
Algorithmic Extensions of Dirac’s Theorem∗

Fedor V. Fomin†

fomin@ii.uib.no
Petr A. Golovach†

petr.golovach@ii.uib.no
Danil Sagunov‡

danilka.pro@gmail.com

Kirill Simonov§

kirillsimonov@gmail.com

Abstract

In 1952, Dirac proved the following theorem about long cycles in graphs with large minimum
vertex degrees: Every n-vertex 2-connected graph G with minimum vertex degree δ ≥ 2 contains
a cycle with at least min{2δ, n} vertices. In particular, if δ ≥ n/2, then G is Hamiltonian. The
proof of Dirac’s theorem is constructive, and it yields an algorithm computing the corresponding
cycle in polynomial time. The combinatorial bound of Dirac’s theorem is tight in the following
sense. There are 2-connected graphs that do not contain cycles of length more than 2δ + 1.
Also, there are non-Hamiltonian graphs with all vertices but one of degree at least n/2. This
prompts naturally to the following algorithmic questions. For k ≥ 1,

(A) How difficult is to decide whether a 2-connected graph contains a cycle of length at least
min{2δ + k, n}?

(B) How difficult is to decide whether a graph G is Hamiltonian, when at least n− k vertices
of G are of degrees at least n/2− k?

The first question was asked by Fomin, Golovach, Lokshtanov, Panolan, Saurabh, and Zehavi.
The second question is due to Jansen, Kozma, and Nederlof. Even for a very special case of
k = 1, the existence of a polynomial-time algorithm deciding whether G contains a cycle of
length at least min{2δ + 1, n} was open. We resolve both questions by proving the following
algorithmic generalization of Dirac’s theorem: If all but k vertices of a 2-connected graph G are
of degree at least δ, then deciding whether G has a cycle of length at least min{2δ + k, n} can
be done in time 2O(k) · nO(1).

The proof of the algorithmic generalization of Dirac’s theorem builds on new graph-theoretical
results that are interesting on their own.

Keywords: longest path, longest cycle, fixed-parameter tractability, above guarantee parame-
terization, Dirac’s theorem

∗An extended abstract of this paper is published in the proceedings of SODA 2022 [FGSS22]. This research
was supported by the Research Council of Norway via the project MULTIVAL (grant no. 263317) and BWCA
(grant no. 314528). Kirill Simonov acknowledges support by the Austrian Science Fund (FWF) via project Y1329
(Parameterized Analysis in Artificial Intelligence).

†Department of Informatics, University of Bergen, Norway.
‡St. Petersburg Department of V.A. Steklov Institute of Mathematics, Russia.
§Algorithms and Complexity Group, TU Wien, Austria

1

ar
X

iv
:2

01
1.

03
61

9v
5

 [
cs

.D
S]

 1
2

A
pr

 2
02

4

Contents

1 Introduction 3

2 Overview of the proof 6

3 Preliminaries and classical theorems 10

4 Generalized theorems 13

5 Long (s, t)-Cycle 14

6 Long Erdős-Gallai (s, t)-Path 21
6.1 Erdős-Gallai decompositions and structures . 21
6.2 Algorithm for Long Erdős-Gallai (s, t)-Path . 34

7 Algorithm for small vertex covers 38

8 Finding almost Hamiltonian cycles 45
8.1 Small separator lemma . 45
8.2 Main theorem . 49

9 Dirac decomposition 52

10 Long Dirac Cycle: Putting all together 60
10.1 Proof of Theorem 3 . 61
10.2 Last piece: proof of Lemma 20 . 61

11 Conclusion 72
11.1 Tightness of results . 72
11.2 Open questions . 75

2

1 Introduction

The fundamental theorem of Dirac from 1952 guarantees the existence of a Hamiltonian cycle
in a graph with a large minimum vertex degree.

Theorem 1 (Dirac [Dir52, Theorem 3]). If every vertex of an n-vertex graph G is of degree at least
n/2, then G is Hamiltonian, that is, contains a Hamiltonian cycle.

Theorem 1 follows from a more general statement of Dirac about long cycles in a graph.

Theorem 2 (Dirac [Dir52, Theorem 4]). Every n-vertex 2-connected graph G with minimum vertex
degree δ(G) ≥ 2, contains a cycle with at least min{2δ(G), n} vertices.

Both Dirac’s theorems were the first instances of results that developed into one of the core areas
in Extremal Graph Theory. One of the main questions in this research domain is to establish vertex
degree characterization of Hamiltonian graphs and conditions enforcing long paths or cycles in
graphs. The (very) incomplete list of results in this area includes the classical theorems of Erdős and
Gallai [EG59], Ore [Ore60], Bondy and Chvátal [BC76], Pósa [P6́2], Meyniel [Mey73], and Bollobás
and Brightwell [BB93], see also the Wikipedia entry on the Hamiltonian path.1 The chapters of
Bondy [Bon95] and Bollobás [Bol95] in the Handbook of Combinatorics, as well as Chapter 3 in
the Extremal Graph Theory book [Bol78] provide excellent introduction to this important part
of graph theory. The survey of Li [Li13] is a comprehensive (but a bit outdated) overview of the
area. After almost 70 years, the field remains active, see for example the very recent proof of the
Woodall’s conjecture by Li and Nung [LN21].

Computing long cycles and paths is also an important topic in parameterized complexity. It
served as a test-bed for developing several fundamental algorithmic techniques including the color
coding of Alon, Yuster and Zwick [AYZ95], the algebraic approaches of Koutis and Williams [Kou08,
Wil09], matroids-based methods [FLPS16], and the determinants-sum technique of Björklund from
his FOCS 2010 Test of Time Award paper [Bjö14]. We refer to [FK13], [KW16], and [CFK+15a,
Chapter 10] for an overview of algorithmic ideas and techniques developed for computing long paths
and cycles in graphs.

Despite the tremendous progress in graph-theoretical and algorithmic studies of longest cycles,
all the developed tools do not answer the following natural and “innocent” question. By Theorem 2,
deciding whether a 2-connected graph G contains a cycle of length at least min{2δ(G), n} can be
trivially done in polynomial time by checking degrees of all vertices in G.

Question 1: Is there a polynomial time algorithm to decide whether a 2-connected graph
G contains a cycle of length at least min{2δ(G) + 1, n}?

The methods developed in the extremal Hamiltonian graph theory do not answer this question.
The combinatorial bound in Theorem 2 is known to be sharp; that is, there exist graphs that have no
cycles of length at least min{2δ(G)+1, n}. Since the extremal graph theory studies the existence of
a cycle under certain conditions, such type of questions are beyond its applicability. The techniques
of parameterized algorithms do not seem to be much of use here either. Such algorithms compute
a cycle of length at least k in time 2O(k) · nO(1), which in our case is 2O(δ(G)) · nO(1). Hence when
δ(G) is, for example, at least n1/100, these algorithms do not run in polynomial time.

Similarly, the existing methods do not answer the question about another “tiny algorithmic
step” from Dirac’s theorem, what happens when all vertices of G but one are of large degree?

1https://en.wikipedia.org/wiki/Hamiltonian_path

3

https://en.wikipedia.org/wiki/Hamiltonian_path

Question 2: Let v be a vertex of the minimum degree of a 2-connected graph G. Is
there a polynomial time algorithm to decide whether G contains a cycle of length at least
min{2δ(G− v), n}?

(We denote by G − v the induced subgraph of G obtained by removing vertex v.) Note that
graph G− v is not necessarily 2-connected and we cannot apply Theorem 2 to it.

The incapability of existing techniques to answer Questions 1 and 2 was the primary motivation
for our work. We answer both questions affirmatively and in a much more general way. Our result
implies that in polynomial time one can decide whether G contains a cycle of length at least
2δ(G − B) + k for B ⊆ V (G) and k ≥ 0 as long as k + |B| ∈ O(log n). (We denote by G − B the
induced subgraph of G obtained by removing vertices of B.) To state our result more precisely, we
define the following problem.

Input: A graph G with vertex set B ⊆ V (G) and an integer k ≥ 0.
Task: Decide whether G contains a cycle of length at least min{2δ(G −

B), |V (G)| − |B|}+ k.

Long Dirac Cycle parameterized by k + |B|

In the definition of Long Dirac Cycle we use the minimum of two values for the following
reason. The question whether an n-vertex graph G contains a cycle of length at least 2δ(G−B)+k
is meaningful only for δ(G − B) ≤ n/2. Indeed, for δ(G − B) > n/2, G does not contain a cycle
of length at least 2δ(G − B) + k > n. However, even when δ(G − B) > n/2, deciding whether G
is Hamiltonian, is still very intriguing. By taking the minimum of the two values, we capture both
interesting situations.

The main result of the paper is the following theorem providing an algorithmic generalization
of Dirac’s theorem.

Theorem 3 (Main Theorem). On an n-vertex 2-connected graph G, Long Dirac Cycle is
solvable in time 2O(k+|B|) · nO(1).

In other words, Long Dirac Cycle is fixed-parameter tractable parameterized by k+ |B| and
the dependence on the parameters is single-exponential. This dependence is asymptotically optimal
up to the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [IPZ01]. Solving
Long Dirac Cycle in time 2o(k) · nO(1) even with B = ∅ yields recognizing in time 2o(n) whether
a graph is Hamiltonian. A subexponential algorithm deciding Hamiltonicity would fail ETH. In
Theorem 17 we show that solving Long Dirac Cycle in time 2o(|B|) · nO(1) even for k = 1 would
contradict ETH as well. It is also NP-complete to decide whether a 2-connected graph G has a
cycle of length at least (2 + ε)δ(G) for any ε > 0 (Theorem 18).

The 2-connectivity requirement in the statement of the theorem is important—without it Long
Dirac Cycle is already NP-complete for k = |B| = 0. Indeed, for an n-vertex graph G construct a
graph H by attaching to each vertex of G a clique of size n/2. Then H has a cycle of length at least
2δ(H) ≥ n if and only if G is Hamiltonian. However, when instead of a cycle we are looking for a
long path, the 2-connectivity requirement could be omitted. More precisely, consider the following
problem.

Input: A graph G with vertex set B ⊆ V (G) and an integer k ≥ 0.
Task: Decide whether G contains a path of length at least min{2δ(G −

B), |V (G)| − |B| − 1}+ k.

Long Dirac Path parameterized by k + |B|

4

Theorem 3 yields the following.

Corollary 1. On a connected n-vertex graph G, Long Dirac Path is solvable in time 2O(k+|B|) ·
nO(1).

Indeed, when G is connected, the graph G + v, obtained by adding a vertex v and making it
adjacent to all vertices of the graph, is 2-connected. The minimum vertex degree of G + v is equal
to δ(G) + 1, and G has a path of length at least t if and only if G+ v has a cycle of length at least
t + 2.

Theorem 3 answers several open questions from the literature. Fomin, Golovach, Lokshtanov,
Panolan, Saurabh and Zehavi in [FGL+20a] asked about the parameterized complexity of problems
(with parameter k) where for a given (2-connected) graph G and k ≥ 1, the task is to check whether
G has a path (cycle) with at least 2δ(G) + k vertices. By Theorem 3 and Corollary 1 (the case
B = ∅), both problems are fixed-parameter tractable.

Jansen, Kozma, and Nederlof in [JKN19] conjectured that if at least n − k vertices of graph
G are of degree at least n/2 − k, then deciding whether G contains a Hamiltonian cycle can be
done in time 2O(k) · nO(1). Theorem 3 resolves this conjecture. Indeed, if G is Hamiltonian, it is
2-connected. Then let B, |B| ≤ k, be the set of vertices such that every vertex from V (G) \B is of
degree (in G) at least n/2−k. Then δ(G−B) ≥ n/2−k−|B| ≥ n/2−2k. n−|B| ≤ n−2δ(G−B),
we put k′ = |B|, otherwise we put k′ = n− 2δ(G−B). Note that because 2δ(G−B) ≥ n− 4k, in
both cases we have that k′ ≤ 4k. Also by the choice of k′, min{2δ(G − B), n − |B|} + k′ = n and
hence G has a cycle of length at least min{2δ(G−B), n− |B|}+ k′ if and only if G is Hamiltonian.
By Theorem 3, deciding whether G has a cycle of length at least min{2δ(G − B), n − |B|} + k′

can be done in time 2O(k′+|B|) · nO(1) = 2O(k) · nO(1). Interestingly, while the conjecture of Jansen,
Kozma and Nederlof follows from the statement of Theorem 3, to prove the theorem, we need to
resolve this conjecture directly.

We state Theorem 3 for the decision variant of the problem. However, the proof is constructive
and the corresponding cycle can be found within the same running time. Note that standard self-
reduction arguments are not applicable here because deleting or contracting edges could change
the minimum vertex degree.

Related work. Until very recently, graph-theoretical and algorithmic studies of the longest paths
and cycles coexisted in parallel universes without almost any visible interaction. In 1992, Häggkvist
[H9̈2], as a corollary of his structural theorem, provided an algorithm that decides in time nO(k)

whether a graph with the minimum vertex degree at least n/2−k is Hamiltonian. In 2019, Jansen,
Kozma, and Nederlof in [JKN19] gave two algorithms of running times 2O(k) · nO(1) that decide
whether the input graph G is Hamiltonian when either the minimum vertex degree of G is at least
n/2−k or at least n−k vertices of G are of degree at least n/2. The first result of Jansen, Kozma,
and Nederlof strongly improves the algorithm of Häggkvist. However, the methods they use, like
the structural theorem of Häggkvist [H9̈2], are specific for Hamiltonicity and are not applicable for
the more general problem of computing the longest cycle. Second, their parameterized algorithms
work only in one of the scenarios: either when all vertices are of degree at least n/2 − k or when
at least n− k vertices are of degree at least n/2. Whether both scenarios could be combined, that
is, the existence of a parameterized algorithm deciding Hamiltonicity when n − k vertices are of
degree at least n/2− k, was left open.

Fomin, Golovach, Lokshtanov, Panolan, Saurabh and Zehavi in [FGL+20a] gave an algorithm
that in time 2O(k) ·nO(1) decides whether a 2-connected graph G contains a cycle of length at least
d + k, where d is the degeneracy of G. Since the minimum vertex degree δ(G) does not exceed the
degeneracy of G, this result also implies an algorithm for finding a cycle of length at least δ(G) + k
in 2-connected graphs.

5

None of the works [JKN19] and [FGL+20a] could be used to address Questions 1 and 2, the
very special cases of Theorem 3.

More generally, Theorem 3 fits into a popular trend in parameterized complexity called “above
guarantee” parameterization. The general idea of this paradigm is that the natural parameterization
of, say, a maximization problem by the solution size is not satisfactory if there is a lower bound for
the solution size that is sufficiently large. For example, there always exists a satisfying assignment
that satisfies half of the clauses or there is always a max-cut containing at least half the edges.
Thus nontrivial solutions occur only for the values of the parameter that are above the lower bound.
This indicates that for such cases, it is more natural to parameterize the problem by the difference
of the solution size and the bound. Since the work of Mahajan and Raman [MR99] on Max Sat
and Max Cut, the above guarantee approach was successfully applied to various problems, see
e.g. [AGK+10, CJM+13, GP16a, GKLM11, GvIMY12, GP16b, GRSY07, LNR+14, MRS09]. In
particular, [BCDF19] and [FGL+20b] study the longest path above the shortest s, t-path and the
girth of a graph.

2 Overview of the proof

The original proof of Dirac is not constructive because it does not provide any procedure for
constructing a cycle of length at least 2δ(G). There are algorithmic proofs of Dirac’s theorem; see,
e.g., the thesis of Locke [Loc83]. The idea of Locke’s proof that also provides a polynomial-time
algorithm for constructing a cycle of length at least 2δ(G) is to start from some cycle and to grow
by inserting new vertices and short paths. Thanks to the conditions on the graph’s degrees, such
a procedure always constructs a cycle of the required length. On a very general level, our proof of
Theorem 3 uses the same strategy. For an instance (G,B, k) of Long Dirac Cycle, we try to grow
a cycle iteratively. However, enlarging the cycle by “elementary” improvements could get stuck
with a cycle of length significantly smaller than min{2δ(G−B), |V (G)| − |B|}+ k. It appears that
the cycles that cannot be improved by “elementary” operations induce a very particular structure
in a graph. These structural theorems play a crucial role in our algorithm.

The main technical contribution is the new graph decomposition that we call Dirac decompo-
sition. The formal definition is given in Section 9. Dirac decomposition is defined for a cycle C
in G. Let C be a cycle of length less than 2δ(G − B) + k. Informally, the components of Dirac
decomposition are connected components in G−V (C). (For an intuitive description of the decom-
position, we will assume that B = ∅. Handling vertices of B requires more technicalities—we have
to refine the graph and work with its refinement.) Since G is 2-connected, we can reach C by a
path starting in such a component in G. One of the essential properties of Dirac decomposition is
a limited number of vertices in V (C) that have neighbors outside of C. In fact, we can choose two
short paths P1 and P2 in C (and short means that their total length is of order k) such that all
connections between connected components of G − V (C) and C go through V (P1) ∪ V (P2). The
second important property is that each connected component of G− (V (P1)∪ V (P2)) is connected
with Pi in G in a very restricted way: The maximum matching size between its vertex set and the
vertex set of Pi is at most one.

Dirac decomposition appears to be very useful for algorithmic purposes. For a cycle C and a
vertex set B, given a Dirac decomposition for C and B, in time 2O(k+|B|) · nO(1) we either solve
the problem or succeed in enlarging C (Theorem 16). We also provide an algorithm that either
constructs a Dirac decomposition in polynomial time or obtains additional structural information
that again can be used either to solve the problem or to enlarge the cycle. More precisely, first, we
need to eliminate the “extremal” cases. When δ(G−B) ∈ O(k), the classical result of Alon, Yuster,

6

and Zwick [AYZ95] solves the problem in time 2O(k+|B|) · nO(1). Another extremal case is when
|B| ≤ k and δ(G− B) ≥ n

2 − k. In that case, for solving Long Dirac Cycle, we have to decide

in time 2O(k) · nO(1) whether G is almost Hamiltonian, i.e., a cycle in G that cover all but O(k)
vertices. The existence of such an algorithm for Hamiltonian cycles was conjectured in [JKN19]
and Theorem 7 settles this conjecture. We give an overview of the proof of Theorem 7 later in this
section. If we are in none of the extremal cases, then (Lemma 20) in polynomial time we can either
(a) enlarge the cycle C, or (b) compute a vertex cover of G−B of size at most δ(G−B) + 2k, or
(c) compute a Dirac decomposition. In cases (a) and (c), we can proceed iteratively. For the case
(b) we give an algorithm that solves the problem in time 2O(k+|B|) · nO(1) (Theorem 6).

The most critical and challenging component of the proof is Theorem 16 about algorithmic
properties of Dirac decomposition. We use the properties of Dirac decomposition to show that an
enlargement of a cycle C of length at most 2δ(G−B)+k−1 can be done in a very particular way. By
an extension of Dirac’s existential theorem, Theorem 14, we can assume that C is of length at least
2δ(G−B). The most interesting and not-trivial situation that could occur is that for some vertices
x ∈ V (P1) and y ∈ V (P2), we replace the shortest (x, y)-path in C by a detour with a particular
property. This detour leaves x, moves to a vertex s of some 2-connected component of G− V (C),
visits some vertices in this component, leaves it from a vertex t, and goes to vertex y. Since the
length of the longest (x, y)-path in C is at least δ(G−B), to decide whether such a detour exists, it is
sufficient to solve the following problem. For vertices s, t of a 2-connected graph G, decide whether
G contains an (s, t)-path of length at least δ(G−B)+k. We give an algorithm solving this problem
in time 2O(k+|B|) · nO(1) (Theorem 5). The combinatorial bound that an (s, t)-path of length δ(G)
always exists if G is 2-connected, is the classical theorem of Erdős and Gallai [EG59, Theorem 1.16].
Because of that, we name the problem of computing an (s, t)-path of length at least δ(G−B)+k by
the Long Erdős-Gallai (s, t)-Path problem. Long Erdős-Gallai (s, t)-Path is an interesting
problem on its own, and to prove Theorem 5, we use another structural result which we call Erdős-
Gallai decomposition. Similar to Dirac decomposition, this decomposition is very useful from the
algorithmic perspective. In Section 6, we define this decomposition, provide efficient algorithms
for constructing it, and use it to solve Long Erdős-Gallai (s, t)-Path. Another interesting
component of the solution to Long Erdős-Gallai (s, t)-Path is the algorithm for computing the
longest cycle passing through two specified vertices (Theorem 4). We are not aware of the previous
work in parameterized algorithms on this natural problem.

Figure 1 displays the most important steps of the proof and the dependencies between them.
In the remaining part of this section, we highlight the ideas behind each of the auxiliary steps
(Theorems 4, 5, 6, and 7) in the proofs of Theorem 3 and Theorem 16.

The first auxiliary problem whose solution we use in the proof of Theorem 5 is the following.

Input: A graph G with two vertices s, t ∈ V (G) and an integer k ≥ 0.
Task: Decide whether there is a cycle in G of length at least k that passes

through s and t.

Long (s, t)-Cycle parameterized by k

When s ̸= t, an equivalent formulation is to decide whether G contains two internally disjoint
(s, t)-paths of total length at least k. In Section 5 we prove the following theorem.

Theorem 4. Long (s, t)-Cycle is solvable in time 2O(k) · nO(1).

While the first idea to design an algorithm claimed in Theorem 4 would be to use the color
coding technique of Alon, Yuster and Zwick [AYZ95], this idea does not work directly. The reason

7

Long (s, t)-Cycle
(Theorem 4)

Long Erdős-Gallai (s, t)-Path
(Theorem 5)

Dirac decomposition
(Theorem 16)

Long Dirac Cycle / Vertex Cover
Above Degree

(Theorem 6)

Almost Hamiltonian
Dirac Cycle
(Theorem 7)

Long Dirac Cycle
(Theorem 3)

Figure 1: The main steps and connections in the proof of Theorem 3.

is that color coding can be used only to find in the claimed running time the cycle whose length is of
order of k. However, it is quite possible that the lengths of all solutions are much larger than k; in
such situation color coding cannot be applied directly. Our approach in proving Theorem 4 builds
on ideas from [FLP+18, Zeh16], where a parameterized algorithms for finding a directed (s, t)-path
and a directed cycle of length at least k were developed. The main idea of the proof is the following.
First, we use color coding to verify whether the considered instance has a solution composed by
two (s, t)-paths of total length at most 3k. If the instance has a solution, we return it and stop.
Otherwise, we conclude that the total length of the paths of every solution is at least 3k + 1. This
allows to use structural properties of paths. Let P1 and P2 be the (s, t)-paths of a solution of
minimum total length. Then there are vertices x1 and x2 on P1 and P2, respectively, such that
(i) the total length of the (s, x1)-subpath P ′

1 of P1 and the (s, x2)-subpath P ′
2 of P2 is exactly k,

(ii) either x1 = s or the length of the (x1, t)-subpath P ′′
1 of P1 is at least k, and, symmetrically,

(iii) either x2 = s or the length of the (x2, t)-subpath P ′′
2 of P2 is at least k. Then P ′′

1 and P ′′
2 are

internally disjoint paths that are shortest disjoint paths avoiding V (P ′
1)∪V (P ′

2) \ {x1, x2}. We use
the method of random separation to distinguish the following three sets: V (P ′

1)∪ V (P2) \ {x1, x2},
the last min{k, |V (P1)|−2} internal vertices of P ′′

1 , and the last min{k, |V (P2)|−2} internal vertices
of P ′′

2 . This allows to highlight the crucial parts of the shortest solution and then find a solution.
The second problem whose solution we use in the proof of Theorem 3, comes from another

classical theorem due to Erdős and Gallai from [EG59, Theorem 1.16], see also [Loc85]. For every
pair of vertices s, t of a 2-connected graph G, there is a path of length at least minv∈V (G)\{s,t} deg v.
The proof of this result is constructive, and it implies a polynomial time algorithm that finds such
a path. We define Long Erdős-Gallai (s, t)-Path as follows.

Input: A graph G with a vertex set B ⊆ V (G), two vertices s, t ∈ V (G) and an
integer k ≥ 0.

Task: Decide whether G contains an (s, t)-path of length at least δ(G−B) +k.

Long Erdős-Gallai (s, t)-Path parameterized by k + |B|

In Section 6, we prove the following theorem. This theorem plays an important role in the proof
of Theorem 16.

Theorem 5. Long Erdős-Gallai (s, t)-Path is solvable in time 2O(k+|B|) ·nO(1) on 2-connected
graphs.

8

Similar to Long Dirac Path, the requirement that the input graph is 2-connected is important.
It is easy to prove that Long Erdős-Gallai (s, t)-Path is NP-complete for k = |B| = 0 when
the input graph is not 2-connected.

To prove Theorem 5, we apply the following strategy. We take an (s, t)-path P and try to
extend it as much as possible. The principal tool in enlarging the path P is Corollary 3, which
is an extension of the theorem of Erdős and Gallai that takes into account the vertices of B. In
the extremal case, when we cannot extend the path anymore, we obtain a graph decomposition
whose properties become useful from the algorithmic perspective. We call this decomposition by
the name of Erdős-Gallai decomposition and prove that, in that case, the graph can be decomposed
in a very particular way. Roughly speaking, after a certain refinement of the graph, the (s, t)-path
P consists of a prefix P1 and a suffix P2 with the following properties. These parts of the path
are sufficiently far from each other in P . Moreover, all components of the graph G − V (P1 ∪ P2),
we call them Erdős-Gallai component, are connected to P1 and P2 in a very restricted way. Such
a graph-theoretical insight helps us to characterize how a long (s, t)-path traverses through an
Erdős-Gallai component. This property allows us to design the recursive algorithm that proves the
theorem.

The next auxiliary result required for the proof of Theorem 3, concerns Long Dirac Cycle
parameterized by the vertex cover of a graph. It is well-known, see e.g., [CFK+15b], that a longest
path in a graph G could be found in time 2O(t)nO(1), where t is the size of the minimum vertex
cover of G. However, we need a much more refined result for the proof of the main theorem, where
the parameter is not just the size of the vertex cover, but the difference between that size and
δ(G−B). We define the following parameterized problem.

Input: A graph G with a vertex set B ⊆ V (G), a vertex cover S of G of size
δ(G−B) + p and an integer k ≥ 0.

Task: Decide whether G contains a cycle of length at least 2δ(G−B) + k.

Long Dirac Cycle / Vertex Cover Above Degree parameterized by p + |B|

Section 7 is devoted to the proof of the following theorem, which we need for both Theorem 7
and Theorem 3.

Theorem 6. Long Dirac Cycle / Vertex Cover Above Degree is solvable in 2O(p+|B|) ·
nO(1) running time.

To prove Theorem 6, we establish the new structural result, Lemma 13. The lemma reduces
the crucial case of the problem about the long cycle to a particular path cover problem. This
equivalence becomes very handy because we can use color-coding to compute the particular path
cover, and thus by the lemma, to compute a long path. In spirit, Lemma 13 is close to the classical
theorem of Nash-Williams [NW71], stating that a 2-connected graph G with δ(G) ≥ (n + 2)/3 is
either Hamiltonian or contains an independent set of size δ(G) + 1. An extension of this theorem is
due to Häggkvist [H9̈2], which was used by Jansen, Kozma and Nederlof [JKN19] in their algorithm
for Hamiltonicity below Dirac’s condition. In our case, we cannot use the structural theorem of
Häggkvist as a black box, and build on the new graph-theoretic lemma instead.

The last ingredient we need to prove Theorem 3, is its special case when the minimum degree
of δ(G−B) is nearly n

2 . Specifically, the problem is defined as follows.

9

Input: A graph G, integer k ≥ 0 and a vertex set B ⊂ V (G), such that |B| ≤ k
and δ(G−B) ≥ n

2 − k.
Task: Find the longest cycle in G.

Almost Hamiltonian Dirac Cycle parameterized by k

Observe that for a 2-connected graph, Theorem 14 always gives a cycle of length 2δ(G−B) ≥ n−2k.
Thus it is more natural to state the problem in the form above, as the length of the longest cycle
is necessarily between n− 2k and n, which is at most 2δ(G−B) + 2k. In other words, we look for
an almost Hamiltonian cycle, in a sense that it does not cover only O(k) vertices. Now we state
our result for Almost Hamiltonian Cycle that we prove in Section 8.

Theorem 7. Let G be a given 2-connected graph on n vertices and let k be a given integer. Let
B ⊆ V (G) be such that |B| ≤ k and δ(G − B) ≥ n

2 − k. There is a 2O(k) · nO(1) running time
algorithm that finds the longest cycle in G.

The key obstacle for proving the theorem is the low-degree set B, since for empty B, we could
simply apply the Nash-Williams theorem [NW71] and obtain either a Hamiltonian cycle or an
independent set of size δ(G) + 1, and in the latter case use our result for Long Dirac Cycle
/ Vertex Cover Above Degree. Assume there exists a Hamiltonian cycle in G (for almost
Hamiltonian cycles the algorithm is similar), it induces a certain path cover of the vertices of B,
where the endpoints of paths belong to V (G) \ B, and their total length is O(k). Such a path
cover can be found by color-coding and dynamic programming in time 2O(k)nO(1). Now either the
rest of the graph is not 2-connected, and we have a O(k)-sized separator, or we can apply the
Nash-Williams theorem and obtain a cycle covering everything except the path cover, or a large
independent set. The latter case is dealt with by Theorem 6, and for the case of the small separator
we design a special algorithm that leverages the fact that the resulting components are very dense.
So the main case is when the graph splits into a long cycle and the path cover. Now we crucially
use that the paths in the path cover start and end outside of B, thus the endpoints of a path have
high degree, each of them sees roughly half of the vertices of the long cycle. This makes it “hard”
to not be able to insert the path somewhere in the cycle and make it longer. However, this last
intuitive idea is achieved by a very intricate case analysis that constitutes the most of technical
difficulty of the proof. Also, in some of the cases, we cannot make the cycle longer nor conclude
that it is impossible, but instead we are able to find either a small separator or a large independent
set. Again, we settle these cases by using the respective specialized algorithms.

3 Preliminaries and classical theorems

Graph notation. Most of the graph notation that we use here are standard and are compatible
with the notation used in the textbook of Diestel [Die17]. Graphs in this paper are finite and
undirected. The vertex set of a graph G is denoted by V (G) and the edge set of G is denoted by
E(G). We use shorthands n = |V (G)| and m = |E(G)|. An edge of an undirected graph with
endpoints u and v is denoted by uv.

Graph H is a subgraph of graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a subset S ⊆ V (G),
the subgraph of G induced by S is denoted by G[S]; its vertex set is S and its edge set consists of
all the edges of E(G) that have both endpoints in S. For B ⊆ V (G), we use G− B to denote the
graph G[V \B], and for F ⊆ E(G) by G−F we denote the graph (V (G), E(G) \F). We also write
G− v instead of G− {v}.

10

For graph G and edge uv ∈ E(G), by contracting edge uv we mean the following operation.
We remove u and v from the graph, introduce a new vertex wuv, and connect it to all the vertices
u or v were adjacent to. The neighborhood of a vertex v in G is NG(v) = {u ∈ V | uv ∈ E(G)}
and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. For a vertex set S ⊆ V , we define
NG[S] =

⋃
v∈S N [v] and NG(S) = NG[S] \ S. We denote by degG(v) the degree of a vertex v in

graph G, which is just the number of edges incident with v. We may omit indices if the graph
under consideration is clear from the context. We use δ(G) for minimum vertex degree of graph G.

A path P in a graph is a nonempty sequence of vertices v0, . . . , vk such that for every i =
0, . . . , k−1 we have vivi+1 ∈ E(G) and vi ̸= vj for all i ̸= j. Vertices v0 and vk are the endpoints of
path P and v1, . . . , vk−1 are internal. If P = v0v1 . . . vk is a path, then the graph obtained from P
by adding edge xkx0 is a cycle. The length of a path or cycle is equal to the cardinality of its edge
set. The distance between vertices u and v in a graph G is the shortest length of a path between u
and v. For vertices s, t ∈ V (G), an (s, t)-path is a path with the first vertex s and the last vertex
t. A Hamiltonian path (cycle) in a graph G is a path (cycle) passing through all the vertices of G.
Two paths P and Q are internally disjoint if every internal vertex of one path is not a vertex of
the other path, that is, P and Q may only share their endpoints. The concatenation of internally
vertex-disjoint paths P = v0, . . . , vk and Q = vk, vk+1, . . . , vℓ is PQ = v0, . . . , vk, vk+1, . . . , vℓ. Note
that PQ is a path if v0 ̸= vℓ and is a cycle if v0 = vℓ. An arc in a cycle C is a path whose all
edges belong to C. A chord of a cycle C is a path connecting two non-adjacent vertices of C that
is internally vertex-disjoint with C.

An undirected graph G is connected if for every pair u, v of its vertices there is a path between
u and v. A vertex set X ⊆ V (G) is connected if the subgraph G[X] is connected. A connected
component of G is the subgraph induced by a maximal connected vertex subset of G. A connected
graph G with at least three vertices is 2-connected if for every v ∈ V (G), G − v is connected.
Similarly, a vertex set X ⊆ V (G) is 2-connected if the subgraph G[X] is 2-connected. A block
of G is the subgraph induced by a maximal 2-connected subset. A vertex v is a cut-vertex if it
belongs to at least two blocks. All other vertices of a block are inner vertices. Blocks in a graph
form a forest structure (viewing each block as a vertex of the forest and two blocks are adjacent if
they share a cut-vertex). The blocks corresponding to the leaves of the block-forest, are referred
as leaf-blocks. A connected component is separable if it contains a cut-vertex, or equivalently, if it
is not 2-connected.

A vertex cover X of a graph G is a subset of the vertex set V (G) such that X covers the edge
set E(G), i.e., every edge of G has at least one endpoint in X. An independent set I in a graph
G is a subset of the vertex set V (G) such that the vertices of I are pairwise nonadjacent. A path
cover of a graph G is a family of disjoint paths in G such that every vertex of G belongs to some
of these paths.

Classical results. Besides Dirac’s theorem from [Dir52], already stated as Theorem 1, we use the
result that guarantees a long path between two fixed vertices of a 2-connected graph. Its different
versions can be found throughout the works of Locke [Loc83, Loc85]. The version below is from
the paper of Egawa, Glas, and Locke [EGL91, Lemma 5].

Lemma 1 (Egawa, Glas, and Locke [EGL91]). Let G be a 2-connected graph with at least 4 vertices,
and let s, t ∈ V (G) be a pair of vertices in G, and let d be an integer. If all vertices in G, except
s, t and one other vertex, have degree at least d, then there exists an (s, t)-path of length at least d
in G.

In addition, we rely on several other classical theorems. In some parts of the proof we use one
more result from Dirac’s work [Dir52].

11

Theorem 8 (Dirac [Dir52]). Every graph G contains a cycle of length at least δ(G) + 1.

We remark that Lemma 1 and Theorem 8 are constructive in the following sense. Their proofs
can be turned into polynomial time algorithms producing an (s, t)-path of length at least d and a
cycle of length at least δ(G) + 1.

In 1976, Bondy and Chvátal [BC76] proved the following generalization of Theorem 1 that we
use in Section 7. Let G be an n-vertex graph. The closure cl(G) of G is the graph obtained from
G by iteratively making two distinct vertices u and v adjacent whenever the sum of their degrees
is at least n. Note that if degG(u) + degG(v) ≥ n for all pairs of vertices u and v, then cl(G) = Kn.
In particular, the closure of a n-vertex graph satisfying the conditions of Theorem 1 is Kn.

Theorem 9 (Bondy and Chvátal [BC76]). A graph G has a Hamiltonian cycle if and only if cl(G)
has a Hamiltonian cycle.

We remark that the proof of Theorem 9 yields a polynomial time algorithm constructing from a
cycle with an added edge a cycle in a graph without the new edge. Thus by repeating this argument
for every added edge, we obtain a polynomial time algorithm for constructing a Hamiltonian cycle
in G from a Hamiltonian cycle in cl(G).

Another classical result that we require is the well-known Menger’s theorem.

Theorem 10 (Menger’s theorem, [Men27, Gör00]). Let G be a graph and A,B ⊆ V (G) be two
subsets of its vertices. Let s be the minimum number of vertices separating A and B in G. There
are s vertex-disjoint paths going from A to B.

Throughout the paper we are mostly working with 2-connected graphs, so we just need the
following corollary of the Menger’s theorem.

Corollary 2. Let G be a 2-connected graphs and A,B ⊆ V (G) be two subsets of its vertices such
that |A|, |B| ≥ 2. There exist two vertex-disjoint paths going from A to B in G.

Finally, we will make use of a strengthening of Dirac’s theorem due to Nash-Williams [NW71].
We state it in the form following Jansen, Kozma and Nederlof [JKN19], where the following algo-
rithmic statement is proven.

Theorem 11 (Nash-Williams [NW71, JKN19]). Let G be a 2-connected graph with n vertices, with
δ(G) ≥ (n + 2)/3. Then, we can find in G, in time O(n3), either a Hamiltonian cycle, or an
independent set of size δ(G) + 1.

Parameterized algorithms. We will use several results from parameterized complexity as black
boxes. Let us recall that Longest Cycle (Longest Path) are the problems where for given
graph G and integer k, the task is to decide whether G has a cycle (a path) of length at least k. In
Long (s, t)-Path, for s, t ∈ V (G), the task is to decide whether an (s, t)-path of length at leas k
exists. The first algorithms for Longest Cycle and Longest Path of running time 2O(k) ·nO(1)

are due to Alon, Yuster and Zwick [AYZ95]. The fastest known randomized algorithm for Longest
Path on undirected graph is due to Björklund, Husfeldt, Kaski and Koivisto [BHKK10] and runs in
time 1.657k ·nO(1). Tsur gave the fastest known deterministic algorithm for the problem running in
time 2.554k ·nO(1) [Tsu19]. For Longest Cycle, the current fastest randomized algorithm running
in time 4k ·nO(1) is due to Zehavi [Zeh16] and the best deterministic algorithm runs in time 4.884k ·
nO(1) [FLP+18]. For Long (s, t)-Path the best known running time is 4.884k · nO(1) [FLP+18].

Theorem 12 ([AYZ95],[FLP+18]). Longest Path, Longest Cycle, and Long (s, t)-Path
admit algorithms with running time 2O(k) · nO(1).

12

We also use the following algorithms of Jansen, Kozma, and Nederlof [JKN19].

Theorem 13 ([JKN19]). If a graph G has at least n− k vertices of degree at least n
2 or if a graph

G has δ(G) ≥ n
2 − k, a Hamiltonian cycle in G can be found in time 2O(k) · nO(1).

4 Generalized theorems

The classical theorems of Dirac and Erdős-Gallai provide bounds on the length of cycles and
paths in terms of vertex degrees in graph G. In our algorithmic extension of Dirac’s theorem, we
deal with a more general problem when the cycle’s length is bounded by vertex degrees of graph
G − B. In our algorithm we use generalizations of these classical results stated for vertex degrees
in graph G − B. These generalizations are simple and most likely they are known as a folklore.
However we could not find them in the literature and prove them here for completeness.

The first theorem is the generalization of Dirac’s theorem (Theorem 2): Theorem 2 is its special
case with B = ∅.

Theorem 14. Let G be a 2-connected n-vertex graph. For any B ⊆ V (G) there exists a simple
cycle in G of length at least min{n−|B|, 2δ(G−B)}. Moreover, there is a polynomial time algorithm
constructing a cycle of such length.

Proof. We assume that 0 < |B| ≤ n− 1 and δ(G−B) > 1, other cases are trivial.
Consider graph G−B. It consists of one or more connected components. If G has at least one

connected component, say H, that is 2-connected and is of size at least 2δ(G−B), then a cycle of
length at least min(|V (H)|, 2δ(H)) ≥ 2δ(G−B) can be found inside H by Theorem 2.

Now assume that each connected component in G−B either contains a cut-vertex or consists of
less than 2δ(G−B) vertices. Assume that there are at least two connected components in G−B,
say H1 and H2. Since δ(G−B) > 1, both H1 and H2 consist of at least three vertices.

If H1 contains a cut vertex, take one of its leaf-blocks, say L1, and put S1 = L1. Note that all
vertices but one are of degree at least δ(G − B) in L1. As δ(G − B) > 1, L1 consists of at least
three vertices and is 2-connected. If H1 is 2-connected, put S1 = H1. Find S2 in the same way for
H2. By Menger’s theorem, there are two vertex-disjoint paths from V (S1) to V (S2). Thus, there
are two distinct vertices u1, v1 ∈ V (S1) that are connected correspondingly with u2, v2 ∈ V (S2)
with two vertex-disjoint paths. Note that the total length of these paths is at least four, since the
are no edges u1u2 and v1v2 in G. By Lemma 1, there is a path of length at least δ(G−B) between
u1 and v1 in S1 if |V (S1)| ≥ 4. If |V (S1)| < 4, then S1 is a cycle on three vertices, so there also
exists a path of length at least 2 ≥ |V (S1)| − 1 ≥ δ(G−B) between u1 and v1 in S1. Analogously,
there is a path of length at least δ(G−B) between u2 and v2 in S2. Combine these two paths and
the two paths outside and obtain a cycle of length at least 2δ(G−B) + 4 in G.

Now assume that there is exactly one connected component in G−B of size n− |B|. Note that
it consists of at least three vertices as δ(G− B) > 1. If it is 2-connected, then its size is less than
2δ(G−B). Hence, the desired cycle is obtained automatically by Theorem 1. If it is not 2-connected,
take any of its cut vertices and add it to B to obtain B′. Note that δ(G − B′) ≥ δ(G − B) − 1.
Now G−B′ consists of at least two connected components, so apply the discussion above for this
case and obtain a cycle of length at least 2δ(G−B′) + 4 ≥ 2δ(G−B) + 2.

The proof is constructive and all its steps (computing 2-connected components, finding a cut-
vertex, computing two vertex-disjoint paths, etc.) are implementable in polynomial time.

The similar theorem for paths can be now derived.

13

Theorem 15. Let G be a connected n-vertex graph. For any B ⊆ V (G) there exists a simple path
in G of length at least min{n−|B|−1, 2δ(G−B)}. Moreover, there is a polynomial time algorithm
constructing a path of such length.

Proof. Construct graph G′ from G by adding to it a universal vertex, that is the vertex adjacent
to all vertices of G. Note that δ(G′−B) = δ(G−B) + 1 and G′ consists of n+ 1 vertices. Also, G′

is 2-connected, since G is connected. Thus, by Theorem 14, G′ contains a simple cycle of length at
least min{n + 1− |B|, 2δ(G−B) + 2}.

If this cycle does not contain the universal vertex, this cycle is contained in G as well, and we
automatically obtain a path of length at least min{n + 1− |B|, 2δ(G−B) + 2} − 1 in G.

If the cycle contains the universal vertex, remove this vertex from the cycle. Since this vertex is
incident with two edges of the cycle, we obtain a path of length at least min{n+1−|B|, 2δ(G−B)+
2} − 2 in G. Again, the construction can be easily turned into a polynomial time algorithm.

The following Corollary generalizes the theorem of Erdős and Gallai from [EG59, Theorem 1.16].

Corollary 3. Let G be a 2-connected graph and let s, t be a pair of distinct vertices in G. For any
B ⊆ V (G) there exists a path of length at least δ(G−B) between s and t in G. Moreover, there is
a polynomial time algorithm constructing a cycle of such length.

Proof. Suppose that n − |B| ≥ 2δ(G − B). Use Theorem 14 to find a cycle of length at least
2δ(G − B). By Menger’s theorem, there are two vertex-disjoint paths from {s, t} to this cycle in
G. Take these paths and the longer arc of the cycle and obtain a path of length at least δ(G−B)
between s and t.

Consider the case when n−|B| < 2δ(G−B), so δ(G−B) ≥ (|V (G−B)|+ 1)/2. If n−|B| ≤ 3,
then δ(G−B) ≤ 2, so it is enough to find any path of length two between s and t. If n− |B| ≥ 4,
then G−B is 2-connected, as it contains a Hamiltonian cycle by classical Dirac’s theorem. Apply
Menger’s theorem to G and find two vertex-disjoint paths from {s, t} to V (G) \B. Let these paths
be a path going from s to s′ ∈ V (G−B) and from t to t′ ∈ V (G−B). By Lemma 1, there is a path
of length at least δ(G−B) between s′ and t′ in G−B. Combine this path with the paths from s
to s′ and from t to t′. This yields a path of length at least δ(G−B) between s and t in G.

5 Long (s, t)-Cycle

In this section we give an FPT algorithm that finds a cycle of length at least k passing through
designated terminal vertices s and t. When the length of such cycle is of order O(k), then the
classical methods like color-coding solve the problem. The difficulty is that the length of the cycle
can be arbitrarily bigger than k. For that case we build on the approach from [FLP+18] that was
used to design an algorithm for a longest (s, t)-path.

Now we are ready to prove Theorem 4. We restate it here.

Theorem 4. The Long (s, t)-Cycle problem is solvable in O((2e)3k ·mn) time by a randomized
Monte Carlo algorithm and in (2e)3kkO(log k) ·mn log n deterministic time.

Proof. Let (G, s, t, k) be an instance of Long (s, t)-Cycle. Clearly, we can assume that G is
connected, because if s and t are in distinct connected components, then we have a trivial no-
instance, and if s and t are in the same connected component of a disconnected graph, then we can
consider the problem on the component containing s and t instead of G. To avoid additional case
analysis, we assume that s ̸= t. Otherwise, if s = t, we can do the following. If k ≤ 3, then to solve

14

the problem, it is sufficient to check whether G has a cycle containing s and this easily can be done
in linear time. If k ≥ 4, then we apply the algorithm from [FLP+18]. To be able to do it formally,
we create a new vertex t′ that is a false tween of s and then check whether the obtained graph has
an (s, t′)-path of length at least k. Fomin, Lokshtanov, Panolan, Saurabh and Zehavi [FLP+18]
do not state explicitly the dependency of their algorithm on the graph size. However, it can be
seen that the running times of the randomized and deterministic variants of their algorithm are
dominated by O((2e)3k ·mn) and (2e)3kkO(log k) ·mn log n, respectively. We also assume that k ≥ 4.
If k ≤ 3, then to solve the problem, it is sufficient to find any two internally disjoint (s, t)-paths,
and this can be done by the standard flow techniques (see, e.g., the recent textbook [Wil19]) in
time O(n + m), because we are looking for a flow of volume 2.

The algorithm works in two stages. First we try to find two internally vertex-disjoint (s, t)-paths
of total length ℓ for ℓ ∈ {k, . . . , 3k}. If such paths are found, they form the required cycle, so we
stop. Otherwise, we proceed to Stage 2, where we assume that the long (s, t)-cycle, if it exists, is
longer that 3k.

Stage 1. First, we check whether there are two internally disjoint (s, t)-paths of total length ℓ for
some ℓ ∈ {k, . . . , 3k}. For this, we apply the classical color-coding technique of Alon, Yuster, and
Zwick [AYZ95]. Here the arguments are standard and we only sketch how to solve the decision
version of the problem. The algorithm may be easily modified to construct the paths. We describe
a randomized Monte Carlo algorithm and explain how to derandomize it in the concluding part of
the theorem proof.

We color the vertices of G uniformly at random by 3k colors {1, . . . , 3k}. We say that two (s, t)-
paths P1 and P2 form a colorful solution if the vertices of each of the paths have distinct colors
and the colors of the internal vertices of P1 are distinct from the colors of the internal vertices of
P2. (Clearly, the colors of s and t are the same in both paths.) In other words, in the (s, t)-cycle
formed by P1 and P2 all vertices are colored in different colors.

We find a colorful solution by dynamic programming. Denote by c(x) the color of a vertex
x ∈ V (G), and let p = c(s) and q = c(t). If p = q, then there is no colorful solution. Suppose that
p ̸= q. For a vertex x ∈ V (G) and a nonempty set of colors X ⊆ {1, . . . , 3k}, define α(x,X) = true

if there is an (s, x)-path P with |X| vertices that are colored by distinct colors from X, and we
set α(x,X) = false otherwise. The values of α(x,X) are computed for all x ∈ V (G) and all
X ⊆ {1, . . . , 3k} starting from sets of size one.

For every x ∈ V (G) and every i ∈ {1, . . . , 3k}, we define

α(x, {i}) =

{
true if x = s and i = p

false otherwise.
(1)

Assume that |X| ≥ 2 and the table of values of α(x, Y) is constructed for all x ∈ V (G) and all
Y ⊆ {1, . . . , 3k} such that |Y | < |X|. Then for x ∈ V (V), we set

α(x,X) =

∨

y∈NG(x)

α(y,X \ {c(x)}) if c(x) ∈ X

false if c(x) /∈ X.
(2)

By exactly the same arguments as for the color-coding algorithm for Longest Path (see, e.g., [CFK+15b,
Chapter 5]), we obtain that (1) and (2) allow to compute the table of values of α(x,X) for all
x ∈ V (G) and all nonempty X ⊆ {1, . . . , 3k} in time O(23k ·mn), because we compute α(x,X) for
n vertices x and 23k − 1 sets X, and to compute α(x,X) using (2), we consider the neighbors of x.

15

To complete the description of the algorithm that verifies the existence of a colorful solution,
we observe that such a solution exists if and only if there are X,Y ⊆ {1, . . . , 3k} such that X ∩Y =
{p, q}, |X|+ |Y | ≥ k + 2, and α(t,X) = α(t, Y) = true.

Hence, it takes time O(23k · mn) to decide whether there is a colorful solution. If there is a
colorful solution, (G, s, t, k) is a yes-instance of Long (s, t)-Cycle. However, the absence of a
colorful solution does not imply that we have a no-instance.

Assume that there are two internally disjoint (s, t)-paths P1 and P2 in G whose total length is
between k and 3k. That is, k ≤ |V (P1) ∪ V (P2)| ≤ 3k. Then the probability that all vertices of

V (P1)∪ V (P2) are colored by distinct colors is at least (3k)!
(3k)3k

≥ e−3k. The probability that there is

no colorful solution is at most 1−e3k. Therefore, by trying to find a colorful solution for N = ⌈e3k⌉
random colorings, we either conclude that we have a yes-instance, or return no-answer with the
mistake probability at most (1− e3k)N ≤ e−1. This gives us a Monte Carlo algorithm with running
time O((2e)3k ·mn).

Stage 2. From now, we assume that we failed to solve the problem at Stage 1. This means that
each solution is an (s, t)-cycle of length 3k + 1. As in Stage 1, we find two disjoint (s, t)-paths
of total length at least 3k + 1. This is done by generalizing the technique of Fomin, Lokshtanov,
Panolan, Saurabh and Zehavi from [FLP+18] for finding an (s, t)-path of length at least k. Now
instead of color-coding, we use the technique of random separation [CCC06]. The main step of our
procedure for Stage 2 is given in Algorithm 1.

1 Color the vertices of V (G) \ {s, t} uniformly at random by three colors 1, 2, and 3, and
denote by X1, X2, X3 the vertices colored by the corresponding colors.

2 for i = 1, 2, 3 do
3 foreach v ∈ Xi at distance k from t in Gi = G[Xi ∪ {t}] do
4 Find a shortest (v, t)-path P in Gi;
5 Find an (s, v)-path P1 and an (s, t)-path P2, such that P1 and P2 are internally

disjoint and both these paths avoid internal vertices of P ;
/* that is, P1 and P2 are paths in G− (V (P) \ {v, t}) */

6 if such paths P1 and P2 exist then
7 return the paths P ′

1 = P1P and P2;
8 quit.

9 end

10 end

11 end

Algorithm 1: Main step of Stage 2.

Due to the conditions that P1 does not contain internal vertices of P , avoids t, and is internally
disjoint with P2, we have that the concatenation P ′

1 of P1 and P is a path. Moreover, P ′
1 and P2

are internally vertex disjoint (s, t)-paths. Since the length of P is k, the length of P ′
1 is at least k.

We conclude that if the algorithm returns P ′
1 and P2, then these paths form a required (s, t)-cycle

of length at least k. The algorithm runs in O(n + m) time, as P1 and P2 can be found (if they
exist) by the standard flow algorithm, see e.g., [Wil19].

However, the proof that the algorithm finds a solution in a yes-instance with a reasonable
probability is non-trivial. It follows from the following lemma.

16

Lemma 2. If (G, s, t, k) is a yes-instance of Long (s, t)-Cycle, then the described algorithm finds
a solution with probability at least 2

33k−1 .

Proof of Lemma 2. Suppose that (G, s, t, k) is a yes-instance. Then there are two internally disjoint
(s, t)-paths P1 and P2 with total length at least k. We assume that the total length of paths P1

and P2 is minimum. Recall that the total length of P1 and P2 is at least 3k + 1. We assume that
the vertices of P1 and P2 are ordered in the path order starting with s. Thus whenever we refer to
the first or the last vertices of the paths, these vertices respect this ordering. We follow the same
convention for all (x, y)-paths, that is, we order the vertices starting from x. We consider two cases.

Case 1. The shortest path among P1 and P2 is of length at most k. Without loss of generality,
we assume that the length of P2 is at most k. Then the length of P1 is at least 2k + 1. Denote
by A the set of the first k − 1 internal vertices of P1, by B the set of the last k internal vertices
of P1, and by C the set of internal vertices of P2. Because the vertices of V (G) \ {s, t} are colored
uniformly at random, with probability at least 3!

3|A|·3|B|·3|C| ≥ 2
33k−1

(i) vertices of each of the sets A, B, and C receive the same colors, and

(ii) vertices of distinct sets are of distinct colors.

We show that if (i) and (ii) holds, then the algorithm finds a solution. For further analysis, we
assume that A ⊆ X1, B ⊆ X2, and C ⊆ X3.

Let v be the internal vertex of P1 at distance k from t in the path. Then v ∈ B ⊆ X2. Denote
by P ′

1 the (s, v)-subpath of P1. Let P be an arbitrary shortest (v, t)-path in G2 = G[X2 ∪ {t}].
Notice that P is internally disjoint with P2, because V (P2) \ {s, t} ⊆ X3, and X2 ∩ X3 = ∅. We
claim that P ′

1 and P are internally disjoint.
Targeting towards a contradiction, assume that V (P ′

1) ∩ V (P) \ {v} ̸= ∅. Let u be the first
vertex of P ′

1 that is in V (P). Let Q1 be the (s, u)-subpath of P ′
1 and let Q be the (u, t)-subpath of

P . Recall that the first k − 1 internal vertices of P1 are in A ⊆ X1. This implies that A ⊆ V (Q1).
Threfore, the length of Q1 is at least k. Let P̂1 = Q1Q. We obtain that P̂1 is an (s, t)-path of
length at least k that is internally disjoint with P2. Hence, P̂1 and P2 form a solution. However,
the length of P̂1 is less than the length of P1, contradicting the condition that P1 and P2 form a
solution of minimum total length. Hence P ′

1 and P are internally disjoint.
We have that P̂1 = P ′

1P is a path internally disjoint with P2. We also have that A ⊆ V (P1)
and, therefore, the length of P̂1 is at least k. Thus P̂1 and P2 is a solution. By the construction of
P̂1, the length of P̂1 is at most the length of P1. Since P1 and P2 compose a solution of minimum
total length, the length of P1 is the same as the length of P̂1. Hence, v is at distance k from v in
G3.

Summarizing, there is a vertex v at distance k from t in G2 such that for any shortest (v, t)-path
P in graph G2, in graph G− (V (P) \ {v, t}) there exist an (s, v)-path P1 and an (s, t)-path P2 that
are internally disjoint. In this case our algorithm finds a solution.

Case 2. The length of each of the paths P1 and P2 is at least k + 1. Let B be the last k internal
vertices of P1 and let C be the last k internal vertices of P2. Since each of the paths P1 and P2

is of length at least k + 1 because the total length of both paths is at least 3k + 1, we conclude
the following. For some positive integers k1 and k2 such that k1 + k2 = k − 1, the first k1 internal
vertices of P1 are not in B, and the first k2 internal vertices of P2 are not in C. Denote by A1 the
first k1 internal vertices of P1 and by A2 the first k2 internal vertices of P2. We set A = A1 ∪ A2.
Thus |A| = k− 1 and the sets A, B and C are pairwise disjoint. Since the vertices of V (G) \ {s, t}
are colored uniformly at random, we have that with probability 3!

3|A|·3|B|·3|C| ≥ 2
33k−1

17

(i) vertices of each of the sets A, B, and C are of the same color, and

(ii) vertices of distinct sets are of different colors.

As in Case 1, we show that if a coloring satisfies (i) and (ii), then the algorithm finds a solution.
Without loss of generality, we assume that A ⊆ X1, B ⊆ X2, and C ⊆ X3.

Let v1 be the internal vertex of P1 at distance k from t in P1, and let v2 be the internal vertex of
P2 at distance k from t in P2. Note that v1 ∈ B ⊆ X2 and v2 ∈ C ⊆ X3. Denote by P ′

1 the (s, v1)-
subpath of P1 and by P ′′

1 the (v1, t)-subpath of P1. Similarly, we define P ′
2 as the (s, v2)-subpath

of P2 and P ′′
2 as the (v2, t)-subpath of P2.

We prove the following claim.

Claim 1. At least one the following options holds.

• Either for every shortest (v1, t)-path Q1 in G2 = G[X2 ∪ {t}], paths Q1 and P2 are internally
disjoint,

• or for every shortest (v2, t)-path Q2 in G3 = G[X3 ∪ {t}], paths Q2 and P1 are internally
disjoint.

Proof of Claim 1. The proof is by contradiction. Assume that there is a shortest (v1, t)-path Q1

in G2 and a shortest (v2, t)-path Q2 in G3 such that neither Q1 and P2 are internally disjoint, nor
Q2 and P1 are internally disjoint. See Figure 2.

u2

s t

v1

v2

u2

c)

R2

R1
S2

u1

S1 w

a)

P1

P2
Q1

Q2
s t

v1

v2

u2

b)

R2

R1
S2

u1

S1

s t

v1

v2

u1

Figure 2: Structure of the paths P1, P2, Q1, and Q2. a) A dashed line shows path P1, a dotted line
indicates P2, and solid lines are used for Q1 and Q2. b) Solid lines indicate paths R1, R2, S1, and
S2. The thin lines are used for R1 and R2, while the thick lines for S1 and S2. The choice of w is
demonstrated in c).

Notice that Q1 and Q2 are internally disjoint since they are paths in G2 and G3 respectively, and
t is the unique common vertex of these graphs. Let u1 be the vertex of V (Q1)∩V (P2) distinct from
t that is at the minimum distance from t in Q1. Similarly, let u2 be the vertex of V (Q2) ∩ V (P1)
distinct from t that is at the minimum distance from t in Q2. The choice of u1 and u2 is shown in
Figure 2 (a). Because V (P ′′

2) ⊆ X3 and V (P ′′
1) ⊆ X2, we have that u1 ∈ V (P ′

2) and u2 ∈ V (P ′
1).

Denote by R1 the (s, u2)-subpath of P1 and by R2 the (s, u1)-subpath of P2. Let also S1 be the
(u1, t)-subpath of Q1 and S2 be the (u2, t)-subpath of Q2. The construction of these paths is shown
in Figure 2 (b).

We claim that paths S1 and R1 have no common vertices. For the sake of contradiction, let
V (S1) ∩ V (R1) ̸= ∅ and assume that w is the first vertex of R1 in V (S1) (see Figure 2 (c)). Since
R1 and R2 are internally vertex disjoint, w is an internal vertex of S1. By the choice of u1, there
is no internal vertex of S1 that belongs to P2. Hence, the concatenation P̂1 of the (s, w)-subpath
of R1 and the (w, t)-subpath of S1, gives a path that is internally vertex disjoint with P2. Observe

18

also that A1 ⊆ V (P̂1), because w ∈ B and the first k1 internal vertices of P1 are in A1. Therefore,
the total length of paths P̂1 and P2 is at least k. However, the length of the (s, w)-subpath of R1

is less than the length of P ′
1 and the length of the (w, t)-subpath of S1 is less than k. Therefore,

the length of P̂1 is less than the length of P1, contradicting the choice of P1 and P2.
This proves that S1 and R1 have no common vertices. By the same arguments, S2 and R2 also

have no common vertices.
Consider (s, t)-paths P̂1 = R2S1 and P̂2 = R1S2. Since paths S1 and R1 do not intersect and

paths S2 and R2 also do not intersect, we have that paths P̂1 and P̂2 are internally disjoint. Because
A1 ⊆ V (P̂2) and A2 ⊆ V (P̂1), the total length of paths P̂1 and P̂2 is at least k. However, because
the length of P ′′

1 is less than the length of S1 and because the length of P ′′
2 is less than the length

of S2, the total length of P̂1 and P̂2 is less than the total length of P1 and P2. This contradict the
choice of P1 and P2 and proves the claim. ⌟

By Claim 1, without loss of generality, we assume that for every shortest (v1, t)-path Q1 in G2,
paths Q1 and P2 are internally disjoint. Now we repeat the arguments from Case 1. We observe
that every shortest (v1, t)-path Q1 in G2 is internally disjoint with P ′

1. Indeed, if this is not the
case, we can select the first vertex u of P ′

1 that is in Q1. Then by replacing P1 by the concatenation
of the (s, u)-subpath of P ′

1 and the (u, t)-subpath of Q1, we obtain a solution with a shorter total
length. But this contradicts the choice of P1 and P2. Since Q1 and P ′

1 are internally vertex disjoint,
we have that the cycle formed by paths P̂1 = P ′

1Q1 and P2 is a solution. This implies that Q1 and
P ′′
1 have the same length. Therefore v1 is at distance k from t.

We conclude that there is v1 at distance k from t in G2 such that for every shortest (v, t)-path
Q1 in G2, there are an (s, v1)-path P ′

1 and an (s, t)-path P2 in G−(V (P)\{v, t}) that are internally
disjoint. Then the algorithm finds a solution. This concludes Case 2 and the proof of Lemma 2.

By Lemma 2, if we iterate Algorithm 1 33k−1/2 times, then we either find a solution, or return

the no-answer with the error probability at most (1− 2
33k−1)3

3k−1/2 ≤ e−1. Thus we have a Monte

Carlo algorithm with false negatives that runs in time O(33k · (n + m)).

Derandomization. For the Monte Carlo algorithm that we use in the first stage (finding a short
cycle), derandomization uses the standard technique. We replace random colorings by functions
from the (n, 3k)-perfect hash family of functions of size e3kkO(log k) · log n that can be constructed
in time e3kkO(log k) · n log n by the results of Naor, Schulman, and Srinivasan [NSS95] (we refer
to [CFK+15b, Chapter 5] for the detailed introduction to the technique). This allows us to check
in (2e)3kkO(log k) ·mn log n deterministic time whether there are two internally vertex disjoint (s, t)-
paths in G whose total length is at least k but at most 3k.

To derandomize the algorithm from the second stage that uses random separation, we have
to do an extra work. This is because commonly random separation is used to distinguish two
sets [CFK+15b, Chapter 5]. In our algorithm we distinguish three sets; derandomization here is
slightly different and is based on Lemma 3. Lemma 3 could be a folklore, but we did not find it in
the literature and prove it here for completeness.

Let k and n be positive integers. An (n, k)-universal set is a family U of subsets of {1, . . . , n}
such that for any S ⊆ {1, . . . , n} of size k, the family {A ∩ S | A ∈ U} contains all 2k subsets of S.
We use the following result of Naor, Schulman, and Srinivasan [NSS95].

Proposition 1 ([NSS95]). For any n, k ≥ 1, one can construct an (n, k)-universal set of size
2kkO(log k) · log n in time 2kkO(log k) · n log n.

Using Proposition 1, we prove the following lemma.

19

Lemma 3. For an n-element set Ω and a positive k, there is a family of functions Fn,k mapping Ω to
{1, 2, 3} of size 25kkO(log k) ·(log n)2 such that for every triple of disjoint nonempty sets A1, A2, A3 ⊆
Ω, each of size at most k, there is f ∈ Fn,k with the property that

• f(x) = f(y) if x, y ∈ Ai for some i ∈ {1, 2, 3},

• f(x) ̸= f(y) if x ∈ Ai and y ∈ Aj for distinct i, j ∈ {1, 2, 3}.

Moreover, Fn,k can be constructed in 25kkO(log k) · n2 log n time.

Proof. If n ≤ 3k, then we define Fn,k to be the family of all at most 33k mappings f : Ω→ {1, 2, 3}.
Hence, from now we assume that n ≥ 3k. Let Ω = {ω1, . . . , ωn}.

We apply Proposition 1 to construct the following family of universal sets. We construct an

(n, 3k) universal set U (1). Then for every positive p ≤ n, we construct an (p, 2k)-universal set U (2)
p .

Then Fn,k is constructed as follows. For every U = {i1, . . . , ip} ∈ U (1) and every W = {j1, . . . , jq} ∈
U (2)
p , we construct f : Ω→ {1, 2, 3} such that for every h ∈ {1, . . . , n},

f(ωh) =

1 if h /∈ {i1, . . . , ip}
2 if h ∈ {i1, . . . , ip} \ {ij1 , . . . , ijq}
3 if h ∈ {ij1 , . . . , ijq}.

To see that Fn,k satisfies the required property, consider arbitrary disjoint sets A1, A2, A3 ⊆ Ω
of size at most k. We assume without loss of generality that each Ai is of size exactly k (otherwise,
we can complement the sets by adding elements of Ω that are outside these sets). Let Ai =
{ωii1

, . . . , ωiik
} for i ∈ {1, 2, 3}. Let S = {i11, . . . , i1k} ∪ {i21, . . . , i2k} ∪ {i31, . . . , i3k}. By definition, the

(n, 3k)-universal set U (1), contains a set X such that S∩X = {i21, . . . , i2k}∪{i31, . . . , i3k}. Let p = |X|
and assume that X = {j1, . . . , jp}. Again by definition, the (p, 2k)-universal set U (2)

p contains a set
Z such that for every s ∈ Z, js ̸= i21, . . . , i

2
k, and for every t ∈ {1, . . . , k}, there is s ∈ Z such that

js = i2t . This implies that for f ∈ Fn,k constructed for X ∈ U (1) and Y ∈ U (2)
p , f(x) = i if x ∈ Ai

for i ∈ {1, 2, 3}. Therefore, f distinguishes the sets A1, A2, A3.

By Proposition 1, |U (1)| = 23kkO(log k) · log n and |U (2)
p | = 22kkO(log k) · log n. Therefore, |Fn,k| ≤

25kkO(log k)(log n)2. By Proposition 1, the universal sets can be constructed in time 23kkO(log k) ·
n2 log n. Then we construct Fn,k in time 25kkO(log k) · n(log n)2.

To derandomize our algorithm, we apply Lemma 3. Notice that the only property of random
colorings that we use in the algorithm is that with sufficiently high probability the sets A, B, and
C defined in the proof of Lemma 2 are colored by distinct colors. The sets A, B, and C have
sizes at most k, and they are subsets of V (G) \ {s, t}. This implies that the random colorings can
be replaced by functions of the family Fn−2,k for Ω = V (G) \ {s, t}. Since Algorithm 1 runs in
O(n + m) time, the running time is 25kkO(log k) · (n + m)(log n)2. Taking into account the time for
constructing Fn−2,k, we conclude that the problem can be solved in 25kklog k ·mn log n deterministic
time.

Recall that in the first stage of our algorithm, we try to find two internally disjoint (s, t)-
paths of total length ℓ for some ℓ ∈ {k, . . . , 3k}, and this can be done in (2e)3k ·mn randomized
and (2e)3kkO(log k) · mn log n deterministic time. Since (2e)3 ≥ 25 ≥ 33 and nm ≥ n(n − 1) as
G is assumed to be connected, we obtain that the running time of the first stage dominates the
running time of the second. We conclude that the problem can be solved in (2e)3k ·mn randomized
and (2e)3kkO(log k) ·mn log n deterministic time. It is plausible that the running time for the first
stage can be improved by making use of more sophisticated techniques for Longest Path and

20

Longest Cycle (see, e.g., [FLPS16, Zeh16]) but such an improvement goes beyond the scope of
our paper.

6 Long Erdős-Gallai (s, t)-Path

In this section we prove Theorem 5: Long Erdős-Gallai (s, t)-Path is solvable in time
2O(k+|B|) ·nO(1). The proof of the theorem relies on the structural properties of graphs with a long
path. The notions of Erdős-Gallai decomposition and Erdős-Gallai component are crucial here. We
prove several combinatorial and algorithmic properties of Erdős-Gallai decomposition, and then
apply the obtained properties in the proof of Theorem 5.

6.1 Erdős-Gallai decompositions and structures

We need to introduce the operation of B-refinements. The intuition behind this operation is
the following. In our proof, we will be using the following rerouting strategy. Suppose we have
an (s, t)-path P , and we want to construct a longer path by rerouting some parts of P through
a connected component H of G − V (P). If H is 2-connected, we can try to apply Theorem 2to
argue that such an enlargement of P is possible. However, when H is not 2-connected, we want to
eliminate some “insignificant” parts of H. While in the refinement we contract some of the edges
inside H, all edges between H and the remaining part of the graph remain.

Definition 1 (B-refinement of H). Let H be a connected subgraph of a graph G and B ⊂ V (G).
The B-refinement of H, denoted by RB(H), is the graph obtained by the following process. Start
with RB(H) := G. While H is not 2-connected and contains a leaf-block with all inner vertices
from B, contract all edges in H from this leaf-block to its cut-vertex.

In other words, RB(H) is obtained from G by repeatedly contracting edges of H from the
leaf-blocks of H whose inner vertices are from B. Note that in B-refinement only edges with
both endpoints in B can be contracted. We also say that RB(H) is obtained from G by applying
B-refinement to H.

We are ready to introduce the primary tool for solving Long Erdős-Gallai (s, t)-Path. This
structure arises in the extremal cases when we cannot enlarge an (s, t)-path by local replacement
used in the proof of the Erdős-Gallai’s theorem. This is where the name we use for the decomposition
comes from.

Definition 2 (Erdős-Gallai decomposition and Erdős-Gallai component). Let P be a path
in a 2-connected graph G and let B ⊆ V (G). We say that two disjoint paths P1 and P2 in G induce
an Erdős-Gallai decomposition for P and B in G if

• Path P is of the form P = P1P
′P2, where the inner path P ′ has at least δ(G−B) edges.

• Let G′ be the graph obtained from G by applying B-refinement to every connected component
H of G − V (P1 ∪ P2), except those components H with V (H) ⊆ B. Note that no edges of
the paths P1 and P2 are contracted. There are at least two connected components H ′ in
G′−V (P1∪P2) with V (H ′) ̸⊆ B. For every such connected component H ′ holds |V (H ′)| ≥ 3
and one of the following.

(R1) H ′ is 2-connected and the maximum size of a matching in G′ between V (H ′) and V (P1)
is one, and between V (H ′) and V (P2) is also one;

21

P1 P2

R1

R3

R1

R0

R0

Figure 3: A schematic example of an Erdős-Gallai decomposition for a path. The components are
denoted by their respective types in the decomposition, R0 denotes components consisting entirely
of vertices from B (marked by light gray). The four Erdős-Gallai components are marked by thick
blue borders.

(R2) H ′ is not 2-connected, exactly one vertex of P1 has neighbors in H ′, that is |NG′(V (H ′))∩
V (P1)| = 1, and no inner vertex from a leaf-block of H ′ has a neighbor in P2;

(R3) The same as (R2), but with P1 and P2 interchanged. That is, H ′ is not 2-connected,
|NG′(V (H ′)) ∩ V (P2)| = 1, and no inner vertex from a leaf-block of H ′ has a neighbor
in P1.

The set of Erdős-Gallai components for an Erdős-Gallai decomposition is defined as follows. First,
for each component H ′ of type (R1), H ′ is an Erdős-Gallai component of the Erdős-Gallai decom-
position. Second, for each H ′ of type (R2), or of type (R3), all its leaf-blocks are also Erdős-Gallai
components of the Erdős-Gallai decomposition. The example of an Erdős-Gallai decomposition is
given in Figure 3.

The following lemma provides a polynomial time algorithm that either finds a long path in the
given graph or constructs an Erdős-Gallai decomposition.

Lemma 4. Let G be a 2-connected graph with two distinct vertices s and t, B ⊆ V (G) be a subset
of vertices such that s, t ∈ B, and k > 0 be an integer such that 4k + 2|B|+ 4 ≤ δ(G− B). There
is a polynomial time algorithm that

• either outputs an (s, t)-path P of length at least δ(G−B) + k,

• or outputs an (s, t)-path P with V (P) ∪B = V (G),

• or outputs an (s, t)-path P with paths P1, P2 that induce an Erdős-Gallai decomposition for
P and B in G.

Proof. By Corollary 3, an (s, t)-path P of length at least δ(G − B) can be found in polynomial
time. If the length of P is at least δ(G−B) + k, we output it and stop. Otherwise, we try to make
P longer by replacing some of its parts with paths in G− V (P).

22

We first contract some edges of G in a way similar to the definition of Erdős-Gallai decompo-
sitions. For each connected component H of G − V (P) such that V (H) is not in B, we perform
B-refinement of H. That is, while H is not 2-connected and has a leaf-block with all inner vertices
from B, we contract all edges of this leaf-block. We denote the resulting graph by G′. Note that
G′ still contains P as a subgraph and that δ(G′ −B) ≥ δ(G−B). If we find an (s, t)-path that is
longer than P in G′, this path can be easily transformed into a path of the same or greater length
in G. Moreover, if we find paths P1 and P2 that induce an Erdős-Gallai decomposition for P in G′,
then P1, P2 induce an Erdős-Gallai decomposition for P in graph G as well. Thus, from now on,
we proceed with the graph G′.

We start with the trivial case. If V (G′) \P ⊆ B, then V (P)∪B = V (G). Hence, the algorithm
just outputs P and stops.

From now on we assume that (V (G′) \ B) \ V (P) ̸= ∅. Let H ′ be a connected component in
G′ − V (P) that contains at least one vertex in V (G′) \ B. We consider several cases. The first
case is a trivial case when H ′ − B contains at most two vertices. The second case corresponds to
Erdős-Gallai components of type (R1), while the third case to Erdős-Gallai components of types
(R2) and (R3).

If we find out that P can be enlarged, we replace P with the longer path in G and start trying
to make it longer again. Throughout the proof and all its claims, we consider that P cannot be
made longer with the replacement operation.

Case 1: H ′ −B contains at most two vertices. In this case, each vertex in V (H ′ −B) has at least
δ(G′ −B)− 2 neighbors in P . If the length of P is less than 2δ(G−B)− 4 ≥ δ(G−B) + 4k, then
each vertex in V (H ′ − B) has two consecutive vertices in P as neighbors. Hence, any such vertex
can be inserted in P between such two neighbors, so the length of P increases by one.

Conclusion of Case 1. Either H ′ − B consists of at least three vertices, or the length of P
can be increased (in polynomial time).

Case 2: H ′ is 2-connected. We start with the following claim.

Claim 2. If there is a matching of size at least three between V (H ′) and V (P) in G′, then the
length of P can be enlarged in polynomial time.

Proof of Claim 2. As δ(G′−B) ≥ δ(G−B), 2δ(G′−B)−2 > δ(G−B)+4k+2|B| > δ(G−B)+k.
So we assume that the length of P is at most 2δ(G′ − B) − 1. Let u1v1, u2v2, u3v3 be a matching
in G′ such that u1, u2, u3 ∈ V (H ′) and v1, v2, v3 ∈ V (P).

If no vertex in V (H ′ − B) has a neighbor in P , then δ(H ′ − B) ≥ δ(G′ − B). By Corollary 3,
there is a path of length at least δ(G′ −B) between any pair of vertices in H ′. Because the length
of P is at most 2δ(G′ −B)− 1 < 2δ(G′ −B) + 4, at least for one pair {vi, vj}, i ̸= j, the distance
between vi and vj in P is less than δ(G′ −B) + 2. Then we replace the (vi, vj)-subpath in P with
the path viui ⇝ ujvj , where ui ⇝ uj is a path between ui and uj in H ′ of length at least δ(G′−B).
The length of viui ⇝ ujvj is at least δ(G′ −B) + 2 and hence we can enlarge P .

Now we assume that there is at least one vertex w ∈ V (H ′ −B) with a neighbor in P . We can
assume that in the matching u1v1, u2v2, u3v3, one of the vertices ui = w. (If all ui ∈ B, we just
replace u1 with w.) Vertex w has at least max{1, δ(G′−B)− δ(H ′−B)} neighbors in P . Let S be
the set of neighbors of u1, u2, u3 in P , that is, S := (NG′(u1) ∪NG′(u2) ∪NG′(u3)) ∩ V (P). Then
the size of S is at least max{δ(G′ −B)− δ(H ′ −B), 3}. Let s1, s2, . . . , s|S|, be the order of vertices
from S in the path P . If the length of one of the subpaths si, si+1, i ∈ {1, . . . , |S| − 1}, of P is
1, we can enlarge P by replacing si, si+1 with an (si, si+1)-path of length at least 2 going through
V (H ′). Moreover, at least two of these subpaths go between neighbors of ui and uj for distinct i
and j. If one of these paths, say between sℓ and sℓ+1, is of length less than δ(H ′ −B) + 2, we can

23

increase P by replacing it with path sℓui ⇝ ujsℓ+1, where ui ⇝ uj is a path between ui and uj
in H ′ of length at least δ(H ′ − B). This means that if we cannot enlarge P , then the length of P
is at least 2(|S| − 3) + 2(δ(H ′ − B) + 2) ≥ 2(δ(G′ − B) − δ(H ′ − B) − 3) + 2(δ(H ′ − B) + 2) =
2δ(G′ −B)− 2 > δ(G−B) + k. ⌟

By the claim and the fact that G is 2-connected, we can assume that the maximum size of a
matching between V (H ′) and V (P) in G′ is exactly two.

Claim 3. There is a path of length at least δ(G′ −B)− 2 between any pair of vertices in H ′.

Proof of Claim 3. Let h1v1, h2v2 be the edges of the maximum matching between V (H ′) and V (P)
in G′, where h1, h2 ∈ V (H ′), v1, v2 ∈ V (P). Note that no vertex in V (H ′)\{h1, h2} has neighbours
in V (P) \ {v1, v2}.

If h1 and h2 have no neighbours other than v1 and v2 in V (P), then, trivially, NG(V (H ′)) ∩
V (P) = {v1, v2}, so δ(H ′ −B) ≥ δ(G′ −B)− 2.

Without loss of generality, we now assume that h1 has a neighbour v3 ∈ V (P) \ {v1, v2}. Then
no vertex in V (H ′) \ {h1, h2} can have v1 as a neighbour. Analagously, if h2 has a neighbour other
than v1 or v2, no vertex in V (H ′)\{h1, h2} can have v2 as a neighbour. Hence, if NG(hi) ̸⊆ {v1, v2}
for both i = 1 and i = 2, then δ(H ′ − (B ∪ {h1, h2})) ≥ δ(G′ −B)− 2.

We now assume that h2 has no neighbours other than v1 and v2 in V (P). If h2 is adjacent to v1,
then no vertex in V (H ′)\{h1, h2} can be adjacent to v2, as we would obtain a matching h1v3, h2v1,
h3v2 of size at least three. Hence, if h2v1 ∈ E(G′), then δ(H ′ − (B ∪ {h1, h2})) ≥ δ(G′ − B) − 2.
If h2 is not adjacent to v1, then all vertices in V (H ′) \ {h1} only can have v2 as a neighbour, so
δ(H ′ − (B ∪ {h1})) ≥ δ(G′ − (B ∪ {h1}))− 1 ≥ δ(G′ −B)− 2.

It is left to apply Corollary 3 to all of the cases. ⌟

Hence, if there is a matching between V (H ′) and two vertices on P that are closer than δ(G′−B)
to each other and P can be made longer. Suppose that we have a matching between V (H ′) and
V (P) with endpoints h1, h2 ∈ V (H ′) and v1, v2 ∈ V (P), where v1 is closer to s on P than v2.
Let a1 denote the distance from s to v1 on P and a2 denote the distance from v2 to s on P .
Then, if |V (P)| + 1 − (a1 + a2) < δ(G′ − B), P can be enlarged using the long (h1, h2)-path of
length at least δ(G′ − B) − 2 in H ′. Otherwise, a1 + a2 ≤ |V (P)| + 1 − δ(G′ − B). In particular,
a1, a2 ≤ |V (P)|+ 1− δ(G′ − B). Thus, v1 is within the first |V (P)|+ 2− δ(G′ − B) vertices of P
and v2 is within the last |V (P)|+ 2− δ(G′ −B) vertices of P .

Conclusion of Case 2. If H ′ is 2-connected, then either P can be made longer or the
following holds. The size of the maximum matching between H ′ and P is exactly 2. Moreover, for
any maximum matching between H ′ and P , the endpoint of one edge of the matching is one of the
first |V (P)| − δ(G′−B) + 2 vertices of P and one is within the last |V (P)| − δ(G′−B) + 2 vertices
of P .

Case 3: H ′ is not 2-connected. Let L be a leaf-block L of H ′ and let c be the cut-vertex of the
leaf-block L. Note that V (L) \B \ {c} is not empty and δ(L− (B ∪ {c})) ≥ δ(H ′ −B)− 1.

Assume first that there is a matching of size three between V (L) and V (P) in G′. Similar to
Case 2, then there is a vertex in V (L − (B ∪ {c})) with at least δ(G′ − B) − δ(L − (B ∪ {c}))
neighbors in V (P). In this case, since the length of P is at most δ(G − B) + k < 2(δ(G′ − B) −
δ(L− (B ∪ {c}))− 1) + 2δ(L− (B ∪ {c})), we can reroute a part of P through H ′ and thus make
it longer.

Now we may assume that the maximum matching size between V (L) and V (P) in G′ is at most
two. Again, similar to Case 2 and Claim 3 we derive that δ(L−(B′∪{c})) ≥ δ(G′−(B∪{c}))−2 ≥
δ(G′−B)− 3 for some B′ ⊇ B. Hence, there is a path of length at least δ(G′−B)− 3 between any

24

pair of vertices in L by Corollary 3. It follows that there is a path of length at least δ(G′ −B)− 3
between an inner vertex of a leaf-block of H ′ and any other vertex in H ′.

For each leaf-block in H ′, there is at least one inner vertex that has at least one neighbor in P ,
otherwise G′ is not 2-connected.

Suppose first that there are two inner vertices of two distinct leaf-blocks in H ′ that have two
distinct neighbors in V (P). There is always path between these two inner vertices of length at
least 2(δ(G′ − B) − 3): we can find two paths in each leaf-block starting in the cut vertex and
ending in an inner vertex of length at least δ(G′ − B) − 3. Since the length of P is at most
δ(G−B) + k ≤ 2(δ(G′ −B)− 3) + 2, the subpath of P between their neighbours is shorter than if
than the path between them through H ′. So we can enlarge P by using this path.

Note that if there are at least two vertices V (P) having at least one inner leaf-block vertex of H ′

as a neighbour, then we can always pick two inner vertices as described in the previous paragraph.
Hence, if P cannot be made longer, there is exactly one vertex v ∈ V (P) that is connected to inner
vertices of the leaf-blocks of H ′. Then, in fact, δ(L−(B∪{c})) ≥ δ(G′−(B∪{c}))−1 ≥ δ(G′−B)−2
for each leaf-block L of H with cut vertex c. The following claim holds.

Claim 4. There is a path of length at least δ(G′ −B)− 2 between any inner vertex of a leaf-block
and any other vertex of H ′.

Since G is 2-connected, there is at least one other vertex u ∈ V (P) that has neighbors in V (H ′).
If the distance between u and v on P is less than (δ(G′ −B)− 2) + 2, then P can be made longer.
As there is a path of length at least δ(G′ − B) − 2 between their neighbours in H. Hence, H ′

can only have neighbors among the first and among the last |V (P)|+ 2− δ(G′ − B) vertices of P
analogously to Case 2.

Conclusion of Case 3. If H ′ contains at least three vertices and is not 2-connected, then
either P can be made longer, or the following properties hold. All inner vertices of its leaf-blocks
that have neighbors in V (P) have exactly one neighbor on P , and this neighbour is the same for
all inner vertices. This neighbour vertex is within the first (or the last) |V (P)| + 3 − δ(G′ − B)
vertices of P . All other neighbours of V (H ′) on P are, oppositely, within the last (or the first)
|V (P)|+ 2− δ(G′ −B) vertices of P .

Constructing Erdős-Gallai decomposition. We use the structural properties of G′ to construct
an Erdős-Gallai decomposition in graph G′, and hence in G. We start from an (s, t)-path P in G′

and try to increase its length by applying one of the algorithms from Cases 1–3. Assume that we
cannot increase the length of P anymore. Then we have a path P and every connected component
H ′ of G′ − V (P) should satisfy the properties summarized in the conclusion of Case 2 or Case 3.
We show that in this case we either could construct in polynomial time a new path P of length at
least δ(G−B) + k, or to construct an Erdős-Gallai decomposition.

Then each H ′ has neighbors within the first k+2 vertices of P and within the last k+2 vertices
of P . Denote by P1 the shortest subpath of P starting in s that contains all starting neighbors (that
is, neighbours that are closer to s than to t in P) among all possible components H ′. Analogously,
denote by P2 the shortest subpath of P ending in t that contains all ending neighbors (that is,
neighbours that are closer to t than to s in P) among all possible H ′. Thus P = P1P

′P2.

Claim 5. The length of P ′ is at least δ(G−B)− k.

Proof of Claim 5. We know that |V (P1)|, |V (P2)| ≤ |V (P)| − δ(G′ − B) + 2. The length of each
of P1 and P2 is at most |V (P)| − δ(G′ −B) + 1, so the length of P ′ is at least

(|V (P)|+ 1)− 2(|V (P)| − δ(G′ −B) + 1) = 2δ(G′ −B)− |V (P)| > δ(G−B)− k.

25

s ts′ t′u1 v

H ′

P1 P ′ P2

Figure 4: Construction of a long path in G′ when P ′ is shorter than δ(G−B).

⌟

Denote by s′ and t′ the endpoints of P ′, so P1 and P2 are the (s, s′)-subpath and the (t′, t)-
subpath of P respectively. The following claim is rather useful.

Claim 6. There is a connected component H ′ in G′ − (V (P1) ∪ V (P2)) with V (H ′) \B = V (P ′ −
{s′, t′}) \B.

Proof of Claim 6. We actually need to show that each vertex v ∈ V (P ′ − {s′, t′}) can only
have neighbours in V (P) or B. Suppose that there is v ∈ V (P ′ − {s′, t′}) with a neighbour
u ∈ V (G′)\V (P)\B. Then u is in some connected component H ′′ of G′−V (P) with |V (H ′′−B)| ≥
|{u}| > 0. Note that then H ′′ has a vertex with a neighbour in P that is not in V (P1) ∪ V (P2).
This contradicts the choice of P1 and P2. ⌟

We now show that the length of P ′ can be actually assumed to be at least δ(G−B), as agrees
with the definition of Erdős-Gallai decomposition. This strengthens Claim 5.

Claim 7. If the distance between P1 and P2 in P is less than δ(G − B), then G′ contains an
(s, t)-path of length at least δ(G−B) + k. Moreover, this path can be computed in polynomial time.

Proof of Claim 7. Suppose that the distance between P1 and P2 in P is less than δ(G − B).
Equivalently, |V (P ′ − {s′, t′})| < δ(G− B)− 1. Vertices in P ′ − {s′, t′} are adjacent in G′ only to
vertices in B and vertices from V (P) by Claim 6. Hence, each vertex in V ((P ′ − {s′, t′})−B) has
at least three neighbors in V (P1) ∪ V (P2), as it has at most |V (P ′ − {s′, t′})| − 1 ≤ δ(G− B)− 3
neighbors in V (P ′ − {s′, t′}).

Consider the first vertex in P ′ that is not in B and is at distance at least δ(G−B)/2 from the
start of P ′. Denote this vertex by v. Note that the length of the (s′, v)-subpath of P ′ is at most
δ(G−B)/2+|B|. By Claim 5, the distance from v to the last vertex of P ′, i.e. the length of the (v, t′)-
subpath of P ′, is at least (|V (P ′)| − 1)− (δ(G−B)/2 + |B|) ≥ δ(G−B)− k− δ(G−B)/2− |B| =
δ(G − B)/2 − k − |B| . Hence, the distance from v to each of the endpoints of P ′ is at least
δ(G−B)/2− k − |B|. Vertex v has at least two neighbors in V (P1) or in V (P2), as it has at least
three neighbours in V (P1) ∪ V (P2). Without loss of generality, assume that it has two neighbors
in P1.

One of its neighbors, say u1, is different from s′. Construct an (s, t)-path as follows. Start from
s, move to u1 along P1, then from u1 to v, then follow the path P ′ backwards from v to s′. By the
construction of P1, there is at least one component H ′ in G′−V (P) that is connected with s′. Thus
from s′ we enter H ′, and follow a path of length at least δ(G′ − B) − 2 in H ′ (such path always

26

exists by either Claim 3 or Claim 4) to reach some vertex in P2. We complete the construction of
the path by following along P2 to t (see Figure 4). The length of the constructed path is at least

1︸︷︷︸
s⇝u1⇝v

+ δ(G−B)/2− k − |B|︸ ︷︷ ︸
v⇝s′

+ 1 + (δ(G−B)− 2) + 1)︸ ︷︷ ︸
s′ ⇝ t through H′

,

which equals 3
2δ(G−B)− k − |B|+ 1 > δ(G−B) + k. ⌟

By the claim, if the length of P ′ is less than δ(G − B), then we find in polynomial time the
desired path and stop. Otherwise, the distance between P1 and P2 in P is at least δ(G−B), hence
|V (P1)|+ |V (P2)| ≤ k + 1 as |V (P)| ≤ δ(G−B) + k.

Claim 8. The connected component H ′ from Claim 6 is of type (R1) in G′ − (V (P1) ∪ V (P2)), or
a path of length at least δ(G−B) + k in G′ can be found in polynomial time.

Proof of Claim 8. We first show that H ′ is 2-connected after B-refinements are applied to it.
Denote the component H ′ with applied B-refinements by H ′′ and assume that G′ = RB(H ′). If H ′′

is not 2-connected, then it contains at least two leaf-blocks, as |V (P ′−{s′, t′})| ≥ δ(G−B)−1 > 2.
Since δ(H ′ − B) ≥ δ(G − (B ∪ (V (P1) ∪ V (P2)))) ≥ δ(G − B) − k − 1, each leaf-block of H ′′

should contain at least δ(G − B) − k vertices outside B. Hence, H ′ − B consists of at least
2(δ(G − B) − k) − 1 ≥ δ(G − B) + k ≥ |V (P)| vertices. This is not possible since V (H ′ − B) ⊆
V (P ′ − {s′, t′}) and |V (P ′ − {s′, t′})| < |V (P)|.

It is left to show that the matching conditions of type (R1) are also satisfied. Assume that
these conditions do not hold. Without loss of generality, assume that the maximum matching size
between V (H ′′) and V (P1) is at least two in RB(H ′). Then there are two edges v1h1, v2h2 ∈ E(G′)
with v1, v2 ∈ V (P1) and h1, h2 ∈ V (H ′′). Without loss of generality, we assume that v1 is closer to
s on P than h2. In particular, v1 ̸= s′. As H ′′ is 2-connected, then by Corollary 3, it contains a
path of length at least δ(H ′′−B) = δ(H ′−B) ≥ δ(G−B)−k−1 between h1 and h2. As discussed
above in the proof of Claim 5 (see Figure 4), there is a path connecting s′ with some vertex in
P2 going through a component H in G − V (P). Hence, there is an (s′, t)-path of length at least
δ(G−B) that does not have common vertices with H ′′. Then we concatenate the following paths.
Take the (s, v1)-subpath of P1, proceed further with the edge v1h1 and the (h1, h2)-path inside H ′′,
then with the edge h2v2 and the (v2, s

′)-subpath of P1. Finish with the (s′, t)-path. The obtained
path is an (s, t)-path of length at least

1︸︷︷︸
s⇝h1

+ δ(G−B)− k − 1︸ ︷︷ ︸
h1⇝h2

+ 1︸︷︷︸
h2⇝s′

+ δ(G−B)︸ ︷︷ ︸
s′⇝t

,

which equals to 2δ(G− B)− k + 1 > δ(G− B) + k. Thus, if H ′′ is not of type (R1), then we can
find a long path in G′ in polynomial time. ⌟

Note that every connected component in G′ − V (P1 ∪ P2) corresponds either to Case 2, or to
Case 3, or to Claim 8, or is fully contained in B. A connected component from Case 2 or Claim 8
corresponds to (R1)-type connected components of Erdős-Gallai decompositions. The connected
components from Case 3 correspond to (R2)-type and (R3)-type connected components depending
on whether the vertex v is from V (P1) or from V (P2). Thus, P1 and P2 induce an Erdős-Gallai
decomposition for P and B in G′, and hence in G.

The following proposition about long paths inside Erdős-Gallai components is clear from the
proof of Lemma 4.

27

Proposition 2. For any Erdős-Gallai component of any Erdős-Gallai decomposition in G for
B ⊆ V (G), there is a path of length at least δ(G − B) − 2 between any pair of vertices of this
Erdős-Gallai component.

We start to establish the properties of Erdős-Gallai components that will be exploited by the
algorithm. To state the first property, we need the following definition.

Definition 3. We say that a path P enters a subgraph H, if at least one edge of H is also an edge
of P .

Informally, the property is the following. Consider an Erdős-Gallai component M for some
Erdős-Gallai decomposition and consider also an (s, t)-path P ′. Path P ′ can hit some vertices of
M . However, if P ′ enters M , then all vertices of H hit by P , that is, all common vertices of P and
M , appear consecutively in P ′.

Lemma 5. Let G be a 2-connected graph, B ⊆ V (G), P be an (s, t)-path in G. Let paths P1, P2

induce an Erdős-Gallai decomposition for P and B in G. Let also G′ be the graph obtained after
B-refinements of connected components of G− V (P1 ∪ P2), and let M be an Erdős-Gallai compo-
nent. Then for every (s, t)-path P ′ in G′, if P ′ enters M , then all vertices of M ∩ V (P ′) appear
consecutively in P ′.

Proof. Targeting towards a contradiction, assume that the statement of the lemma does not hold.
Then there is an (s, t)-path P ′ that contains at least one edge of M , but vertices of M does not
appear consecutively in P ′. That is, there are vertices v1, v2 ∈ V (M), v1 ̸= v2, such that P ′ is of
the form s, . . . , v1, . . . , x, . . . , v2, . . . , t, where x ̸∈ V (M). No internal vertex of the (s, v1)-subpath
and the (v2, t)-subpath of P ′ belongs to V (M). Moreover, the (v1, v2)-subpath of P ′ contains at
least one edge of M and at least one edge outside of M .

Let G′ be the graph obtained from G after applying all possible B-refinements. According to
the definition of Erdős-Gallai component, M can be one of the following three types. Either it is a
connected component of G′ − V (P1 ∪ P2) (this corresponds to type (R1)), or it is a leaf-block of a
connected component of G′−V (P1 ∪P2) (this corresponds to types (R2) and (R3)). Therefore, we
consider three cases.

Case 1. Suppose that M is an Erdős-Gallai component of type (R1). That is, M is a connected
component of G′ − V (P1 ∪ P2) and also M is 2-connected. Consider the (s, v1)-subpath of P ′ in
G. Since s ∈ V (P1), there exists vertex w1 that is the last vertex on this subpath that is from
V (P1 ∪ P2). Then the subpath is of form s ⇝ w1 ⇝ v1, where all inner vertices of the subpath
w1 ⇝ v1 are from V (H)\V (M), where H is the connected component M before the B-refinements.
But after the B-refinement of H in G, all inner edges of this path are contracted. Then in G′ this
(w1, v1)-subpath consists of just single edge w1v1.

Analogously, consider the (v2, t)-subpath of P ′ and let w2 be the first vertex from V (P1)∪V (P2)
on this subpath. The (v2, w2)-subpath goes only through vertices in V (H) \ V (M) in G and turns
into the edge between v2 and w2 in G′.

The last subpath to consider is the (v1, v2)-subpath of P ′. It goes between vertices in M and
contains at least one edge outside M ; hence it should contain at least one vertex in V (P1)∪V (P2).
Let u be the first vertex on this subpath that is from V (P1)∪V (P2). Then either the (v1, u)-subpath
or the (u, v2)-subpath contains an edge of M .

First, suppose that the (v1, u)-subpath contains an edge of M . Denote by v3 the last vertex from
V (M) on this subpath. Then v3 ̸= v1 and the (v3, u)-subpath contains only vertices in V (H)\V (M)
as internal vertices. Hence, in this case there is an edge between v3 and w3 = u in G′.

28

Now for the case when the (u, v2)-subpath contains an edge of M . Denote by v3 the first vertex
on this subpath that is from M . Then v3 ̸= v2 and the (u, v3)-subpath does not contain vertices of
M as internal vertices. Denote by w3 the last vertex in V (P1)∪ V (P2) on this subpath. We obtain
a path between w3 and v3 that goes only through V (H) \ V (M) in G, so there is an edge between
w3 and v3 in G′.

Conclusion of Case 1. If M is an Erdős-Gallai component corresponding to a connected com-
ponent of type (R1), then there is a matching v1w1, v2w2, v3w3 of size three between V (M) and
V (P1) ∪ V (P2) in G′. Hence, there is a matching between V (M) and V (Pi) of size two for some
i ∈ {1, 2}. This contradicts to the corresponding condition (R1) of Erdős-Gallai decompositions;
hence Case 1 cannot occur.

Case 2. Now suppose that there is a type (R2) connected component H in G− (V (P1) ∪ V (P2))
such that M is a leaf-block of the component obtained after some edges of H were contracted in
the process of B-refinement RB(H). Denote the cut-vertex of this leaf-block M by c. We will refer
to all remaining vertices of M as to inner vertices. By the definition of (R2)-type components,
NG′(V (M)) ∩ V (P1) = {w} for some w ∈ V (P1). Again consider the (s, v1)-subpath, the (v1, v2)-
subpath, and the (v2, t)-subpath of P ′. The (v1, v2)-subpath contains a vertex u ∈ V (P1) ∪ V (P2)
as internal vertex, so we can also break it into (v1, u)-subpath and (u, v2)-subpath.

Note that at least two of these four subpaths do not contain c. Each of these subpaths is an
(x, y)-path for x ∈ V (P1)∪V (P2) and y ∈ V (H). We claim that if such (x, y)-path does not contain
c, then it contains w. Suppose that an (x, y)-path does not contain c, so y is an inner vertex of
M . This path does not contain c, and to reach y it should reach some inner vertex of M from the
outside, since the path starts in V (P1) ∪ V (P2). Hence, this path should contain w. Otherwise
there is an edge between V (P2) and some inner vertex of M in G′, which contradicts the property
(R2).

Thus at least two of the four subpaths contain w. The only possible option for this is when
u = w and both (v1, u)-subpath and (u, v2)-subpath do not contain c. Then both (s, v1)-subpath
and (v2, t)-subpath do not contain w, since w can appear only once in P ′. Both of them reach an
inner vertex of M from the outside of M . If a path reaches an inner vertex of M and avoids w,
then it should contain the cut-vertex c. Therefore, the (s, v1)-subpath and the (v2, t)-subpath both
contain c. This is contradiction, since these two paths are vertex-disjoint.

Conclusion of Case 2. If M is an Erdős-Gallai component corresponding to a connected com-
ponent of type (R2), then P ′ necessarily contains an edge between V (P2) and an inner vertex of
M . This contradicts the definition of (D2)-type components.

Case 3. The case when M is an Erdős-Gallai component of type (R3) is symmetrical.
In each of the three cases we obtained a contradiction with one of the properties of an Erdős-

Gallai decomposition. This completes the proof.

In order to proceed further with the structural properties of Erdős-Gallai decompositions, we
need the following definition and lemma.

Definition 4 (B-leaf-block separator). Let H be a connected graph that is not 2-connected and
B be a subset of its vertices. Let I be the set of inner vertices of all leaf-blocks of H. We say that
S ⊆ V (H) \ I is a B-leaf-block separator of H, if S separates at least one vertex in V (H) \ (I ∪B)
from I in H.

Lemma 6. Let H be a connected graph with at least one cut-vertex and let B be a subset of its
vertices. Let S be a B-leaf-block separator of H. Then for any vertex v that is not an inner vertex

29

of a leaf-block of H, there is a cut-vertex c of a leaf-block of H and a (c, v)-path of length at least
1
2 (δ(H −B)− |S|) in H.

Proof. We assume that δ(H −B) > |S|, since the other case is trivial.
Consider graph H − (B ∪ S). We know that there is at least one connected component in this

graph that does not contain any vertex from I and contains at least one vertex not in B. Denote
this connected component by T . We know that δ(T) ≥ δ(H − (B ∪ S)) > 1. By Theorem 8, T
contains a cycle C of length at least δ(T) + 1.

We know that C is fully contained in some non-leaf-block of H. Denote this block by K. Now
let v be a vertex in V (H) \ I given from the lemma statement. It is easy to see that we can always
choose the vertex c in a way that any (c, v)-path contains at least one edge of K. Take such vertex
and an arbitrary (c, v)-path. Edges of K induce a subpath of non-zero length in this path. Let x, y
be the endpoints of this subpath. We know that x ̸= y.

We need the following claim.

Claim 9. If a 2-connected graph contains a cycle on k vertices, then it contains a path of length
at least ⌈k2⌉ between any pair of vertices.

Proof of Claim 9. Take two distinct vertices s, t. To show that there is a path between s and t of
length at least ⌈k2⌉, we apply Menger’s theorem to {s, t} and the vertex set of the cycle of length k.
This gives two vertex-disjoint paths going from s and t to two vertices s′ and t′ on the cycle. Take
the longer arc between s′ and t′ on the cycle and combine it with the two paths. The resulting
path is of length at least ⌈k2⌉. ⌟

By Claim 9, there is a path of length at least δ(T)/2 > 1
2(δ(H − B) − |S|) between x and y

in K. Replace the subpath of the initial (c, v)-path with this subpath. This yields a (c, v)-path of
desired length.

In Lemma 5, we proved that if a path enters an Erdős-Gallai component, then after leaving it,
it cannot come back. The following lemma guarantees, that if we have a yes-instance, then there
is a solution path that enters at least one Erdős-Gallai component.

Lemma 7. Let G be a graph, B ⊆ V (G) be a subset of its vertices and P1, P2 induce an Erdős-
Gallai decomposition for an (s, t)-path P in G of length less than δ(G−B) +k. Let k be an integer
such that 5k + 4|B| + 6 < δ(G − B). If there exists an (s, t)-path of length at least δ(G − B) + k
in G, then there exists (s, t)-path of length at least δ(G−B) + k in G that enters an Erdős-Gallai
component.

Proof. Since the length of P is less than δ(G−B)+k, we may assume that |V (P1)∪V (P2)| < k+2.
Assume that there is an (s, t)-path P ′ of length at least δ(G − B) + k in G that contains no

edge of an Erdős-Gallai component. We show that there exists an (s, t)-path of length at least
δ(G−B) + k that enters some Erdős-Gallai component.

The path P ′ path can contain only edges with endpoints in V (P1)∪V (P2)∪B or edges of non-
leaf-blocks of (R2)- or (R3)-type components. All other edges are edges of Erdős-Gallai components.
There are at most 2|V (P1) ∪ V (P2) ∪ B| ≤ 2(k + 2 + |B|) edges in P ′ that have endpoints in the
corresponding set. Hence, P ′ contains at least δ(G−B)+k−2(k+2+ |B|) = δ(G−B)−k−4−2|B|
edges that lie inside non-leaf-blocks of separable components of the Erdős-Gallai decomposition.

Let u be the vertex on P ′ such that the (s, u)-subpath of P ′ is of length exactly k + 1. Denote
this subpath by P ′

1. Analogously, let v be the vertex on P ′ such that the (v, t)-subpath of P ′

is of length exactly k, and denote this subpath by P ′
2. Note that P ′

1 and P ′
2 are on a distance

30

s t

P ′

P ′
1 P ′

2

w

L

u v

z
H ′

x

Figure 5: Constructing a path entering an Erdős-Gallai component in Case 1. The path P is
highlighted red. The constructed path is thick blue.

at least δ(G − B) − k > 0 from each other on P ′. The (u, v)-subpath of P ′ consists of at least
(δ(G−B)−k−4−2|B|)−2k > 2|B| edges of the non-leaf-blocks. Hence, at least one non-leaf-block
edge in P ′ is not incident to any vertex in B.

Let H be the connected component in G−(V (P1)∪V (P2)) that contains this edge and let H ′ be
its B-refinement. The graph H ′ contains at least one edge of the (u, v)-subpath of P ′, and none of
these edges are incident to an inner vertex of its leaf-blocks. We note that the whole path P ′ cannot
go through any inner leaf-block vertex of H ′. Suppose that this is not true and it contains such
vertex. Since it does not contain any leaf-block edge, this path should enter and leave this inner
vertex from the outside of H. And the only way to enter a (R2)-type or a (R3)-type component of
the Erdős-Gallai decomposition is to go from the only vertex of V (P1) or of V (P2) correspondingly.
Thus, this vertex of either V (P1) or V (P2) is contained twice on the path, and that is not possible.
Consider now the graph H ′ − (V (P ′

1) ∪ V (P ′
2)).

Case 1. Suppose that there is a connected component in this graph that contains an inner
vertex of a leaf-block of H ′ and some vertex of the (u, v)-subpath of P ′ simultaneously. Denote
this leaf-block by L and the vertex of the (u, v)-subpath by w. Note that all paths between w and
vertices of L go through the cut-vertex of L. If there are multiple choices of w for L, choose the
one which is the closest to the cut-vertex of L. As P ′ does not contain any inner leaf-block vertex
of H ′, the connected component of w in H ′ − (V (P ′

1) ∪ V (P ′
2)) contains the whole leaf-block L.

Hence, there is a path connecting w with any inner vertex of L. Choose any inner vertex of L that
is connected to V (P1) (if H ′ is (R2)-type) or to V (P2) (if H ′ is (R3)-type). Denote this vertex by z.
Since L is a Erdős-Gallai component, there is a path in L of length at least δ(G−B)−2 connecting
z with the cut-vertex of L, so there is a (w, z)-path of length at least δ(G−B)−2 in H ′. Note that
the only common vertex of this path and P ′ is the vertex w. We also know that the (s, w)-subpath
and the (w, t)-subpath of P ′ are of length at least k + 1, since w is not in V (P ′

1) ∪ V (P ′
2).

Now prolong the (w, z)-path in G by going outside H ′ from z to the vertex from V (P1) or V (P2)
depending on the type of H, and finally go from this vertex to t following the initial path P . We
obtain a (w, t)-path Q that has at least two common vertices with P ′.

Denote by x the second vertex on this (w, t)-path that is common with P ′. Denote the (w, x)-
subpath of Q by Q′. The path Q′ is of length at least δ(G − B) − 1 and contains at least one
Erdős-Gallai component edge, since it contains the (w, z)-path as a proper subpath. Suppose that
x is a part of the (s, w)-subpath of P ′. Then consider constructing the following path (see Figure 5).
Take the (s, x)-subpath of P ′, then go following the path Q′ from x to w, and finish with the (w, t)-

31

subpath of P ′. The constructed path is of length at least 0+(δ(G−B)−1)+(k+1) ≥ δ(G−B)+k,
so we are done. If x is not a part of the (s, w)-subpath of P ′, then it is a part of the (w, t)-subpath
of P ′. Then the required path is combined of the (s, w)-subpath of P ′, then of Q′ and of the
(x, t)-subpath of P ′. Its total length is at least (k + 1) + (δ(G−B)− 1) + 0 ≥ δ(G−B) + k.

Case 2. It is left to consider the case when V (P ′
1)∪V (P ′

2) separates all inner leaf-block vertices
from all vertices of the (u, v)-subpath of P ′ that are from V (H ′). Note that at least one vertex of
the (u, v)-subpath is from V (H ′) \B. Denote the set of all inner leaf-block vertices in H ′ by I. We
know that V (P ′

1) ∪ V (P ′
2) separates at least one vertex in V (H ′) \ B from I. Apply Lemma 6 to

H ′ and S = V (P ′
1) ∪ V (P ′

2).
Suppose that H ′ is of type (R2). Then take any vertex in V (H ′) that is connected with V (P2)

by an edge (after the edge contractions). Denote this vertex by y. We know that y is not in I, so
there is a (c, y)-path of length at least 1

2(δ(H ′−B)−|S|) in H ′ for cut-vertex c of some leaf-block L
in H ′. This leaf-block has at least one inner vertex that is connected to V (P1) by an edge. Denote
such vertex by x. There is a path of length at least δ(G−B)−3 between x and c inside L. Combine
this (x, c)-path with the (c, v)-path and obtain a path of length at least 1+(δ(G−B)−3)+(12(δ(H ′−
B) − |S|)) + 1 between V (P1) and V (P2). This path does not intersect internally with P1 or P2.
Hence, there is an (s, t)-path in G of length at least δ(G−B)+ 1

2δ(H ′−B)− 1
2 |S|−1. We know that

δ(H ′−B) ≥ δ(G−(B∪V (P1)∪V (P2))) ≥ δ(G−B)−k−1. Thus, our (s, t)-path is of length at least
δ(G−B)+ 1

2((δ(G−B)−k−1)− (2(k+1))−2) = δ(G−B)+ 1
2(δ(G−B)−3k−5) ≥ δ(G−B)+k.

This path contains an edge of the leaf-block L, which is an Erdős-Gallai component edge, so we
are done.

When H ′ is of type (R3), the proof is symmetrical. The proof of the lemma is complete.

We are now ready to formulate a very crucial lemma of this section. It serves as a basic tool for
applying recursion in Erdős-Gallai decomposition in the algorithm for Long Erdős-Gallai (s, t)-
Path. Basically, it provides a way to search for a long part of the (s, t)-path inside an Erdős-Gallai
component wrapped up in a 2-connected subgraph of G.

Lemma 8. Let paths P1, P2 induce an Erdős-Gallai decomposition for an (s, t)-path P and B ⊆
V (G) in graph G. Let M be an Erdős-Gallai component in G. Then there is a polynomial time
algorithm that outputs a 2-connected subgraph K of G and two vertices s′, t′ ∈ V (K), such that
every (s, t)-path P ′ in G that enters M , the following hold

1. V (K) \B = (V (M) ∪ {s′, t′}) \B;

2. P ′[V (K)] is an (s′, t′)-subpath of P ′ and an (s′, t′)-path in K;

3. δ(K − (B ∪ {s′, t′})) ≥ δ(G− (B ∪ {s′, t′}));

Proof. We consider several cases depending on the type of the connected component H of G −
(V (P1)∪V (P2)) that contains M . We start with the simpler case, when H ′ = RH(B) is separable.
By G′ we as usual denote the graph G where all edges corresponding to B-refinements of the
Erdős-Gallai decomposition induced by P1, P2 are applied.

Case 1. The component H is of type (R2) (type (R3) is symmetrical as ususal). Then M is some
leaf-block of H ′. If an (s, t)-path P ′ enters M , then P ′[V (M)∩ V (P ′)] is a path in L by Lemma 5.
Moreover, we know that this path starts in an inner vertex of M and ends in the cut-vertex of M .
Denote these two vertices by v and c respectively.

Also, NG(H) = {w} for some w ∈ V (P1), and by definition of (R2)-type connected components,
P ′ contains a (w, v)-subpath going (in either direction) internally only through vertices in V (H)∩B.
There are two cases of how K should be constructed.

32

If there is a single and the only inner vertex v ∈ V (M) such that there is an edge between w and
v in G′, then any path P ′ that enters M contains a path between v and c as a subpath. Thus, put
K := M and s′ := v, t′ := c. Clearly, K, s′, t′ satisfy all three conditions in the lemma statement.

The other case is when there are at least two inner vertices in M that are neighbors to w in
G′. We cannot put s′ equal to any vertex of M , because we cannot be sure that P ′ passes through
a concrete inner vertex. But we are sure that P ′ passes through w. Construct K in the following
way. Denote by B′ the set of vertices in B that are reachable from V (M) \ {c} in H − {c}. Then
put K := G[V (M) ∪B′ ∪ {w}], s′ = w, t′ = c. Note that K is an induced subgraph of G and is
2-connected as G′[V (M)∪ {w}] is 2-connected. The first and the last two conditions in the lemma
statement are satisfied, and we claim that the second one is satisfied as well.

We already know that P ′ contains a (w, c)-subpath. This subpath goes from w to an inner vertex
of M through the vertices in B′, and then follows a path inside M . Hence, this subpath is contained
in K. It is left to show that no vertex from V (M)∪B′∪{w} can appear in P ′ outside of the (w, c)-
subpath. We do it by contradiction. Assume that there is such vertex v ∈ V (M) ∪ B′ ∪ {w}. If
v ∈ V (M), then v ̸= c, hence v is an inner vertex of M . Then P ′ should contain a (s, v)-subpath or
a (v, t)-subpath that does not go through w nor c, but {w, c} separates V (M) from V (P1)∪V (P2).
Thus, v ∈ B′. Then there exists either (s, v)-subpath or (v, t)-subpath in P ′ that does not contain
w and any vertex from V (M). Hence, this subpath connects v with some vertex u ∈ V (P2) and goes
only through B′. We know that after the edge contractions for G′ the vertex v becomes identified
with an inner vertex of M , so there is an edge between u and this inner vertex. This is not possible
by the definition of type (R2) connected components. We obtain a contradiction.

Case 2. H is of type (R1), so H ′ is 2-connected and M = H ′. We know that the maximum
matching size between V (Pi) and V (M) in G′ is exactly one for each i ∈ {1, 2}. For each i, it
splits into two possible options: either |NG′(V (Pi)) ∩ V (M)| = 1 or |NG′(V (M)) ∩ V (Pi)| = {wi},
where wi has at least two neighbors in V (M) in G′. We now consider several subcases of Case 2
depending on the combinations of these options.

If for each i ∈ {1, 2}, |NG′(V (Pi))∩V (M)| = 1 = {vi} for some vi ∈ V (M), then, an (s, t)-path
P ′ can enter or leave M only through the vertices v1 and v2. Note that v1 ̸= v2, since {v1, v2}
separates V (M) from the rest of the graph in G. Thus, if P ′ enters M , then it necessarily contains
a (v1, v2)-subpath inside M . By Lemma 5, we have that P ′[V (P ′) ∩ V (M)] is exactly the (v1, v2)-
subpath inside M . Thus, it is enough to put K := M and s′ := v1, t

′ := v2. The first two and the last
conditions of the lemma are satisfied for this choice of K, s′ and t′. Also, no vertex in V (M)\{v1, v2}
has neighbors outside V (H) in G, so δ(K− (B∪{s′, t′})) = δ(M −{v1, v2}]) ≥ δ(G− (B∪{s′, t′})),
and the third condition is also satisfied.

The other case is when for each i ∈ {1, 2}, |NG′(V (M)) ∩ V (Pi)| = {wi}, where wi has at least
two neighbors in V (M) in G′. It is easy to see that to enter or leave any vertex of H in G, an
(s, t)-path P ′ should go through w1 and w2. Since G is 2-connected, w1 ̸= w2 and P ′ contains a
(w1, w2)-subpath going internally only through vertices in V (H). Put K := G[V (H) ∪ {w1, w2}],
s′ := w1, t

′ := w2. Clearly, K is 2-connected because G is 2-connected, {w1, w2} separates V (H)
from the rest of G, and degrees of w1 and w2 in K are at least two.

We need to show that the second condition is satisfied as well. If it is not satisfied, then P ′[V (K)]
consists of at least two disjoint paths. We know that one of these paths is the (w1, w2)-subpath.
Hence, the other one contains at least one vertex from V (H) but does not contain w1 or w2. This
is not possible since {w1, w2} separates V (H) from the rest of the graph.

Thus, the first two and the last condition are satisfied. It is easy to see that the third condition
is satisfied as well, because vertices in V (H) have no outside neighbors apart from s′ and t′ in G.

It is left to consider the case when NG′(V (M)) ∩ V (P1) = {w1}, where w1 has at least two

33

neighbors in V (M) in G′, and NG′(V (P2))∩V (M) = {v2} (the case when 1 and 2 are interchanged
is symmetrical). This is the most non-clear case. We know that if P ′ enters M , then it should pass
through both w1 and v2. Moreover, the (w1, v2)-subpath of P ′ goes internally only through V (H).
Let B′ be the set of vertices reachable from v2 by the edges in E(H) \ E(H ′).

The difficulty beyond choosing K in this case is to satisfy the second condition. We split on
two cases.

Assume that there is no edge between w1 and v2 in G′. Then put K := G[(V (H)∪ {w1}) \B′],
s′ := w1 and t′ := v2. Clearly, K is equal to G[V (H) ∪ {w1}] with applied B-refinements so it
is 2-connected. The first, the third and the fourth condition of the lemma are satisfied by the
arguments similar to the cases considered above. It is left to show that the second condition is
satisfied. Suppose that P ′[V (K)] contains a path different from the (w1, v2)-subpath. Then there
is at least one vertex u ∈ V (K) \V (M) that is not on this subpath. Then P ′ should contain either
an (s, u)-subpath or an (t, u)-subpath that does not go through w1 or v2. Moreover, this subpath
does not contain any vertex of V (M) by Lemma 5. Denote by x the last vertex on this supbath
that is not from V (K). Then P ′ contains an (x, u)-subpath, where x ∈ V (P1) ∪ V (P2) After the
B-refinement of H, this path yields an edge in G′ between x and y for some y ∈ V (M). This is
only possible when either x = w1 or y = v2.

The case x = w1 is not possible because the (x, u)-subpath does not contain w1. Hence, it
should be the case that y = v2. Then u is a vertex reachable from v2 in H outside V (M). That is,
u ∈ B′. Hence, u /∈ V (K). We obtain a contradiction, so all four conditions are satisfied.

It is left to consider the case when there is an edge between w1 and v2 in G′. It is clear that in
this case the graph G[V (H) ∪ {w1}] is 2-connected. Unfortunately, we cannot put K equal to this
graph because this might break the second condition of the lemma.

We already know, however, that the graph K := G[(V (H) ∪ {w1}) \ B′] with s′ := w1 and
t′ := v2 would satisfy all conditions of the lemma except, possibly the first. Thus, there are two
cases.

When the graph G[(V (H) ∪ {w1}) \ B′] is 2-connected, then consider K, s′ and t′ similarly to
the case when there is no edge between w1 and v2.

Otherwise, the graph G[(V (H)∪{w1})\B′] is not 2-connected. Then w1 is connected to exactly
two vertices from V (M) in G′. One of these two vertices is v2. The other one we denote by v1.
Then P ′ necessarily contains a (v1, v2)-subpath inside M . Then it is sufficient to put K := M ,
s′ := v1, t

′ := v2, as M is 2-connected.
The proof is complete.

6.2 Algorithm for Long Erdős-Gallai (s, t)-Path

We are almost set to proceed with the proof of Theorem 5. The algorithm is based on Lemmata
4, 5, 6, and 8 on properties of Erdős-Gallai decompositions. For the proof of the correctness of the
algorithm, we will need one more lemma.

Lemma 9. Let G be a 2-connected graph with B ⊆ V (G) such that 6
5δ(G − B) ≥ |V (G)| and

δ(G − B) ≥ 4|B|. Then for any pair of distinct vertices s, t ∈ V (G), the longest (s, t)-path in G
contains all vertices from V (G−B).

Proof. The proof is by contradiction. Suppose that there is an (s, t)-path P in G such that the
length of P is maximum possible, but there is v ∈ V (G) \ B with v /∈ V (P). By Corollary 3,
the length of P is at least δ(G − B). Hence, |V (P − B)| > δ(G − B) − |B|. Then v has at most
|V (G − B)| − |V (P − B)| < 1

5δ(G − B) + |B| neighbors outside V (P). Hence, v has more than
4
5δ(G−B)− |B| neighbors from V (P).

34

Note that v should not have any two consecutive vertices in P as neighbors, otherwise P can
be made longer. Hence, 2(45δ(G − B) − |B|) < |V (P)|. Equivalently, |V (P)| > |V (G)| + 3

5δ(G −
B)− 2|B| ≥ |V (G)|. This is a contradiction.

For reader’s convenience, we restate Theorem 5 here.

Theorem 5. Long Erdős-Gallai (s, t)-Path is solvable in 2O(k+|B|) · nO(1) running time on
2-connected graphs.

Proof. The recursive algorithm is presented in Algorithm 2. Note that this algorithm requires that
s, t ∈ B in the given input instance. Any instance can be reduced to instance with this restriction
by adding s, t into B and increasing k by at most two. This changes the parameters by a constant
value and does not significantly affect the running time of the algorithm. Also, this algorithm
does not just determine whether the given instance is a yes-instance. If the given instance is a
no-instance, the algorithm also outputs the maximum length of an (s, t)-path in G in the form
δ(G − B) + x, where x ≥ 0 and x < k. Note that algorithm actually also finds a path of such
length, and it possible to change it so the path is in the output of the algorithm. We now go
through the lines of the algorithm to explain its correctness.

The first two conditional operators handle the most trivial cases of the problem. The first
conditional operator is for the case k = 0, which corresponds to trivial yes-instances by Corollary 3.
The second operator ensures that parameters k and |B| are small enough compared to δ(G − B)
to apply results discussed earlier in this section. If they are not, the algorithm just employs
the algorithm from Theorem 12 for Long (s, t)-Path, which works in 2O(δ(G−B)+k) · nO(1) =
2O(k+|B|) · nO(1).

When the third conditional operator is reached, Lemma 4 can indeed be applied to the input
instance. Thus, in polynomial time either an (s, t)-path of length at least δ(G − B) + k is found,
or an (s, t)-path P with V (P) ∪ B = V (G) is found, or an (s, t)-path P and two paths P1, P2 are
found. The paths P1 and P2 induce an Erdős-Gallai decomposition for P in (G,B). If the path of
length at least δ(G− B) + k is found, our algorithm correctly decides that the given instance is a
yes-instance and stops. Otherwise, it enters the third conditional operator body.

The conditional operator in line 24 checks that we should deal with the case covered by Lemma 9.
We shall now explain this in detail. Suppose that we enter the conditional operator body, i.e.,
V (P)∪B = V (G). Since the length of P is at most δ(G−B)+k−1, we get that δ(G−B)+k+|B| ≥
|V (G)|. Since this operator can be reached only if 5(k + |B|) ≤ |V (G)|, we can apply Lemma 9 to
our instance. We can now look for an (s, t)-path that contains all vertices in V (G − B). Clearly,
any such path is a Hamiltonian path in the graph G − B′ for some B′ ⊆ B with s, t /∈ B′. To
achieve that any Hamiltonian path in G−B′ corresponds to an (s, t)-path, we add two additional
vertices s′, t′ of degree one to obtain the graph H.

Moreover, in the graph H all vertices have degree at least δ(G−B), except, probably, at most
|B|+2 vertices. We know that 2δ(G−B) > |V (H)|, so we can apply one of the two FPT-algorithms
from Theorem 13 for solving Hamiltonian Path in H. This algorithm runs in 2O(|B|+2) · nO(1)

time. Thus, the longest path in G−B is found by the algorithm for the correct choice of B′.
We now move to the most crucial part of the algorithm. This part deals with Erdős-Gallai

components of the Erdős-Gallai decomposition induced by P1 and P2. We note that when line 13
of the algorithm is reached, there are at least two distinct Erdős-Gallai components of the Erdős-
Gallai decomposition of (G,B) by definition. By Lemma 7 and Lemma 8, if the given instance
is a yes-instance, there is an Erdős-Gallai component that contains a long subpath of the desired
path. Let M be an Erdős-Gallai component fixed by the foreach cycle. Lemma 8 applied to this
Erdős-Gallai component yields a triple K, s′, t′. The following lines of the algorithm focus on finding

35

long eg st path(G,B, s, t, k)
Input: an instance (G,B, s, t, k) of Long Erdős-Gallai (s, t)-Path, where G is

2-connected and s, t ∈ B
Result: k, if (G,B, s, t, k) is a yes-instance, or an integer x, such that the maximum

length of an (s, t)-path in G is δ(G−B) + x.
1 if k = 0 then
2 return k;
3 end
4 if 5k + 5|B|+ 6 ≥ δ(G−B) then
5 x←− k;
6 while long st path (G, s, t, δ(G−B) + x) is No do
7 x←− x− 1;
8 end
9 return x;

10 end
11 if the algorithm of Lemma 4 applied to G,B, s, t, k returns P with P1, P2 then
12 x←− 0;
13 foreach Erdős-Gallai component M of the Erdős-Gallai decomposition of (G,B)

induced by P1, P2 do
14 K, s′, t′ ←− result of Lemma 8 applied to G,B, P1, P2 and M ;
15 x′ ←− long eg st path (K,B ∪ {s′, t′}, s′, t′, k);
16 H ←− (V (G) ∪ {a, b}, (E(G) \ E(G[T])) ∪ {as, at, bs′, bt′});
17 r ←− max{(δ(G−B) + k)− (δ(K − (B ∪ {s′, t′})) + x′), 0};
18 while long st cycle (H, a, b, r + 4) is No do
19 r ←− r − 1;
20 end
21 x←− max{x, (δ(K − (B ∪ {s′, t′})) + x′ + r)− δ(G−B)};
22 end
23 return x;

24 else if it returns P with V (P) ∪B = V (G) then
25 foreach B′ ⊆ B \ {s, t} do
26 H ←− (V (G−B′) ∪ {s′, t′}, E(G−B′) ∪ {s′s, tt′});
27 if hamiltonian path (H) then
28 x←− max{x, |V (H)| − 1− δ(G−B)};
29 end

30 end
31 return min{x, k};
32 else
33 return k;
34 end

Algorithm 2: Recursive algorithm solving Long Erdős-Gallai (s, t)-Path on 2-
connected graphs.

maximum x′ such that there is an (s′, t′)-path in K of length at least δ(K − (B ∪{s′, t′})) +x′. We
know that such path in K exists for x′ = 0 by Corollary 3. We shall analyze the running time of
this recursion later in this proof.

36

Note that any (s′, t′)-path in K can be expanded to an (s, t)-path in G using at least p :=
|{s′, t′} \ {s, t}| edges. Also, s, t ∈ B, so |B ∪ {s′, t′}| ≤ |B| + p. Hence, if there is an (s′, t′)-path
in K of length at least δ(K − (B ∪ {s′, t′})) + x′ ≥ δ(G− (B ∪ {s′, t′})) + x′ ≥ δ(G−B)− p + x′,
there is a path of length at least δ(G − B) + x′ in G. It follows that if x′ ≥ k then the algorithm
can safely decide that the given instance is a yes-instance.

Otherwise, the maximum possible x′ < k is found and it is left for the algorithm to expand
the (s′, t′)-path in K to an (s, t)-path in G. That is, it needs to find two vertex-disjoint paths of
sufficient total length going from s′, t′ to s, t in G. An additional restriction for these paths is that
they should not contain any edge of M . Since the sufficient total length is bounded by k + 2, we
can safely employ the algorithm for Long (s, t)-Cycle, Theorem 4 from Section 5, running in
2O(k) · nO(1) time.

The correctness of the algorithm is now clear and we move to analyze the recursion running
time. We know that without the recursive call, the algorithm runs in 2O(k+|B|) · nO(1) time. For
convenience, we write this running time bound in the form 2O(k+|B|) · (n − 2)O(1). Note that this
is possible since n > 2 for any 2-connected graph G. Thus, we can already assume that if the
algorithm runs without making recursive calls, it runs in 2c1(k+|B|) · (n− 2)c2 time, where c1, c2 ≥ 1
are constant integers given by the non-recursive subroutine.

Since the recursive call is made when the graph contains at least two Erdős-Gallai components,
it is always made to an instance with the smaller number of vertices. We will now prove that our
algorithm runs in 2c1(k+|B|) · (n− 2)c2+1 time by induction on n.

The base of our induction are instances for which no recursive calls are made. Consider an
instance for which at least two recursive calls are made. We want to prove that the algorithm
running time 2O(k+|B|) ·nO(1). First note that the parameter k+ |B| does not increase in a recursive
call, because |(B ∪ {s′, t′}) ∩ V (K)| ≤ |B ∩ V (G)|.

Let q ≥ 2 be the number of Erdős-Gallai components in G. For i ∈ [q], denote by Ki, s
′
i, t

′
i the

triple given by Lemma 8 for the i-th Erdős-Gallai component of G. Denote also ni := |V (Ki)|. The
running time of the algorithm for the instance given by Ki is at most 2c1(k+|B|) · (ni − 2)c2+1 by
induction. Note that all q sets V (Ki)\{s′i, t′i} are pairwise disjoint. Also, none of these sets contains
s or t. Hence,

∑q
i=1(ni − 2) ≤ n− 2. We now want to upper-bound the sum

∑q
i=1(ni − 2)c2+1.

Proposition 3. Let a1, a2, . . . , aq be a sequence of q ≥ 2 positive integers with
∑q

i=1 ai = n. Let
x > 1 be an integer. Then

∑q
i=1 a

x
i ≤ (n− 1)x + 1 ≤ nx − nx−1.

Proof. First, we show that the maximum of the sum
∑q

i=1 a
x
i is achieved with q = 2, a1 = n − 1,

a2 = 1, if the sum
∑q

i=1 ai = n is fixed. To show that the maximum cannot be achieved with
q > 2, it is enough to see that replacing aq−1 and aq with aq−1 + aq yields a greater total sum, as
(aq−1 + aq)

x > axq−1 + axq .
We know that the maximum is achieved with ax1 + ax2 for some positive integers a1, a2 with

a1 + a2 = n. Without loss of generality, we can assume that a1 ≥ a2. Suppose that a2 > 1.
Consider replacing a1 with a1 + 1 and a2 with a2 − 1. We need to show that the total sum does
not decrease, i.e., (a1 + 1)x + (a2 − 1)x ≥ ax1 + ax2 , or (a1 + 1)x − ax1 ≥ ax2 − (a2 − 1)x. Rewrite the
left and the right part to obtain

x∑
i=0

(
x

i

)
ai1 − ax1 ≥ ax2 −

x∑
i=0

(
x

i

)
ai2(−1)x−i.

Then
x−1∑
i=0

(
x

i

)
ai1 ≥ −

x−1∑
i=0

(
x

i

)
ai2(−1)x−i,

37

and
x−1∑
i=0

(
x

i

)
(ai1 + ai2(−1)x−i) ≥ 0.

Each summand of the sum in the last inequality is non-negative since ai1 ≥ ai2 for any i ≥ 0. Thus,
the initial inequality holds and we can replace (a1, a2) with (a1 + 1, a2 − 1) if a2 > 1 so the total
sum does not decrease. Hence, the maximum is achieved with a1 = n− 1 and a2 = 1.

It is left to show that (n− 1)x + 1 ≤ nx − nx−1. We rewrite it as

1 ≤ (n− 1) · (nx−1 − (n− 1)x−1),

which holds as n > 1 and x > 1. The proof is complete.

With this proposition, we have that the running time of the algorithm is upper-bounded by

2c1(k+|B|) · (n− 2)c2 + 2c1(k+|B|) ·
q∑

i=1

nc2+1
i ≤ 2c1(k+|B|) · ((n− 2)c2 + ((n− 2)c2+1 − (n− 2)c2)),

so the induction hypothesis holds. This concludes the proof.

7 Algorithm for small vertex covers

In this section we prove Theorem 6 stating that Long Dirac Cycle / Vertex Cover Above
Degree is solvable in 2O(p+|B|) · nO(1) running time. Recall that the task of this problem is, given
a graph G, a subset of vertices B, a vertex cover S of G of size δ(G − B) + p and a nonnegative
integer k, decide whether G has a cycle of length at least 2δ(G− B) + k. We start by assembling
combinatorial results about paths and vertex covers, which we later use in the algorithm.

The following lemma provides conditions when a part of long cycle C can be rerouted through
any sufficiently large independent set.

Lemma 10. Let G be a graph with a given subset of vertices B and a vertex cover S such that S ⊇ B
and |S| = δ(G−B) + p for some p ≥ 0. Let k be a non-negative integer and let X ⊆ I = V (G) \ S
be such that |X| = δ(G− B)− 3p. If G has a cycle C of length 2δ(G− B) + k, then it also has a
cycle C ′ such that

• The length of C ′ is 2δ(G−B) + k,

• C ′ contains all vertices of X, and

• V (C) ∩ S = V (C ′) ∩ S.

Proof. Because S is a vertex cover, the length of any cycle in G does not exceed 2|S|. Hence if G
contains a cycle of length 2δ(G−B) + k, we have that k ≤ 2p.

Suppose that G contains a cycle C of length 2δ(G − B) + k. Among all cycles of length
2δ(G−B) + k, we select a cycle C ′ such that V (C)∩S = V (C ′)∩S and, subject to that, with the
maximum number of vertices from X. We claim that all vertices of X are in C ′. Targeting towards
a contradiction, assume that there is a vertex x ∈ X that is not in C ′. Let S′ = S ∩ V (C ′). Note

that |S′| ≥ |C′|
2 = δ(G − B) + k

2 . Because S is a vertex cover, all neighbors of x are in S. Then x
has at least δ(G−B) neighbors in S and, therefore, all but p vertices of S′ are adjacent to x.

38

Let v1, v2, . . . , v|S′| be the vertices of S′ in the order they appear on the cycle C ′. Note that for
each i ∈ {1, . . . , |S′|}, vertices vi and vi+1 (and v|S′|, v1) are either adjacent vertices in C ′, or there
exists exactly one vertex from I that is between them in C ′. We want to show that there exists
at least one pair {vi, vi+1} such that both vi and vi+1 are adjacent to x and a vertex u ∈ I \X is
between vi and vi+1 in C ′. If such a pair exists, then by swapping u and x in C ′, we would obtain
a cycle that has a larger number of vertices from X leading to a contradiction.

There are at least δ(G−B) + k− p vertices from I in C ′, so there are at least δ(G−B) + k− p
pairs {vi, vi+1} that have a vertex from I between them. We know that at most p vertices in S′ are
not adjacent to x. Since each vertex in S′ is a member of at most two pairs, vertex x is adjacent
to all but 2p such pairs {vi, vi+1}.

Suppose that C ′ already contains t ≥ 0 vertices from X. Note that by our assumption, t <
|X| = δ(G− B)− 3p, thus δ(G− B) + k − p− 2p− t > 0. Therefore, at least one pair of vertices
{vi, vi+1} is adjacent to x and viuvi+1 is a subpath of C ′ for some u ∈ I \ X. Therefore, by
rerouting C ′ through x, instead of u, we construct a cycle C ′′ of length 2δ(G − B) + k, such that
V (C) ∩ S = V (C ′′) ∩ S, and C ′′ containing t + 1 vertices of X. But by our assumption, cycle C ′

contains the maximum number of vertices t from X. We achieved the contradiction that concludes
the proof of the lemma.

We will need the following two simple facts about the number of vertices in a vertex cover that
have a small amount of neighbors outside the vertex cover.

Lemma 11. Let G be a graph, S ⊆ V (G) be a vertex cover of G, and let I = V (G) \ S ̸= ∅. Let
d = minv∈I degG(v), b = |S| − d ≥ 0, and β = d

|I| . Then for any α ∈ (0, 1
β), the number of vertices

in S having less that αd neighbors in I is strictly less than b
1−αβ .

Proof. Let s be the number of vertices in S with less than αd neighbors in I. On one hand, the
number of edges between I and S is at least d|I|. On the other hand, it is less than αds+(|S|−s)|I| =
αds + (d + b− s)|I|. Hence,

d|I| < αds + (d + b− s)|I|.

This is equivalent to

d <
αds

|I|
+ d + b− s.

Thus

b > s ·
(

1− α · d

|I|

)
= s · (1− αβ) ,

and we conclude that s < b
1−αβ .

Lemma 12. Let G be a graph with B ⊆ V (G) and a vertex cover S ⊇ B with |S| = δ(G−B) + p,
where 0 < p < δ(G − B)/8. Then for any X ⊆ V (G) \ S with |X| ≥ δ(G − B) − 3p, at most 2p
vertices in S have less than 2p neighbors in X.

Proof. Consider the graph G[S ∪ X]. Apply Lemma 11 to this graph with I = X. Clearly,
d ≥ δ(G−B) > 8p, because B ⊆ S and p < δ(G−B)/8. Therefore, b ≤ p. Because p < δ(G−B)/8,
we also have that β = d/|X| ≤ |S|/(δ(G − B) − 3p) = (δ(G − B) + p)/(δ(G − B) − 3p) ≤
1+4p/(δ(G−B)−3p) < 9

5 . Pick α = 1
4 , so αβ < 9

20 . By Lemma 11, at most p/(1−αβ) < 20
11p < 2p

vertices in S have less than αd > 1
4 · 8p = 2p neighbors in I = X.

39

The following structural lemma provides necessary and sufficient conditions for the existence of
a long cycle in graph crossing specified subsets of the vertex cover and the independent set. These
conditions can be checked in FPT time (Lemma 14), and both lemmata are the crucial components
in the proof of Theorem 6.

Lemma 13. Let G be a graph, B ⊆ V (G), and let p > 0 be an integer such that p < δ(G−B)/8.
Assume that G has a vertex cover S such that |S| = δ(G − B) + p and B ⊆ S. Let k ≥ 0 be
an integer and let X ⊆ I = V (G) \ S such that |X| ≥ δ(G − B) − 3p. Let A ⊆ S be the set of
vertices of S with at least p + 1 neighbors in X, and let Z = S \A. Then there is a cycle of length
2δ(G−B) + k in G containing all vertices in X ∪ Z if and only if there is a set Y ⊆ I and a path
cover P of G[S ∪ Y], such that:

(i) P consists of |S|+ k − 2q − |Y | paths, where k
2 ≤ q ≤ p,

(ii) P contains no path with an endpoint in Z or Y ,

(iii) At least p− q of paths in P are paths of length 0, that is, covering a single vertex of A,

(iv) |Y | ≤ 2|Z|,

(v) |X ∪ Y | ≤ δ(G−B) + k − q, and

(vi) |I| ≥ δ(G−B) + k − q.

Proof. Let C be a cycle of length 2δ(G−B)+k in G containing all vertices from X∪Z. Define Y ⊆ I
to be the set of the vertices of C in I having neighbors in Z in the cycle. Clearly, |Y | ≤ 2|Z| satisfying
(iv). Let S′ = S ∩ V (C) and define q := |S′| − δ(G−B). Note that q ≥ k

2 because 2|S′| ≥ |C|, and
that q ≤ p because |S′| ≤ |S|. Hence, the conditions for q in (i) are satisfied. Since X ∪ Y ⊆ V (C)
and |V (C)\ (X ∪Y)| ≥ |S′| = δ(G−B)+ q, we have that |X ∪Y | ≤ δ(G−B)+k− q and (v) holds.
Notice that |I| ≥ |V (C)∩ I| = |V (C)|− |S′| = (2δ(G−B) +k)− (q+ δ(G−B)) = δ(G−B) +k− q
and (vi) is fulfilled.

Because p < δ(G−B)/8 and |X| ≥ δ(G−B)−3p, |Z| < 2p by Lemma 12. Then |Y | ≤ 2|Z| < 4p
and, therefore, |S′|+|Y | < δ(G−B)+q+4p ≤ δ(G−B)+5p. Since C has 2δ(G−B)+k ≥ 2δ(G−B)
vertices and δ(G−B) ≥ 8p, we obtain that |S′|+ |Y | < |C|. This means that C[S′ ∪Y] is a proper
subgraph of C, that is, the union of disjoint paths. Consider the path cover P ′ of S′ ∪ Y which
is produced by C, that is, P ′ is the set of paths that are connected components of C[S′ ∪ Y] (see
Figure 6). It consists of |C|−|S′|−|Y | paths, as each vertex from V (C)\(S′∪Y) on C is a neighbor
to exactly two endpoints in the path cover produced by C. Note also that the endpoints of each
path of P ′ are in A. This path cover still does not cover vertices in S\S′, so we add |S|−|S′| = p−q
paths of zero length covering each vertex from S \ S′ ⊆ A; this satisfies (iii). The obtained path
cover P is a path cover of S ∪ Y consisting of exactly |C| + |S| − 2|S′| − |Y | = |S| + k − 2q − |Y |
paths implying (i). Since all the path in P ′ have their endpoints in A and each or p−q trivial paths
is a vertex of A, we obtain that (ii) is fulfilled. We conclude that P satisfies conditions (i)–(vi) in
the statement of the lemma.

We now prove the opposite direction. Let Y ⊆ I and let P be a path cover of G[S∪Y] satisfying
conditions (i)–(vi) of the lemma. In particular, |P| = |S| + k − 2q − |Y |, where k

2 ≤ q ≤ p, by
(i). We show that there exists a cycle of length 2δ(G − B) + k containing all vertices of X ∪ Z.
We remove from P arbitrary p − q zero length paths covering single vertices of A using (iii). The
obtained set of paths P ′ consists of |S| − p− q + k− |Y | = δ(G−B) + k− q− |Y | paths and covers
G[S′∪Y], where S′ ⊆ S and |S′| = |S|− (p− q) = δ(G−B) + q. Now choose an arbitrary subset I ′

of I of size δ(G−B) + k− q containing all vertices from X ∪ Y that exists due to (v) and (vi). We

40

A
Z

X

Y

S

Figure 6: Illustration of how a cycle forms a path cover P from Lemma 13. Edges belonging to
different paths are colored with different colors. Vertices in A that have no incident colored edge
are covered by zero-length paths in P.

consider H = G[S′ ∪ I ′]. Notice that |V (H)| = |S′| + |I ′| = 2δ(G − B) + k. We claim that graph
H contains a Hamiltonian cycle. Clearly, this suffices for the proof, because the length of such a
cycle is 2δ(G−B) + k and it contains all the vertices of X ∪ Z as required.

Let H ′ be the graph obtained from H be the deletion of edges e ∈ H[S′] that are not included in
the paths of P ′. It is straightforward to see that it is sufficient to show that H ′ has a Hamiltonian
cycle. By construction, H ′[S′] is the union of paths that are subpaths of the elements of P ′.
By (ii), no path of P ′ has an endpoint in Y . Since P ′ consists of paths with endpoints in S′

covering S′ ∪ Y and there is no edges between vertices in Y , removal of each vertex from Y breaks
one path into two. Hence, the number of disjoint paths forming H ′[S′] is exactly |P ′| − |Y | =
δ(G) + k− q− |Y |+ |Y | = |I ′|. This implies that the graph H ′′ obtained from H ′ by making every
pair of distinct vertices of I ′ adjacent has a Hamiltonian cycle if and only if the same holds for H ′,
because no Hamiltonian cycle of H ′′ cannot contain an edge uv with u, v ∈ Y . Otherwise, such a
cycle would cover S′ by less than |I ′| paths. Now the degree of each vertex from I ′ in H ′′ is at least
δ(G−B)− (p− q) + |I ′| − 1 = 2δ(G−B) + k − p− 1.

Take a vertex v ∈ S′ \Z. Then v ∈ A and, by the definition of A, v has at least p+ 1 neighbors
in X ⊆ I ′. Hence it has at least p + 1 neighbors in H ′′. Therefore, the sum of vertex degrees of a
vertex from S′\Z and a vertex from I ′ in H ′′, is at least 2δ(G−B)+k = |V (G′)|. We construct H ′′′

from H ′′ by making adjacent every pair of vertices u and v with u ∈ I ′ and v ∈ S′ \Z. Theorem 9
implies that H ′′′ has a Hamiltonian cycle if and only if H ′′ has a Hamiltonian cycle.

Finally, we construct a Hamiltonian cycle in H ′′′ using the paths of P ′. For this, recall that
each path of P ′ has its endpoints in A by (ii). Notice that there are exactly |I ′ \ Y | = δ(G−B) +
k − q − |Y | vertices of I ′ that are not covered by the paths. Since the number of paths in P ′ is
δ(G − B) + k − q − |Y | and every endpoint of a path is adjacent to every vertex of I ′ \ Y , it is
straightforward to see that we can construct a Hamiltonian cycle joining the paths of P ′ via the
vertices of I ′ \ Y .

Thus we conclude that H ′′′ has a Hamiltonian cycle. This implies that H has a Hamiltonian
cycle and competes the proof.

By Lemma 13, to find a cycle of length 2δ(G − B) + k in G containing all vertices in C ∪ Z,

41

it suffices to identify a path cover P. Such a path cover can be computed by making use of
color-coding. More precisely.

Lemma 14. Given G,B, S, k, and X,A,Z defined in the same way as in Lemma 13, the existence
of Y and a path cover P of G[S ∪ Y] satisfying (i)–(vi) can be determined in 2O(p) · nO(1) running
time.

Proof. Because p < δ(G − B)/8 and |X| ≥ δ(G − B) − 3p, |Z| < 2p by Lemma 12. Then we are
looking for Y ⊆ I with |Y | ≤ 2|Z| < 4p by (iv). Also by (i), k

2 ≤ q ≤ p. We assume without loss
of generality that q and the cardinality r of Y are fixed, as an algorithm can iterate over all O(p2)
possible pairs of these values in an outer loop. We also assume that (vi) holds for the given value
of q. The algorithm is now to find a set of disjoint paths P covering all vertices in S and a set
Y ⊆ I of size r. Since Lemma 13 requires an upper bound (v) on |X ∪Y |, we will aim to maximize
|X ∩ Y |, i.e. the number of vertices from X used by the paths of P.

As the paths of P cover exactly |S|+ |Y | vertices and their number is exactly |S|+ k− 2q− |Y |
by (i), the total length of these paths is exactly 2|Y | + 2q − k ≤ 10p. This allows us to deal with
a bounded number of paths of positive length. By (ii), there is no path in P with an endpoint in
Z ∪ Y . In particular, this means that all paths of zero length are vertices in A and the endpoint
of nontrivial paths are in A. Each nontrivial path has exactly two endpoints in A. Then, because
the total number of path P is |S| + k − 2q − |Y |, the number of nontrivial paths t is at most
|A| − |P| = |A| − (|S| + k − 2q − |Y |) = |Y | − |Z| + 2q − k ≤ 6p. Note also that because
|P| = |S| + k − 2q − |Y |, the nontrivial paths should cover exactly s = |S| + k − 2q − |Y | − t
vertices of A and they should leave uncovered at least p − q vertices of A to satisfy (iii). Clearly,
s ≤ 20p, because the total length of the nontrivial paths is at most 10p. Thus, our task is reduced
to deciding whether there is a set Y ⊆ I of size r ≤ 4p and a family of t ≤ |Y | − |Z|+ 2q − k ≤ 6p
disjoint nontrivial paths P ′ such that

(a) the endpoints of the paths of P ′ are in A,

(b) the paths cover the vertices of Y and exactly s = |S|+ k − 2q − |Y | − t ≤ 20p vertices of A,
and they leave uncovered at least p− q vertices of A,

(c) subject to (a)–(b), |Y ∩X| is maximum.

The color-coding technique of Alon, Yuster, and Zwick [AYZ95] is a standard tool for solving
problems of this type. Since the approach is standard (see, e.g, the book [CFK+15a, Chapter 5]),
we only briefly sketch the algorithm. In the same way as in the proof of Theorem 4, we give a
sketch of a randomized Monte Carlo algorithm and then explain how it can be derandomized.

For each positive integer t ≤ |Y | − |Z|+ 2q− k, we verify whether there are Y and P ′ satisfying
(a) and (b) and find the maximum size of |X ∩ Y |. After iterating over all possible values of t, the
algorithm returns a solution that gives the maximum value of X ∩ Y . For a given t, we compute
s = |S|+ k − 2q − |Y | − t and verify whether |A| − s ≥ p− q. We discard the current choice of t if
|A| − s < p− q. From now we assume that the value of t is fixed and |A| − s ≥ p− q.

We use the following randomized procedure. We color the vertices of I by r = |Y | distinct colors
uniformly at random and then the vertices of A are colored uniformly at random with another set
of s distinct colors. We also assume that the vertices of Z are colored as well by pairwise distinct
colors that are different from the colors used for I and A. We denote by CI , CA, and CZ the sets of
colors used to color I, A, and Z, respectively. Let also C = CI ∪CA∪CZ . Clearly, |C| = O(p). We
say that Y ⊆ I and a set of disjoint nontrivial paths P ′ satisfying (a) and (b) is a coloful solution
if the vertices of the paths are colored by distinct colors.

42

The main steps of our algorithm either finds the maximum |X ∩ Y | for a colorful solution or
reports that a colorful solution does not exist.

For a set of colors R ⊆ C, denote by α(R) the maximum number of vertices of X that can
be covered by a nontrivial path P with |R| vertices such that their the endpoint are in A and the
vertices of P are colored by distinct colors from R; we assume that α(R) = −∞ if such a path does
not exist. We observe that for every R ⊆ C, the value of α(R) can be computed in 2O(p) ·nO(1) time
by a straightforward modification of the standard dynamic programming algorithm for finding a
colorful |R|-path (see [AYZ95] and [CFK+15a, Chapter 5]). It is easy to incorporate the condition
that the endpoits are in A. To maximize the number of vertices of X used by a path, we can assume
that the vertices of X are of weight one and the vertices of V (G) \X are given zero weights. Then
we use the variant of the algorithm that finds a colorful path of maximum weight. From now, we
assume that we are given the table of values of α(R) for all R ⊆ C. Note that this table of size
2O(p) can be constructed in 2O(p) · nO(1) time.

Let R ⊆ C, and ℓ ≤ t be a positive integer. Denote by β(R, ℓ) the maximum number of
vertices of X that can be covered by exactly ℓ nontrivial path with |R| vertices in total such that
their endpoint are in A and the vertices of the paths are colored by distinct colors from R; we
assume that β(R, ℓ) = −∞ if such paths do not exist; in particular β(R, ℓ) = −∞ if |R| ≤ 1. It is
straightforward to see that β(R, 1) = α(R) for every R ⊆ C. To compute β(R, ℓ) for ℓ > 1, we use
the following straightforward recurrence for |R| ≥ 2.

β(R, ℓ) = max{α(R′) + β(R \R′, ℓ− 1) | ∅ ≠ R′ ⊂ R}. (3)

We use (3) to compute the table of values of β(R, t) for all nonempty R ⊆ C. Because |C| = O(p),
computing the table can be done in 2O(p) · nO(1) time.

By the choice of CI , CA and CZ , we have that β(C, t) is the maximum number of vertices of X
that can be covered by a colorful solution, and β(C, t) = −∞ if there is no colorful solution.

To obtain an optimum (non-colorful) solution, we define N = ⌈es+t⌉ ≥ rr·ss
r!·s! and iterate the

randomized procedure N times. Then the algorithm returns a solution that gives the maximum
value |X ∩ Y | over all coloful solution or reports that there is no solution if the algorithm fails to
find a colorful solution in every iteration.

Suppose that Y ⊆ I of size r and P ′ of size t satisfy (a) and (b) and provide the maximum value
of |X ∩ Y |. Then with probability at least r!

rr , the vertices of Y are colored by distinct colors from

CI by a random coring. Similarly, with probability at least s!
ss , the s vertices of A covered by the

paths of P ′ are colored by distinct colors of CA. Then with probability at least r!·s!
rr·ss , the vertices

of the paths of P ′ are colored by distinct colors. Respectively, the probability that this does not
holds, that is, there are at least two vertices of the same color, is at most (1− r!·s!

rr·ss). By the choice
of N , we obtain that the probability that for every iteration, at least two vertices of paths of P
have the same color, is at most (1 − r!·s!

rr·ss)N ≤ e−1. Thus, the probability that the randomized
algorithm fails to return an optimum solution is at most e−1 < 1.

To evaluate the running time, recall that the tables of values of α(·) and β(·, t) can be computed
in 2O(p) · nO(1) time. Since r < 4p and s ≤ 20p, N = 2O(p) and, therefore, the total running time is
2O(p) · nO(1).

To derandomize the algorithm, we use the standard technique (see [AYZ95] and [CFK+15a,
Chapter 5]). For given r and s, we construct the (|I|, r) and (|A|, s)-perfect hash families of the
functions FI and FA, respectively, of sizes errO(log k) · log |I| and essO(log s) · log |A|, respectively,
using the results of Naor, Schulman, and Srinivasan [NSS95]. These families can be constructed in
time 2O(p) · n log n. Then we replace the random colorings of I and A by the functions from FI

and FA, respectively, and iterate the main step over all these functions. This gives deterministic
2O(p) · nO(1) running time.

43

To conclude the proof, note that algorithms finds the maximum possible size of |X∩Y | for Y ⊆ I
of size r such that S∩Y can be covered by a set of paths P satisfying conditions (i)–(iv) and (vi) of
Lemma 12. To verify (v), it is sufficient to check additionally whether |X ∪ Y | ≤ δ(G−B) + k− q,
by the maximality of |X ∩ Y |. This concludes the proof.

Everything is settled for the proof of Theorem 6. For convenience, we restate the theorem here.

Theorem 6. Long Dirac Cycle / Vertex Cover Above Degree is solvable in 2O(p+|B|) ·
nO(1) running time.

Proof. Let (G,B, S, k) be a given instance of the problem. We assume without loss of generality
that B ⊆ S; otherwise we can set S := S ∪ B and p := p + |B \ S|, which increases p by at most
|B|. Let I = V (G) \S. Note that G has no cycle longer than 2|S| ≤ 2δ(G−B) + 2p. In particular,
if k > 2p, then the given instance is a no-instance. Therefore, we can assume that k ≤ 2p. If
δ(G − B) ≤ 8p, then 2δ(G − B) + k ≤ 18p and one can verify whether G has a cycle of length
2δ(G − B) + k in 2O(p) · nO(1) time using, e.g., the algorithm given by Zehavi [Zeh16]. From now
on, we assume that δ(G − B) > 8p. It is also convenient to assume that our aim is to verify the
existence of a cycle of length exactly 2δ(G − B) + k; for this we iterate over all possible values of
the parameter from the initial given value of k and 2p.

Also, if p = 0, then k = 0 and each vertex in I is adjacent to all vertices in S = δ(G−B). Then
G contains all edges between S and I, so a cycle of length at least 2δ(G−B) = 2|S| exists in G if
and only if |S| ≥ |I| and |S| ≥ 2. Thus, we can now assume that p > 0.

If |I| < δ(G−B) + k − p, then (G,B, S, k) is a no-instance. Hence, we can assume that this is
not the case. Our algorithm chooses an arbitrary X ⊆ I of size δ(G−B)− 3p. By Lemma 10, the
algorithm can now look for a cycle of length 2δ(G−B) + k in G containing all vertices from X.

Then we partition S into two subsets A and Z. The subset A consists of all vertices in S that
have at least p + 1 neighbors in X. The subset Z consists of all other vertices in S. The running
time of the procedure computing Z is clearly polynomial. By Lemma 12, the cardinality of Z is at
most 2p.

Before we can apply Lemmata 13 and 14, we need to ensure that the cycle we are looking
for contains all vertices from Z. To achieve that, we allow our algorithm to brute-force over all
2|Z| = 2O(p) options of how the cycle intersects Z. When an option is fixed, consider deleting
from G all vertices of Z outside the fixed intersection. This can change the value of p, as p =
|S| − δ(G− B), and both |S| and δ(G− B) may change after the deletion. As a consequence, the
equality |X| = δ(G−B)−3p could no longer hold, so we need to change X correspondingly. Rewrite
δ(G − B) − 3p = 4δ(G − B) − 3|S|. Note that the removal of a single vertex of Z from G always
decreases |S| by one and can decrease δ(G − B) by at most one. Hence, the value δ(G − B) − 3p
can only increase. Thus, after the deletion, to ensure |X| = δ(G − B) − 3p, we add some vertices
from I to X. By Lemma 10, the choice of these vertices can be arbitrary and we can be sure that
there is a cycle containing X while its intersection with S remains the same. Each vertex in A still
has at least p+ 1 neighbors in X. Since X now can containin some new vertices from I, a vertex in
Z may have at least p + 1 neighbors in X. If such a vertex exists, we simply move it from Z to A.
Observe that the value of the parameter p may be only decreased and the deletion does not violate
the property δ(G − B) > 8p. Note that the deletion operation discussed above also can imply an
increment in k as δ(G−B) can decrease. This is safe as Lemma 10 does not depend on the value
of k other than for estimating the length of the cycle.

After the intersection of the cycle with Z is fixed and all vertices from Z outside it are deleted
from G, the algorithm finally employs the routine from Lemma 14 to find the path cover from

44

Lemma 13, hence to find the cycle. The total running time of the algorithm (under the assumption
that B ⊆ S) is proportional to the number of sets Z, which is 2O(p), times the time required to
compute the path cover for each of the sets, which is 2O(p) · nO(1) by Lemma 14. Hence the total
running time is 2O(p) ·nO(1). Taking into account that to ensure the assumption that B ⊆ S we may
increase the initial value of p by at most |B|, we conclude that the algorithm runs in 2O(p+|B|) ·nO(1)

time.

8 Finding almost Hamiltonian cycles

This section is dedicated to the proof of Theorem 7. To recall, the theorem states that given
a graph G with a set B ⊂ V (G) and a parameter k such that |B| ≤ k and δ(G − B) ≥ n

2 − k, in

time 2O(k)nO(1) we can find the longest cycle in G. Before we move on to prove the theorem itself,
we show how to deal with the special case where there is a small separator in the graph, as it is an
important subroutine in the main algorithm. Another key ingredient to the proof of Theorem 7 is
our Long Dirac Cycle / Vertex Cover Above Degree result, presented in Section 7.

8.1 Small separator lemma

We show an algorithm for Almost Hamiltonian Dirac Cycle when there is a small (i.e.
of size O(k)) separator B in G. Intuitively, the presense of a small separator makes the problem
easier in the following sense. Each component of G−B still has high minimal degree, slightly less
than n

2 . Thus, essentially, we must have exactly two components of size roughly n
2 in G−B, which

means they are very dense. As was proven in [FGL+20b], in this situation, we can always partition
a component into paths that start and end at the given vertices, and span the whole component.
We restate their result formally in the next lemma.

Lemma 15 (Lemma 1 in [FGL+20b]). Let G be an n-vertex graph and p be a positive integer
such that δ(G) ≥ max{5p − 3, n − p}. Let {s1, t1}, . . . , {sr, tr}, r ≤ p, be a collection of pairs
of vertices of G such that (i) si /∈ {sj , tj} for all i ̸= j, i, j ∈ {1, . . . , r}, and (ii) there is at least
one index i ∈ {1, . . . , r} such that si ̸= ti. Then there is a family of pairwise vertex-disjoint paths
P = {P1, . . . , Pr} in G such that each Pi is an (si, ti)-path and ∪ri=1V (Pi) = V (G), that is, the
paths cover all vertices of G.

We note that the proof of Lemma 15 given in [FGL+20b] is actually constructive. That is, there
is a polynomial time algorithm that given G, p, and the respective set of pairs of vertices, returns
the family of paths P from the statement of Lemma 15.

For simplicity, suppose there is a Hamiltonian cycle C in G. The cycle induces a certain partition
of B into paths. On the other hand, if we are able to find any such path cover P, we can construct
the whole Hamiltonian cycle. Namely, on each component H of G−B, we invoke Lemma 15 with
a collection of pairs being a certain matching on ends of P belonging to H. In this way we connect
the paths together while also visiting every vertex of H. If the pairs are selected in a certain way in
both components, the union of all these parts will actually form a Hamiltonian cycle. We find the
path cover itself with the help of dynamic programming and the color coding technique of Alon,
Yuster, and Zwick [AYZ95]. In what follows, we prove the above in more detail.

Lemma 16. Let G be a given 2-connected graph on n vertices and let k ≥ 0 be a given integer. Let
B ⊆ V (G) be such that |B| ≤ k, δ(G− B) ≥ n

2 − k, and the graph G− B is not connected. There

is a 2O(k) · nO(1) running time algorithm that finds the longest simple cycle in G.

45

Proof. Assume n ≥ 12k, otherwise we invoke the general 2O(n) algorithm for the Longest Cycle
problem from Theorem 12 polynomial number of times to find the longest cycle in G.

First, observe that there are exactly two connected components in G − B. There must be at
least two of them since G−B is not connected. Suppose there are at least three components. Each
of them contains a vertex of degree at least n

2 − k in G−B, therefore the size of each component is
at least n

2 − k+ 1. The total number of vertices is then at least 3n
2 − 3k+ 3 = n+ (n2 − 3k) + 3 > n.

This is a contradiction. From now on, let H1 and H2 be the two connected components of G−B.
Consider the longest cycle C in G. Recall that by Theorem 14 the length of C is at least

min{n− 2k, n− |B|} ≥ n− 2k, thus it necessarily contains vertices from all of H1, H2 and B. We
say that C induces a path cover P of B, where P is the set of paths that C forms when restricted
to the edges incident to B. In other words, remove from C all the edges that are not incident to
B, and all the vertices that became isolated after that. The resulting collection of vertex-disjoint
paths is the path cover P. Note that P satisfies the following properties.

1. Every path P ∈ P starts and ends in V (G) \B.

2. Each path P ∈ P has at least one vertex in B and no two consecutive vertices in V (G) \B.

3. The paths of P contain at most 3|B| vertices in total.

4. The number of paths in P that start and end in different components of G − B is even and
at least two.

Since for every vertex of B, its degree in C is exactly two even when restricted to the edges incident
to B, the property (1) follows. Each path goes through B, and two vertices in V (G) \B cannot be
adjacent via an edge incident to B, thus (2) follows. Property (3) follows directly from property
(2). Finally, (4) holds since C must leave both H1 and H2 an even number of times. Moreover, if
there are no paths in P that start and end in different components, H1 and H2 cannot be connected
via C, thus C is not a cycle of length at least n− 2k.

We call a set of vertex-disjoint paths in G satisfying (1)–(4) a good path cover. Now we claim
that any good path cover can be used to construct a long cycle in G, i.e. we can collect all the
vertices of V (G) \ B in a cycle by going along the paths in the cover. The proof is essentially by
pairing endpoints of the paths carefully and then applying Lemma 15 to both H1 and H2. The
illustration is shown in Figure 7 and the proof follows next.

Claim 10. There is a polynomial time algorithm that given a good path cover P finds a cycle of
length n− t in G, where t is the number of vertices in B not covered by the paths in P.

Proof. Denote P = {P1, . . . , Pr}, and for each i ∈ {1, . . . , r}, denote the two ends of the path Pi

by si and ti. We may assume that the paths are ordered in a way that paths P1, . . . , Pa lead from
H1 to H2, paths Pa+1, . . . , Pb start and end in H1, and paths Pb+1, . . . , Pr start and end in H2,
for certain integers a and b, such that 1 < a ≤ b ≤ r, and a is even by property (5). Additionally,
for i ∈ {1, . . . , a} assume that si ∈ V (H1), ti ∈ V (H2).

Let I be the set of internal vertices of paths in P, let H ′
1 = H1 − I, H ′

2 = H2 − I. The graphs
H ′

1 and H ′
2 are targets for applying Lemma 15. By property (2), the size of I \B is at most k, thus

δ(H ′
1) ≥ δ(G−B)− k = n

2 − 2k, and by the same argument δ(H ′
2) ≥ n

2 − 2k.
Consider the following set T1 of b − a

2 pairs of vertices in H ′
1. If b = a, the pairs are {s1, s2},

{s3, s4}, . . . , {sa−1, sa}. If b > a, the pairs are {s2i−1, s2i} for 1 ≤ i < a
2 , {sa−1, sa+1}, {tj , sj+1}

for a + 1 ≤ j < b, and {tb, sa}.
Now, we apply Lemma 15 to the graph H ′

1, the set of pairs T1, and we set the parameter p to
be 2k. Since pairs in T1 are disjoint, and max{5p− 3, n− p} = max{10k − 3, n− 2k} ≤ δ(H ′

1), all

46

Q1

Q2

R2

R1

BH1 H2

s1
t1

P1

s2
t2

i2

P2

t3

s3

P3

i1

t4

s4

P4

Figure 7: Reconstructing the cycle from the good path cover P = {P1, P2, P3, P4}. The paths Q1

and Q2 are obtained by applying Lemma 15 to H ′
1 = H1−{i1}, the same for the paths R1, R2 and

the graph H ′
2 = H2 − {i2}. The resulting concatenation of paths is a Hamiltonian cycle in G.

conditions of the lemma are satisfied. Thus, there exist vertex-disjoint paths Q1, . . . , Qb−a
2

that

have the respective endpoints from T1 and cover all vertices of H ′
1.

We deal with H ′
2 similarly. We only need to connect t1, . . . , ta in a shifted way compared to

s1, . . . , sa, so that we obtain a cycle at the end. Consider the following set T2 of a
2 + r− b pairs of

vertices in H ′
2. If b = r, the pairs are {t2, t3}, {t4, t5}, . . . , {ta−2, ta−1}, and {t1, ta}. If b < r, the

pairs are {t2i, t2i+1} for 1 ≤ i < a
2 , {ta, sb+1}, {tj , sj+1} for b + 1 ≤ j < r, and {t1, tr}. Again, we

apply Lemma 15 to the graph H ′
2, the set of pairs T2, and p = 2k. We obtain vertex-disjoint paths

R1, . . . , Rr−b+a
2

that have the respective endpoints from T2 cover all vertices of H ′
2.

The resulting cycle C with V (C) = (V (G) \ B) ∪ I is a cyclic concatenation of paths P1, . . . ,
Pr, Q1, . . . , Qb−a

2
, R1, . . . , Rr−b+a

2
in a certain order. Namely,

C = P1Q1P2R1 · · ·Pa−1Qa
2
Pa+1Qa

2
+1Pa+2 · · ·PbQb−a

2
PaRa

2
Pb+1 · · ·PrRr−b+a

2
,

where we understand the notation PQ for paths P and Q with a common endpoint as their natural
concatenation. Clearly, C is a cycle, and it spans all the previously defined paths. By construction,
these paths cover all vertices in I, V (H ′

1), and V (H ′
2), thus they cover all vertices in V (G) except

those vertices in B that are not covered by P.

Now it only remains to find a good path cover that covers the maximum number of vertices in
B. By Claim 10, a good path cover immediately gives us a cycle of the corresponding length, and
we have also showed that a long cycle in G induces a good path cover.

To find the desired good path cover, first we observe that the number of vertices covered by
the paths in the cover is at most 3|B| by property (3) of a good path cover. We proceed with
a color-coding scheme using r = 3|B| colors: color each vertex in B in its own color, and each
vertex in V (G) \B randomly and independently in one of the remaining r− |B| colors, with equal
probability for each color. Denote this coloring by c : V (G)→ {1, . . . , r}. Now we look for a colored
good path cover, that is, a good path cover that covers at most one vertex of each color.

We find a colored good path cover with the help of dynamic programming. Define a state as a
tuple (C, v, i, ℓ, p) where C is a subset of {1, . . . , r}, v is a vertex in V (G), i ∈ {1, 2}, ℓ ∈ {1, . . . , r},
and p ∈ {0, 1, . . . , |B|}. We call a state (C, v, i, ℓ, p) feasible if there exists a set of vertex-disjoint
paths P = {P1, . . . , Pt} in G such that the following holds.

47

1. Every path P1, . . . , Pt−1 starts and ends in V (G) \B and has the length of at least three, Pt

starts in V (Hi), ends in v, and its length is ℓ.

2. No path P ∈ P has two consecutive vertices in V (G) \B.

3. The paths in P cover exactly one vertex of each color in C, and no vertices of other colors.

4. The number of paths in {P1, . . . , Pt−1} that start and end in different components of G−B
is exactly p.

Note that P in the definition of a feasible state is essentially an “unfinished” good path cover that
agrees with the state (C, v, i, ℓ, p). Our goal now is to compute the set of all feasible states S. We
start by setting

S1 =
{(
{c(v)}, v, 1, 1, 0

)
: v ∈ V (H1)

}
∪
{(
{c(v)}, v, 2, 1, 0

)
: v ∈ V (H2)

}
.

These are our initial states, corresponding to sets containing one path of length one. Trivially, each
such state is feasible, and these are all feasible states that use exactly one color. Next, for each j in
{1, . . . , r−1}, we show how to compute the set of feasible states Sj+1 of size j+1 from Sj , the set of
feasible states of size j. Here by the size of the state (C, v, i, ℓ, p) we mean |C|, the number of colors
used, which is the same as the total number of vertices covered by any set of paths corresponding
to the state.

To compute Sj+1 from Sj , we iterate over all states in Sj and try to extend each of them by
an additional vertex. Intuitively, we either extend the unique unfinished path corresponding to
the state, or declare it finished and start a new path. Fix a state (C, v, i, ℓ, p) ∈ Sj , there is a
set of paths P = {P1, . . . , Pt} satisfying the feasibility definition for (C, v, i, ℓ, p). Consider each
u ∈ NG(v) such that c(u) /∈ C. If both v and u are not in B, we do nothing. Otherwise, add to
Sj+1 the state (C ∪ c(u), u, i, ℓ+ 1, p). Clearly, the size of this state is j + 1, and it is easy to verify
that the set of paths P ′ = {P1, . . . , Ptu} satisfies the feasibility definition for (C∪c(u), u, i, ℓ+1, p).

For the “new path” kind of extending (C, v, i, ℓ, p) with ℓ > 2, consider each vertex u ∈ V (G)\B
such that c(u) /∈ C. If v ∈ B do nothing, otherwise add to Sj+1 the state (C ∪ c(u), u, i′, 1, p′),
where i′ is such that u ∈ Hi′ and p′ = p if v ∈ V (Hi), or p′ = p + 1 if v /∈ V (Hi). To see that this
state is feasible, consider the set of paths P ′ = {P1, . . . , Pt, u}. Indeed, every path among P1, . . . ,
Pt−1 starts and ends in V (G) \ B, and Pt as well, since v ∈ V (G) \ B. The length of Pt is ℓ so
at least three, and for P1, . . . , Pt−1 this holds by feasibility of the original state. The last path u
starts in V (Hi′) by definition of i′, ends in u, and has the length of one. Properties (2) and (3) are
preserved automatically. The value p′ reflects exactly how p is changed with respect to the newly
finished path Pt.

Now we show that Sj+1 contains all feasible states of size j + 1, provided that Sj contains all
feasible states of size j. Consider a state (C ′, u, i′, ℓ′, p′) ∈ Sj+1 and a corresponding set of paths
P ′ = {P1, . . . , Pt}. Recall that |Pt| = ℓ′, if ℓ′ > 1, consider a state (C, v, i′, ℓ′ − 1, p′) where v
is the previous vertex to u in Pt, C = C ′ \ {c(u)}. Observe that (C, v, i′, ℓ′ − 1, p′) is feasible as
witnessed by the set of paths P = {P1, . . . , P

′
t} where P ′

t is Pt without its last vertex u. Since
u ∈ NG(v), c(u) /∈ C, and v and u are not simultaneously in V (G) \ B by property (2) for
P ′, the state (C ′, u, i′, ℓ′, p′) is added to Sj+1 when the algorithm considers extending the state
(C, v, i′, ℓ′ − 1, p′) ∈ Sj by the vertex u. If ℓ′ = 1, consider a state (C, v, i, ℓ, p) where v is one of
the endpoints of Pt−1, i is the index of the component of the other endpoint of Pt−1, ℓ = |Pt−1|,
C = C ′ \ {c(u)}, and p is either p′ or p′− 1, depending on whether v belongs to Hi or not. The set
of paths {P1, . . . , Pt−1} witnesses the feasibility of (C, v, i, ℓ, p), and thus (C ′, u, i′, ℓ′, p′) is added to
Sj+1 on the corresponding “new path” step.

48

Therefore, we have shown that for each j in {1, . . . , r − 1}, we correctly compute the set Sj+1

from Sj , so in the end we have the sets Sj of feasible states of size j, for each j ∈ {1, . . . , r}. Finally,
we consider a subset C of the feasible states (C, v, i, ℓ, p) ∈

⋃r
j=1 Sj , such that v /∈ B, ℓ > 2, and

p′ is at least 2 and even, where p′ = p if v ∈ Hi and p′ = p + 1 if v /∈ Hi. Note that C is not
empty since a long cycle in G guaranteed by Theorem 14 induces a good path cover, and thus a
feasible state of the form above. From C, we pick a state maximizing |C ∩ {1, . . . , |B|}|. The set of
paths {P1, . . . , Pt} corresponding to this state is a good path cover in G that covers the maximum
number of vertices in B. Note that the actual good path cover may be found by the usual means
of backtracking in dynamic programming. Together with Claim 10 this concludes the algorithm,
and the proof of its correctness.

Running time analysis. In the dynamic programming part, the number of states is at most
2r ·n · 2 · r · (k + 1). While considering a state, we update O(n) other states, thus the total running
time of the dynamic programming subroutine is 2O(k)nO(1). For a fixed long cycle C in G, the
probability that we guess the coloring that assigns different colors to all vertices of the induced by
C good path cover, is at least e−r, since there are at most r vertices in the good path cover. By
performing ⌈er⌉ iterations of the color coding subroutine, we amplify the success probability to at
least 1− (1− er)e

r ≥ 1− e−1. Therefore, we obtain a Monte Carlo algorithm with constant success
probability and running time O(k2 · e3k · 23k · n2) = O(2O(k)nO(1)). Finally, the algorithm could be
derandomized in the standard fashion by using perfect hash families [NSS95].

8.2 Main theorem

Now we move on to Theorem 7, the main result of this section. We restate the theorem here
for convenience of the reader.

Theorem 7. Let G be a given 2-connected graph on n vertices and let k be a given integer. Let
B ⊆ V (G) be such that |B| ≤ k and δ(G − B) ≥ n

2 − k. There is a 2O(k) · nO(1) running time
algorithm that finds the longest cycle in G.

Proof. First, we may assume that n > 40k, otherwise the problem can be solved by the classical
2O(n) algorithm for Longest Cycle. Instead of proving the theorem directly, we show that there
exists an algorithm that in time 2O(k) · nO(1) either

1. finds the longest cycle in G, or

2. finds a vertex cover of G of size at most n
2 + 9k, or

3. finds a set B′ ⊇ B of size at most 35k such that G−B′ is not connected.

We say that (1)–(3) are the terminal states of the algorithm.
If state (3) is reached, we simply invoke the algorithm from Lemma 16 with the respective

separating set B′ of size at most 35k. This gives us immediately the longest cycle in G. Similarly,
reaching terminal state (2) also suffices to solve the problem, as shown in the next claim.

Claim 11. If terminal state (2) is reached, the longest cycle in G can be found in 2O(k) · nO(1)

time.

Proof of Claim 11. Denote the obtained vertex cover of G of size at most n
2 + 9k by S. We would

like to invoke the algorithm given by Theorem 6, but we are not guaranteed that the longest cycle
in G has length of the form 2δ(G−B) + k′ for k′ ≥ 0.

49

By Theorem 14, we have that there is a cycle of length at least min{2δ(G − B), n − |B|} in
G, as G is 2-connected. We aim to achieve 2δ(G − B) ≤ n − |B|. Each vertex in G − B has at
most |S| neighbours. Take the vertex in G − B with smallest degree. It has at least n

2 − k > 19k
neighbours in G−B. Obtain B′ by adding 19k neighbours of this vertex in G−B to B. We have
that δ(G−B′) = δ(G−B)− 19k, and G−B′ still contains at least one vertex.

Note that δ(G−B′) ≤ |S| − 19k ≤ n
2 − 10k ≤ n

2 −
|B′|
2 , as |B′| ≤ 20k, so 2δ(G−B′) ≤ n− |B′|.

Thus, by Theorem 15, the length of the longest cycle in G is of form 2δ(G − B′) + k′ for k′ ≥ 0.
The size of the vertex cover S is at most n

2 + 9k ≤ δ(G−B) + 10k = δ(G−B′) + 29k.

Recall that Theorem 6 provides a 2O(p+k′) · nO(1)-time algorithm that finds a cycle of length at
least 2δ(G−B′) + k′ given a vertex cover of G of size δ(G−B′) + p, if there is any. By trying all
possible k′ from n− 2δ(G−B′) ≤ 40k to zero, we find the longest cycle in G in time 2O(k) · nO(1)

as p ≤ 29k. By Theorem 14 there is a cycle of length at least 2δ(G − B′) in G, thus invoking
Theorem 6 with k′ = 0 necessarily provides us with a cycle. ⌟

Therefore, in what follows we assume that reaching any of the terminal states solves the problem
immediately.

Now consider a cycle C of maximum length in G. Identically to the proof of Lemma 15, C
induces a path cover of a subset of B. Namely, in this proof, we call a set of vertex-disjoint paths
P in G a good path cover if P satisfies the following properties.

1. Every path P ∈ P starts and ends in V (G) \B.

2. Each path P ∈ P has at least one vertex in B and no two consecutive vertices in V (G) \B.

3. The paths of P contain at most 3|B| vertices in total.

Note that this definition is the same as in Lemma 15, except for the property (4) there. Intuitively,
we do not need it in this lemma since we may now assume that G − B is connected. Since the
current definition is strictly less restrictive, it follows immediately from the proof of Lemma 15 that

• for each 0 ≤ t ≤ |B|, if there is a cycle of length n − t in G, there is also a good path cover
in G that covers all but t vertices of B,

• in time 2O(k)nO(1) we can find a good path cover P that covers the maximum number of
vertices in B, by the combination of color coding and dynamic programming.

Note that the empty set is a good path cover, thus a good path cover always exists.
So for the rest of the proof we deal with the case where we have computed a good path cover P

of G, possibly an empty one. Denote by r the number of paths in P, and by B′ the set of vertices
covered by paths in P together with the rest of vertices of B. By definition, B ⊂ B′, and by
property (2) of a good path cover |B′| ≤ 3k. If G−B′ is not connected, we have a small separator:
the algorithm outputs B′ and stops, reaching terminal state (3). If G− B′ is not 2-connected, we
add to B′ an arbitrary cut vertex of G − B′ and return B′. Thus, from now on we may assume
that G−B′ is 2-connected. The minimum degree of G−B′ is at least

δ(G−B′) ≥ n

2
− k − |B′ \B| ≥ n− |B′ \B|

2
− 2k >

n− |B′|+ 2

3
,

since |B′ \ B| ≤ 2k and n > 16k. By Theorem 11, in time O(n3) we find either a Hamiltonian
cycle C0 in G−B′, or an independent set of size δ(G−B′) + 1. If an independent set is found, its
complement in G−B′ together with B′ is a vertex cover of G of size at most n

2 +k+2|B′| ≤ n
2 +7k.

In this case we output the vertex cover and stop, reaching terminal state (2).

50

Otherwise, we have a Hamiltonian cycle C0 in G− B′. Now, we iteratively insert the paths of
P = {P1, . . . , Pr} into the cycle. Namely, for each i ∈ {1, . . . , r} we prove that given a cycle C that
contains exactly the vertices of the cycle C0 and the paths P1, . . . , Pi−1, we can either modify the
cycle C such that it satisfies the same property for i + 1, i.e. contains the vertices of the path Pi

as well, or reach one of the terminal states. Clearly, applying the above for each i ∈ {1, . . . , r},
starting from the cycle C0, proves the theorem. Thus from now on we focus on this statement.

Consider the path Pi and the obtained cycle C that contains all vertices of C0 and P1, . . . , Pi−1.
Denote the endpoints of Pi by s and t, observe that both s and t have at least n

2 − 3k neighbors on
C. That holds since s /∈ B, so degG−B(s) ≥ n

2 − k, and at most 2k vertices of G belong to B′ \ B
and are neither on C nor in B, analogously for t.

Denote by Cs the set of neighbors of s on C, and by Ct the set of neighbors of t on C. Consider
a vertex cs ∈ Ct and a vertex ct ∈ Ct. If cs and ct are next to each other on C then we can
immediately insert Pi in C. If these vertices are not adjacent, but are at distance two on C with
a vertex c′ /∈ B between them, we do the following. Insert Pi in C by going from cs to ct through
Pi and not through c′, denote the resulting cycle by C ′. The vertex c′ is the only vertex that is in
V (C) ∪ V (Pi), but not on C ′, thus we are done as long as we insert c′ back in C ′. By the same
argument as for s and t, c′ has at least n

2 − 3k neighbors on C ′. If there are two neighbors of c′ on
C ′ that are consecutive on C ′ again we can immediately insert c′ in C ′, thus we assume this is not
the case. Now on C ′ between every two consecutive neighbors of c′ there is a group of at least one
and possibly several non-neighbors of c′. Since there are at least n

2 −3k neighbors of c′ on C ′, there
are also at least n

2 − 3k such groups of consecutive non-neighbors. Since there are at most n
2 + 3k

non-neighbors of c′ on C ′, at most 6k of the groups may contain more than one vertex. Thus at
least n

2 − 9k groups consist of a single vertex, denote the set of all such vertices by I. Each vertex
of I is not adjacent to c′, but both of its neighbors on C ′ are adjacent to c′. We claim that if two
vertices in I are adjacent in G, there is a cycle that goes through c′ and all vertices of C ′. Denote
these vertices by u and v, go from c′ to a neighbor of u, then to v along the arc of C ′ that does not
contain u, then take the edge uv, and finally collect the rest of C ′ going from u to a neighbor of v
and returning to c′. If no two vertices in I are adjacent in G, then I is an independent set of size
at least n

2 − 9k in G. Thus the complement of I is a vertex cover of G of size at most n
2 + 9k, and

we are in the terminal state (2).

Ps t

C

cs ct

Figure 8: Inserting the path P (in red) into the cycle C (in blue) in the presence of an edge between
an internal s-vertex cs and an internal t-vertex ct. The resulting cycle is in solid.

Now we deal with the case where for every cs ∈ Cs and every ct ∈ Ct, there is either a vertex
of B or at least two other vertices between them on C. First, we bound the number of common

51

neighbors of s and t on C, denote Cs ∩ Ct by Cst. Fix an ordering on C, and consider a vertex
u ∈ Cst and the next vertex v along the cycle that belongs to either Cs or Ct. Between u and v,
there must be at least two vertices that belong to neither Cs nor Ct, or a vertex of B. Thus with
each vertex of Cst we can uniquely associate either two vertices of V (C) \Cs \Ct, or a vertex of B.
We get that apart from the vertices of Cst, Cs \ Cst and Ct \ Cst, there are at least 2(|Cst| − |B|)
other vertices in C. Summing the sizes of these four disjoint sets together, we get

|Cst|+ (|Cs| − |Cst|) + (|Ct| − |Cst|) + 2(|Cst| − |B|) ≤ n,

|Cst| ≤ n− |Cs| − |Ct|+ 2|B| ≤ 8k,

since both Cs and Ct contain at least n
2 − 3k vertices, and the size of B is at most k. From this

bound, we also immediately get that the number of vertices on C that are not adjacent to both
s and t is at most n − |Cs| − |Ct| + |Cst| ≤ 14k. Thus nearly all vertices of C, except for O(k),
are adjacent either to s but not to t, or to t but not to s. As vertices from Cs cannot be next to
vertices from Ct on C, they must come in large consecutive chunks along the cycle. To formalize
this intuition, let us call a vertex in Cs an internal s-vertex if both of its neighbors along the cycle
are also from Cs, and internal t-vertices are defined analogously. We claim that except for O(k)
vertices, all the vertices of C are either internal s-vertices or internal t-vertices. Vertices from Cs

that are not internal s-vertices must have at least one neighbor along C that is not from Cs nor
Ct, and the same holds for Ct. However, there are at most 14k vertices in V (C) \Cs \Ct, and each
of them can “spoil” at most two vertices of Cs or Ct. Also note that a vertex of Cst must have
vertices of V (C) \ Cs \ Ct on both sides, as a vertex from Cs cannot lie next to a vertex of Ct on
C. Thus the total number of internal s-vertices and internal t-vertices is at least

(|Cs| − |Cst|) + (|Ct| − |Cst|) − 2(|V (C) \ Cs \ Ct| − |Cst|) ≥ 2(
n

2
− 3k) − 28k = n − 34k.

Now assume there is an edge between an internal s-vertex and an internal t-vertex. If this holds,
the path Pi can be inserted in C in the same way as in the case of a single high-degree vertex above,
see Figure 8 for an illustration. On the other hand, if there are no edges between internal s-vertices
and internal t-vertices, then the graph induced on the sets of internal s-vertices and t-vertices is not
connected, as these sets are both non-empty. Then removing at most 34k vertices from G leaves
these sets disconnected. Thus we arrive to the terminal state (3) where we have a small separator.
In order to apply Lemma 16, it should contain B as a subset, so after taking the union with B its
size is at most 35k.

9 Dirac decomposition

In this section, we define Dirac decompositions and show that, given a Dirac decomposition
for a cycle in G, we can either find a longer cycle or solve the instance (G,B, k) of Long Dirac
Cycle in time single-exponential in k + |B|.

Definition 5 (Dirac decomposition and Dirac component). Let G be a 2-connected graph,
let B be a subset of V (G), and let C be a cycle in G of length at least 2δ(G−B). We say that two
disjoint paths P1 and P2 in G induce a Dirac decomposition for C and B in G if

• The cycle C is of the form C = P1P
′P2P

′′, where each of the paths P ′ and P ′′ has at least
δ(G−B)− 2 edges.

52

P1 P2

D1

D1

D2

D0

C

Figure 9: A schematic example of a Dirac decomposition, vertices belonging to B are in light gray.
Removing the paths P1 and P2 leaves two (D1)-type components that correspond to the long arcs
P ′ and P ′′ of the starting cycle C, one (D2)-type component, and a component consisting only of
vertices from B, denoted by D0. The four Dirac components are in thick blue.

• Let G′ be the graph obtained from G by applying B-refinement to every connected component
H of G−V (P1∪P2), except those components H with V (H) ⊆ B. Note that no edges of the
paths P1 and P2 are contracted. Then for every connected component H ′ of G′−V (P1 ∪P2),
except those with V (H ′) ⊆ B, holds |V (H ′)| ≥ 3 and one of the following.

(D1) H ′ is 2-connected and the maximum size of a matching in G′ between V (H ′) and V (P1)
is one, and between V (H ′) and V (P2) is also one;

(D2) H ′ is not 2-connected, exactly one vertex of P1 has neighbors in H ′, that is, |NG′(V (H ′))∩
V (P1)| = 1, and no inner vertex from a leaf-block of H ′ has a neighbor in P2;

(D3) The same as (D2), but with P1 and P2 interchanged. That is, H ′ is not 2-connected,
|NG′(V (H ′)) ∩ V (P2)| = 1, and no inner vertex from a leaf-block of H ′ has a neighbor
in P1.

• There is exactly one connected component H in G−V (P1∪P2) with V (H)\B = V (P ′)\(B∪
{s′, t′}), where s′ and t′ are the endpoints of P ′. Analogously, there is exactly one connected
component H in G− V (P1 ∪ P2) with V (H) \B = V (P ′′) \ (B ∪ {s′′, t′′}).

The set of Dirac components for a Dirac decomposition is defined as follows. First, for each
component H ′ of type (D1), H ′ is a Dirac component of the Dirac decomposition. Second, for each
leaf-block of each H ′ of type (D2), or of type (D3), this leaf-block is also a Dirac component of the
Dirac decomposition. For an example of a Dirac decomposition, see Figure 9.

Note that Lemma 5 holds for an arbitrary cycle C if we replace Erdős-Gallai components
and Erdős-Gallai decompositions with Dirac components and Dirac decompositions. We give the
analogue of this lemma below without proof, since it is identical to the proof of Lemma 5.

53

Lemma 17. Let G be a 2-connected graph, B ⊆ V (G), C be a cycle in G. Let paths P1, P2 induce
a Dirac decomposition for C and B in G. Let M be a Dirac component of the Dirac decomposition
and P be a path in G such that P contains at least one vertex in V (P1) ∪ V (P2). If P enters M ,
then all vertices of M hit by P appear consecutively on P .

We now want to prove an analogue of Lemma 7 showing that if a long cycle in G exists, then it
suffices to look for a long cycle entering a Dirac component. For that we first require the following
weaker result.

Lemma 18. Let G be a 2-connected graph, B ⊆ V (G), C be a cycle in G of length less than
2δ(G − B) + k. Let paths P1, P2 induce a Dirac decomposition for C and B in G. If H ′ is a
(D2)-type or a (D3)-type component of the Dirac decomposition and S is a B-leaf-block separator
of H ′, then there is a cycle of length at least 1

2(5δ(G − B) − |S| − (k + 5)) that enters a Dirac
component in G.

Proof. Without loss of generality, let H ′ be a (D2)-type component of the Dirac decomposition.
Take a vertex v ∈ V (H ′) that is not an inner vertex of a leaf-block of H ′ and has a neighbour in
P2. Such vertex always exists by definition of a Dirac decomposition.

Let S be a B-leaf-block separator of H ′. By Lemma 6, there is a (c, v)-path of length at
least 1

2δ(H ′ − B) − 1
2 |S| in H ′ for some cut-vertex c of a leaf-block of H ′. Also δ(H ′ − B) ≥

δ(G − B) − |V (P1) ∪ V (P2)| ≥ δ(G − B) − (k + 5), since the total length of P1 and P2 is at most
k + 3. Denote this leaf-block of H ′ by L.

Note that δ(L−(B∪{c})) ≥ δ(G−B)−2 by properties of (D2)-type components. By Corollary 3,
there is a path of length at least δ(G − B) − 2 between c and any other vertex in L. Let u be an
inner vertex in L that has a neighbour in P1.

Combine the (u, c)-path inside L with the (c, v)-path going outside L in H ′. The obtained path
is a (u, v)-path of length at least (δ(G−B)− 2) + (12δ(H ′ −B)− 1

2 |S|).
Since u and v have neighbours in V (P1) and V (P2) respectively, we obtain a chord of C of

length at least δ(G − B) + 1
2δ(H ′ − B) − 1

2 |S|. The chord splits C into two arcs, one of which is
of length at least δ(G−B). Combine this arc with the chord and obtain a cycle of length at least
2δ(G−B) + 1

2δ(H ′ −B)− 1
2 |S| ≥

5
2δ(G−B)− 1

2 |S| −
1
2(k + 5).

The following lemma is an analogue of Lemma 7 for Dirac components. In contrast to Lemma 17,
the proof is significantly different from the proof of Lemma 7.

Lemma 19. Let G be a graph, B ⊆ V (G) be a subset of its vertices and P1, P2 induce a Dirac
decomposition for a cycle C of length less than 2δ(G−B) + k in G. Let k be an integer such that
6k+ 4|B|+ 6 < δ(G−B). If there exists a cycle of length at least 2δ(G−B) +k in G that contains
at least one vertex in V (P1) ∪ V (P2), then there exists a cycle of length at least 2δ(G− B) + k in
G that enters a Dirac component.

Proof. Suppose that there exists a cycle C ′ of length at least 2δ(G−B) + k in G that contains at
least one vertex in V (P1) ∪ V (P2). If C ′ already contains an edge of a Dirac component, we are
done. We now assume that C ′ does not contain any edge of any Dirac component. We show how
to use C ′ and construct a cycle of length at least 2δ(G − B) + k in G that contains an edge of a
Dirac component of the given Dirac decomposition.

Let W be the set of all vertices of G that are vertices of non-leaf-blocks of (D2)-type or (D3)-type
components in the Dirac decomposition. We start with the following claim.

Claim 12. |W ∩ V (C ′)| > 5k.

54

Proof of Claim 12. This is a counting argument. Note that C ′ cannot contain an edge with both
endpoints inside a Dirac component of G. Since Dirac components of G are (D1)-type components
of the Dirac decomposition and leaf-blocks of (D2)-type or (D3)-type connected components, each
edge of C ′ has an endpoint either in V (P1) ∪ V (P2) ∪ B, or inside a non-leaf-block of a (D2)-type
or a (D3)-type connected component. The union of the vertex sets of the non-leaf-blocks form the
set W . Hence, (W ∩ V (C ′)) ∪ V (P1) ∪ V (P2) ∪B is a vertex cover of C ′.

Note that a vertex cover of any cycle consists of at least half of its vertices. Then

2|(W ∩ V (C ′)) ∪ V (P1) ∪ V (P2) ∪B| ≥ |V (C ′)| ≥ 2δ(G−B) + k.

Immediately we get that

2|W ∩V (C ′)| ≥ 2δ(G−B)+k−2|V (P1)∪V (P2)|−2|B| ≥ 2δ(G−B)+k−2(k−2)−2|B| > 10k.

⌟

The following claim is useful for constructing long chords of C ′ going through the Dirac com-
ponents that are leaf-blocks.

Claim 13. Let H ′ be a (D2)-type or a (D3)-type component in the Dirac decomposition. C ′ does
not contain any inner vertex of the leaf-blocks of H ′.

Proof of Claim 13. Suppose that C ′ contains some vertex u ∈ V (H ′) that is an inner vertex of
some leaf-block L of H ′. As L is a Dirac component of G, C ′ cannot contain any edge of L, so
C ′ should enter L from V (P1) ∪ V (P2) through u and leave it immediately. By definition of Dirac
decompositions, the only option to enter or leave L is to go through the only vertex in V (P1) (if
H ′ is of type (D2)) or in V (P2) (if H ′ is of type (D3)). As C ′ cannot contain any vertex twice, this
is not possible. ⌟

We now use the above claims to construct either a family of long chords of C ′ going through
Dirac components, or a B-leaf-block separator of some of the (D2)-type or (D3)-type components
in the Dirac decomposition.

To construct the first chord of C ′, take a vertex w1 ∈ W . Since w1 is a vertex of a separable
component H ′, there is a cut vertex c1 of a leaf-block L1 of H ′ reachable from w1 inside H ′. The
leaf-block L1 contains also at least one vertex v1 ̸= c1 that is connected to V (P1) (if H ′ is of
type (D2)) or to V (P2) (if H ′ is of type (D3)) outside H ′. We know that δ(L1 − (B ∪ {c1})) ≥
δ(G− (B ∪{c1}))− 1 ≥ δ(G−B)− 2, since the only outside neighbour of vertices in L1− (B ∪ c1),
apart from vertices in B, is a single vertex in V (P1) or V (P2). By Corollary 3, there exists an
(c1, v1)-path inside L1 of length at least δ(G − B) − 2. Combine this with (w1, c1)-path inside H ′

and obtain a (w1, v1)-path inside H ′.
Note that the constructed (w1, v1)-path can contain vertices from W apart from w1. Let w′

1 ∈W
be the vertex on the (w1, v1)-path farthest from w1. Note that the (w′

1, v1)-subpath does not contain
any vertex from W except w′

1, and it still contains the (c1, v1)-path as a subpath by Claim 13.
Hence, we obtain a (w′

1, v1)-path of length at least δ(G − B) − 2 inside H ′ that does not contain
any vertex in W \{w′

1}. To obtain a long chord of C ′, it is left to reach the vertex in V (P1)∪V (P2)
from v1 outside H ′, and then follow the cycle C until a vertex v′1 of C ′ is reached. This is always
possible since V (C) ∩ V (C ′) ⊇ (V (P1) ∪ V (P2)) ∩ V (C ′) ̸= ∅. We obtain a chord of length at least
δ(G−B)− 1 connecting w′

1 and v′1.
To construct the second chord, we follow the same process for a vertex w2 ∈ W \ {w′

1}. When
constructing the path going from w2 to a cut vertex of a leaf-block, we prohibit this path from going

55

through w′
1. If w′

1 separates w2 from all leaf-block cut vertices, then we obtain a small B-leaf-block
separator of H ′. Otherwise, we obtain a (w′

2, v
′
2)-chord of C ′ of length at least δ(G−B)−1 that does

not contain any vertex in W \ {w′
1, w

′
2}. It is important that during the construction of different

chords we always follow C in the same direction.
Repeat this process 3k times and obtain either a family of 3k (w′

i, v
′
i)-chords of C ′ of length at

least δ(G−B)− 1, or a B-leaf-block separator of size at most 3k. If it is the latter case, then, by
Lemma 18, there is a cycle of length at least 2δ(G−B)+ 1

2(δ(G−B)−3k−(k+5)) > 2δ(G−B)+k
that enters a Dirac component. We now assume that a family of chords is obtained. The following
claim is useful.

Claim 14. If for some i, j ∈ [3k] we have v′i ̸= v′j, then the chords between w′
i and v′i and between

w′
j and v′j do not have any common vertex.

Proof of Claim 14. Note that v′i or v′j depend only on the vertex in V (P1) or in V (P2) which we
start following C from. If v′i ̸= v′j , then they were found when starting from different vertices. Then

the ith and the jth chords were constructed from different components of the Dirac decomposition,
as for each separable component there is only one vertex in V (P1) ∪ V (P2) that is adjacent to
inner vertices of leaf-blocks of this component. Therefore, the (w′

i, vi)- and (w′
j , vj)-subpaths of

the chords do not have common vertices. The (vi, v
′
i)- and (vj , v

′
j)-subpaths also cannot have any

common vertex as v′i and v′j were found as the first vertices from V (C ′) on C when following C in
the same direction. ⌟

Definition 6. Consider two chords of C that do not have common endpoints. Denote the endpoints
of one chord by s and t and of the other by p and q. We say that these two chords of C intersect
graphically, if the vertices s, t, p and q are located in the order s, p, t, q on C when following C in
one or the other direction. In other words, two chords intersect graphically if each chord cuts C
into two arcs each containing exactly one endpoint of the other chord.

We can now show that if two chords in the constructed family intersect graphically, then we
can find a long cycle that contains these two chords. Assume that there are i, j ∈ [3k] such that
v′i ̸= v′j and the vertices w′

i, v
′
i, w

′
j , v

′
j are located in the order w′

i, w
′
j , v

′
i, v

′
j on C ′ when following C ′

in one of the two directions. These four vertices split C ′ into four arcs. A pair of opposite arcs
together with the two chords constitute a cycle in G. Take the pair of arcs with the longest total
length. This total length is at least 1

2 |V (C ′)| ≥ δ(G−B) + k
2 . Combining these two arcs with the

two chords, we obtain a cycle of length at least 3δ(G − B) + k
2 − 2 > 2δ(G − B) + k. This cycle

enters two Dirac components, as each chord enters a Dirac component. Hence, in this case the
desired cycle exists and the lemma is proved.

We now assume that no two chords of the family intersect graphically. In this case we can
arrange them in an order from left to right. That is, we can choose a permutation π ∈ S3k

and for each i ∈ [3k] either a pair ai = w′
πi

and bi = v′πi
or a pair ai = v′πi

and bi = w′
πi

in
such a way that following the cycle C ′ starting from a1 one will read the 6k vertices in the order
a1, a2, . . . , a3k, b3k, b3k−1, . . . , b1 (see Figure 10). It is important to note that ai = ai+1 or bi = bi+1

might hold true for any i ∈ [3k − 1], but at least one of ai ̸= ai+1 and bi ̸= bi+1 always holds.
Take an arbitrary i ∈ [3k]. The chord between ai and bi splits C ′ into two arcs. We call them

left arc of (ai, bi), that is, the arc that contains vertices a1, b1, a2, b2, . . . , ai, bi and the right arc of
(ai, bi), that is, the arc that contains vertices ai, bi, ai+1, bi+1, . . . , a3k, b3k. If at least one of these
arcs has length at least δ(G−B) + k + 1, we call the chord between ai and bi a good chord. Then
the chord together with the longer arc constitute a cycle of length at least 2δ(G − B) + k. This

56

C ′a1

a2, a3
a4

a5 a6, a7, a8
a9

b1
b2

b3 b4, b5 b6 b7
b8

b9

Figure 10: The family of long chords of the cycle C ′ that do not intersect graphically pairwise.

cycle enters a Dirac component, so the proof is complete if there is a good chord in the constructed
family of chords. We now show that there exists at least one good chord in the family.

If the chord between a1 and b1 is good, then we are done. Otherwise, both arcs of (a1, b1) are
of length at most δ(G−B) + k. Since the length of C ′ is at least 2δ(G−B) + k, it follows that the
length of both these arcs is at least δ(G − B). Consider the chord between a2 and b2. Note that
the left arc of (a2, b2) is longer than the left arc of (a1, b1) because (a1, b1) ̸= (a2, b2). Hence, the
length of the left arc of (a2, b2) is at least δ(G − B) + 1. Analogously, we can show that for each
i ∈ [3k] the length of the left arc of (ai, bi) is at least δ(G−B) + i− 1. Hence, for any j ∈ [2k] the
chord between ak+j and bk+j is a good chord. The proof of the lemma is complete.

Finally, we state and prove the main theorem of this section.

Theorem 16. Let (G,B, k) be a given instance of Long Dirac Cycle. There is an algorithm
that, given a cycle C in G and two paths P1, P2 that induce an Dirac decomposition for C and B
in G, in time 2O(k+|B|) · nO(1) either

• Solves (G,B, k), or

• Finds a cycle longer than C in G.

Proof. The algorithm considers several cases. If the given cycle C is of length at least 2δ(G−B)+k,
then the algorithm correctly determines that (G,B, k) is a yes-instance. Hence, we assume that
|V (C)| < 2δ(G) + k. From now on, we also assume that 6k + 4|B|+ 6 < δ(G− B), otherwise the
algorithm solves (G,B, k) using the algorithm from Proposition 12.

Suppose now that G contains a cycle C ′ of length at least 2δ(G − B) + k. We show how the
algorithm finds some cycle of length at least 2δ(G − B) + k in G or enlarges C provided that C ′

exists. We are now interested in the set X = V (C ′)∩(V (P1)∪V (P2)). Depending on its cardinality,
there are several cases. In most of the cases, it is possible for the algorithm to replace one arc of C
with a longer arc that is found using the algorithm for Long Erdős-Gallai (s, t)-Path given by
Theorem 5. The algorithm is usually applied to a component in G − V (P1 ∪ P2) with the goal of
finding a path of length at least δ(G−B) +k/2. Since δ(G− (V (P1∪P2)∪B)) > δ(G−B)−k−4,
the running time of the algorithm is still bounded by 2O(k+|B|) · nO(1).

Case 1: |X| = 0. Then C ′ is completely contained in some connected component H of G−V (P1∪
P2). This component cannot be contained in B, since |B| < δ(G−B). So after the B-refinements,

57

this component is a component H ′ of type (D1), (D2) or (D3). Note that only the leaf-blocks that
have all inner vertices in B are contracted in H to obtain H ′. The cycle C ′ does not pass through
cut vertices. Moreover, its length is greater than B. Hence, no edge of C ′ is contracted during the
B-refinements of H, so C ′ is fully contained in H ′.

By the last property of Dirac decompositions, there are exactly two connected components in
G − (V (P1) ∪ V (P2)) containing vertices of C. Both of them contain at most δ(G − B) + k + |B|
vertices, as the length of C is less than 2δ(G−B) + k. Hence, H ′ does not share any vertices with
the initial cycle C, as |V (H ′)| ≥ |V (C ′)| ≥ 2δ(G−B) + k.

If H ′ is of type (D1), then it contains a path of length at least |V (C ′)|/2 between any pair
of vertices by Claim 9. Take any pair (s, t) of neighbours of H ′ in V (P1) and V (P2) respectively.
There is an (s, t)-path in G of length at least |V (C ′)|/2 + 2 > δ(G − B) + k/2 that contains only
vertices in V (H ′) ∪ B as internal vertices. One of the arcs of C between s and t have length less
than δ(G−B) + k/2, so it can be replaced with the obtained (s, t)-path, making C longer.

If H ′ is of type (D2), then it is not 2-connected. Denote the only neighbour of H ′ in V (P1) by
s. Note that the graph G′[V (H ′) ∪ {s}] is 2-connected and still contains the cycle C ′. Hence, it
contains a path of length at least |V (C ′)|/2 between any pair of vertices. Now take any neighbour
of H ′ in V (P2), say t. It is easy to obtain an (s, t)-path in G of length at least |V (C ′)|/2 + 1 going
only through vertices in V (H ′) ∪B. Again, this path is a replacement for one of the arcs between
s and t in G. The case of type (D3) is symmetrical.

Conclusion of Case 1. To handle this case, the algorithm unconditionally iterates over all
components in G− V (P1 ∪ P2) and tries to find a suitable path of length at least δ(G−B) + k/2
in a 2-connected subgraph of G using the algorithm of Theorem 5 for Long Erdős-Gallai (s, t)-
Path. Note that a subgraph picked by the algorithm is always a graph H ′ with δ(H ′ − B′) ≥
δ(G−B′ − (V (P1)∪ V (P2)), where |B′| ≤ |B|+ 1. Hence, δ(H ′ −B′) ≥ δ(G−B)− (k + 5), so the
algorithm for Long Erdős-Gallai (s, t)-Path always runs in 2O(k+|B|) · nO(1) running time. If a
suitable path is found, C is made longer by the algorithm, and the algorithm outputs the longer
cycle and terminates. Otherwise, there are no long cycles C ′ with |X| = 0 in G.

Case 2. |X| = 1. Denote the only vertex in X by v. Note that C ′ passes through only one
connected component in G − V (P1 ∪ P2), since C ′ − v is a path having no common vertices with
P1 or P2. Denote the component containing C ′ − v in G − V (P1 ∪ P2) by H. We know that H
consists of at least 2δ(G−B) + k − 1 vertices, so it is not fully contained in B and does not share
any vertex with the initial cycle C, just as in the previous case.

Without loss of generality, assume that v ∈ V (P1). Denote by H ′ the connected component
H after the B-refinements. Independently of the type of H ′ in the Dirac decomposition, there
is a vertex in H with a neighbour in V (P2). Hence, there is a path starting in a certain vertex
u ∈ V (P2) and going to a certain vertex z ∈ V (C ′ − v) through H in G. Take the longer arc
between z and v on C ′ and combine it with the path between u and z. The obtained path is of
length at least |V (C ′)|/2 + 1 and is a replacement for the shorter arc between u and v on C.

The only obstacle here is that H is not necessarily 2-connected. However, the graph G[V (H)∪
{v}] still contains the whole cycle C ′. If H ′ is of type (D1), then G[V (H) ∪ {v}] is necessarily 2-
connected after B-refinements. If H ′ is of type (D2), then G[V (H)∪{v}] also becomes 2-connected
after B-refinements, as v is the only neighbour in V (P1) connecting all leaf-blocks of H ′ together.
In either of the two cases, if z is fixed, the path between v and z can be found using the algorithm
for Long Erdős-Gallai (s, t)-Path.

Finally, if H ′ is of type (D3), then u is the only neighbour of H ′ in V (P2) after the B-refinements.
Then the graph G[V (H) ∪ {u, v}] is necessarily 2-connected after B-refinements and the desired
(u, v)-path can be found inside it.

58

Conclusion of Case 2. The algorithm iterates over all suitable pairs of v and H, and iterates
over all possible options of z or u when necessary. When this triple is fixed, it is left to apply
the algorithm of Theorem 5 to the corresponding B-refinement as described above. Again, in
time 2O(k+|B|) · nO(1) our algorithm either makes the initial cycle C longer and stops or correctly
determines that no long cycle C ′ with |X| = 1 exists.

Case 3: |X| = 2. Let X = {s, t}. Starting from this case, we need to consider Dirac components
that C ′ enters. By Lemma 19, we can assume that C ′ enters some Dirac component M . The cycle
C ′ has two arcs between s and t. At least one of them enters M and, by Lemma 17, we know that
all vertices of M appear consecutively on this arc.

Suppose that both arcs between s and t enter M . If both s, t ∈ V (P1) or s, t ∈ V (P2), then
we obtain a matching of size two between V (Pi) and a Dirac component, which is not possible by
the definition of Dirac decomposition. Hence, we can assume that s ∈ V (P1) and t ∈ V (P2). Since
both arcs enter M , there is a connected component H in G−V (P1∪P2) that contains M and both
arcs of C ′. Thus C ′ is contained in G[V (H)∪{s, t}]. After the B-refinements, G[V (H)∪{s, t}] also
contains the whole cycle C ′ similarly to the arguments above. Note that after the B-refinements
this graph is 2-connected, since if H ′ is of type (D2) or of type (D3), the vertex s or the vertex t
correspondingly is the vertex connecting all its leaf-blocks together. Hence, the algorithm can look
for an (s, t)-path of length at least δ(G−B) + k/2 inside the graph G[V (H) ∪ {s, t}] with applied
B-refinements. The component H contains at least 2δ(G−B) + k− 2 vertices, so it does not share
vertices with C. Thus, this (s, t)-path is a suitable replacement for a shorter arc between s and t
on C.

Suppose now that only one arc of C ′ between s and t enters M . Then, by Lemma 17, we
can be sure that all vertices of M appear consecutively on C ′. That is, there are two vertices
u, v ∈ V (M) ∩ V (C ′) such that one of the arcs of C ′ between u and v is a (u, v)-path inside M ,
and the other arc is a (u, v)-path in G that does not contain any vertex of M as internal vertex.
In this case, the algorithm can find these two arcs in the following way.

When s, t and M are fixed, the algorithm iterates over all pairs of distinct vertices u, v ∈ V (M).
Firstly, the algorithm tries to find a path between u and v outside M . Since there is a path of length
at least δ(G − B) − 2 between any pair of vertices in M , the outer path length δ(G − B) + k + 2
is sufficient to construct a cycle of length 2δ(G − B) + k in G. Hence, to find the (u, v)-path
outside M , the algorithm removes all vertices in V (M) \ {u, v} from G, and adds a single edge
between u and v in G. Note that if the outer path between u and v exists, then G remains
2-connected after these operations, since u and v still belong to the same cycle. If G is not 2-
connected, then the choice of u and v was wrong. Otherwise, we apply the algorithm of Theorem 5
to the changed graph G to find a long path between u and v. If a (u, v)-path of length at least
δ(G−B) + k+ 2 exists, then (G,B, k) is a yes-instance. Otherwise, the algorithm finds the longest
path between u and v. This is done in 2O(k+|B|) · nO(1) time. Note that a (u, v)-path of length at
least δ(G− (V (P1) ∪ V (P2) ∪B ∪ {u, v})) ≥ δ(G−B)− k − 6 always exists in the modified graph
G by Corollary 3.

If the outer (u, v)-path is found, it is left for us to find a long path between u and v inside
M . If this path is of length at least δ(G − B) + 2k + 6, then (G,B, k) is a yes-instance of Long
Dirac Cycle, since the outer (u, v)-path is of length at least δ(G− B)− k − 6. Thus, using the
algorithm for Long Erdős-Gallai (s, t)-Path, we either find a sufficiently long path between u
and v inside M , such that the total length of this path and the outer path is at least 2δ(G−B)+k,
or conclude that none exists and move on to the next choice of u and v.

Conclusion of Case 3. To handle this case, the algorithm iterates over all possible pairs
of s and t. To handle the case when C ′ enters just one connected component of G − V (P1 ∪

59

P2), the algorithm behaves similarly to previous cases. Additionally, to handle the case when C ′

contains a consecutive path inside a Dirac component, the algorithm iterates over all possible Dirac
components M , and pairs u, v ∈ V (M) and tries to construct a long cycle using two calls to the
algorithm for Long Erdős-Gallai (s, t)-Path.

Case 4. |X| ≥ 3. Then X contains three distinct vertices v1, v2, v3. These vertices split C ′

into three arcs A1, A2, A3, where A1 is the arc between v1 and v2 that does not contain v3, A2 is
the arc between v2 and v3 that does not contain v1, and A3 is the arc between v3 and v1 that does
not contain v2. By Lemma 19, we can assume that C ′ enters a Dirac component M . Without loss
of generality, assume that A1 enters M . By Lemma 17, all vertices of M appear consecutively on
this arc.

Claim 15. A2 and A3 do not contain any vertex of M .

Proof of Claim 15. Take the arc between v1 and v3 that contains v2, i.e. the union of A1 and A2.
We now that this arc enters M , so by Lemma 17 all vertices of M appear consecutively on it. But
A1 contains at least two vertices of M . Hence, A2 cannot contain any vertex of M , as v2 /∈ V (M)
separates A1 and A2 on the arc between v1 and v3.

To show that A3 does not contain any vertex of M , take the arc between v3 and v2 that contains
v1, i.e. the union of A3 and A1. Again, by Lemma 17 this arc contains vertices of M consecutively,
but v1 divides A3 and A1 on the arc. Since A1 contains at least two vertices of M , A3 cannot
contain any of them. ⌟

The claim shows that vertices of M induce an arc of C ′, similarly to the second part of Case 3.
Hence, this case can be handled by the algorithm in exactly the same way as in Case 3.

Conclusion of Case 4. To cover this case, our algorithm first fixes v1, v2 ∈ V (P1 ∪P2). Then
it iterates over all Dirac components of the Dirac decomposition and tries to combine a long cycle
from two paths, one inside the Dirac component, and one outside. This is done in exactly the same
way as in the second part of Case 3.

The list of cases is exhaustive, so if C ′ exists, our algorithm enlarges the initial cycle C or finds
a cycle of length at least 2δ(G − B) + k in G, determining that (G,B, k) is a yes-instance. If C ′

does not exist, the algorithm does not find any long arc or long cycle in G, and safely decides that
(G,B, k) is a no-instance. This concludes the proof.

10 Long Dirac Cycle: Putting all together

In this section we finalize the proof of Theorem 3 by combining the main results of previous
sections. This relies crucially on the following lemma. The most important part of this lemma is
the construction of a Dirac decomposition.

Lemma 20. Let G be an n-vertex 2-connected graph, B ⊆ V (G), and k be an integer such that
0 < k ≤ 1

24δ(G−B), and

2k + 2|B|+ 12 ≤ δ(G−B) <
n

2
.

Then there is an algorithm that, given a cycle C of length less than 2δ(G−B)+k with V (G−B) ̸⊆
V (C) in polynomial time finds either

• Longer cycle in G, or

• Vertex cover of G−B of size at most δ(G−B) + 2k, or

60

• Two paths P1, P2 that induce a Dirac decomposition for C and B in G.

Before proceeding with the proof of the lemma, we show how to use it for the proof of Theorem 3.

10.1 Proof of Theorem 3

We combine the main results of Sections 7, 8, 9, and Lemma 20. Let (G,B, k) be an instance
of Long Dirac Cycle. First we consider the cases that do not fit the conditions of Lemma 20. If
δ(G−B) < 12 or if 24k > δ(G−B), we can find a cycle of length at least 2δ(G−B)+k > 48k+24
in time 2O(k) · nO(1) by calling the algorithm for Longest Cycle from Theorem 12.

If 2k + 2|B|+ 12 > δ(G−B), we have that 5k + 4|B|+ 48 > 2δ(G−B) + k. By Theorem 12, a
cycle of length at least 5k + 4|B|+ 48 could be found in time 2O(k+|B|) · nO(1).

The remaining reason why Lemma 20 could not be applied to a cycle C is that C satisfies
V (G− B) ⊆ V (C). Then |V (C)| ≥ n− |B|, implying that δ(G− B) ≥ n/2− (|B|+ k)/2. In this

case, we apply the algorithmic results of Section 8. We put k′ := max{|B|, |B|+k
2 }, and obtain that

δ(G−B) ≥ n
2 −k′ for |B| ≤ k′. We apply Theorem 7 for G,B and k′. Then the problem is solvable

in time 2O(k′) · nO(1) = 2O(k+|B|) · nO(1).
From now we assume that k and B satisfy the conditions of Lemma 20. Then start with

arbitrary cycle C in G. If its length is at least 2δ(G − B) + k, then report that (G,B, k) is a
yes-instance. Otherwise, apply Lemma 20 to G,B, k and C. In polynomial time we either find
a longer cycle, a vertex cover, or a Dirac decomposition of G. If a longer cycle is found and the
length of this cycle is still less than 2δ(G − B) + k, we call Lemma 20 with the longer cycle. If
a vertex cover of G − B of size at most δ(G − B) + 2k is found, then the vertex cover of G is at
most δ(G − B) + 2k + |B|. We apply Theorem 6 to solve the problem in time 2O(k+|B|) · nO(1).
Finally, if a Dirac decomposition for C and B is found in G, we use Theorem 16 to solve (G,B, k)
in running time single-exponential in k + |B| or find a longer cycle in G and repeat the application
of Lemma 20.

The proof of Theorem 3 (up to the proof of Lemma 20) is complete.

10.2 Last piece: proof of Lemma 20

The remaining part of the section is devoted to the postponed proof of Lemma 20.

Proof of Lemma 20. The proof is algorithmic. We try to replace an arc of C, that is, a path in C,
with a path in G− V (C). This process of enlarging C is similar to the process of enlarging a path
in Lemma 4. We consider connected components H in G− V (C) that contain at least one vertex
in V (G) \B. Note that at least one such component exists since V (G) \ V (C) ̸⊆ B.

To simplify our job, we first apply B-refinements to all connected components in G − V (C).
Without loss of generality, we assume that G is a graph with all possible B-refinements applied,
i.e., RB(H) = G for any connected component H in G − V (C) with V (H) ̸⊆ B. Note that this
assumption preserves all resulting points of the lemma statement: if a longer cycle, or a vertex
cover, or a Dirac decomposition is found for the graph with applied B-refinements, they can be
easily restored in the original graph.

Similarly to the proof of Lemma 4, we consider several cases depending on the structure of a
connected component H with V (H) ̸⊆ B. The difference is that isolated vertices in G − V (C)
now do not lead to an immediate enlargement of C. However, we show that they contribute to a
construction of a vertex cover of G−B.

In what follows we prove the following. If there is a component H with G− V (C) with exactly
two vertices, then cycle C can be always enlarged. If there is a component H with at least 3 vertices,

61

call it a large component, then either C can be enlarged, or H has a very special structure. The
special structure of large components is used twice. First, we show that if there is at least one
single-vertex component and at least one large component, then C can be enlarged. Thus if we
cannot enlarge C, it means that either G−V (C) is an independent set or all components are large.
In the first case, we prove that the vertex cover of G−B is at most δ(G−B) + 2k. In the second
case, the structural properties of large components are used to construct a Dirac decomposition.

We start with two claims that will be used in several places of the proof. The first claim shows
that if there is a pair of distant consecutive neighbors of a vertex h ̸∈ V (C) in C, then C can be
enlarged.

Claim 16. Let h ∈ V (G)\V (C) be a vertex with at least δ(G−B)−2 neighbors in V (C) and such
that there is a pair of neighbors u, v of h on C such that one of the (u, v)-arcs is of length at least
8k containing no other neighbors of h. Then C can be enlarged in polynomial time.

Proof of Claim 16. Suppose that there are two neighbors of h, say u, v ∈ V (C) such that one arc
of C between u and v is of length at least 8k and does not contain any neighbor of h. Hence the
other arc between u and v contains all neighbors of h on C. Moreover, since the length of C is at
most 2δ(G−B) + k − 1, the length of this arc is at most 2δ(G−B)− 7k − 1.

There are at least δ(G−B)−2 neighbors of h on C. Since 2(δ(G−B)−3) > 2δ(G−B)−7k−1,
by the pigeonhole principle, there is a pair of neighbors of h that are adjacent C. Then h can be
inserted in C between these neighbors so the length of C increases by one. ⌟

The following claim allows to eliminate the existence of large connected components in G−V (C),
when there are isolated vertices in G− V (C). This claim will be useful later in this proof. Recall
that a chord of a cycle C is a path connecting two vertices of C and containing no other vertices
of C.

Claim 17. If there is a vertex h ∈ V (G) \ V (C) with at least δ(G − B) neighbors in V (C) and
there is a chord of C of length at least 16k that does not pass through h, then C can be enlarged in
polynomial time.

Proof of Claim 17. By Claim 16, we can assume that for every pair of neighbors u, v of h on C,
each of the (u, v)-arcs is either of length less than 8k or contains other neighbors of h.

Let the endpoints of the chord be c1, c2 ∈ V (C). If the distance between c1 and c2 in C is less
than the length of the chord, then C can be made longer by replacing an arc between c1 and c2
with the chord. Otherwise, both arcs between c1 and c2 are of length at least 16k.

Each of these two arcs should contain a neighbor of h as an internal vertex. Select one of the
two arcs between c1 and c2. Let v1 ̸= c1 be the neighbor of h that is closest to c1 on this arc. Since
there are no other neighbors of h between c1 and v1, the distance in C between c1 and v1 is at most
8k. Analogously, take the other arc between c1 and c2 and let v2 be the neighbor of h on this arc
that is closest to c2, but is different from it. Again, the distance between c2 and v2 is at most 8k.

Now construct the following path between v1 and v2: go from v1 to c2 following the first arc,
then go from c2 to c1 following the chord, then go from c1 to v2 following the second arc. See
Figure 11. This path contains all but at most 16k edges of the cycle C, since ci and vi are close
to each other on C for each i ∈ {1, 2}. Additionally, this path contains at least 16k edges of the
chord. Hence, the length of the constructed (v1, v2)-path is at least the length of the cycle C. This
path does not contain h, so adding two edges between v1 and h and between h and v2 to it, yields
a cycle of length at least |V (C)|+ 2.

⌟

62

Figure 11: Rerouting through a chord.

Depending on the number of vertices in a component H of G − V (C), we consider difference
cases. We start with the simplest case.

Case 1: At least one component H consists of two vertices. In this case we can always enlarge C
in polynomial time.

Let V (H) = {h1, h2} for h1 ̸= h2. Then both h1 and h2 have at least δ(G−B)− 1 neighbors in
V (C) and are connected by an edge. In this case, C can be made longer in polynomial time. We
formulate this slightly more generally in the following claim.

Claim 18. If there are two distinct vertices h1, h2 ∈ V (G)\V (C), each having at least δ(G−B)−1
neighbors in V (C), and that are connected by a path in G − V (C), then the length of C can be
increased in polynomial time.

Proof of Claim 18. Let S be the set of neighbors of h1 and h2 in V (C). Let a be the number of
the common neighbors of h1 and h2 in S. Then |S| ≥ 2δ(G − B) − 2 − a and S splits C into at
least 2 max{a, δ(G − B) − 1} − a arcs. If we have an arc of length 1, we can always enlarge C by
inserting one or both of the hi. Moreover, if one of the endpoints of an arc is a common neighbor
of h1 and h2, then the length of this arc should be at least 3. Indeed, if an arc having a common
neighbor of h1 and h2 as its endpoint and is of length less than three, then we can insert a path
between h1 and h2 and two boundary edges instead of this arc in C; thus C becomes longer.

Therefore, if C cannot be enlarged, its length is at least 2(|S| − a) + 3a. By the conditions of
the lemma, we have that δ(G−B) ≥ 2k + 12. If a ≥ δ(G−B)− 1, then

2(|S| − a) + 3a ≥ 3a ≥ 3(δ(G−B)− 1) > 2δ(G−B) + k.

If a < δ(G−B)− 1, then

2(|S| − a) + 3a = 2|S|+ a ≥ 2(2δ(G−B)− 2− a) + a = 4δ(G−B)− a− 8 > 2δ(G−B) + k.

In both cases, we have that the length of cycle C is more than 2δ(G−B) + k. This contradicts
our assumption that |V (C)| < 2δ(G−B) + k. ⌟

The next two cases consider the situation when a component H of G− V (C) contains at least
3 vertices. Then H could be 2-connected or it contains a cut-vertex.

Case 2: H is 2-connected. We show that either we can enlarge H, or H has very specific properties
described in Claim 19 and Claim 20. These properties will be used in handling isolated components
and in constructing Dirac decomposition.

63

Claim 19. Either the maximum size of a matching between V (H) and V (C) in G is two, or C can
be enlarged in polynomial time.

Proof of Claim 19. Since G is 2-connected, the maximum matching size between V (H) and V (C)
is always at least 2.

Suppose first that at most one vertex in V (H−B) has neighbors in V (C). If such vertex exists,
let h ∈ V (H −B) be that vertex, otherwise let h be an arbitrary vertex in H −B. We know that
δ(H − (B ∪ {h})) ≥ δ(G−B)− 1, since H is a connected component in G− V (C). We now claim
that if there is a matching of size at least three between V (H) and V (C) in G, then C can be made
longer by replacing one of its arcs with a path in H. By Theorem 3, there is a path of length at
least δ(H− (B∪{h})) ≥ δ(G−B)−1 between an arbitrary pair of vertices in H. The endpoints of
the matching in V (C) split C into at least three arcs. If at least one of these arcs is of length less
than (δ(G−B)− 1) + 2, it can be replaced with a path in H connecting corresponding endpoints
of the matching. Hence, if C cannot be made longer, its length is at least 3δ(G − B) + 3. Since
|V (C)| < 2δ(G − B) + k < 3δ(G − B) + 3, we obtain that either C can be made longer or the
maximum matching size between V (H) and V (C) in G is two.

Now we assume that at least two vertices in V (H − B) have neighbors in V (C). Take the
vertices h1, h2 ∈ V (H −B) that have the most and the second most number of neighbors in V (C).
Denote ni = |NG(hi) ∩ V (C)| for each i ∈ {1, 2}. Thus n1 ≥ n2. By Theorem 3, there is a path of
length at least δ(H − (B ∪ {h1})) between h1 and h2 in H. Let t = max{δ(H − (B ∪ {h1})), 1}.
Note that the path between h1 and h2 is of length at least t.

Assume that δ(H−(B∪{h1})) < δ(G−B)−1−n2. Then at least one vertex in V (H−(B∪{h1}))
has at most δ(G−B)−2−n2 neighbors in V (H−(B∪{h1})). Hence, it has at most δ(G−B)−1−n2

neighbors in V (H − B). All other neighbors of this vertex in V (G − B) are from V (C), so this
vertex should have at least n2 + 1 neighbors in V (C). This contradicts the choice of h2 and n2.
Thus, t ≥ δ(G−B)− 1− n2, or n2 ≥ δ(G−B)− t− 1.

Denote by S the set of all neighbors of h1 and h2 in V (C), i.e. S = (NG(h1)∪NG(h2))∩ V (C).
Let a be the number of common neighbors of h1 and h2 in S, i.e. a = |NG(h1) ∩ NG(h2) ∩ S|.
Observe that vertices in S split C into |S| = n1 + n2 − a arcs. Note that each arc is of length
at least two, otherwise we enlarge C. Moreover, every arc whose endpoint is a common neighbor
of h1 and h2 should have length at least t + 2, because otherwise C can be made longer. Hence,
|V (C)| ≥ 2|S|+ at. Since 2δ(G−B) + k > |V (C)|, we have that

2δ(G − B) + k > 2(n1 + n2 − a) + at ≥ 4n2 − 2a + at ≥ 4(δ(G − B) − t − 1) + a(t − 2).

Therefore,

k > 2δ(G − B) − 4t − 4 + 12 − 12 + a(t − 2) > 2δ(G − B) − 4(t − 2) + a(t − 2) − 12,

and hence
(4− a)(t− 2) > 2δ(G−B)− k − 12.

In particular, (4−a)(t−2) > 0. If t = 1, then a > 2δ(G−B)−k−8. But |V (C)| ≥ 2|S|+at ≥
2a+at = a(t+2) ≥ 3a, so 3a < 2δ(G−B)+k. It follows that 3(2δ(G−B)−k−8) < 2δ(G−B)+k,
or 4δ(G−B) < 4k + 24, which contradicts the assumptions of the lemma.

Thus t ̸= 1. Since t − 2 ̸= 0, we obtain that t > 2, and, consequently, a < 4. Then 3(t − 2) ≥
(4− a)(t− 2) > 2δ(G−B)− k − 12, or 3t > 2δ(G−B)− k − 6. It yields that t ≥ 1

2δ(G−B).
Assume now that there is a matching in G between V (H) and V (C) of size three. Let c1, c2, c3

be the endpoints of this matching in V (C), and v1, v2, v3 be the corresponding endpoints in V (H).

64

Without loss of generality, we assume that v1 = h2, as if h2 /∈ {v1, v2, v3} we can always change the
matching to include the vertex h2. Denote by T the set of all neighbors of v1, v2 and v3 in V (C),
i.e., T = NG({v1, v2, v3})∩V (C). Note that |T | ≥ |NG(v1)∩V (C)| = n2 ≥ δ(G−B)− t−1. Unless
C can be made longer, the vertices of T split C into |T | arcs of length at least two. Additionally,
at least three arcs (the arcs that are incident to c1, c2, c3 ∈ T) should be of length at least t + 2,
as there is a path of length at least t between vi and vj in H for any i ̸= j. We obtain that
|V (C)| ≥ 2|T |+ 3t ≥ 2δ(G−B) + t− 2 > 2δ(G−B) + k unless C can be made longer. ⌟

Claim 20. Either between any pair of vertices in H there is a path in H of length at least δ(G−
B)− 2, or C can be made longer in polynomial time.

Proof of Claim 20. The proof is identical to the proof of Claim 3. ⌟

Case 3: |V (H)| ≥ 3 and H contains a cut-vertex.
Since H contains a cut-vertex, it contains at least two leaf-blocks. Denote the leaf-blocks of H

by L1, L2, . . . , Lp and their respective cut-vertices by c1, c2, . . . , cp, where p ≥ 2.
Since Li is 2-connected or |V (Li)| = 2, we can proceed similarly to Case 2 with Li and B ∪{ci}

instead of H and B, and make C longer or conclude that the maximum matching size between
V (Li) and V (C) in G is at most two.

We now assume that for each i ∈ [p] the maximum matching size between V (Li) and V (C) is
at most two. Then for any i ∈ [p], accordingly to Claim 20 applied to Li and B ∪ {ci} instead of
H and B, we obtain that there is a path of length at least δ(G − (B ∪ {ci}) − 2 ≥ δ(G − B) − 3
between any pair of vertices in Li, if |V (Li)| > 2.

Claim 21. |
⋃p

i=1NG(V (Li − {ci}))| = 1, or C can be made longer in polynomial time.

Proof of Claim 21. We first show that if there exists i ∈ [p] with |V (Li)| = 2, then C can be made
longer in polynomial time.

Assume that there exists Li with |V (Li)| = 2. Then V (Li) = {u, ci} for some vertex u ̸= ci. As
RB(H) = G, it is true that u /∈ B. Hence, u has at least δ(G−B)− 1 neighbors in V (C). If u has
two consecutive vertices of C as neighbors, then C can be made longer with inserting u.

Now take j ∈ [p] \ {i} and consider the leaf-block Lj . If |V (Lj)| = 2, then V (Lj) = {u′, cj},
where u′ has at least δ(G−B)− 1 neighbors in V (C). Note that u and u′ are connected by a path
in G− V (C). By Claim 18, C can be made longer in polynomial time in this case.

If |V (Lj)| > 2, then Lj is 2-connected, so there is a path of length at least δ(G−B)−3 between
any pair of vertices in Lj . Hence, each inner vertex of Lj is connected with u by a path of length at
least δ(G−B)− 2. Take a vertex u′ ∈ V (Lj − {cj}) that has a neighbor v′ ∈ V (C). By Claim 16,
there is a vertex v ∈ V (C) that is a neighbor of u and is on a distance at least one and at most 8k
from v′ on C. We obtain a (v, v′)-chord of C that is of length at least δ(G − B) but the distance
between v and v′ on C is at most 8k < δ(G−B). Hence, C can be made longer in polynomial time.

We now assume that |V (Li)| ≥ 3 for each i ∈ [p]. Then there is a path of length at least
δ(G − B) − 3 for any pair of vertices in any Li. Assume that

⋃p
i=1NG(V (Li − {ci})) ⊇ {v1, v2},

where v1, v2 ∈ V (C) and v1 ̸= v2. Then either there exist i ̸= j such that Li − {ci} contains a
neighbor of v1 and Lj − {cj} contain a neighbor of v2, or there only exists i such that Li − {ci}
contains both a neighbor of v1 and a neighbor of v2. In the latter case, we can pick j ̸= i and
v3 ∈ V (C) with v3 ̸= v1 or v3 ̸= v2 such that Lj − {cj} contains a neighbor of v3. Thus, without
loss of generality we assume that L1 − {c1} contains a neighbor u1 of v1 ∈ V (C) and L2 − {c2}
contains a neighbor u2 of v2 ∈ V (C) and v1 ̸= v2.

65

Observe that there exists a (u1, u2)-path in H of length at least 2δ(G − B) − 6. Hence, this
path can be prolonged to a (v1, v2)-chord of C of length at least 2δ(G−B)− 4. Note that at least
one of (v1, v2)-arcs of C is of length at most δ(G− B)− k−1

2 < 2δ(G− B)− 4, so C can be made
longer in polynomial time. ⌟

The following claim shows that H yields at least one long chord of C.

Claim 22. Either for any i ∈ [p] and any u ∈ V (Li − ci), v ∈ V (H) \ u, there is a (u, v)-path of
length at least δ(G−B)− 2 in H, or C can be made longer in polynomial time.

Proof of Claim 22. Take i ∈ [p]. From Claim 21 follows that δ(Li − (B ∪ {ci})) ≥ δ(G− B)− 2,
as each vertex in V (Li − ci) has at most one neighbour outside Li. By Corollary 3, there is a path
of length at least δ(G−B)− 2 between any pair of vertices inside Li.

Take u ∈ V (Li − ci) and v ∈ V (H) \ u. If v ∈ V (Li), then we are done. If v is outside Li,
then a path between u and v should go through ci. Since u ̸= ci, there is a (u, ci)-path of length
at least δ(G−B)− 2 inside Li. Combine this path with any (ci, v)-path outside Li in H to obtain
the required (u, v)-path. ⌟

Case 4: At least one component H of G− V (C) consists of one vertex. In this case we show that
either we can enlarge C in polynomial time, or construct a vertex cover of G − B of size at most
δ(G−B) + 2k.

Let V (H) = {h} for some vertex h ∈ V (G−B). All neighbors of h are from V (C), so h has at
least δ(G−B) neighbors in V (C).

We first claim that if G−V (C) contains both an isolated vertex and some non-isolated connected
component, then we can make C longer.

Claim 23. Let H1 and H2 be two connected components in G−V (C) with V (Hi) ̸⊆ B. If |V (H1)| =
1 and |V (H2)| ≠ 1, then C can be made longer in polynomial time.

Proof of Claim 23. We can assume that |V (H2)| ≥ 3, so V (H2) is either 2-connected or contains
a cut-vertex. In both of the cases, by Claim 20 and Claim 22, we can find a chord of C of length
at least δ(G−B)− 2 > 16k that passes through H2. By Claim 17 , the single vertex of H1 and the
chord passing through H2 help making C longer in polynomial time. ⌟

By Claim 23, we can assume that if there is one connected component of G−V (C) which is an
isolated vertex, then all other components are also isolated vertices.

Our next step is to to show that if an isolated vertex exists, then we can find a large independent
set in C that has no neighbors outside C. For an isolated vertex h in G − V (C), we define the
set of its 101-neighbors. A vertex v ∈ V (C) is a 101-neighbor of h, if it is not a neighbor of h,
i.e., v /∈ NG(h), but both neighbors of v in C are also the neighbors of h. In other words, the set
of all 101-neighbors of h is the set of all isolated vertices in C − NG(h). We now claim that if C
cannot be enlarged, then 101-neighbors of a vertex h form an independent set in C and do not have
neighbors in V (G) \ V (C).

Claim 24. Let h /∈ B be an isolated vertex in G− V (C). If at least one 101-neighbor of h on C is
not in B and has at least one neighbor in V (G−V (C)−B) or two 101-neighbors of h are connected
by an edge, then C can be made longer in polynomial time.

Proof of Claim 24. Suppose first that two 101-neighbors of h, say v1, v2 ∈ V (C), are connected by
an edge in G. Let the neighbors of vi on C be ui and wi for i ∈ {1, 2}. Without loss of generality,
we assume that the six vertices appear in the order u1, v1, w1, u2, v2, w2 when following C, and

66

Figure 12: Rerouting through adjacent 101-neighbors.

possibly w1 = u2 or w2 = u1. Then construct a new cycle as following: u1 → v1 → v2 → u2 ⇝
w1 → h→ w2 ⇝ u1, where → corresponds to following a single edge in G, while ⇝ corresponds to
following an arc of C. See Figure 12. Note that the vertex set of the new cycle is V (C) ∪ {h}, so
C is enlarged in this case.

Now suppose that a 101-neighbor of h, say v ∈ V (C), has a neighbor outside V (C), say h′ ∈
V (G−V (C)−B). By Claim 23, we can assume that all vertices in G−V (C) are isolated. Assume
that h′ is the only neighbor of v in V (G−V (C)). Then replace v with h in C, so v becomes a vertex
outside C. Then v and h′ form a connected component of size two in G − V (C). Since v /∈ B, v
has at least δ(G − B) − 1 neighbors in V (C). By Claim 18, C can be made longer in polynomial
time.

If h′ is not the only neighbor of v, then after the replacement v connects two vertices with at
least δ(G−B)− 1 neighbors in V (C). We can again apply Claim 18 and make C longer. ⌟

Constructing vertex cover. The construction of vertex cover of G−B of size at most δ(G−B)+
2k is possible when there is at least one isolated vertex in G− V (C). Take an isolated vertex h in
G−V (C)−B. Denote by a the number of its 101-neighbors. The neighbors of h on C split C into
arcs. Since each 101-neighbor corresponds to an arc of length two, and all other arcs are of length at
least three, we obtain that 2a+3(δ(G−B)−a) ≥ |V (C)|, so a ≥ 3δ(G−B)−|V (C)| > δ(G−B)−k.
Now denote by S the set of all 101-neighbors of an isolated vertex in G − V (C), so |S| = a. By
Claim 24, (V (G)\V (C))∪ (S \B) is an independent set in G, so V (C)\ (S∪B) is a vertex cover of
G−B. The size of this vertex cover is at most (2δ(G−B)+k−1)−(δ(G−B)−k+1) < δ(G−B)+2k.
Finally, the the desired vertex cover of G−B can be trivially found in polynomial time by taking
an isolated component h and constructing the set of its 101-neighbors.

Constructing Dirac decomposition. When no isolated vertex is presented in G − V (C) − B,
then G − V (C) consists of non-empty connected components, apart from components that are
completely contained in B. We show how to construct a Dirac decomposition in this case. Before
proceeding with claims, it is convenient to define the following notion agreeing with the definition
of Dirac decompositions.

Definition 7 (Dirac layouts). We say that a vertex set X ⊆ V (C) is in Dirac layout on C, if the
vertices of X split C into arcs such that two of these arcs are of length at least δ(G−B).

In what follows, we show that neighbors of V (G − V (C)) on C are in Dirac layout, unless C
can be made longer. We start showing this first for every connected component in G− V (C).

Claim 25. Let H be a connected component in G − V (C) with |V (H)| ≥ 3 and V (H) ̸⊆ B. If
NG(V (H)) is not in Dirac layout on C, then C can be made longer in polynomial time.

67

Proof of Claim 25. Denote S = NG(V (H)). Note that S ⊆ V (C). We know that S splits C into
|S| arcs. Denote S = {v1, v2, . . . , vt}, where v1, v2, . . . , vt are the vertices of S on C in the order
when following C in some direction. We also assume that vt+1 = v1.

Assume first that H is 2-connected. Then assign to each vertex vi ∈ S a set of its neighbors in
H. That is, make an assignment σ : S → 2V (H) with σ(vi) = NG(vi)∩ V (H). As G is 2-connected,
|
⋃t

i=1 σ(vi)| ≥ 2. If for at least one i ∈ [t] holds |σ(vi)| = 2, then there exist at least two j ∈ [t]
with max{|σ(vj)|, |σ(vj+1)|} ≥ 2. For each such j, we can pick hj ∈ σ(vj) and hj+1 ∈ σ(vj+1) with
hj ̸= hj+1. Since there is a path of length at least δ(G−B)− 2 in H, the length of the arc between
sj and sj+1 should be at least δ(G−B). Otherwise we can make C longer.

Now consider that |σ(vi)| = 1 for each i ∈ [t]. But not all values of σ(vi) are equal, since their
union is of size at least two. Then there exist at least two j ∈ [t] with σ(vj) ̸= σ(vj+1). Hence, we
can again assign distinct hj and hj+1 and obtain that the (vj , vj+1)-arc should be of length at least
δ(G−B).

It is left to consider the case when H is not 2-connected. We again make an assignment σ,
but now this assignment is slightly different and is denoted σ : S → 2{0,1}. If a vertex vi has a
neighbor in H that is an inner vertex of a leaf-block of H, then 1 ∈ σ(vi). If vi has a neighbor in
H that is not an inner vertex of a leaf-block, put 0 ∈ σ(vi). Thus, σ(vi) denotes the set of types
of neighbors that vi has in V (H). Note that

⋃t
i=1 σ(vi) = {0, 1} by Claim 21 and 2-connectivity

of G. Analogously to the 2-connected case, there are two j ∈ [t] with 0 ∈ σ(vj) and 1 ∈ σ(vj+1)
or vice versa. Since there is a path of length at least δ(G − B) − 2 between any inner leaf-block
vertex and any other vertex, we obtain that the arcs between vj and vj+1 should be of length at
least δ(G−B). ⌟

Claim 26. Assume that G− V (C) contains no isolated vertex. Let X be the union of vertex sets
of all connected components H in G− V (C) with V (H) ̸⊆ B. If NG(X) is not in Dirac layout on
C, then C can be made longer in polynomial time.

Proof of Claim 26. Take a connected component H in G−V (C) with V (H) ̸⊆ B. By Claim 25, we
assume that NG(V (H)) is in Dirac layout on C. Hence, the vertices in NG(V (H)) can be covered
by two arcs of C of total length at most |V (C)| − 2δ(G− B) and the distance between these arcs
on C is at least δ(G−B). Let u1, u2 and v2, v1 be the endpoints of these arcs. Among all possible
ways to choose the arcs we choose the way when the total length of the (u1, u2)-arc and (v2, v1)-arc
is the minimum possible. Hence, u1, u2, v1, v2 ∈ NG(V (H)) and the (u1, u2)-arc and the (v2, v1)-arc
together contain all neighbors of NG(V (H)) on C. Note that these arcs can be of zero length. For
example, if |NG(V (H))| = 2, then u1 = u2 and v1 = v2, so NG(V (H)) = {u1, v1}.

We also assume that the order of the vertices on C is u1, u2, v2, v1 when following C in some
direction. Thus, the chords between u1 and v1 and between u2 and v2 do not intersect graphically
but can only coincide in one or two endpoints. From the proof of Claim 25 follows that H yields a
(u1, v1)-chord or a (u2, v2)-chord of C of length at least δ(G−B).

Let S be the union of the sets {u1, u2, v1, v2} among all connected components of G− V (C). It
is easy to see that S is in Dirac layout on C if and only if S is on Dirac layout on C. It is left to
show that S is in Dirac layout on C or C can be made longer in polynomial time.

Consider the vertices in S on C. They are connected by chords of length at least δ(G − B)
yielded by their connected components. If there is a pair of these chords that intersect graphically,
then the chords in this pair correspond to distinct connected components of G − V (C). Hence, if
such a pair exists, we can enlarge C as we did in the proof of Lemma 19. We can now assume
that no two chords of S intersect graphically. But we also know that no chord splits C into two
arcs such that one of them is shorter than δ(G − B). Hence, there are two arcs of length at least

68

P1 P2

P ′

P ′′

u

v

a′ b′

a′′
b′′

s′

s′′

t′

t′′

Figure 13: A schematic picture of an existence of a chord between P ′ and P ′′ passing through B.
A blue chord represents a chord of C passing through a component of G− V (C).

δ(G− B) that do not contain any vertex in S as inner vertex. Then S is in Dirac layout on C by
definition. ⌟

The claim shows that NG(X) can be covered by two arcs of C of total length at most k− 1 at a
distance at least δ(G−B) between them. Let P1 and P2 be these two arcs chosen in the unique way
that minimizes their total length. It is left for us to show that P1 and P2 induce a Dirac component
for C and B in G.

The first property from the defition of Dirac component is satisfied by the way P1 and P2 are
constructed. It is easy to verify the second property for each connected component in G − V (C):
2-connected components form (D1)-type components and components containing cut vertices form
(D2) and (D3)-type components of the Dirac decomposition. If the matching size conditions are
not satisfied for one of these components, then C can be trivially made longer in polynomial time
using a long chord yielded by the component.

It is important to verify that the second property holds for all connected components in G −
V (P1 ∪ P2). Note that a connected component H in G − V (C) with V (H) ̸⊆ B is a connected
component in G−V (P1 ∪P2) as well. Connected components that appear in G−V (C) but do not
appear in G− V (P1 ∪ P2) are connected components that contain vertices in V (C) \ V (P1 ∪ P2).

Note that there is either one or two such connected components, because the vertex set V (C) \
V (P1∪P2) is a union of vertex sets of two arcs of C. If there is just one such connected component
H, then V (C) \ V (P1 ∪ P2) ⊆ V (H). We claim that if such H exists in G − V (P1 ∪ P2), then C
can be made longer in polynomial time (except in some very specific cases).

Assume that such H exists. Then two arcs of C of length at least δ(G − B) (denoted by P ′

and P ′′ in the definition of Dirac decomposition and here) are connected by a chord that can pass
internally only through vertices in B. Note that the length δ(G − B) does not match the lower
bound in the definition of Dirac decompositions. This is intentional. In one of the cases below, we
have to expand the paths P1 and P2 and reduce the length of P ′ and P ′′ by one or two.

Denote by s′ and t′ and by s′′ and t′′ the endpoints of the arcs P ′ and P ′′ respectively. Note
that V (P ′ − {s′, t′}) ∪ V (P ′′ − {s′′, t′′}) ⊆ V (H), but s′, t′, s′′, t′′ /∈ V (H). Since P1 and P2 are
an (s′, s′′)-arc and an (t′, t′′)-arc of C respectively. Hence, the chord connecting P ′ and P ′′ has
endpoints in inner vertices of P ′ and P ′′. For clarity of presentation, we formulate the following
intermediate claim.

69

Claim 27. If there exists a connected component H in G− V (P1 ∪ P2) with V (C) \ V (P1 ∪ P2) ⊆
V (H), then either the only chords connecting P ′ − {s′, t′} and P ′′ − {s′′, t′′} are between their
respective endpoints or C can be made longer in polynomial time.

Proof of Claim 27. Let u ∈ V (P ′−{s′, t′}) and v ∈ V (P ′′−{s′′, t′′}) be the endpoints of this chord.
Denote by a′ and b′ the length of the paths that u splits P ′ into. Analogously, by a′′ and b′′ denote the
length of the paths that v splits P ′′ into, as shown in Figure 13. If max{a′+b′′, a′′+b′}+δ(G−B) ≥
|V (C)|, then we can find a cycle longer than C in polynomial time using a chord passing though
some connected component in G− V (C) and the (u, v)-chord of C.

Note that if u is the neighbor of s′ in P ′ and v is the neighbor of t′′ in P2, then b′ ≥ δ(G−B)−1
and a′′ ≥ δ(G− B)− 1 so a′′ + b′ + δ(G− B) > |V (C)| and C can be made longer. The situation
when u is the neighbor of t′ and v is the neighbor of s′′ is symmetrical.

We now assume that a′ + b′′ < δ(G − B) + k and a′′ + b′ < δ(G − B) + k (and, consequently,
a′+b′′ ≥ δ(G−B) and a′′+b′ ≥ δ(G−B)) for each choice of u and v. That is, each such (u, v)-chord
should split C in a way that the difference between a′ + b′′ and a′′ + b′ is at most k.

Consider a fixed u ∈ V (P ′). Without loss of generality, we assume that u is not the neighbor
of s′ in P ′. Note that distinct choices of v ∈ V (P ′′) provides distinct values of a′′ and b′′ with
fixed sum. Hence, if there are at least 2k + 1 choices of a pair (u, v) for a fixed u, there are 2k + 1
different values of a′ + b′′. Since the sum of a′, b′, a′′, b′′ is also fixed, in at least one of these choices
the difference between a′ + b′′ and a′′ + b′ is at least k + 1. It follows that if u has at least 2k + 1
neighbors in V (P ′′), then C can be made longer in polynomial time. Note that the same arguments
apply to a fixed choice of v ∈ V (P ′′).

We have that for each u ∈ V (P ′), |NG(u) ∩ V (P ′′)| ≤ 2k. As soon as vertices in P ′ − {s′, t′}
can have neighbors outside only in V (P ′′), V (P1 ∪P2) and B, we have that, δ(G[V (P ′−{s′, t′})]−
B) ≥ δ(G − B) − |V (P1 ∪ P2)| − 2k. Since the total length of P1 and P2 is at most k − 1 and
|V (P1 ∪ P2)| ≤ k + 2, we have that δ(G[V (P ′ − {s′, t′})] − B) ≥ δ(G − B) − 3k − 1. Denote
by H ′ the graph G[V (P ′ − {s′, t′})] − B. As the length of P ′ is less than δ(G − B) + k, we
have that |V (H ′)| ≤ δ(G − B) + k − 2. Hence, δ(H ′) > |V (H ′)| − 4k. On the other hand,
δ(H ′) ≥ δ(G−B)− 4k ≥ 20k.

We can now apply Lemma 15 to H ′ with p = 4k, r = 1 and {s1, t1} = {u′, u}, where u′ is the
neighbor of s′ in P ′. Note that u′ ̸= u by our assumption. By Lemma 15, there is a Hamiltonian
(u′, u)-path in H ′. This path is of length at least δ(G − B) − 2 − |B| that is found in polynomial
time. Hence, we obtain a (s′, u)-path of length at least δ(G−B)−1−|B| that contains only vertices
of P ′ − t′.

The arguments of constructing a (s′, u)-path for P ′ are applicable for constructing a (t′′, v)-path
for P ′′, if v is not the neighbor of t′′ in P ′′. Then we are able to construct a (t′′, v)-path of length at
least δ(G−B)−1−|B|. Combine the (s′, u)-path with P1 and the (t′′, v)-path and two chords: the
(u, v)-chord and a (s′′, t′′)-chord of length at least δ(G−B) (it is depicted in Figure 13) to obtain
a cycle of length at least 3δ(G− B)− 2|B| − 1 ≥ 2δ(G− B) + k. The last chord always exists by
the construction of P1 and P2.

Note that we only required in the above construction that if v is not the neighbor of t′′ in P ′′. If
v is the neighbor of t′′, then we can consider constructing a (t′′, u)-path instead of (s′, u)-path, but
only if u is not the neighbor of t′ in P ′. The long path between s′′ and v required for construction
is then given by P ′′, and is of length a′′ ≥ δ(G−B)− 1. ⌟

We are left with the cases when u and v are simultaneously the neighbors of t′ and t′′ in P ′ and
P ′′ respectively, or the neighbors of s′ and s′′ in P ′ and P ′′ respectively. That is, the cases when
b′ = b′′ = 1 or a′ = a′′ = 1. In these cases, we cannot construct a pair of long paths and combine

70

them with two chords, because we cannot apply Lemma 15 to both u (e.g. to {u′, u}, as u′ = u)
and v. In other cases, we can make C longer in polynomial time.

We now assume that the only two (u, v)-chords between P ′ and P ′′ can be only a chord between
the neighbor of s′ in P ′ and the neighbor of s′′ in P ′′ and a chord between the neighbor of t′ in
P ′ and the neighbor of t′′ in P ′′. In this case, we need to expand P1 or P2 to contain two more
vertices. If there is a chord between the neighbors of s′ and s′′, expand P1 with two edges so it
starts containing these neighbors. Analogously, expand P2 if there is a chord between the neighbors
of t′ and t′′.

Observe that such expansion of P1 or P2 with two edges does not influence the properties for
connected components in G − V (C). We now have that V (P ′ − (V (P1) ∪ V (P2))) and V (P ′′ −
(V (P1)∪ V (P2))) belong to distinct connected components in G− (V (P1)∪ V (P2)). The length of
P ′ and P ′′ is now at least δ(G − B) − 2 and the total length of P1 and P2 is at most k + 4. The
first and the last properties of a Dirac decomposition are satisfied by P1 and P2.

Denote the two connected components of G − (V (P1) ∪ V (P2)) that contain inner vertices of
P ′ and P ′′ by H ′ and H ′′ respectively. We know that|V (H ′)|, |V (H ′′)| ≤ δ(G − B) + |B| while
δ(H ′ − B) ≥ δ(G − B) − |V (P1) ∪ V (P2)| ≥ δ(G − B) − k − 6 ≥ 1

2δ(G − B) + |B|. Consider
the B-refinements of H ′ and H ′′. If one of them is not 2-connected, then it should contain two
leaf-blocks each consisting of at least 1

2δ(G − B) + |B| + 1 vertices. Then, the total number of
vertices in this component would be 2(12δ(G − B) + |B| + 1) − 1 > δ(G − B) + |B|, which is not
possible. Hence, the B-refinements of H ′ and H ′′ are 2-connected. It is left to prove that they
satisfy the properties of (D1)-type components of Dirac decompositions.

That is, we have to prove that the maximum matching size between V (H ′) or V (H ′′) and
V (P1) or V (P2) is exactly one after the B-refinements. Consider that the matching size between
V (H ′) and V (P1) equals two. If the path P1 was not expanded, then there is a long chord of
C passing though a component in G − V (C) and connecting s′ with a vertex in P2. Hence, we
can take a cycle of length at least 2δ(G − B) − 2 combined of this chord, P ′′, P1 and a part of
P2. Then Corollary 3 and the maximum matching between V (H ′) and V (P1) yields a chord of
this cycle with endpoints in V (P1) of length at least δ(H ′ − B) + 2 ≥ δ(G − B) − k − 4. Since
the length of P1 is at most k, we can enlarge this cycle and obtain a cycle of length at least
(2δ(G−B)− 2) + (δ(G−B)− k − 4)− k ≥ 3δ(G−B)− 2k − 6 > 2δ(G−B) + k.

If P1 was expanded, then there is no long chord of C connecting the common endpoint of P1

and P ′ with a vertex in P2. However, then there exists a short chord of C connecting the endpoints
of P1 and passing only through B without visiting H ′ or H ′′ or any component in G−V (C). Also,
there is still a chord connecting s′ with some vertex in V (P2), though s′ now is not an endpoint of
P1 but the neighbor of the common endpoint of P1 and P ′ in P1. If the endpoints of the matching
in V (P1) do not include either s′ or the endpoint of P1, we can proceed in the same way as when
P1 was not expanded. As V (H ′), the matching and the edge between s′ and the endpoint of P1

produce the required long chord of the new cycle.
The case that requires explanation is when the endpoints of the matching are s′ and the endpoint

of P1. Then V (H ′) only yields an (s′, s′)-chord, which is not appropriate. In this case, we have
to use the chord between the endpoints of P1 instead of the edge between s′ and the endpoint of
P1. It is easy to see that V (H ′) together with the matching and this chord provide a long chord
between s′ and the other endpoint of P1 (the one closer to t′). Note that this endpoint is different
from s′, as the length of P1 is at least two.

We have shown that if the matching size between V (H ′) and V (P1) is at least two, then we can
find a longer cycle in polynomial time. The other cases are symmetrical. Hence, H ′ and H ′′ satisfy
the properties of (D1)-type components. This concludes the proof of the lemma.

71

11 Conclusion

In this paper, we developed an algorithmic extension of the classical theorem of Dirac. Our main
result, Theorem 3, is that Long Dirac Cycle is solvable in 2O(k+|B|) · nO(1) time on 2-connected
graphs. An important step in the proof of Theorem 3 is Theorem 5: Long Erdős-Gallai (s, t)-
Path is solvable in 2O(k+|B|) · nO(1) time on 2-connected graphs. In this section we provide lower
bounds complementing Theorems 3 and 5, and then conclude with open questions for further
research.

11.1 Tightness of results

We have already observed that the dependency on k in the running times of Theorems 3 and 5
is tight up to ETH. Here we show that the dependency on |B| is similarly tight. Additionally, we
show that for any ε > 0, it is NP-hard to find a cycle of length at least (1 + ε)2δ(G), meaning that
our starting bound of 2δ(G) is tight. We start with the first hardness result.

Theorem 17. Unless ETH fails, there is no algorithm solving Long Dirac Cycle or Long
Dirac Path in time 2o(|B|) · |V (G)|O(1), even when k = 1.

H

Kn−1

Kn−1

s t

Figure 14: An illustration to the hardness reduction in Theorem 17, from Hamiltonian Path to
Long Dirac Cycle. The graph H is the starting Hamiltonian Path instance. The reduction
to Long Dirac Path looks similarly, only without the vertex t.

Proof. First, we show a reduction from Hamiltonian Path to Long Dirac Cycle. Consider
an instance H of Hamiltonian Path, let n = |V (H)|. Take a disjoint union of H and two
disjoint copies of Kn−1, the clique on (n− 1) vertices. Add two additional vertices s and t that are
adjacent to all previously listed vertices (but not to each other). This finishes the description of
the graph G that our reduction constructs from H, see Figure 14 for the illustration. Finally, set
B to V (H) ⊂ V (G), and k to one. Observe that 2δ(G−B) and |V (G−B)| are both equal to 2n.
Our aim is now to show that H has a Hamiltonian path if and only if G has a cycle of length at
least 2n + 1 = min{2δ(G−B), |V (G)| − |B|}+ k.

In the forward direction, if there is a Hamiltonian path P in H, consider a Hamiltonian path
P ′ in one of the Kn−1 components. Connect P and P ′ in a cycle by going through the vertices s
and t. This results in a cycle of length |V (G)|+ |V (Kn−1)|+ 2 = 2n + 1.

72

In the other direction, let C be a cycle of length at least 2n + 1 in G. Since |V (G− B)| = 2n,
C necessarily intersects B, and since |B| = n, C also intersects V (G−B). Since in G− {s, t} the
set B is disconnected from the rest of the graph, the cycle C necessarily enters B from s and exits
via t. The two Kn−1 copies are also disconnected in G−{s, t}, thus C intersects exactly one of the
cliques. Thus, C has at most n + 1 vertices outside of B. Since |C| = 2n + 1 and |B| = n, C must
traverse all vertices of B. Since C induces a path on B, this path is also a Hamiltonian path in H.
This finishes the proof of correctness of the reduction.

Finally, following the reduction above, a 2o(|B|) · |V (G)|O(1)-time algorithm for Long Dirac
Cycle would immeidately imply a 2o(n)-time algorithm for Hamiltonian Path since |B| = n and
|V (G)| = O(n), and the existence of the latter would contradict ETH.

For Long Dirac Path, the reduction follows a similar idea. From an instance H of Hamilto-
nian Path, construct a graph G as follows. Take a disjoint union of H and two disjoint copies of
Kn−1, and add an additional apex vertex s. Set B to be V (H) ⊂ V (G), and set k to one. Clearly,
2δ(G−B) = |V (G)| − |B| − 1 = 2n− 2. If there is a Hamiltonian path in H, it extends to a path
of length 2n − 1 in G by continuing through s into one of the cliques, as it is always possible to
traverse through all vertices of the clique. On the other hand, if there is a path P of length at least
2n− 1 in G, it necessarily goes from B to V (G) \B, since |B| = n and |V (G) \B| = 2n− 1. Such
a path can only go through s to one of the cliques while completely avoiding the other, since s is
an articulation point. Thus, outside of B the path P visits at most n vertices, and since a path
of length at least 2n − 1 has to visit at least 2n distinct vertices, P necessarily traverses through
all vertices of V (H), yielding a Hamiltonian path in H. This finishes the proof for Long Dirac
Path.

Next, we show that the bound 2δ(G) cannot be improved unless P = NP by proving the following
theorem.

Theorem 18. For every positive ε < 1, it is NP-complete to decide whether

(a) a 2-connected graph G with two given vertices s and t has an (s, t)-path of length at least
(1 + ε)δ(G);

(b) a 2-connected graph G has a cycle of length at least (2 + ε)δ(G).

Proof. Both claims are shown by reduction from the classical Hamiltonian Path problem that is
well-known to be NP-complete [GJ79]. Both reductions exploit the same idea. We first show the
claim for an (s, t)-path and then explain how to modify the reduction for the second claim.

Let 0 < ε < 1 and let G be an n-vertex graph with n ≥ 2. We select a positive integer p such
that ⌈ε(p + 1)⌉ = n. Clearly, such an integer exists, because ε < 1 and n ≥ 2. Then we construct
the following graph H (see Figure 15).

• Construct a copy of G.

• Construct a vertex t and make it adjacent to every vertex of G.

• Construct a vertex s.

• For every vertex v ∈ V (G)∪ {t}, construct a clique Qv with p vertices and make the vertices
of Qv adjacent to v and s.

Notice that H is 2-connected and δ(H) = p+ 1. We claim that G is has a Hamiltonian path if and
only if H has an (s, t)-path of length at least (1 + ε)δ(H).

73

H ′

t

s

G v

Qv Qt

Figure 15: Construction of H and H ′.

In one direction, let P be a Hamiltonian path in G and denote by x and y its endpoints. Because
Qx is a clique, H has an (s, x)-path R with V (R) = Qx∪{s, x}. That is, R is a Hamiltonian path in
H[Qx∪{s, x}]. Consider path P ′ obtained by concatenating R, P , and yt. Then P ′ is an (s, t)-path
in H. Observe that the length of P ′ is

(p + 1) + (n − 1) + 1 = p + n + 1 = p + 1 + ⌈ε(p + 1)⌉ ≥ (1 + ε)(p + 1) = (1 + ε)δ(H)

as required.
For the opposite direction, assume that P ′ is an (s, t)-path in H of length at least (1 + ε)δ(H).

Then the length of P ′ is at least

⌈(1 + ε)δ(H)⌉ = δ(H) + ⌈εδ(G)⌉ = (p + 1) + ⌈ε(p + 1)⌉ = p + 1 + n.

By the construction of H, P ′ is the concatenation of paths R and S such that R is an (s, v)-path for
some v ∈ V (G)∪ {t} where V (R) ⊆ V (Qv)∪ {s, v} and S is a (v, t)-path with V (S) ⊆ V (G)∪ {t}.
The length of R is at most p + 1 = δ(H). Therefore, the length of S is at least n. Consider the
path P obtained from S by deleting t. We have that V (P) ⊆ V (G) and the length of P is at least
n− 1. We obtain that P is a Hamiltonian path in G. This concludes the proof of the first claim.

The proof of (b) is similar. Let 0 < ε < 1 and let G be an n-vertex connected graph with
n ≥ 3. Now we select a positive integer p such that ⌈ε(p + 1)⌉ = n − 1. We construct graph H ′

that is, in fact, the graph obtained from H constructed above by deleting t and the vertices of Qt

(see Figure 15). Formally, H ′ is constructed as follows.

• Construct a copy of G.

• Construct a vertex s.

• For every vertex v ∈ V (G), construct a clique Qv with p vertices and make the vertices of Qv

adjacent to v and s.

Because G is a connected graph with at least three vertices, δ(H ′) = p+1. Because G is connected,
H ′ is 2-connected. We claim that G has a Hamiltonian path if and only if H ′ has a cycle of length
at least (2 + ε)δ(H).

74

Suppose that P is a Hamiltonian path in G and let x and y be its endpoints. Note that since
G has at least two vertices, x ̸= y. Because Qx and Qy are cliques, H has an (s, x)-path Rx with
V (Rx) = Qx∪{s, x} and a (y, s)-path Ry with V (Ry) = Qy∪{s, y}. Observe that the concatenation
of Rx, P , and Ry is a cycle. Denote this cycle by C. The length of C is

(p+1)+(n−1)+(p+1) = 2(p+1)+n−1 = 2(p+1)+⌈ε(p+1)⌉ ≥ (2+ε)(p+1) = (1+ε)δ(H).

Finally, let C be a cycle of G of length at least (2 + ε)δ(H). Then the length of C is at least

⌈(2 + ε)δ(H)⌉ = 2δ(H) + ⌈εδ(G)⌉ = 2(p + 1) + ⌈ε(p + 1)⌉ = 2(p + 1) + n− 1.

Suppose that s /∈ V (C). Then, by the construction of H ′, either C is a cycle in H ′[Qv ∪ {v}] for
some v ∈ V (G) or C is a cycle of G. In the first case the length of C is at most |Qv|+ 1 = p + 1,
and in the second case the length of C is at most n. In both cases, we have that the length of
C is strictly less that 2(p + 1) + n − 1. This implies that s ∈ V (C). If |V (C) ∩ V (G)| ≤ 1, then
V (C) ⊆ Qv ∪ {s, v} for some v ∈ V (G). However, |V (C)| ≤ p + 2 < 2(p + 1) + n − 1 in this case.
Hence, |V (C) ∩ V (G)| ≥ 2. Then the construction of H ′ implies that |V (C) ∩ V (G)| = 2. Let
{x, y} = V (C) ∩ V (G). It is easy to verify that C can be seen as the concatenation of three paths
Rx, P , and Ry, where Rx is an (s, x)-path with V (Rx) ⊆ Qx ∪{s, x}, P is an (x, y)-path in G, and
Ry is a (y, s)-path with V (Ry) ⊆ Qy ∪ {s, y}. The length of Rx and the length of Ry is at most
p+ 1. This means, that the length of P is at least n− 1. Therefore, P is a Hamiltonian path in G.
This concludes the proof.

For simplicity, we proved Theorem 18 for the case when ε < 1 but let us remark that the claim
also holds for ε ≥ 1. Moreover, it can be assumed that ε not a constant but an appropriate function
of δ(G) like ε(δ) = δc for some constant c > −1.

11.2 Open questions

Dirac’s theorem is the first fundamental result in Extremal Hamiltonian Graph Theory. The
area contains many deep and interesting theorems but it remains largely unexplored from the
algorithmic perspective. Here we present several open questions hoping that these questions would
trigger further research in this fascinating area.

Our first open question concerns the problem of finding a cycle containing a specified set of
vertices. The study of this problem can be traced back to another fundamental theorem of Dirac
from 1960s about the existence of a cycle in h-connected graph passing through a given set of h
vertices [Dir60]. According to Kawarabayashi [Kaw08] “...cycles through a vertex set or an edge set
are one of central topics in all of graph theory.” Such type of problems have been a popular and
important topic in algorithms as well. See, e.g., Björklund, Husfeldt and Taslaman [BHT12] and
Wahlström [Wah13], and Kawarabayashi [Kaw08].

In Extremal Hamiltonian Graph Theory, the following theorem of Egawa, Glas, and Locke [EGL91]
is well-known.

Theorem 19 ([EGL91]). Let G be an h-connected graph, h ≥ 2, with minimum degree d, and at
least 2d− 1 vertices. Let X be a set of h vertices of G. Then G has a cycle C of length at least 2d
such that every vertex of X is on C.

This brings us to the following algorithmic problem.

Open Question 1 (Cycle above Egawa, Glas, and Locke condition). Given an h-connected
graph G, a set of vertices X ⊆ V (G) of size h, and a nonnegative integer k, how difficult is to
decide whether G has a cycle of length at least 2δ(G) + k containing every vertex of X?

75

This question is open even for k = 1.

The further questions are form the area of directed graphs; we refer to the book of Bang-Jensen
and Gutin [BG09] and the survey of Bermond and Thomassen [BT81] for extremal theorems for
directed graphs. In particular, the classical result of Ghouila-Houri [GH60] from 1960, generalizes
Theorem 1. Recall that a digraph D is strong if for every two vertices u and v, D has directed
(u, v) and (v, u)-path, and the degree degD(v) of a vertex v is the sum of its in-degree deg−D(v) and
out-degree deg+D(v).

Theorem 20 ([GH60]). If for every vertex v of a strong digraph D with n vertices degD(v) ≥ n,
then D has a Hamiltonian cycle.

The following question is the variant of the question discussed by Jansen, Kozma and Nederlof
in [JKN19] for undirected graphs.

Open Question 2 (Cycle above Ghouila-Houri condition). Given an n-vertex strong digraph
D and a nonnegative integer k such that at least n−k vertices have degree at least n, how difficult
is to decide whether D is Hamiltonian?

Again, the simplest variant — whether there is a polynomial time algorithm for for k = 1 — is
open. We also do not know the complexity of the problem when every vertex has degree at least
n− k.

References

[AGK+10] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving
MAX-r-SAT above a tight lower bound. In Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 511–517. SIAM, 2010.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856,
1995.

[BB93] Béla Bollobás and Graham Brightwell. Cycles through specified vertices. Combinator-
ica, 13(2):147–155, 1993.

[BC76] J. A. Bondy and V. Chvátal. A method in graph theory. Discrete Math., 15(2):111–135,
1976.

[BCDF19] Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin. Finding detours
is fixed-parameter tractable. SIAM J. Discrete Math., 33(4):2326–2345, 2019.

[BG09] Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs - Theory, Algorithms and Appli-
cations, Second Edition. Springer Monographs in Mathematics. Springer, 2009.

[BHKK10] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves
for parameterized paths and packings. CoRR, abs/1007.1161, 2010.

[BHT12] Andreas Björklund, Thore Husfeldt, and Nina Taslaman. Shortest cycle through spec-
ified elements. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1747–1753. SIAM, 2012.

[Bjö14] Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014.

76

[Bol78] Béla Bollobás. Extremal graph theory, volume 11 of London Mathematical Society
Monographs. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-
New York, 1978.

[Bol95] Béla Bollobás. Extremal graph theory. In Handbook of combinatorics, Vol. 1, 2, pages
1231–1292. Elsevier Sci. B. V., Amsterdam, 1995.

[Bon95] J. A. Bondy. Basic graph theory: paths and circuits. In Handbook of combinatorics,
Vol. 1, 2, pages 3–110. Elsevier Sci. B. V., Amsterdam, 1995.

[BT81] Jean-Claude Bermond and Carsten Thomassen. Cycles in digraphs- a survey. J. Graph
Theory, 5(1):1–43, 1981.

[CCC06] Leizhen Cai, Siu Man Chan, and Siu On Chan. Random separation: A new method for
solving fixed-cardinality optimization problems. In Proceedings of the 2nd International
Workshop on Parameterized and Exact Computation (IWPEC), volume 4169 of Lecture
Notes in Comput. Sci., pages 239–250. Springer, 2006.

[CFK+15a] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[CFK+15b] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[CJM+13] Robert Crowston, Mark Jones, Gabriele Muciaccia, Geevarghese Philip, Ashutosh Rai,
and Saket Saurabh. Polynomial kernels for lambda-extendible properties parameterized
above the Poljak-Turzik bound. In IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS), volume 24 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 43–54, Dagstuhl, Germany,
2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Die17] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer-Verlag, Berlin, 5th edition, 2017.

[Dir52] G. A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc. (3), 2:69–81,
1952.

[Dir60] Gabriel Andrew Dirac. In abstrakten Graphen vorhandene vollständige 4-Graphen und
ihre Unterteilungen. Math. Nachr., 22:61–85, 1960.

[EG59] P. Erdős and T. Gallai. On maximal paths and circuits of graphs. Acta Math. Acad.
Sci. Hungar, 10:337–356, 1959.

[EGL91] Y Egawa, R Glas, and S.C Locke. Cycles and paths through specified vertices in
k-connected graphs. Journal of Combinatorial Theory, Series B, 52(1):20–29, May
1991.

[FGL+20a] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh,
and Meirav Zehavi. Going far from degeneracy. SIAM J. Discrete Math., 34(3):1587–
1601, 2020.

77

[FGL+20b] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh,
and Meirav Zehavi. Parameterization Above a Multiplicative Guarantee. In Proceedings
of the 11th Innovations in Theoretical Computer Science Conference (ITCS), volume
151 of Leibniz International Proceedings in Informatics (LIPIcs), pages 39:1–39:13.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020.

[FGSS22] Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Algorithmic
extensions of dirac’s theorem. In Proceedings of the 2022 Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), page 406–416. Society for Industrial and Applied
Mathematics, January 2022.

[FK13] Fedor V. Fomin and Petteri Kaski. Exact exponential algorithms. Commun. ACM,
56(3):80–88, 2013.

[FLP+18] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Ze-
havi. Long directed (s, t)-path: FPT algorithm. Inf. Process. Lett., 140:8–12, 2018.

[FLPS16] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient
computation of representative families with applications in parameterized and exact
algorithms. J. ACM, 63(4):29:1–29:60, 2016.

[GH60] Alain Ghouila-Houri. Une condition suffisante d’existence d’un circuit hamiltonien. C.
R. Acad. Sci. Paris, 251:495–497, 1960.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[GKLM11] Gregory Gutin, Eun Jung Kim, Michael Lampis, and Valia Mitsou. Vertex cover
problem parameterized above and below tight bounds. Theory of Computing Systems,
48(2):402–410, 2011.

[Gör00] Frank Göring. Short proof of Menger’s theorem. Discrete Mathematics, 219(1-3):295–
296, 2000.

[GP16a] Shivam Garg and Geevarghese Philip. Raising the bar for vertex cover: Fixed-
parameter tractability above a higher guarantee. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1152–1166.
SIAM, 2016.

[GP16b] Gregory Z. Gutin and Viresh Patel. Parameterized traveling salesman problem: Beat-
ing the average. SIAM J. Discrete Math., 30(1):220–238, 2016.

[GRSY07] Gregory Z. Gutin, Arash Rafiey, Stefan Szeider, and Anders Yeo. The linear ar-
rangement problem parameterized above guaranteed value. Theory Comput. Syst.,
41(3):521–538, 2007.

[GvIMY12] Gregory Gutin, Leo van Iersel, Matthias Mnich, and Anders Yeo. Every ternary permu-
tation constraint satisfaction problem parameterized above average has a kernel with
a quadratic number of variables. J. Computer and System Sciences, 78(1):151–163,
2012.

[H9̈2] Roland Häggkvist. On the structure of non-Hamiltonian graphs. I. Combin. Probab.
Comput., 1(1):27–34, 1992.

78

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity. J. Computer and System Sciences, 63(4):512–530,
2001.

[JKN19] Bart M. P. Jansen, László Kozma, and Jesper Nederlof. Hamiltonicity below Dirac’s
condition. In Proceedings of the 45th International Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG), volume 11789 of Lecture Notes in Computer Science,
pages 27–39. Springer, 2019.

[Kaw08] Ken-ichi Kawarabayashi. An improved algorithm for finding cycles through elements.
In Proceedings of the 13th International Conference on Integer Programming and Com-
binatorial Optimization (IPCO), volume 5035 of Lecture Notes in Comput. Sci., pages
374–384. Springer, 2008.

[Kou08] Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Proceed-
ings of the 35th International Colloquium on Automata, Languages and Programming
(ICALP), volume 5125 of Lecture Notes in Comput. Sci., pages 575–586. Springer,
2008.

[KW16] Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Com-
mun. ACM, 59(1):98–105, 2016.

[Li13] Hao Li. Generalizations of Dirac’s theorem in Hamiltonian graph theory—a survey.
Discrete Math., 313(19):2034–2053, 2013.

[LN21] Binlong Li and Bo Ning. A strengthening of Erdős-Gallai Theorem and proof of
Woodall’s conjecture. J. Combin. Theory Ser. B, 146:76–95, 2021.

[LNR+14] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and
Saket Saurabh. Faster parameterized algorithms using linear programming. ACM
Trans. Algorithms, 11(2):15:1–15:31, 2014.

[Loc83] Stephen Charles Locke. Extremal Properties Of Paths, Cycles And K-Colourable Sub-
graphs Of Graphs. PhD thesis, University of Waterloo, 1983.

[Loc85] Stephen C Locke. A generalization of Dirac’s theorem. Combinatorica, 5(2):149–159,
1985.

[Men27] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–
115, 1927.

[Mey73] M. Meyniel. Une condition suffisante d’existence d’un circuit Hamiltonien dans un
graphe oriente. J. Combinatorial Theory Ser. B, 14:137–147, 1973.

[MR99] Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values:
Maxsat and maxcut. J. Algorithms, 31(2):335–354, 1999.

[MRS09] Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing above or
below guaranteed values. J. Computer and System Sciences, 75(2):137–153, 2009.

[NSS95] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In Proceedings of the 36th Annual Symposium on Foundations of
Computer Science (FOCS 1995), pages 182–191. IEEE, 1995.

79

[NW71] C. St. J. A. Nash-Williams. Edge-disjoint Hamiltonian circuits in graphs with vertices
of large valency. In Studies in Pure Mathematics (Presented to Richard Rado), pages
157–183. Academic Press, London, 1971.

[Ore60] Oystein Ore. Note on Hamilton circuits. Amer. Math. Monthly, 67:55, 1960.

[P6́2] L. Pósa. A theorem concerning Hamilton lines. Magyar Tud. Akad. Mat. Kutató Int.
Közl., 7:225–226, 1962.

[Tsu19] Dekel Tsur. Faster deterministic parameterized algorithm for k -path. Theor. Comput.
Sci., 790:96–104, 2019.

[Wah13] Magnus Wahlström. Abusing the Tutte matrix: An algebraic instance compression for
the k-set-cycle problem. In Proceedings of the 30th International Symposium on Theo-
retical Aspects of Computer Science (STACS), volume 20 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 341–352. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2013.

[Wil09] Ryan Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett.,
109(6):315–318, 2009.

[Wil19] David Williamson. Network Flow Algorithms. Cambridge University Press, 2019.

[Zeh16] Meirav Zehavi. A randomized algorithm for long directed cycle. Inf. Process. Lett.,
116(6):419–422, 2016.

80

	Introduction
	Overview of the proof
	Preliminaries and classical theorems
	Generalized theorems
	Long (s,t)-Cycle
	Long Erdős-Gallai (s,t)-Path
	Erdős-Gallai decompositions and structures
	Algorithm for Long Erdős-Gallai (s,t)-Path

	Algorithm for small vertex covers
	Finding almost Hamiltonian cycles
	Small separator lemma
	Main theorem

	Dirac decomposition
	Long Dirac Cycle: Putting all together
	Proof of theorem:main
	Last piece: proof of lemma:maincyclelemma

	Conclusion
	Tightness of results
	Open questions

