
ar
X

iv
:2

10
7.

11
53

0v
2

 [
cs

.D
S]

 2
5

A
ug

 2
02

1

Near-Optimal Average-Case Approximate Trace Reconstruction

from Few Traces

Xi Chen∗

Columbia University

xichen@cs.columbia.edu

Anindya De†

University of Pennsylvania

anindyad@cis.upenn.edu

Chin Ho Lee‡

Columbia University

c.h.lee@columbia.edu

Rocco A. Servedio§

Columbia University

rocco@cs.columbia.edu

Sandip Sinha¶

Columbia University

sandip@cs.columbia.edu

August 26, 2021

Abstract

In the standard trace reconstruction problem, the goal is to exactly reconstruct an unknown
source string x ∈ {0, 1}n from independent “traces”, which are copies of x that have been
corrupted by a δ-deletion channel which independently deletes each bit of x with probability δ
and concatenates the surviving bits. We study the approximate trace reconstruction problem,
in which the goal is only to obtain a high-accuracy approximation of x rather than an exact
reconstruction.

We give an efficient algorithm, and a near-matching lower bound, for approximate recon-
struction of a random source string x ∈ {0, 1}n from few traces. Our main algorithmic result is
a polynomial-time algorithm with the following property: for any deletion rate 0 < δ < 1 (which
may depend on n), for almost every source string x ∈ {0, 1}n, given any number M ≤ Θ(1/δ)
of traces from Delδ(x), the algorithm constructs a hypothesis string x̂ that has edit distance at
most n · (δM)Ω(M) from x. We also prove a near-matching information-theoretic lower bound
showing that given M ≤ Θ(1/δ) traces from Delδ(x) for a random n-bit string x, the smallest
possible expected edit distance that any algorithm can achieve, regardless of its running time,
is n · (δM)O(M).

∗Supported by NSF grants CCF-1703925 and IIS-1838154.
†Supported by NSF grants CCF-1926872 and CCF-1910534.
‡Supported by the Croucher Foundation and the Simons Collaboration on Algorithms and Geometry.
§Supported by NSF grants CCF-1814873, IIS-1838154, CCF-1563155, and by the Simons Collaboration on Algo-

rithms and Geometry.
¶Supported by NSF grants CCF-1714818, CCF-1822809, IIS-1838154, CCF-1617955, CCF-1740833, and by the

Simons Collaboration on Algorithms and Geometry.

http://arxiv.org/abs/2107.11530v2

1 Introduction

1.1 Background and prior work

In the trace reconstruction problem [Kal73, Lev01b, Lev01a, BKKM04], there is an unknown n-bit
source string x ∈ {0, 1}n, and a reconstruction algorithm that has access to independent traces of x,
where a trace of x is a draw from Delδ(x). Here Delδ(·) is the deletion channel, which independently
deletes each bit of x with probability δ and outputs the concatenation of the surviving bits. The
goal of the reconstruction algorithm is to correctly reconstruct the source string x.

1.1.1 Exact trace reconstruction

Much research effort has been dedicated to different aspects of the trace reconstruction problem in
recent years [MPV14, DOS17, NP17, PZ17, HPP18, HHP18, BCF+19, BCSS19, Cha21a, KMMP19,
HPPZ19, Cha21b, NR21, CDL+21b, CDL+21a]. In the “worst-case” version of trace reconstruction,
the source string x may be an arbitrary n-bit string. This is a challenging problem, with the best
known information theoretic lower bound on the number of traces required for trace reconstruction
(for constant deletion rates δ) being Ω̃(n3/2) traces [Cha21a] and the best known information
theoretic upper bound being exp(Õ(n1/5)) traces [Cha21b] (improving on earlier exp(Õ(n1/2)) and
exp(Õ(n1/3))-time and sample algorithms due to [HMPW08] and [NP17, DOS17] respectively). In
the subconstant deletion rate regime, a poly(n)-time and sample algorithm for worst-case source
strings was recently given in [CDL+21a] for deletion rate δ = O(1/n1/3+ε), improving on an earlier
result for deletion rate δ = O(1/n1/2+ε) [BKKM04]. Turning to the “average-case” variant of
trace reconstruction, the goal is to give algorithms (and lower bounds) that hold for most possible
source strings x (equivalently, hold with high probability for a uniform random source string x ∈
{0, 1}n). For the average-case problem, at constant deletion rate δ the current best known lower
bound is Ω̃((log n)5/2) traces [Cha21a] and the best known upper bound is exp(O(log n)1/3) traces
[HPP18, HPPZ19]. In [BKKM04] an O(log n)-trace, poly(n)-time algorithm is given for the average
case problem when the deletion rate is δ = O(1/ log n).

1.1.2 Approximate trace reconstruction

Motivation. In this paper we study a relaxation of the exact trace reconstruction problem in
which the goal is only to obtain an approximation of the unknown source string x. Of course this
immediately raises the question of what distance measure to use; throughout this paper we use edit
distance as our distance measure between strings. We remark that edit distance is a natural metric
to consider in the context of trace reconstruction: in particular, trace reconstruction is motivated
by problems such as ancestral DNA reconstruction where the natural corruption process includes
synchronization errors such as insertion and deletion. Indeed, edit distance is the distance measure
used in all of the works discussed below under “Prior work.”

The study of approximate trace reconstruction has several natural motivations; first, in some
applications a high-accuracy reconstruction of x may be all that is required rather than exact recon-
struction. Second, it is of interest to obtain algorithmic results for trace reconstruction in settings
where insufficiently many traces are available for exact reconstruction (because of known lower
bounds mentioned above); approximate trace reconstruction offers a potential avenue for obtaining
rigorous results in such settings. Finally, as sketched above, there is a frustrating exponential gap
between the known upper and lower bounds for exact trace reconstruction in both the worst-case
and average-case problem variants. Hence it is natural to wonder whether sharper bounds can be
achieved for approximate versions of the problem.

1

Prior work. Several authors have quite recently considered the approximate trace reconstruction
problem and related questions.

Davies, Raćz, Rashtchian, and Schiffer [DRRS21] gave several algorithms that use polylog(n)
traces and achieve edit distance n/polylog(n) for certain classes of source strings defined by various
run-length assumptions. They also give other algorithms which, under stronger run-length assump-
tions, succeed in performing approximate reconstruction using only a single trace. In another recent
work, Srinivasavaradhan, Du, Diggavi, and Fragouli [SDDF18] proposed heuristics for approximate
reconstruction based on a few traces.

Sima and Bruck [SB21] have recently studied exact trace reconstruction under an edit distance
constraint. They showed that nO(k) traces suffice to distinguish between two (known) worst-case
n-bit strings that are promised to have edit distance at most k from each other. In a related but in-
comparable result, Grigorescu, Sudan, and Zhu [GSZ21] have given lower bounds on “mean-based”
algorithms for distinguishing between worst-case pairs of strings that have small edit distance.

Summarizing the prior results on approximate trace reconstruction, we are not aware of either
algorithms or lower bounds in the previous literature that apply to typical source strings x ∼ {0, 1}n
(though see below for a discussion of the recent work of [CP21] that is simultaneous to ours). It
is easy to see that simply outputting a single trace gives expected edit distance δn (for any source
string), and also that given M traces no algorithm can achieve expected edit distance better than
Θ(δMn) for random source strings (since in expectation δMn bits of the n-bit source string will have
been deleted from all M traces). Other than these simple observations, to the best of our knowledge
no prior results were known, either in terms of algorithms or lower bounds, for approximate trace
reconstruction of random strings. We describe our algorithms and lower bounds for this setting
below.

1.2 Our results

Matching upper and lower bounds on approximate reconstruction of random strings
from few traces. Our main contribution is the following algorithmic result:

Theorem 1 (Approximate average-case trace reconstruction algorithm). There is a poly(n) time
algorithm Reconstruct with the following property: Let 0 < δ < 1, and let x be an unknown
source string that is uniform random over {0, 1}n. Let y(1), . . . , y(M) be M ≤ Θ(1/δ) independent
traces drawn from Delδ(x). Then with probability at least 1 − 1/poly(n) over x ∼ {0, 1}n and
y
(1), . . . , y(M) ∼ Delδ(x), the output of Reconstruct on input δ and y

(1), . . . , y(M) is a string
x̂ ∈ {0, 1}∗ that has dedit(x, x̂) ≤ n · (δM)Ω(M).

An interesting special case of Theorem 1 is obtained when the number of available traces M
is Θ(1/δ). In this case the Reconstruct algorithm achieves edit distance n/2Ω(1/δ), which is expo-
nentially better than the benchmark of δn edit distance that is trivially achievable using a single
trace.

To complement Theorem 1, we prove an information-theoretic lower bound on approximate
trace reconstruction of random strings from M ≤ Θ(1/δ) traces. This lower bound shows that the
accuracy achieved by Reconstruct is essentially the best possible:

Theorem 2 (Lower bound on approximate average-case trace reconstruction). Let 0 < δ < 1, and
let x be an unknown source string that is uniform random over {0, 1}n. Let y

(1), . . . , y(M) be M
independent traces drawn from Delδ(x), where M ≤ Θ(1/δ). Let A be any algorithm which, given
δ and y

(1), . . . , y(M) as input, outputs a hypothesis string x̂ for x. Then the expected edit distance
between x̂ and x is at least n · (δM)O(M).

2

We observe that for natural parameter settings, Theorem 2 improves on the simple Ω(δMn)
expected edit distance lower bound mentioned earlier; for example, taking M = Θ(1/δ), Theorem 2
proves that the best possible accuracy is n/2O(M) rather than δMn.

Remark 3. In simultaneous and independent work to ours, Chase and Peres [CP21] have also
considered the problem of approximate trace reconstruction of random source strings x. Their
main result is that for any constant deletion rate δ (bounded away from 1) and any constant ε
(bounded away from 0), there is an algorithm that uses Oδ,ε(1) traces and, with high probability
over a random source string x ∼ {0, 1}n, succeeds in reconstructing a hypothesis string x̂ with edit
distance at most εn from x.

The work of [CP21] and the current paper focus on different parameter settings, in particular
different regimes for the number of traces available to the algorithm, and establish complementary
results. The results of [CP21] apply in the regime where “many traces ” (significantly more than
Θ(1/δ)) are available, and give high-accuracy reconstruction in this regime. In contrast, our results
apply in the “few traces” regime where only some number 1 ≤ M ≤ Θ(1/δ) of traces are available,
and give essentially optimal reconstruction for any such small number of traces.

1.3 Discussion and future work

A number of directions suggest themselves for future work on approximate trace reconstruction;
we close this introduction by briefly mentioning a few of these.

One natural goal is to obtain results for average-case approximate trace reconstruction which
generalize both the results of the current paper and the results of [CP21], by establishing sharp
bounds on approximate average-case trace reconstruction in the regime where more than Θ(1/δ)
many traces are available. It is clear that the n·(δM)Θ(M) form of our edit distance bound no longer
holds once M is ω(1/δ); it would be interesting to understand the best achievable edit distance, as
a function of δ and M , in this regime.

Another natural goal is to obtain algorithmic results for approximate trace reconstruction of
worst-case rather than random strings. Here we observe that the current state of the art for worst-
case exact trace reconstruction places significant limitations on how much better than edit distance
δn (trivially achievable by simply outputting a random trace) it is possible to do for approximate
reconstruction of worst-case strings. As noted earlier, until quite recently the best result known
for the low deletion rate regime was that of [BKKM04], which gave an algorithm using O(n log n)
traces to reconstruct an arbitrary source string x at deletion rate δ = n−(1/2+ε). This was recently
strengthened to a poly(n)-trace algorithm that reconstructs at rate δ = n−(1/3+ε) [CDL+21a]. For
the worst case approximate trace reconstruction problem, achieving edit distance δ3n for all δ,
even using poly(n) traces, would require improving the recently established state of the art from
[CDL+21a] for the low-deletion-rate regime of the exact reconstruction problem.

2 Our approach

2.1 Overview of our algorithmic approach (Theorem 1)

2.1.1 Some preliminary observations and simplifications

We begin by observing that to prove Theorem 1 it suffices to prove it under the assumptions that

1

n2
≤ δ <

1

KM
, K2 ≤ M ≤ 1

Kδ
, and (δM)M/K ≥ 1/n2, (1)

3

for a sufficiently large absolute constant K. The upper bounds on δ and M follow directly from our
assumption M ≤ Θ(1/δ) in Theorem 1. For the lower bound on δ, note that if δ < 1/n2, then with
probability at least 1 − 1/n a single input trace will have no bits deleted and hence will trivially
yield a string x̂ that has dedit(x, x̂) = 0.

For the lower bound on M , we observe that if M < K2, then a single trace would satisfy the
claimed edit distance bound in Theorem 1. Indeed, since a single trace has edit distance from x

distributed as Bin(n, δ), and the probability that a draw from Bin(n, δ) exceeds n · δ0.1 is at most
n−Ω(1) (by a standard multiplicative Chernoff bound, using that 1/n2 ≤ δ ≤ 1/K), the trivial
algorithm that simply outputs a single input trace would satisfy edit distance

nδ0.1 ≤ n(δM)0.1 ≤ n(δM)0.1M/K2
= n(δM)Ω(M).

For our final simplifying observation that M and δ jointly satisfy (δM)M/K ≥ 1/n2, note that
if (δM)M/K is less than 1/n2, then the claimed high-probability edit distance bound n · (δM)Ω(M)

of Theorem 1 is less than 1 (for a suitable choice of the hidden constants), and hence the claim
of Theorem 1 is that with high probability the edit distance achieved is zero. In this case since
(δM)M/K is decreasing for M ∈ [0, δ/e], we can simply use M ′ < M traces so that 1/n2 ≤
(δM ′)M

′/K < 1/n, and achieve edit distance n · (δM ′)M
′/K which will also achieve edit distance 0

(which of course suffices to achieve the edit distance required by the theorem statement). Therefore
we will assume that the conditions given in (1) hold throughout the rest of our proof of Theorem 1.

2.1.2 The high-level approach

Our main algorithm Reconstruct makes essential use of one particular distinguished trace, which
we denote y

∗ and refer to as the reference trace, as well as M other traces y
(1), . . . , y(M). The

overall Reconstruct algorithm works by repeatedly executing two different subroutines. Below we
first give a high level description of what each of these subroutines does and then we present the
overall algorithm and explain how it uses these subroutines.

First subroutine: Alignment. The first subroutine is an alignment procedure which we call
Align. It takes as input the reference trace y

∗ and a pointer ℓ∗ to a location in the reference trace,
as well as the M other traces y

(1), . . . , y(M). It outputs a list of M pointers (ℓ(1), . . . , ℓ(M)) where
each pointer ℓ(m) specifies a location in the m-th trace y

(m). Roughly speaking, Align uses the
reference trace to “align” the other M traces, i.e. to come up with a pointer into each trace so that
most of the pointers agree (Align does not change the location ℓ∗ of the pointer into the reference
trace). In more detail but still at a high level, the main guarantee of the Align algorithm is that
with high probability, a clear majority of the M pointers all point to locations that came from the
same bit xi of the source string x. (Another important guarantee is that with high probability this
location i ∈ [n] is “not too far” from the location in x that y

∗
ℓ∗ came from; we give more details

on this below.) Thus a successful run of Align results in a clear majority of the M + 1 pointers
(including the reference trace’s pointer ℓ∗) all being in agreement. We refer to a specification of
the pointer locations (ℓ(1), . . . , ℓ(M)) as a configuration, and we say that a configuration for which
there is a clear majority in agreement as described above is in consensus. (We give a fully detailed
definition in Section 2.2, along with a detailed statement of the Align algorithm’s performance
guarantee.) We emphasize that the correctness of this subroutine, i.e., Alignment, crucially relies
on the source string x being uniform random.

Second subroutine: Bitwise Majority. The second subroutine is a “Bitwise Majority
Alignment” procedure, which we call BMA. This procedure was first introduced in the work of
[BKKM04] and was further analyzed in the recent work [CDL+21a]. (As we explain below, a
crucial ingredient in our proof of Theorem 1 is a new refined analysis of BMA that goes significantly

4

Algorithm 1: Reconstruct (slightly simplified)

Input: A positive integer n and (M + 1) traces y∗, y(1), . . . , y(M) for some M ≤ 1/(Kδ)

Output: A binary string w

1 Set ℓ∗ = 1 and w = ε (the empty string)

2 while ℓ∗ ≤ |y∗| do
3 Run Align(ℓ∗, y∗, y(1), . . . , y(M)) to obtain a tuple of locations (ℓ(1), . . . , ℓ(M))

4 Run BMA(y∗, y(1), . . . , y(M); ℓ∗, ℓ(1), . . . , ℓ(m)) to obtain a binary string (ε or in {0, 1}R)
5 Concatenate the string returned by BMA to the end of w

6 Set ℓ∗ to be the final pointer of y∗ in the run of BMA above and increment it

7 return w.

Figure 1: A slightly simplified version of our main algorithm Reconstruct (the actual algorithm
differs in some small details and is given in Figure 6).

beyond the results of [CDL+21a].) All of the output bits that our algorithm constructs are produced
by BMA. The BMA procedure takes as input the M +1 traces y∗, y(1), . . . , y(M) and the corresponding
pointers ℓ∗, ℓ(1), . . . , ℓ(M). The BMA algorithm is run for R := (δM)−Θ(M) many stages to reconstruct
R output bits; in the course of its execution it updates the pointers into all M + 1 of the traces
y
∗, y(1), . . . , y(M).

To explain the performance guarantee of the BMA procedure we need the notion of a k-desert.
Roughly speaking, a binary string z ∈ {0, 1}∗ is said to be a k-desert if (i) it is sufficiently long, and
(ii) it is a prefix of s∞ for some s ∈ {0, 1}≤k (we give a precise definition in Section 2.3). The main
guarantee of the BMA procedure is that if it is run on a configuration that is in consensus at some
location i in the source string x, then with high probability it produces a R-bit string that agrees
with (xi, xi+1, . . .) up to the location (if any) where a k-desert of length L := Θ(M log(1/(Mδ)))
first appears, for some k ≤ L/2. We note that unlike the first subroutine Alignment, the guarantee
of BMA procedure is a worst-case guarantee.

The overall Reconstruct algorithm. As stated earlier, the overall algorithm repeatedly runs
Align, then BMA, then Align, then BMA, and so on. We present a slightly simplified version of the
algorithm in Figure 1 (see Section 6 for the formal algorithm; the version in Figure 1 differs only
in that some parameter settings have been slightly simplified for the sake of readability).

The high level intuition for why the algorithm succeeds is as follows. Each run of Align with
high probability succeeds in putting the M traces in consensus at a location “not too far” from
the location in x corresponding to y

∗
ℓ∗ . Given that this consensus has been achieved by Align,

then the subsequent run of BMA with high probability succeeds in correctly reconstructing the next
R := (δM)−Θ(M) many bits of x. In the course of running BMA the pointer ℓ∗ is with high probability
advanced to “approximately the right location” corresponding to the last-reconstructed bit of x,
so the next run of Align again establishes consensus at approximately the right location. Thus
the overall output string w of the algorithm is the concatenation of many length-R strings, most
of which correspond to subwords of x from approximately the right locations. From this it can be
shown that the overall reconstructed string is not too far in edit distance from x.

The above high-level explanation sketches an idealized version of the actual scenario and glosses
over a number of technical difficulties. In more detail, there are many sources of error from different
possible failure events and a careful analysis is required (and is provided in Section 6) to keep the

5

failure probabilities from all of these under control and not “give away too much” in the overall
edit distance. The issues that must be handled include the following:

• Align may fail to align the traces to a consensus location, or may misalign the traces and
achieve consensus at a location that is far away from the location in x corresponding to y

∗
ℓ∗ .

Our analysis shows that this happens with small (but non-negligible probability), and
bounds the cumulative error (edit distance) incurred by the runs of Align for which this
happens.

• Even when Align aligns the traces at a location that is “not too far” from the correct
location, the alignment location in x may not be exactly the location in x corresponding to
y
∗
ℓ∗ . This contributes to the overall edit distance between x̂ and x even when the Align

algorithm succeeds.

• On average the random string x will have a k-desert of length L occuring roughly once every
2Θ(L) positions. When a run of BMA encounters such a location the resulting R-bit string
that it produces may be badly off from the true corresponding portion of x. This
contributes to the overall edit distance between x̂ and x even when the algorithm succeeds.

• Even when the portion of x that a given run of BMA is operating on does not contain a
k-desert of length L, the BMA algorithm may fail to correctly reconstruct the relevant
portion of BMA with small (but non-negligible) probability. Our analysis bounds the overall
error in the reconstructed string that comes from such “failed runs” of BMA.

2.2 The Align procedure

As stated earlier, Align takes as input the reference trace y
∗, a pointer ℓ∗ to a location in the

reference trace, and theM other traces y(1), . . . , y(M), and outputs a list of M pointers ℓ(1), . . . , ℓ(M)

into the M traces y
(1), . . . , y(M). In a successful run of Align, it generates a list of pointers most

of which point to locations that came from the same bit xi of the source string x.
At a very high level, Align works in two stages. The first stage, which performs an “approximate

alignment,” consists of a sequence of iterative refinement steps; in each successive step of this stage,
for each trace y

(m) Align tries to identify successively smaller subwords of y(m) that fairly closely
match (as measured by edit distance) suitable successively smaller subwords, centered at ℓ∗, of
the reference trace y

∗. At the end of a successful execution of the first stage, for each trace y
(m)

a relatively small subword y
(m)
Qm

1
has been identified which contains the “right location” in y

(m)

(informally, corresponding to the portion of x that y
∗
ℓ∗ came from). In the second stage, Align

searches for a suitable subword that appears in at least 95% of y
(1)

Q1
1
, . . . , y

(M)

QM
1

and uses the location

of this subword in each y
(m) to determine the exact final pointer location ℓ(m).

Correctness of the second stage (given that a successful “approximate alignment” was indeed
achieved in the first stage) is established using an elementary but careful analysis that we do not
describe here but is given in Section 4.4.2. To gain intuition for the iterative approach employed
in the first stage, it is useful to consider the following toy scenario: Fix an a-bit subword w of the
reference trace y∗ that is centered at location ℓ∗. Intuitively, the deletion rate δ is relatively low, so
the subword w of y∗ should have small edit distance from the corresponding subword of the source
string x, and, transitively, should also have small edit distance from the corresponding subwords
of each of the M traces y

(1), . . . , y(M). However, since x is uniform random (and hence each trace
y
(m) is also uniform random), if a is a “small” value that is ≪ log n, then it is very likely that w

will occur as an ℓ-bit subword of each y
(m) in many locations, and thus a simpleminded approach

6

of just scanning all of y(m) to try to find w (or a close match to it) will not succeed in uniquely
identifying the correct location. But if a is a “large” value (actually, being just modestly larger
than log n will do), then it is very likely that only one location in each y

(m) will be a close match to
the a-bit string w. This reduces the problem of finding the right location in the ≈ n-bit string y

(m)

to the problem of finding the right location in the ≈ a-bit subword of y(m) that was just identified
(by virtue of closely matching w); and now we can iterate.

A more complete overview and explanation of Align is given in Section 4.1. Section 4 gives
a detailed proof of Theorem 7, which is our main result about Align; since the exact theorem
statement is somewhat cumbersome (involving various specific parameter settings), we give an
informal version here and defer the fully detailed statement to Section 4. Informally, we say that
the Align algorithm succeeds on source string x with respect to a tuple of traces (y∗, y(1), . . . , y(M))
if the following condition holds for “almost all” locations ℓ∗ ∈ [|y∗|]: The output (ℓ(1), . . . , ℓ(M))
of Align(ℓ∗, y∗, y(1), . . . , y(M)) satisfies (1) At least 90% of source(m)(ℓ(m)), m ∈ [M], agree on the
same location i ∈ [n], and (2) The consensus location i is “quite close” to the location in x that
y
∗
ℓ∗ came from. Now we can state an informal version of Theorem 7, which gives a performance

guarantee on Align:

Theorem 4 (Main result about Align, informal statement). Let x ∼ {0, 1}n and let y∗, y(1), . . . , y(M)

be independent traces drawn from Delδ(x), where δ and M satisfy Equation (1). Then Align suc-
ceeds on x with respect to (y∗, y(1), . . . , y(M)) with probability at least 1− 1/poly(n).

2.3 The BMA procedure

The Bitwise Majority Alignment, or BMA, procedure, operates in discrete time steps on a collection
of M independent traces. At each time step it outputs one bit of the hypothesis string that it is
reconstructing. Throughout its execution, at each time step t, for each m ∈ [M] the BMA algorithm
maintains a pointer into the m-th trace. The idea of BMA is that at each time step t, it should be
the case that most of the pointers are correctly aligned, i.e. the majority of the bits that they point
to in their respective traces came from the same bit of the source string x. In the t-th time step the
majority vote of the M bits that are pointed to in the traces is the output bit BMA produces, and

• For each trace in which the pointer points to a bit that agrees with the majority, the pointer
is incremented by one location;

• For each trace in which the pointer points to a bit that disagrees with the majority, the
pointer stays in the same location.

A first analysis of BMA, for deletion rate δ slightly less than n−1/2, was originally given in
[BKKM04], and more recently an analysis for deletion rate δ slightly less than n−1/3 was given in
[CDL+21a]. We give a significant extension of [CDL+21a] by providing a much more refined analysis
which yields a considerably stronger quantitative result.1 In more detail, in the current work our
analysis of BMA handles deletion rates even as large as a (small) absolute constant independent of
n, and indeed handling such deletion rates is essential for our overall results.

To state our main theorem about BMA we require the following terminology: Recall that a string
is said to be a k-desert for some k ≥ 1 if it is the prefix of s∞ for some string s ∈ {0, 1}k . We say
a string is a long desert if it is a k-desert of length L for some k ≤ L/2.

1This quantitative strengthening plays an essential role in our being able to obtain tight bounds (recall the
essentially matching Theorems 1 and 2) via our approach.

7

Our main result about BMA says, roughly speaking, that if the source string does not contain any
long desert then with high probability BMA succeeds in exactly reconstructing the source string, and
moreover does so with a “clear majority” in each round. Similar to Align, the detailed theorem
statement about BMA involves various specific parameter settings, so we defer its exact statement
until later (see Theorem 25) and here give an informal statement:

Theorem 5 (Main result about BMA, informal statement). Let x̃ ∈ {0, 1}R be a string that does not
contain any long desert. Let z(1), . . . , z(M) ∼ Delδ(x̃) be independent traces. For suitable settings
of R,M, k, L and δ, with high probability BMA returns exactly x̃, and in every round t ∈ [R] the
majority is reached by at least 90% of z(1), . . . , z(M).

2.4 Overview of our lower bound approach (Theorem 2)

Our lower bound approach is informed by insights arising from the analysis of our algorithm.
Given the arguments sketched above for our algorithmic results, it is natural to pursue a lower
bound based on the difficulty of reconstructing deserts. The high-level idea of our lower bound
is that having access to only a limited number M ≤ Θ(1/δ) of traces imposes strong limitations
on the ability of any reconstruction algorithm to accurately estimate the lengths of deserts, and
this inability to accurately reconstruct deserts translates into an inability to perform overall high-
accuracy approximate reconstruction. Guided by this general idea, it is natural to consider 1-deserts
(runs of all 0’s or all 1’s) as potential sources of hardness, and indeed this is our approach.

In more detail, our lower bound proceeds in four conceptual stages.

1. We first (Section 7.1) consider the following simple distribution distinguishing problem: an
algorithm is given M draws which are guaranteed to come from one of two product
distributions over N×N: (a) the product distribution Bin(M, 1− δ)× Bin(M + 1, 1− δ), or
(b) the product distribution Bin(M + 1, 1− δ) × Bin(M, 1− δ), where both (a) and (b) are
equally likely to be the target product distribution. We show that any algorithm for
determining whether it is (a) or (b) must have failure probability at least (δM)O(M).

2. Next, in Section 7.2 we consider the algorithmic task of solving B independent instances of
the distinguishing problem described in (1) above; this may be viewed as the problem of
inferring an unknown B-bit string that is uniform over {0, 1}B given certain partial/noisy
information about the string. Building on (1) above, we show that the expected edit
distance from the output of any algorithm for this problem to the unknown uniform string
in {0, 1}B will be at least B(δM)O(M).

3. We then (in Section 7.3) observe that a random string x can be viewed as containing, with
high probability, B = n/2Θ(M) independent instances of the distribution distinguishing
problem from (1). Roughly speaking, this is because a random string x ∼ {0, 1}n can be
viewed as composed of n/(2M + 4) blocks of 2M + 4 bits each, and with high probability
Θ(n/22M+4) of these blocks will consist of either the string α = 0M10M+111 or the string
β = 0M+110M11, and these two strings are equally likely for each block. (The specific
structure of these α and β strings is chosen to ensure that they cannot overlap; this is useful
for (4) below.)

4. Using (3), in Section 7.3 we show that any algorithm that achieves a certain n(δM)Ω(M)

expected edit distance for reconstructing a random string from M traces can be used to give
an algorithm that solves B = n/2Θ(M) independent copies of the distinguishing problem
described in (1) with an expected edit distance that is lower than can possibly be obtained,

8

contradicting the lower bound from item (2) above. Establishing this reduction is the most
intricate part of our lower bound.

2.5 Organization

In Section 3 we set up some preliminaries. In Section 4 we prove Theorem 4, our main result about
the Align algorithm. In Section 5 we prove Theorem 5, our main result about BMA. In Section 6 we
use Theorems 4 and 5 to prove Theorem 1. Finally, Section 7 proves our lower bound, Theorem 2.

3 Preliminaries

Notation. Given a positive integer n, we write [n] to denote {1, . . . , n}. Given two integers a ≤ b
we write [a : b] to denote {a, . . . , b}. We write ln to denote natural logarithm and log to denote
logarithm to the base 2. We denote the set of non-negative integers by Z≥0. We write “a = b± c”
to indicate that b− c ≤ a ≤ b+ c.

Subwords. It will be convenient for us to index a binary string x ∈ {0, 1}n using [1 : n] as x =
(x1, . . . , xn). Given such a string x ∈ {0, 1}n and integers 1 ≤ i ≤ j ≤ n, we write x[i:j] to denote
the subword (xi, xi+1, . . . , xj) of x. An ℓ-subword of x is a subword of x of length ℓ, given by
(xi, xi+1, . . . , xi+ℓ−1) for some i ∈ [1 : n− ℓ+ 1].

Distributions. When we use bold font such as D, y,z, etc., it indicates that the entity in question
is a random variable. We write “r ∼ P” to indicate that random variable r is distributed according
to probability distribution P. If S is a finite set we write “r ∼ S” to indicate that r is distributed
uniformly over S.

Deletion channel and traces. Throughout this paper the parameter 0 < δ < 1 denotes the
deletion probability. Given a string x ∈ {0, 1}n, we write Delδ(x) to denote the distribution of the
string that results from passing x through the δ-deletion channel (so the distribution Delδ(x) is
supported on {0, 1}≤n), and we refer to a string in the support of Delδ(x) as a trace of x. Recall
that a random trace y ∼ Delδ(x) is obtained by independently deleting each bit of x with probability
δ and concatenating the surviving bits. 2

When a trace y is drawn from Delδ(x) we write D to denote the set of locations deleted when x

goes through the deletion channel, i.e., D is obtained by including each element of [n] independently
with probability δ, and y is set to be x[n]\D. (When the trace is denoted y

∗ or y(m) we use D∗ or
D(m) to denote the set of locations deleted.)

As discussed earlier, our algorithm uses a special reference trace y
∗ and M additional traces

y
(m), m ∈ [M], and maintains pointers into each of these traces. We write ℓ∗ to denote the pointer

into y
∗ and ℓ(m) to denote the pointer into y

(m) for m ∈ [M].

Edit distance and matchings. It will be convenient for us to define the edit distance between
two strings x, x′ ∈ {0, 1}∗ as

dedit(x, x
′) := |x|+ |x′| − 2 · |LCS(x, x′)|,

where |LCS(x, x′)| is the length of the longest common subsequence of x and x′. This is equivalent
to viewing insertions and deletions of characters as being the only allowable “atomic edits” that

2For simplicity in this work we assume that the deletion probability δ is known to the reconstruction algorithm.
We note that it is possible to obtain a high-accuracy estimate of δ simply by measuring the average length of traces
received from the deletion channel.

9

can be used to transform x to x′, and is easily seen to be equivalent to the standard definition
(in which substitutions are also allowed) up to at most a factor of 2, since a substitution can be
simulated by a deletion followed by an insertion.

A matching µ between two strings x, x′ ∈ {0, 1}∗ is a list of pairs (i1, j1), (i2, j2), . . . such that
i1 ≤ i2 ≤ · · · , j1 ≤ j2 ≤ · · · , and for every t we have xit = x′jt . The size of a matching is the number
of pairs. We note that the largest matching between x and x′ is of length |LCS(x, x′)|.

For two intervals A = [a1, a2] and B = [b1, b2] of equal length, we write “µ(A) = B” to indicate
that for every element a1+ j ∈ A, the pair (a1+ j, b1+ j) is in the matching (note that this implies
that the subwords xA and x′B are identical).

Some notational conventions. To aid the reader we adopt the following conventions:

• Locations in strings of different types: The letters i, j are reserved for locations in the
source string x, so these variables refer to integers in the range [1 : n]. We use capital letters
I, J to denote intervals of such locations. The letters p, q are reserved for locations in traces,
so if p is a location in a particular trace y then it refers to an integer in the range [1 : |y|]. We
use capital letters P,Q to denote intervals of such locations. The letters a, b are reserved for
locations in other incidental strings that arise in our analysis, and intervals of such locations
are denoted A,B.

• Indexing multiple strings: On a number of occasions we deal with collections of multiple
strings (such as our M traces). We index such collections with parenthesized superscripts, so
for example our M traces are denoted y

(1), y(2), . . . , y(M).

• Correspondence between traces and source string x. Given a location q ∈ |y∗| in the
reference trace y∗, we write source∗(q) to denote the location i ∈ [n] such that bit xi gave rise
to y

∗
q . For m ∈ [M] we similarly write source(m)(q) to denote the location i ∈ [n] such that

bit xi gave rise to y
(m)
q in the trace y

(m). For an interval Q = [q1 : q2] of locations in y(m), we

write source(m)(Q) to denote the set {source(m)(q) : q ∈ [q1 : q2]}. We define source(m)(Q) to
be the interval [source(m)(a) : source(m)(b)] ⊆ [n].

Given a location i ∈ [n], if i /∈ D∗ then image∗(i) denotes the element of [|y∗|] that xi lands
in (and if i ∈ D∗ then we define image∗(i) to be ⊥). The notation image(m)(i) is defined

similarly with respect to trace y
(m), m ∈ [M]. We observe that if I ⊆ source(m)(Q) then

image(m)(I) ⊆ Q.

• Notation for bitstrings. To help the reader differentiate between bits and the locations
of bits in bitstrings, we use sans serif font to denote “bit-valued objects.” Hence the uniform
random source string in {0, 1}n is x, the traces are y

∗, y(1), etc., a generic fixed word in
{0, 1}∗ which is not a random variable would be denoted w, a generic word in {0, 1}∗ which
is a random variable would be denoted w, and so on.

Finally we introduce some useful terminology: We refer to a tuple of pointers (ℓ(1), . . . , ℓ(M)) into
traces y(1), . . . , y(M) (so each ℓ(m) belongs to [|y(m)|]) as a configuration. We say the configuration
(ℓ(1), . . . , ℓ(M)) is in consensus if at least 0.9M of the values m ∈ [M] all have source(m)(ℓ(m)) equal
to the same location i ∈ [n].

3.1 Useful results

We recall McDiarmid’s basic “method of bounded differences” inequality, which we will use repeat-
edly in our analysis:

10

Theorem 6 (Theorem 3.1 of [McD98]). Let X = (X1, . . . ,Xn) be a family of independent random
variables where each Xk takes values in a set Ak. Suppose that f : A1 × · · · ×An → R satisfies

|f(x)− f(x′)| ≤ ck

whenever the vectors x and x′ differ only in the k-th coordinate. Then for any t ≥ 0, writing µ for
E[f(X)], we have

Pr[f(X)− µ ≥ t] ≤ exp

(
−2t2/

n∑

k=1

c2k

)
.

We use standard notation for the binary entropy function H(p) = −p log p− (1− p) log(1− p),
and we recall the standard upper bound on binomial coefficients in terms of this function, namely
that

(n
pn

)
≤ 2nH(p) for any 0 < p < 1.

4 The Align algorithm and proof of Theorem 4

Recall from Section 2.1.1 that the two parameters δ and M satisfy

1

n2
≤ δ <

1

KM
<

1

K
and K2 ≤ M ≤ 1

Kδ
, (2)

where K is some sufficiently large absolute constant. Let

H :=
M

K
log

(
1

δM

)
≤ 2 log n, (3)

where the inequality is by Equation (1). We observe that Equation (2) also gives that H ≥ K, and
that 2−Ω(H) = (δM)Ω(M). Let

γ = 0.01, τ = 5/γ = 500 (4)

be two constants that will be used in this section.
In this section we describe the (deterministic) Align algorithm and prove Theorem 4 about its

performance. Let x ∈ {0, 1}n be the source string and y∗, y(1), . . . , y(M) be traces of x obtained
with corresponding deletion sets D∗,D(1), . . . ,D(M) ⊆ [n], respectively. The algorithm Align takes
ℓ∗, y∗, y(1), . . . , y(M) as inputs, where ℓ∗ ∈ [5τ log n : |y∗| − 5τ log n], and returns a tuple of locations
(ℓ(1), . . . , ℓ(M)).

The following terminology will be useful: we say that the Align algorithm succeeds on source
string x with respect to a tuple of traces (y∗, y(1), . . . , y(M)) if the following condition holds for all
except at most 2−0.1Hn many locations ℓ∗ ∈ [5τ log n : |y∗| − 5τ log n]: The output (ℓ(1), . . . , ℓ(M))
of Align(ℓ∗, y∗, y(1), . . . , y(M)) satisfies

1. The configuration (ℓ(1), . . . , ℓ(M)) is in consensus, i.e. at least 90% of source(m)(ℓ(m)), m ∈ [M],
agree on the same location i ∈ [n], and

2. The consensus location i satisfies

source∗(ℓ∗)− 2H ≤ i ≤ source∗(ℓ∗). (5)

Now we can state the main result of this section which gives a performance guarantee on Align:

Theorem 7 (Theorem 4, detailed statement). Let x ∼ {0, 1}n and let y∗, y(1), . . . , y(M) ∼ Delδ(x)
independently, where δ and M satisfy Equations (2) and (3). Align succeeds on x with respect to
(y∗, y(1), . . . , y(M)) with probability at least 1− 1/n2.

11

4.1 Overview

We first give a high-level overview of Align. Let ℓ∗ be a location in the special reference trace y∗

that is not too close to the left and right ends of y∗. Let Q∗
S ⊃ · · · ⊃ Q∗

1 be a sequence of nested
intervals (of locations of y∗) centered at ℓ∗, with |Q∗

s| = ts for each s ∈ [S],

t1 = 2H + 1, ts+1 = 3ts, and tS = Θ(log n)

(note that hence S = O(log log n)). Let w∗
s = y∗Q∗

s
for each s ∈ [S].

The Align algorithm consists of two stages. In this subsection we give some intuition behind
each stage and its analysis. In the intuitive discussion below, we focus chiefly on understanding the
probability that Align succeeds at a particular location ℓ∗; in the formal proof we need to apply
the bounded difference inequality of McDiarmid to argue that Align succeeds on all but except
2−Ω(H)n many locations with high probability.

For the rest of this section, we say that an event is most likely to happen if it happens with
probability 1− 2−Ω(H).

First stage — locating a small neighborhood of source∗(ℓ∗) in each trace y(m).
In the first stage, Align works separately on each y(m), m ∈ [M]. It iteratively uses w∗

S , . . . ,w
∗
1

(as templates) to find a sequence of nested intervals Qm
S ⊃ · · · ⊃ Qm

1 of locations of y(m) such that

dedit

(
w∗
s , y

(m)
Qm

s

)
≤ 2γts, for each s = S, . . . , 1. (6)

This is done by first finding Qm
S ⊂ [|y(m)|] that satisfies (6) and then repeatedly finding Qm

s ⊂ Qm
s+1

that satisfies (6), for each s = S − 1, . . . , 1. When multiple Qm
s satisfy (6), we pick one arbitrarily;

when no interval Qm
s exists for some s and some m, Align fails and returns ℓ(1) = · · · = ℓ(M) = 1.

In the analysis we show that when x ∼ {0, 1}n and y
∗, y(1), . . . , y(M) ∼ Delδ(x), it is most likely

that every m ∈ [M] satisfies

∣∣∣ source∗(Q∗
s)△ source(m)(Qm

s)
∣∣∣ ≤ 4γts, for each s = S, . . . , 1; (7)

in words, this means that the interval Qm
s of y(m) (almost) comes from the subword of x whose

image is Q∗
s in y

∗. The proof proceeds by induction on s = S, . . . , 1 (see Lemma 22). Assume that
(7) holds for s+ 1: ∣∣∣ source∗(Q∗

s+1)△ source(m)(Qm
s+1)

∣∣∣ ≤ 4γts+1. (8)

Then most likely I∗s := source∗(Q∗
s) is contained in source(m)(Qm

s+1) given (8) and that I∗s is roughly
the middle one-third of source∗(Q∗

s+1) (also recall that γ = 0.01 is a small constant). As a result,
image(m)(I∗s) would most likely satisfy (6) as Qm

s (using that δ is sufficiently smaller than γ and
thus, the number of bits deleted from I∗s in getting both y

∗ and y
(m) is smaller than γts). On the

other hand, let Qm
s be the interval actually picked by Align. To finish the proof of (7), we show

that when (8) is violated, since x ∼ {0, 1}n, the two subwords xsource∗(Q∗
s)

and x
source(m)(Qm

s)
most

likely have large edit distance (see Claim 10), which in turn implies that y
∗
Q∗

s
(i.e., the string w∗

s)

has large edit distance from y
(m)
Qm

s
, which contradicts (6).

12

Second stage — determining a consensus location close to source∗(ℓ∗).
In the second stage, Align uses subwords y

(m)
Qm

1
, m ∈ [M], to determine the final locations

ℓ(1), . . . , ℓ(M). This is done by first identifying a string w that (a) has length at least 0.9t1, and (b)
appears as a subword in at least 95% of y

(m)
Qm

1
, m ∈ [M]. (When multiple strings w satisfy the two

conditions, Align picks one arbitrarily; when no such w exists, Align fails and sets ℓ(m) = 1 for all
m ∈ [M].) Finally Align finds w in y

(m)
Qm

1
and sets ℓ(m) to be the location of the first symbol of w in

y
(m)
Qm

1
, for each m ∈ [M]. (When w appears in y

(m)
Qm

1
at multiple locations, Align picks one of them

arbitrarily as ℓ(m); when w does not appear, Align sets ℓ(m) = 1 by default.)
Using x ∼ {0, 1}n and y

∗, y(1), . . . , y(M) ∼ Delδ(x), we show that most likely ℓ(1), . . . , ℓ(M)

satisfy the two desired conditions in the definition of “success” (i.e. at least 95% of source(m)(ℓ(m)),
m ∈ [M], agree on the same location i ∈ [n], and this consensus location i satisfies (5)). To
give some intuition behind the analysis, we first assume that every m ∈ [M] satisfies (7) and in
particular, ∣∣∣ source∗(Q∗

1)△ source(m)(Qm
1)
∣∣∣ ≤ 4γt1. (9)

Since |Q∗
1| = t1, most likely I∗1 := source∗(Q∗

1) has length close to t1. Let I∗∗1 denote the interval
obtained from I∗1 by extending it in both directions by 4γt1 (so I∗∗1 also has length close to t1 since
γ = 0.01). Using our choice of t1 = 2H + 1, it follows from simple calculations that most likely at
least 95% of y(m), m ∈ [M], are obtained from x with no deletions in I∗∗1 . Let G ⊆ [M] be the set
of such m ∈ [M]. It follows from (9) that y

(m)
Qm

1
comes from xIm1

with no deletions for some interval
Im1 such that |Im1 △ I∗1 | ≤ 4γt1, for each m ∈ G.

At this point it is clear that w = x∩m∈GIm1
would satisfy both conditions (a) and (b) (using

γ = 0.01). On the other hand, if there is a string w that appears in at least 95% of all xIm1 ,
m ∈ [M], then for at least 90% of m ∈ [M], w appears in y

(m)
Qm

1
and m ∈ G. Using the randomness

of x ∼ {0, 1}n, one can argue that most likely no string of length at least 0.9t1 can appear as a
subword more than once in xI∗∗1

. This implies that at least 90% of ℓ(m) returned are in consensus.
To see that the consensus location i ∈ [n] satisfies (5), we recall t1 = 2H + 1 and observe that
source∗(ℓ∗) appears around the middle of I∗∗1 but i (as the unique location where w appears as a
subword in xI∗∗1) lies close to its left end.

4.2 Algorithm Align

We now describe the algorithm Align which takes as input ℓ∗, y∗, y(1), . . . , y(M) with ℓ∗ ∈ [5τ log n :
|y∗| − 5τ log n]. (See Algorithm 2 for a formal presentation of the algorithm.)

Align starts by computing a sequence of nested subwords of y∗ centered at ℓ∗ as follows. Let t1 =
2H + 1 (recall that H ≤ 2 log n) and ts = 3ts−1 for each s ≥ 1, and let S be the smallest integer
such that

tS ≥ τ log n (and hence tS ≤ 3τ log n)

(recall that τ = 500). Given y∗ and ℓ∗, we define the sequence of subwords w∗
1, . . . ,w

∗
S , where w

∗
s is

the ts-bit subword y∗Q∗
s
with Q∗

s = [ℓ∗ − (ts− 1)/2 : ℓ∗+(ts− 1)/2] centered at ℓ∗ in y∗. (Given that
tS ≤ 3τ log n, we always have Q∗

S ⊂ [|y∗|]; indeed we have that there are more than tS elements to
the left and to the right of Q∗

S in [|y∗|], which is the reason why we only consider ℓ∗’s that are at
least 5τ log n away from both ends of y∗.)

We divide the analysis of Align into two parts. In the first part (Section 4.3) we begin by de-
scribing some good events over the randomness of D∗, x, and D(m), m ∈ [M], where D∗ and D(m)

are the sets of deleted locations that gave rise to traces y
∗ and y

(m) of x, respectively. We then
show that these events happen with probability at least 1− 1/n2. The second part of our analysis
(Section 4.4) will be entirely deterministic. We show that Align succeeds on x with respect to

13

Algorithm 2: Align

Input: A location ℓ∗ and a tuple of M + 1 strings y∗, y(1), . . . , y(M)

Output: M locations ℓ(1), . . . , ℓ(M), where ℓ(i) ∈ [|y(i)|] is a location in y(i)

1 Compute w∗
1, . . . ,w

∗
S from y∗ as defined in Section 4.2. Let Qm

S+1 = [|y(m)|] for each
m ∈ [M].

2 for each m ∈ [M] do // First stage

3 for s = S, . . . , 1 do

4 Find any subword y
(m)
Qm

s
in y

(m)
Qm

s+1
(breaking ties arbitrarily) that has edit distance at

most 2γts from w∗
s ; if such a subword does not exist return ℓ(1) = · · · = ℓ(M) = 1.

5 Find any string w of length at least 0.9t1 that appears as a subword in at least 95% of

y
(m)
Qm

1
, m ∈ [M]. If no such w exists, return ℓ(1) = · · · = ℓ(M) = 1. // Second stage

6 for each m ∈ [M] do

7 If y
(m)
Qm

1
has w as a subword, set ℓ(m) to be any location such that y

(m)
Qm

1
has w as a

subword starting at ℓ(m); otherwise (y
(m)
Qm

1
does not contain w as a subword), set

ℓ(m) = 1.

8 return ℓ(1), . . . , ℓ(M)

Figure 2: The Align algorithm.

(y∗, y(1), . . . , y(M)) whenever D∗, x and D(m) : m ∈ [M] satisfy all conditions described in the first
part (Section 4.3).

4.3 Probabilistic Analysis

Let D denote the distribution over subsets of [n] where D ∼ D is drawn by including each integer
of [n] independently with probability δ. We prove Theorem 7 in two steps. In this subsection
we describe an event over x ∼ {0, 1}n and D∗,D(1), . . . ,D(M) ∼ D (as deletions used to ob-
tain y

∗, y(1), . . . , y(M) from x) and show that it happens with probability at least 1 − 1/n2 (see
Corollary 20). In Section 4.4, we show that whenever the event occurs, Align succeeds on x with
respect to (y∗, y(1), . . . , y(M)).

We describe the event by imposing conditions on random variables in the following order: first
D∗ ∼ D, then x ∼ {0, 1}n and finally D(m) ∼ D, m ∈ [M]. We describe conditions on each random
variable conditioning on the event that previous ones have already met conditions imposed on them.

We start with some preliminary claims.

Claim 8. Let t be a positive integer and let 1 ≤ i1 < · · · < it ≤ n and 1 ≤ j1 < · · · < jt ≤ n with
ik 6= jk for all k ∈ [t]. For x ∼ {0, 1}n, we have Pr[xik = xjk for all k ∈ [t]] = 2−t.

Proof. The proof is by induction on t. The base case when t = 1 is trivial. For the inductive step,
we assume that the statement holds for t− 1. Using the induction hypothesis we have

Pr
[
xik = xjk for all k ∈ [t]

]
= Pr

[
xit = xjt

∣∣ xik = xjk for all k ∈ [t− 1]
]
· 2−(t−1).

Without loss of generality we assume that it < jt. Note that xjt is still uniform when conditioned
on values of xik : k ≤ t and xjk : k < t. Therefore the conditional probability on the right hand side
is 1/2. This finishes the induction step and the proof of the claim.

14

Claim 8 has the following corollary which we will use later:

Corollary 9. Let t be a positive integer, and let I 6= I ′ ⊆ [n] be two distinct (but not necessarily
disjoint) intervals of length t. For x ∼ {0, 1}n, we have Pr[xI = xI′] = 2−t.

Claim 8 lets us bound the edit distance between subwords of a random string as follows:

Claim 10. Let t be a positive integer. Let I, I ′ ⊆ [n] be two intervals that satisfy (1) |I| ≥ 25t and
(2) |I △ I ′| ≥ t. Then we have dedit(xI , xI′) < t with probability at most 2−5t when x ∼ {0, 1}n.
Proof. Having dedit(xI , xI′) < t implies that there exist J ⊆ I and J ′ ⊆ I ′ such that |J | + |J ′| < t,
|I \ J | = |I ′ \ J ′| and xI\J = xI′\J ′ . Fixing such a pair (J, J ′) and writing I \ J as i1 < i2 < · · · and
I ′ \ J ′ as j1 < j2 < · · · , we claim that ik 6= jk for all k. To see this we note that having ik = jk for
some k implies that we need to delete at least |I △ I ′| ≥ t bits from I and I ′ even just to match
the lengths of I to the left and to the right of k with those of I ′, a contradiction with |J |+ |J ′| < t.

Therefore, it follows from Claim 8 that xI\J = xI′\J ′ with probability at most 2−(|I|+|I′|−t)/2. It
follows by a union bound on all pairs (J, J ′) that dedit(xI , xI′) < t with probability at most

2−(|I|+|I′|−t)/2 ·
∑

k≤t

(|I|
k

)
·
∑

k≤t

(|I ′|
k

)
≤ 2−(|I|+|I′|−t)/2 · 2H(0.04)(|I|+|I′|) < 2−5t.

This finishes the proof of the claim.

4.3.1 Conditions on D∗ ∼ D
We start with conditions on D∗ ∼ D, i.e., the locations of bits deleted in y

∗. Given an outcome
D∗ ⊆ [n] of D∗, we write L∗ to denote the interval

L∗ := [5τ log n : n− |D∗| − 5τ log n].

For each ℓ∗ ∈ L∗ and s ∈ [S] we write Q∗
s,ℓ∗ to denote the interval of length ts that is centered at

ℓ∗. Let L∗
1 denote the set of ℓ∗ ∈ L∗ such that

∣∣∣source∗(Q∗
s,ℓ∗)

∣∣∣ ≤ (1 + γ)ts, for all s ∈ [S].

Claim 11. With probability at least 1− exp(−n0.1) over D∗, we have |L∗ \L∗
1| ≤ 2−0.2Hn.

Proof. Given D∗, for each ℓ∗ ∈ L∗ \L∗
1 there is an s ∈ [S] such that |source∗(Q∗

s,ℓ∗)| ≥ (1+γ)ts. We
can get from it an interval I with |I| = (1+γ)ts and |image∗(I)| ≤ |Q∗

s,ℓ∗ | = ts by deleting elements
from the right end of source∗(Q∗

s,ℓ∗). We note that the intervals I obtained from different ℓ∗ ∈ L∗\L∗
1

are different. (To obtain the same interval, we must use the same s ∈ [S] because of the length of
I; on the other hand, sharing the same left end and the same s implies that the ℓ∗ is the same as
well.) Therefore, |L∗ \ L∗

1| is at most the number of intervals I ⊆ [n] such that |I| = (1 + γ)ts for
some s ∈ [S] and |image∗(I)| ≤ ts. Below we upperbound the latter when D∗ ∼ D.

We apply the McDiarmid inequality (Theorem 6). We draw D∗ by drawing n independent
random indicator variables X1, . . . ,Xn with Xk = 1 with probability δ (so k ∈ D∗ if Xk = 1). We
use f(X1, . . . ,Xn) to denote the number of I ⊆ [n] such that |I| = (1 + γ)|ts| for some s ∈ [S] and
|image∗(I)| ≤ ts. On the one hand, the probability of an interval I with |I| = (1 + γ)ts satisfying
|image∗(I)| ≤ ts is at most 2|I| · δγts ≤ δγts/2, by using δ ≤ 1/K and making K sufficiently large.
As a result,

E
[
f
]
≤ n

(
S∑

s=1

δγts/2

)
= δΩ(t1)n = δΩ(H)n.

15

On the other hand, flipping one variable Xk can change f by no more than O(tS) = O(log n). Thus
it follows from the McDiarmid inequality that

f(X1, . . . ,Xn) ≤ δΩ(H)n+ Õ(n0.55) ≤ 2−0.2Hn,

with probability at least 1−exp(−n0.1), where we used that δ is sufficiently small and H ≤ 2 log n in
the last inequality. This finishes the proof of the claim.

4.3.2 Conditions on x ∼ {0, 1}n

We fix a D∗ ⊆ [n] that satisfies Claim 11 when describing the conditions for x and D(m) below.
As D∗ is fixed, L∗, L∗

1 and source∗(Q∗
s,ℓ∗) for each ℓ∗ ∈ L∗

1 are all fixed and are no longer random
variables. For each ℓ∗ ∈ L∗

1, for brevity we write I∗s,ℓ∗ to denote source∗(Q∗
s,ℓ∗), and we observe that

for each ℓ∗ ∈ L∗
1 we have

ts ≤ |I∗s,ℓ∗| ≤ (1 + γ)ts. (10)

The conditions for x ∼ {0, 1}n are given in the next three claims.

Claim 12. With probability at least 1 − 1/n3 over x ∼ {0, 1}n, every ℓ∗ ∈ L∗
1 and every interval

I ⊆ [n] with |I △ I∗S,ℓ∗| ≥ 4γtS satisfy dedit(xI∗
S,ℓ∗

, xI) ≥ 4γtS.

Proof. Recall that |I∗S,ℓ∗| ≥ tS and γ = 0.01. Fix an ℓ∗ ∈ L∗
1 and an interval I with |I△I∗S,ℓ∗| ≥ 4γtS .

By Claim 10 we have that dedit(xI∗
S,ℓ∗

, xI) < 4γtS occurs with probability at most 2−20γtS ≤ 1/n100,
using tS ≥ τ log n and γτ = 5. The claim follows by a union bound over no more than n3 pairs of
ℓ∗ and I.

For the next claim we need the following notation. Given ℓ∗ ∈ L∗ and s ∈ [S], we let N(I∗s,ℓ∗)
denote the interval obtained by adding ts elements to both ends of I∗s,ℓ∗ (so N(I∗s,ℓ∗) has length
|I∗s,ℓ∗|+2ts). Note that N(I∗s,ℓ∗) is an interval contained in [n] given that ℓ∗ ∈ L∗ is at least 5τ log n
from both ends of [n− |D∗|] (recall that ts ≤ tS ≤ 3τ log n).

Claim 13. With probability at least 1− exp(−n0.1) over x ∼ {0, 1}n, all but at most 2−0.2Hn many
locations ℓ∗ ∈ L∗

1 satisfy the following condition: For any s ∈ [2 : S] and any interval I ⊆ N(I∗s,ℓ∗)
such that |I △ I∗s−1,ℓ∗ | ≥ 4γts−1, we have dedit(xI , xI∗

s−1,ℓ∗
) ≥ 4γts−1.

Proof. Again we use the McDiarmid inequality. Let f(x1, . . . , xn) denote the number of ℓ∗ ∈ L∗
1

that violates the condition. We first upperbound the probability over x1, . . . , xn of a fixed ℓ∗ ∈ L∗
1

violating the condition.
For each s ∈ [2 : S] and each interval I ⊆ N(I∗s,ℓ∗) with |I △ I∗s−1,ℓ∗| ≥ 4γts−1 (note that

I∗s−1,ℓ∗ has length at least ts−1), by Claim 10 the probability of dedit(xI , xI∗
s−1,ℓ∗

) < 4γts−1 is at
most 2−20γts−1 . As ∣∣N(I∗s,ℓ∗)

∣∣ ≤ |I∗s,ℓ∗|+ 2ts ≤ (3 + γ)ts,

by (10), it follows from a union bound that each ℓ∗ in L∗
1 violates the condition with probability at

most ∑

s∈[2:S]

O(t2s) · 2−20γts−1 ≤
∑

s∈[2:S]

2−19γts−1 ≤ 2−18γt1 ≤ 2−0.3H ,

using t1 = 2H + 1 and H is sufficiently large, and hence E[f] ≤ 2−0.3Hn. Given that each variable
xi can change f by no more than O(log n), the lemma follows from arguments similar to the proof
of Claim 11.

16

Claim 14. With probability at least 1− exp(−n0.1) over x ∼ {0, 1}n, all but at most 2−0.2Hn many
ℓ∗ ∈ L∗

1 are such that no two subwords of xN(I∗
1,ℓ∗

) of length H are the same.

Proof. The probability of an ℓ∗ ∈ L∗
1 violating the above condition is at most O(t21) · 2−H ≤ 2−0.5H

by Corollary 9. The proof follows from a similar application of McDiarmid inequality.

4.3.3 Conditions on D(1), . . . ,D(M) ∼ D
We fix an outcome D∗ that satisfies Claim 11 and a string x ∈ {0, 1}n that satisfies Claim 12,
Claim 13, and Claim 14.

We now describe some useful conditions on D(1), . . . ,D(M). We start with two conditions for
every D(m).

Claim 15. With probability at least 1− 1/n3 over D ∼ D, every interval I ⊆ [n] of length at most
(1 + 3γ)tS satisfies that |image(I)| ≥ |I| − γtS.

Proof. For each I ⊆ [n] of length at most (1+3γ)tS , we have |image(I)| < |I|−γtS with probability
at most 2|I| · δγtS ≤ δγtS/2, where the inequality uses that δ is sufficiently small. Using tS ≥ τ log n
we have that δγtS/2 ≤ δ5 logn/2 ≤ 1/n5 (as δ is sufficiently small). The claim then follows from a
union bound.

Remark 16. We note that the event described in Claim 15 implies that any interval Q ⊆ [n−|D|]
with length at most (1+ 2γ)tS must satisfy |source(Q)| ≤ |Q|+ γtS . To see this, let I = source(Q)
and assume for a contradiction that |I| > |Q|+ γtS . If |I| ≤ (1+ 3γ)tS then I violates the event of
Claim 15; if |I| > (1 + 3γ)tS then we can delete bits of I from the beginning to obtain an interval
I ′ with |I ′| = (1+ 3γ)tS , which satisfies |image(I ′)| < |image(I)| ≤ (1 + 2γ)tS and thus, I ′ violates
the condition of Claim 15.

Let L∗
2 be the set of all ℓ∗ ∈ L∗

1 that satisfy the conditions in Claim 13 and Claim 14.

Claim 17. With probability at least 1 − exp(−n0.1) over D ∼ D, all but at most 2−0.2Hn many
ℓ∗ ∈ L∗

2 satisfy the following condition: For every s ∈ [2 : S] and every interval I ⊆ N(I∗s,ℓ∗) of
length at most (1 + 3γ)ts−1, we have |image(I)| ≥ |I| − γts−1.

Proof. We upper bound the probability of an ℓ∗ ∈ L∗
2 violating the condition above, and then apply

the McDiarmid inequality. Fixing an ℓ∗ ∈ L∗
2, a value of s ∈ [2 : S], and any interval I ⊆ N(I∗s,ℓ∗)

of length at most (1 + 3γ)ts−1, I violates the condition with probability 2|I| · δγts−1 ≤ δγts−1/2. By
a union bound (over all possibilities for s and I), the probability of ℓ∗ violating the condition is at
most ∑

s∈[2:S]

O(t2s) · δγts−1/2,

and hence the expected number of ℓ∗ ∈ L∗
2 that violate the condition is at most n times this, which

is at most 2−0.3Hn using that ts−1 ≥ t1 = 2H + 1 and δ is sufficiently small. Finally, given that
the outcome of each independent event (of whether an element in [n] is included in D or not) can
change the number of ℓ∗ that satisfy the condition by at most O(log n), the lemma follows from
arguments similar to the proof of Claim 11.

Remark 18. Remark 16 applies similarly: Whenever the condition holds for ℓ∗ ∈ L∗
2, any interval

Q ⊆ image(N(I∗s,ℓ∗)) for any s with length at most (1 + 2γ)ts−1 satisfies |source(Q)| ≤ |Q|+ γts−1.

The last condition considers D(1), . . . ,D(M) together:

17

Claim 19. With probability at least 1 − exp(−n0.1) over D(1), . . . ,D(M) ∼ D, all but at most
2−0.2Hn many ℓ∗ ∈ L∗

2 satisfy the following condition: At least 95% of m ∈ [M] satisfy

N(I∗1,ℓ∗) ∩D(m) = ∅,

i.e., no bit of the subword xN(I∗
1,ℓ∗

) of x is deleted in at least 95% of the traces y
(1), . . . , y(M).

Proof. Consider drawing D(1), . . . ,D(M) by drawing nM independent indicator random variables
X

(m)
k , k ∈ [n] and m ∈ [M], with k ∈ D(m) if X

(m)
k = 1. We write f to denote the number of ℓ∗ ∈ L∗

2

such that at least 5% of m ∈ [M] have N(I∗1,ℓ∗) ∩D(m) 6= ∅. On the one hand, fixing an outcome of
ℓ∗, the probability of N(I∗1,ℓ∗) ∩D(m) = ∅ is at most 7δH given that |N(I∗1,ℓ∗)| ≤ (3 + γ)t1 ≤ 7H ,
and hence the probability of ℓ∗ being one of the locations counted in f is at most 2M · (7δH)0.05M .
Recalling the constraint Equation (3) on H, we have that

δH =
1

K
· δM log

(
1

δM

)
≤

√
δM

K
(11)

where the inequality holds given that δM is sufficiently small (observe from Equation (2) that
δM ≤ 1/K). Hence the probability is at most

2M · (7δH)0.05M ≤ (δM)0.025M ≤ 2−0.3H

where the first inequality is by Equation (11) and the second uses Equation (3) and the fact that K
is sufficiently large. Recalling that H = O(log n), the claim follows from the McDiarmid inequality
using similar arguments to those given above and the fact that changing the outcome of any one
of the nM independent indicator random variables can only change f by at most O(H).

4.3.4 Conclusion of Probabilistic Analysis

We summarize our probabilistic analysis with the following corollary, which combines all the claims
from this subsection.

Corollary 20. With probability at least 1− 1/n2 over the randomness of D∗, x,D(1), . . . ,D(M), all
of the following hold:

1. D∗ satisfies Claim 11;

2. x satisfies Claim 12, Claim 13 and Claim 14;

3. Every D(m), m ∈ [M], satisfies Claim 15 and Claim 17, and

4. D(1), . . . ,D(M) together satisfy Claim 19.

4.4 Deterministic Analysis

The rest of Section 4 is dedicated to proving the following lemma, which finishes the proof of
Theorem 7 (and hence Theorem 4):

Lemma 21. Align succeeds on x with respect to y∗, y(1), . . . , y(M) when they satisfy Corollary 20.

Assume that x,D∗,D(1), . . . ,D(M) satisfy all conditions of Corollary 20. Then we have that all
but at most O(M2−0.2Hn) ≤ 2−0.1Hn (where the M comes from a union bound in item (vi) and the
inequality follows from H > M/K ≥

√
M using Equation (3) and M ≥ K2 from Equation (2) and

thus, 20.1H is enough to cover O(M) when M is sufficient large) many ℓ∗ ∈ L∗ satisfy the following
list of conditions (below we use I∗s to denote I∗s,ℓ∗ for convenience given that ℓ∗ is fixed in the rest
of the proof):

18

y
∗

x

y
(m)

Q∗

s−1

Q∗
s

I∗s = source∗(Q∗
s)

source(m)(Qm
s)

N(I∗s)

Qm
s

image(m)(N(I∗s))

Figure 3: First stage of Align: The 3 red lines are the subwords y∗Q∗

s−1
, xI∗s−1=source∗(Q∗

s−1)
, and

y
(m)

Qm=image(m)(I∗s−1)
. The blue lines are the subwords x

source(m)(Qm
s−1)

, and y
(m)
Qm

s−1
found by Align.

In the completeness argument, we have Qm = image(m)(I∗s−1) ⊆ Qm
s because I∗s−1 ⊆ I∗s and

|source(m)(Qm
s)△ I∗s | is small. In the soundness argument, as Qm

s−1 ⊆ Qm
s and |source(m)(Qm

s)△ I∗s |
is small, we have I := source(m)(Qm

s−1) ⊆ N(I∗s), which implies Qm
s−1 ⊆ image(m)(N(I∗s)).

(i) |I∗s | < (1 + γ)ts for every s ∈ [S] (Claim 11);

(ii) Every interval I ⊆ [n] with |I △ I∗S| ≥ 4γtS , has dedit(xI , xI∗S) ≥ 4γtS (Claim 12);

(iii) For all s ∈ [2 : S] and intervals I ⊆ N(I∗s) with |I △ I∗s−1| ≥ 4γts−1, it holds that
dedit(xI , xI∗s−1

) ≥ 4γts−1 (Claim 13);

(iv) No two subwords of xN(I∗1)
of length H are the same (Claim 14);

(v) (Claim 15 and Remark 16) For all m ∈ [M], |image(m)(I∗S)| ≥ |I∗S | − γtS and every interval
Qm ⊆ [|y(m)|] of length at most (1 + 2γ)tS satisfies

∣∣∣source(m)(Qm)
∣∣∣ ≤ |Qm|+ γtS;

(vi) (Claim 17 and Remark 18) For all m ∈ [M] and s ∈ [2 : S], |image(m)(I∗s−1)| ≥ |I∗s−1| − γts−1

and every interval Qm ⊆ image(N(I∗s)) of length at most (1 + 2γ)ts−1 satisfies

∣∣∣source(m)(Qm)
∣∣∣ ≤ |Qm|+ γts−1;

(vii) At least 95% of m ∈ [M] satisfy that N(I∗1) ∩D(m) = ∅ (Claim 19).

19

4.4.1 First stage: Locating a small neighborhood of source∗(ℓ∗) in each trace y(m)

We prove the following lemma for the first stage of Align(ℓ∗, y∗, y(1), . . . , y(M)) (lines 2–4):

Lemma 22. For every m ∈ [M], the final interval Qm
1 found by Align in the first stage satisfies

∣∣∣source(m)(Qm
1)△ I∗1

∣∣∣ ≤ 4γt1. (12)

Proof. We prove by induction on s = S, . . . , 1 that

∣∣∣source(m)(Qm
s)△ I∗s

∣∣∣ ≤ 4γts. (13)

We start with the base case s = S. First we establish completeness by showing that there is an
interval Qm ⊂ [|y(m)|] such that dedit(w

∗
S , y

(m)
Qm) ≤ 2γtS . To this end, let Qm = image(m)(I∗S), and

observe that this is an interval in [|y(m)|]. We have

dedit(w
∗
S , y

(m)
Qm) ≤ dedit(w

∗
S , xI∗S) + dedit(y

(m)
Qm , xI∗S) < 2γtS ,

where we used (i) |I∗S | < (1 + γ)tS to upper bound the first edit distance by γtS , and (v) |Qm| ≥
|I∗S |−γtS to upper bound the second edit distance by γtS. Next we establish soundness by showing
that any interval Qm

S picked by Align satisfies (13). Let I = source(m)(Qm
S). Then we have

dedit(xI , xI∗S) ≤ dedit(xI , y
(m)
Qm

S
) + dedit(y

(m)
Qm

S
,w∗

S) + dedit(w
∗
S , xI∗S) < γtS + 2γtS + γtS = 4γtS . (14)

To see that dedit(xI , y
(m)
Qm

S
) ≤ γtS we first notice that |Qm

S | ≤ (1+2γ)tS because dedit(y
(m)
Qm

S
,w∗

S) ≤ 2γtS .
It then follows from item (v) that |I| ≤ |Qm

S |+ γtS , which gives dedit(xI , y
(m)
Qm

S
) ≤ γtS . For the last

summand, as in the completeness argument (i) gives that |I∗S | < (1+γ)tS and hence dedit(w
∗
S , xI∗S) ≤

γtS . The soundness part then follows from (14) and (ii).
With the base case in hand, assume for the inductive step that (13) holds for some s ∈ [2 : S].

We use this to prove it for s− 1.
The completeness proof is similar to the base case: let Qm = image(m)(I∗s−1). It follows from

(13) on s that Qm ⊆ Qm
s . Then

dedit(w
∗
s−1, y

(m)
Qm) ≤ dedit(w

∗
s−1, xI∗s−1

) + dedit(y
(m)
Qm , xI∗s−1

) ≤ 2γts−1,

where we used (i) and (vi).
The soundness argument is also similar to the base case. Let Qm

s−1 be the interval found by
Align and let I = source(m)(Qm

s−1). Then Qm
s−1 ⊆ Qm

s and it follows from (13) (and the definition
of N(·)) that

I = source(m)(Qm
s−1) ⊆ source(m)(Qm

s) ⊆ N(I∗s)

and thus, Qm
s−1 ⊆ image(N(I∗s)). We also have |Qm

s−1| ≤ (1 + 2γ)ts−1 given that y
(m)
Qm

s−1
has edit

distance at most 2γts−1 from w∗
s−1 (which is of length ts−1). As a result, analogous to (14), we

have

dedit(xI , xI∗s−1
) ≤ dedit(xI , y

(m)
Qm

s−1
) + dedit(y

(m)
Qm

s−1
,w∗

s−1) + dedit(w
∗
s−1, xI∗s−1

) < 4γts−1, (15)

where dedit(xI , y
(m)
Qm

s−1
) ≤ γts−1 follows as in the base case but now using (vi) rather than (v). The

soundness follows from (15) and (iii), and the inductive step is completed.

20

y
∗

x

y
(m),m ∈ G

Q∗

1

N(I∗1)

I∗1 = source∗(Q∗

1)

Figure 4: Second stage of Align: The red line is the subword y∗Q∗

1
= w∗

1 and it appears as the discon-

nected red segments in xsource∗(Q∗

1)
. The blue, green and purple lines are the subwords y

(m)
Qm

1
,m ∈ G

and x
Im=source(m)(Qm

1)
,m ∈ G. Since m ∈ G, we have that N(I∗1) ∩D(m) = ∅, and so y

(m)
Qm

1
= xIm .

The orange line is the common subword x∩m∈GIm that appears in the three subwords y
(m)
Qm

1
.

4.4.2 Second stage: Determining a consensus location close to source∗(ℓ∗).

We finish the proof of Lemma 21 with the following lemma for the second stage of Align:

Lemma 23. Locations ℓ(1), . . . , ℓ(M) returned by Align satisfy the following two conditions: (A)
at least 90% of source(m)(ℓ(m)), m ∈ [M], agree on the same location i ∈ [n] and (B) the consensus
location i satisfies

source∗(ℓ∗)− 2H ≤ i ≤ source∗(ℓ∗). (16)

Proof. It follows from Lemma 22 that for every m ∈ [M], the interval Qm
1 satisfies (12). Let G

be the set of m ∈ [M] such that N(I∗1) ∩ D(m) = ∅; by (vii) we have that |G| ≥ 0.95M. Let
Im = source(m)(Qm

1). It follows from (12) that every m ∈ [M] satisfies |Im △ I∗1 | ≤ 4γt1 and thus
Im ⊆ N(I∗1). As N(I∗1)∩D(m) = ∅ we have y

(m)
Qm

1
= xIm (and source(m) induces a bijection between

Qm
1 and Im) for each m ∈ G. Moreover,

∣∣∣∣∣
⋂

m∈G

Im

∣∣∣∣∣ ≥ (1− 2 · 4γ)t1 ≥ 0.9t1,

which implies the completeness part: w := x∩m∈GIm appears as a subword in at least 95% of y
(m)
Qm

1

(i.e., every m ∈ G) and has length at least 0.9t1.
Finally, we prove the soundness part: Assume that w is a string of length at least 0.9t1 and

appears as a subword in at least 95% of y
(m)
Qm

1
, m = 1, . . . ,M . Then at least 90% of m ∈ [M]

have m ∈ G and contain w as a subword. Let G′ ⊆ G denote the set of such m ∈ G. It follows
from (iv) that source(m)(ℓ(m)) are the same for all m ∈ G′, which consists of at least 90% of [M].
To prove (16), we take any m ∈ G′ and have that source(m)(ℓ(m)) is at least 0.9t1 away from the
right end of Im; on the other hand, source∗(ℓ∗) is no more than H + γt1 away from the right end of
I∗1 , using |I∗1 | < (1 + γ)t1. Given that the right ends of Im and I∗1 differ by no more than 4γt1, we
have source(m)(ℓ(m)) ≤ source∗(ℓ∗). Similarly, source(m)(ℓ(m)) is at least as large as the left end of

21

Im but source∗(ℓ∗) is similarly no more than H+γt1 away from the left end of I∗1 . Given that their
left ends differ by no more than 4γt1, we have that source(m)(ℓ(m))− source∗(ℓ∗) ≤ 4γt1 +H + γt1,
which is at most 2H by (4) and the definition of t1 = 2H + 1.

5 The BMA algorithm and proof of Theorem 5

The goal of this section is to prove Theorem 5 which is restated below in full detail. As mentioned
in the introduction, the BMA algorithm (which stands for Bitwise Majority Alignment) was first
described and analyzed in [BKKM04]. Recall the two parameters δ (deletion rate) and M (number
of traces) that satisfy (2) for some sufficiently large constant K, and the positive integer H ≤ 2 log n
given in (3). Let us set some parameters: define

L := 8H, G := L/2, and R := L20.01L. (17)

We prove in this section that BMA reconstructs any source string x̃ ∈ {0, 1}R exactly with M traces
from Delδ(x̃) with high probability3, when x̃ does not contain any “long deserts.” We now recall
the definition of deserts from [CDL+21a].

Definition 24. A string is said to be a k-desert for some k ≥ 1 if it is the prefix of s∞ for some
string s ∈ {0, 1}k . We say a string is a long desert if it is a k-desert of length L for some k ≤ G.

The algorithm BMA is described in Algorithm 3, and its input consists of M traces z(1), . . . , z(M)

of x̃.4 We restate the main theorem of this section:

Theorem 25 (Detailed statement of Theorem 5). Let x̃ ∈ {0, 1}R be a string that does not contain
any long desert. Let z(1), . . . , z(M) ∼ Delδ(x̃) be independent traces. With probability at least 1−2−H ,
BMA returns exactly x̃ and in every round t ∈ [R], the majority is reached by at least 90% of the M
bits that are pointed to in z

(1), . . . , z(M).

Similar to the previous section, we write D(m) ⊆ [R] to denote the set of positions deleted in x̃

to obtain z(m), and use them to define source(m)(·); the only difference is that we set

source(m)
(
|z(m)|+ ℓ

)
= R+ ℓ

for every m ∈ [M] and ℓ ≥ 1 since the pointer into z(m) may move beyond z(m) into the padded
∗’s (this can be viewed as adding ∗’s to the end of the unknown x̃ which are never deleted and
are where the ∗’s at the end of z(m) come from). As introduced in Algorithm 3, let current(m)(t)
denote the location of the pointer of z(m) at the start of the t-th step of BMA. In addition, let

last(m)(t) := source(m)
(
current(m)(t)

)
and dist(m)(t) := last(m)(t)− t.

Informally, dist(m)(t) captures the number of positions in x̃ that the pointer into z(m) has gotten
“ahead of where it should be.”

To prove Theorem 25, it suffices to show that with high probability, for every t∗ ∈ [R] it holds
that dist(m)(t∗) = 0 for at least 90% of m ∈ [M]. We will analyze the behavior of {dist(m)(·)}m∈[M]

3We use x̃ instead of x for the source string because later in the next section the role of x̃ will be played by various
different substrings of x of length R.

4Note that in Reconstruct, we run BMA on M +1 strings obtained from y
∗, y(1), . . . , y(M) instead of M strings. In

its analysis, however, we pretend the string from y
∗ is not present and focus on what happens when running BMA on

the other M strings only. This is why we focus on analyzing BMA running on M strings in this section.

22

over random traces z
(1), . . . , z(M) ∼ Delδ(x̃). The high level goal of the analysis is to show that

for each m ∈ [M], the sequence of random variables dist(m)(1), . . . ,dist(m)(R) are nonnegative and
negatively drifted (i.e., dist(m)(t) tends to decrease as t grows).

Note that {dist(m)(·)}m∈[M] are not independent over m due to correlations from the consensus
w they produce together and thus this ensemble of random variables can be difficult to analyze.
To ease the analysis we introduce a new set of random variables denoted by dist

(m)
ideal

(·) for each
m ∈ [M]. They are identical to dist(m)(·) with one key difference: in Step 4 of BMA, we set wt = x̃t
instead of the majority of the bits. Note that this makes {dist(m)

ideal
(·)}m∈[M] independent over m

and in fact, identically distributed. Hence, it suffices to analyze any one of them which we denote
by distideal(·) over the draw of z ∼ Delδ(x̃); we let D denote the set of positions deleted in z. We
define currentideal(·) and lastideal(·) similarly.

The following is a key technical lemma.

Lemma 26. For every t∗ ∈ [R], distideal(t
∗) = 0 with probability at least 1− 2δL over z ∼ Delδ(x̃).

We first use Lemma 26 to prove Theorem 25.

Proof of Theorem 25 using Lemma 26. Let z(1), . . . , z(M) ∼ Delδ(x̃). For each t ∈ [R], let Et be the
event that ∑

m∈[M]

1
[
dist

(m)
ideal

(t) = 0
]
≥ 0.9M

for each t ∈ [R]. When the event Et holds for every t ∈ [R], we have w = x̃ by an induction on t.
This implies that the two sets of random variables (dist(m)(·) and dist

(m)
ideal

(·)) are indeed identical,
which in turn implies for every t ∈ [R], dist(m)(t) = 0 for at least 90% of m ∈ [M].

As a result it suffices to understand the probability of Et. Given that these random variables
are independent, it follows from Lemma 26 and Equation (3) that for every t ∈ [R]:

Pr
[
Et

]
≥ 1− 2M ·

(
2δL

)0.9M ≥ 1−
(
48δM

K
log

1

δM

) 0.9HK
log(1/(δM))

≥ 1− 2−0.45HK .

where the last inequality uses
48δM

K
log

(
1

δM

)
≤

√
δM

which holds when K is sufficiently large. It follows from a union bound (using R = L20.01L) that

Pr
[
Et holds for all t ∈ [R]

]
≥ 1−R · 2−0.45HK ≥ 1− 2−H

by setting K to be sufficiently large. This finishes the proof of the theorem.

5.1 Proof of Lemma 26

In the rest of the section we prove Lemma 26. We start with three simple claims (which may also
be found in [CDL+21a]); these claims hold for any trace z (and deletions D):

Claim 27. For each t ∈ [R], letting b be the (lastideal(t))-th bit of x̃, we have

1. If x̃t 6= b, then distideal(t+ 1) = distideal(t)− 1.

2. If x̃t = b, then distideal(t+ 1) = distideal(t) + ℓ, where ℓ is the nonnegative integer with

lastideal(t) + 1, . . . , lastideal(t) + ℓ ∈ D and lastideal(t) + ℓ+ 1 /∈ D. (18)

23

Algorithm 3: Algorithm BMA

Input: A multiset {z(1), . . . , z(M)} of M strings

Output: Either ε, the empty string, or a string w ∈ {0, 1}R
1 For each m ∈ [M], concatenate R many ∗’s to the end of z(m)

2 Set t = 1 and current(m)(t) = 1 for each m ∈ [M]

3 while t ≤ R do

4 Set wt ∈ {0, 1, ∗} to be the majority of the M symbols z
(m)

current(m)(t)
, m ∈ [M]

5 For each m ∈ [M], set

current(m)(t+ 1) =




current(m)(t) + 1 if z

(m)

current(m)(t)
= wt

current(m)(t) otherwise

6 Increment t

7 return w if w does not contain any ∗ (so w ∈ {0, 1}R) or ε if w contains at least one ∗

Figure 5: The Algorithm BMA

Proof. The first item follows from the observation that currentideal(t+ 1) = currentideal(t).
For the second item, we have currentideal(t+ 1) = currentideal(t) + 1. It now points to the next

bit in z(m), which is the bit of x̃ indexed by lastideal(t) + ℓ+ 1 with ℓ defined in (18).

We next have the following two easy observations:

Claim 28. We have distideal(t) ≥ 0 and lastideal(t) ≤ R+ 1 for every t ∈ [R].

Proof. The proof of the first part is by induction. Using Claim 27, distideal(t+1) ≥ distideal(t)− 1.
So if distideal(t) > 0 then distideal(t+ 1) ≥ 0. Otherwise, if distideal(t) = 0, we can apply the second
item of Claim 27 to conclude that distideal(t+1) ≥ 0. For the second part note that once lastideal(t)
reaches R+ 1 (i.e., currentideal(t) reaches |y∗|+ 1), it cannot move further as x is a string in {0, 1}
but the current bit in y∗ is ∗.

Claim 29. If distideal(t) = · · · = distideal(t+ L) = k for some k ∈ [G], then x̃ has a long desert.

Proof. We have that x̃t+ℓ is equal to the lastideal(t+ ℓ)-th bit of x̃ for all ℓ ∈ [0 : L− 1], and hence
using Claim 27, we have x̃t+ℓ = x̃t+k+ℓ for all ℓ ∈ [0 : L− 1]. The claim follows.

We now start to prove Lemma 26. Let t∗ ∈ [R] be the round we consider in Lemma 26, with
t∗ = t0 + sL such that t0 ∈ {0, 1, . . . , L− 1} and s ≤ 20.01L. We observe that

distideal(t0), distideal(t0 + L), . . . , distideal(t0 + sL) (19)

is a Markov process and look at how distideal(t0+(ℓ+1)L) changes conditioned on distideal(t0+ ℓL).
To this end, let us condition on distideal(t0 + ℓL) = ∆ ≥ 0, so lastideal(t0 + ℓL) = t0 + ℓL +∆.

Conditioning on this, each bit of x̃ after t0 + ℓL+∆ is deleted independently and added to D with
probability δ. Let β be the nonnegative random variable such that either

t0 + ℓL+∆+ β is at most R and does not belong to D and
{
t0 + ℓL+∆+ 1, . . . , t0 + ℓL+∆+ β

}
∩D = L,

24

i.e., t0+ ℓL+∆+β is the unique location in x that is the L-th undeleted position after t0+ ℓL+∆,
or β is chosen using t0+ ℓL+∆+β = R+1 if no such β exists. Since lastideal(·) can move forward
by at most L undeleted positions in steps t0 + ℓL+ 1, . . . , t0 + (ℓ+ 1)L, it follows from the second
part of Claim 28 that

lastideal
(
t0 + (ℓ+ 1)L

)
≤ t0 + ℓL+∆+ β

and thus, we have the following upper bound:

distideal
(
t0 + (ℓ+ 1)L

)
≤ distideal

(
t0 + ℓL

)
+ β − L.

Moreover, when ∆ ≤ G and β ≤ L (including β = L), we have

distideal
(
t0 + (ℓ+ 1)L

)
≤ max

(
distideal

(
t0 + ℓL

)
− 1, 0

)
.

It holds for β = L because otherwise by Claim 29, the subword of x̃ in [t0 + ℓL : t0 + (ℓ+ 1)L− 1]
would be a long desert, contradicting with our assumption that x̃ has no long deserts.

In the next portion of the analysis we relate this Markov process to a simpler one for which the
transition probabilities are the same for all states. Note that β is distributed as

min
(
R+ 1− (t0 + ℓL+∆),β∗

)

where β∗ denotes the sum of L i.i.d. geometric random variables with success probability 1−δ.5 So β
is stochastically dominated by β∗.6 Let α := δL, which can be made sufficiently small as δL ≤ 8/K
and K can be made sufficiently large. We use the following rough estimates for the probability of
β∗ = L+ c for c = 0, 1, . . .: When c = 0 we have

Pr
[
β∗ = L

]
= (1− δ)L ≥ 1− δL = 1− α >

1− 2α

1− α
. (20)

(The reason for using the lower bound (1− 2α)/(1 − α) in the second inequality will become clear
soon.) When c ≥ 1,

Pr
[
β∗ = L+ c

]
=

(
L+ c− 1

c

)
δc(1− δ)L ≤

(
Lδ
)c

= αc. (21)

Inspired by these estimates, we introduce the following simpler Markov chain X0,X1, . . . ,Xs ≥ 0,
where (1) X0 is distributed the same as distideal(t0), and (2) for each Xℓ+1, if Xℓ > G, then

Xℓ+1 =

{
Xℓ with probability (1− 2α)/(1 − α)

Xℓ + c with probability αc for each c ≥ 1
; (22)

if Xℓ ≤ G, then

Xℓ+1 =

{
max(Xℓ − 1, 0) with probability (1− 2α)/(1 − α)

Xℓ + c with probability αc for each c ≥ 1
. (23)

Note that the use of (1 − 2α)/(1 − α) makes sure that the probabilities sum to 1. Below we will
analyze X0,X1, ...,Xs in lieu of Equation (19).

Lemma 26 follows directly by combining the following two claims:

5We use the version of the geometric distribution for which the outcome of a draw is the total number of trials up
to and including the first success (hence the support is {1, 2, 3, . . . }).

6Recall that a random variable X is said to stochastically dominate Y if Pr[X ≥ a] ≥ Pr[Y ≥ a] for all a.

25

Claim 30. Pr
[
distideal(t

∗) ≥ c
]
≥ Pr

[
Xs ≥ c

]
for every c.

Claim 31. Pr
[
Xs = 0

]
≥ 1− 2α.

Proof of Claim 30. We prove by induction that for every ℓ ∈ [0 : s], Xℓ stochastically dominates
distideal(t0 + ℓL). The basis is trivial since X0 has the same distribution as distideal(t0).

To prove the case with Xℓ+1 using Xℓ, we make two simple observations:

1. First, for any a ≥ b, the distribution of Xℓ+1 conditioned on Xℓ = a stochastically
dominates the distribution of Xℓ+1 conditioned on Xℓ = b.

2. Next for any a, it follows from Equations (20) and (21) that the distribution of Xℓ+1

conditioned on Xℓ = a stochastically dominates that of distideal(t0 + (ℓ+ 1)L) conditioned
on distideal(t0 + ℓL) = a.

It follows from these two observations, as well as the inductive hypothesis on ℓ, that Xℓ+1 stochas-
tically dominates distideal(t0 + (ℓ+ 1)H). This finishes the proof of the claim.

Proof of Claim 31. We prove by induction on ℓ = 0, 1, . . . , s that the distribution of Xℓ satisfies

Pr
[
Xℓ = c

]
≤ α

1− 2α
·
(
2α(1 − α)

1− 2α

)c−1

, for every c ∈ [G]; (24)

Pr
[
Xℓ > G

]
≤ (ℓ+ 1) · α

1− α

(
2α(1− α)

1− 2α

)G

. (25)

Before working on the induction, we have from these two items that

Pr
[
Xs = 0

]
≥ 1− α

1− 2α
·
∑

a≥0

(
2α(1 − α)

1− 2α

)a

− (s+ 1) · α

1− α

(
2α(1 − α)

1− 2α

)G

≥ 1− α

1− 4α+ 2α2
− α

2

≥ 1− 2α.

The second inequality used s ≤ 20.01L, G = L/2 and the fact that α can be made sufficiently small.
The last inequality also used that α is sufficiently small. We work on the induction below.

For the base case X0, recall that this random variable has the same distribution as distideal(t0),
and hence we have for each c ≥ 1,

Pr
[
distideal(t0) = c

]
≤
∑

a≥c

(
t0 + c− 1

a

)
δa ≤

∑

a≥c

(Lδ)a ≤ αc

1− 2α
·
(
2(1− α)

1− 2α

)c−1

,

(where the second inequality above uses t0 ≤ L− 1 and the third uses that α is sufficiently small)
and also

Pr
[
distideal(t0) > G

]
≤

∑

c≥G+1

∑

a≥c

(
t0 + c− 1

a

)
δa ≤ αG+1

(1− α)2
≤ α

1− α

(
2α(1 − α)

1− 2α

)G

.

26

For the induction, we assume the statement holds for ℓ and use it to prove the case with ℓ+ 1.
Using Equation (24), for every c ∈ [G− 1], we have

Pr
[
Xℓ+1 = c

]
≤

c−1∑

a=0

αc−a ·Pr
[
Xℓ = a

]
+

1− 2α

1− α
·Pr

[
Xℓ = c+ 1

]
(by Equation (23))

≤ αc +

c−1∑

a=1

αc−a α

1− 2α

(
2α(1 − α)

1− 2α

)a−1

+
1− 2α

1− α

α

1− 2α

(
2α(1 − α)

1− 2α

)c

= αc +
αc

1− 2α

c−1∑

a=1

(
2(1 − α)

1− 2α

)a−1

+
α

1− α

(
2α(1 − α)

1− 2α

)c

(26)

= αc


1 +

1

1− 2α

(
2(1−α)
1−2α

)c−1
− 1

2(1−α)
1−2α − 1

+
α

1− α

(
2(1 − α)

1− 2α

)c




= αc

((
2(1 − α)

1− 2α

)c−1

+
α

1− α

(
2(1 − α)

1− 2α

)c
)

(27)

=
α

1− 2α

(
2α(1 − α)

1− 2α

)c−1

.

The proof for c = G is similar except that we do not have the term for Xℓ = G+ 1.
Finally using Equations (24) and (25) we have

Pr
[
Xℓ+1 > G

]
≤ Pr

[
Xℓ > G

]
+
∑

b>G

G∑

a=0

αb−a ·Pr
[
Xℓ = a

]
(by definition of X·)

≤ Pr
[
Xℓ > G

]
+

1

1− α

G∑

a=0

αG+1−a ·Pr
[
Xℓ = a

]

≤ Pr
[
Xℓ > G

]
+

αG+1

1− α

(
1 +

1

1− 2α

G∑

a=1

(
2(1 − α)

1− 2α

)a−1
)

(by Equation (24))

= Pr
[
Xℓ > G

]
+

α

1− α

(
2α(1 − α)

1− 2α

)G

(28)

≤ (ℓ+ 2) · α

1− α

(
2α(1 − α)

1− 2α

)G

, (by Equation (25))

where Equation (28) used similar derivation between Equations (26) and (27) earlier. This finishes
the induction and the proof of the claim.

6 Main Algorithm

Let δ and M be two parameters that satisfy Equations (2) and (3). Recall the following parameters
used in our analysis of Align and BMA:

τ = 500, H =
M

K
log

(
1

δM

)
≤ 2 log n, L = 8H, G = L/2 = 4H and R = L20.01L.

27

Algorithm 4: Reconstruct

Input: A positive integer n and a tuple of (M + 1) strings y∗, y(1), . . . , y(M)

Output: A binary string w

1 Set ℓ∗ = 5τ log n and w = ε

2 while ℓ∗ ≤ |y∗| −R and ℓ∗ ≤ |y∗| − 5τ log n do

3 Run Align(ℓ∗, y∗, y(1), . . . , y(M)) to obtain a tuple of locations (ℓ(1), . . . , ℓ(M))

4 Run BMA(y∗, y(1), . . . , y(M); ℓ∗, ℓ(1), . . . , ℓ(m)) to obtain a binary string (ε or in {0, 1}R)
5 Concatenate the string returned by BMA to the end of w

6 Set ℓ∗ to be the final pointer of y∗ in the run of BMA above and increment it

7 return w.

Figure 6: The Algorithm Reconstruct

(Note that L ≤ 16 log n, G ≤ 8 log n and R ≤ O(n0.16 log n).) Our main (deterministic) algorithm
Reconstruct is described in Figure 6, where we use

BMA
(
y∗, y(1), . . . , y(M); ℓ∗, ℓ(1), . . . , ℓ(M)

)

to denote running BMA on the suffix of y∗ starting at location ℓ∗ and the suffix of each y(m) starting
at location ℓ(m). Recall that BMA either returns the empty string ε or a string w ∈ {0, 1}R.

We prove the following theorem about the performance of Reconstruct:

Theorem 32. Let x ∼ {0, 1}n and y
∗, y(1), . . . , y(M) ∼ Delδ(x). With probability at least 1 − 1/n,

Reconstruct on y
∗, y(1), . . . , y(M) returns a string w with edit distance at most 2−0.01Hn from x.

Similar to the analysis of Align in Section 4, we divide the analysis of Reconstruct into two
parts: In Section 6.1, we begin by describing some good events over the randomness of x, D∗

and D(m) : m ∈ [M], and show that these events happen with probability at least 1 − 1/n. The
rest of the analysis in Section 6.2 will be entirely deterministic. We show that Reconstruct on
y∗, y(1), . . . , y(M) must return a string w with small edit distance from x when all the events described
in Section 6.1 hold.

6.1 Probabilistic Analysis

We start by showing that for x ∼ {0, 1}n, the number of length-(2R) subwords of x that contain at
least one long desert is small.

Lemma 33. With probability at least 1−exp(−n0.1) over x ∼ {0, 1}n, the number of i ∈ [n−2R+1]
such that x[i:i+2R−1] has at least one long desert is at most 2−0.13Hn.

Proof. Fix any k ≤ G. The probability of a random length-L string being a k-desert is at most

2k · 1

2L
.

As a result, the probability of a random length-L string being a long desert is at most

G∑

k=1

2k

2L
≤ 2−0.4L.

28

Consider the number of length-L subwords in x ∼ {0, 1}n that are long deserts. Given that changing
each bit can only change the number by no more than L, it follows from McDiarmid’s inequality
(Theorem 6) that with probability at least 1− exp(−n0.1), this number is at most

2−0.4Ln+O(n0.55L) ≤ 2−0.22Hn

using H ≤ 2 log n. When this happens, the number of indices i we care about in the statement of
the lemma is at most (4R− L) · 2−0.22Hn ≤ 2−0.13Hn using R = L20.01L and L = 8H.

We modify the definition of image(m) so that it is well-defined for every i ∈ [n]: image(m)(i) is
the smallest location ℓ ∈ [|y(m)|] such that source(m)(ℓ) ≥ i, or set image(m)(i) = |y(m)|+1 if no such
ℓ exists. (Note that when the latter happens, the suffix of y(m) starting at |y(m)|+ 1 is the empty
string ε.) We say BMA succeeds on y(1), . . . , y(M) at location i ∈ [n − R + 1] of x if running BMA on
y(1), . . . , y(M) starting at image(1)(i), . . . , image(M)(i) returns exactly the R-bit string x[i:i+R−1] and
moreover, the consensus is achieved by at least 90% of strings in every round of BMA’s execution.

The following lemma is a direct corollary of Lemma 33 and Theorem 25:

Lemma 34. Let x ∼ {0, 1}n and y
(1), . . . , y(M) ∼ Delδ(x). With probability at least 1−2 exp(−n0.1),

BMA succeeds on all but at most 2−0.1Hn locations i ∈ [n−R+ 1] in x.

Proof. It follows from Lemma 33 that with probability at least 1−exp(−n0.1), a random x ∼ {0, 1}n
has no more than 2−0.13Hn length-(2R) subwords that contain at least one long desert. Let x be
such a string and fix any location i such that x[i:i+R−1] contains no long deserts. If the conclusion
of Theorem 25 holds on x̃ := x[i:i+R−1] over subwords of y(m) that originate from x[i:i+R−1], then
BMA must succeed at location i. It follows from Theorem 25 that this happens with probability at
least 1− 2−H .

We will apply McDiarmid’s inequality. Note that each of the nM independent random variables
(each of which indicates whether or not a bit of x is included in D(m)) can only change the number
we care about (i.e. the number of locations i such that the conclusion of Theorem 25 holds on
x̃ := x[i:i+R−1] over subwords of y(m) that originate from x[i:i+R−1]) by no more than R. It follows
that with probability at least 1− exp(−n0.1), BMA succeeds on all except 2−0.1Hn many locations i
in x such that x[i:i+R−1] has no long deserts. The lemma follows.

Lemma 35. D∗ ∼ D satisfies the following two properties with probability at least 1− 1/n2: (note
that |y∗| = n− |D∗|)

1. source∗(5τ log n) = O(log n) and

min
(
source∗(|y∗| −R), source∗(|y∗| − 5τ log n)

)
≥ n− (2R +O(log n));

2. There are at most 2−0.2Hn values of i ∈ [n] such that source∗(ℓ) < i < source∗(ℓ+ 1) for
some ℓ ∈ [|y∗| − 1] for which source∗(ℓ+ 1)− source∗(ℓ) ≥ 2H.

Proof. The first part follows from a Chernoff bound.
For the second part, note that for i to be counted, it must be the case that either [i−H + 1 : i]

⊆ D∗ or [i : i+H − 1] ⊆ D∗, which occurs with probability at most 2 ·δH ≤ 2−H . The second part
then follows from an application of McDiarmid’s inequality.

To describe our final condition on x ∼ {0, 1}n and D∗ ∼ D, we introduce a procedure which we
call BMA∗. BMA∗ takes as input a string y∗, a location ℓ∗ such that |y∗| ≥ ℓ∗ + R, and a reference
string z ∈ {0, 1}R. Let current∗(1) = ℓ∗. The BMA∗ procedure repeats the following for R rounds:

29

In the t-th round, t ∈ [R], BMA∗ compares zt with y∗current∗(t) and set current∗(t+1) = current∗(t)+1
if they match and current∗(t + 1) = current∗(t) if they do not match. For each t we also define
last∗(t) = source∗

(
current∗(t)

)
. After the final (R-th) round BMA∗ outputs

last∗(R+ 1) := source∗
(
current∗(R+ 1)

)
.

Intuitively, BMA∗ outputs the final location of the pointer ℓ∗ after a successful run of BMA. Now
we state the final condition on (x,D∗). We say BMA∗ succeeds on a source string x ∈ {0, 1}n with
respect to y∗ if for all but at most 2−0.1Hn many ℓ∗ ∈ [|y∗| −R], we have

BMA∗
(
y∗, ℓ∗, x[i:i+R−1]

)
≤ i+R+G, for every i ∈ [source∗(ℓ∗)− 2H : source∗(ℓ∗)]. (29)

Note that from an argument similar to the proof of Claim 28 we always have

BMA∗
(
y∗, ℓ∗, x[i:i+R−1]

)
≥ i+R, (30)

so intuitively, BMA∗ succeeds on x with respect to y∗ if for almost every ℓ∗, the output of BMA∗ on
input (y∗, ℓ∗, x[i:i+R−1]) is close to the “right value” i+R.

Lemma 36. With probability at least 1−2 exp(−n0.1) over x ∼ {0, 1}n and D∗ ∼ D, BMA∗ succeeds
on x with respect to y

∗.

Proof. We will show that with high probability, the number of pairs ℓ∗ and i ∈ [source∗(ℓ∗)− 2H :
source∗(ℓ∗)] that violate Equation (29) is at most 2−0.1Hn. First, note that it follows from Lemma 33
that with probability at least 1− exp(−n0.1), the number of length-(2R) subwords of x ∼ {0, 1}n
that have at least one long desert is at most 2−0.13Hn. Fixing such an x ∈ {0, 1}n in the rest of the
proof, we show that with probability at least 1− exp(−n0.1) over D∗ ∼ D, BMA∗ succeeds on x with
respect to y

∗, from which the lemma follows.
To this end, we consider an ℓ∗ and an i in the window such that x[i:i+2R−1] has no long deserts.

(By doing this we skipped no more than 2H · 2−0.13Hn many pairs, which is much smaller than our
target of 2−0.1Hn.) The idea of the argument is to upper-bound the probability that Equation (29)
is violated at ℓ∗ and i over D∗ ∼ D, and then apply McDiarmid’s inequality to finish the proof.

We note that whether Equation (29) holds or not only depends on the [i : i + R +G] window
of x, because if last∗(t) ever becomes larger than i+R+G then Equation (29) is already violated.
Since R+G < 2R, this subword x[i:i+R+G] of x has no long deserts. Similar to the analysis of BMA,
we define dist∗(t) for each t = 1, . . . , R,R+ 1 as

dist∗(t) := last∗(t)− t− (i− 1),

where last∗(t) is from the execution of BMA∗. Note that

dist∗(1) = last∗(1)− i = source∗(ℓ∗)− i ∈ [0, 2H].

So the condition (29) can be restated as dist∗(R + 1) ≤ G.
Recall the random variables {distideal(t)}t∈[R+1] defined in Section 5. We claim that the random

variable distideal(t)+ (source∗(ℓ∗)− i) stochastically dominates dist∗(t) for every t ∈ [R+1]. To see
this, observe that for every c ≥ 0,

Pr
[
distideal(1) ≤ c

]
≤ Pr

[
dist∗(1) ≤ c+ (source∗(ℓ∗)− i)

]
= 1.

Moreover, conditioned on distideal(t)+ (source∗(ℓ∗)− i) = dist∗(t), the random variable distideal(t+
1)+(source∗(ℓ∗)−i) stochastically dominates dist∗(t+1). (They are identical when distideal(t) 6= 0.)

30

Also, for any a ≥ b, we have that dist∗(t+ 1) conditioned on dist∗(t) = a stochastically dominates
dist∗(t+ 1) conditioned on dist∗(t) = b.

It follows from Claim 30 and Equation (25) that

Pr[dist∗(R + 1) > G] ≤ Pr[distideal(R+ 1) > G− (source∗(ℓ∗)− i)]

≤ Pr[distideal(R+ 1) > G− 2H]

≤ (s+ 1) · α

1− α

(
2α(1 − α)

1− 2α

)2H

≤ 2−H ,

where we used s = R/L = 20.01L, and G = 4H, and α sufficiently small.
We now apply McDiarmid’s inequality. The expected number of pairs ℓ∗ and i such that x in

[i : i+ 2R− 1] has no long deserts and Equation (29) is violated is at most 2−H · 2Hn. Since
Equation (29) only depends on deletions in the window of [i : i + R + 4H], each random variable
can only change the number we care about above by O(R). It follows from McDiarmid’s inequality
that with probability at least 1− exp(−n0.1), the number of such pairs is at most 2−0.15Hn. When
this happens, the total number of pairs of ℓ∗ and i that violate Equation (29) (including those i’s
in Lemma 33 that have at least one long desert in [i : i+ 2R] of x) is at most

(2H+1) · 2−0.13Hn+ 2−0.15Hn ≤ 2−0.1Hn.

This finishes the proof of the lemma.

We are now ready to present the list of conditions on x, y∗, y(1), . . . , y(M):

Corollary 37. With probability at least 1−1/n, x ∼ {0, 1}n and y
∗, y(1), . . . , y(M) ∼ Delδ(x) satisfy

all conditions stated in Theorem 7, Lemma 34, Lemma 35 and Lemma 36.

6.2 Deterministic Analysis

We prove that when x, y∗, y(1), . . . , y(M) satisfy all conditions in Theorem 7, Lemma 34, Lemma 35,
and Lemma 36, the string w that Reconstruct returns on y∗, y(1), . . . , y(M) must have edit distance
at most 2−0.01Hn from x. This, together with Corollary 37, finishes the proof of Theorem 32.

We start the proof with some notation. Let P be the following interval of locations of y∗:

P =
[
5τ log n : |y∗| −max

(
5τ log n,R

)]
.

Let Q be the set of locations ℓ∗ ∈ P such that all three conditions below hold:

(i) The output (ℓ(1), . . . , ℓ(M)) of Align(ℓ∗, y∗, y(1), . . . , y(M)) satisfies

(a) At least 90% of source(m)(ℓ(m)), m ∈ [M], agree on the same location i∗ ∈ [n], and

(b) Their consensus location i∗ satisfies i∗ ∈ [source∗(ℓ∗)− 2H : source∗(ℓ∗)];

(ii) Running BMA on y∗,y(1), . . . , y(M) starting at image∗(y∗), image(1)(i∗), . . . , image(M)(i∗)
returns x[i∗:i∗+R−1] and the consensus is achieved by at least 90% of strings in every round;

(iii) The pair ℓ∗ and i∗ satisfies BMA∗(y∗, ℓ∗, x[i∗:i∗+R−1]) ≤ i∗ +R+G.

31

Using conditions from Theorem 7 (for (i)) Lemma 34 (for (ii)), and Lemma 36 (for (iii)), we have
|P \ Q| ≤ O(H2−0.1Hn). If Reconstruct uses a value ℓ∗ that belongs to Q in an execution of
the main loop, the string concatenated to w during this execution of the loop must be x[i∗:i∗+R−1]

for some i∗ ∈ [source∗(ℓ∗) − 2H : source∗(ℓ∗)]. Furthermore, before incrementing ℓ∗ at the end
of this loop, we have from (iii) that source∗(ℓ∗) ≤ i∗ + R + G. In the rest of the proof, we write
ℓ∗1, ℓ

∗
2, . . . ∈ P to denote the locations of y∗ that are used in each execution of the main loop of

Reconstruct. We use Good to denote the set of k such that ℓ∗k ∈ Q and Bad to denote the set of k
such that ℓ∗k /∈ Q. For each k, we write wk to denote the binary string concatenated to the end of
w in Step 5 of the k-th execution of the loop, so the output string of Reconstruct is w = w1w2 · · · .
Our analysis bounding the edit distance between w and x will proceed in three steps.

First step: In the first step we delete from w every wk with ℓ∗k ∈ Bad. Let w′ denote the
concatenation of all and only the wk for which ℓ∗k ∈ Good. We have that the edit distance between
w and w′ is at most

|Bad| ·R ≤ |P \Q| · R ≤ O(H2−0.1Hn) ·R ≤ 2−0.011Hn,

where for the last step we recall that R = 8H20.08H .

Second step: After the first step w′ is a concatenation of subwords of x but because these
subwords are not necessarily disjoint w′ is not necessarily a subsequence of x yet. In the second
step we delete some bits of w′ to obtain a subsequence of x. For each k ∈ Good, recall that
i∗k ∈ [source∗(ℓ∗k)− 2H : source∗(ℓ∗k)] and wk = x[i∗k:i

∗

k+R−1], and that w′ is the concatenation of wk

across all k ∈ Good. For any two consecutive k′ < k in Good, we also have source∗(ℓ∗k) > i∗k′+R using
Equation (30) and so the windows [source∗(ℓ∗k) : i

∗
k +R− 1] are disjoint and thus, defining w′′ to be

the concatenation of the subwords x[source∗(ℓ∗k):i
∗

k+R−1] of x, we get that w
′′ is a subsequence of x. To

bound the edit distance between w′ and w′′ we note that each new window [source∗(ℓ∗k) : i
∗
k+R−1]

can be obtained from [i∗k : i∗k +R− 1] by deleting no more than 2H indices at the beginning. Using

n = |x| ≥ |w′′| ≥ |w′| − |Good| · 2H = |Good| (R− 2H) and 2H < R/2,

we have that |Good| ≤ 2n/R and thus, the edit distance between w′ and w′′ is at most

|Good| · 2H ≤ 2n

R
· 2H ≤ 2−0.07Hn.

Third step: Given that w′′ (the concatenation of subwords of x in [i∗∗k : i∗k +R− 1] for each
k ∈ Good) is a subsequence of x, to bound its edit distance from x it suffices to bound the number
of j ∈ [n] such that j /∈ [i∗∗k : i∗k + R − 1] for any k ∈ Good. The following two cases cover every
such j ∈ [n]:

1. j < source∗(5τ log n) or j > source∗(|y∗| −max(5τ log n,R)). There are only O(R+ log n)
many such j by the first part of Lemma 35.

2. Otherwise, there is a unique k-th loop such that source∗(ℓ∗k) ≤ j < source∗(ℓ∗k+1).

We split the second case further into two cases: k ∈ Good or k ∈ Bad.
We start with the case when k ∈ Bad and bound the total number of xi skipped. In this loop,

BMA starts with location ℓ∗k of y∗ and ends at location ℓ∗k+1 − 1. Given that BMA only has R rounds

32

we have ℓ∗k+1 − 1 ≤ ℓ∗k +R. The number of j’s skipped because of these loops is thus captured by

∑

k∈Bad

(
source∗(ℓ∗k+1)− source∗(ℓ∗k)

)
=
∑

k∈Bad

ℓ∗k+1−1∑

ℓ=ℓ∗k

(
source∗(ℓ+ 1)− source∗(ℓ)

)

≤ |Bad|R+
∑

k∈Bad

ℓ∗k+1−1∑

ℓ=ℓ∗k

(
source∗(ℓ+ 1)− source∗(ℓ)− 1

)
.

Using the second part of Lemma 35, the above can be upperbounded by

|Bad|R+ |Bad|R · 2H + 2−0.2Hn ≤ 2−0.011Hn.

We finish with the case when k ∈ Good and bound the total number of j’s skipped because of
some k ∈ Good. Given that every bit of x in the window of [source∗(ℓ∗k) : i

∗
k + R − 1] is included,

the number of j’s skipped is captured by

source∗(ℓ∗k+1)− (i∗k +R)

= source∗(ℓ∗k+1)− source∗(ℓ∗k+1 − 1) + source∗(ℓ∗k+1 − 1)− (i∗k +R).

Note that from (iii) we have source∗(ℓ∗k+1 − 1)− (i∗k +R) ≤ G. As a result, the total number of j’s
skipped is at most (again using the second part of Lemma 35 and a similar argument as above)

|Good|G+
∑

k∈Good

(
source∗(ℓ∗k+1)− source∗(ℓ∗k+1 − 1)−1

)
≤ |Good|G+ 2−0.2Hn+ |Good| · 2H.

Using |Good| ≤ 2n/R, the above is at most 2−0.07Hn.
To summarize, the edit distance between w and x is at most

first step︷ ︸︸ ︷
2−0.011Hn +

second step︷ ︸︸ ︷
2−0.07Hn +

third step, case 1︷ ︸︸ ︷
O(R+ log n) +

third step, case 2,
k∈Good︷ ︸︸ ︷

2−0.011Hn +

third step, case 2,
k∈Bad︷ ︸︸ ︷

2−0.07Hn ≤ 2−0.01Hn.

This finishes the proof of Theorem 32.

7 Proof of Theorem 2: Lower bound on expected edit distance
from few traces

In this section we prove Theorem 2. Recall that x ∼ {0, 1}n, M ≤ Θ(1/δ), y(1), . . . , y(M) ∼ Delδ(x),
and A is an arbitrary algorithm which, on input δ and y

(1), . . . , y(M), outputs a hypothesis string x̂

for x. We prove Theorem 2 by showing that E[dedit(x̂, x)] ≥ n · (δM)O(M).
The main idea is to reduce the approximate trace reconstruction problem to the problem of

computing the exact length of many runs of 0’s (1-deserts) that are either of length M or of
length M + 1. We consider many instances of (a slight variation of) the following atomic problem:
distinguish between a run of length M and a run of length M + 1, given M “traces” of the run at
deletion rate δ. This problem is equivalent to that of distinguishing between X ∼ Bin(M, 1 − δ)
and X′ ∼ Bin(M +1, 1− δ) given samples from a distribution that is either X or X′. (For technical
reasons the actual atomic problem we work with, described in the next subsection, is the problem
of distinguishing between two product distributions over non-negative integers which are closely
related to these binomial distributions.)

33

7.1 The atomic problem

Consider the following two product distributions over pairs of non-negative integers:

D0 := Bin(M, 1− δ)× Bin(M + 1, 1 − δ); D1 := Bin(M + 1, 1− δ) × Bin(M, 1− δ).

We consider a uniform prior distribution P over {D0,D1}. In this subsection we prove the
following lemma:

Lemma 38. Let Db ∼ P, and let p be the optimal (minimal) failure probability of any algorithm
which is given a sample SM consisting of M independent draws from Db and aims to identify
whether b = 0 or b = 1. Then p ≥ (δM)cM for some absolute constant c > 0.

Proof. The optimal failure probability is achieved by the Bayes optimal predictor, which outputs
0 if Pr[D0|SM] ≥ Pr[D1|SM] and outputs 1 if Pr[D0|SM] < Pr[D1|SM]. By Bayes’ theorem, for
b ∈ {0, 1} we have

Pr[Db|SM] =
Pr[SM |Db]Pr[Db]

Pr[SM]
=

Pr[SM |Db]

2Pr[SM]

so for any fixed outcome SM of the random variable SM , the Bayes optimal predictor outputs 0 on
SM if and only if

PrSM∼(D0)M [SM = SM] ≥ PrSM∼(D1)M [SM = SM].

Consider the particular outcome of the M draws which is

M pairs︷ ︸︸ ︷
(M,M − 1), . . . , (M,M − 1),

i.e., in each draw the outcome of the first coordinate is M and the outcome of the second coordinate
is M − 1. It is clear that the Bayes optimal predictor, on this input, will output 1; to see this
rigorously, the probability of this outcome under D1 is

((
M + 1

M

)
(1− δ)M δ ·

(
M

M − 1

)
(1− δ)M−1δ

)M

=
(
(M + 1)M(1 − δ)2M−1δ2

)M
(31)

while its probability under D0 is

((
M

M

)
(1− δ)M ·

(
M + 1

M − 1

)
(1− δ)M−1δ2

)M

=
1

2M
· (31) (32)

But the probability of this outcome when the source distribution is D0 is (recalling that M ≤
Θ(1/δ))

(32) =
1

2M
· (31) =

(
Θ(M2δ2)

)M
= (Θ(Mδ))Θ(M) .

Since the probability that the source distribution is D0 is 1/2, it follows that the optimal failure
probability for any M -sample algorithm for this distinguishing problem is at least

1

2
· (Θ(Mδ))Θ(M) = (Mδ)Θ(M).

34

7.2 Direct sum (Paired Run Length Problem)

We define the Paired Run Length Problem (PRLP) as follows. Fix B ∈ N. An instance of
the PRLP is specified by a binary vector z = (z1, z2, . . . , zB) ∈ {0, 1}B . For an instance z of the
PRLP, an algorithm is given as input samples of B-tuples of M pairs from the product distribution
Dz = Dz1 ×Dz2 ×· · ·×DzB

. It then must return some ẑ ∈ {0, 1}∗, with the objective of minimizing
E[dedit(z, ẑ)].

We begin by recording a warmup lemma which states that the PRLP cannot be solved exactly
with success probability better than that obtained by solving each instance independently.

Lemma 39. Let p = p(M, δ) < 1/2 be the optimal failure probability of any algorithm for the
atomic problem from Lemma 38. For a uniform z ∼ {0, 1}B , let APRLP be any algorithm for the
PRLP that is given M samples from Dz, and let ẑ be its output. Then Pr[̂z = z] ≤ (1− p)B.

Proof. This is a consequence of the independence of the distributions Dzi , i ∈ [B]; we now give
details. We have

Pr[̂z = z] =

B∏

i=1

Pr
[
zi = ẑi | zk = ẑk for all k ∈ [i− 1]

]
.

Suppose there exists an algorithm APRLP for the PRLP which outputs ẑ such that Pr[̂z = z] >
(1− p)B . Then there exists an i∗ ∈ [B] such that

Pr
[
zi∗ = ẑi∗ |zk = ẑk for all k ∈ [i∗ − 1]

]
> 1− p. (33)

We use this to construct a “too good to be true” algorithm A for the atomic problem. Given M
samples of the distribution Db for a uniform (unknown) b ∼ {0, 1}, A “embeds” the problem into the
PRLP problem. Specifically, it draws z′ ∼ {0, 1}B−1 and simulates M samples of Dz

′

i
, i ∈ [B − 1].

Let z ∈ {0, 1}B be defined by

zi =





z
′
i, i < i∗

b, i = i∗

z
′
i−1, i > i∗.

Clearly, z is uniformly random. A generates M samples of Dz by appropriately concatenating the
M samples of Db and the simulated samples of Dz

′

i
, i ∈ [B − 1]. It then invokes APRLP on the

generated samples, receives output ẑ ∈ {0, 1}B , and checks whether zk = ẑk for all k ∈ [i∗ − 1]; if
this is the case then it returns b̂ := ẑi∗ , and if it is not the case then it tries again by drawing a
fresh independent z′ ∼ {0, 1}B−1, repeating this until it is the case that zk = ẑk. By Equation (33),
b̂ = b with probability more than 1− p, which contradicts the definition of p.

We use Lemma 39 to give a lower bound on the expected edit distance for any algorithm for
the PRLP:

Lemma 40. Let p = p(M, δ) < 1/2 be the optimal failure probability of any algorithm for the atomic
problem from Lemma 38. For a uniform z ∼ {0, 1}B , let APRLP be any algorithm for the PRLP
that is given M samples from Dz, and let ẑ be its output. Then E[dedit(z, ẑ)] ≥ c′B · p/ log(1/p),
where c′ > 0 is an absolute constant.

Proof. Let p′ < p be a parameter to be specified later, and let E be the event that dedit(z, ẑ) ≤ Bp′.
(Since APRLP can without loss of generality be taken to be deterministic, E is over the uniform
random draw of z and the M samples from Dz.) Fix a potential matching µ = (it, jt)t∈[(1−p′)B]

between z and ẑ that is of size (1 − p′)B. Let Eµ be the event that zit is actually equal to ẑjt for

35

all t (i.e., the potential matching actually is a matching between z and ẑ). By Lemma 39, we have
that

Pr[Eµ] ≤ (1− p)(1−p′)B ≤ exp(−pB/2),

where we used 1− p′ > 1/2 for the second inequality.
Now, by a union bound over all potential matchings of size (1− p′)B, we get that

Pr[E] ≤
∑

µ

Pr[Eµ] ≤
(

B

Bp′

)2

· exp
(
−pB

2

)
≤ exp

(
B

(
2p′ log

e

p′
− p

2

))
.

Choosing p′ = c1p/ log(1/p) for some small enough c1 > 0, we have Pr[E] ≤ 2−c2Bp. Hence we have
E[dedit(z, ẑ)] ≥ (1 − 2−c2Bp) · (Bp′) = c′B · p/ log(1/p) for some absolute constant c′ > 0, and the
lemma is proved.

7.3 Embedding and proof of Theorem 2

In this subsection we relate the PRLP to the average-case approximate trace reconstruction prob-
lem and prove Theorem 2. To explain the connection between average-case approximate trace
reconstruction and the PRLP, let us define two subwords

α := 0M10M+111, β := 0M+110M11.

Observe that for any string x ∈ {0, 1}n and any pair of distinct intervals I, J ⊂ [n] such that
xI , xJ ∈ {α, β}, I and J must be disjoint. Note that in a uniform random string x, each of these
subwords occurs with expected frequency q = 2−N , where N := |α| = |β| = 2M + 4. Intuitively,
given M traces from Delδ(x), determining whether a segment of x is in fact α or β corresponds to a
single instance of the atomic problem from Section 7.1, and determining this for B disjoint segments
corresponds to an instance of the PRLP. In the rest of this subsection we make this correspondence
precise and show how a high-accuracy algorithm for M -sample average-case approximate trace
reconstruction yields a high-accuracy algorithm for the PRLP; combining this with the lower bound
on the PRLP from Section 7.2 gives Theorem 2.

Fix a sufficiently small absolute constant c < 1, and let A be an algorithm for average-case
approximate trace reconstruction which, given M ≤ c/δ traces of a random string x ∈ {0, 1}n
(and the value of δ), returns x̂ ∈ {0, 1}∗ such that E[dedit(x, x̂)] ≤ n(δM)CM for some constant C.
Building on A, in Figure 7 we provide a “too good to be true” (given Lemma 40) algorithm APRLP

for the Paired Run Length Problem.
We give a description of the algorithm APRLP. Consider a uniformly random string x

′ ∈ {0, 1}n,
where n := N · 2N · B is chosen such that x

′ contains at least B occurrences of α or β with high
probability. Given x

′ and z ∼ {0, 1}B , we define another string x ∈ {0, 1}n by replacing the b-th
occurrence of α or β in x

′ with α if zb = 0 and with β if zb = 1 as long as b ≤ B. As any pair of
occurrences of α or β are disjoint, the above procedure is well-defined. We show in Lemma 41 that
x is uniformly random, and hence a set of M traces from x is a legitimate input to A.

The algorithm APRLP for the PRLP of course does not have access to z, but only to samples
s(1), . . . , s(M) ∼ Dz. Hence, it cannot generate x explicitly. However, we show that it can simulate
M independent traces from x by generating x

′ ∼ {0, 1}n, followed by generating traces from the
segments in x

′ that are disjoint from the occurrences of α or β, and then concatenating them
appropriately with the traces of α or β that are generated using the samples s(1), . . . , s(M) (see the
loop spanning lines 5–11 of the algorithm). It then invokes A on these traces to obtain a string

36

Algorithm 5: APRLP

Input: A list of M samples s(1), . . . , s(M) from the product distribution Dz for an

(unknown) uniformly random z ∼ {0, 1}B (and the value of δ ∈ (0, 1)).

Output: A string ẑ ∈ {0, 1}≤B .

1 Set N = 2M + 4 and n = N · 2N · B.

2 Generate a uniformly random string x
′ ∈ {0, 1}n.

3 Let B′ = min{B, number of occurrences of α or β in x
′}.

4 For b ∈ [B′], let I(b) = [i(b), i(b) +N − 1] be the b-th interval in x
′ such that x′

I(b)
∈ {α, β}.

Also set i(B
′+1) = n+ 1.

5 for m ∈ [M] do

6 Set y(m) ∼ Delδ

(
x
′
[1,i(1)−1]

)
.

7 Let s(m) =
(
s
(m)
b,1 , s

(m)
b,2

)
b∈[B′]

, where
(
s
(m)
b,1 , s

(m)
b,2

)
∼ Dzb

.

8 for b ∈ [B′] do

9 Set y
′(m)
b ∼ 0s

(m)
b,1 ◦Delδ(1) ◦ 0s

(m)
b,2 ◦Delδ(11) ∈ {0, 1}≤N .

10 Set ȳ
(m)
b ∼ Delδ

(
x
′
[i(b)+N,i(b+1)−1]

)
.

11 Append y
′(m)
b ◦ ȳ(m)

b to the end of y(m).

12 Run A on δ and the M strings y(1), . . . , y(M) to obtain x̂ ∈ {0, 1}∗.
13 Let B̂ = min{B, number of occurrences of α or β in x̂}.
14 for b ∈ [B̂] do

15 Let J (b) be the b-th interval in x̂ such that x̂J(b) ∈ {α, β}.
16 Set ẑb = 0 if x̂J(b) = α, and ẑb = 1 if x̂J(b) = β.

17 return ẑ :=
(
ẑ1, ẑ2, . . . , ẑB̂

)
.

Figure 7: Algorithm APRLP for the PRLP problem, given an algorithm A for average-case approxi-
mate trace reconstruction.

x̂ ∈ {0, 1}∗, extracts from x̂ a binary vector ẑ ∈ {0, 1}∗ based on the first (at most) B occurrences
of α or β in x̂, and returns it.

We note that the different intervals I in line 4 are disjoint from each other, and likewise for the
different intervals J in line 15.

Lemma 41. Let z ∈ {0, 1}B be uniformly random, let x′ be uniform random over {0, 1}n. Let B′

be the minimum of B and the number of occurrences of α or β in x
′, and let x be obtained from x

′

by replacing the b-th occurrence of α or β in x
′ with α if zb = 0 and with β if zb = 1 for all b ∈ [B′].

Then x is uniformly random over {0, 1}n.

Proof. Fix any possible outcome x ∈ {0, 1}n of x and let j = min{B, number of occurrences of α or
β in x}. There are precisely 2j outcomes x′ ∈ {0, 1}n of x′ for which it is possible that x′ = x′ could
give rise to x = x (these are precisely the 2j strings obtained by replacing the first j occurrences of
α or β in x by α or β in all possible ways). Each of these outcomes has probability 1/2n under x′

because x′ is uniform random and for each such outcome there is a 1/2j chance that the replacement

37

yields x = x from x
′ = x′. Hence Pr[x = x] = 2j · (1/2n) · (1/2j) = 1/2n.

Lemma 42. x
′ (and hence x) contains at least B disjoint occurrences of α or β with probability at

least 1− exp(−Ω(B)).

Proof. As x′ is a uniformly random string, for any position i ∈ [n−N + 1], we have that

Pr
[
x
′
[i:i+N−1] ∈ {α, β}

]
=

2

2N
=

1

2N−1
.

Let q = 2−(N−1). We divide x
′ into s := 2N · B disjoint segments x

′(j) of length N . For j ∈ [s],
let Fj be the indicator of the event that x

′(j) ∈ {α, β}. Then Fj ∼ Ber(q), and Fj , j ∈ [s] are
independent.

Let F =
∑

j Fj denote the number of segments x
′(j) that are α or β. Note that F is a lower

bound on the overall number of disjoint occurrences of α or β, because we are only considering
segments ending at positions which are integral multiples of N . Clearly,

E[F] =
∑

j∈[s]

E[Fj] = sq = 2B.

By the Chernoff Bound, we have F < B with probability at most exp(−Ω(B)). Along with the
observations above and the fact that xI ∈ {α, β} if and only if x′I ∈ {α, β} for an interval I of
length N , this concludes the proof.

Next we state and prove a crucial lemma which implies that if A is a good algorithm for average-
case approximate trace reconstruction, then APRLP is a good algorithm for the PRLP problem:

Lemma 43. If x′ (and hence x) contains at least B disjoint occurrences of α or β, then dedit(z, ẑ) ≤
2 · dedit(x, x̂).

Proof. Let I(1), I(2), . . . , I(S) be intervals of length N corresponding to the occurrences of α or β
in x (so by the assumption of the lemma, we have S ≥ B). Similarly, let J (1), J (2), . . . , J (T) be
intervals of length N corresponding to the occurrences of α or β in x̂. Fix an optimal matching µ
between x and x̂ corresponding to any longest common subsequence between those strings (if there
is more than one choice for µ it can be selected from the optimal matchings arbitrarily).

Consider the matching τ on [S] × [T], where (s, t) ∈ τ if and only if µ(I(s)) = J (t). Let τ ′ be
the induced matching obtained by restricting τ to [B]× [|̂z|]. Note that τ ′ corresponds to a longest
common subsequence of z and ẑ. We consider two cases.

1. Suppose (s, t) ∈ τ for some s ≤ B and t > B. Note that this implies there are at least
t > B occurences of α or β in x̂, and so we have |̂z| = |z|. We claim that for every t′ ≤ B, if
(s′, t′) ∈ τ for some s′ then s′ ≤ B; this is because otherwise we have s, t′ ≤ B and s′, t > B,
but (s, t), (s′, t′) ∈ τ , contradicting our definition of matching.

Therefore, for every t ∈ [T], t ≤ B that is not matched to an element of [S] in τ ′, it is also not
matched to an element of [S] in τ , and hence either (1) some element in J (t) is not matched
in µ, or (2) the indices in x that are matched to J (t) do not form an interval. Either case
contributes at least 1 deletion in x or x̂ to dedit(x, x̂). Since there are dedit(z, ẑ)/2 such t’s, we
have dedit(z, ẑ) ≤ 2 dedit(x, x̂).

38

2. Otherwise, for every s ≤ B, if (s, t) ∈ τ then it must be that t ≤ B. Moreover, for every
s ≤ B that is not in τ ′, it is also not in τ , and therefore either (1) some element in I(s) is
not in µ, or (2) the indices in x̂ that are matched to I(s) do not form an interval. Either
case contributes at least 1 deletion in x or x̂ to dedit(x, x̂). Since |z| ≥ |̂z|, we have at least
dedit(z, ẑ)/2 such s’, and so dedit(z, ẑ) ≤ 2 dedit(x, x̂).

Proof of Theorem 2. Lemma 38 and Lemma 40 imply that for any algorithm APRLP that solves
the PRLP given M samples from Dz, its output ẑ satisfies

E
[
dedit(z, ẑ)

]
≥ B · (δM)cM (34)

for some absolute constant c > 0.
Now, let A be any algorithm which, given δ and traces y

(1), . . . , y(M) from a random string
x ∈ {0, 1}n as input, outputs a hypothesis string x̂ for x such that E[dedit(x, x̂)] < n · (δM)CM .
Consider the algorithm APRLP described in Figure 7. By Lemma 42, x′ (and hence x) has at least
B disjoint occurrences of α or β with probability at least 1 − e−Ω(B), in which case we have
dedit(z, ẑ) ≤ 2 · dedit(x, x̂) by Lemma 43. If x has fewer than B disjoint occurrences of α or β, we
have dedit(z, ẑ) ≤ 2B as z ∈ {0, 1}B and ẑ ∈ {0, 1}≤B . So, we obtain

E[dedit(z, ẑ)] ≤ e−Ω(B) · 2B +
(
1− e−Ω(B)

)
· 2E

[
dedit(x, x̂)

]

≤ 4n · (δM)CM

≤ B · (δM)C
′M (35)

for some suitable constant C ′ > 0. Equations (34) and (35) lead to the desired contradiction for
C ′ > c, which concludes the proof of Theorem 2.

References

[BCF+19] Frank Ban, Xi Chen, Adam Freilich, Rocco A. Servedio, and Sandip Sinha. Beyond
trace reconstruction: Population recovery from the deletion channel. In 60th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 745–768.
IEEE Computer Society, 2019. 1.1.1

[BCSS19] Frank Ban, Xi Chen, Rocco A. Servedio, and Sandip Sinha. Efficient average-case
population recovery in the presence of insertions and deletions. In
APPROX/RANDOM 2019, volume 145 of LIPIcs, pages 44:1–44:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019. 1.1.1

[BKKM04] Tuǧkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor.
Reconstructing strings from random traces. In Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages 910–918, 2004.
1.1, 1.1.1, 1.1.1, 1.3, 2.1.2, 2.3, 5

[CDL+21a] Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha.
Polynomial-time trace reconstruction in the low deletion rate regime. In 12th
Innovations in Theoretical Computer Science Conference, volume 185 of LIPIcs,
pages 20:1–20:20, 2021. 1.1.1, 1.1.1, 1.3, 1.3, 2.1.2, 2.1.2, 2.3, 2.3, 5, 5.1

39

[CDL+21b] Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha.
Polynomial-time trace reconstruction in the smoothed complexity model. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 54–73,
2021. 1.1.1

[Cha21a] Zachary Chase. New lower bounds for trace reconstruction. Ann. Inst. H. Poincaré
Probab. Statist., 57(2):627–643, 2021. 1.1.1, 1.1.1, 1.1.1

[Cha21b] Zachary Chase. Separating words and trace reconstruction. In STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 21–31. ACM, 2021. 1.1.1, 1.1.1

[CP21] Zachary Chase and Yuval Peres. Personal communication. Manuscript, 2021. 1.1.2, 3,
3, 3, 1.3

[DOS17] Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based
algorithms for trace reconstruction. In Proceedings of the 49th ACM Symposium on
Theory of Computing (STOC), pages 1047–1056, 2017. 1.1.1, 1.1.1

[DRRS21] Sami Davies, Miklos Z. Rácz, Cyrus Rashtchian, and Benjamin G. Schiffer.
Approximate trace reconstruction: Algorithms. In IEEE International Symposium on
Information Theory, 2021. 1.1.2

[GSZ21] Elena Grigorescu, Madhu Sudan, and Minshen Zhu. Limitations of mean-based
algorithms for trace reconstruction at small distance. In IEEE International
Symposium on Information Theory, 2021. 1.1.2

[HHP18] Lisa Hartung, Nina Holden, and Yuval Peres. Trace reconstruction with varying
deletion probabilities. In Proceedings of the Fifteenth Workshop on Analytic
Algorithmics and Combinatorics, ANALCO 2018, New Orleans, LA, USA, January
8-9, 2018., pages 54–61, 2018. 1.1.1

[HMPW08] Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace
reconstruction with constant deletion probability and related results. In Proceedings
of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, pages 389–398, 2008. 1.1.1

[HPP18] Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction
for random strings and arbitrary deletion probability. In Conference On Learning
Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceedings of
Machine Learning Research, pages 1799–1840. PMLR, 2018. 1.1.1, 1.1.1

[HPPZ19] Nina Holden, Robin Pemantle, Yuval Peres, and Alex Zhai. Subpolynomial trace
reconstruction for random strings and arbitrary deletion probability. Mathematical
Statistics and Learning, 2(3/4):275–309, 2019. 1.1.1, 1.1.1

[Kal73] V. V. Kalashnik. Reconstruction of a word from its fragments. Computational
Mathematics and Computer Science (Vychislitel’naya matematika i vychislitel’naya
tekhnika), Kharkov, 4:56–57, 1973. 1.1

[KMMP19] Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and Soumyabrata Pal.
Trace reconstruction: Generalized and parameterized. In 27th Annual European

40

Symposium on Algorithms, ESA 2019, volume 144 of LIPIcs, pages 68:1–68:25.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 1.1.1

[Lev01a] Vladimir Levenshtein. Efficient reconstruction of sequences. IEEE Transactions on
Information Theory, 47(1):2–22, 2001. 1.1

[Lev01b] Vladimir Levenshtein. Efficient reconstruction of sequences from their subsequences
or supersequences. Journal of Combinatorial Theory Series A, 93(2):310–332, 2001.
1.1

[McD98] Colin McDiarmid. Concentration, pages 195–248. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998. 6

[MPV14] Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction revisited.
In Proceedings of the 22nd Annual European Symposium on Algorithms, pages
689–700, 2014. 1.1.1

[NP17] Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(O(n1/3)) samples. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, pages 1042–1046, 2017. 1.1.1, 1.1.1

[NR21] Shyam Narayanan and Michael Ren. Circular Trace Reconstruction. In 12th
Innovations in Theoretical Computer Science Conference (ITCS 2021), pages
18:1–18:18, 2021. 1.1.1

[PZ17] Yuval Peres and Alex Zhai. Average-case reconstruction for the deletion channel:
Subpolynomially many traces suffice. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
2017, pages 228–239. IEEE Computer Society, 2017. 1.1.1

[SB21] Jin Sima and Jehoshua Bruck. Trace reconstruction with bounded edit distance. In
IEEE International Symposium on Information Theory, 2021. Manuscript, available
at https://arxiv.org/abs/2102.05372. 1.1.2

[SDDF18] Sundara Rajan Srinivasavaradhan, Michelle Du, Suhas Diggavi, and Christina
Fragouli. On maximum likelihood reconstruction over multiple deletion channels. In
IEEE International Symposium on Information Theory, ISIT 2018, pages 436–440,
2018. 1.1.2

41

https://arxiv.org/abs/2102.05372

	1 Introduction
	1.1 Background and prior work
	1.1.1 Exact trace reconstruction
	1.1.2 Approximate trace reconstruction

	1.2 Our results
	1.3 Discussion and future work

	2 Our approach
	2.1 Overview of our algorithmic approach (thm:main)
	2.1.1 Some preliminary observations and simplifications
	2.1.2 The high-level approach

	2.2 The Align procedure
	2.3 The BMA procedure
	2.4 Overview of our lower bound approach (thm:mainlower)
	2.5 Organization

	3 Preliminaries
	3.1 Useful results

	4 The Align algorithm and proof of thm:align
	4.1 Overview
	4.2 Algorithm Align
	4.3 Probabilistic Analysis
	4.3.1 Conditions on DD
	4.3.2 Conditions on x{0,1}n
	4.3.3 Conditions on D(1),…,D(M)D
	4.3.4 Conclusion of Probabilistic Analysis

	4.4 Deterministic Analysis
	4.4.1 First stage: Locating a small neighborhood of source() in each trace y(m)
	4.4.2 Second stage: Determining a consensus location close to source().

	5 The BMA algorithm and proof of thm:bma
	5.1 Proof of lemma:rw-easy

	6 Main Algorithm
	6.1 Probabilistic Analysis
	6.2 Deterministic Analysis

	7 Proof of thm:mainlower: Lower bound on expected edit distance from few traces
	7.1 The atomic problem
	7.2 Direct sum (Paired Run Length Problem)
	7.3 Embedding and proof of thm:mainlower

