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Abstract

We initiate the study of k-edge-connected orientations of undirected graphs through edge
flips for k ≥ 2. We prove that in every orientation of an undirected 2k-edge-connected graph,
there exists a sequence of edges such that flipping their directions one by one does not decrease
the edge-connectivity, and the final orientation is k-edge-connected. This yields an “edge-flip
based” new proof of Nash-Williams’ theorem: an undirected graph G has a k-edge-connected
orientation if and only if G is 2k-edge-connected. As another consequence of the theorem, we
prove that the edge-flip graph of k-edge-connected orientations of an undirected graph G is
connected if G is (2k + 2)-edge-connected. This has been known to be true only when k = 1.

1 Introduction

An orientation of undirected graphs has been a subject of thorough studies over several decades.
For an undirected graph G = (V,E) with possible multiple edges, an orientation of G is a directed
graph D = (V,A) obtained from G by choosing a directed edge (u, v) ∈ A or (v, u) ∈ A for each
undirected edge {u, v} ∈ E.

An old result by Robbins [27] states that an undirected graph G has a strongly connected orien-
tation if and only if G is 2-edge-connected. Robbins’ theorem was extended by Nash-Williams [26]
as an undirected graph G has a k-edge-connected orientation if and only if G is 2k-edge-connected.

This paper is concerned with reorientation. A basic question asks to find a smallest set F of
edges in an orientation of a 2-edge-connected graph such that flipping the directions of all edges in
F yields a strongly connected orientation. By a theorem of Lucchesi and Younger [24], the problem
can be solved in polynomial time. A higher edge-connectedness version has also been studied,
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Figure 1: An example for Theorem 1. The underlying undirected graph is 4-edge-connected. The
number under each orientation shows its edge-connectivity. Fat red edges depict flipped edges. The
list of orientations show that a sequence of edge flips leads to an orientation of edge-connectivity
two while all the intermediate orientations have edge-connectivity one.

which asks to find a smallest set F of edges in an orientation of a 2k-edge-connected graph such
that flipping the directions of all edges in F yields a k-edge-connected orientation. By submodular
flow, the problem can be solved in polynomial time [6]. For a faster algorithm, see Iwata and
Kobayashi [20].

We now want to investigate the situation where flips are performed one by one sequentially,
while the results in the literature studied flipping the edges of a set at once. We also want each of
the intermediate orientations in the process to maintain at least as high edge-connectivity as the
previous orientations in the process. This has practical importance since simultaneous edge flips can
be difficult to implement or control in some real-world situations such as traffic management [17],
and the reduction of edge-connectivity in intermediate orientations may cause the loss of network
quality.

To make the discussion more precise, we define an edge flip (or a flip for short) of a directed
edge (u, v) as an operation that replaces (u, v) by (v, u), i.e., reverses the direction of (u, v). For
directed graphs D and D′, we denote D → D′ if D′ is obtained from D by a single edge flip.

Our main theorem is the following. Remind that the edge-connectivity of a directed graph
D = (V,A) is the minimum integer λ such that every non-empty subset X ( V has at least λ edges
leaving X, and is denoted by λ(D).

Theorem 1. Let k be a non-negative integer. Let G = (V,E) be an undirected 2k-edge-connected
graph and D = (V,A) be an orientation of G. Then, there exist orientations D1, D2, . . . , D` of G
such that ` ≤ k|V |3, D → D1 → D2 → · · · → D`, and λ(D) ≤ λ(D1) ≤ λ(D2) ≤ · · · ≤ λ(D`) = k.
Furthermore, such orientations D1, . . . , D` can be found in polynomial time.

Theorem 1 states that for any orientation of a 2k-edge-connected undirected graph G, there
exists a sequence of edge flips such that the orientations of G obtained by the successive edge flips
have non-decreasing edge-connectivity and the resulting orientation is k-edge-connected. Figure 1
shows an example.

Theorem 1 has several implications. First, it provides another (algorithmic) proof of Nash-
Williams’ theorem [26] by edge flips. It should be emphasized that the edge-connectivity of the
orientation does not decrease during the transformation in Theorem 1, while Nash-Williams’ the-
orem itself does not provide any guarantee for the edge-connectivity of intermediate orientations.

The second implication is concerned with the connectedness of the edge-flip graph of k-edge-
connected orientations. For an undirected graph G = (V,E), we define the edge-flip graph Gk(G)
as the vertex set is all the k-edge-connected orientations of G, and two orientations are joined by
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an edge in the edge-flip graph if and only if one is obtained from the other by a single edge flip.
Figure 2 is an example of the edge-flip graph of the strongly connected orientations.

Figure 2: The edge-flip graph G1(K4) of the strongly connected (i.e., 1-edge-connected) orientations
of a four-vertex complete graph K4.

Then, we consider the following two questions.

Global Reachability: Given a connected undirected graph G, is the edge-flip graph Gk(G) con-
nected?

Local Reachability: Given a connected undirected graph G and two k-edge-connected orienta-
tions D1, D2 of G, is there a path connecting D1 and D2 in the edge-flip graph Gk(G)?

When k = 1, the Global Reachability question is completely answered. Greene and Za-
slavsky [15] proved by hyperplane arrangements that the edge-flip graph G1(G) is connected if
and only if G is 3-edge-connected. Fukuda, Prodon, and Sakuma [12] gave a graph-theoretic proof
for the same fact.

Our second result is a partial answer to the Global Reachability question for k ≥ 2. This
is a higher-edge-connectedness analogue of the result by Greene and Zaslavsky [15] and Fukuda,
Prodon, and Sakuma [12].

Theorem 2. Let k ≥ 1. If G is (2k+2)-edge-connected, then the edge-flip graph Gk(G) is connected.

Theorem 2 is obtained as a corollary of Theorem 1, combined with a result by Frank [7]. The
proof implies that the diameter of Gk(G) is O(k|V |3 + |E|2) when G is (2k + 2)-edge-connected.
Note that Gk(G) has no vertex if the edge-connectivity of G is less than 2k.

We do not know if the (2k + 2)-edge-connectedness can be replaced with the (2k + 1)-edge-
connectedness when k ≥ 2. However, we know that we cannot replace it with the 2k-edge-
connectedness. Indeed, there exists a 2k-edge-connected graph G such that Gk(G) is disconnected
even when k = 1 (e.g. consider the clockwise orientation and the counterclockwise orientation of a
3-cycle).

For the Local Reachability question, we have the following characterization when k = 1.

3



D1 D2

Figure 3: This example shows that an analogous statement to Theorem 3 does not hold for k = 2.

Theorem 3. Let G = (V,E) be a 2-edge-connected graph and D1, D2 be strongly connected ori-
entations of G. Then, there exists a path connecting D1 and D2 in the edge-flip graph G1(G)
if and only if there exists no 2-edge-cut {{u, v}, {u′, v′}} such that (u, v), (v′, u′) are edges of D1

and (v, u), (u′, v′) are edges of D2. Furthermore, a shortest path between two strongly connected
orientations can be found in polynomial time if one exists.

We note that an analogous statement for higher edge-connectedness does not hold. See the
example in Figure 3. In this example, D1 and D2 are 2-edge-connected orientations of a 4-edge-
connected graph G. For any 4-edge-cut in G, their direction in D1 is the same as in D2. On the
other hand, one can see that there is no edge flip of D1 that maintains 2-edge-connectedness, which
implies that Gk(G) contains no path connecting D1 and D2.

Related Work

Orientations of graphs have been a subject of intensive studies in the literature of graph theory
and combinatorial optimization.

Robbins [27] shows that an undirected graph G has a strongly connected orientation if and only
if G is 2-edge-connected. Robbins’ original proof is based on ear decompositions, which yields a
linear-time algorithm [18]. The Global Reachability of the edge-flip graph of strongly connected
orientations is investigated by Greene and Zaslavsky [15] and by Fukuda et al. [12]: They proved
that the edge-flip graph of the strongly connected orientations of an undirected graph G is connected
if and only if G is 3-edge-connected, and in this case, a shortest path between two strongly connected
orientations can be found in polynomial time.

Nash-Williams [26] shows that an undirected graph G has a k-edge-connected orientation if and
only if G is 2k-edge-connected, where k ≥ 1 is an integer. Robbins’ theorem [27] corresponds to
the case where k = 1. Nash-Williams’ original proof is based on the so-called “odd-node pairing
theorem” and Eulerian orientations. See also [22] for a simpler proof. Since an odd-node pairing
with the desired property can be found in polynomial time [14, 25], this proof technique yields a
polynomial-time algorithm to find a k-edge-connected orientation of a 2k-edge-connected graph.
Other proofs are based on the “splitting-off theorem” by Lovász [23] and submodular flows [8].
Those two proofs also yield polynomial-time algorithms.

Nash-Williams’ theorem can be generalized to the existence of an orientation satisfying a certain
local connectivity constraint, which is called a well-balanced orientation [26]. A further extension
is shown by Fukunaga [13]. Bernáth et al. [3] show some results on well-balanced orientations.
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When k ≥ 2, the edge-flip graph of k-edge-connected orientations has not been studied. Frank [7]
proved that the path/cycle-flip graph of k-edge-connected orientations of an undirected graph G is
connected if and only if G is 2k-edge-connected, where a path/cycle flip is an operation that flips
all the edges of a directed path or a directed cycle simultaneously. Since this result will be used in
our proof of Theorem 2, we highlight it in the following theorem, where we also include a bound
for the length of a sequence that was implicit in his proof.

Theorem 4 (Frank [7]). Let k ≥ 1 be an integer, G = (V,E) be a 2k-edge-connected undirected
graph, and D1, D2 be two k-edge-connected orientations of G. Then, D1 and D2 can be transformed
with each other by a sequence of path/cycle flips in such a way that all the intermediate orientations
are k-edge-connected. The length of such a sequence is bounded by O(|E|) from above, and can be
found in polynomial time.

Acyclic orientations are well-studied objects. An orientation is acyclic if it has no directed cycle.
It is easy to see that every undirected graph has an acyclic orientation. The Global Reachability
question is completely answered. Greene and Zaslavsky [15] gave a geometric proof that the edge-flip
graph of acyclic orientations is connected. Fukuda, Prodon, and Sakuma [12] gave a graph-theoretic
proof for the same fact. This trivially answers the Local Reachability question, too. Indeed, their
proofs give a shortest path between two acyclic orientations in the edge-flip graph, which can be
found in polynomial time.

Degree-constrained orientations form another class of well-studied orientations. In this case, we
are also given a non-negative number m(v) for every vertex v of an undirected graph G = (V,E).
Hakimi [16] proved that there exists an orientation of G such that every vertex v has the in-degree
of m(v) if and only if |E| =

∑
v∈V m(v) and |{e ∈ E | e ⊆ X}| ≤

∑
v∈X m(v) for all X ⊆ V : such

an orientation can be found in polynomial time if exists.
To define the flip graph of degree-constrained orientations, an edge flip is useless since a single

edge flip does not keep the required degree property of the orientations. Instead, we consider a
cycle flip that flips all the edges in a single directed cycle simultaneously. A cycle flip preserves
the property that the in-degree of every vertex v is m(v). Therefore, the cycle-flip graph of degree-
constrained orientations has been studied in the literature.

The Global Reachability of the cycle-flip graph of degree-constrained orientations is known to
hold as long as it is non-empty (see [10]). Thus, the Local Reachability question is again trivial.
However, computing a shortest path in the cycle-flip graph of degree-constrained orientations is
NP-hard [1, 19].

Orientations with vertex-connectivity constraints are also studied in the literature. It is con-
jectured by Thomassen [28] that, for any positive integer k, there exists a smallest positive integer
f(k) such that every f(k)-connected graph has a k-connected orientation. Frank [9] proposed a
stronger conjecture: for any positive integer k, a graph G = (V,E) has a k-connected orientation if
and only if G−U is 2(k−|U |)-edge-connected for any U ⊆ V with |U | ≤ k. Jordán [21] shows that
f(2) ≤ 18 based on a result by Berg and Jordán [2], and this upper bound is improved to 14 by
Cheriyan, Durand de Gevigney, and Szigeti [4]. Thomassen [29] proves Frank’s conjecture for k = 2,
that is, a graph G = (V,E) admits a 2-connected orientation if and only if it is 4-edge-connected
and G− v is 2-edge-connected for every v ∈ V . This implies that f(2) = 4. For general k, Frank’s
conjecture was disproved recently by Durand de Gevigney [5]. The existence of f(k) is still open
for k ≥ 3.

Frank, Király, and Király [11] proved that many known graph orientation theorems can be
extended to hypergraphs.
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Organization

The rest of this paper is organized as follows. In Section 2, we give preliminary definitions and
useful facts. In Section 3, we prove Theorem 2 by using Theorem 1. A proof of Theorem 1, which
is the main result in this paper, is given in Section 4. In Section 5, we give a proof of Theorem 3.
In Section 6, we conclude this paper with some remarks.

2 Preliminaries

2.1 Undirected Graphs

An undirected graph G = (V,E) is a pair of its vertex set V and its edge set E, where each edge
e ∈ E is specified by an unordered pair {u, v} of vertices: in this case u and v are endpoints of the
edge e. We allow multiple edges, and thus E is considered a multiset.

A path in an undirected graph G = (V,E) is a sequence v0, v1, . . . , v` of distinct vertices such
that {vi, vi+1} ∈ E for every i ∈ {0, 1, . . . , `− 1}: in this case the path connects v0 and v`, and ` is
the length of the path. A path that connects v0 and v` is also called a (v0, v`)-path.

For an undirected graph G = (V,E) and a vertex subset S ⊆ V , we denote by EG(S) the set of
edges of G that have one endpoint in S and the other endpoint in V − S:

EG(S) := {e ∈ E | |e ∩ S| = 1}.

Define δG(S) := |EG(S)|. The set EG(S) is a k-edge-cut of G if |EG(S)| = k.
For k ≥ 1, an undirected graph G = (V,E) is k-edge-connected if δG(S) ≥ k for every non-

empty S ( V . By Menger’s theorem, this is equivalent to the condition that there exists a set
of k edge-disjoint (s, t)-paths for every pair of distinct vertices s, t ∈ V . An undirected graph is
connected if it is 1-edge-connected: an undirected graph is disconnected if it is not connected. It
is easy to observe that G is k-edge-connected if and only if there exists no `-edge-cut in G for
` = 0, 1, . . . , k − 1 except EG(∅) and EG(V ).

2.2 Directed Graphs

A directed graph D = (V,A) is a pair of its vertex set V and its edge set A, where each directed
edge e ∈ A is specified by an ordered pair (u, v) of vertices: in this case u is the tail of e and v is
the head of e. We allow multiple edges, and thus A is considered a multiset.

A path in a directed graph D = (V,A) is a sequence v0, v1, . . . , v` of distinct vertices such
that (vi, vi+1) ∈ A for every i ∈ {0, 1, . . . , ` − 1}: in this case the path connects v0 and v`, and
` is the length of the path. A path that connects v0 and v` is also called a (v0, v`)-path. For
i, j ∈ {0, 1, . . . , ` − 1} with i ≤ j, let P [vi, vj ] denote the subpath of P from vi to vj , that is,
P [vi, vj ] is the sequence vi, vi+1, . . . , vj . For a path P , the set of vertices (resp. edges) in P is
denoted by V (P ) (resp. A(P )).

Let D = (V,A) be a directed graph and S ⊆ V a vertex subset. The subgraph induced by S is
denoted by D[S]. An edge e ∈ A leaves S if the tail of e belongs to S but the head of e does not
belong to S. Similarly, an edge e ∈ A enters S if the head of e belongs to S but the tail of e does
not belong to S. We denote by ∆+

D(S) the set of edges in A that leave S, and similarly by ∆−D(S)
the set of edges in A that enter S:

∆+
D(S) := {(u, v) ∈ A | u ∈ S, v 6∈ S}, ∆−D(S) := {(u, v) ∈ A | u 6∈ S, v ∈ S}.
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Define δ+D(S) := |∆+
D(S)| and δ−D(S) := |∆−D(S)|.

For k ≥ 1, a directed graph D = (V,A) is k-edge-connected if δ+D(S) ≥ k and δ−D(S) ≥ k for
every non-empty S ( V .1 By Menger’s theorem, this is equivalent to the condition that there exists
a set of k edge-disjoint (s, t)-paths for every pair of distinct vertices s, t ∈ V . A directed graph
is strongly connected if it is 1-edge-connected. The edge-connectivity of a directed graph D is the
maximum integer k such that D is k-edge-connected, and is denoted by λ(D).

Simple counting shows that the functions δ+D, δ
−
D satisfy the following inequalities: for all X,Y ⊆

V ,

δ+D(X) + δ+D(Y ) ≥ δ+D(X ∩ Y ) + δ+D(X ∪ Y ), δ−D(X) + δ−D(Y ) ≥ δ−D(X ∩ Y ) + δ−D(X ∪ Y ).

The two inequalities are referred to as submodularity.

3 Proof of Theorem 2

Let k ≥ 1 and G be an undirected (2k + 2)-edge-connected graph. We will show that the edge-flip
graph Gk(G) is connected by using Theorem 1.

Let D1, D2 be k-edge-connected orientations of G. We want to find a sequence of edge flips that
transforms D1 to D2 in such a way that all the intermediate orientations are k-edge-connected.

Below is our strategy.

1. We apply Theorem 1 to transform D1 to a (k + 1)-edge-connected orientation D′1 by edge
flips so that all the intermediate orientations are k-edge-connected. This can be done by the
assumption that G is (2k+ 2)-edge-connected. We apply the same procedure to D2 to obtain
a (k + 1)-edge-connected orientation D′2.

2. Then, we apply Theorem 4 due to Frank [7] to transform D′1 to D′2. Since operations in
Theorem 4 are path/cycle flips, we need to turn them into sequences of edge flips. We
emphasize that all the intermediate orientations will be k-edge-connected, but not necessarily
(k + 1)-edge-connected.

3. Finally, we consider the reverse sequence of edge flips that transformed D2 to D′2 from the
first step. Combining them, we obtain a sequence of edge flips that transforms D1 to D2 such
that all the intermediate orientations are k-edge-connected.

In the strategy above, the first and the third steps are clear, and the numbers of necessary
steps are O(k|V |3) by Theorem 1. We concentrate on the second step. Let D′1, D

′
2 be (k+ 1)-edge-

connected orientations of G. Then, by Theorem 4, there exists a sequence of path/cycle flips that
transforms D′1 to D′2 in such a way that all the intermediate orientations are (k+1)-edge-connected.
Let D′1 = D̂0, D̂1, . . . , D̂` = D′2 be a sequence of orientations of G such that D̂i is obtained from
D̂i−1 by a path/cycle flip and D̂i is (k + 1)-edge-connected for i ∈ {1, . . . , `}.

We now fix i ∈ {1, . . . , `}, and we will construct a sequence of orientations from D̂i−1 to D̂i

by edge flips. Let F be a directed path/cycle in D̂i−1 such that flipping the edges in F yields
D̂i. Suppose that F traverses arcs e1, e2, . . . , em in this order, where m is the number of edges in
F . Then, we flip e1, e2, . . . , em one by one in this order. The obtained sequence of orientations is

1One of the conditions is actually redundant since δ−D(S) ≥ k implies δ+D(V − S) ≥ k.
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denoted by D̂i−1 = D̃0, D̃1, . . . , D̃m = D̂i. Note that D̃j is obtained from D̃0 by flipping the edges
of the path {e1, . . . , ej}.

We prove D̃j is k-edge-connected for any j ∈ {1, . . . ,m−1}. LetX be a non-empty proper subset
of V . We already know D̃0 is (k+ 1)-edge-connected, that is, δ+

D̃0
(X) ≥ k+ 1 and δ−

D̃0
(X) ≥ k+ 1.

Furthermore, since {e1, e2, . . . , ej} forms a path in D̃0,∣∣∣∣∣∆+
D̃0

(X) ∩ {e1, e2, . . . , ej}
∣∣− ∣∣∆−

D̃0
(X) ∩ {e1, e2, . . . , ej}

∣∣∣∣∣ ≤ 1.

This implies that δ+
D̃j

(X) ≥ k and δ−
D̃j

(X) ≥ k. Hence, D̃j is k-edge-connected for any j ∈
{0, . . . ,m}.

Therefore, we can construct a sequence of k-edge-connected orientations from D′1 to D′2 by edge
flips. The length of the sequence for the second step is O(|E|2) by Theorem 4. This completes the
proof.

4 Proof of the Main Theorem (Theorem 1)

Remind that for two orientations D and D′ of G, we denote D → D′ if D′ is obtained from
D by a single edge flip. In this section, we show that, given a k-edge-connected orientation D
of G, we can increase the edge-connectivity of D via a sequence of edge flips without losing the
k-edge-connectedness.

Theorem 5. Let k be a non-negative integer. Let G = (V,E) be an undirected (2k + 2)-edge-
connected graph and D = (V,A) be a k-edge-connected orientation of G. Then, there exist ori-
entations D1, D2, . . . , D` of G such that ` ≤ |V |3, D → D1 → D2 → · · · → D`, λ(Di) ≥ k for
i ∈ {1, . . . , ` − 1}, and λ(D`) ≥ k + 1. Furthermore, such D1, . . . , D` can be found in polynomial
time.

Note that the (2k + 2)-edge-connectedness is necessary for an undirected graph G to have a
(k + 1)-edge-connected orientation.

Theorem 1 is then a simple corollary of Theorem 5 as exhibited in the proof below.

Proof of Theorem 1. If λ(D) = k, then the claim is obvious. Otherwise, let p := λ(D) < k
and Dp := D. Since G is (2p + 2)-edge-connected, by applying Theorem 5 with Dp, we obtain
orientations Dp

1, D
p
2, . . . , D

p
`p

of G such that `p ≤ |V |3, Dp → Dp
1 → Dp

2 → · · · → Dp
`p

, λ(Dp
i ) ≥ p

for i ∈ {1, . . . , `p−1}, and λ(Dp
`p

) ≥ p+1. By taking a subsequence if necessary, we may assume that

λ(Dp
i ) = p for i ∈ {1, . . . , `p − 1}. Note that, since Dp

`p
is obtained from Dp

`p−1 by flipping exactly

one edge, we obtain λ(Dp
`p

) − λ(Dp
`p−1) ≤ 1, and hence λ(Dp

`p
) = p + 1. Then, set Dp+1 := Dp

`p

and apply Theorem 5 again with Dp+1 to obtain a sequence Dp+1
1 , Dp+1

2 , . . . , Dp+1
`p+1

=: Dp+2. We
repeat this procedure until the edge-connectivity becomes k. Then,

Dp
1, D

p
2, . . . , D

p
`p
, Dp+1

1 , Dp+1
2 , . . . , Dp+1

`p+1
, . . . , Dk−1

1 , Dk−1
2 , . . . , Dk−1

`k−1

is a desired sequence, because λ(Di
1) = · · · = λ(Di

`i−1) = i and λ(Di
`i

) = i + 1 for i ∈ {p, p +

1, . . . , k − 1}, and the length of the sequence is
∑k−1

i=p `i ≤ k|V |3. Such a sequence can be found in
polynomial time by Theorem 5.

In the rest of this section, we give a proof of Theorem 5.
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4.1 Proof Outline

We first consider the case of k = 0. Since G is 2-edge-connected, it has a strongly connected
orientation D′ = (V,A′) (see [27]). Let r ∈ V be an arbitrary vertex. Then, by considering
the union of an in-tree an out-tree both rooted at r, one can see that there exists a subgraph
D′′ = (V,A′′) of D′ such that D′′ is strongly connected and |A′′| ≤ 2|V | − 2. Let F ⊆ A′′ be the
set of arcs whose directions are different in D′′ and D. Then, by flipping edges in F one by one
in an arbitrary order, we obtain a sequence of orientations satisfying the conditions in Theorem 5,
because we have no constraint on the intermediate orientations when k = 0, and the length of this
sequence is at most 2|V | − 2.

In what follows in this section, we suppose that k is a positive integer. Let G = (V,E) be an
undirected (2k + 2)-edge-connected graph and D = (V,A) be a k-edge-connected orientation of G.
Throughout this section, we fix a vertex r ∈ V arbitrarily. To simplify the notation, for v ∈ V , {v}
is sometimes denoted by v if no confusion may arise. Define Fout(D) and Fin(D) as

Fout(D) := {X ⊆ V − r | δ+D(X) = k} ∪ {V },
Fin(D) := {X ⊆ V − r | δ−D(X) = k} ∪ {V }.

Throughout this paper, a set in Fout(D) (resp. Fin(D)) is shown by a blue (resp. red) oval in the
figures. Note that, for a vertex set X ⊆ V with r ∈ X, δ+D(X) = k if and only if V −X ∈ Fin(D).
With this observation, we see that D is (k + 1)-edge-connected if and only if Fout(D) = Fin(D) =
{V }. We also note that Fout(D) ∩ Fin(D) = {V }, because δ+D(X) + δ−D(X) = δG(X) ≥ 2k + 2
for any non-empty subset X ⊆ V − r. Define Fmin(D) as the set of all inclusionwise minimal sets
in Fout(D) ∪ Fin(D). As we will see in Corollary 10, Fmin(D) consists of disjoint sets. If D is
clear from the context, Fout(D),Fin(D), and Fmin(D) are simply denoted by Fout,Fin, and Fmin,
respectively.

In our proof of Theorem 5, by flipping some edges in D, we decrease the value of

val(D) :=
∑

X∈Fmin(D)

(|V | − |X|).

We repeat this procedure as long as val(D) is positive. If this value becomes 0, then Fmin = {V }.
This means that Fout = Fin = {V }, and hence D is (k+ 1)-edge-connected. Note that we decrease
the value of val(D) at most |V |2 times, because val(D) is integral and val(D) ≤ |V |2. Therefore, to
prove Theorem 5, it suffices to show the following proposition.

Proposition 6. Suppose that Fmin 6= {V }. Then, there exist orientations D1, D2, . . . , D` of G
such that ` ≤ |V |, D → D1 → D2 → · · · → D`, λ(Di) ≥ k for i ∈ {1, . . . , `}, and val(D`) < val(D).
Furthermore, such D1, . . . , D` can be found in polynomial time.

In what follows in this section, we assume that Fmin 6= {V } and give an algorithm for finding
such orientations as in Proposition 6. In our algorithm, we find an inclusionwise minimal set S in
Fin, an inclusionwise minimal set T in Fout, and a path P from S to T . Then, we flip the edges
in P one by one from one end to the other. In order to obtain orientations with the conditions
in Proposition 6, we have to choose P carefully. First, it is necessary that P does not enter a set
in Fin (or does not leave a set in Fout), as otherwise flipping edges violates k-edge-connectivity.
Moreover, to decrease val(D), we choose a path P so that it is from a safe source in S to a safe
sink in T (see Section 4.3 for definitions).
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We note that val(D), safe sources, and safe sinks are first introduced in this paper, and they
are key ingredients in our arguments.

After describing basic properties of Fout,Fin, and Fmin in Section 4.2, we introduce safe sources
and safe sinks in Section 4.3. Then, we describe our algorithm in Section 4.4, and prove its validity
in Section 4.5. A proof of a key lemma in our algorithm is shown in Section 4.6.

4.2 Basic Properties

In this subsection, we show some basic properties of Fout,Fin, and Fmin.

Lemma 7. For X,Y ⊆ V with X ∩ Y 6= ∅, we have the following.

1. If X,Y ∈ Fout, then X ∩ Y,X ∪ Y ∈ Fout.

2. If X,Y ∈ Fin, then X ∩ Y,X ∪ Y ∈ Fin.

Proof. If X = V or Y = V , then the claim is obvious. Otherwise, X,Y ⊆ V − r. Since D is
k-edge-connected, if X,Y ∈ Fout, then

2k = δ+D(X) + δ+D(Y ) ≥ δ+D(X ∩ Y ) + δ+D(X ∪ Y ) ≥ 2k

by the submodularity of δ+D. Here, we note that X ∪ Y 6= V since r 6∈ X ∪ Y . Therefore,
δ+D(X ∩ Y ) = δ+D(X ∪ Y ) = k, which means that X ∩ Y,X ∪ Y ∈ Fout. The same argument can be
applied to Fin.

Lemma 8. For X,Y ⊆ V , it holds that δ+D(X) + δ−D(Y ) ≥ δ+D(X − Y ) + δ−D(Y −X).

Proof. Since δ−D(S) = δ+D(V − S) for any S ⊆ V , we obtain

δ+D(X) + δ−D(Y ) = δ+D(X) + δ+D(V − Y )

≥ δ+D(X ∩ (V − Y )) + δ+D(X ∪ (V − Y ))

= δ+D(X − Y ) + δ−D(Y −X)

by the submodularity of δ+D.

Lemma 9. Suppose that X ∈ Fout, Y ∈ Fin, X − Y 6= ∅, and Y −X 6= ∅. Then, X − Y ∈ Fout

and Y −X ∈ Fin.

Proof. Since X − Y 6= ∅ and Y −X 6= ∅, we have X 6= V and Y 6= V , and hence X,Y ⊆ V − r.
Since D is k-edge-connected, we obtain

2k = δ+D(X) + δ−D(Y ) ≥ δ+D(X − Y ) + δ−D(Y −X) ≥ 2k

by Lemma 8. Therefore, δ+D(X − Y ) = δ−D(Y − X) = k, which means that X − Y ∈ Fout and
Y −X ∈ Fin.

By these lemmas, we obtain the following corollary. Recall that Fmin is the family of all
inclusionwise minimal sets in Fin ∪ Fout.

Corollary 10. Fmin consists of disjoint sets.

10



Figure 4: The second condition.

Proof. Assume to the contrary that Fmin contains two distinct sets X and Y with X ∩ Y 6= ∅.
Then, Lemmas 7 and 9 show that X∩Y or X−Y is in Fin∪Fout, which contradicts the minimality
of X.

We note that Fmin can be computed in polynomial time, because each inclusionwise minimal
element of Fout and Fin can be computed by using a minimum cut algorithm.

4.3 Safe Source and Safe Sink

As described in Section 4.1, we choose a path P from a safe source to a safe sink in our algorithm.
In this subsection, we introduce safe sources and safe sinks.

Let S be an inclusionwise minimal vertex set in Fin (or Fout, respectively). A vertex s ∈ S is
called a safe source in S (resp. a safe sink in S) if, for any X ⊆ V − r with s ∈ X and S −X 6= ∅,

1. δ+D(X) ≥ k + 1 (resp. δ−D(X) ≥ k + 1) holds, and

2. if δ+D(X) = k + 1 (resp. δ−D(X) = k + 1), then there exists a vertex set X ′ ⊆ X − s with
X ′ ∈ Fout (resp. X ′ ∈ Fin); see Figure 4.

Here is an intuition of the definition. In our algorithm (see Section 4.4), we will find a path
from a safe source s in S to a safe sink t in T , and flip the edges of the path one by one from t to
s. By the edge flips, S and T are removed from Fmin, but new sets may be added to Fmin. The
definition of safety guarantees that a set X newly becomes a member of Fmin only if X ⊇ S or
X ⊇ T . For example, if a set X with s ∈ X and t 6∈ X satisfies δ+D(X) = k+ 1, then X may newly
become a member of Fmin. However, the definition of a safe sink guarantees that X has a proper
subset X ′ ∈ Fout contained in X − s, which implies that X cannot become inclusionwise minimal
after edge flips. A similar argument holds for a safe sink. Therefore, a set X newly becomes a
member of Fmin only if X ∈ Fout ∪ Fin. This shows that val(D) decreases by at least one. See the
proof of Lemma 13 for the details.

As we will see in Lemma 14, a safe source (resp. a safe sink) always exists in any inclusionwise
minimal vertex set in Fin (resp. Fout).

4.4 Our Algorithm

In this subsection, we describe our algorithm for finding orientations D1, . . . , D` with the conditions
in Proposition 6.

Let R ⊆ V be an inclusionwise minimal vertex set satisfying either

(a) R ∈ Fin and there exists a vertex set X ( R with X ∈ Fout, or

11



Figure 5: Conditions in Lemma 11.

(b) R ∈ Fout and there exists a vertex set X ( R with X ∈ Fin.

Note that such a vertex set R always exists, since Fmin 6= {V } implies that R = V satisfies (a)
or (b). Furthermore, for each inclusionwise minimal set X in Fout (resp. Fin), we can compute
the unique minimal set R′ satisfying R′ ) X and R′ ∈ Fin (resp. R′ ∈ Fout) by a minimum cut
algorithm, which shows that R can be found in polynomial time. We also note that X ( R in the
conditions can be replaced with X ⊆ R unless R = V , because Fin∩Fout = {V }. By symmetry, we
may assume that R satisfies (a), i.e., R ∈ Fin and there exists a vertex set X ( R with X ∈ Fout.
Define FRout as

FRout := {X ∈ Fout | X ( R},
which is nonempty by the choice of R.

We use the following key lemma, whose proof is given in Section 4.6.

Lemma 11. Let R ⊆ V be an inclusionwise minimal vertex set satisfying either (a) or (b). If
R satisfies (a), then we can find in polynomial time an (s, t)-path P in D[R] that consists of an
(s, t′)-path Q1 and a (t′, t)-path Q2 for some t′ ∈ R satisfying the following (Figure 5).

1. The vertex s is a safe source in some inclusionwise minimal set S ∈ Fin with S ⊆ R, and t
is a safe sink in some inclusionwise minimal set T ∈ Fout with T ( R.

2. (V (Q1)− t′)∩X = ∅ for every X ∈ FRout. That is, the subpath Q1 is disjoint from any set in
FRout, except for the end vertex t′.

3. A(Q2) ∩ ∆+
D(X) = ∅ for every X ∈ Fout. That is, the subpath Q2 does not intersect with

∆+
D(X) for any X ∈ Fout.

Let P be a path satisfying the conditions in Lemma 11. Suppose that P traverses arcs
e`, e`−1, . . . , e2, and e1 in this order from s to t. Then, we flip e1, e2, . . . , e`−1, and e` in this
order. For i = 1, 2, . . . , `, let Di be the directed graph obtained from D by flipping e1, e2, . . . , ei−1,
and ei. Then, our algorithm returns D1, D2, . . . , D`.

We now show that D1, D2, . . . , D`−1, and D` satisfy the conditions in Proposition 6. By
Lemma 11, D1, D2, . . . , D`−1, and D` can be computed in polynomial time. Furthermore, ` ≤ |V |
and D → D1 → D2 → · · · → D` are obvious by definition. In the next subsection, we will prove
λ(Di) ≥ k for each i ∈ {1, 2, . . . , `} and val(D`) < val(D).

4.5 Validity of the Algorithm

Suppose that the algorithm described in the previous subsection finds a path P satisfying the
conditions in Lemma 11, and returns D1, D2, . . . , D`−1, and D`. The following two lemmas show
that they satisfy the conditions in Proposition 6.
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Figure 6: Case 1 of Lemma 12.

Lemma 12. For each i ∈ {1, 2, . . . , `}, Di is k-edge-connected.

Proof. Assume to the contrary that Di is not k-edge-connected for some i ∈ {1, 2, . . . , `}, that is,
δ+Di

(X) < k for some X ⊆ V − r or δ−Di
(X) < k for some X ⊆ V − r. Let p ∈ V be the tail of ei.

Then, since Di is obtained from D by reversing the direction of the subpath of P from p to t, we
obtain

δ+Di
(X) =


δ+D(X)− 1 if t 6∈ X and p ∈ X,
δ+D(X) + 1 if t ∈ X and p 6∈ X,
δ+D(X) otherwise,

(1)

δ−Di
(X) =


δ−D(X)− 1 if t ∈ X and p 6∈ X,
δ−D(X) + 1 if t 6∈ X and p ∈ X,
δ−D(X) otherwise

(2)

for any X ⊆ V . Since D is k-edge-connected and Di is not k-edge-connected, there exists a vertex
set X∗ ⊆ V − r such that either

• δ+D(X∗) = k (equivalently, X∗ ∈ Fout), t 6∈ X∗, and p ∈ X∗, or

• δ−D(X∗) = k (equivalently, X∗ ∈ Fin), t ∈ X∗, and p 6∈ X∗.

We treat the two cases separately. Recall that t ∈ T , where T is a minimal vertex set in Fout.

Case 1: X∗ ∈ Fout, t 6∈ X∗, and p ∈ X∗ (see Figure 6).
Recall that P is the concatenation of Q1 and Q2 as in Lemma 11. We can derive a contradiction

if p ∈ V (Q2) or X∗ ∩ T 6= ∅ as follows.

• If p ∈ V (Q2), then Q2 contains the (p, t)-path and hence it contains an edge in ∆+
D(X∗),

which contradicts that A(Q2) ∩∆+
D(X) = ∅ for any X ∈ Fout.

• If X∗ ∩ T 6= ∅, then X∗ ∩ T ∈ Fout by Lemma 7. Since X∗ ∩ T ⊆ T − t ( T , this contradicts
that T is a minimal vertex set in Fout.

Therefore, p ∈ V (P ) − V (Q2) = V (Q1) − t′ and X∗ ∩ T = ∅ hold. By the second condition of
Lemma 11, we have X∗ 6∈ FRout. This together with X∗ ∈ Fout shows that X∗ − R 6= ∅. We also
see that T ⊆ R − X∗ holds by X∗ ∩ T = ∅, in particular, R − X∗ 6= ∅ holds. Then, by applying
Lemma 9 to R and X∗, we obtain R−X∗ ∈ Fin. Since T ⊆ R−X∗ and T ∈ Fout, this shows that
R−X∗ satisfies the condition (a). This contradicts the minimality of R, since R−X∗ ⊆ R−p ( R.
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Figure 7: Case 2 (i). Figure 8: Case 2 (ii). Figure 9: Case 2 (iii).

Case 2: X∗ ∈ Fin, t ∈ X∗, and p 6∈ X∗.
In this case, we derive a contradiction as follows.

(i) If X∗ ⊆ T , then T satisfies the condition (b), which contradicts the minimality of R (Figure 7).

(ii) If T ⊆ X∗, then R ∩ X∗ ∈ Fin by Lemma 7. This together with T ⊆ R ∩ X∗ shows that
R∩X∗ satisfies the condition (a). Since R∩X∗ ⊆ R−p ( R, this contradicts the minimality
of R (Figure 8).

(iii) If T −X∗ 6= ∅ and X∗−T 6= ∅, then T −X∗ ∈ Fout by Lemma 9. Since T −X∗ ⊆ T − t ( T ,
this contradicts that T is a minimal vertex set in Fout (Figure 9).

By Cases 1 and 2, Di is k-edge-connected for each i ∈ {1, 2, . . . , `}.

We next show that val(D) is decreased by the procedure, where we recall that val(D) :=∑
X∈Fmin(D)(|V | − |X|).

Lemma 13. val(D`) < val(D).

Proof. To simplify the notation, we denote Fout := Fout(D), Fin := Fin(D), Fmin := Fmin(D),
F ′out := Fout(D`), F ′in := Fin(D`), and F ′min := Fmin(D`). Recall that D` is obtained from D by
reversing the direction of an (s, t)-path. In the same way as (1) and (2), we see that

δ+D`
(X) =


δ+D(X)− 1 if t 6∈ X and s ∈ X,
δ+D(X) + 1 if t ∈ X and s 6∈ X,
δ+D(X) otherwise,

(3)

δ−D`
(X) =


δ−D(X)− 1 if t ∈ X and s 6∈ X,
δ−D(X) + 1 if t 6∈ X and s ∈ X,
δ−D(X) otherwise

(4)

for any X ⊆ V . This shows that, to investigate the gap between Fmin and F ′min, it suffices to focus
on sets containing s or t. We treat the following two cases separately.

Case 1: S = R.
Recall that t ∈ T and T is an inclusionwise minimal vertex set in Fout. Since S − T 6= ∅,

δ+D(T ) = k, and s is a safe source in S, we obtain s 6∈ T . The minimality of R implies that T
does not contain a set in Fin, and hence T ∈ Fmin. Since δ+D`

(T ) = δ+D(T ) + 1 = k + 1 and

δ−D`
(T ) ≥ (2k + 2)− δ+D`

(T ) = k + 1, it holds that T ∈ Fmin − (F ′out ∪ F ′in).
The following claim asserts that only the set T is removed from Fmin and, if some set X is

newly added to F ′min, then X ) T holds.
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Figure 10: Case (ii) of Claim 1. Figure 11: Case (iii) of Claim 1.

Claim 1. If S = R, then it holds that F ′min = Fmin−{T} or F ′min = (Fmin−{T})∪ {X} for some
X ) T .

Proof of Claim 1. We first show that Fmin − (F ′out ∪ F ′in) = {T}. Assume to the contrary that
there exists a set X ∈ Fmin − (F ′out ∪ F ′in) with X 6= T . Since X ∈ Fmin − (F ′out ∪ F ′in) ⊆
(Fout ∪Fin)− (F ′out ∪F ′in), by (3) and (4), it holds that |X ∩ {s, t}| = 1. This shows that X ∈ Fin,
t 6∈ X, and s ∈ X, because T is the unique element in Fmin containing t. Since s ∈ X ∩ S,
S ∈ Fin, and X ∈ Fin ∩ Fmin, we obtain X ⊆ S, and hence X ⊆ S − t ( S. This contradicts
the fact that S is an inclusionwise minimal vertex set in Fin with s ∈ S. Therefore, we obtain
Fmin − (F ′out ∪ F ′in) = {T}.

We now claim that X ) T holds for any X ∈ F ′min − Fmin. Let X be a set in F ′min − Fmin.
Since X 6= T is obvious, it suffices to show X ⊇ T . Since X ∈ F ′out ∪ F ′in, by (3) and (4), we have
one of the following: (i) X ∈ Fout ∪ Fin, (ii) s 6∈ X, t ∈ X, and δ−D(X) = k + 1, or (iii) s ∈ X,
t 6∈ X, and δ+D(X) = k + 1. Then, for each case, X ⊇ T holds if such a set X exists as follows.

(i) If X ∈ Fout∪Fin, then X 6∈ Fmin implies that there exists a set Y ( X with Y ∈ Fmin. Since
X ∈ F ′min, it holds that Y ∈ Fmin − (F ′out ∪ F ′in) = {T}. Therefore, Y must be equal to T ,
and hence X ) T .

(ii) Suppose that s 6∈ X, t ∈ X, and δ−D(X) = k + 1 (see Figure 10). Assume to the contrary
that X ⊇ T does not hold, i.e., T −X 6= ∅. Since t is a safe sink in T , there exists a vertex
set X ′ ⊆ X − t with X ′ ∈ Fin by the definition of a safe sink. This shows that X ′ ( X and
X ′ ∈ F ′in as s, t 6∈ X ′, which contradicts X ∈ F ′min. Therefore, X ⊇ T holds.

(iii) Suppose that s ∈ X, t 6∈ X, and δ+D(X) = k+ 1 (see Figure 11). Then, R−X 6= ∅, because it
contains t. Since s is a safe source in R, there exists a vertex set X ′ ⊆ X − s with X ′ ∈ Fout

by the definition of a safe source. This shows that X ′ ( X and X ′ ∈ F ′out as s, t 6∈ X ′, which
contradicts X ∈ F ′min. Therefore, such X does not exist.

By the above argument, X ) T holds for any X ∈ F ′min −Fmin. Since there exists at most one
set in F ′min containing T , we obtain F ′min = Fmin − {T} or F ′min = (Fmin − {T}) ∪ {X} for some
X ) T . Thus, Claim 1 holds.

By Claim 1, if F ′min = Fmin − {T}, then val(D) − val(D`) = |V | − |T | > 0, and, if F ′min =
(Fmin − {T})∪ {X} for some X ) T , then val(D)− val(D`) = |X| − |T | > 0 holds. This completes
the proof for the case of S = R.

Case 2: S ( R.
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Figure 12: Case (iii) of Claim 2.

Recall that S is a minimal vertex set in Fin and s is a safe source in S. The minimality of R
implies that S (resp. T ) does not contain a set in Fout (resp. Fin), and hence S, T ∈ Fmin. This
implies that S and T are disjoint. Since δ−D`

(S) = δ−D(S) + 1 = k+ 1, δ+D`
(S) ≥ (2k+ 2)− δ−D(S) =

k + 1, δ+D`
(T ) = δ+D(T ) + 1 = k + 1, and δ−D`

(T ) ≥ (2k + 2) − δ+D`
(T ) = k + 1, it holds that

S, T ∈ Fmin − (F ′out ∪ F ′in). Therefore, by (3) and (4), we obtain Fmin − (F ′out ∪ F ′in) = {S, T}.
Moreover, we have the following claim.

Claim 2. If S ( R, then one of the following cases holds:

• F ′min = Fmin − {S, T},

• F ′min = (Fmin − {S, T}) ∪ {X} for some set X with X ) S or X ) T ,

• F ′min = (Fmin − {S, T}) ∪ {Xs, Xt} for some sets Xs ) S and Xt ) T .

Proof of Claim 2. We claim that X ) S or X ) T holds for any X ∈ F ′min − Fmin. Let X be
a set in F ′min − Fmin. Since X 6= S, T is obvious, it suffices to show X ⊇ S or X ⊇ T . Since
X ∈ F ′out ∪F ′in, by (3) and (4), we have one of the following: (i) X ∈ Fout ∪Fin, (ii) s 6∈ X, t ∈ X,
and δ−D(X) = k + 1, or (iii) s ∈ X, t 6∈ X, and δ+D(X) = k + 1. For the cases (i) and (ii), we see
that X ⊇ S or X ⊇ T holds in the same way as Case 1. For the case (iii), we can show that X ⊇ S
holds in the same way as (ii) as follows.

Suppose that s ∈ X, t 6∈ X, and δ+D(X) = k+1 (Figure 12). Assume to the contrary that X ⊇ S
does not hold, i.e., S −X 6= ∅. Since s is a safe source in S, there exists a vertex set X ′ ⊆ X − s
with X ′ ∈ Fout by the definition of a safe source. This shows that X ′ ( X and X ′ ∈ F ′out as
s, t 6∈ X ′, which contradicts X ∈ F ′min. Therefore, X ⊇ S holds.

By the above argument, X ) S or X ) T holds for any X ∈ F ′min − Fmin. Note that there
exists at most one set Xs (resp. Xt) in F ′min containing S (resp. T ). Thus the claim holds.

It follows from Claim 2 that val(D)− val(D`) > 0. Indeed, for the first case, val(D)− val(D`) =
2|V | − |S| − |T | > 0; for the second case, val(D)− val(D`) = |V |+ |X| − |S| − |T | > 0; for the last
case, val(D)− val(D`) = |Xs|+ |Xt|− |S|− |T | > 0. This completes the proof for the case of S ( R,
and closes the whole proof of Lemma 13.

Lemmas 12 and 13 show that the output of our algorithm in Section 4.4 satisfies the conditions in
Proposition 6. By repeatedly applying Proposition 6 at most |V |2 times, we obtain Theorem 5.
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Figure 13: Yi, Zj , and s.

4.6 Construction of a Path (Proof of Lemma 11)

In this section, we first show some useful lemmas in Sections 4.6.1 and 4.6.2, and then give a proof
of Lemma 11 in Section 4.6.3.

4.6.1 Existence of a Safe Source and a Safe Sink

Lemma 14. For any inclusionwise minimal vertex set S in Fin (or Fout, respectively), there exists
a safe source (resp. a safe sink) s in S. Furthermore, such a vertex s can be found in polynomial
time.

Proof. Let S be an inclusionwise minimal vertex set in Fin. If S = V , then s = r satisfies
the conditions. Hence, it suffices to consider the case of S ⊆ V − r. In this case, we obtain
δ+D(S) = δG(S)− δ−D(S) ≥ (2k + 2)− k = k + 2. Let

FSout := {X ∈ Fout | X ( S} = {X ⊆ S | δ+D(X) = k}

and let Y1, Y2, . . . , Yα−1, and Yα be the inclusionwise maximal vertex sets in FSout. Note that these
sets are mutually disjoint, because Yi ∩ Yj 6= ∅ implies Yi ∪ Yj ∈ FSout by Lemma 7. Let

G :=

{
Z ⊆ S −

α⋃
i=1

Yi

∣∣∣∣∣ δ+D(Z) = k + 1

}

and let Z1, Z2, . . . , Zβ−1, and Zβ be the inclusionwise maximal vertex sets in G (see Figure 13). We
show the following two claims.

Claim 3. Z1, Z2, . . . , Zβ−1, and Zβ are mutually disjoint.

Proof of Claim 3. Assume to the contrary that Zi∩Zj 6= ∅ for some distinct i, j ∈ {1, . . . , β}. Since
Zi ∩ Zj 6∈ FSout and Zi ∪ Zj 6∈ FSout, we obtain δ+D(Zi ∩ Zj) ≥ k + 1 and δ+D(Zi ∪ Zj) ≥ k + 1. Then,
it holds that

2(k + 1) = δ+D(Zi) + δ+D(Zj) ≥ δ+D(Zi ∩ Zj) + δ+D(Zi ∪ Zj) ≥ 2(k + 1).

Therefore, δ+D(Zi ∪Zj) = k + 1, and hence Zi ∪Zj ∈ G. This contradicts the maximality of Zi and
Zj .

Claim 4. S −
⋃α
i=1 Yi −

⋃β
j=1 Zj 6= ∅.
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Proof of Claim 4. Assume to the contrary that S −
⋃α
i=1 Yi −

⋃β
j=1 Zj = ∅. Then,

kα+ (k + 1)β − (k + 2) ≥
α∑
i=1

δ+D(Yi) +

β∑
j=1

δ+D(Zj)− δ+D(S)

=
α∑
i=1

δ−D(Yi) +

β∑
j=1

δ−D(Zj)− δ−D(S)

≥
α∑
i=1

(2k + 2− δ+D(Yi)) +

β∑
j=1

(2k + 2− δ+D(Zj))− k

= (k + 2)α+ (k + 1)β − k
> kα+ (k + 1)β − (k + 2),

which is a contradiction.

By Claim 4, we can choose a vertex s ∈ S −
⋃α
i=1 Yi −

⋃β
j=1 Zj (see Figure 13). We now show

that s is a safe source in S. Recall that a vertex s ∈ S is called a safe source in S if, for any
X ⊆ V − r with s ∈ X and S −X 6= ∅,

1. δ+D(X) ≥ k + 1 holds, and

2. if δ+D(X) = k + 1, then there exists a vertex set X ′ ⊆ X − s with X ′ ∈ Fout.

To show the first condition, assume to the contrary that δ+D(X) = k holds for some X ⊆ V − r
with s ∈ X and S − X 6= ∅. Since s ∈ X implies that X 6∈ FSout, X is not a subset of S,
i.e., X − S 6= ∅. Then, S − X ∈ Fin by Lemma 9, which contradicts the minimality of S as
S −X ⊆ S − s ( S. Therefore, the first condition is satisfied.

To show the second condition, suppose that δ+D(X) = k + 1 holds for some X ⊆ V − r with
s ∈ X and S −X 6= ∅. We treat the case of X ⊆ S and that of X − S 6= ∅, separately.

• Suppose that X ⊆ S. Since X and its supersets are not in G by the choice of s, X is
not contained in S −

⋃α
i=1 Yi, that is, X ∩ Yi 6= ∅ for some i ∈ {1, . . . , α}. By the k-edge-

connectedness of D, it holds that δ+D(X∩Yi) ≥ k. Since X∪Yi ⊇ Yi+s, we obtain X∪Yi 6∈ FSout
by the maximality of Yi, which implies that δ+D(X ∪ Yi) ≥ k + 1. Then, we obtain

2k + 1 = δ+D(X) + δ+D(Yi) ≥ δ+D(X ∩ Yi) + δ+D(X ∪ Yi) ≥ 2k + 1,

and hence δ+D(X ∩ Yi) = k and δ+D(X ∪ Yi) = k + 1. Therefore, X ′ := X ∩ Yi satisfies that
X ′ ⊆ X − s and X ′ ∈ Fout (see Figure 14).

• Suppose that X − S 6= ∅. By the k-edge-connectedness of D, it holds that δ+D(X − S) ≥ k.
Since S −X ⊆ S − s ( S, we obtain S −X 6∈ Fin by the minimality of S, which implies that
δ−D(S −X) ≥ k + 1. Then, by Lemma 8, we obtain

2k + 1 = δ+D(X) + δ−D(S) ≥ δ+D(X − S) + δ−D(S −X) ≥ 2k + 1,

and hence δ+D(X − S) = k and δ−D(S − X) = k + 1. Therefore, X ′ := X − S satisfies that
X ′ ⊆ X − s and X ′ ∈ Fout (see Figure 15).
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Figure 14: Case of X ⊆ S. Figure 15: Case of X − S 6= ∅.

By this argument, s is a safe source in S. Furthermore, since Y1, Y2, . . . , Yα, Z1, Z2, . . . , Zβ−1,

and Zβ can be computed by using a minimum cut algorithm, a vertex s ∈ S −
⋃α
i=1 Yi −

⋃β
j=1 Zj

can be found in polynomial time.
By the same argument, if S is an inclusionwise minimal vertex set in Fout, then a safe sink s in

S can be found in polynomial time.

4.6.2 Path to a Minimal Vertex Set

The goal of this sub-subsection is to show Lemma 15 below, saying that, for any vertex s ∈ V ,
D has a path P from s to some inclusionwise minimal set T in Fout such that P leaves no set in
Fout. Analogously to Lemma 15, we can obtain a path to any vertex t ∈ V from some inclusionwise
minimal set S in Fin (Lemma 17). These paths will be used in our proof of Lemma 11.

Lemma 15. For any vertex s ∈ V , there exists a vertex set T ∈ Fout satisfying the following
conditions:

• T is inclusionwise minimal in Fout, and

• for any vertex t ∈ T , D contains an (s, t)-path Pt such that A(Pt) ∩ ∆+
D(X) = ∅ for any

X ∈ Fout.

Furthermore, such T and Pt can be found in polynomial time.

To prove the lemma, we need more definitions. For a vertex s ∈ V , let Xout(s) denote the
inclusionwise minimal vertex set subject to s ∈ Xout(s) ∈ Fout. Note that such a vertex set
always exists as s ∈ V ∈ Fout. Note also that the minimal one is uniquely determined, because if
s ∈ X ∈ Fout and s ∈ Y ∈ Fout, then s ∈ X ∩Y ∈ Fout by Lemma 7. For each s ∈ V , we can easily
compute Xout(s) in polynomial time by using a minimum cut algorithm.

Lemma 16. Let s ∈ V . For any vertex t ∈ Xout(s), D[Xout(s)] contains a path from s to t.

Proof. If Xout(s) = V , then the lemma holds since D is strongly connected, where we note that
k ≥ 1. Thus, we consider the case when Xout(s) 6= V . Assume to the contrary that D[Xout(s)]
does not contain a path from s to t. Then, there exists a vertex set S ⊆ Xout(s) such that s ∈ S,
t ∈ Xout(s)− S, and D has no edge from S to Xout(s)− S (Figure 16). Since Xout(s) ∈ Fout and
D is k-edge-connected, we obtain

k = δ+D(Xout(s)) ≥ δ+D(S) ≥ k,

and hence S ∈ Fout. Since s ∈ S ( Xout(s), this contradicts the minimality of Xout(s).
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Figure 16: Proof of Lemma 16.

Figure 17: Proof of Lemma 15.

We are ready to prove Lemma 15.

Proof of Lemma 15. We prove the lemma by induction on |Xout(s)|.
If Xout(s) is an inclusionwise minimal vertex set in Fout, then T := Xout(s) satisfies the condi-

tion. This is because the existence of Pt is guaranteed by Lemma 16 and A(Pt) ∩∆+
D(X) = ∅ for

any X ∈ Fout follows from the minimality of T = Xout(s) and Lemma 7. This is the base case of
the induction.

Suppose that Xout(s) is not an inclusionwise minimal vertex set in Fout, that is, there exists a
vertex set Y in Fout that is strictly contained in Xout(s). We can take a vertex u ∈ Xout(s) such
that Xout(u) = Y . By Lemma 16, D[Xout(s)] contains a path Q from s to u. Traverse along Q
from s to u and let s′ be the first vertex on Q such that Xout(s

′) ( Xout(s) (see Figure 17). Note
that such s′ always exists as u satisfies the condition. Recall that Q[s, s′] denotes the subpath of
Q between s and s′. We show the following claim.

Claim 5. A(Q[s, s′]) ∩∆+
D(X) = ∅ for any X ∈ Fout.

Proof of Claim 5. Assume to the contrary that there exists an edge (x, y) ∈ A(Q[s, s′]) ∩∆+
D(X∗)

for some X∗ ∈ Fout. Then X∗ ∩ Xout(s) ∈ Fout by Lemma 7. Since x ∈ X∗ ∩ Xout(s), we see
that Xout(x) ⊆ X∗ ∩ Xout(s). Therefore, since X∗ ∩ Xout(s) ⊆ Xout(s) − y ( Xout(s), we obtain
Xout(x) ( Xout(s), which contradicts the choice of s′. Thus, Claim 5 follows.

Since |Xout(s
′)| < |Xout(s)|, by the induction hypothesis, there exists an inclusionwise minimal

vertex set T of Fout satisfying the following condition: for any vertex t ∈ T , D contains an (s′, t)-
path P ′t such that A(P ′t) ∩ ∆+

D(X) = ∅ for any X ∈ Fout. We remark that P ′t is contained in
Xout(s

′) as it contains no edge in ∆+
D(Xout(s

′)), noting that Xout(s
′) ∈ Fout.

We now show that T is a desired set also for s. For each t ∈ T , let Pt be the (s, t)-path obtained
by concatenating Q[s, s′] and P ′t . Note that Pt is indeed a path (i.e., it goes through each vertex
at most once), since V (Q[s, s′])∩Xout(s

′) = {s′} and V (P ′t) ⊆ Xout(s
′). Then, Claim 5 shows that

A(Pt) ∩∆+
D(X) = (A(Q[s, s′]) ∩∆+

D(X)) ∪ (A(P ′t) ∩∆+
D(X)) = ∅ for any X ∈ Fout. Hence T is a

desired set for s.
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Since the above inductive proof can be converted to a recursive algorithm, T and Pt satisfying
the conditions can be computed in polynomial time.

We note that the vertex set T in Lemma 15 is not necessarily an element of Fmin, because there
might exist a vertex set U ( T with U ∈ Fin. By changing the roles of Fout and Fin, we obtain the
following lemma in the same way as Lemma 15.

Lemma 17. For any vertex t ∈ V , there exists a vertex set S ∈ Fin satisfying the following
conditions:

• S is inclusionwise minimal in Fin, and

• for any vertex s ∈ S, D contains an (s, t)-path Ps such that A(Ps) ∩ ∆−D(X) = ∅ for any
X ∈ Fin.

Furthermore, such S and Ps can be found in polynomial time.

4.6.3 Proof of Lemma 11

We are now ready to prove Lemma 11.
Let T ∗ ∈ FRout and t∗ ∈ T ∗. By applying Lemma 17 to t∗, we obtain an inclusionwise minimal

vertex set S in Fin. By Lemma 14, S has a safe source s. Lemma 17 guarantees that there exists
an (s, t∗)-path Ps such that A(Ps) ∩∆−D(X) = ∅ for any X ∈ Fin. This implies that Ps is in D[R],
since A(Ps)∩∆−D(R) = ∅ as R ∈ Fin. In particular, s ∈ R. By the minimality of S, this shows that
S ⊆ R (possibly, S = R).

Traverse along Ps from s to t∗ and let t′ be the first vertex on Ps such that there exists a vertex
set T ′ ∈ FRout with t′ ∈ T ′. Note that such t′ always exists, because t′ = t∗ satisfies the condition.
We also note that, for each x ∈ V , we can check the existence of a vertex set X ∈ FRout with x ∈ X
by a minimum cut algorithm. Let Q1 denote the subpath of Ps between s and t′, i.e., Q1 := Ps[s, t

′].
Then we see by the choice of t′ that V (Q1)− t′ is disjoint from X for every X ∈ FRout.

By applying Lemma 15 to t′, we obtain an inclusionwise minimal vertex set T in Fout. Let t
be a safe sink in T as in Lemma 14, and let Q2 be a (t′, t)-path such that A(Q2) ∩∆+

D(X) = ∅ for
any X ∈ Fout, whose existence is guaranteed by Lemma 15. We note that V (Q2) ⊆ T ′ ( R, since
A(Q2) ∩∆+

D(T ′) = ∅ as T ′ ∈ Fout. In particular, t ∈ T ′ ( R. By the minimality of T , this shows
that T ⊆ T ′ ( R (possibly, T = T ′).

Let P be the (s, t)-path obtained by concatenating Q1 and Q2 (see Figure 18). Note that P
goes through each vertex at most once, since V (Q1)∩ T ′ = {t′} and V (Q2) ⊆ T ′. Then, P satisfies
the conditions in the lemma. By Lemmas 14, 15, and 17, the above procedure can be executed in
polynomial time, which completes the proof.

5 Proof of Theorem 3

In this section, we prove Theorem 3: for two strongly connected orientations D1, D2, there exists
a path connecting D1 and D2 in the edge-flip graph G1(G) if and only if there exists no 2-edge-cut
{{u, v}, {u′, v′}} such that (u, v), (v′, u′) are edges of D1 and (v, u), (u′, v′) are edges of D2.

If there exists a 2-edge-cut {{u, v}, {u′, v′}} such that (u, v), (v′, u′) are edges ofD1 and (v, u), (u′, v′)
are edges of D2, then we cannot flip (u, v) or (v′, u′) in D1 one-by-one. Hence D1 and D2 are not
connected in the edge-flip graph G1(G).
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Figure 18: Proof of Lemma 11.

Suppose that no such 2-edge-cut exists. Let D1 = (V,A1) and D2 = (V,A2). We will show that
there exists an edge e in A1 −A2 such that we can flip e in D1 keeping strong edge-connectedness.

Let e = (u, v) be an arbitrary edge in D1 but not in D2 (i.e., (v, u) is in D2). We may assume
that we cannot flip e. Then there exists a vertex subset X such that ∆+

D1
(X) = {e}. Since D1 is

strongly connected, δ−D1
(X) ≥ 1. We take such a vertex subset X so that δ−D1

(X) is maximized.

Since D2 has an edge (v, u) and δ+D2
(X) ≥ 1, there exists an edge f in ∆−D1

(X) such that the
reverse of f is in A2. We will show that the edge f can be flipped keeping strong connectivity.

Assume to the contrary that f cannot be flipped. Then there exists a vertex subset Y such
that ∆+

D1
(Y ) = {f} and δ−D1

(Y ) ≥ 1. Moreover, we see that δ−D1
(Y ) ≥ 2. In fact, if δ−D1

(Y ) = 1,

then EG(Y ) is a 2-edge cut. Since D2 is strongly connected, the (unique) edge in ∆−D1
(Y ) must be

flipped in D2. This, however, contradicts the assumption of the theorem.
First consider the case when X ∩ Y = ∅. If X ∪ Y = V , then ∆+

D1
(X) = {e} and ∆−D1

(X) =

∆+
D1

(Y ) = {f}, which contradicts the assumption of the theorem. Thus we have X ∪ Y ( V .

Define X ′ = X ∪ Y . Then, since the edge f only enters from Y to X, it follows that δ−D1
(X ′) =

δ−D1
(X) − 1 + δ−D1

(Y ). Since δ−D1
(Y ) ≥ 2, we have δ−D1

(X ′) > δ−D1
(X), which contradicts the

maximality of δ−D1
(X).

Thus we may suppose that X ∩ Y 6= ∅. We first claim that X ∪ Y = V . Indeed, if X ∪ Y ( V ,
then we have

2 = δ+D1
(X) + δ+D1

(Y ) ≥ δ+D1
(X ∩ Y ) + δ+D1

(X ∪ Y ) ≥ 2

and hence δ+D1
(X ∩ Y ) = δ+D1

(X ∪ Y ) = 1. However, we see that ∆+
D1

(X ∩ Y )∪∆+
D1

(X ∪ Y ) = {e}
and e /∈ ∆+

D1
(X ∩ Y ) ∩∆+

D1
(X ∪ Y ), which is a contradiction.

Define X ′ = X ∩ Y . Since the edge f only enters from Y − X to X − Y , it follows that
δ−D1

(X ′) = δ−D1
(X)− 1 + δ−D1

(Y ). Since δ−D1
(Y ) ≥ 2, we have δ−D1

(X ′) > δ−D1
(X), which contradicts

the maximality of δ−D1
(X). Therefore, the edge f can be flipped.

From the above discussion, we can find in polynomial time an edge e in A1 − A2 such that
flipping the edge e in D1 does not violate strong edge-connectedness. By repeatedly finding such
edges, we obtain a sequence of orientations from D1 to D2 by edge flips. In each edge flip, |A1−A2|
decreases by one. Since the length of a sequence is at least |A1 −A2|, the obtained sequence turns
out to be the shortest. This completes the proof of Theorem 3.

6 Concluding Remarks

This paper initiates the study of k-edge-connected orientations through edge flips for k ≥ 2. As
a showcase, we give a new edge-flip-based proof (Theorem 1) of Nash-Williams’ theorem [26]: an
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undirected graph G has a k-edge-connected orientation if and only if G is 2k-edge-connected. Our
new proof has another useful property that all the intermediate orientations have non-decreasing
edge-connectivity in the process. Using Theorem 1, we prove that the edge-flip graph of k-edge-
connected orientations of an undirected graph G is connected if G is (2k + 2)-edge-connected
(Theorem 2).

Several questions remain open. In Theorem 1, we showed that the length of an edge-flip sequence
is bounded by k|V |3. However, we do not know this bound is tight. It is not clear how to find such
a shortest sequence in polynomial time. We do not know the tightness of Theorem 2, either: we
do not know whether the edge-flip graph of k-edge-connected orientations is connected when the
underlying undirected graph is (2k+1)-edge-connected. We do not know the k-edge-connectedness
counterpart of Theorem 3 when k ≥ 2.

It is not clear how to find a shortest path in the edge-flip graph of k-edge-connected orientations
in polynomial time when k ≥ 2. When k = 1, we can find a shortest path by looking at the
“symmetric difference” of two given strongly connected orientations [12,15]. However, when k = 2,
there exists an example for which the symmetric difference does not determine a shortest path.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP20H05793, JP20H05795, JP20K11670,
JP20K11692, JP19K11814, JP18H04091, JP18H05291, and JP21H03397, Japan.

References

[1] Aichholzer, O., Cardinal, J., Huynh, T., Knauer, K., Mütze, T., Steiner, R., and
Vogtenhuber, B. Flip distances between graph orientations. Algorithmica 83, 1 (2021),
116–143.

[2] Berg, A. R., and Jordán, T. Two-connected orientations of Eulerian graphs. Journal of
Graph Theory 52, 3 (2006), 230–242.
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