
Approximation Schemes for Capacitated Vehicle Routing on
Graphs of Bounded Treewidth, Bounded Doubling, or Highway

Dimension

Aditya Jayaprakash
Department of Computing Science

University of Alberta

Mohammad R. Salavatipour∗

Department of Computing Science
University of Alberta

Abstract

In this paper we present Approximation Schemes for Capacitated Vehicle Routing Problem (CVRP)
on several classes of graphs. In CVRP, introduced by Dantzig and Ramser in 1959 [14], we are given a
graph G = (V,E) with metric edges costs, a depot r ∈ V , and a vehicle of bounded capacity Q. The
goal is to find minimum cost collection of tours for the vehicle that return to the depot, each visiting
at most Q nodes, such that they cover all the nodes. This generalizes classic TSP and has been studied
extensively. In the more general setting each node v has a demand dv and the total demand of each tour
must be no more than Q. Either the demand of each node must be served by one tour (unsplittable) or
can be served by multiple tour (splittable). The best known approximation algorithm for general graphs
has ratio α + 2(1 − ε) (for the unsplittable) and α + 1 − ε (for the splittable) for some fixed ε > 1

3000
,

where α is the best approximation for TSP. Even for the case of trees, the best approximation ratio is
4/3 [5] and it has been an open question if there is an approximation scheme for this simple class of
graphs. Das and Mathieu [15] presented an approximation scheme with time nlogO(1/ε) n for Euclidean
plane R2. No other approximation scheme is known for any other class of metrics (without further
restrictions on Q). In this paper we make significant progress on this classic problem by presenting
Quasi-Polynomial Time Approximation Schemes (QPTAS) for graphs of bounded treewidth, graphs of
bounded highway dimensions, and graphs of bounded doubling dimensions. For comparison, our result
implies an approximation scheme for Euclidean plane with run time nO(log10 n/ε9).

1 Introduction
Vehicle routing problems (VRP) describe a class of problems where the objective is to find cost efficient
delivery routes for delivering items from depots to clients using vehicles having limited capacity. These
problems have numerous applications in real world settings. The Capacitated Vehicle Routing Problem
(CVRP) was introduced by Dantzig and Ramser in 1959 [14]. In CVRP, we are given as input a graph
G = (V,E) with metric edge weights (also referred to as costs) w(e) ∈ Z≥0, a depot r ∈ V , along with a
vehicle of capacity Q > 0, and wish to compute a minimum weight/cost collection of tours, each starting
from the depot and visiting at most Q customers, whose union covers all the customers. In the more general
setting each node v has a demand d(v) ∈ Z≥1 and the goal is to find a set of tours of minimum total cost
each of which includes r such that the union of the tours covers the demand at every client and every tour
covers at most Q demand.

There are three common versions of CVRP: unit, splittable, and unsplittable. In the splittable variant,
the demand of a node can be delivered using multiple tours, but in the unsplittable variant, the entire
demand of a client must be delivered by a single tour. The unit demand case is a special case of the
unsplittable case where every node has unit demand and the demand of a client must be delivered by a
single tour. CVRP has also been referred to as the k-tours problem [3, 4]. All three variants admit constant
factor approximation algorithm in polynomial-time [18]. Haimovich et al. [18] showed that a heuristic

∗Supported by NSERC.

1

ar
X

iv
:2

10
6.

15
03

4v
1 

 [
cs

.D
S]

  2
9 

Ju
n 

20
21



called iterative partitioning (which starts from a TSP tour and breaking the tour into capacity respecting
tours by making a trip back and forth to the depot) implies an (α + 1(1 − 1/Q))-approximation for the
unit demand case, with α being the approximation ratio of Traveling Salesman Problem (TSP). A similar
approach implies a 2 + (1− 2/Q)α)-approximation for the unsplittable variant [2]. Very recently, Blauth et
al. [10] improved these approximations by showing that there is an ε > 0 such that there is an (α+2 ·(1−ε))-
approximation algorithm for unsplittable CVRP and a (α+ 1− ε)-approximation algorithm for unit demand
CVRP and splittable CVRP. For α = 3/2, they showed ε > 1/3000. All three variants are APX-hard in
general metric spaces [25], so a natural research focus has been on structured metric spaces, i.e. special
graph classes. Even on on trees (and in particular on stars) CVRP remains NP-hard [23], and there exists
constant-factor approximations (currently being 4/3 [5]), better than those for general metrics, however the
following question has remained open:
Question. Is it possible to design an approximation scheme for CVRP on trees or more generally graphs of
bounded treewidth?

We answer the above question affirmatively. For ease of exposition we start by prove the following first:

Theorem 1 For any ε > 0, there is an algorithm that, for any instance of the unit demand CVRP on trees
outputs a (1+ ε)-approximate solution in time nO(log4 n/ε3). For any instance of the splittable CVRP on trees
when Q = nO(logc n) the algorithm runs in time nO(log2c+4 n).

We then show how this result can be extended to design QPTAS for graphs of bounded treewidth.

Theorem 2 For any ε > 0, there is an algorithm that, for any instance of the unit demand CVRP on a graph
G of bounded treewidth k outputs a (1 + ε)-approximate solution in time nO(k2 log3 n/ε2). For the splittable
CVRP on graphs of bounded treewidth when Q = nO(logc n), the algorithm outputs a (1 + ε)-approximate
solution in time nO(k2 log2c+3 n/ε2).

As a consequence of this and using earlier results of embedding of graphs of bounded doubling dimensions
or bounded highway dimensions into graphs of low treewidth we obtain approximation schemes for CVRP
on those graph classes.

Theorem 3 For any ε > 0 and fixed D > 0, there is a an algorithm that, given an instance of the splittable
CVRP with capacity Q = nlogc n on a graph of doubling dimension D, finds a (1 + ε)-approximate solution
in time nO(DD log2c+D+3 n/εD+2).

As an immediate corollary, this implies an approximation scheme for CVRP on Euclidean metrics on R2

in time nO(log10 n/ε9) which improves on the run time of nlogO(1/ε) n of QPTAS of [15].

Theorem 4 For any ε > 0, λ > 0 and D > 0, there is a an algorithm that, given a graph with highway
dimension D with violation λ as an instance of the splittable CVRP with capacity Q = nlogc n, finds a solution
whose cost is at most (1 + ε) times the optimum in time nO(log2c+3+log2( D

ελ
)· 1
λ n/ε2).

1.1 Related Works
CVRP generalizes the classic TSP problem (with Q = n). For general metrics, Haimovich et al. [18]
considered a simple heuristic, called tour partitioning, which starts from a TSP tour and then splits the
tour into tours of size at most Q (by making back-and-forth trips to r) and showed that it is a (1 + (1 −
1/Q)α)-approximation for splittable CVRP, where α is the approximation ratio for TSP. Essentially the
same algorithm implies a (2 + (1 − 2/Q)α)-approximation for unsplittable CVRP [2]. These stood as the
best known bounds until recently, when Blauth et al. [10] showed that given a TSP approximation α, there
is an ε > 0 such that there is an (α + 2 · (1 − ε))-approximation algorithm for CVRP. For α = 3/2, they
showed ε > 1/3000. They also showed a (α + 1 − ε)-approximation algorithm for unit demand CVRP and
splittable CVRP.

For the case of trees, Labbé et al. [23] showed splittable CVRP is NP-hard and Golden et al. [17] showed
unsplittable version is APX-hard and hard to approximate better than 1.5. For splittable CVRP (again
on trees), Hamaguchi et al. [19] defined a lower bound for the cost of the optimal solution and gave a 1.5

2



approximation with respect to the lower bound. Asano et al. [4] improved the approximation to (
√

41−1)/4
with respect to the same lower bound and also showed the existence of instances whose optimal cost is
exactly 4/3 times the lower bound. Becker [5] gave a 4/3-approximation with respect to the lower bound.
Becker and Paul [9] showed a (1, 1+ε)-bicriteria polynomial-time approximation scheme for splittable CVRP
in trees, i.e. a PTAS but the capacity of every tour is up to (1 + ε)Q.

Das and Mathieu [15] gave a quasi-polynomial-time approximation scheme (QPTAS) for CVRP in the
Euclidean plane (R2). A PTAS for when Q is O(log n/ log log n) or Q is Ω(n) was shown by Asano et al. [4].
A PTAS for Euclidean plane R2 for all moderately large values of Q ≤ 2logδ n, where δ = δ(ε), was shown by
Adamaszek et al [1], building on the work of Das and Mathieu [15], and using it as a subroutine. For high
dimensional Euclidean spaces Rd, Khachay et al. [20] showed a PTAS when Q is O(log1/d n). For graphs
of bounded doubling dimension, Khachay et al. [21] gave a QPTAS when the number of tours is polylog(n)
and Khachay et al. [22] gave a QPTAS when Q is polylog(n).

The following results are all for when Q is a fixed. CVRP is APX-hard in general metrics and is
polynomial-time solvable on trees. There exists a PTAS for CVRP in the Euclidean plane (R2) (again for
when Q is fixed) as shown by Khachay et al. [20]. A PTAS for planar graphs was shown by Becker et
al. [8] and a QPTAS for planar and bounded-genus graphs was shown by Becker et al. [6]. A PTAS for
graphs of bounded highway dimension and an exact algorithm for graphs with treewidth with running time
O(ntwQ) was shown by Becker et al [7]. Cohen-Addad et al. [12] showed an efficient PTAS for graphs of
bounded-treewidth, an efficient PTAS for bounded highway dimension, an efficient PTAS for bounded genus
metrics and a QPTAS for minor-free metrics. Again, note that these results are all under the assumption
that Q is fixed.

So aside from the QPTAS of [15] for R2 and subsequent slight generalization of [1] no approximation
scheme is known for CVRP on any non-trivial metrics for arbitrary values of Q (even for trees). Standard
ways of extending a dynamic programs for Euclidean metrics to bounded doubling metrics do not seem to
work to extend the results of [15] to doubling metrics in quasi-polynomial time.

1.2 Overview of our technique
We start by presenting a QPTAS for CVRP on trees and then extend the technique to graphs of bounded
treewidth. Our main technique to design approximation scheme for CVRP is to show the existence of a near
optimum solution where the sizes of the partial tours going past any node of the tree can be partitioned
into only poly-logarithmic many classes. This will allow one to use dynamic programming to find a low cost
solution. A simple rounding of tour sizes to some threshold values (e.g. powers of (1 + ε)) only works (with
some care) to achieve a bi-criteria approximation as any under estimation of tour sizes may result in tours
that are violating the capacities. To achieve a true approximation (without capacity violation) we show how
we can break the tours of an optimum solution into "top" and "bottom" parts (at any node v) and then
swap the bottom parts of tours with the bottom parts of other tours which are smaller, and then "round
them up" to the nearest value from a set of poly-logarithmic threshold values. This swapping creates enough
room to do the "round up" without violating the capacities. However, this will cause a small fraction of the
vertices to become "not covered", we call them orphant nodes. We will show how we can randomly choose
some tours of the optimum and add them back to the solution (at a small extra cost) and use these extra
tours (after some modifications) to cover the orphant nodes. There are many details along the way. For
instance, we treat the demand of each node as a token to be picked up by a tour. To ensure partial tour
sizes are always from a small (i.e. poly-logarithmic) size set, we add extra tokens over the nodes. Also, for
our QPTAS to work we need to bound the height of the tree. We show how we can reduce the height of the
tree to poly-logarithmic at a small loss using a height reduction lemma that might prove useful for other
vehicle routing problems.

The technique of QPTAS for trees then can be extended to graphs of bounded treewidth and also graphs
of bounded doubling dimension; prove the existence of a similar near optimum solution and find one using
dynamic program. Or one can use the known results for embedding of graphs of bounded doubling dimension
into graphs of small treewidth.

3



2 Preliminaries
Recall that an instance I to CVRP is a graph G = (V,E), where w(e) is the cost or weight of edge e ∈ E
and Q is the capacity of the vehicle. Each tour T is a walk over some nodes of G. We say T "covers" node
v if it serves the demand at node v. For the unit demand CVRP, it is easier to think of the demand of each
node v as being a token on v that must be picked up by a tour. We can generalize this and assume each
node v can have multiple tokens and the total number of tokens a tour can pick is most Q (possibly from the
same or different locations). Note that each tour might visit vertices without picking any token there. The
goal is to find a collection of tours of minimum total cost such that each token is picked up (or say covered)
by some tour. We use OPT(G) or simply OPT to refer to an optimum solution of G, and opt to denote
the value of it. Fix an optimal solution OPT. For any edge e let f(e) denote the number of tours travelling
edge e in OPT; so opt =

∑
e w(e) · f(e).

First we show the demand of each node is bounded by a function of Q. And then, using standard scaling
and rounding and at a small loss, we show we can assume the edge weights are polynomially bounded (in n).
Given an instance for splittable CVRP with n nodes and capacity Q, it is possible that the demand d(v) > Q
for some node v. From the work of Adamaszek et al [1], we will show how we can assume that the demand at
each node v satisfies 1 ≤ d(v) < nQ. Adamaszek et al [1] defined a trivial tour to be a tour which picks up
tokens from a single node in T and a tour is non-trivial if the tour picks up tokens from at least two nodes
in T . They defined a cycle to be a set of tours t1, . . . , tm(m ≥ 2) and a set of nodes `1, `2, . . . , `m, `m+1 = `1
such that each tour ti covers locations `i and `i+1 and the origin is not considered as a node in `1, . . . , `m.
They showed in Lemma 1 of [1] that there is an optimal solution in which there are no cycles. Since there
are no 2-cycles, there are no two tours which cover the same pair of nodes. So there is an optimal solution
such that there are at most n non-trivial tours (as argued in [1]). So putting aside trivial tours (each picking
up Q tokens at a node), we can assume we have a total of at most nQ tokens and in particular each node
has at most this many tokens. Without loss of generality, we assume we have removed all trivial tours and
so there is a total of at most nQ demands.

We can also assume there is at most one tour in OPT covering at most Q/2 demand. If there are at least
two tours T1 and T2 covering less than Q/2 demand, they can be merged into a single tour at no additional
cost. Since the total demand is at most nQ, the total number of tours in the optimal solution is at most
nQ/(Q/2) = 2n.

Now we scale edge weights to be polynomially bounded. Observe that each tour in OPT traverses each
edge e at most once in each direction, so at most twice. Suppose we have guessed the largest edge weight that
belongs to OPT (by enumerating over all possible such guesses) and have removed any edge with weight
larger. Let W = maxe∈E w(e) be the largest (guessed) edge in OPT. Suppose we build instance I ′ by
rounding up the weight of each edge e to be maximum of w(e) and εW/4n3. Since there are a total of at
most 2n tours in OPT and each edge is traversed at most twice by each tour, and there are at most n2

edges, the cost of solution OPT in I ′ is at most opt + 4n · n2 · εW4n3 ≤ (1 + ε)opt. Note that the ratio of
maximum to minimum edge weight in I ′ is 4n3/ε, but the edge weights are not necessarily integer. Now
suppose we scale the edge weights so that the minimum edge weight is 1 and the maximum edge weight is
4n3/ε and then scale them all by 1/ε, and then round each one up to the nearest integer. Note that by this
rounding to the nearest integer, the cost of each edge is increased by a factor of at most 1 + ε, so the cost
of an optimum solution in the new instance is at most (1 + ε)(1 + ε) = (1 + O(ε)) factor larger than before
rounding while the edge weights are all polynomially bounded integers. So from now on we assume we have
this property for the given instance at a small loss.

We will use the following two simplified version of the Chernoff Bound [24] in our analysis.

Lemma 1 (Chernoff bound) Let Y =
∑n
i=1 Yi where Yi = 1 with probability pi and 0 with probability

1− pi, and all Yi’s are independent. With µ = E[Y ], P[Y > 2µ] ≤ e−µ/3 and P
[
Y < µ

2

]
≤ e−µ/8.

3 QPTAS for CVRP on Trees
In this section we prove Theorem 1. We will first prove a structure theorem which describes structural prop-
erties of a near-optimal solution. We will leverage these structural properties and use dynamic programming
to compute a near-optimal solution.

4



3.1 Structure Theorem
Our goal in this section is to show the existence of a near optimum solution (i.e. one with cost (1+O(ε))opt)
with certain properties which makes it easy to find one using dynamic programming. More specifically we
show we can modify the instance I to instance I ′ on the same tree T where each node has ≥ 1 tokens
(so possibly more than 1) and change OPT to a solution OPT′ on I ′ where cost of OPT′ is at most
(1 +O(ε))opt. Clearly the tours of OPT′ form a capacity respecting solution of I as well (of no more cost).

A starting point in our structure theorem is to show that given input tree T , for any ε > 0, we can build
another tree T ′ of height O(log2 n/ε) such that the cost of an optimum solution in T ′ is within 1 + ε factor
of the optimum solution to T . We can lift a near-optimum solution to T ′ into a near-optimum solution of
T . We will show the following in Subsection 3.6

Theorem 5 Given a tree T as an instance of CVRP and for any fixed ε > 0, one can build a tree T ′ with
height δ log2 n/ε, for some fixed δ > 0, such that opt(T ′) ≤ opt(T ) ≤ (1 + ε)opt(T ′).

So for the rest of this section we assume our input tree has height O(log2 n/ε) at a loss of (yet another)
1 + ε in approximation ratio.

3.1.1 Overview of the ideas

Let us give a high level idea of the Structure theorem. In order to do that it is helpful to start from a simpler
task of developing a bi-criteria approximation scheme1

Let T be a tour in OPT and v be a node in T . The coverage of T with respect to v is the number of
tokens picked by T in the subtree Tv.

Suppose a tour T visits node v. We refer to the subtour of T in Tv (subtree rooted at v) as a partial
tour.

A Bicriteria QPTAS: For simplicity, assume T is binary (this is not crucial in the design of the DP).
A subproblem would be based on a node v ∈ T and the structure of partial tours going into Tv to pick up
tokens in Tv at minimum cost. In other words, if one looks at the sections of tours of an optimum solution
that cover tokens of Tv, what are the capacity profiles of those sections? For a vector ~t with Q entries,
where ~ti (for each 1 ≤ i ≤ Q) is the number of partial tours going down Tv which pick i tokens (or their
capacity for that portion is i), entry A[v,~t] would store the minimum cost of covering Tv with (partial)
tours whose capacity profile is given by ~t. It is not hard to fill this table’s entries using a simple recursion
based on the entries of children of v. So one can solve the CVRP problem "exactly" in time O(nQ+1). We
can reduce the time complexity by storing "approximate" sizes of the partial tours for each Tv. So let us
"round" the capacities of the tours into O(logQ/ε) buckets, where bucket i represents capacities that are in
[(1+ ε)i−1, (1+ ε)i). More precisely, consider threshold-sizes S = {σ1, . . . , στ} where: for 1 ≤ i ≤ 1/ε, σi = i,
and for each value i > 1/ε: σi = σi−1(1 + ε) and στ = Q. Note that |S| = O(logQ/ε) = O(log n/ε). Suppose
we allow each tour to pick up to (1 + ε)Q tokens. If it was the case that each partial tour for Tv (i.e. part of
a tour that enters/exits Tv) has a capacity that is also threshold-size (this may not be true!) then the DP
table entries would be based on vectors ~t of size O(log n/ε), and the run time would be quasi-polynomial.
One has to note that for each subproblem of the optimum at a node v with children u,w, even if the tour
sizes going down Tv were of threshold-sizes, the partial tours at Tu and Tw do not necessarily satisfy this
property.

To extend this to a proper bicriteria (1 + ε)-approximation we can define the thresholds based on powers
of 1+ε′ where ε′ = ε2

log2 n
instead: let S = {σ1, . . . , στ} where σi = i for 1 ≤ i ≤ 1/ε′, and for i > 1/ε′ we have

σi = σi−1(1 + ε′), and στ = Q. So now |S| = O(log2 n · logQ/ε) = O(log3 n/ε2) when Q = poly(n). For each
vector ~t of size τ , where 0 ≤ ti ≤ n is the number of partial tours with coverage/capacity σi, let A[v,~t] store
the minimum cost of a collection of (partial) tours covering all the tokens in Tv whose capacity profile is ~t,
i.e. the number of tours of size in [σi, σi+1) is ~ti. To compute the solution for A[v,~t], given all the solutions
for its two children u,w we can do the following: consider two partial solutions, A[u,~tu] and A[w,~tw]. One
can combine some partial tours of A[u,~tu] with some partial tours of A[w,~tw], i.e. if Tu is a (partial) tour
of class i for Tu and Tw is a partial tour of class j for Tw then either these two tours are in fact part of the

1Note that [9] already presents a bicriteria PTAS for CVRP on trees. We present a simple bi-criteria QPTAS here as it is
our starting point towards a true approximation scheme.

5



same tour for Tv, or not. In the former case, the partial tour for Tv obtained by the combination of the two
tours will have cost w(Tu) +w(Tw) + 2w(vu) + 2w(vw) and capacity ti+ tj (or possibly ti+ tj + 1 if this tour
is to cover v as well). In the latter case, each of Tu and Tw extend (by adding edges vu and vw, respectively)
into partial tours for Tv of weights w(Tu) + 2w(vu) and w(Tw) + 2w(vw) (respectively) and capacities ti and
tj (or perhaps ti + 1 or tj + 1 if one of them is to cover v as well). In the former case, since ti + tj is not
a threshold-size, we can round it (down) to the nearest threshold-size. We say partial solutions for Tv, Tu
and Tw are consistent if one can obtain the partial solution for Tv by combining the solutions for Tv and
Tw. Given A[v,~t], we consider all possible subproblems A[u,~tu] and A[w,~tw] that are consistent and take the
minimum cost among all possible ways to combine them to compute A[v,~t]. Note that whenever we combine
two solutions, we might be rounding the partial tour sizes down to a threshold-size, so we "under-estimate"
the actual tour size by a factor of 1 + ε′ in each subproblem calculation. Since the height of the tree is
h = O(log2 n/ε), the actual error in the tour sizes computed at the root is at most (1 + ε′)h = (1 +O(ε)), so
each tour will have size at most (1 +O(ε))Q. The time to compute each entry A[v,~t] can be upper bounded
by nO(log3 n/ε2) and since there are nO(log3 n/ε2) subproblems, the total running time of the algorithm will be
nO(log3 n/ε2). We can handle the setting where the tree is not binary (i.e. each node v has more than two
children) by doing an inner DP, like a knapsack problem over children of v (we skip the details here as we
will explain the details for the actual QPTAS instead).

Going from a Bicriteria to a true QPTAS: Our main tool to obtain a true approximation scheme
for CVRP in trees is to show the existence of a near-optimum solution where the partial solutions for each
Tv have sizes that can be grouped into polyogarithmic many buckets as in the case of bi-criteria solution.
Roughly speaking, starting from an optimum solution OPT, we follow a bottom-up scheme and modify
OPT by changing the solution at each Tv: at each node v, we change the structure of the tours going down
Tv (by adding a few extra tours from the depot) and also adding some extra tokens at v so that the partial
tours that visit Tv all have a size from one of polyogarithmic many possible sizes (buckets) while increasing
the number and the cost of the tours by a small factor. We do this by duplicating some of the tours that
visit Tv while changing parts of them that go down in Tv and adding some extra tokens at v: each tour still
picks up at most a total of Q tokens and the size (i.e. the number of tokens picked) for each partial tour
in the subtree Tv is one of O(log4 n/ε2) many possible values, while the total cost of the solution is at most
(1 +O(ε))opt.

Suppose T has height h (where h = δ log2 n/ε). Let V` (for 1 ≤ ` ≤ h) be the set of vertices at level
` of the tree where V1 = {r} and for each ` ≥ 2, V` are those vertices whose parent is in level ` − 1. For
every tour T and every level `, the top part of T w.r.t. ` (denoted by T top` ), is the part of T induced by the
vertices in V1 ∪ . . . ∪ V`−1 and the bottom part of T are the partial tours of T in the subtrees rooted at a
vertex in V`. Note that if we replace each partial tour of the bottom part of a tour T with a partial tour of
a smaller capacity, the tour remains a capacity respecting tour. Consider a node v (which is at some level `)
and suppose we have nv partial tours covering Tv. Let the nv tours in increasing order of their coverage be
t1, . . . , tnv . Let |ti| be the coverage of tour ti (so |ti| ≤ |ti+1|). For a g (to be specified later), we add enough
empty tours to the beginning of this list so that the number of tours is a multiple of g. Then, we will put
these tours into groups Gv1, . . . , Gvg of equal sizes by placing the i’th nv/g partial tours into Gvi . Let h

v,max
i

(hv,mini ) refer to the maximum (minimum) size of the tours in Gvi . This grouping is similar to the grouping
in the asymptotic PTAS for the classic bin-packing problem. Note that hv,maxi ≤ hv,mini+1 .

Consider a mapping f where it maps each partial tour in Gvi to one in Gvi−1 in the same order, i.e. the
largest partial tour in Gvi is mapped to the largest in Gvi−1, the 2nd largest to the 2nd largest and so on, for
i > 1 (suppose f(.) maps all the tours of Gv1 to empty tours). Now suppose we modify OPT to OPT′ in
the following way: for each tour T that has a partial tour t ∈ Gvi , replace the bottom part of T at v from t
to f(t) (which is in Gvi−1). Note that by this change, the size of any tour like T can only decrease. Also, if
instead of f(t) we had replaced t with a partial tour of size hv,maxi−1 , it would still form a capacity respecting
solution with the rest of T , because hv,maxi−1 ≤ hv,mini ≤ |t|. The only problem is that those tokens in Tv that
were picked by the partial tours in Gvg are not covered by any tours; we call these orphant tokens. For now,
assume that we add a few extra tours to OPT at low cost such that they cover all the orphant tokens of Tv.
If we have done this change for all vertices v ∈ V`, then for every tour like T , the partial tours of T going
down each Tv (for v ∈ V`) are replaced with partial tours from a group one index smaller. This means that,
after these changes, for each tour T and its (new) partial tour t ∈ Gvi , if we add hv,maxi − |t| extra tokens

6



at v to be picked up by t then each partial tour has size exactly the same as the maximum size of its group
without violating the capacities. This helps us store a compact "sketch" for partial solutions at each node v
with the property that the partial solution can be extended to a near optimum one.

How to handle the case of orphant tokens (those picked by the tours in the the last groups Gvg before
the swap)? We will show that if nv is sufficiently large (at least polylogarithmic) then if we sample a small
fraction of the tours of the optimum at random and add two copies of them (as extra tours), they can be
used to cover the orphant tokens. So overall, we show how one can modify OPT by adding some extra tours
to it at a cost of at most ε · opt such that: each node v has ≥ 1 tokens and the sketch of the partial tours
at each node v is compact (only polyogarithmic many possible sizes) while the dropped tokens overall can
be covered by the extra tours.

3.1.2 Changing OPT to a near optimum structured solution

We will show how to modify the optimal solution OPT to a near-optimum solution OPT′ for a new instance
I ′ which has ≥ 1 token at each node with certain properties. We start from ` = h and let OPT′ = OPT` =
OPT and for decreasing values of `, we will show how to modify OPT`+1 to obtain OPT`. To obtain OPT`

from OPT`+1 we keep the partial tours at levels ≥ ` the same as OPT`+1 but we change the top parts of
the tours and how the top parts can be matched to the partial tours at level ` so that together they form
capacity respecting solutions (tours of capacity at most Q) at low cost.

First, we assume that OPT has at least d log n many tours for some sufficiently large d. Otherwise, if
there are at most D = d log n many tours in OPT we can do a simple DP to compute OPT: for each node
v, we have a sub problem A[v, T v1 , . . . , T

v
D] which stores the minimum cost solution if T vi is the number of

vertices the i’th tour is covering in the subtree Tv. It is easy to fill this table in time O(nD) having computed
the solutions for its children.

Definition 1 Let threshold values be {σ1, . . . , στ} where σi = i for 1 ≤ i ≤ d1/εe, and for i > d1/εe we
have σi = dσi−1(1 + ε)e, and στ = Q. So τ = O(logQ/ε).

We consider the vertices of T level by level, starting from nodes in level V`=h−1 and going up, modifying
the solution OPT`+1 to obtain OPT`.

Definition 2 For a node v, the i-th bucket, bi, contains the number of tours of OPT` having coverage
between [σi, σi+1) tokens in Tv where σi is the i-th threshold value. We will denote a node and bucket by a
pair (v, bi). Let nv,i be the number of tours in bucket bi of v.

Definition 3 A bucket b is small if the number of tours in b is at most α log3 n/ε2 and is big otherwise,
for a constant α ≥ max{1, 12δ}.

Note that for every node v and bucket bi and for any two partial tours in bi, the ratio of their size
(coverage) is at most (1 + ε). We will use this fact crucially later on. While giving the high level idea earlier
in this section, we mentioned that we can cover the orphant tokens at low cost by using a few extra tours at
low cost. For this to work, we need to assume that the ratio of the maximum size tour to the minimum size
tour in all groups Gv1, . . . , Gvg is at most (1 + ε). To have this property, we need to do the grouping described
for each vertex-bucket pair (v, bi) that is big.

For each v ∈ V`, let (v, bi) be a vertex-bucket pair. If bi is a small bucket, we do not modify the partial
tours in it. If bi is a big bucket, we create groups Gvi,1, . . . , Gvi,g of equal sizes (by adding null/empty tours
if needed to Gvi,1 to have equal size groups), for g = (2δ log n)/ε2; so |Gvi,j | = dnv,i/ge. We also consider
a mapping f (as before) which maps (in the same order) the tours t ∈ Gvi,j to the tours in Gvi,j−1 for all
1 < j ≤ g. We assume the mapping maps tours of Gvi,1 to empty tours. Let the size of the smallest (largest)
partial tour in Gvi,j be hv,mini,j (hv,maxi,j ). Note that hv,maxi,j−1 ≤ hv,mini,j . Consider the set T` of all the tours T
in OPT` that visit a vertex in one of the lower levels V≥`. Consider an arbitrary such tour T that has a
partial tour t in a big vertex/bucket pair (v, bi), suppose t belongs to group Gvi,j . We replace t with f(t) in
T . Note that for T , the partial tour at Tv now has a size between hv,mini,j−1 and hv,maxi,j−1 . Now, add some extra
tokens at v to be picked up by T so that the size of the partial tour of T at Tv is exactly hv,maxi,j−1 ; note that
since hv,maxi,j−1 ≤ |t|, the new partial tour at v can pick up the extra tokens without violating the capacity of

7



T . If we make this change for all tours T ∈ T`, each partial tour of them at level ` that was in a group
j < g of a big vertex/bucket pair (v, i) is replaced with a smaller partial tour from group j − 1 of the same
big vertex/bucket pair; after adding extra tokens at v (if needed) the size is the maximum size from group
j− 1. All other partial tours (from small vertex/bucket pairs) remain unchanged. Also, the total cost of the
tours has not increased (in fact some now have partial tours that are empty). However, the tokens that were
picked by partial tours from Gvi,g for a big vertex/bucket pair (v, bi) are now orphant. We describe how to
cover them with some new tours.

One important observation is that when we make these changes, for any partial tours at vertices at lower
levels (V>`) their size remains the same. It is only the tour sizes going down a vertex at level ` that we
are adjusting (by adding extra tokens). All other lower level partial tours remain unchanged (only their top
parts may get swapped). This property holds inductively as we go up the tree and ensure that the lower level
partial tours have one of polylogarithmic many sizes. More precisely, as we go up levels to compute OPT`,
for any vertex v′ ∈ V`′ (where `′ > `) and any partial tour T ′ visiting Tv′ , either |T ′| belongs to a small
vertex bucket pair (v′, bi′) (and so has one of O(log3 n/ε) many possible values) or if it belongs to a big vertex
bucket pair (v′, bi′) then its size is equal to hv

′,max
i′,j′ for some group j′ and hence one of O((logQ log n)/ε2)

possible values.
To handle (cover) orphant nodes, we are going to (randomly) select a subset of tours of OPT as "extra

tours" and add them to OPT′ and modify them such that they cover all the tokens that are now orphant
(i.e. those that were covered by partial tours of Gvi,g for all big vertex/bucket pairs at level `).

Suppose we select each tour T of OPT with probability ε. We make two copies of the extra tour and
we designate both extra copies to one of the levels V` that it visits with equal probability. We call these the
extra tours.

Lemma 2 The cost of extra tours selected is at most 4ε · opt w.h.p.

Proof. Recall that f(e) denotes the number of tours passing through e in OPT. The contribution of edge
e to the optimal solution is 2 · w(e) · f(e) and we can write opt =

∑
e∈E 2 · w(e) · f(e). Let e be the parent

edge of a node in v ∈ V`. Suppose an extra tour is designated to level `, we will only use it to cover orphant
tokens from big buckets from nodes in V`. A node v would use an extra tour to cover orphant tokens only if
one of v’s buckets is a big bucket. From now on, we will assume the extra tours only pass through an edge
e if f(e) ≥ α log3 n/ε2 (we can shortcut it otherwise).

For an edge e, let f ′(e) denote the number of sampled tours passing through e and since we use two
copies of each sampled tour, 2f ′(e) is the number of extra tours passing through e in OPT′. We can write
opt′ =

∑
e∈E 2 ·w(e) · (f(e) + 2f ′(e)) and the cost of extra tours is

∑
e∈E 2 ·w(e) · 2f ′(e). While modifying

OPT to OPT′, each tour in the optimal solution is sampled with probability ε. Let e be an edge with f(e)
tours Te,1, . . . , Te,f(e) passing through it. Let Ye,i be a random variable which is 1 if tour Te,i is sampled and
0 otherwise.

E[Ye,i] = P[Te,i is sampled] = ε.

Let f ′(e) = Ye =
∑f(e)
i=1 Ye,i. By linearity of expectations, we have

E[f ′(e)] = E[Ye] =

f(e)∑
i=1

E[Ye,i] =

f(e)∑
i=1

ε = ε · f(e).

Our goal is to show P[Ye > 2E[Ye]] is very low. Using Chernoff bound with µ = E[Ye] = ε·f(e) ≥ α log3 n/ε ≥
6 log n.

P[Ye > 2E[Ye]] ≤ e−(2 logn) =
1

n2

The above concentration bound holds for a single edge e. Using the union bound, we can show this hold
with high probability over all edges, ∑

e∈E
P[Ye > 2E[Ye]] ≤

1

n
.

8



We showed f ′(e) ≤ 2ε · f(e) with high probability. Hence, with high probability, the cost of the extra tours
is at most ∑

e∈E
2 · w(e) · 2f ′(e) ≤

∑
e∈E

2 · w(e) · 4ε · f(e) = 4ε
∑
e∈E

2 · w(e) · f(e) = 4ε · opt.

Therefore, we can assume that the cost of all the extra tours added is at most 4ε · opt. Let X` be the
set of extra tours designated to level `. We assume we add X` when we are building OPT` (it is only for
the sake of analysis). For each v ∈ V` and vertex/bucket pair (v, bi), let Xv,i be those in X` whose partial
tour in Tv has a size in bucket bi. Each extra tour in X` will not be picking any of the tokens in levels V<`
(as they will be covered by the tours already in OPT`); they are used to cover the orphant tokens created
by partial tours of Gvi,g for each big vertex/bucket pair (v, bi) with v ∈ V`; as described below.

Lemma 3 For each level V`, each vertex v ∈ V` and big vertex/bucket pair (v, bi), w.h.p. |Xv,i| ≥ ε2

δ log2 n
·nv,i.

Proof. Suppose (v, bi) is a big vertex/bucket pair at some level V`. Let p1, . . . , pnv,i be the partial tours
in vertex/bucket pair (v, bi). Let the tour in OPT corresponding to pi be T . Two copies of tour pi are
assigned to bi if both of the following events are true:

• Let Ai be the event where tour T is sampled as an extra tour. Since each tour is sampled with
probability ε, we have P[Ai] = ε.

• Let Bi be the event where tour T is assigned to level `. There are h = δ log2 n/ε many levels and since
T (if sampled) is assigned to any one of its levels, P[Bi] ≥ 1/h ≥ ε/(δ log2 n).

Let Yi be a random variable which is 1 if pi is an extra tour in (v, bi) and 0 otherwise.

E[Yi] = P[Yi = 1] = P[Ai ∧Bi] = P[Ai] · P[Bi] ≥ ε2/(δ log2 n).

Let Yv,i =
∑nv,i
i=1 Yi be the random variable keeping track of the number of sampled tours in (v, bi). The

number of extra tours, |Xv,i| = 2Yv,i since we add two copies of a sampled tour to Xv,i. By linearity of
expectation, we have

E[|Xv,i|] = 2E[Yv,i] = 2

nv,i∑
i=1

E[Yi] ≥
2ε2

δ log2 n
· nv,i.

We want to show that |Xv,i| ≥ E[|Xv,i|]
2 ≥ ε2

δ log2 n
· nv,i with high probability over all vertex-bucket pairs.

Using Chernoff Bound with µ = E[|Xv,i|] ≥ 2ε2

δ log2 n
· nv,i ≥ 24 log n since nv,i ≥ α log3 n/ε2 and α ≥ 12δ.

P
[
|Xv,i| <

E[|Xv,i|]
2

]
≤ e−(3 logn) =

1

n3

Note that the above equation only shows the concentration bound for a single vertex/bucket pair. There are
n nodes and each node has up to τ = log n/ε buckets, so the total number of vertex/bucket pairs is at most
n log n/ε. Suppose we do a union bound over all buckets, we get∑

all (v,bi) pairs

P
[
|Xv,i| <

E[|Xv,i|]
2

]
≤ 1

n
.

We showed that for each vertex/bucket pair v, bi, |Xv,i| ≥ ε2

δ log2 n
nv,i ≥ α log n/(2δ) holds with high proba-

bility.

Lemma 4 Consider all v ∈ V`, big vertex/bucket pairs (v, bi) and partial tours in Gvi,g. We can modify the
tours in Xv,i (without increasing the cost) and adding some extra tokens at v (if needed) so that:

1. The tokens picked up by partial tours in Gvi,g are covered by some tour in Xv,i, and

2. The new partial tours that pick up the orphant tokens in Gvi,g have size exactly hv,maxi,g and all tours
still have size at most Q.

9



3. For each (new) partial tour of Xv,i and every level `′ > `, the size of partial tours of Xv,i at a vertex
at level `′ is also one of O(logQ log3 n/ε3) many sizes.

Proof. Our goal is to use the extra tours in Xv,i to cover tokens picked up by partial tours of Gvi,g and we
want each extra tour inXv,i to cover exactly h

v,max
i,g tokens. The tours in the last group, Gvi,g, cover

∑
t∈Gvi,g

|t|
many tokens. Since we want each tour in Xv,i to cover hv,maxi,g tokens, we will add

∑
t∈Gvi,g

(hv,maxi,g − |t|)
extra tokens at v for each vertex/bucket pair (v, bi) so that there are hv,maxi,g tokens for each partial tour in
Gvi,g. From now on, we will assume each partial tour in a last group Gvi,g covers hv,maxi,g tokens.

We know |Gvi,g| = nv,i/g = ε2

2δ logn · nv,i. Using Lemma 3, we know with high probability that |Xv,i| ≥
ε2

δ log2 n
·nv,i = 2|Gvi,g|, so |Xv,i|/|Gvi,g| ≥ 2. Recall OPT′ includes tours in OPT plus the extra tours in OPT

that were sampled. Let Yv,i denote the number of tours in vertex/bucket pair (v, bi) that were sampled, so
|Xv,i| = 2|Yv,i| since we made two extra copies of each sampled tour and |Yv,i| ≥ |Gvi,g| with high probability.
We will start by creating a one-to-one mapping s : Gvi,g → Yv,i which maps each tour in Gvi,g to a sampled
tour in Yv,i. We know such a one-to-one mapping exists since |Yv,i| ≥ |Gvi,g|.

Let T be a sampled tour in Yv,i with two extra copies of it, T1 and T2 in Xv,i. Let the partial tours of
T at the bottom part in V` be p1, . . . , pm. We know |T | ≥

∑m
i=1 |pi|. Since s is one-to-one, one partial tour

from rk ∈ Gvi,g maps to pj or no tour maps to pj . If no tour maps to pj , we consider the load assigned to pj
to be zero. If s(rk) = pj where rk ∈ Gvi,g, since we added extra tokens to make each partial tour rk ∈ Gvi,g
have hv,maxi,g tokens, the load assigned to pj would be hv,maxi,g .

Suppose we think of r1, . . . , rm as items and T1 and T2 as bins of size Q. We know each ri fits into a
bin of size Q. Recall that for the tour rj assigned to pj , we know |rj | ≤ (1 + ε)|pj | since both rj and pj
are in the same group Gvi,g. We might not be able to fit all items r1, . . . , rm into a bin of size Q because∑m
i=1 |ri| ≤ (1 + ε)

∑m
i=1 |pi| ≤ (1 + ε)|T | ≤ (1 + ε)Q. However, if we used two bins of size Q, we can pack

the items into both bins without exceeding the capacity of either bin such that each item ri is completely in
one bin. Since T1 and T2 are not assigned to any lower level, they have not been used to cover any tokens so
far in our algorithm and they both have unused capacity Q. Using the bin packing analogy, we could split
r1, . . . , rm between T1 and T2. We could assign r1, . . . , rj (for the maximum j) to T1 such that

∑j
i=1 |ri| ≤ Q

and the rest, rj+1, . . . , rm to T2. Since
∑m
i=1 |ri| ≤ (1 + ε)Q, we can ensure we can distribute the tokens in

ri’s amongst T1 and T2 such that both T1 and T2 cover at most Q tokens. Although there are two copies of
each partial tour pi in Xv,i, according to our approach, we are using at most one of them (their coverage
would be zero if they are not used). If the coverage of one of the extra partial tours is non-zero, we also
showed that if it picks up tokens from a partial tour in Gvi,g, it would pick up exactly hv,max

i,g tokens, proving
the 2nd property of the Lemma.

Also, note that for each partial tour rk ∈ Gvi,g and for each level `′ > ` if rk visits a vertex v′ ∈ V`′ ,
then the partial tour of rk at Tv′ already satisfies the properties that: either its size belongs to a small
vertex-bucket pair (v′, bi) (so has one of O(log3 n/ε) many possible values) or if it belongs to a big vertex
bucket pair (v′, bi′) then its size is equal to hv

′,max
i′,j′ for some group j′ and hence one of O((logQ log n)/ε2)

possible values. This implies that for the extra tours of Xv,i, after we reassign partial tours of Gvi,g to them
(to cover the orphant nodes), each will have a size exactly equal to hv,maxi,g at level ` and at lower levels V>`
they already have one of the O(logQ log3 n/ε3) many possible sizes. This establishes the 3rd property of the
lemma.

Therefore, using Lemma 4, all the tokens of Tv remain covered by partial tours; those partial tours in
Gvi,j (for 1 ≤ j < g) are tied to the top parts of the tours from group Gvi,j+1 and the partial tours of Gvi,g
will be tied to extra tours designated to level `. We also add extra tokens at v to be picked up by the partial
tours of Tv so that each partial tour has a size exactly equal to the maximum size of a group. All in all, the
extra cost paid to build OPT` (from OPT`+1) is for the extra tours designated to level `.

Theorem 6 (Structure Theorem) Let opt be the cost of the optimal solution to instance I. We can
build an instance I ′ on the same tree T such that each node has ≥ 1 tokens and there exists a near-optimal
solution OPT′ for I ′ having cost (1 + 4ε)opt w.h.p with the following property. The partial tours going
down subtree Tv for every node v in OPT′ has one of O((logQ log3 n)/ε3) possible sizes. More specifically,
suppose (v, bi) is a bucket pair for OPT′. Then either:

10



• bi is a small bucket and hence there are at most α log3 n/ε2 many partial tours of Tv whose size is in
bucket bi, or

• bi is a big bucket; in this case there are g = (2δ log n)/ε2 many group sizes in bi: σi ≤ hv,maxi,1 ≤ . . . ≤
hv,maxi,g < σi+1 and every tour of bucket i has one of these sizes.

Proof. We will show how to modify OPT to a near-optimal solution OPT′. We start from ` = h and
let OPT` = OPT. For decreasing values of ` we show, for each ` how to modify OPTl+1 to obtain OPT`.
We do this in the following manner: we do not modify partial tours in small buckets. However, for tours in
big buckets, in each vertex/bucket pair (v, bi) in level `− 1, we place them into g groups Gv1, . . . , Gvg of equal
sizes by placing the i’th nv/g partial tours into Gvi . We have a mapping f from each partial tour in Gvi−1 to
one in Gvi for i ∈ {2, . . . , g}. We modify OPT` to OPT`+1 in the following way: for each tour T that has
a partial tour t ∈ Gvi , replace the bottom part of T at v from t to f(t) (which is in Gvi−1). For each tour
t ∈ Gvi−1, we will add h

v,max
i−1 −|t| many extra tokens at v. Note that by this change, the size of any tour such

as T can only decrease and we are not violating feasibility of the tour because hv,max
i−1 ≤ hv,min

i . However,
the tokens in Tv picked up by the partial tours in Gvi,g are not covered by any tours. We can use Lemma 4
to show how we can use extra tours to cover the partial tours in Gvi,g such that the new partial tours have
size exactly hv,max

i,g .
We will inductively repeat this for levels ` − 2, ` − 3, . . . , 1 and obtain OPT1 = OPT′. Note that by

adding extra tokens hv,max
i−1 − |t| for a tour t ∈ Gvi−1, we are enforcing that the coverage of each tour is

the maximum size of tours in its group. In a big bucket, there are g = (2δ log n)/ε2 many group sizes,
so there are O(log n/ε2) possible sizes for tours in big buckets at a node. In a small bucket, there can be
at most α log3 n/ε2 many tours and since there are τ = O(logQ/ε) many buckets, there can be at most
O((logQ log3 n)/ε3) many tour sizes covering Tv.

Using Lemma 2, we know the cost of the extra tours is at most 4ε ·opt with high probability, so the cost
of opt′ ≤ (1 + 4ε)opt.

3.2 Dynamic Program
In this section we complete the proof of Theorem 1. We will describe how we can compute a solution of cost
at most (1 + 4ε)opt using dynamic programming and based on the existence of a near-optimum solution
guaranteed using the structure theorem. For each vertex/bucket pair, we do not know if the bucket is small
or big, so we will consider subproblems corresponding to both possibilities. Informally, we will have a vector
~n ∈ [n]τ where if i < 1/ε, ni keeps track of the exact number of tours of size i and for i ≥ 1/ε, ~ni keeps
track of the number of tours in bucket bi, or tours covering between [σi, σi+1) tokens. Let ov denote the
total number of tokens to be picked up across all nodes in the subtree Tv. Since each node has at least one
token, ov ≥ |V (Tv)|. We will keep track of three other pieces of information conditioned on whether bi is
a small or big bucket. If bi is a small bucket, we will store all the tour sizes exactly. Since the number of
tours in a small bucket is at most γ = α log3 n/ε2, we will use a vector ~ti ∈ [n]γ to represent the tours of
a small bucket where ~tij represents the size of j-th tour in bucket bi. Suppose bi is a big bucket, there are
g = (2δ log n)/ε2 many tour sizes in the bucket corresponding to ng possibilities. For each big bucket bi at
node v, we need to keep track of the following information,

• ~hiv ∈ [n]g is a vector where ~hiv,j = hv,max
i,j , which is the size of the maximum tour in group j of bucket

i at node v.

• ~liv ∈ [n]g is a vector where ~liv,j denotes the number of partial tours covering hv,max
i,j tokens which lies in

group j of bucket i at node v.

Let ~yv denote a configuration of tours across all buckets of v.

~yv = [ov, ~nv, (~t
1
v,
~h1
v,
~l1v), (~t

2
v,
~h2
v,
~l2v), . . . , (~t

τ
v ,
~hτv ,

~lτv )].

Note that a bucket bi is either small or big and cannot be both, hence given (~tiv,
~hiv,

~liv), it cannot be the case
that ~tiv 6= ~0,~hiv 6= ~0 and ~liv 6= ~0. The subproblem A[v, ~y] is supposed to be the minimum cost collection of
partial tours going down Tv (to cover the tokens in Tv) and the cost of using the parent edge of v having tour

11



profile corresponding to ~y. Our dynamic program heavily relies on the properties of the near-optimal solution
in the structure theorem. Let v be a node. We will compute A[·, ·] in a bottom-up manner, computingA[v, ~yv]
after we have computed the entries for the children of v.

The final answer is obtained by looking at the various entries of A[r, ·] and taking the smallest one. First,
we argue why this will correspond to a solution of cost no more than opt′. We will compute our solution in
a bottom-up manner.

For the base case, we consider leaf nodes. A leaf node v with parent edge e could have ov ≥ 1 tokens at
v. We will set A[v, ~yv] = 2 ·w(e) ·mv where mv is the number of tours in ~yv if the total sum of tokens picked
up by the partial tours in ~yv is exactly ov. Recall that f(e) is the load on (i.e. number of tours using) edge
e. From our structure theorem, we know there exists a near optimum solution such that each partial tour of
Tv has one of O((logQ log3 n)/ε3) tour sizes and for each small bucket, there are at most α log3 n/ε2 partial
tours in it. For every big bucket, there are g = (2δ log n)/ε2 many group sizes and every tour of bucket i has
one of these sizes. The base case follows directly from the structure theorem.

To compute cell A[v, ~yv], we would need to use another auxiliary table B. Suppose v has k children
u1, . . . , uk and assume we have already calculated A[uj , ~y] for every 1 ≤ j ≤ k and for all vectors ~y. Then
we define a cell in our auxiliary table B[v, ~y′v, j] for each 1 ≤ j ≤ k where B[v, ~y′v, j] is the minimum cost of
covering Tu1

∪ . . .∪ Tuj where ~y′v is the tour profile for the union of subtrees Tu1
∪ . . .∪ Tuj . In other words,

B[v, ~y′v, j] is what A[v, ~yv] is supposed to capture when restricted only to the first j children of v. We will
set A[v, ~yv] = B[v, ~y′v, k] + 2 ·w(e) ·mv where mv is the number of different tours in ~y′v. We will assume the
parent edge of the depot has weight 0. Suppose Tui has oi tokens, then the number of tokens in Tv is at
least 1 +

∑k
i=1 oi. To compute entries of B[v, ·, ·], we use both A and B entries for smaller subproblems of

v in the following way:
Case 1: j = 1: This is the case when we restrict the coverage to only the first child of v, u1.

B[v, ~y′v, 1] = min
~y′
{A[u1, ~y

′]}

We will find the minimum cost configurations ~y′ such that ~y′v and ~y′ are consistent with each other. We say
~y′v and ~y′ are consistent if a tour in ~y′v either only covers tokens at v and does not visit any node below v
or ~y′v consists of a tour from ~y′ plus zero or more extra tokens picked up at v. Moreover, every tour in ~y′ is
part of some tour in ~y′v.

Case 2: 2 ≤ j ≤ k. We will assume we have computed B[v, ~y′, j − 1] and A[uj , ~y
′′] and we have

B[v, ~y′v, j] = min
~y′,~y′′
{B[v, ~y′, j − 1] + A[uj , ~y

′′]}.

There are four possibilities for each partial tour tv at node v going down Tv covering tokens for subtrees
rooted at children u1, . . . , uk .

• tv could be a tour that only picks up tokens at v and does not pick up tokens from subtrees Tu1
∪. . .∪Tuj .

• tv could be a tour that picks up tokens at v and picks up tokens only from subtrees Tu1 ∪ . . . ∪ Tuj−1 .

• tv could be a tour that picks up tokens at v and picks up tokens only from subtree Tuj .

• tv could be a tour that picks up tokens at v and picks up tokens from subtrees Tu1 ∪ . . . ∪ Tuj .
We would find the minimum cost over all configurations ~y′v, ~y′ and ~y′′ as long as ~y′v, ~y′ and ~y′′ are consistent.
We say tours ~y′v, ~y′ and ~y′′ are consistent if there is a way to combine partial tours from ~y′ and ~y′′ to form a
partial tour in ~y′v while also picking up extra tokens at node v. We will define consistency more rigorously
in the next section.

3.3 Checking Consistency
In our dynamic program, for the inner DP, we are given three vector ~y′v, ~y′, ~y′′ where v is a node having children
u1, . . . , uj . ~y′ represents the configuration of tours in Tu1

∪ . . .∪ Tj−1 and ~y′′ represents the configuration of
tours covering Tuj . For the case of checking consistency for case 1, we will assume ~y′′ = ~0. Suppose we are
given ov (for node v), ou for children u1, . . . , uj−1, and ow for uj , we can infer that there are o′v = ov−ou−ow
extra tokens that need to be picked at v. o′v tokens need to be distributed amongst tours in ~yv. There are
four possibilities for each tour tv in ~y′v.

12



• tv could be a tour that picks up extra tokens at v and picks up tokens only from subtrees Tu1∪. . .∪Tuj−1 .

• tv could be a tour that picks up extra tokens at v and picks up tokens only from subtree Tuj .

• tv could be a tour that picks up extra tokens at v and picks up tokens from subtrees Tu1
∪ . . . ∪ Tuj .

For simplicity, we will refer to a tour picking up tokens in Tu1 ∪ . . . ∪ Tuj−1 to be tu and a tour picking up
tokens from Tuj to be tw.

Definition 4 We say configurations ~y′v, ~y′ and ~y′′ are consistent if the following holds:

• Every tour in ~y′ maps to some tour in ~y′v.

• Every tour in ~y′′ maps to some tour in ~y′v.

• Every tour in ~y′v has at most two tours mapping to it and both tours cannot be from ~y′ or ~y′′.

• Suppose only one tour (tu) maps to a tour tv in ~y′v. The number of extra tokens picked up by tour tv
at v is |tv| − |tu|.

• Suppose tv, a tour in ~y′v has two tours: tu in ~y′ and tw in ~y′′ mapped to it, then the number of extra
tokens picked up by tour tv at v is |tv| − |tu| − |tw|.

• The extra tokens at v, o′v = ov − ou − ow, are picked up by the tours in ~y′v.

Consistency ensures that we can patch up tours from subproblems and combine them into new tours in a
correct manner while also picking up extra tokens at v. Now we will describe how we can compute consistency.
Let ~z be a vector containing a subset of information contained in ~y.

~zv = [~nv, (~t
1
v,
~h1
v,
~l1v), (~t

2
v,
~h2
v,
~l2v), . . . , (~t

τ
v ,
~hτv ,

~lτv )].

From now on, we will choose to not write ~nv explicitly since we can figure out the entries of the vector from ~l.
Suppose |tv| is the length of a tour in ~z′v. Let ~z′v− tv refer to the configuration ~z′v having one less tour of size
|tv|. Let C[o′v, ~z

′
v, ~z
′, ~z′′] = True if it is consistent and False otherwise. For the base case, C[0,~0,~0,~0] =True.

For the recurrence, we will look at all possible ways of combining ~z′ and ~z′′ into ~z′v while also picking up
extra tokens o′v. Note that tv is always non-zero, but both or one of tu or tw could be zero.

C[o′v, ~z
′
v, ~z
′, ~z′′] =

∨
tv,tu,tw

|tv|=|tu|+|tw|+oc

C[o′v − oc, ~z′v − tv, ~z′ − tu, ~z′′ − tw].

3.4 Time Complexity
We will work bottom-up and assume we have already pre-computed our consistency table. ComputingB[·, ·, ·]
requires looking at previously computed B[·, ·, ·] and A[·, ·]. Given ~y′v, ~y

′ and ~y′′ which are all consistent,
computing the cost of ~y′v using ~y′ and ~y′′ takes O(1) time. Each ~y′v consists of

1. ~n has nO(logn/ε) possibilities.

2. Each ~ti has nO(log3 n/ε2) possibilities since there are O(log3 n/ε) tours in a small bucket.

3. Each ~h and ~l have nO(g) possibilities. Recall that g = (2δ log n)/ε2, so each ~h and ~l have nO(logn/ε2)

possibilities.

4. Each triple (~ti,~hi,~li) has nO(log3 n/ε2) possibilities.

5. (~t1,~h1,~l1), (~t2,~h2,~l2), . . . , (~tτ ,~hτ ,~lτ ) have nO(τ log3 n/ε2) = nO((logQ log3 n)/ε3) possibilities since τ =
O(logQ/ε).

13



In total, each ~y′v has nO((logQ log3 n)/ε3) possibilities. For each ~y′v, we will have nO((logQ log3 n)/ε3) possibilities
for ~yu and ~yw. Since there are nO((logQ log3 n)/ε3) possibilities for ~y′v, the cost of computing the DP entries
for a single node v would be nO((logQ log3 n)/ε3) and since there are n nodes in the tree, the total time of
computing the DP table assuming the consistency table is precomputed is nO((logQ log3 n)/ε3).

Before we compute our DP, we will first compute the consistency table C[·, ·, ·, ·]. Similar to our DP table,
each entry of the consistency table has nO((logQ log3 n)/ε3) possibilities. Assuming we have already precom-
puted smaller entries of C , there are nO((logQ log3 n)/ε3) ways of picking tv, tu and tw. For a fixed ~yv, ~yu, ~yw
and o′v, computing C[o′v, ~z

′
v, ~z
′, ~z′′] takes nO((logQ log3 n)/ε3) time. Since there are only nO((logQ log3 n)/ε3)

possibilities for ~z′v, ~z′ and ~z′′, the cost of computing all entries of the consistency table is nO((logQ log3 n)/ε3).
The time for computing both the DP table and consistency table is nO((logQ log3 n)/ε3), so the total time

taken by our algorithm is nO((logQ log3 n)/ε3). For the unit demand case, since Q ≤ n, the runtime of our
algorithm is nO(log4 n/ε3).

3.5 Extension to Splittable CVRP
We can extend our algorithm for unit demand CVRP in trees and show how we can get a QPTAS for
splittable CVRP as long as the demands are quasi-polynomially bounded (Corollary ??). In our algorithm
for unit demand CVRP, we viewed the demand of each node as a token placed at the node. For splittable
CVRP, we could assume each node has 1 ≤ d(v) < nQ tokens and we can use the same structure theorem
as before by modifying tours such that there are at most O((logQ log3 n)/ε3) different tour sizes for partial
tours at a node. We can use the same DP to compute the solution. Each ~yv consists of

1. ~n has (nQ)O(logn/ε) possibilities.

2. Each ~ti has (nQ)O(log3 n/ε2) possibilities since there are O(log3 n/ε) tours in a small bucket.

3. Each ~h and ~l have (nQ)O(g) possibilities. Recall that g = (2δ log n)/ε2, so each ~h and ~l have
(nQ)O(logn/ε2) possibilities.

4. Each triple (~ti,~hi,~li) has (nQ)O(log3 n/ε2) possibilities.

5. (~t1,~h1,~l1), (~t2,~h2,~l2), . . . , (~tτ ,~hτ ,~lτ ) have (nQ)O(τ log3 n/ε2) = (nQ)O((logQ log3 n)/ε3) possibilities since
τ = O(logQ/ε).

Similar to the analysis of the runtime of the unit demand case, the time complexity of computing the entries
of DP tables A,B, and the consistency table C is, (nQ)O((logQ log3 n)/ε3). Suppose Q = nO(logc n), then the
runtime of our algorithm is nO(log2c+4 n/ε3).

3.6 Height reduction
In this section, we will prove Theorem 5. The first goal is to decompose the edge set of the tree T into
edge-disjoint paths. We will do so using the following lemma, similar to Lemma 5 from Cygan et al. [13] to
obtain such a decomposition in polynomial-time for a different problem.

Lemma 5 There exists a decomposition of the edge set of T into edge-disjoint paths which can be grouped
into s = O(log n) collections (called levels) L1, . . . , Ls such that the following hold:

1. A root-to-leaf path P in T can be written as P = Q0Q1 . . . Qs where Qi is either a path in Li or it is
empty.

2. P would use a path from a lower level Li before using a path from a higher level, Lj where i < j.

Proof. Given a tree T , a D-path of T is a root-to-leaf path P = v1v2 . . . vk such that vi+1 is the child of vi
with the largest number of nodes in the tree rooted at Tvi+1

. If there are multiple children with the same
number of descendants, break ties arbitrarily. Let P be a D-path. All the nodes in D-path P receive label 1.
Let T1, . . . , Tc be the set of trees obtained from T − P . Let Pi be the D-path for Ti. We will label all nodes
in Pi to be 2. We will repeat this process recursively by finding D-paths for trees resulting from Ti −Pi and

14



labelling every node in the D-path with value corresponding to the depth of recursion. Each step involves
finding a D-path, labelling the nodes of the path, deleting the path and recursively repeating the process for
the resulting trees (with the value of the label increased by 1). Nodes of D-paths of trees at depth ` in the
recursion receive labels `. We will terminate this process when all nodes have been labelled. Let Lj denote
the collection of all D-paths whose nodes received the label j (see figure 1).

Note that after the first step, the trees T1, . . . , Tc satisfy the property that |V (Ti)| ≤ |V (T )|
2 i.e., each tree

is at most half of the original tree. This is because we pick the child with the largest number of nodes in the
subtree rooted at it. After each step, the size of the new components formed is at most half the size of the
previous component, hence we would use at most log n labels to label all nodes in the tree.

The following is an example of such labelling where each color represents a level.

(a) A tree before labelling. (b) Blue edges are level 1, red edges are
level 2 and green edges are level 3.

Figure 1: An example of a tree before and after applying labels to nodes

3.6.1 Creating a new tree

Given a tree T , we can use Lemma 5 to decompose the tree into edge-disjoint paths. Next, we describe an
algorithm to modify the tree recursively into a low height tree. The first step is to look at all the paths in
L1. L1 is a special case since there is only one path in L1 which goes from the depot to a leaf node. All the
other levels Li could have multiple disjoint paths. Let P be the path in L1 and let l(P ) be the number of
edges in path P . If l(P ) ≤ δ logn

ε for a δ > 0 to be specified, then we are done for L1.
However, if l(P ) > δ logn

ε , we will compress the path into a low height one. We will do a sequence of
what is called up-pushes. We will pick s ≤ δ log l(P )

ε points to be anchor points. Let us call the anchor
points a1, . . . , as where a1 is the anchor point closest to the root and as is closest to the leaf. We will later
show how to find these anchor points.

15



wp w1

wq w2 w3

ws w4 w5

wt w6

ai

p T1

s T2 T3

t T4 T5

ai+1 T6

0 0 0 w w1 w2 w3 w4 w5 w6

ai

p s t ai+1 T1 T2 T3 T4 T5 T6

Figure 2: A tree before an up-push (left) and after (right) with reduced height. The blue edge connecting
ai and ai+1 has weight w = wp + wq + ws + wt

Each up-push acts on nodes in P between two consecutive anchor points ai, ai+1 of the path P . During
an up-push, we take all nodes in P that lie between ai and ai+1, which we will call P ′, and make each node
in P ′ a child of ai with the edge connecting them to ai having weight 0. Suppose there is a child subtree Tj ,
which is a child of a node in P ′ with edge connection cost wj , the subtree Tj will become a child of ai with
the edge connecting them having cost wj (see Figure 2). Once we have completed up-pushes for all paths in
L1, we will find anchor points and perform up-pushes for each path in L2. We will repeat this for paths in
Li after our algorithm has finished up-pushes for paths in Li−1.

We will now describe how we can find the anchor points. We will first describe what we would like to
achieve from anchor points. We want the cost associated with a path in Li for some tour to differ by at most
O(ε) in our new tree compared to the the original tree. Suppose P is a path in Li and a tour t is travelling
P down to node u which is between ai and ai+1. Then the cost of the portion of the tour from root of P
to ai is the same in the original tree and the new tree; however the cost to travel from ai to u is zero. We
would like this cost in the original tree to be a small factor of the cost from the root of P to ai.

Our algorithm works as follows from top to bottom. For any path P in Li, we will set the top node
of the path to be a1 and its child in P to be a2. Our goal is to pick ai and ai+1 for i > 2 such that
w(ai, ai+1) > ε · w(a1, ai) and w(ai, v) ≤ ε · w(a1, ai) where v is the last vertex on ai, ai+1 path before ai+1.
If there is no ai+1 such that w(ai, ai+1) > ε · w(a1, ai), then we set the last node of P to be ai+1. So, we
pick ai+1 to be the farthest vertex from ai in P such that w(ai, v) ≤ ε · w(a1, ai) where v is the last node
before ai+1. This in turn would imply that w(a1, ai+1) > (1 + ε)w(a1, ai), except if ai+1 is the last node of
the path. Hence, w(a1, ai) > (1 + ε)i−2w(a1, a2) > (1 + ε)i−2. Since edge weights are at most 2n3/ε2, the
number of anchor points are at most δ logn

ε for some constant δ > 0

3.6.2 Analysis

In the last section, we showed that every path in some level Li can be made to have at most O
(

logn
ε

)
nodes.

Lemma 6 The height of the new tree is O
(

log2 n
ε

)
.

Proof. In our algorithm, we first decomposed the tree into a set of edge-disjoint paths. The decomposition
guarantees that one would first visit a lower level node in any root-toeaf path before visiting one with a
higher level. Since there are at most O(log n) different levels, any root-to-leaf path will be a disjoint union
of paths from levels L1, . . . , Ls and there can be at most one path from each level. Since the height of a path
in any level, Li is at most O

(
logn
ε

)
, and there are at most O(log n) different levels, the maximum height in

our new tree is at most O
(

log2 n
ε

)

16



Suppose we take a path P at some level Lc. Let us fix a tour in an optimal solution and let the farthest
point in P the tour travels to be between anchor points [ai,ai+1). We use [ai,ai+1) denote that the tour
crosses ai but will not cross ai+1. Let T be the original tree and let T ′ be the new tree with reduced height.
A tour in the optimal solution for T ′ can visit nodes lying between ai and ai+i at no additional cost after
visiting ai. Suppose the cost of traversing the edges of P in T ′ is denoted by d, then the cost of traversing
the edges of P in T is going to be at most (1 +O(ε))d. This is because the cost of the edges between ai and
the vertex before ai+1 sum to at most O(ε)w(r, ai). Hence, the additional cost to cover them in T is only
going to be at most an ε fraction more.

Lemma 7 Let T be the original tree, T ′ be the new tree, opt be the cost of the optimal set of tours covering
T and opt′ be the cost of the optimal set of tours covering T ′. Then,

opt′ ≤ opt ≤ (1 + ε)opt′.

Proof. Let us fix an optimal set of tours covering tree T with cost opt. Suppose we pick a tour t and
decompose this tour into paths each of which is entirely within one level Li. Suppose P is a path of t in
some level Lc. Let the farthest point in P the tour travels to be between anchor points [ai,ai+1). In our
construction, the cost to visit any point lying between the root of P and ai is the same in both T and T ′.
However, in T ′, the tour can visit any node lying between ai and ai+1 for free, but the tour would have an
additional cost to traverse these edges in tree T . Hence, for any path such P , the cost of a tour t to traverse
edges in P is less in T ′ compared to T . Since any tour costs no more in instance T ′, we have opt′ ≤ opt.

Conversely, the extra cost of covering points lying between ai and ai+1 in T is at most O(ε) times the
cost of path P (based on the property of anchor points). So the cost of using a path like P is at most an ε
factor more in T compared to T ′. Thus, the cost of any tour t in T is at most 1 + ε times the cost of the
same tour in T ′ and hence opt ≤ (1 + ε)opt′

Instead of T , we can solve the instance on T ′ with height O(log2 n/ε) and lift the solution for T ′ back to
a solution for T . We obtain a solution for T with cost at most (1 + ε)opt.

4 QPTAS for Bounded Treewidth Graphs
Given a graph G = (V,E) with treewidth k, we will assume we are given a tree decomposition T = (V ′, E′).
We will refer to G as the graph and T as the tree. We will refer to vertices in V by nodes and vertices in
V ′ by bags. We will refer to edges in E by edges and edges in E′ by superedges.

Definition 5 A tree decomposition of a graph G is a pair (T, {Bt}t∈V (T )), where T is a tree whose every
node t ∈ V ′ is assigned a vertex subset Bt ⊆ V (G), called a bag, such that the following three conditions
hold:

1. ∪t∈V (T )Bt = V (G). In other words, every vertex of G is in at least one bag.

2. For every uv ∈ E(G), there exists a node t of T such that bag Bt contains both u and v.

3. For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Bt}, i.e., the set of nodes whose corresponding bags
contain u, induces a connected subtree of T .

For a bag s, let Cs denote the union of nodes in bags below s including s. Bag s forms a boundary or border
between nodes in Cs and V (G) \Cs. We will assume an arbitrary bag containing the depot to be root of the
tree decomposition. Let k be the treewidth of our graph G. We will assume that following properties hold
for our tree decomposition T of G from the work of Boedlander and Hagerup [11],

• T is binary.

• T has depth O(log n).

• The width of T is at most k′ = 3k + 2.

17



To simplify notation, by replacing k′ with k we will assume T has height δ log n for some fixed δ > 0 and each
bag has width k. From the third property of a tree decomposition, we know that for every u ∈ V (G), the
set Tu = {t ∈ V (T ) : u ∈ Xt} i.e., the set of nodes whose corresponding bags contain u, induces a connected
subtree of T . Since the bags associated with a node u ∈ V (G) correspond to a subtree in T , we will place
the demand/tokens of u at the root bag of the tree Tu i.e. the bag containing u closest to the root bag of T .
Since Tu is a tree, we are guaranteed a unique root bag of Tu exists. We are doing this to ensure that the
demand of a client is delivered exactly once.

Similar to how we showed the existence of a near-optimum solution for trees, we will modify the optimum
solution OPT in a bottom-up manner by modifying the tours covering the set of nodes below bag s, Cs. For
each bag s, we change the structure of the partial tours going down Cs (by adding a few extra tours from
the depot) and also adding some extra tokens for nodes in bag s so that the partial tours that visit Cs all
have a size from one of polyogarithmic many possible sizes (buckets) while increasing the number and the
cost of the tours by a small factor. Note that although a node can be in different bags, its initial demand is
in one bag and we might add extra tokens to copies of it in other bags.

Similar to the case of tree, we assume the bags of the tree decomposition are partitioned into levels
V1, . . . , Vh where V1 is the bag containing the depot and h is the height of T . For every tour T and every
level `, we can define the notion of top and bottom part similar to the case of trees. For every Cs, a tour
T enters Cs through bag s using a node x and exists through node z where both x and z have to be in s.
Note that x and z could be equal if the tour enters and exists s using the same node. For a bag s, let nx,zs
be the number of partial tours covering nodes in Cs that enter through x and exit through z in s. For each
bag and entry/exit pair, we will define the notion of a small/big bucket similar to the case of trees. For a
big bucket, we will place the nx,zs tours (ordered by increasing size) into groups Gx,z,s1 , . . . , Gx,z,sg of equal
sizes. Let hs,x,z,max

i (hs,x,z,min
i ) refer to the maximum (minimum) size of the tours in Gx,z,si .

Similar to the case of trees, let f be a mapping from a tour in Gx,z,si to one in Gx,z,si−1 . Now suppose we
modify OPT to OPT′ in the following way: for each tour T that has a partial tour in t ∈ Gx,z,si , replace
the bottom part of T entering through x and exiting through z in s from t to f(t) (which is in Gx,z,si−1 ). The
only problem is that those tokens in Cs that were picked up by the partial tours in Gx,z,sg are not covered
by any tours and like the case of trees, these are orphant tokens. For each tour T and its (new) partial tour
t ∈ Gx,z,si , if we add hx,z,s,max

i − |t| extra tokens at s to be picked up by t, then each partial tour has size
exactly same as the maximum size of its group without violating the capacities. Similar to the case of trees,
we will show that if nx,zs is sufficiently large (at least polylogarithmic), then if we sample a small fraction of
the tours of the optimum at random and add two copies of them (as extra tours), they can be used to cover
the orphant tokens.

4.1 Changing OPT to a near-optimum structured solution
Similar to the structure theorem for trees, we will modify the optimal solution OPT to a near-optimum
solution OPT′ having certain properties. We will start at the last level, and modify partial tours from OPT
at level ` to obtain OPT`. We will then iteratively obtain OPT`−1 by modifying partial tours from OPT`

at level `− 1, and iteratively do this for each level until we obtain OPT1 = OPT′.

Definition 6 For a bag s, the i-th bucket, bi, entering at x and exiting at z contains the number of tours of
OPT` having coverage between [σi, σi+1) tokens in Cs where σi is the i-th threshold value. We will denote
this by a entry/exit-bag-bucket configuration (s, bi, x, z). Let n

x,z
s,i be the number of tours in bucket bi entering

through x and exiting through z in bag s.

Definition 7 An entry/exit-bag-bucket configuration (s, bi, x, z) is small if nx,zs,i is at most α log2 n/ε and
is big otherwise, for a constant α ≥ max{1, 20δ}.

Note that for any bag s and entry/exit-bag-bucket configuration (s, bi, x, z), if (s, bi, x, z) is small, we do
not modify the partial tours in it. However, if (s, bi, x, z) is a big bucket, we create groups Gs,x,zi,1 , . . . , Gs,x,zi,g

of equal sizes, for g = (2δ log n)/ε; so |Gs,x,zi,j | = dnx,zs,i /ge. We also consider a mapping f (as before) which
maps (in the same order) the tours t ∈ Gs,x,zi,j to the tours in Gs,x,zi,j−1 for all 1 < j ≤ g. Consider set T` of
all the tours T in OPT` that visit a bag in one of the lower levels V≥`. Consider an arbitrary such tour T

18



that has a partial tour t in a big entry/exit-bag-bucket configuration (s, bi, x, z), suppose t belongs to group
Gs,x,zi,j . We replace t with f(t) in T .

Now, add some extra tokens at x to be picked up by T so that the size of the partial tour of T at Cs is
exactly hs,x,z,max

i,j−1 . If we make this change for all tours T ∈ T`, each partial tour of them at level ` that was
in a group j < g of a big entry/exit-bag-bucket configuration (s, bi, x, z) is replaced with a smaller partial
tour from group j − 1 of the same big entry/exit-bag-bucket configuration; after adding extra tokens to x
at bag s (if needed), the size is the maximum size from group j − 1. The tokens that were picked by partial
tours from Gs,x,zi,g for a big entry/exit-bag-bucket configuration (s, bi, x, z) are now orphant. We are going to
(randomly) select a subset of tours of OPT as "extra tours" and add them to OPT′ and modify them such
that they cover all the tokens that are now orphant (i.e. those that were covered by partial tours of Gs,x,zi,g

for all big entry/exit-bag-bucket configuration (s, bi, x, z) at level `). Suppose we select each tour T of OPT
with probability ε. We make two copies of the extra tour and we designate both extra copies to bags at one
of the levels V` that it visits with equal probability.

Lemma 8 The expected cost of extra tours selected is 2ε · opt.

Proof. Suppose f+(e) and f−(e) denote the number of tours traveling edge e in each of the two directions.
So the contribution of edge e to the optimal solution is 2 · w(e) · (f+(e) + f−(e)); opt =

∑
e∈E w(e) ·

(f+(e) + f−(e)). Let m+(e) (m−(e)) denote the number of sampled tours from the tours contributing to
f+(e) (f−(e)). Since we used two extra copies for each sampled tour, the number of extra tours for an edge
e is 2(m+(e) +m−(e)). Let Te,1, . . . , Te,f+(e)+f−(e) be the tours using e in either directions. Like in the case
of trees, it is possible for a tour to use edge e in both directions. Let Ye,i be a random variable which is 1 if
tour Te,i is sampled and 0 otherwise.

E[Ye,i] = P[Te,i is sampled] = ε.

Let m+(e) +m−(e) = Ye =
∑f+(e)+f−(e)
i=1 Ye,i. By linearity of expectations, we have

E
[
m+(e) +m−(e)

]
= E[Ye] =

f+(e)+f−(e)∑
i=1

E[Ye,i] =

f+(e)+f−(e)∑
i=1

ε = ε · (f+(e) + f−(e)).

Summing up the extra cost over all edges, the expected cost of the extra tours is

2
∑
e∈E

E
[
min(e) +mout(e)

]
= 2ε ·

∑
e∈E

(f+(e) + f−(e)) = 2ε · opt.

Therefore, we can assume that the expected cost of all extra tours added is at most 2ε · opt. Let X` be
the set of extra tours designated to bags in level `. We assume we add X` when we are building OPT` (it
is only for the sake of analysis). For each bag s ∈ V` and entry/exit-bag-bucket configuration (s, bi, x, z),
let Xs,x,z

i be those in X` whose partial tour in Cs has a size in bucket bi. Each extra tour in X` will not
be picking any of the tokens in levels V<` (as they will be covered by the tours already in OPT`); they
are used to cover the orphant tokens created by partial tours of Gs,x,zi,g for each big entry/exit-bag-bucket
configuration (s, bi, x, z) with s ∈ V`; as described below.

Lemma 9 For each level V`, each bag s ∈ V` and big entry/exit-bag-bucket configuration (s, bi, x, z), w.h.p.
|Xs,x,z

i | ≥ ε2

δ logn · n
x,z
s,i .

Proof. Suppose (s, bi, x, z) is a big entry/exit-bag-bucket configuration at some level V`. Let p1, . . . , pnx,zs,i be
the partial tours in the entry/exit-bag-bucket configuration (s, bi, x, z). Let the tour in OPT corresponding
to pi be T . Two copies of tour pi are assigned to bi if both of the following events are true:

• Let Ai be the event where tour T is sampled as an extra tour. Since each tour is sampled with
probability ε, we have P[Ai] = ε.

19



• Let Bi be the event where tour T is assigned to level `. There are h = δ log n many levels and since T
(if sampled) is assigned to any one of its levels, P[Bi] ≥ 1/h ≥ 1/(δ log n).

Let Yi be a random variable which is 1 if pi is an extra tour in (v, bi) and 0 otherwise.

E[Yi] = P[Yi = 1] = P[Ai ∧Bi] = P[Ai] · P[Bi] ≥ ε/(δ log n).

Let Y s,x,zi =
∑nx,zs,i
i=1 Yi be the random variable keeping track of the number of sampled tours in (s, bi, x, z).

The number of extra tours, |Xs,x,z
i | = 2Y s,x,zi since we add two copies of a sampled tour to Xs,x,z

i . By
linearity of expectation, we have

E[|Xs,x,z
i |] = 2E[Y s,x,zi ] = 2

nx,zs,i∑
i=1

E[Yi] ≥
2ε

δ log n
· nx,zs,i .

We want to show that |Xs,x,z
i | ≥ E[|Xs,x,zi |]

2 ≥ ε
δ logn · n

x,z
s,i with high probability over all vertex-bucket pairs.

Using Chernoff Bound with µ = E[|Xs,x,z
i |] ≥ 2ε2

δ log2 n
·nx,zs,i ≥ 24 log n since nx,zs,i ≥ α log2 n/ε and α ≥ 20δ.

P
[
|Xs,x,z

i | < E[|Xs,x,z
i |]
2

]
≤ e−(5 logn) =

1

n5

Note that the above equation only shows the concentration bound for a single entry/exit-bag-bucket con-
figuration. For a bag, there are O(k2) many entry/exit pairs. There are O(kn) bags and τ = O(log n/ε)
buckets, so the total number of entry/exit-bag-bucket configuration is at most O(k2n log n/ε). Suppose we
do a union bound over all buckets, we get∑

all (s,bi,x,z) configurations

P
[
|Xs,x,z

i | < E[|Xs,x,z
i |]
2

]
≤ 1

n
.

We showed that for every entry/exit-bag-bucket configuration (s, bi, x, z), |Xs,x,z
i | ≥ ε

δ lognn
x,z
s,i holds with

high probability.

Lemma 10 Consider all bags s ∈ V`, big entry/exit-bag-bucket configuration (s, bi, x, z) and the partial tours
in Gs,x,zi,g . We can modify the tours in Xs,x,z

i (without increasing the cost) and adding some extra tokens at
nodes in s (if needed) so that:

1. The tokens picked up by partial tours in Gs,x,zi,g are covered by some tour in Xs,x,z
i , and

2. The new partial tours that pick up the orphant tokens in Gs,x,zi,g have size exactly hs,x,z,max
i,g and all tours

still have size at most Q.

3. For each (new) partial tour of Xs,x,z
i and every level `′ > `, the size of partial tours of Xs,x,z

i at a bag
s′ at level `′ is also one of O((logQ log2 n)/ε2) many possible sizes.

Proof. Our proof is going to be very similar to Lemma 4 for the case of trees. Our goal is to use the extra
tours in Xs,x,z

i to cover tokens picked up by partial tours of Gs,x,zi,g and we want each extra tour in Xs,x,z
i to

cover exactly hs,x,z,max
i,g tokens. The tours in the last group, Gs,x,zi,g , cover

∑
t∈Gs,x,zi,g

|t| many tokens. We will
add

∑
t∈Gs,x,zi,g

(hs,x,z,max
i,g − |t|) extra tokens in node x at bag s for each entry/exit-bag-bucket configuration

(s, bi, x, z) so that there are hs,x,z,max
i,g tokens corresponding to each partial tour in Gs,x,zi,g . From now on, we

will assume each partial tour in a last group Gs,x,zi,g covers hs,x,z,max
i,g tokens.

Using Lemma 9, we know with high probability that |Xs,x,z
i |/|Gs,x,zi,g | ≥ 2 since |Xs,x,z

i | ≥ ε
δ logn · n

x,z
s,i =

2|Gs,x,zi,g |. Let Y
s,x,z
i denote the number of tours in entry/exit-bag-bucket configuration (s, bi, x, z) that were

sampled, so |Xs,x,z
i | = 2|Y s,x,zi | and |Y s,x,zi | ≥ |Gs,x,zi,g | with high probability. We will start by creating a

one-to-one mapping s : Gs,x,zi,g → Y s,x,zi which maps each tour in Gs,x,zi,g to a sampled tour in Y s,x,zi . We
know such a one-to-one mapping exists since |Y s,x,zi | ≥ |Gs,x,zi,g |.

20



Let T be a sampled tour in Y s,x,zi with two extra copies of it, T1 and T2 in Xs,x,z
i . Let the partial tours

of T at the bottom part in V` be p1, . . . , pm. We know |T | ≥
∑m
i=1 |pi|. Like the case for trees, s maps at

most one tour in Gs,x,zi,g to each pj . If a tour from Gs,x,zi,g maps to pj , we will assume the load assigned to pj
would be rj = hs,x,z,max

i,g and pj has load 0 if no tour is assigned to it.
Suppose we think of r1, . . . , rm as items and T1 and T2 as bins of size Q. We might not be able to fit

all items r1, . . . , rm into a bin of size Q because
∑m
i=1 |ri| ≤ (1 + ε)

∑m
i=1 |pi| ≤ (1 + ε)|T | ≤ (1 + ε)Q.

Similar to the case of trees, we can show that we can assign r1, . . . , rj (for the maximum j) to T1 such that∑j
i=1 |ri| ≤ Q and the rest, rj+1, . . . , rm to T2 such that both T1 and T2 cover at most Q tokens and all

items r1, . . . , rm are covered by either T1 or T2. Hence, we have shown that the extra partial tours pick up
exactly hs,x,z,max

i,g while picking up orphant tokens from Gs,x,zi,g .
Also, the size of the extra tours after this modification at each bag s′ at any level `′ > ` is essentially

the same as what each of ri’s were at those levels and since we go bottom to top in the tree, each of those
partial tours ri have a size that either belongs to a small bucket (and hence has one of α log2 n/ε many sizes)
or a big entry/exit-bag bucket (and hence has one of O((logQ log n)/ε2) many sizes). Therefore, the size of
partial tours of Xs,x,z

i at any bag s′ at level `′ > ` is one of O((logQ log2 n)/ε2) many sizes.
Therefore, using Lemma 10, all the tokens of Cs remain covered by partial tours; those partial tours in

Gs,x,zi,j (for 1 ≤ j < g) are tied to the top parts of the tours from group Gs,x,zi,j+1 and the partial tours of Gs,x,zi,g

will be tied to extra tours designated to level `. We also add extra tokens at nodes in s to be picked up by
the partial tours of Cs so that each partial tour has a size exactly equal to the maximum size of a group.
All in all, the extra cost paid to build OPT` (from OPT`+1) is for the extra tours designated to level `.

Theorem 7 (Structure Theorem) Let opt be the cost of the optimal solution to instance I. We can
build an instance I ′ such that each node has ≥ 1 tokens and there exists a near-optimal solution OPT′

for I ′ having expected cost (1 + 2ε)opt with the following property. The partial tours going down Cs for
every bag s in OPT′ has one of O((logQ log2 n)/ε2) possible sizes. More specifically, suppose (s, bi, x, z) is
a entry/exit-bag-bucket configuration for OPT′. Then either:

• bi is a small bucket and hence there are at most α log2 n/ε many partial tours of Cs whose size is in
bucket bi, or

• bi is a big bucket; in this case there are g = (2δ log n)/ε many group sizes in bi: σi ≤ hs,x,z,maxi,1 ≤ . . . ≤
hs,x,z,maxi,g < σi+1 and every tour of bucket i has one of these sizes.

Proof. We will show how to modify OPT to a near-optimal solution OPT′. We start from ` = h
and let OPT` = OPT. For decreasing values of ` we show, for each ` how to modify OPT`+1 to obtain
OPT`. We do this in the following manner: we do not modify partial tours in small entry/exit-bag-bucket
configuration. However, for tours in big entry/exit-bag-bucket configuration (s, bi, x, z) in level ` − 1, we
place them into g groups Gs,x,zi,1 , . . . , Gs,x,zi,g of equal sizes by placing the i’th nx,zs,i /g partial tours into Gs,x,zi,j .
We have a mapping f from each partial tour in Gs,x,zi,j−1 to one in Gs,x,zi,j for j ∈ {2, . . . , g}. We modify OPT`

to OPTl+1 in the following way: for each tour T that has a partial tour t ∈ Gs,x,zi,j , replace the bottom part
of T at s from t to f(t) (which is in Gs,x,zi,j−1). For each tour t ∈ Gs,x,zi,j−1, we will add h

s,x,z,max
i,j−1 −|t| many extra

tokens at x in s. Note that by this change, the size of any tour such as T can only decrease and we are not
violating feasibility of the tour because hs,x,z,max

i,j−1 ≤ hs,x,z,min
i,j . However, the tokens in Cs picked up by the

partial tours in Gs,x,zi,g are not covered by any tours. We can use Lemma 10 to show how we can use extra
tours to cover the partial tours in Gs,x,zi,g such that the new partial tours have size exactly hs,x,z,max

i,g .
We will inductively repeat this for levels ` − 2, ` − 3, . . . , 1 and obtain OPT1 = OPT′. Note that by

adding extra tokens hs,x,z,max
i,j−1 − |t| for a tour t ∈ Gs,x,zi,j−1, we are enforcing that the coverage of each tour

is the maximum size of tours in its group. In a big bucket, there are g = (2δ log n)/ε many group sizes,
so there are O(log n/ε) possible sizes for tours in big entry/exit-bag-bucket configuration at a node. In a
small entry/exit-bag-bucket configuration, there can be at most α log2 n/ε many tours and since there are
τ = O(logQ/ε) many buckets, there can be at most O((logQ log2 n)/ε2) many tour sizes covering Cb.

Using Lemma 8, we know the expected cost of the extra tours is at most 2ε · opt, so the expected cost
of opt′ ≤ (1 + 2ε)opt.

21



4.2 Dynamic Program
In this section we prove Theorem 2 by presenting a dynamic program that will compute a near optimum
solution guaranteed by the structure theorem (Theorem 7). For a given bag s, we will estimate the number
of tours entering and exiting s. Informally, we will have a vector ~ns,x,z ∈ [n]τ where if i < 1/ε, ~ns,x,zi keeps
track of the exact number of tours covering i tokens in Cs by entering through x and exiting though z and if
i ≥ 1/ε, ~ns,x,zi keeps track of the number of tours covering between [σi, σi+1) tokens. Let as denote the total
number of tokens to be picked up from nodes from bags below and including bag s. Since each bag s has k
nodes, we use ~os ∈ [n]k to denote the extra tokens to be picked up from nodes at bag s. If v is a node in bag
s, then ~os,v denotes the number of extra tokens to be picked up at v in s. For a given entry/exit-bag-bucket
configuration (s, bi, x, z), we will keep track of other pieces of information conditional on whether it is small
or big. If entry/exit-bag-bucket configuration (s, bi, x, z) is small, we will store all tour sizes exactly. Since
the number of tours in a small entry/exit-bag-bucket configuration is at most γ = α log2 n/ε, we will use a
vector ~ts,x,z,i ∈ [n]γ to represent the tours where ~ts,x,z,ij represents the size of the j-th tour in the i-th bucket
of tours covering Cs entering through x and exiting through z.

If the entry/exit-bag-bucket configuration (s, bi, x, z) is big, there are g = (2δ log n)/ε many tour sizes
corresponding to nO(g) possibilities. For each entry/exit-bag-bucket configuration (s, bi, x, z), we need to
keep track of the following information,

• ~hs,x,z,i ∈ [n]g is a vector where ~hs,x,z,ij = hs,x,z,max
i,j , which is the size of the maximum tour which lies

in group Gs,x,zi,j of bucket i at bag s entering through x and exiting through z.

• ~ls,x,z,i ∈ [n]g is a vector where ~ls,x,z,ij denotes the number of partial tours covering hs,x,z,max
i,j tokens

which lies in group Gs,x,zi,j of bucket i at bag s entering through x and exiting through z.

For a bag s and entry/exit pairs, let ~ps,x,z be a vector containing information about all tours entering and
exiting s through x and z across all buckets.

~ps,x,z = [~ns,x,z, (~ts,x,z,1,~hs,x,z,1,~ls,x,z,1), (~ts,x,z,2,~hs,x,z,2,~ls,x,z,2), . . . , (~ts,x,z,τ ,~hs,x,z,τ ,~ls,x,z,τ )].

Similar to the case of trees, an entry/exit-bag-bucket configuration (s, bi, x, z) is either small or big and
cannot be both, hence given (~ts,x,z,i,~hs,x,z,i,~ls,x,z,i), it cannot be the case that ~ts,x,z,i 6= ~0,~hs,x,z,i 6= ~0 and
~ls,x,z,i 6= ~0. Since a bag s contains O(k) nodes, then we will let ~ys denote a configuration of all partial tours
covering tokens in Cs which are entering and exiting s. Let v1, . . . , vd be the set of all nodes in s, then ~ys
contains information of tours entering and exiting s through pairs of nodes in {v1, . . . , vd}. Note that a tour
can enter and exit s through the same node.

~ys = [as, ~os, ~ps,v1,v1 , ~ps,v1,v2 , . . . , ~ps,vd,vd−1
, ~ps,vd,vd ].

The subproblem A[s, ~ys] is supposed to be the minimum cost collection of partial tours covering Cs having
tour profiles corresponding to ~ys. Our dynamic program heavily relies on the properties of the near-optimal
solution characterized by the structure theorem. We will compute A[·, ·] in a bottom-up manner, computing
A[s, ~ys] after we have computed entries for the children bags of s.

The final answer is obtained by looking at various entries of the root bag of the tree decomposition,
denoted by rs. We will take the minimum cost entry amongst A[rs, ~yrs ] such that ~yrs is the configuration
where all tours enter and exit rs only through the depot, r. We will compute our solution in a bottom-up
manner.

For any nodes u, v in bag s, if there is no edge between u and v, we can add an edge between them and
the cost of the edge is the shortest path cost between u and v in G. Similarly, for two adjacent bags, s and
s1, if u ∈ s and v ∈ s1 and if there is no edge between u and v in G, we will add an edge between them
and the cost of the edge is the shortest path cost between u and v in G. If u = v, then the cost of the edge
connecting them can be assumed to be zero. Let ‖~os‖ =

∑
u∈s ~os,u.

For the base case, we consider leaf bags. A leaf bag s could have as ≥ 1 tokens where as = ‖~os‖. We will
defer how we compute A[s, ~ys] to the end of this section. Informally, we will set A[s, ~ys] to be the minimum
cost of the edges between nodes in bag s used for the tours in ~ys to pick up ~os tokens located at nodes in
bag s. The total capacity of the tours in ~ys should be exactly as and a token at a node should be picked

22



up by one of the tours in ~ys. From our structure theorem, we know there exists a near optimum solution
such that each partial tour has one of O(logQ log2 n/ε2) tour sizes and for each small bucket, there are at
most α log2 n/ε partial tours in it. For every big bucket, there are g = (2δ log n)/ε many group sizes and
every tour of bucket i has one of those sizes. We are computing all possible A[s, ~ys] entries and from our
structure theorem, we know one of them has near-optimum expected cost, so by enumerating all possibilities,
our dynamic program finds a near-optimums solution for the leaf bag, proving the base case.

Recall that the tree T is binary. Suppose bag s has two children in T , s1 and s2. To compute cell
A[s, ~ys], we will use the entries of its children, A[s1, ~y

′] and A[s2, ~y
′′]. Suppose Csi has asi tokens, then

as = ‖~os‖+ as1 + as2 . H[~os, ~ys, ~y
′, ~y′′] checks whether the tour profiles ~ys, ~y′ and ~y′′ are consistent meaning

that all tokens picked up by tours in ~y′ and ~y′′ along with tokens in s, ~os are picked up by tours in ~ys. We
will also define I[·, ·, ·, ·] where I[~os, ~ys, ~y′, ~y′′] denotes the cost of using the edges in bag s, edges connecting
nodes in s and s1, and edges connecting nodes in s and s2. We can think of I as the cost of using edges
to patch up partial tours covering Cs1 and partial tours covering Cs2 to create tours covering Cs. We will
explain in the next section how H and I are computed. Recall ~os is part of ~ys. Suppose we have already
computed the entries A[s1, ·] and A[s2, ·], we will compute A[s, ·] in the following way:

A[s, ~ys] = min
~y′,~y′′:H[~os,~ys,~y′,~y′′]=True

{A[s1, ~y
′] + A[s2, ~y

′′] + I[~os, ~ys, ~y′, ~y′′]}.

There are four possibilities for each partial tour t at bag s going down Cs covering tokens for the subtree
rooted at children bags, s1 and s2 while also picking up extra tokens from nodes in s:

• t could be a tour that picks up tokens from nodes at bag s and does not visit or pick up tokens in
Cs1 ∪ Cs2 .

• t could be a tour that picks up tokens from nodes at bag s and picks up tokens only from Cs1 .

• t could be a tour that picks up tokens from nodes at bag s and picks up tokens only from Cs2 .

• t could be a tour that picks up tokens from nodes at bag s and picks up tokens from Cs1 ∪ Cs2 .

We would find the minimum cost over all configurations ~ys, ~y′, ~y′′ as long as ~ys, ~y′, ~y′′ are consistent. We say
~ys, ~y

′, ~y′′ are consistent if there is a way to write each tour in ~ys as a combination of at most one tour from
~y′, at most one tour from ~y′′ while also picking up extra tokens from nodes in s. We would also require that
all tokens in ~y′ and ~y′′ are picked up by tours in ~ys.

For a leaf bag s, I[~os, ~ys,~0,~0] denotes the minimum cost of tours entering bag s and visiting the nodes in
s such that all tokens in s are picked up by some tour in ~ys. The last two entries are set to ~0 since s is a leaf
bag, and has no children, and there are no other tours (apart from those in ~ys) entering or exiting through
nodes in bag s. We will set A[s, ~ys] = I[~os, ~ys,~0,~0] since I[~os, ~ys,~0,~0] computes exactly the minimum cost
collection of partial tours covering Cs = s having tour profiles corresponding to ~ys. We will explain how to
compute the entries of I[·, ·, ·, ·] in the next section.

4.3 Checking Consistency
In our dynamic program, we are given three vectors ~ys, ~y′, ~y′′ where s is a bag having child bags s1 and s2.
~y′ represents the configuration of tours covering Cs1 and ~y′′ represents the configuration of tours covering
Cs2 . Given a ~ys, for each node u in s, there are ~os,u many tokens to be picked up at u. We require the
tokens for nodes in s and tokens covered by the partial tours from ~y′ and ~y′′ to be picked up by tours in ~ys.
For simplicity, we will refer to a tour from ~ys as ts, ~y′ as tu and a tour from ~y′′ as tw.

Definition 8 We say configurations ~ys, ~y′ and ~y′′ are consistent if the following holds:

• Every tour in ~y′ maps to some tour in ~ys.

• Every tour in ~y′′ maps to some tour in ~ys.

• Every tour in ~ys has at most two mapping to it and both cannot be from ~y′ or ~y′′.

23



• Suppose only one tour tu (tw) maps to a tour ts in ~ys. The number of extra tokens (from nodes in s)
in total picked up by tour ts from nodes in bag s is exactly |ts| − |tu| (|ts| − |tw|).

• Suppose ts has two tours: tu in ~y′ and tw in ~y′′ mapping to it, then the number of extra tokens (from
nodes in s) picked up by tour ts at s is exactly |ts| − |tu| − |tw|.

• All tokens of nodes at bag s, ~os are picked up tours in ~ys.

Consistency ensures that we can patch up tours from subproblems and combine them into new tours in
a correct manner while also picking up extra tokens from nodes in s. We will describe how we can compute
consistency. Instead of using ~ys, we will use ~zs which is the same as ~ys, but excludes information about the
number of tokens in a bag, and only tracks information about the number of tours passing through bag s.

~zs = [~ps,v1,v1 , ~ps,v1,v2 , . . . , ~ps,vd,vd−1
, ~ps,vd,vd ].

We will similarly define ~z′ and ~z′′. Suppose ts,x1,x2 is a tour in s which enters through x1 and exits through
x2, let ~zs − ts,x1,x2 refers to the configuration ~zs having one less tour of size |ts,x1,x2 | from tours entering
through x1 and exiting through x2 in s. Recall that ~os is the vector of extra tokens at each node in bag s
which need to be covered by tours in ~zs.

Given ~zs, ~z′, ~z′′ and ~os, we will use the tableH to check if ~zs, ~z′, ~z′′ are consistent. LetH[~os, ~zs, ~z
′, ~z′′] =True

if ~zs, ~z′ and ~z′′ are consistent and False otherwise. For the base case, H[~0,~0,~0,~0] =True. For the recurrence,
we will look at all possible ways of combining tours from ~z′ and ~z′′ into ~zs while also picking up extra tokens
from bag s. For a tour ts, let ~o′s,ts be a vector where ~o′s,ts,u denotes the number of extra tokens picked up
by ts at node u in bag s. Let

∥∥~o′s,ts∥∥ =
∑
u∈s ~o

′
s,ts,u count the number of tokens picked up by ts from nodes

in s.
Recall that a tour ts merges with at most one tour tu from ~z′ and at most one tour tw from ~z′′. Similar

to the case of trees, we can write the recurrence of our consistency table as:

H[~os, ~zs, ~z
′, ~z′′] =

∨
ts,tu,tw,~o

′
s,ts

|ts|=|tu|+|tw|+‖~o′s,ts‖

H[~os − ~o′s,ts , ~zs − ts, ~z
′ − tu, ~z′′ − tw].

Although the above DP lets us check if ~ys, ~y′ and ~y′′ are consistent, the entries of H are True/False and
does not give us information about the optimum order in which tour ts should visit nodes in s or the cost
associated with such an ordering. Suppose the tour ts visited ks nodes in bag s, there are O(kks) many paths
that tour ts can choose to take and each path has a cost associated with it. Our goal is to find a path having
the smallest cost while also picking up tokens from nodes in bag s. We will next compute the minimum cost
way to visit nodes in s and pick up tokens from them. Recall the recurrence of our dynamic program for A
is the following,

A[s, ~ys] = min
~y′,~y′′:H[~os,~ys,~y′,~y′′]=True

{A[s1, ~y
′] + A[s2, ~y

′′] + I[~os, ~ys, ~y′, ~y′′]}.

The cost of using edges in Cs1 and Cs2 by the partial tours in ~y′ and ~y′′ in ~ys are accounted for by A[s1, ~y
′]+

A[s2, ~y
′′]. However, we have not accounted for the cost of hopping from one node to the other in s and also

the cost of going from nodes in s to nodes in child bags, s1 and s2. Note that a tour ts enters and exits
through each node in s at most once. Note that a tour visits a node u in s if it either has to pick up tokens
at u or if it uses u to enter the child bag. If a tour ts enters and exist a node two or more times, we can
short cut it so that it enters and exits only once. A tour in ts can visit up to k nodes in a bag s and it
could use one of the nodes to enter a child bag (s1 or s2) and if so, it would use a node in s to return to
the bag s. This means the tour ts could visit up to k nodes in s. Let Pts be the ordered collection of edges
where either both endpoints are in s or one endpoint is in s and the other is in s1 ∪ s2. There are O((3k)3k)
possible permutations of for Pts and ts could pick up at most Q tokens from each node that it visits and
each permutation has an associated cost with it. The number of possibilities for Pts characterized by the
the order of visiting nodes and the number of tokens picked up by tour ts from the k nodes in bag s is at
most O(Qk(3k)3k). We will let cost(Pts) denote the cost of the edges in Pts . The following figure illustrates
an example of one such tour ts (in red) and Pts (in blue).

24



a b c d e

a b cd e a b c f g

Figure 3: Blue edges represent one such edge set for a particular tour ts

Although H tells us if ~ys, ~y′ and ~y′′ are consistent, H[~os, ~zs, ~z
′, ~z′′] does not give us the cost of patching

up ~y′ and ~y′′ to form ~ys. We will use H to compute I. Let I[~os, ~zs, ~z′, ~z′′] denote the cost of using the edges
in bag s, edges connecting nodes in s and s1, and edges connecting nodes in s and s2. We can think of I
as the cost of using edges to patch up partial tours covering Cs1 , ~z′ and partial tours covering Cs2 , ~z′′, to
create tours covering Cs, ~zs. For the base case, we will set I[~0,~0,~0,~0] = 0 and set all other entries to infinity.
We will only compute an entry I[~os, ~zs, ~z′, ~z′′] if H[~os, ~zs, ~z

′, ~z′′] =True. Along with all possible values of
~o′s, ts, tu, tw, we will also look at all possible paths Pts . In our recurrence, we are taking a tour ts from ~ys
along with maybe a tour tu from ~y′, maybe a tour tw from ~y′′ along with tokens ~o′s that ts covers at nodes
in bag s. For such a tour ts, there are O(Qk(3k)3k) many possibilities for Pts . For a fixed Pts , cost(Pts) is
the cost of forming ts from patching up tu and tw while picking up extra tokens from nodes in s. We will
enumerate through all possibilities, break the recurrence into subproblems and find a solution of minimum
cost. We can write the recurrence as follows:

I[~os, ~zs, ~z′, ~z′′] = min
ts,tu,tw,Pts ,~o

′
s,ts

|ts|=|tu|+|tw|+‖~o′s,ts‖

{
cost(Pts) + I[~os − ~o′s,ts , ~zs − ts, ~z

′ − tu, ~z′′ − tw]
}
.

4.4 Time Complexity
We will work bottom-up and analyze the time complexity of A[·, ·] on the assumption that we have already
precomputed our consistency table I[·, ·, ·, ·]. Computing A[s, ·] requires looking at entries of child bags in
A[·, ·]. Given ~ys, ~y′ and ~y′′ which are consistent, computing the cost of A[s, ~ys] takes O(1) time. Each ~ys
consists of O(k2) different ~ps,u,v vectors. Each ~ps,u,v contains τ many triples (~ts,x,z,i,~hs,x,z,i,~ls,x,z,i).

1. Each ~ts,x,z,i has nO(log2 n/ε) possibilities since there are at most O(log2 n/ε) tours in a small bucket.

2. Each ~hs,x,z,i and ~ls,x,z,i have nO(g) possibilities. Recall that g = (2δ log n)/ε, so each ~hs,x,z,i and ~ls,x,z,i
have nO(logn/ε) possibilities.

3. Each triple (~ts,x,z,i,~hs,x,z,i,~ls,x,z,i) has nO(log2 n/ε) possibilities.

4. Since ~ps,u,v has τ = O(logQ/ε) many such triples, the number of possible entries for ~ps,u,v is nO(τ log2 n/ε) =

nO(logQ log2 n/ε2).

5. Since ~ys consists of O(k2) different entries of ~p, so the total number of possible entries for each ~ys is
nO(k2 logQ log2 n/ε2).

Since there are nO(k2 logQ log2 n/ε2) possibilities for ~ys, ~y′ and ~y′′, the time of computing DP entries of A[s, ·]
for a single bag s would take nO(k2 logQ log2 n/ε2) and across all bags of the tree decomposition, it would still
be nO(k2 logQ log2 n/ε2).

25



Now, we will analyze the time of computing the consistency table I[·, ·, ·, ·]. Assuming we have com-
puted smaller entries, the cost of computing if I[~os, ~zs, ~z′, ~z′′] requires taking all possibilities way of picking
ts, tu, tw, ~o

′
s, Pts . Since there are at most O(n) different tours, the number of possible ways of picking ts, tu

and tw is O(n3). Since the number of entries in the vector of ~o is O(k), there are nO(k) possibilities for ~o′s.
Each path Pts consists of O(k) nodes and at most Q tokens can be picked up from each node, this would
lead to O(Qk(3k)3k) = (nk)O(k) many possibilities for Pts since Q ≤ n. Hence, the total cost of computing a
single entry of I[·, ·, ·, ·] is (nk)O(k). Similar to the analysis forA[·, ·], there are nO(k2 logQ log2 n/ε2) possibilities
for ~os, ~zs, ~z′, ~z′′, hence the total cost of computing I[·, ·, ·, ·] is (nk)O(k)nO(k2 logQ log2 n/ε2). Similarly, the cost
of computing H[·, ·, ·, ·] is (nk)O(k)nO(k2 logQ log2 n/ε2).

Since the cost of computing I[·, ·, ·, ·] dominates the cost of computing A[·, ·], the total time complexity
of our algorithm is (nk)O(k)nO(k2 logQ log2 n/ε2) = nO(k2 logQ log2 n/ε2). Hence, for the unit demand case, since
Q ≤ n, the runtime of our algorithm is nO(k2 log3 n/ε2).

4.5 Extension to Splittable CVRP in Bounded Treewidth Graphs
We will extend our algorithm for unit demand CVRP on bounded-treewidth graphs to the splittable CVRP
when demands are quasi-polynomially bounded. In our algorithm for unit demand CVRP for bounded-
treewidth CVRP, we viewed the unit demand of each node as a token placed at the node. For the splittable
case, we can rescale the demand d(v) such that there are 1 ≤ d(v) < nQ tokens on a node and we can use the
same structure theorem as before by modifying tours such that there are at most O(logQ log2 n/ε2) different
tours for partial tours at a node. We can use the same DP to compute the solution. Each ~ys consists of
O(k2) different ~ps,u,v vectors. Each ~ps,u,v contains τ many triples (~ts,x,z,i,~hs,x,z,i,~ls,x,z,i).

1. Each ~ts,x,z,i has (nQ)O(log2 n/ε2) possibilities since there are at most O(log2 n/ε) tours in a small bucket.

2. Each ~hs,x,z,i and ~ls,x,z,i have (nQ)O(g) possibilities. Recall that g = (2δ log n)/ε2, so each ~hs,x,z,i and
~ls,x,z,i have (nQ)O(logn/ε2) possibilities.

3. Each triple (~ts,x,z,i,~hs,x,z,i,~ls,x,z,i) has (nQ)O(log2 n/ε) possibilities.

4. Since ~ps,u,v has τ = O(logQ/ε) many such triples, the number of possible entries for ~ps,u,v is (nQ)O(τ log2 n/ε) =

(nQ)O(logQ log2 n/ε2).

5. Since ~ys consists of O(k2) different entries of ~p, the total number of possible entries for each ~ys is
(nQ)O(k2 logQ log2 n/ε2).

Similar to the analysis of the runtime of the unit demand case, the time complexity of computing the entries
of DP tables A and consistency table I is, (kQ)O(k)(nQ)O(k2 logQ log2 n/ε2) = (nQ)O(k2 logQ log2 n/ε2) since
k ≤ n. Suppose Q = nO(logc n), then the runtime of our algorithm is nO(k2 log2c+3 n/ε2).

5 Extension to Splittable CVRP for Graphs of Bounded Doubling
Metrics and Bounded Highway Dimension

In this section, we will show how we can use our algorithm for CVRP on bounded-treewidth graphs as
a blackbox to obtain a QPTAS for graphs of bounded doubling metrics and graphs of bounded highway
dimension. We will use the following result about emdedding graphs of doubling dimensionD into a bounded-

treewidth graph of treewidth k ≤ 2O(D)

⌈(
4D log ∆

ε

)D⌉
by Talwar [26].

Lemma 11 (Theorem 9 in [26]) Let (X, d) be a metric with doubling dimension D and aspect ratio ∆.
For any ε > 0, (X, d) can be (1 + ε) probabilistically approximated by a family of treewidth k-metrics for

k ≤ 2O(D)

⌈(
4D log ∆

ε

)D⌉
.

We will also use the following result by Feldmann et al. [16] related to graphs of low highway dimension.

26



Lemma 12 (Theorem 3 in [16]) Let G be a graph with highway dimension D of violation λ > 0, and aspect
ratio ∆. For any ε > 0, there is a polynomial-time computable probabilistic embedding H of G with treewidth
(log ∆)O(log2( Dελ )/λ) and expected distortion 1 + ε.

For both graph classes, our algorithm works as follows. The input graph G is embedded into a host graph
H of bounded treewidth using the embedding given in Lemma 11 and Lemma 12. The algorithm then finds
a (1 + ε)-approximation for CVRP for H, using the dynamic programming solution from the Section 5. The
solution for H is then lifted back to a solution in G. For each tour in the solution for H, a tour in G will
visit nodes in the same order as the tour in H. The embedding given in Lemma 11 and Lemma 12 is such
that an optimal set of tours in the host graph gives a (1 + ε) solution in G. The embedding also ensures that
H has treewidth small enough that the algorithm runs in quasi-polynomial time.

Theorem 8 For any ε > 0 and D > 0, there is a an algorithm that, given an instance of the splittable CVRP
with capacity Q = nlogc n and the graph has doubling dimension D with cost opt, finds a (1+ ε)-approximate
solution in time nO(DD log2c+D+3 n/εD+2).

Proof. This follows easily from Lemma 11 and using the algorithm for bounded-treewidth as a blackbox.

In place of k, we will substitute k = 2O(D)

⌈(
4D log ∆

ε

)D⌉
into the runtime for the algorithm for bounded-

treewidth which is nO(k2 log2c+3 n/ε2). Hence, we have an algorithm for graphs of bounded doubling dimension
with runtime nO(DD log2c+D+3 n/εD+2).

As an immediate corollary, since R2 has doubling dimension 7 [27], the above theorem implies an approx-
imation scheme for unit demand CVRP on Euclidean metrics on R2 in time nO(log10 n/ε9) which improves on
the run time of nlogO(1/ε) n of [15].

Theorem 9 For any ε > 0, λ > 0 and D > 0, there is a an algorithm that, given an instance of the
splittable CVRP with capacity Q = nlogc n and a graph with highway dimension D and violation λ finds a
(1 + ε)-approximate solution in time nO(log2c+3+log2( D

ελ
)· 1
λ n/ε2).

Proof. This follows easily from Lemma 12 and using the algorithm for bounded-treewidth as a blackbox.
In place of k, we will substitute k = (log ∆)O(log2( Dελ )/λ) into the runtime for the algorithm for bounded-
treewidth which is nO(k2 log2c+3 n/ε2). Hence, we have an algorithm for graphs of bounded doubling dimension
with runtime nO(log2c+3+log2( D

ελ
)· 1
λ n/ε2).

6 Conclusion
In this paper we presented QPTAS’s for CVRP on trees, graphs of bounded treewidths, bounded doubling
dimension, and bounded highway dimension. The immediate questions to consider are whether these ap-
proximation schemes can in fact be turned into PTAS’s. Even for the case of trees, although we can improve
the run time slightly by shaving off one (or maybe two) log factors from the exponent, it is not clear if it
can be turned into a PTAS without significant new ideas.

Although our result implies a QPTAS with a better run time for CVRP on Euclidean plan R2 (nO(log10 n/ε9)

vs the time of f nlogO(1/ε) n of [15]), getting a PTAS remains an interesting open question. As discussed in [1],
the difficult case appears to be when Q is polynomial in n (e.g. Q =

√
n). Another interesting question is to

consider CVRP on planar graphs and develop approximation schemes for them and more generally graphs
of bounded genus or minor free graphs.

References
[1] A. Adamaszek, A. Czumaj, and A. Lingas. PTAS for k -tour cover problem on the plane for moderately

large values of k. In Y. Dong, D. Du, and O. H. Ibarra, editors, Algorithms and Computation, 20th
International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings,
volume 5878 of Lecture Notes in Computer Science, pages 994–1003. Springer, 2009.

27



[2] K. Altinkemer and B. Gavish. Heuristics for unequal weight delivery problems with a fixed error
guarantee. Operations Research Letters, 6(4):149–158, 1987.

[3] S. Arora. Polynomial time approximation schemes for euclidean traveling salesman and other geometric
problems. J. ACM, 45(5):753–782, Sept. 1998.

[4] T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama. Covering points in the plane by k -tours: Towards
a polynomial time approximation scheme for general k. In F. T. Leighton and P. W. Shor, editors,
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas,
USA, May 4-6, 1997, pages 275–283. ACM, 1997.

[5] A. Becker. A tight 4/3 approximation for capacitated vehicle routing in trees. In E. Blais, K. Jansen,
J. D. P. Rolim, and D. Steurer, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ,
USA, volume 116 of LIPIcs, pages 3:1–3:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[6] A. Becker, P. N. Klein, and D. Saulpic. A quasi-polynomial-time approximation scheme for vehicle
routing on planar and bounded-genus graphs. In K. Pruhs and C. Sohler, editors, 25th Annual European
Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages
12:1–12:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[7] A. Becker, P. N. Klein, and D. Saulpic. Polynomial-time approximation schemes for k-center, k-median,
and capacitated vehicle routing in bounded highway dimension. In Y. Azar, H. Bast, and G. Herman,
editors, 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,
Finland, volume 112 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018.

[8] A. Becker, P. N. Klein, and A. Schild. A PTAS for bounded-capacity vehicle routing in planar graphs.
In Z. Friggstad, J. Sack, and M. R. Salavatipour, editors, Algorithms and Data Structures - 16th In-
ternational Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019, Proceedings, volume
11646 of Lecture Notes in Computer Science, pages 99–111. Springer, 2019.

[9] A. Becker and A. Paul. A framework for vehicle routing approximation schemes in trees. In Z. Frig-
gstad, J. Sack, and M. R. Salavatipour, editors, Algorithms and Data Structures - 16th International
Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019, Proceedings, volume 11646 of
Lecture Notes in Computer Science, pages 112–125. Springer, 2019.

[10] J. Blauth, V. Traub, and J. Vygen. Improving the approximation ratio for capacitated vehicle routing.
CoRR, abs/2011.05235, 2020.

[11] H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded treewidth.
In Z. Fülöp and F. Gécseg, editors, Automata, Languages and Programming, 22nd International Col-
loquium, ICALP95, Szeged, Hungary, July 10-14, 1995, Proceedings, volume 944 of Lecture Notes in
Computer Science, pages 268–279. Springer, 1995.

[12] V. Cohen-Addad, A. Filtser, P. N. Klein, and H. Le. On light spanners, low-treewidth embeddings and
efficient traversing in minor-free graphs. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 589–600. IEEE, 2020.

[13] M. Cygan, F. Grandoni, S. Leonardi, M. Pilipczuk, and P. Sankowski. A path-decomposition theorem
with applications to pricing and covering on trees. In L. Epstein and P. Ferragina, editors, Algorithms -
ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings,
volume 7501 of Lecture Notes in Computer Science, pages 349–360. Springer, 2012.

[14] J. H. Dantzig, G. B.and Ramser. The truck dispatching problem. Management Science, 6(1):80–91,
1959.

[15] A. Das and C. Mathieu. A quasipolynomial time approximation scheme for euclidean capacitated vehicle
routing. Algorithmica, 73(1):115–142, 2015.

28



[16] A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post. A (1+ε)-embedding of low highway dimension
graphs into bounded treewidth graphs. In M. M. Halldórsson, K. Iwama, N. Kobayashi, and B. Speck-
mann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science,
pages 469–480. Springer, 2015.

[17] B. L. Golden and R. T. Wong. Capacitated arc routing problems. Networks, 11(3):305–315, 1981.

[18] M. Haimovich and A. H. G. R. Kan. Bounds and heuristics for capacitated routing problems. Mathe-
matics of Operations Research, 10(4):527–542, 1985.

[19] S.-y. Hamaguchi and N. Katoh. A capacitated vehicle routing problem on a tree. In K.-Y. Chwa and
O. H. Ibarra, editors, Algorithms and Computation, pages 399–407, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

[20] M. Khachay and R. Dubinin. PTAS for the euclidean capacitated vehicle routing problem in rˆd. In
Y. Kochetov, M. Khachay, V. L. Beresnev, E. A. Nurminski, and P. M. Pardalos, editors, Discrete Op-
timization and Operations Research - 9th International Conference, DOOR 2016, Vladivostok, Russia,
September 19-23, 2016, Proceedings, volume 9869 of Lecture Notes in Computer Science, pages 193–205.
Springer, 2016.

[21] M. Khachay and Y. Ogorodnikov. QPTAS for the CVRP with a moderate number of routes in a metric
space of any fixed doubling dimension. In I. S. Kotsireas and P. M. Pardalos, editors, Learning and
Intelligent Optimization - 14th International Conference, LION 14, Athens, Greece, May 24-28, 2020,
Revised Selected Papers, volume 12096 of Lecture Notes in Computer Science, pages 27–32. Springer,
2020.

[22] M. Khachay, Y. Ogorodnikov, and D. Khachay. An extension of the das and mathieu QPTAS to the
case of polylog capacity constrained CVRP in metric spaces of a fixed doubling dimension. In A. V.
Kononov, M. Khachay, V. A. Kalyagin, and P. M. Pardalos, editors, Mathematical Optimization Theory
and Operations Research - 19th International Conference, MOTOR 2020, Novosibirsk, Russia, July
6-10, 2020, Proceedings, volume 12095 of Lecture Notes in Computer Science, pages 49–68. Springer,
2020.

[23] M. Labbé, G. Laporte, and H. Mercure. Capacitated vehicle routing on trees. Operations Research,
39(4):616–622, 1991.

[24] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomization and Probabilistic Techniques
in Algorithms and Data Analysis. Cambridge University Press, USA, 2nd edition, 2017.

[25] C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two.
Mathematics of Operations Research, 18(1):1–11, 1993.

[26] K. Talwar. Bypassing the embedding: Algorithms for low dimensional metrics. In Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’04, page 281–290, New York,
NY, USA, 2004. Association for Computing Machinery.

[27] E. W. Weisstein. Disk covering problem. From MathWorld–A Wolfram Web Resource, 2018.

29


	1 Introduction
	1.1 Related Works
	1.2 Overview of our technique

	2 Preliminaries
	3 QPTAS for CVRP on Trees
	3.1 Structure Theorem
	3.1.1 Overview of the ideas
	3.1.2 Changing OPT to a near optimum structured solution

	3.2 Dynamic Program
	3.3 Checking Consistency
	3.4 Time Complexity
	3.5 Extension to Splittable CVRP
	3.6 Height reduction
	3.6.1 Creating a new tree
	3.6.2 Analysis


	4 QPTAS for Bounded Treewidth Graphs
	4.1 Changing OPT to a near-optimum structured solution
	4.2 Dynamic Program
	4.3 Checking Consistency
	4.4 Time Complexity
	4.5 Extension to Splittable CVRP in Bounded Treewidth Graphs

	5 Extension to Splittable CVRP for Graphs of Bounded Doubling Metrics and Bounded Highway Dimension
	6 Conclusion

