning their computational complexity. One of the major gaps that
remained however was the parameter dependency in the running time for an algorithm solving multistage
stochastic IPs. Previous algorithms require a tower of t exponentials, where t is the number of stages, while
only a double exponential lower bound was known. In this paper we show that the tower of t exponentials is
actually not necessary. We can show an improved running time for the algorithm solving multistage stochastic

IPs with a running time of 2(d‖A‖∞)O(d3t+1)

·poly(d, n), where d is the sum of columns in the connecting blocks
and n is the number of blocks on the lowest stage. Hence, we obtain the first bound by an elementary function
for the running time of an algorithm solving multistage stochastic IPs. In contrast to previous works, our
algorithm has only a triple exponential dependency on the parameters and only doubly exponential for every
constant t. By this we come very close the known double exponential bound (based on the exponential time
hypothesis) that holds already for two-stage stochastic IPs, i.e. multistage stochastic IPs with only two stages.

The improved running time of the algorithm is based on new bounds for the proximity of multistage
stochastic IPs. The idea behind the bound is based on generalization for a structural lemma originally used for
two-stage stochastic IPs. While the structural lemma requires iteration to be applied to multistage stochastic
IPs, our generalization directly applies to inherent combinatorial properties of multiple stages. Already a
special case of our lemma yields an improved bound for the Graver Complexity of multistage stochastic IPs.

1 Introduction

We consider (integer) linear programs P = (x,A, b, c) of the form

min ctx

Ax = b

x ≥ 0

(1.1)

for a constraint matrix A ∈ Zm×n with a specific structure, a right hand side vector b ∈ Zm, an optimization
goal c ∈ Zn, and a vector x of n variables. The constraint matrix A has non-zero entries in a structure similar
to Figure 1. The matrix is structured in blocks of multiple stages with the following properties. Blocks of the
same stage have distinct rows and columns and for any lower stage block the set of rows is a subset of the rows
of a block in the next higher stage. The subset relation on the rows induces a tree-like structure as indicated by
arrows.

A famous special case of multistage stochastic IPs are two-stage stochastic IPs, where the constraint matrix
A consists only of two stages, a vertical line of block matrices A(i) ∈ Zt×r and a diagonal line of block matrices
B(i) ∈ Zt×s, i.e.
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Figure 1: The structure of nonzero entries in a multistage stochastic matrix is denoted by filled rectangles. Rows
of the blocks are connected by a tree indicated by arrows.

A =


A(1) B(1) 0 · · · 0

A(2) 0 B(2) . . .
...

...
...

. . .
. . . 0

A(n) 0 · · · 0 B(n)

 .

Multistage stochastic IPs appear in many real-world problems especially when problems involve uncertainty
over time. This particular matrix structure models “decisions that occur at different points in time so that
the problem can be viewed as having multiple stages of observations and actions” [2]. Typically either there
are decisions required before all information is revealed [10, 11] or postponing decisions increases potential
costs [28, 19]. A parent block models a decision and its child blocks model all scenarios that might occur in
future. The quality of the decision made in a parent block depends on the occurring scenario. The areas of
application include for example worker scheduling [19, 3], project planning [26, 29], routing problems [10, 11, 14],
and facility location planning [28].

1.1 Related Results Over the last years there was enormous progress in the development of algorithms solving
block IPs, see Table 1 for an overview. In the theoretical context there are numerous problems which can be
modeled as a block IP and solved more efficiently by algorithms solving the block IP. Faster algorithms for these
block structured IPs thus immediately improve the running time for other problems. Applications include string
algorithms [22], social choice games [23], scheduling [16, 21, 17], and bin packing problems [25].

Particularly useful for modelling other problems has been a block structure called n-fold. This block structure
considers the transpose of two-stage stochastic matrices, i. e. the constraint matrix consists of a horizontal line of
n blocks A(i) ∈ Zr×t and a diagonal line of n blocks B(i) ∈ Zs×t underneath. Algorithms for n-fold IPs are single
exponential in the block dimensions, see e. g. [5]. Though closely related, n-fold IPs and two-stage stochastic
IPs greatly differ in their complexity. In contrast to the single exponential dependency for n-folds, a double
exponential lower bound for the dependency on the block dimensions of two-stage stochastic IPs was recently
shown under the exponential time hypothesis [15]. The lower bound is complemented by algorithms with double
exponential dependency on the block dimensions [20, 9, 6].

The transpose of multistage stochastic matrices are treefold matrices. Multistage stochastic IPs and treefold
IPs are tree-like structured generalizations of two-stage stochastic IPs and n-fold IPs, respectively. We denote the
number of stages by t and the number of blocks on the lowest stage by n. In multistage stochastic matrices (treefold
matrices) we denote the sum of column (row) dimensions for each stage by d and the number of rows (columns) of
the lowest stage by r. Recent work [8] has shown that for treefold IPs the running time dependency on the block
sizes, largest matrix entry, and number of stages behaves similarly than for n-fold IPs. It is double exponential
but the second exponent only depends on the number of stages and thus the bound is single exponential for any
fixed number of stages. In contrast, prior results for two-stage and multistage stochastic IPs had a greater gap
in their algorithmic complexity. The current best algorithm [6] for multistage stochastic IPs involves a tower of
exponents, where the height of the tower is the number of stages. In particular, for any fixed number k of stages
the dependency on the block dimensions and largest matrix entry is k-fold exponential.



Overview of results for block IPs

n-fold Two-stage stochastic

∆O(t(rs+st)) · n3ϕ [13] f1(r, s, t,∆) · poly(n, ϕ) [12]

(rs∆)O(rs2+sr2) · (nt)2ϕ [8] (rt∆)(rt∆)O(r2t) · (ns)2 log(ns)ϕ [20]

∆O(rs+sr2) · (nt)3 + ϕ [24] 2(2∆)O(r2s+rs2) · n log3(n)ϕ [9]

(rs∆)O(r2s+s2) · nt logO(1)(nt)ϕ2 [18] 2(2∆)O(r2s+rs2) · n2 log5 n [9]

∆O(r2s+rs2) · nt log(nt)ϕ [9] 2(2∆)O(r(r+s)) · nt logO(rs)(nt) [6]

∆O(r2s+rs2) · (nt)2 log3(nt) [9]

(rs∆)O(r2s+rs2) · (nt)1+o(1) [5]

Treefold Multistage stochastic

f2(t, d, r) · n3ϕ [4] f3(d,∆, t) · n3ϕ [1]

(d∆)O(dt) · (rn)2 log2(rn)ϕ [8] f4(d, r,∆, t) · (nd)2ϕ log2(nd) [20]

(d∆)O(dt) · (rn)2 log(rn)ϕ [9] f4(d, r,∆, t) · n2ϕ[9]

(d∆)O(dt) · (rn)2 log3(rn) [9] f4(d, r,∆, t) · n3 log2 n[9]

f5(d,∆, t) · rn logO(2d)(rn) [6]

Table 1: In the running times, ∆ denotes the maximum absolute entry of constraint matrix A and ϕ denotes the
input length. The functions f1 and f3 are computable and lower bounded by ackerman’s function. Function f2 is
computable. The functions f4 and f5 involve a tower of exponents of height t.

2 Our Contribution

The main result of our paper is to show that multistage stochastic IPs can be solved in time 2(d∆)O(d3t+1) ·(rn)1+o(1).

By this we come very close the known double exponential lower bound of 22o(d) · poly(n) [15] (based on the
exponential time hypothesis) that holds already for two-stage stochastic IPs. Our main ingredient to show the
improved running time is by a generalization of a structural lemma of Klein which is the key component in [20]
for the complexity bound of two-stage stochastic IPs.

Lemma 2.1. ([20]) Given multisets T1, . . . , Tn ⊂ Zd≥0 where all elements τ ∈ Ti have bounded size ‖τ‖∞ ≤ ∆.
Assuming that the total sum of all elements in each set is equal, i. e.∑

τ∈T1

τ = . . . =
∑
τ∈Tn

τ

then there exist nonempty submultisets S1 ⊆ T1, . . . , Sn ⊆ Tn of bounded size |Si| ≤ (d∆)O(d∆d2 ) such that∑
s∈S1

s = . . . =
∑
s∈Sn

s.

The structural lemma is also applied in state-of-the-art algorithms for multistage stochastic IPs [20, 6, 9]. Simply
put, the lemma describes the behavior for one stage in the multistage stochastic IP. Hence, current bounds iterate
the lemma over the number of stages to obtain a bound for multistage stochastic IPs. In every iteration the
bound grows by one exponent. This iterative application of the lemma seemed rather natural which is why many
people in the community believed that a tower of exponents in the running time is actually necessary to solve
multistage stochastic IPs.

Our main conceptual result is Lemma 4.1, a generalization of the structural lemma by Klein. We generalize
the lemma to cope directly with arbitrary many stages. We want to state an informal version of the lemma here.
For this purpose we define partitions P0, . . . , Pt of integral numbers in the interval [1, n] and any partition Pj is
a refinement of partition Pj−1, i. e. for every i ∈ Pj there exists i′ ∈ Pj−1 such that i ⊂ i′. For each partition we
assign a subset of entries of {1, . . . , d}, such that partition Pi is assigned entries {s0+. . .+si−1+1, . . . , s0+. . .+si},



Figure 2: An example for interval partitions with consecutive refinement, where the intervals on every horizontal
level are a partition of {1, . . . , 100}.

with d = s0 + . . .+ st. See Figure 2 for an example. By p(τ, i) we denote the projection of vector τ ∈ Zd to the
respective entries. In contrast to the above Lemma, we do not demand equality throughout the entire sum of
vectors but only within each interval in the respective vector entries of the partition.

Lemma 2.2. Given multisets T1, . . . , Tn ⊂ Zd≥0 where all elements τ ∈ Ti have bounded size ‖τ‖∞ ≤ ∆ and
partitions P0, . . . , Pt as described above. Assuming that the total sum of all elements in each set is equal in the
assigned entries, i. e.∑

τ∈T`

p(τ, i) = . . . =
∑
τ∈Tr

p(τ, i) for every interval I = {`, . . . , r} in partition Pi

then there exist submultisets S1 ⊆ T1, . . . , Sn ⊆ Tn, which are not all empty, of bounded size |Si| ≤ 2(d∆)O(d3t)

such that ∑
s∈S`

p(s, i) = . . . =
∑
s∈Sr

p(s, i) for every interval I = {`, . . . , r} in partition Pi.

Using this Lemma, we can show an improved bound for the size of Graver elements of a multistage stochastic
matrix A. A Graver element is an element of kerZ(A) that can not be written as the sum of two non-zero and
sign-compatible vectors in the kernel.

Corollary 2.1. Let y be a Graver element of multistage stochastic matrix A. Then it is bounded by

‖y‖∞ ≤ 2(d∆)O(d3t+1)

.

Using the algorithm of Eisenbrand et al. [9] in combination with the improved bound for the size of Graver

elements yields an algorithm for solving multistage stochastic IPs with a running time of 2(d∆)O(d3t+1) ·n2ϕ, where
ϕ is the encoding length of the instance. The IP is of the form (1.1), where additionally upper and lower bounds
on the variables are allowed.

Using the Lemma, we obtain furthermore a statement regarding the proximity of multistage stochastic IPs.
An IP has proximity ρ if for every optimal solution x∗ to the linear relaxation of the IP there exists an optimal
integral solution x such that ‖x− x∗‖∞ ≤ ρ. Cslovjecsek et al. [6] generalized the structural lemma of Klein such
that the sum of multisets is allowed to differ slightly in the assumption. Using their generalization, they bounded
the proximity of two-stage and multistage stochastic IPs. We show that a similar generalization of our main
Lemma 2.2 holds. By this we derive improved proximity bound for multistage stochastic IPs of the form (1.1).

Lemma 2.3. The proximity of multistage stochastic IPs is bounded by ≤ 2(d∆)O(d3t+1)

.

Our proximity bound combined with the algorithmic framework of Cslovjecsek et al. [6] yields our main
theorem.

Theorem 2.1. A multistage stochastic IP of the form (1.1) can be solved in time

2(d∆)O(d3t+1)

· (rn)1+o(1).



3 Preliminaries

For a linear program P = (x,A, b, c) let SolR(P ) and SolZ(P ) denote the sets of fractional and integral solutions,
respectively. Denote by col(A) and row(A) the set of column and row indices of a (sub-)matrix A, respectively.

Multistage stochastic matrices. We define the shape of the constraint matrix A of a multistage stochastic
IP, which we will call a multistage stochastic matrix. The constraint matrix consists of blocks A(1), . . . , A(`) for
some ` ∈ Z≥0, where each block uses a unique set of columns of A. The matrix A is multistage stochastic if

• there is a block Ai0 such that for every 1 ≤ i ≤ ` we have row(A(i)) ⊆ row(A(i0)) and

• for every two blocks A(i), A(j) one of the following three conditions row(A(i)) ⊆ row(A(j)), row(A(i)) ⊇
row(A(j)), or row(A(i)) ∩ row(A(j)) = ∅ is fulfilled.

Multistage tree. We define a multistage tree T (A) = (V,E) for any multistage matrix A. For every block
A(i) there is a vertex v = col(A(i)) ∈ V . There is an edge (u, v) ∈ E if u is the set of columns of A(i), v is the set
of columns of A(j), and row(A(i)) ⊇ row(A(j)).

This definition is closely related to concepts of primal treedepth of a matrix. If we consider a primal
td-decomposition of the primal graph of A, then the multistage tree combines vertices on a path in the td-
decomposition, where each vertex on the path has exactly one descendent. For more details on this topic we refer
to [9].

Notations. The height of the tree is denoted by t. We assume that vertices of the same height have same
cardinality, i. e. for every v ∈ V of height i we have |v| = si. We denote the partial sums of the number of columns
by di := s0 + . . . + st−i. Note that then d := d0 matches the primal treedepth tdP (A).

Let n denote the number of leaves. We assign a number n(v) ∈ {1, . . . , n} to every leaf v ∈ V , where n(.)
is a bijective function. For every leaf v with corresponding block A(j) and n(v) = i we define a submatrix Ai of
A. The submatrix Ai consists of the entries Ak`, where k ∈ row(A(j)) and ` ∈

⋃
0≤j≤t vj , where (v0, . . . , vt) is a

path from the root to leaf v = vt. Let Pi = (x̃, Ai, bi, ci) denote the subprogram of the multistage stochastic IP
P = (x,A, b, c), where bi is the projection of b to the row indices row(Ai) and ci the projection of c to the column
indices col(Ai).

Throughout the paper we consider few variants of projecting vectors related to multistage structures. Define
the function π(i, b) for every i ≤ n and vector b ∈ Rcol(A) as the projection of b to the indices

⋃
0≤j≤t vj . Note

that these vectors are of dimension d as |vi| = si. Let πj(i, b) be the projection of π(i, b) to its first dj indices,
which are

⋃
0≤k≤t−j vk. For b ∈ Rdj let π(b) be the projection to its first dj+1 indices.

Graver bases. The conformal (partial) order v on two vectors x, y ∈ Rn is defined by x v y, if
xjyj ≥ 0 and |xj | ≤ |yj | for all components j ∈ {1, . . . , n}. The Graver base G(A) of an integral matrix A

consists of the inclusionwise minimal and non-zero elements of kerZ(A). We are interested in bounding the `p
Graver complexity of A, which is size of

gp(A) := max
v∈G(A)

‖v‖p

for any p ∈ [1,∞]. As remarked by Cslovjecsek et al. [7], the classical bound for the Graver complexity [8], which
depends on the number of rows of a matrix, also holds regarding the number of columns of a matrix.

Figure 3: Illustration of the defined projections. The projections depend on the multistage matrix (on top). For
i ≤ n the function π(i, .) projects a vector on the indices of block matrices sharing rows with the leaf i, which is
marked by filled rectangles (middle part). The variation πj(i, .) again projects the vector removing the right-most
j blocks of indices (bottom part).



Lemma 3.1. ([7, 8]) For every integer matrix A with m columns we obtain the bound

g∞(A) ≤ (2m ‖A‖∞ + 1)m.

Proximity. Our proof for the proximity of multistage stochastic IPs follows the proof structure of Cslovjecsek
et al. [7]. Hence, we use their alternative definition and state two lemmas from their work. Proximity in this
sense is a geometric measure that depends only on the polytope SolR(P ) and not on the objective function.

Definition 3.1. ([7]) Let P = (x,A, b, c) be a linear program. The proximity of P , denoted proximity∞(P ),
is the infimum of reals ρ ≥ 0 satisfying the following: for every fractional solution xfrac ∈ SolR(P ) and integral
solution xint ∈ SolZ(P ) there exists x̃int ∈ SolZ(P ) such that∥∥x̃int − xfrac∥∥∞ ≤ ρ and x̃int − xfrac v xint − xfrac.

Cslovjecsek et al. proved that their notion of proximity implies a bound on the usual definition of proximity.
Hence, it suffices to prove bounds for proximity(A). Subsequently, they gave a bound for the proximity of
arbitrary matrices.

Lemma 3.2. ([7]) Suppose P = (x,A, b, c) is a linear program. Then for every optimal fractional solution xfrac

to P there exists an optimal integral solution xint to P satisfying∥∥xint − xfrac∥∥∞ ≤ proximity∞(P ).

Lemma 3.3. ([7]) Let P = (x,A, b, c) be a linear program where A has m columns. Then

proximity∞(P ) ≤ (m ‖A‖∞)m+1.

4 On the Structure of Solutions

In fact, we prove a more general lemma than Lemma 2.2, where the sums may differ slightly. We will state this
more general version in the context of multistage stochastic IPs. Therefore, we require a notion of multisets,
where the sums of elements differ slightly in the context of multistage stochastic IPs.

Definition 4.1. Consider a multistage stochastic matrix A with multistage tree T (A). Multisets T1, . . . , Tn ⊂ Zd
are called ρ-valid for T (A) if there exists b ∈ Rcol(A) such that for every i ≤ n we have∥∥∥∥∥∑

τ∈Ti

τ − π(i, b)

∥∥∥∥∥
∞

< ρ.

Multisets that are 1-valid are called valid. Valid multisets regarding an integral vector are a tree-like version of
equivalence. A special case are two-stage stochastic IPs, where the multistage tree has height 1. In this case valid
multisets are such that the sums of vectors projected to the first s0 indices are equal. Except for the projection,
this is the same condition as in Lemma 2.1.

Valid multisets are a natural definition for multistage stochastic matrices as they yield a characterization
of its integral kernel elements in the following sense. Consider any b ∈ Zcol(A). If there exist multisets
G1 ⊂ G(A1), . . . , Gn ⊂ G(An) that are valid for T (A) regarding vector b, then we have that

(4.2)
∑
g∈Gi

g = π(i, b)

is in the kernel of submatrix Ai for every i ≤ n as it is the sum of Graver elements. Hence, b is in the kernel
of A. If otherwise b ∈ kerZ(A), then π(i, b) is in the kernel of submatrix Ai for every i ≤ n and there exist
multisets G1 ⊂ G(A1), . . . , Gn ⊂ G(An) such that (4.2) holds for every i ≤ n. Thus the multisets are valid for
T (A) regarding vector b.

Observation 4.1. For a vector b ∈ Zcol(A) there exist multisets G1 ⊂ G(A1), . . . , Gn ⊂ G(An) that are valid for
T (A) regarding vector b if and only if b ∈ kerZ(A).



Next we will state the formal version of our main lemma. If ρ = 1 this is the same statement as Lemma 2.2.
We describe the equivalence briefly. We define partitions P0, . . . , Pt of the set {1, . . . , n} (the numeration of leaves
in the multistage tree) as follows. For vertex v ∈ V denote the set of leaves in the subtree of v by

Lv = {n(v′) | v′ ∈ V is a leaf in the subtree of v}.

For every 0 ≤ i ≤ t partition Pi is defined by the sets Lv of vertices v ∈ V of height i. Clearly, this yields a
partition for every height as every leaf of the tree is in the subtree of exactly one vertex of that height. Lemma 2.2
requires equality when the sums are projected on the indices of the vertex for the interval. In the following lemma,
a vector b of dimension col(A) combines the indices of every vertex in the tree. The sums are compared to the
corresponding components of this vector, which is equivalent to the condition in Lemma 2.2.

Lemma 4.1. Consider a multistage tree T (A) and multisets T1, . . . , Tn ⊂ Zd, where each Ti contains only
sign-compatible elements τ with ‖τ‖∞ ≤ ∆. The multisets T1, . . . , Tn are ρ-valid for T (A) regarding a vector
b ∈ Rcol(A).

If ‖b‖∞ > ρ · 2(d∆)O(d3t)

, then there exist submultisets Si ⊆ Ti, which are not all empty, and valid for T (A)

with respect to b̂ ∈ Zcol(A) with
∥∥∥b̂∥∥∥
∞
≤ 2(d∆)O(d3t)

.

This is also a generalization of Theorem 9 of Cslovjecsek et al. [6]. In our notation their bound only applies to
multistage trees of height 1 or in other words to two-stage stochastic matrices.

The proof of Lemma 4.1 is postponed to section 5. Instead, this section focuses on two applications of the
lemma. First, we show that the Graver complexity and second we show that the proximity of multistage stochastic
matrices is bounded. Our proof for proximity follows the proof structure of Cslovjecsek et al. [7].

Corollary 2.1. The `∞ Graver complexity of a multistage stochastic matrix A is bounded by

g∞(A) ≤ 2(d∆)O(d3t+1)

.

Proof. Let y ∈ kerZ(A) be a kernel element of A and assume that ‖y‖∞ > 2(d∆)O(d3t+1)

. By Observation 4.1 there
exist multisets Gi ⊂ G(Ai) that are valid for T (A) regarding y and by Lemma 3.1 the Graver complexity of the
submatrices is bounded by g∞(Ai) ≤ (2d∆ + 1)d =: ∆′ for every 1 ≤ i ≤ n.

We apply Lemma 4.1 to the multisets Gi and hence there exist submultisets Si ⊆ Gi for every i ≤ n which
are valid for T (A) regarding some ȳ ∈ Zcol(A) with

‖ȳ‖∞ ≤ 2(d∆′)O(d3t)

≤ 2(d(2d∆+1)d)O(d3t)

≤ 2(d∆)O(d3t+1)

.

Using again Observation 4.1, but now in the other direction, we get that ȳ ∈ kerZ(A). At least one submultiset
Si is non-empty. The elements in each set are sign-compatible and non-zero. Hence π(i, ȳ) is nonzero and in
particular ȳ is. The vector y is not in the Graver base of A since it is not minimal by ȳ @ y.

Lemma 2.3. Suppose P = (x,A, b, c) is a linear program and A is a multistage stochastic matrix. Then

proximity∞(P ) ≤ 2(d∆)O(d3t+1)

.

Proof. Consider any xfrac ∈ SolR(P ) and xint ∈ SolZ(P ). Let x̃int ∈ SolZ(P ) be an integral solution such that
x̃int − xfrac v xint − xfrac and subject to the condition that

∥∥x̃int − xfrac∥∥∞ is minimized.

If there exists a non-zero vector u ∈ kerZ(A) such that u v xfrac − x̃int, then x̃int + u ∈ SolZ(P ) would be a
solution with (x̃int+u)−xfrac v x̃int−xfrac v xint−xfrac and the `∞ distance from xfrac to x̃int+u would be
strictly smaller than to x̃int. The existence of such an u would hence contradict the choice of x̃int. It is sufficient

to show that in the case that
∥∥x̃int − xfrac∥∥∞ > 2(d∆)O(d3t+1)

there exists a non-zero vector u ∈ kerZ(A) such

that u v xfrac − x̃int.
For every i ∈ {1, . . . , n} we have that π(i, xfrac) ∈ SolR(Pi) and π(i, x̃int) ∈ SolZ(Pi). Every program

P1, . . . , Pn has d columns. By Lemma 3.3, the proximity is bounded by proximity∞(Pi) ≤ (d∆)d+1 =: ρ. By
definition of proximity there exists an integral solution x̂inti ∈ SolZ(Pi) such that∥∥x̂inti − π(i, xfrac)

∥∥
∞ ≤ ρ and x̂inti − π(i, xfrac) v π(i, x̃int)− π(i, xfrac).



We have x̂inti − π(i, x̃int) ∈ kerZ(Ai) which can be decomposed into a multiset Gi of Graver elements. Then Gi
is a multiset of sign-compatible elements of G(Ai) with

x̂inti − π(i, x̃int) =
∑
g∈Gi

g.

We want to apply Lemma 4.1. Therefore, we show that the multisets Gi are ρ-valid for the multistage tree,
which is the case since∥∥∥∥∥∥

∑
g∈Gi

g − π(i, xfrac − x̃int)

∥∥∥∥∥∥
∞

=
∥∥x̂inti − π(i, x̃int)− π(i, xfrac) + π(i, x̃int)

∥∥
∞ ≤ ρ.

Let γ := maxi≤n g∞(Ai) ≤ (2d∆ + 1)d by Lemma 3.1. If
∥∥xfrac − x̃int∥∥∞ ≥ 2(d∆)O(d3t+1)

, then Lemma 4.1 can

be applied and there exist non-zero submultisets Si ⊆ Gi that are valid for T (A) regarding a vector u ∈ Zcol(A)

with ‖u‖∞ ≤ 2(d∆)O(d3t+1)

. By Observation 4.1 the vector u ∈ kerZ(A) is in the kernel of A.
The vector u is non-zero as at least one submultiset is non-empty and every element of the multiset is non-zero

and sign-compatible. Further, we have u v xfrac − x̃int since

ũi =
∑
g∈Si

g v
∑
g∈Gi

g = x̂inti − π(i, xfrac) v π(i, x̃int)− π(i, xfrac).

Due to Lemma 3.2 this bound applies to the proximity of multistage stochastic IPs in the classical sense.

5 Proof of Lemma 4.1

The cone and the convex hull spanned by vectors c1, . . . , ck ∈ Qd are defined by

cone(c1, . . . , ck) = {
k∑
i=1

λici | λ ∈ Rk≥0} and

conv(c1, . . . , ck) = {
k∑
i=1

λici | λ ∈ Rk≥0, ‖λ‖1 = 1}.

Roughly speaking, we construct new multisets consisting of elements of the intersection of cones. The important
property of the constructed multisets is, that they represent a submultiset for every child in the multistage tree.
By transitivity, the multiset for the root then represents a submultiset for every leaf.

Let P ⊂ Zd be the subset of integral vectors bounded by ∆ in infinity norm and let B denote the set of d× d
bases with integral entries bounded by ∆ in infinity norm. As a preparation for the main proof, we elaborate
properties for almost partitioning some multisets to one new multiset.

We represent a multiset T by a multiplicity vector λ, where λp denotes how often multiset T contains element
p. By allowing fractional multiplicity vectors we may divide a vector p into several parts, e.g. two times half of
a vector p. When a mathematical operation on a multiplicity vector λ requires an index p that is not defined for
λ, then it is treated as λp = 0, similar to the fact that this vector is not included in the multiset represented by
λ. For a vector b ∈ Rd and a matrix M ∈ Rd×n we write b ∈M if b is a column of M .

The following lemma shows the existence of an element in the intersection cone, that can be represented as
a fractional submultiset of every multiset i ≤ n. Such an element b is represented by only vectors of one basis B
and by a fractional multiplicity vector x for that basis, in particular Bx = b. Every vector p ∈ B is used xp times
in the representation. As x is uniquely defined by x = B−1b, we will treat B−1b as a multiplicity vector for the
column vectors of B. The proof goes similar to the stronger Klein bound in [7].

Lemma 5.1. Consider fractional multisets represented by multiplicity vectors λ(1), . . . , λ(m) ∈ QP≥0 and a vector

b ∈ Rd such that for every i ≤ m we have ∥∥∥∥∥∥
∑
p∈P

λ(i)
p p− b

∥∥∥∥∥∥
∞

< ρ.



If ‖b‖∞ > ρ · (d∆)O(d2), then there exist bases B(1), . . . , B(m) ∈ B and b̂ ∈ Zd such that

(i) 0 ≤ x(i) ≤ λ(i) for x(i) := (B(i))−1b̂,

(ii)
∥∥∥b̂∥∥∥
∞
≤ (d∆)d

2

.

Proof. For every i ≤ m let r(i) ∈ RP be such that∑
p∈P

(λ(i) + r(i))p = b

and w.l.o.g.
∥∥r(i)

∥∥
∞ ≤ ρ using only the unit vectors. Define their sum z(i) := λ(i) + r(i) for every i ≤ m. Every

z(i) belongs to the polyhedron Q = {x ∈ RP≥0 |
∑
p∈P xpp = b}. By Minkowski-Weyl theorem [27], the polyhedron

can be written as

Q = conv(u(1), . . . , u(`)) + cone(v(1), . . . , v(p)) for some u(1), . . . , u(`), v(1), . . . , v(p) ∈ ZP

where u(j) ≥ 0 and
∑
p∈P u

(j)
p p = b, and v(j) ≥ 0 and

∑
p∈P v

(i)
p p = 0.

Every u(j) is a vertex solution to the linear program of Q and has at most d non-zero entries and an invertible
matrix C(j) such that C(j)u(j) = b. Every z(i) can be written as

z(i) =
∑̀
j=1

γju
(j) +

p∑
k=1

µkv
(k), where

∑̀
j=1

γj = 1 and γj , µk ∈ R≥0.

Hence, for every i ≤ m there exists by Carathéodory’s theorem [27] and by pigeonhole principle an index j(i) ≤ `
with γj(i) ≥ 1

d+1 . Since all scalars and vectors are non-negative, we have 0 ≤ 1
d+1u

(j(i)) ≤ z(i).

Consider the intersection
⋂`
i=1 cone(C

(i)), which is a cone with some generating set C ⊂ Zd. A consequence
of the Farkas-Minkowski-Weyl theorem, see e.g. [27], is that the generating elements can be bounded by

‖c‖∞ ≤ (d∆)d
2

for every c ∈ C as described in [7].
For every i ≤ ` we have that b ∈ cone(C(i)). Hence, the vector is also in the intersection b ∈ cone(C) and

there exist by Carathéodory’s theorem d vectors c1, . . . , cd ∈ C with

b =

d∑
k=1

αkck for some α ∈ Rd≥0.

By the assumption on the size of b we have that

‖b‖∞ > (d+ 1)d · 2ρ ·max
i
‖ci‖∞ = ρ · (d∆)O(d2).

By pigeonhole principle there exists αk > 2ρ and without loss of generality assume k = 1. For each j ∈ {1, . . . , `}
there exist y(j), ỹ(j) ∈ Rd≥0 with C(j)y(j) = c1 and C(j)ỹ(j) = b

(d+1) − 2ρc1. We can write

C(j)u(j)/(d+ 1) = b/(d+ 1) = C(j)(2ρy(j) + ỹ(j)).

We have that 2ρy(j) ≤ u(j(i))/(d+ 1) since C(j) is invertible and ỹ(j) is non-negative.

We set b̂ := c1 and B(i) := C(j(i)). The size of the vector is bounded by
∥∥∥b̂∥∥∥
∞

= ‖c1‖∞ ≤ (d∆)d
2

, which is

property (ii). For the submultiset relation (i) recall that

0 ≤ 2ρy(j(i)) ≤ 1

d+ 1
u(j(i)) ≤ z(i) = λ(i) + r(i).

We have (B(i))−1b̂ = (C(j(i)))−1c1 = y(j(i)) ≤ λ(i) since
∥∥r(i)

∥∥
∞ ≤ ρ.



The new multiset is then obtained by iterating Lemma 5.1. Every iteration yields an element, b̂ in the above
lemma, that is added to the new multiset. Each element represents a submultiset for every i as it is a fractional
combination of elements from the original multisets. Property (i) there ensures the subset relation. Let P ′ ⊂ Zd

be the set of integral vectors bounded by (d∆)d
2

in infinity norm.

Lemma 5.2. Consider fractional multisets represented by multiplicity vectors λ(1), . . . , λ(m) ∈ QP≥0 and a vector

b ∈ Rd such that for every i ≤ m we have ∥∥∥∥∥∥
∑
p∈P

λ(i)
p p− b

∥∥∥∥∥∥
∞

< ρ.

There exist multiplicity vectors λ[B, i] ∈ ZP ′≥0 for every B ∈ B and i ≤ m such that

(i) λ :=
∑
B∈B λ[B, 1] = . . . =

∑
B∈B λ[B,m],

(ii)
∑
p∈P ′

∑
B∈B λ[B, i]p(B

−1p) ≤ λ(i) for every i ≤ m,

(iii) if λ[B, i]p > 0 then (B−1p) ≥ 0 for every B ∈ B, p ∈ P , and i ≤ m,

(iv)
∥∥∥∑p∈P ′ λpp− b

∥∥∥
∞
≤ ρ · (d∆)O(d2).

Proof. We want to iterate Lemma 5.1. To start the iteration let λ̄(i)[0] = λ(i) for i ≤ m and b̄[0] := b. If in

iteration j we have that
∥∥b̄[j]∥∥∞ > ρ · (d∆)O(d2), then we apply Lemma 5.1 to the multisets λ̄(i)[j] and there

exists bases B(1)[j], . . . , B(m)[j] ∈ B and b̂[j] ∈ P ′ as stated in the lemma. For the next iteration we define

b̄[j+ 1] := b̄[j]− b̂[j] and λ̄(i)[j+ 1] := λ̄(i)[j]− ((B(i)[j])−1b̂[j]), where the latter is non-negative by Lemma 5.1(i).
We have that ∥∥∥∥∥∥

∑
p∈P

λ̄(i)
p [j + 1]p− b̄[j + 1]

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑
p∈P

λ̄(i)
p [j]p− b̄[j]

∥∥∥∥∥∥
∞

≤ ρ.

Let ν ∈ N be the number of iterations until the condition
∥∥b̄[j]∥∥∞ > ρ · (d∆)O(d2) does not hold. In particular,

the `∞-norm of b̄[ν] is bounded by
∥∥b̄[ν]

∥∥
∞ ≤ ρ · (d∆)O(d2).

For every B ∈ B, i ≤ m, and b̂ ∈ P ′ denote by

λ[B, i]b̂ =
∣∣∣{j ≤ ν | b̂[j] = b̂ and B(i)[j] = B}

∣∣∣
how often basis B was used for multiset i and vector b̂. By Lemma 5.1(i) we have (B−1p) ≥ 0 if λ[B, i]p > 0 for

every B ∈ B, p ∈ P , and i ≤ m. This is property (iii). By definition we have for every b̂ ∈ P ′∣∣∣{j ≤ ν | b̂[j] = b̂}
∣∣∣ =

∑
B∈B

λ[B, 1]b̂ = . . . =
∑
B∈B

λ[B,m]b̂.

For every i ≤ m we have property (ii) by

λ(i) =
∑
j≤ν

(B(i)[j])−1b̂[j] + λ̄(i)[ν] ≥
∑
j≤ν

(B(i)[j])−1b̂[j] =
∑
b̂∈P ′

∑
B∈B

λ[B, i]b̂ · (B
(i))−1b̂.

For property (iv), the sum for the constructed multisets and b differ only by the remaining vector b̄[ν] since∑
p∈P ′ λpp =

∑
j≤ν b̂[j] and∥∥∥∥∥∥
∑
p∈P ′

λpp− b

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑
p∈P ′

λpp− (
∑
j≤ν

b[j] + b̄[ν])

∥∥∥∥∥∥
∞

=
∥∥b̄[ν]

∥∥
∞ ≤ ρ · (d∆)O(d2).



In the proof of Lemma 4.1 we will construct multisets for every vertex in the multistage tree. For vertices of
height 0 ≤ i ≤ t the elements will be bounded by ∆i := (d∆)d

3i

in the `∞ norm. We consider the underlying set

P j := {p ∈ Zdj | ‖p‖∞ ≤ ∆j}

and a variant, where elements are of lower dimension

P̂ j := π(P j) = {p ∈ Zdj+1 | ‖p‖∞ ≤ ∆j}.

As before elements in newly constructed multisets are represented by a certain subset of P̂ i that happens to be
a basis. We thus also define the set

Bi := {B ∈ Zdi+1×di+1 | B is a basis with ‖B‖∞ ≤ ∆i}.

Let K1 be the constant in the O-notation of Lemma 5.2(iv). We will further show that the respective sums for

every child differ from the initial vector b only by ρi := ρ · (d∆t)
iK1d

2

for every height 0 ≤ i ≤ t.

Proof sketch for Lemma 4.1. The proof consists of two phases. The first phase considers the multistage tree in a
bottom up fashion and constructs multisets for every vertex of the tree using the partitioning lemma, Lemma 5.2.
Analyzing the relation of ‖b‖∞ and ‖πt(i, b)‖∞, we arrive at either the case that the multiset constructed for
the root contains an element of sufficient high multiplicity or, in the other case, there exists a vertex, where the
multiset contains the vector 0 sufficiently often. In both cases the second phase uses the high multiplicity element
to reconstruct submultisets for every vertex in the subtree in a top down fashion. The reconstruction maintains
the important invariant that the sum of elements in the submultisets remains the same for an index once it is
defined. One might think of the reconstruction as starting from the indices for πt(i, b) and in each step the vector
b is extended by the indices i ∈ v′ for child vertices v′. By this invariant, the constructed submultisets are valid
for the subtree for every step. At last, the submultisets that are constructed for the leaves of T (A) are valid for
the multistage tree.

We want to preview some technical details. For every vertex v ∈ V a multiset λv is considered. Another
multiset λ̂v considers the projection of the multiset λv. In other words λ̂v it is the multiset obtained, when every
element of λv is projected. In the second phase, the lemma constructs valid submultisets from an element of
λv with high multiplicity. The reconstruction starting at a vertex v of height j ≤ t requires an element p of
multiplicity λvp ≥ αj · βj , for some αj , βj ∈ N which are defined in the proof below. The reconstruction then
extends the vector αj ·p, where scaling the vector p with αj will be used to scale from fractional vectors to integral
vectors. In particular, Lemma 5.2 is used to fractionally partition multisets to obtain a multiset for the parent
but scaling p with αj ensures that we find an extension of αj · p that is an integral combination of elements in
Ti for every i ≤ n. On the other side βj leaves room in the multiplicities used for the reconstruction to the
multiplicities available in the multiset to use pigeonhole principle when needed.

Proof of Lemma 4.1.
Constructing multisets for the tree. For all vertices v ∈ V we construct multisets as follows. If v is a

leaf with n(v) = i, then let λv ∈ ZP 0

≥0 be the multiplicity vector representation of multiset Ti. This representation

is possible since Ti ⊂ P 0 as every τ ∈ Ti has dimension d0 and is bounded by ‖τ‖∞ ≤ ∆ ≤ ∆0. Let λ̂v ∈ ZP̂ 0

≥0 be

defined for every p̂ ∈ P̂ 0 by

λ̂vp̂ :=
∑
p∈P 0

s.t. π(p)=p̂

λvp.

Note that
∥∥∥∑p∈P 0 λ̂vpp− π1(i, b)

∥∥∥
∞
≤
∥∥∑

t∈Ti
t− π(i, b)

∥∥
∞ ≤ ρ = ρ0 since the multisets T1, . . . , Tn are ρ-valid

for T (A).

Consider an inner vertex v ∈ V of height j ≤ t, where for all children v′ the multisets λv
′ ∈ ZP j−1

and

λ̂v
′ ∈ ZP̂ j−1

were already defined and ∥∥∥∥∥∥
∑

p∈P j−1

λ̂v
′

p p− πj(i, b)

∥∥∥∥∥∥
∞

≤ ρj−1.



We apply Lemma 5.2 on the multisets λ̂v
′

for every child v′ of v. By the lemma, there exist multisets λ[B, v′]

for every v′ and basis B ∈ Bj−1. Since the elements for multisets λ̂v
′

are in P̂ j−1, their `∞-norm is bounded by
∆j−1. The infinity norm of elements in the constructed multisets is hence bounded by

(dj∆j−1)d
2
j = (dj(d∆)d

3(j−1)

)d
2
j ≤ (d∆)d

3j

= ∆j .

Hence each multiset is a subset of P j and can be represented by a multiplicity vector λ[B, v′] ∈ ZP j

. Define

λv :=
∑

B∈Bj−1

λ[B, v′]

for any child v′ of v. Note that λv is well-defined as the sum is equal for every child by Lemma 5.2(i). We define

the multiplicity vector λ̂v ∈ ZP̂ j

≥0 similar to the leaves. Observe that by Lemma 5.2(iv)∥∥∥∥∥∥
∑
p∈P j

λvpp− πj(i, b)

∥∥∥∥∥∥
∞

≤ ρj−1 · (dj∆j−1)K1d
2
j ≤ ρ · (d∆t)

jK1d
2

= ρj .

The relation of ‖b‖∞ and ‖πt(i, b)‖∞. Define ν := lcm(1, . . . , (d∆t−1)d), αi := νi, and βi := ∆2id2

t . We

will focus on the case that for every v ∈ V of height j we have λ̂v0 ≤ Dj for Dj := αj · βj . The other case, that is

λ̂v0 > Dj for some vertex v ∈ V , is discussed at the end of the proof.

Let v ∈ V be a vertex of height j and consider a child v′ ∈ V . Due to
∥∥∥∑p∈P̂ j−1 λ̂v

′

p p− πj(i, b)
∥∥∥
∞
≤ ρj−1

and
∥∥∥∑p∈P j λvpp− πj(i, b)

∥∥∥
∞
≤ ρj we have that∥∥∥∥∥∥

∑
p∈P̂ j−1

λ̂v
′

p p−
∑
p∈P j

λvpp

∥∥∥∥∥∥
∞

≤ ρj + ρj−1.

By reverse triangle inequality we get that

(5.3)

∥∥∥∥∥∥
∑

p∈P̂ j−1

λ̂v
′

p p

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
∑
p∈P j

λvpp

∥∥∥∥∥∥
∞

+ ρj + ρj−1 ≤ ∆j ‖λv‖1 + ρj + ρj−1.

In order to compare the `1-norms of λv and λv
′
, we consider the left part of the above inequality. By standard

arguments we get that∥∥∥∥∥∥
∑

p∈P̂ j−1

λ̂v
′

p p

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑

p∈P̂ j−1\{0}

λ̂v
′

p p

∥∥∥∥∥∥
∞

≥
∑
p∈P̂ j−1\{0} λ̂

v′

p

d

λ̂v′
0 ≤Dj−1

≥

∥∥∥λ̂v′∥∥∥
1
−Dj−1

d
.(5.4)

As a combination of (5.3) and (5.4) it holds that∥∥∥λ̂v′∥∥∥
1
−Dj−1

dj−1
≤ ∆j ‖λv‖1 + ρj + ρj−1 ≤ ∆j(

∑
p∈P j\{0}

∣∣λvp∣∣+Dj) + ρj + ρj−1.(5.5)

To compare the `∞ norms of πj(i, b) and πj−1(i, b), they are compared to the `1 norms of λv and λv
′
, respectively.

Note that the `1 norms of λv and λ̂v are equal by definition. Using the distance to b we get∥∥∥λ̂v′∥∥∥
1
≥
∥∥πj−1(i, b)

∥∥
∞ − ρj−1

∆j−1
and

∑
p∈P j\{0}

∣∣λvp∣∣ ≤ dj−1(
∥∥πj(i, b)∥∥∞ + ρj).



Combining the above with (5.5) yields∥∥πj−1(i, b)
∥∥
∞ ≤ ∆2

jdj−1(
∥∥πj(i, b)∥∥∞ + 2ρj + 2ρj−1 +Dj +Dj−1)

≤ ∆2
td(
∥∥πj(i, b)∥∥∞ + 4ρt + 2Dt).

For every i ≤ n by induction it holds that

‖b‖∞ ≤ ∆2t
t d

t
0(
∥∥πt(i, b)∥∥∞ + 4tρt + 2tDt).

Reconstructing submultisets. We remain in the case that λv0 ≤ Dj for every vertex. There exists
p ∈ P t \ {0} with

λrp ≥
1

∆d
t

‖λr‖1 ≥
1

∆d
t

∑
p∈P t\{0}

∣∣λtp∣∣ ≥ 1

∆d+1
t

(
∥∥πt(i, b)∥∥∞ − ρt).

If the assumption on the size of b

‖b‖∞ ≥ ∆2t
t d

t(∆d+1
t (αtβt + ρt) + 4tρt + 2tDt) = ρ · 2(d∆)O(d3t)

holds, then ‖πt(i, b)‖∞ ≥ ∆d+1
t (αtβt + ρt), for all i ≤ n, and λrp ≥ αtβt. We reconstruct submultisets from the

root to every vertex and finally for the leaves. We start with the multiset γr := ep for the root.

Claim: Consider a vertex v ∈ V of height 1 ≤ j ≤ t. Then for every γv ∈ ZP j

≥0 with αjβj · γv ≤ λv there exists

γv
′ ∈ ZP j−1

≥0 for every child v′ ∈ V such that

(i) αj−1βj−1 · γv
′ ≤ λv′ ,

(ii) αj−1

∥∥∥γv′∥∥∥
1
≤ d(d∆t)

dαj ‖γv‖1, and

(iii) π(αj−1

∑
p∈P j−1 γv

′

p p) = αj
∑
p∈P j γvpp.

Proof of the claim: Consider γv ∈ ZP j

≥0 with αjβjγ
v
p ≤ λvp for every p ∈ P j . In order to prove the claim, first

the basis representation of the multiset λv
′

for every child v′ is considered and a basis of sufficient multiplicity
λ[B, v′] is found for each vector in the multiset. Then the vectors are extended to dimension dj−1 using a vector

with sufficient multiplicity in λv
′
. Finally, the properties of the claim are verified.

We want to use the representation of the elements in λv to obtain elements in λv
′

for any child v′. Each
representation is defined by the used basis. Hence, we start with the basis representation. By definition we
have

λv =
∑

B∈Bj−1

λ[B, v′]

for every child v′ ∈ V of v. There are at most
∣∣Bj−1

∣∣ ≤ ∆
d2j
j−1 bases in the set. Hence, for every p ∈ P j there

exists a basis Bp ∈ Bj−1 with λvp/∆
d2

t ≤ λ[Bp, v′]p by pigeonhole principle. Hence we get

1

∆d2
t

αjβjγ
v
p ≤

1

∆d2
t

λvp ≤ λ[Bp, v′]p.(5.6)

After we selected a basis for every vector, we want to use that the basis and the vector represent a fractional

submultiset. To combine the chosen representations in a new multiset, we define a vector γ̂v
′ ∈ ZP̂ j−1

≥0 by

γ̂v
′

:= ν ·
∑
p∈P j

γvp · ((Bp)−1p).

The definition is simply the sum of how many times we require which element of the child multiset to represent
our current multiset. Note that γ̂v

′

p′ ∈ Z≥0 since all vectors and matrices are integral, by Cramer’s rule (Bp)−1

has denominators at most |det(Bp)| ≤ (d∆t−1)d which divides ν, and (Bp)−1p ≥ 0 by Lemma 5.2(iii).



Again, we verify that this representation is in a submultiset relation to the multiset of each child. By
Lemma 5.2(ii) the following inequality is given∑

p∈P j

∑
B∈Bj

s.t. p′∈B

λ[B, v′]p((B
p)−1p)p′ ≤ λ̂v

′

p′ .(5.7)

Using (5.7), the bound in (5.6) can be extended to γ̂v
′

and λ̂v
′

as follows

1

∆d2
t

αj−1βj · γ̂v
′

p′ =
1

∆d2
t

αj−1βj · ν ·
∑
p∈P j

γvp · ((Bp)−1p)p′

(5.6)

≤
∑
p∈P j

λ[Bp, v′]p((B
p)−1p)p′

≤
∑
p∈P j

∑
B∈Bj

λ[B, v′]p((B
p)−1p)p′

(5.7)

≤ λ̂v
′

p′ .(5.8)

Next, each vector is extended to dimension dj−1 in order to reverse the projection from λv
′

to λ̂v
′
. For

every p ∈ P̂ j−1 there are at most ∆
st−j+1

j−1 ≤ ∆d
t vectors p′′ ∈ P j−1 which are projected to p′, i. e. π(p′′) = p′,

and by definition

λ̂v
′

p′ =
∑

p′′∈P j+1

s.t. π(p′′)=p′

λv
′

p′′ .

Hence, for every p′ ∈ P̂ j−1 there exists p′′ ∈ P j−1 where 1
∆d

t
λ̂v
′

p′ ≤ λv
′

p′′ and

1

∆2d2
t

αj−1βj · γ̂v
′

p′ ≤
1

∆d
t

λ̂v
′

p′ ≤ λv
′

p′′ .(5.9)

Let f : P̂ j−1 7→ P j−1 map any p′ ∈ P̂ j−1 to some p′′ ∈ P j−1 such that π(p′′) = p′ and p′′ satisfies (5.9). We

define the multiset of extended elements γv
′

p′′ ∈ ZP j−1

≥0 by

γv
′

p′′ :=

{
γ̂v
′

p′ if p′′ = f(π(p′′))

0 else.

For the claim it remains to show that γv
′

satisfies the claimed properties. In particular, for every p′′ ∈ P j+1

property (i) holds since

αj−1βj−1 · γv
′

p′′ ≤
1

∆2d2
t

αj−1βj · γv
′

p′′ ≤ λv
′

p′′ .(5.10)

Every B ∈ Bj−1 has ‖B‖∞ ≤ ∆j−1. Hence, for every p ∈ P j we have by Cramer’s rule that∥∥(Bp)−1p
∥∥

1
≤ d ·

∥∥(Bp)−1p
∥∥
∞ ≤ d(d∆t)

d.

By the above we can also bound

αj−1

∥∥∥γ̂v′∥∥∥
1

= αj
∑
p′∈P̂ j

∑
p∈P j

γvp ((Bp)−1p)p′ ≤ d(d∆t)
dαj ‖γv‖1 .



By the definition of γ̂v
′
, we get

∥∥∥γv′∥∥∥
1

=
∥∥∥γ̂v′∥∥∥

1
. Combined we can bound the size of the constructed multisets

for each child αj−1

∥∥∥γv′∥∥∥
1
≤ d(d∆t)

dαj ‖γv‖1, which is property (ii).

It remains to prove property (iii) π(αj−1

∑
p∈P j−1 γv

′

p p) = αj
∑
p∈P j γvpp, which follows by the definitions

of γ̂v
′

and γv
′
. First, by the definition of γv

′
the following holds

π(αj−1

∑
p′′∈P j−1

γv
′

p′′p
′′) = αj−1

∑
p′′∈P j−1

γv
′

p′′π(p′′) = αj−1

∑
p′∈P̂ j−1

γ̂v
′

p′ p
′.(5.11)

Second, the definition of γ̂v
′

yields property (iii)

αj−1

∑
p′∈P̂ j−1

γ̂v
′

p′ p
′ = αj−1

∑
p∈P j

∑
p′∈Bp

γvp (ν(Bp)−1p)p′p
′ = αj

∑
p∈P j

γvpB
p(Bp)−1p = αj

∑
p∈P j

γvpp.(5.12)

Hence, combining the equalities (5.11) and (5.12) yields

π(αj−1

∑
p′′∈P j−1

γv
′

p′′p
′′) = αj

∑
p∈P j

γvpp.

C

We apply the claim iteratively from the root to the leaves on the inner vertices of T (A). In particular, we construct
multisets for every leaf v ∈ V that satisfy the properties. The constructed multiset of v is a submultiset of Tn(v)

since by claim property (i) we have that

γv = α0β0 · γv
(i)

≤ λv

and λv is defined as the multiplicity representation of multiset Tn(v).
Verifying the construction. Due to claim property (ii) the reconstruction of submultisets grows at most

αj−1

∥∥∥γv′∥∥∥
1
≤ d(d∆t)

dαj ‖γv‖1

from any vertex v to a child v′. For a leaf v we have by induction that

(5.13) ‖γv‖1 = α0 ‖γv‖1 ≤ (d(d∆t)
d)t · αt · ‖γr‖1 ≤ (d∆)d

O(3t)

· 3t(d∆t−1)d · 1 ≤ 2(d∆)O(d3t)

.

To show that the submultisets are valid for T (A) we construct a vector b ∈ Zcol(A). The key observation here
is property (iii) from the claim, which ensures that vertices connected in some subtree have equal sums in the
indices of the root of the subtree. In each iteration the sum for the parent defines the sum for every child in the
respective indices. For an index k ∈ col(A) there exists v ∈ V of height j ≤ t with k ∈ v. For precise indexing, let
k′ be the index of bk in the dj-dimensional vector πj(i, b) for any i = n(v′) and v′ leaf in the subtree of v . Define
bk := αj

∑
p∈P j γvppk′ . Next, we prove that the submultisets are valid for T (A) regarding b. For a leaf v ∈ V with

i = n(v) consider an index k ∈ v′ for a vertex v′ ∈ V of height j ≤ t on the path from the root to v. From claim
property (iii) used inductively, we get∑

p∈P 0

γvppk′ = α0

∑
p∈P 0

γvppk′
(iii)
= αj

∑
p∈P j

γv
′

p pk′
def.
= bk.

As this holds for arbitrary indices on the path from the leaf to the root, we have that the constructed submultisets
are valid with respect to b, i. e. ∑

p∈P 0

γvp = π(i, b)

as the vector π(i, b) is composed of the indices of b that lie on the path from the root to leaf v. Due to the
bounded size of the constructed submultisets, the infinity norm of b is bounded by

‖b‖∞ ≤ ∆ · max
leaf v

‖γv‖1
(5.13)

≤ ∆2(d∆)O(d3t)

= 2(d∆)O(d3t)

.



The other case. Let us now turn to the case that there exists a vertex v ∈ V with λ̂v0 > Dj = αjβj . We
proceed very similar to the above but instead of reconstructing from the root, we reconstruct starting from v as
we found a vector, that is 0, of high multiplicity. In this case we can apply the claim to the unit vector γv := e0
as it satisfies αjβje0 ≤ λv. By the claim we construct valid submultisets for the subtree rooted in v of bounded
size, similar to the argumentation above. The submultisets for the subtree are non-empty since αj extensions of
the representation of vector 0 are included. Define b as above for indices in the subtree of v and otherwise by
bi := 0. By claim property (iii) we have that πj(

∑
p∈P 0 γv

′

p p) = 0, hence if we set for i not in the subtree the
multiset γv := 0 as empty, then the submultisets are also valid for T (A) with respect to b.
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