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Abstract
We study a general Markov game with metric switching costs: in each round, the player adaptively

chooses one of several Markov chains to advance with the objective of minimizing the expected cost for
at least 𝑘 chains to reach their target states. If the player decides to play a di�erent chain, an additional
switching cost is incurred. �e special case in which there is no switching cost was solved optimally
by Dumitriu, Tetali and Winkler [DTW03] by a variant of the celebrated Gi�ins Index for the classical
multi-armed bandit (MAB) problem with Markovian rewards [Git74, Git79]. However, for Markovian
multi-armed bandit with nontrivial switching cost, even if the switching cost is a constant, the classic
paper by Banks and Sundaram [BS94] showed that no index strategy can be optimal. 1

In this paper, we complement their result and show there is a simple index strategy that achieves a
constant approximation factor if the switching cost is constant and 𝑘 = 1. To the best of our knowledge,
this index strategy is the �rst strategy that achieves a constant approximation factor for a general
Markovian MAB variant with switching costs. For the general metric, we propose a more involved
constant-factor approximation algorithm, via a nontrivial reduction to the stochastic 𝑘-TSP problem,
in which a Markov chain is approximated by a random variable. Our analysis makes extensive use of
various interesting properties of the Gi�ins index.
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1�eir proof is for the discounted version of MAB, but can be extended to our se�ing. See Appendix D for the details.
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1 Introduction

�eMarkovian multi-armed bandit (MAB) problem is one of the most important and well studied sequen-
tial decision problem. In this problem, at each time step, the agent knows the state of each chain and
must choose to play one of 𝑛 available Markov chains. �e agent pays a certain cost (or receives a payo�)
depending on the current state, and the chosen chain advances to the next state (according the Markovian
transition rules). �e goal of the agent is to optimize the expected cost (or payo�) by choosing the right
sequence of actions. �e in�nite horizon discounted version of the problem was solved optimally by the
celebrated Gi�ins Index theorem, �rst proved by Gi�ins and Jones[Git74]. In particular, they show that
the Markov chains can be “indexed” separately, and the optimal strategy is simply choosing the chain with
the smallest (or largest) index. Since then, Gi�ins Index has been studied and extent in a variety of ways
(see [GGW11]).
A major extension to MAB is the inclusion of switching costs, that is switching to a di�erent chain incurs
a nontrivial cost [BS94, AT96, KSU08, KLM17, CGT+20]. �is extension has found many applications
in job search and labor mobility [Joh78, Vis80, Mac80, McL84, Wal84, Jov84, KW11], industrial policy
[PT95, Kli04], optimal search [Wei79, BB88, BGO92, Smi99], experiment and learning [Rot74,McL84, Krä03,
ASKW04] and game theory [Sch97, BV06]. �emost natural problem forMAB in the presence of switching
costs is to examine the extend to which the Gi�ins-Jones theorem remains valid, i.e., whether there is a
suitably de�ned index strategy that is optimal. �is problem was �rst studied in the classic paper by Banks
and Sundaram [BS94], who showed that there is no index strategy that is optimal, even if the switching
cost is a given nonzero constant. Motivated by this work, several authors [BGO92, AT96, VOP00, KL00,
BV01, Jun01, DH03] a�empted to (partially) characterize the optimal policy and present optimal solutions
for several special cases. In fact, MAB with switching costs is a special case of the restless bandit problem
introduced by Whi�le [Whi88]: the state of the arm just abandoned changes its state to a “dummy copy”
state which requires a switching cost if it is to be played. However, the restless bandit problem is known
to be PSPACE-Hard, even to approximate to any non-trivial factor [PT94]. See the survey [Jun04].
We approach the problem from the perspective of approximation algorithms and focus on a �nite-time
version of MAB, called multi-token Markov game, introduced in an elegant paper by Dumitriu, Tetali and
Winkler [DTW03]. In this game, we are also given 𝑛 Markov chains and each chain has a target which
is ultimately reachable. Each state is associated with a movement cost. In each time step, the player
adaptively chooses one Markov chain to advance with the objective of minimizing the expected total cost
for at least one chain to reach its target state. If there is no switching cost, they show that there is an
optimal indexing strategy based on a variant of Gi�ins index. Even if the switching cost is a given nonzero
constant, by a similar argument in [BS94], one can show that there is no indexing strategy that is optimal
(see Appendix D). Hence, in this paper, we study approximation algorithms for the multi-token Markov
game with switching costs.

1.1 Problem De�nitions and Our Contributions

We formally de�ne our problem as follows. We mainly follow the terminology used in [DTW03]. We �rst
introduce the notions for a Markov system, which is simply a Markov chain with (state) movement cost.

De�nition 1 (Markov System [DTW03]). A Markov system is a tuple S = 〈𝑉 , 𝑃,𝐶, 𝑠, 𝑡〉, where 𝑉 is the
�nite set of states, 𝑃 = {𝑃𝑢,𝑣} is the corresponding transition matrix (a |𝑉 | × |𝑉 | matrix), 𝐶 = {𝐶𝑢} denotes a
positive real movement cost for each state 𝑢 ∈ 𝑉 , and 𝑠 (resp. 𝑡 ) represents the current (resp. target) state. We
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assume that the target is ultimately reachable from every state in𝑉 , and we can never exit the target state (so
we can set 𝐶𝑡 = 0 and 𝑃𝑡,𝑡 = 1). If we play S in state 𝑢 ∈ 𝑉 , a cost of 𝐶𝑢 ≥ 0 is incurred and S transitions
from state 𝑢 to state 𝑣 with probability 𝑃𝑢,𝑣 . �ere is a unit reward on the target state 𝑡 that we can collect.

In the following, we do not distinguish Markov systems and Markov chains, and use both terms inter-
changeably.

1.1.1 Unit Switching Cost

Now we de�ne our �rst problem, multi-token Markov game with unit switching cost (MG-Unit). In this
problem, we have a set of (possibly di�erent) Markov system and switching from one Markov system to
another Markov system incurs a unit cost. Our goal is to �nd a strategy that adaptively chooses the next
Markov system to play until a unit of reward is collected, and the expected total cost (switching cost plus
movement cost) is minimized. Formally, the problem is de�ned as follows.

De�nition 2 (MG-Unit). We are given a metric space M = (S ∪ {R}, 𝑑) endowed with unit metric (i.e.,
𝑑 (S,S′) = 1 for any S ≠ S′ ∈ S ∪ {R}). Each node S𝑖 ∈ S is identi�ed with a Markov system S𝑖 =

〈𝑉𝑖 , 𝑃𝑖 ,𝐶𝑖 , 𝑠𝑖 , 𝑡𝑖〉. R is the root node (the initial position) with a unit cost directed edge to every S𝑖 . If we play
Markov system S𝑖 in one round and decide to play another Markov system S𝑗 in the next round, we need pay
a unit switching cost 𝑑 (S𝑖 ,S𝑗 ) = 1 in addition to the movement cost. �e game ends when we succeed to make
one Markov system reach its target state.

ForMG-Unit, we provide a simple index strategy that has a constant approximation ratio. Here, following
the the de�nition in [BS94] (See also De�nition 38 in the appendix), an index strategy means that we can
de�ne a suitable index (a real number) for each state of the Markov chains, and the strategy always chooses
to play the Markov chain in which the current state has the minimum index.

�eorem 3. �ere is a simple index strategy that can achieve a constant approximation ratio for theMG-Unit
problem.

Our technique: In particular, for each state 𝑢, we create a dummy state 𝑢 ′ that connects to 𝑢 with move-
ment cost 1. �is captures the unit switching cost. �e index Γ𝑖 for S𝑖 (at state 𝑢) is the Gi�ins index 𝛾𝑢
if S𝑖 is active, and the Gi�ins index of 𝑢’s dummy state 𝑢 ′ otherwise. Our strategy is to simply choose to
play the S𝑖 with the smallest index Γ𝑖 .
Although the strategy is extremely simple to state, it is di�cult to analyze it directly. Instead, we analyze an
alternative strategy, via the doubling framework developed in recent works [ENS18, JLLS20] (Section 3.2).
In the doubling framework, we proceeds in phases and in each phase there is an exponentially increasing
cost budget. Under this framework, it su�ces to show the following guarantee for the budgeted sub-
problem: our strategy can succeed (i.e., collect one unit of reward from some Markov chain) with constant
probability, under constraint that the total (movement plus switching) cost is below the given budget 𝐵,
which is constant times the optimal cost of the original problem (Lemma 12). Solving the budgeted sub-
problem this is the key technical challenge.
In order to show we can succeed with constant probability under the budget constraint, we consider the
set Ω𝑏𝑎𝑑 of trajectories in which we fail (do not reach the target). A trajectory can be naturally partitioned
into segments, each being a trajectory in one Markov chain and the switching cost we pay is the number
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of the segments. Since the cost budget is exhausted without success, one can show that there is one
segment (corresponding to one chain) that the expected cost is large but the success probability is small
(conditioning on the former segments). From this, one can argue the grade (Gi�ins index) of the current
chain is much larger than 𝐵, and the grades of all chains are also at least no smaller than it (due to the
greedy rule). By the de�nition of the grade, it can be roughly understood as the expected movement cost
one can hope for reaching the target in this chain. Hence, one can see that conditioning on Ω𝑏𝑎𝑑 , the
expected movement cost to reach a target for any strategy is much larger than 𝐵 (no chain is cheap). But
the expected total cost of the optimal strategy is much less than 𝐵 (recall 𝐵 is a large constant times OPT).
�erefore, one can conclude that the probability of Ω𝑏𝑎𝑑 is small.

1.1.2 General Metric Switching Cost

Next, we generalize MG-Unit to more general metric (where the switching costs form a metric without
the restriction to be unit) and more general requirement that we need to collect 𝐾 units of rewards for any
positive integer 𝐾 . We name the new problemMG-Metric.

De�nition 4 (MG-Metric). We are given a �nite metric space M = (S ∪ {R}, 𝑑) (there is no additional
assumption on metric 𝑑). Each nodeS𝑖 ∈ S is identi�ed with a Markov system S𝑖 = 〈𝑉𝑖 , 𝑃𝑖 ,𝐶𝑖 , 𝑠𝑖 , 𝑡𝑖〉. Similarly,
at the beginning of the game, the player is at the root R, and needs to pay the switching cost 𝑑 (R,S𝑖) if he
wants to play Markov system S𝑖 . Switching from S𝑖 to S𝑗 incurs a switching cost of 𝑑 (S𝑖 ,S𝑗 ). �e objective is
to adaptively collect at least 𝐾 units of rewards (making at least 𝐾 Markov system reach their targets), while
minimizing the expected total cost (movement cost plus switching cost). �e game ends when we succeed to
make 𝐾 Markov system reach their target states.

�eorem 5. �ere is a constant factor approximation algorithm for the MG-Metric problem.

Our technique: For MG-Metric, we also adopt the doubling framework, hence only need to design an
algorithm BudgetMG-Metric (Algorithm 4) for the budgeted sub-problem. BudgetMG-Metric should suc-
ceed with constant probability using a budget 𝐵 when 𝐵 is a constant factor of the optimal cost. At a high
level, BudgetMG-Metric �rst transform the problem to a Stochastic- 𝑘-TSP instanceM𝑘𝑡𝑠𝑝 by reducing
each Markov chain to a related random variable. �en it applies the non-adaptive constant factor approxi-
mation for Stochastic- 𝑘-TSP (developed in [JLLS20]) to obtain an ordering Π of vertices (chains). We pick
a pre�x Π𝑝𝑟𝑒 𝑓 such that the switching cost for traversing Π𝑝𝑟𝑒 𝑓 is no larger than a small constant propor-
tion of the budget. One can show it is possible to collect 𝐾 units of rewards from Π𝑝𝑟𝑒 𝑓 such that the total
movement cost is within the budget with constant probability.
Now, the key is show how to collect𝐾 units of rewards from Π𝑝𝑟𝑒 𝑓 such that the movement plus switching
cost is within the budget with constant probability. Obviously, ignoring the switching cost, the optimal
way (optimal in terms of movement cost) of collecting 𝐾 units of rewards from Π𝑝𝑟𝑒 𝑓 is to play Gi�ins
index. However, such play may switch back and forth frequently and hence leads to a high switching cost.
To keep the switching cost under control, we insist visiting the chain in Π𝑝𝑟𝑒 𝑓 one by one and never revisit
any chain (hence the switching cost is small). However, one may not want to play a chain to the end since
the current state is not economical to play and switching to the next chain is a be�er option. Now the
Gi�ins index comes into rescue. We show that there is an interesting threshold 𝛾 𝑗+1 (which is computed
from the 𝐾-th order statistics of suitably de�ned random variables), such that if the Gi�ins index of the
current state is larger than the threshold, we can give up and decide to switch to the next chain on the
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Π𝑝𝑟𝑒 𝑓 . It turns out such a sequential algorithm (without switching back and forth) can also succeed with
constant probability without incurring a much larger movement cost than keeping playing the chain with
the smallest Gi�ins index.

2 Related Work

�e original paper by [DTW03] only deals with the 𝐾 = 1 case (i.e., one chain reaches its target). Recent
works [KWW16, GJSS19] observe that it is not di�cult to extend their argument to general positive integer
𝐾 without switching costs. [KWW16, Sin18] studied the problem under richer combinatorial constraints.
[GJSS19] study a more general problem: there is a given packing or covering constraint F ⊆ 2[𝑛] (e.g.,
matroid, matching, knapsack) of subsets of chains. �e goal is to make a subset 𝑆 of chains to reach
their targets (𝑆 ∈ F ), while minimizing the dis-utility (with upward-closed constraint) or maximize the
utility (with downward-closed constraint). For semi-additive objective function, they proposed a general
reductionwhich utilizes the “greedy” algorithms for the problemwith full information and they can achieve
the same approximation ratio as the ”greedy” algorithm does for the full information problem.
Guha and Munagala [GM09] considered two MAX-SNP problems for bandits with switching costs: future
utilization and past utilization. In their problems, each state has a reward and the rewards satis�es the
martingale property (motivated by Bayesian considerations, see their paper for the details). Given two
budgets for movement and switching, the future utilization problem aims to make the �nal reward of the
�nally chosen chain as large as possible, while the goal of the past utilization is to make the summation
of rewards as large as possible. �ey provided 𝑂 (1)-approximation algorithms for both problems. �ey
approached the problem from linear programming with Lagrangian relaxation. �eir problems are very
di�erent from our problems and it is unclear how to apply their technique to our problems neither.
Our problem is also related to some problems in the stochastic probing literature, in particular the classical
Pandora’s Problem de�ned in [Wei79]. Suppose there are𝑛 closed boxes with independent random rewards
(with known distributions). �e cost to open box 𝑖 is 𝑐𝑖 . When we open a box, the reward of the box
is realized. At each time step, we need to decide either to pay some cost to open a new box, or stop
and take the box with the maximum rewards. �e goal is to maximize the expected reward minus the
opening cost. Weitzman [Wei79] provided an optimal indexing strategy to this problem. In fact, one
can show the problem is a special case of the Markov Game [DTW03] and Weitzman’s index can also be
seen as a variant of the Gi�in’s Index. Recently, the problem has been extent in various ways (see e.g.,
[KWW16, Dov18, BK19]).
Our problem is a stochastic combinatorial optimization problem. Designing poly-time algorithms for
those problems with provable approximation guarantee has a�racted signi�cant a�ention in recent years
(see e.g., the survey [LL16]). In this paper, we leverage the constant factor approximation algorithm for
stochastic 𝑘-TSP [JLLS20] (formally de�ned later), which is closely related to the stochastic knapsack and
stochastic orienteering problems. In stochastic knapsack, we are given a set of items with random size
and pro�t and a knapsack with �xed capacity. We can adaptively place the items in the knapsack irre-
vocably, such that the expected total pro�t is maximized. A variant of the stochastic knapsack has been
shown to be PSPACE-hard[DGV04], and several constant factor approximation algorithms have been de-
veloped [DGV04, DGV08, BGK11, GKNR12, LY13]. Stochastic orienteering [GKNR12] is a generalization
of stochastic knapsack, in which there are metric switching costs between di�erent items. If the total cost
is restricted to be no more than 𝐵, Gupta et al. [GKNR12] provided an 𝑂 (log log𝐵) upper bound of the
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adaptivity gap, and Bansal and Nagarajan [BN15] showed a lower bound of Ω((log log𝐵)1/2) even when
all pro�ts are deterministic.
In online learning literature, there is also a body ofwork [KSU08, Ort08, ADT12, DDKP14, KLM17] studying
multi-armed bandit (MAB) with switching costs. However, here playing each arm provides i.i.d. reward,
but the underlying distribution is not known. �e objective is minimizing the regret. �e challenges and
techniques in these se�ings are completely di�erent.

3 Preliminaries

In this section, we �rst review the notion of grade (a variant of Gi�ins index) introduced in [DTW03],
then the doubling technique used in some previous stochastic optimization problems [ENS18, JLLS20]. �e
analysis requires some well known concentration inequalities such as Cherno� Bound and Freedman’s
Inequality, which are presented in Appendix A.1. We de�ne some notations which will be used throughout
this paper.
Notation: For any (possibly adaptive) strategy P, let 𝑅(P) be the (random) number of units of rewards P
can collect (i.e. the (random) number of Markov system that reach target states). Let 𝐶𝑠𝑤 (P) and 𝐶𝑚𝑣 (P)
be the (random) switching cost and movement cost respectively, and let𝐶𝑡𝑜𝑡 (P) = 𝐶𝑠𝑤 (P) +𝐶𝑚𝑣 (P) be the
total cost of the strategy P. We say a strategy P with movement budget (resp. switching budget) 𝐵 means
that P can pay at most 𝐵 to advance the Markov system (resp. to switch between di�erent systems), and
say a strategy P with budget 𝐵 means that if its movement cost plus switching cost is restricted to be at
most 𝐵. Similarly, we say a strategy P with (movement/switching) budget 𝐵 in expectation means that the
expectation of (𝐶𝑚𝑣 (P)/𝐶𝑠𝑤 (P)) 𝐶𝑡𝑜𝑡 (P) is at most 𝐵.

3.1 Grade

Give a �niteMarkov game de�ned in Dumitriu et al. [DTW03], we can de�ne the grade of each state in each
Markov system. Grade is a slight variant of the original Gi�ins index de�ned for the in�nite discounted
game [Git74], particularly de�ned in a very similar way to Weber’s prevailing charge [W+92, FW99]. In
particular, the grade of state 𝑢 in Markov system S depends only on S, not other Markov system.
A New Game S𝑢 (𝑔): Consider a Markov system S = 〈𝑉 , 𝑃,𝐶, 𝑠, 𝑡〉. Given a non-negative real number
𝑔 ∈ R≥0 and the initial state 𝑢 in S, we de�ne a new game S𝑢 (𝑔): For each step, we can quit and end
the game, or pay the movement cost to advance S for one step. If we reach the target state 𝑡 , we can
get 𝑔 units of pro�ts 2 and the game halts. �e objective is to maximize the objective “pro�t − cost” in
expectation. We use val(S𝑢 (𝑔)) to denote the value of this game, that is the expected objective achieved
by the optimal strategy, which we denote by O(S𝑢 (𝑔)). Let 𝑅(O(S𝑢 (𝑔)) is the (random) indicator that the
strategy O(S𝑢 (𝑔) reaches the target (e.g., if we quit the game before reaching the target, 𝑅 = 0), and hence
E[𝑅(O(S𝑢 (𝑔)))] is the probability that we reach the target state using strategy O(S𝑢 (𝑔)). It is easy to see

val(S𝑢 (𝑔)) = 𝑔 · E[𝑅(O(S𝑢 (𝑔))] − E[𝐶𝑚𝑣 (O(S𝑢 (𝑔)))] ≥ 0

for any 𝑔 ∈ R≥0, as the strategy can always quit at the very beginning.
2We use the term pro�t here to distinguish from the term reward (recall we get a unit of reward by reaching a target state).
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Grade 𝛾𝑢 (S): In particular, we de�ne the grade 𝛾𝑢 (S) of state 𝑢 in Markov system S as the unique value
of 𝑔 for which an optimal player is indi�erent between the two possible �rst moves in the game S𝑢 (𝑔), i.e.
he can either play S for the �rst step or quit at the very beginning. We also use 𝛾𝑢 and S(𝑔) as a shorthand
for 𝛾𝑢 (S) and S𝑢 (𝑔) respectively when S and its current state are clear from the context.
To gain a bit more intuition about the grade, consider a pure strategy ALG for the game S(𝑔). Note that a
pure strategy can be de�ned by a subset 𝑄 ⊂ 𝑉 of states: the player chooses to play S, until either target
𝑡 is reached, or a state in 𝑄 is reached and the player chooses to quit, which ends the game immediately.
Let event Ω be that the token in S reaches 𝑡 and let 𝐶S be the (random) movement cost ALG spends on
S. It is easy to see that

E[𝑔 · 𝑅(ALG) −𝐶𝑚𝑣 (ALG)] = 𝑔 · Pr[Ω] − E[𝐶S | Ω] Pr[Ω] − E[𝐶S | ¬Ω] Pr[¬Ω] .

One can see it is linear in 𝑔 for �xed set 𝑄 . Hence, the value of the game val(S(𝑔)) (as a function of 𝑔)
is the maximum of a set of linear functions and is therefore a piece-wise linear convex function in 𝑔 (See
Figure 1). When 𝑔 is very small, the optimal strategy should choose to quit immediately, and both the
cost and the pro�t are zero. When 𝑔 is very large, the optimal strategy should never quit before reaching
the target. Hence, as we increase 𝑔 gradually from 0, there is a point at which we are indi�erent between
playing S and qui�ing immediately, which is the value of the grade for state 𝑢. We set 𝛾𝑡 = 0 for the
target state 𝑡 . Readers can refer to [DTW03] for more detailed discussion. We can also de�ne a grade for
a Markov system, that is the grade of its current state 𝑢, i.e., 𝛾𝑢 (S). As shown in [DTW03], grades can be
computed in poly-time (see Section 7 in [DTW03]).

g

g · E[R(O(S(g)))]
E[Cmv(O(S(g))]

val(Su(g))

Eu[S]

γu(S)

Figure 1: An illustration of val(S(𝑔)), which is a piecewise linear convex function in 𝑔. Each piece corre-
sponds to a subset𝑄 ⊂ 𝑉 . �e �rst piece corresponds to the empty set𝑄 = 𝑉 (the player quits immediately),
and the last piece corresponds to 𝑄 = ∅ (the player never quits before reaching the target). E𝑢 [S] is the
expected cost of a never-qui�ing player. In fact, each turning point corresponds to the grade of some state,
and the �rst one corresponds to 𝛾𝑢 (S) where 𝑢 is the current state. We also show the expected movement
cost E[𝐶𝑚𝑣 (O(S𝑢 (𝑔)))] and the expected pro�t 𝑔 · E[𝑅(O(S𝑢 (𝑔))].

By the de�nition of the grade, we can get the following lemma easily.

Lemma 6 (Optimal solution for S(𝑔)). A strategy for S(𝑔) is optimal if it chooses to advance S whenever
the grade is no more than 𝑔 and it chooses to quit whenever the grade is larger than 𝑔. When the grade of S
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equals to 𝑔, there is an optimal strategy that chooses to �rst advance S and there is one that chooses to quit
immediately.

We say a game is a fair game if the value of the game is zero. An observation that we use repeatedly is
that the game S𝑢 (𝛾𝑢 (S)) is a fair game (from Figure 1, one can see that 𝛾𝑢 (S) is the largest 𝑔 such that the
game S𝑢 (𝑔) is a fair game).
Now we de�ne a prevailing cost [DTW03] and an epoch [GJSS19]. A trajectory is a sequence of states
traversed by a player.

De�nition 7 (Prevailing cost). �e prevailing cost of Markov system S in a trajectory 𝜔 is 𝑌max(𝜔) =

max𝑢∈𝜔 𝛾𝑢 (S).

In other word, the prevailing cost is the maximum grade at any point. In particular, the prevailing cost
increases whenever theMarkov system reaches a state with grade larger than each of the previously visited
states. �e prevailing cost can be viewed as a non-decreasing piece-wise constant function of time, which
motivates the de�nition of epoch:

De�nition 8 (Epoch). An epoch for a trajectory 𝜔 is any maximal continuous segment of 𝜔 where the pre-
vailing cost does not change.

We also de�ne an interesting teasing game introduced in [DTW03], which is useful later.

De�nition 9 (Teasing game S𝑇 ). Consider the game S𝑠 (𝛾𝑠) with initial state 𝑠 . Whenever the player reaches
a state 𝑢 with grade 𝛾𝑢 > 𝛾𝑠 , we place 𝛾𝑢 units of pro�ts at the target state 𝑡 rather than 𝛾𝑠 . �e objective is
also to maximize the expectation of “pro�ts - costs”. �e 𝛾𝑢 pro�t provides just enough incentive for the player
to continue advancing the S. We denote the new teasing game by S𝑇 .

For the new teasing game, we have the following lemma which also follows directly from the de�nition of
the grade:

Lemma 10 (Fairness of S𝑇 , Lemma 5.3 in[DTW03]). S𝑇 is a fair game, and a strategy for S𝑇 is optimal if
and only if the player never quits in the intermediate of an epoch, and only quits at the beginning of an epoch.

By the above lemma, one can easily see that the expected movement cost of a never-qui�ing player of
the game S𝑇 is equal to the expected prevailing cost, where being never-qui�ing means that the player
continues playing the system until system reaches the target state and he collects the pro�ts.

3.2 �e Doubling Technique.

In this subsection, we adopt the doubling technique which is similar to the ones used in related stochastic
optimization problems such as [ENS18] and [JLLS20]. See the pseudo-code of the framework in Algo-
rithm 1. Basically, the framework proceeds in phases, and in 𝑖th phase, we call a sub-procedure denoted by
BudgetMG(M𝑖−1, 𝑘𝑖−1, 𝐵𝑖) in which we start withM𝑖−1, the current state of all Markov system, and aim
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at collecting the remaining 𝑘𝑖−1 units of reward with total cost budget 𝐵𝑖 = 𝑂 (1)𝛽𝑖 (in expectation).

Algorithm 1: A general algorithm Algo-MG

1 Input: �e problem instanceM, objective number of rewards 𝐾
2 Process:
3 Set 𝛽 ∈ (1, 2), 𝑘0 = 𝐾 ,M0 =M, 𝑐 = 𝑂 (1);
4 for phase 𝑖 = 1, 2, · · · do
5 (M𝑖 , 𝑘𝑖) ← BudgetMG(M𝑖−1, 𝑘𝑖−1, 𝐵𝑖 = 𝑐𝛽𝑖);
6 if 𝑘𝑖 ≤ 0 then
7 Break
8 end
9 end

Recall that we have a unique root R. In particular, in MG-Unit, we let BudgetMG(M𝑖 , 𝑘𝑖 , 𝐵𝑖+1) begin to
play the game at theMarkov systemwhereBudgetMG(M𝑖−1, 𝑘𝑖−1, 𝐵𝑖) halts, that’sBudgetMG(M𝑖 , 𝑘𝑖 , 𝐵𝑖+1)
does not need pay the unit switching cost for theMarkov systemwhereBudgetMG(M𝑖−1, 𝑘𝑖−1, 𝐵𝑖) halts. In
MG-Metric, we require that the strategy goes back to R a�er BudgetMG(M𝑖−1, 𝑘𝑖−1, 𝐵𝑖) halts for simplicity
of the analysis, and hence the next phase BudgetMG(M𝑖 , 𝑘𝑖 , 𝐵𝑖+1) starts the game at the root R. �is blows
up the total cost by at most a factor of 2 since switching back to the root R costs at most 𝐵𝑖 . �e main
reason of doing so is to avoid the case where BudgetMG(M𝑖−1, 𝑘𝑖−1, 𝐵𝑖) stops at a Markov system far-way
from the other chains and BudgetMG(M𝑖 , 𝑘𝑖 , 𝐵𝑖+1) has to pay a lot in the �rst switch (rather this switching
cost is amortized to the 𝑖 − 1th phase).
To analyze the algorithm framework, we de�neO(M, 𝑘) to be the optimal strategy for the problem instance
M (the game starts from the rootR) with the target number of rewards𝑘 . Intuitively, for 𝑗 ≥ 𝑖 , the expected
cost of O(M 𝑗 , 𝑘 𝑗 ) is no more than the one of O(M𝑖 , 𝑘𝑖) as 𝑘 𝑗 ≤ 𝑘𝑖 , i.e. in some senseM 𝑗 can get 𝑘𝑖 − 𝑘 𝑗
units of rewards for free. We can prove this formally and get the following lemma (whose proof can be
found in Appendix A.2.1).

Lemma 11. For any 𝑗 ≥ 𝑖 ≥ 1 and any Algorithm BudgetMG, one has

E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖))] ≥ E[𝐶𝑡𝑜𝑡 (O(M 𝑗 , 𝑘 𝑗 ))] .

Notice that the randomness is over the entire run of Algo-MG.

We use Lemma 11 to prove the following Lemma 12, which is used for bothMG-Unit andMG-Metric.

Lemma 12 (Budgeted Subproblem). We are given an MG-Metric (or MG-Unit) instanceM with positive
integers 𝑘 and 𝐵 ∈ R≥0. For any 𝐵 > 𝑐1E[𝐶𝑡𝑜𝑡 (O(M, 𝑘))], if there is an algorithm BudgetMG that can
succeed in collecting 𝑘 units of rewards with some constant probability (say more than 0.01) using expected
total cost at most 𝑐2𝐵, where 𝑐1, 𝑐2 are some universal constants, then there is a constant factor approximation
algorithm for MG-Metric (or MG-Unit).

�e proof is similar to the previous ones [ENS18, JLLS20] with some subtle modi�cations and can be found
in Appendix A.2.
If we can design BudgetMG which satis�es the precondition of Lemma 12, then by running BudgetMG in
the framework, we get an 𝑂 (1)-approximation algorithm. All our e�ort goes into designing BudgetMG
that satis�es the precondition of Lemma 12 in the following sections.
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4 Markov Game with Unit Metric

In this section, we consider theMG-Unit problem (De�nition 2). Our main result is �eorem 3.

�eorem 3. �ere is a simple index strategy that can achieve a constant approximation ratio for theMG-Unit
problem.

Algorithm 2: Algorithm forMG-Unit

1 Input: �e instanceM
2 while we have not collected any reward do
3 Choose to play Markov system S𝑖 with 𝑖 = argmin𝑖 Γ𝑖 ;
4 end

Since our goal is to design an indexing strategy, we need to de�ne an index which can incorporate the
information of switching cost. In particular, for each Markov system S𝑖 ∈ S and every state 𝑢 of S𝑖 , we
create a dummy state𝑢 ′ for𝑢 with unit movement cost (𝐶𝑢′ = 1) and deterministic transition to𝑢 (𝑃𝑢′,𝑢 = 1).
�e dummy states are used to capture the unit switching cost. Let 𝛾 ′𝑢 denote the grade of 𝑢’s dummy state,
and call 𝛾 ′𝑢 the dummy grade of 𝑢. We say a Markov system S𝑖 is active at a time step 𝑡 if S𝑖 is played in the
previous step (i.e., continuing to play S𝑖 in the 𝑡-th step does not incur any switching cost), and inactive
otherwise.
Initially, we are at the root R, and all of the Markov system are inactive. Now we de�ne a grade Γ𝑖 for S𝑖
which is at state 𝑢: if S𝑖 is active, then its Γ𝑖 is de�ned to be the grade 𝛾𝑢 of 𝑢; otherwise, Γ𝑖 is de�ned to
be the dummy grade of 𝑢, which we denote by 𝛾 ′𝑢 .
Our strategy for MG-Unit is simply choosing to play the S𝑖 with the smallest grade Γ𝑖 , breaking ties
arbitrarily. See also Algorithm 2.
Although Algorithm 2 is simple to state, directly analyzing it seems di�cult. Rather, we analyze an alterna-
tive algorithm via the doubling technique framework. More speci�cally, we apply the frameworkAlgo-MG
(Algorithm 1), which proceeds in phases. In each phase, it calls the sub-procedure BudgetMG-Unit (Al-
gorithm 3). In the sub-procedure, we have a movement cost budget and a switching cost budget. We
repeatedly play the Markov system with the smallest grade, until one of the budgets is exhausted or all
Markov system reach their target states. Note that we may not stop immediately when we reach a target
state and collect one unit of reward. Instead, we should remove the present system and keep on playing
(if there are still budget and available systems in this phase). Hence, the cost of the alternative algorithm
is no less than that of Algorithm 2. See also Appendix B.1.

4.1 Analysis.

Recall that in order to prove the main result of this section (i.e. �eorem 3), it su�ces to show that the sub-
procedure BudgetMG-Unit (Algorithm 3) satis�es the precondition of Lemma 12. �e key is to prove the
following lemma, which is the precondition of Lemma 12 specialized forMG-Unit. Recall that we are still
aiming at solvingMG-Unit where Algorithm 2 stops immediately whenever it makes one Markov system
reach its target state. �e alternative Algorithm 3 may collect more than one unit of reward and it is only
used for analysis and se�ing an upper bound for the expected cost of our true algorithm (Algorithm 2).
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Algorithm 3: Subprocedure BudgetMG-Unit
1 Input: �e instanceM, budget 28𝐵
2 Set movement budget 27𝐵 and switching budget 27𝐵;
3 Set 𝑘 ← 1;
4 while there are available Markov system and condition A holds do
5 Choose to play Markov system S𝑖 with 𝑖 = argmin𝑖 Γ𝑖 ;
6 if We reach a target state 𝑡 in S𝑖 then
7 Collect one unit reward and mark S𝑖 as unavailable;
8 𝑘 ← 𝑘 − 1;
9 end

10 end
11 Return: �e updated instanceM, the remaining number of target states 𝑘 ;
12 De�ne: Condition A:
13 �e next move does not make the total movement cost or switching cost exceed 27𝐵;

Lemma 13. For any inputM, let O be the optimal strategy for this instance. If 𝐵 ≥ 10E[𝐶𝑡𝑜𝑡 (O)], with
probability at least 1/20, BudgetMG-Unit (Algorithm 3) can collect at least one unit reward with budget 28 ·𝐵.

Proof of Lemma 13. Due to Condition A (Line 12), the total cost budget cannot be violated. Hence, it
su�ces to prove the success probability is at least 1/20.
We only need to consider the case when there are more than one system, otherwise it is optimal to
switch the only system and make it reach the target state. Suppose BudgetMG-Unit decides to play
some Markov system S𝑖 𝑗 a�er switching 𝑗 times, i.e., the sequence of chains played by BudgetMG-Unit is
(R,S𝑖1,S𝑖2, · · · ,S𝑖 𝑗 , · · · ). Note that BudgetMG-Unit may revisit a chain (i.e., S𝑖𝑡 = S𝑖 𝑗 for some 𝑖𝑡 ≠ 𝑖 𝑗 ).
Let 𝜔 𝑗 be the path (a sequence of states) BudgetMG-Unit traverses on S𝑖 𝑗 a�er it switches to S𝑖 𝑗 and
before it switches to S𝑖 𝑗+1 (or stops due to running out budget). We de�ne the stopping time 𝜏 as the num-
bers of switching of BudgetMG-Unit when it halts (equivalently, the switching cost of BudgetMG-Unit).
For 𝜏 + 1 ≤ 𝑗 ≤ 27𝐵, we let 𝜔 𝑗 = ∅. Let 𝜔 = ∪27𝐵𝑗≥0𝜔 𝑗 = ∪𝜏

𝑗≥0𝜔 𝑗 be the whole trajectory traversed by
BudgetMG-Unit and let Ω denote the set of all possible trajectories BudgetMG-Unit can traverse. We use
the notation 𝜔 [0:𝑗 ] = ∪𝑗𝑡=0𝜔𝑡 to denote the pre�x of 𝜔 .
Now we de�ne the Boolean random variables 𝑋 𝑗 for 𝑗 ≤ 𝜏 : if BudgetMG-Unit can get the reward in S𝑖 𝑗 ,
then 𝑋 𝑗 = 1. Otherwise (i.e., BudgetMG-Unit switches out or runs out the budget) 𝑋 𝑗 = 0. If 𝑗 > 𝜏 , we let
random variables 𝑋 𝑗 = 0. Similarly, for 𝑗 ≤ 𝜏 , we de�ne random variable 𝐶 𝑗 to represent the movement
cost BudgetMG-Unit spends on S𝑖 𝑗 (𝐶 𝑗 does not include the unit switching cost).
Let Γ𝑖 𝑗 be the smallest grade of all systems when the 𝑗-th switch occurs, which is the dummy grade of the
current state of S𝑖 𝑗 . We use 𝑠𝑖 𝑗 to denote the current state of S𝑖 𝑗 when the 𝑗-th switch occurs, and 𝑠 ′𝑖 𝑗 be
its dummy state. Hence, Γ𝑖 𝑗 = 𝛾𝑠′𝑖 𝑗 (S𝑖 𝑗 ). By the greedy process of BudgetMG-Unit, we know that

Γ𝑖1 ≤ Γ𝑖2 ≤ · · · ≤ Γ𝑖 𝑗 ≤ · · · ≤ Γ𝑖𝜏 .

For a trajectory 𝜔 , let T𝑗 (𝜔) = E[𝑋 𝑗 | 𝜔 [0:𝑗−1]]. Indeed, one can see that T𝑗 is a random variable with
randomness from 𝜔 [0:𝑗−1] . Let T =

∑𝜏
𝑗=1 T𝑗 and T (𝜔) =

∑𝜏
𝑗=1 T𝑗 (𝜔) =

∑𝜏
𝑗=1 E[𝑋 𝑗 | 𝜔 [0:𝑗−1]].
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Claim 14. We know that

Γ𝑖 𝑗+1 ≥
E[𝐶 𝑗 + 1 | 𝜔 [0;𝑗−1]]

T𝑗 (𝜔)
=
E[𝐶 𝑗 + 1 | 𝜔 [0;𝑗−1]]
E[𝑋 𝑗 | 𝜔 [0:𝑗−1]]

≥ Γ𝑖 𝑗 .

Proof. Recall that the algorithm plays S𝑖 𝑗 whose grade is Γ𝑖 𝑗 when the 𝑗-th switch occurs. Note that we
know the value of Γ𝑖 𝑗+1 when the 𝑗-th switch occurs. Denote 𝑈 𝑗 = {𝑢 ∈ 𝑉𝑖 𝑗 | 𝛾𝑢 ≤ Γ𝑖 𝑗+1}. BudgetMG-Unit
continues playing the system S𝑖 𝑗 until it reaches the target state or reach a state outside𝑈 𝑗 when the cost
budget is not exhausted.
We know that S𝑠′

𝑖 𝑗
(Γ𝑖 𝑗 ) is a fair game where 𝑠 ′𝑖 𝑗 is the dummy state of 𝑠𝑖 𝑗 . On one hand, by Lemma 6, the

strategy determined by𝑈 𝑗 may not be the optimal solution to the game S𝑠′
𝑖 𝑗
(Γ𝑖 𝑗 ), so we have

E[𝑋 𝑗 | 𝜔 [0:𝑗−1]] · Γ𝑖 𝑗 − E[𝐶 𝑗 + 1 | 𝜔 [0:𝑗−1]] ≤ val(S𝑠′
𝑖 𝑗
(Γ𝑖 𝑗 )) = 0.

On the other hand, as Γ𝑖 𝑗+1 ≥ Γ𝑖 𝑗 , the game S𝑠′
𝑖 𝑗
(Γ𝑖 𝑗+1) is be�er than fair, hence val(S𝑠′

𝑖 𝑗
(Γ𝑖 𝑗+1)) ≥ 0. �e

strategy determined by 𝑈 𝑗 is exactly the optimal solution to the game S𝑠′
𝑖 𝑗
(Γ𝑖 𝑗+1) according to Lemma 6.

�us we can conclude

E[𝑋 𝑗 | 𝜔 [0:𝑗−1]] · Γ𝑖 𝑗+1 − E[𝐶 𝑗 + 1 | 𝜔 [0:𝑗−1]] = val(S𝑠′
𝑖 𝑗
(Γ𝑖 𝑗+1)) ≥ 0.

�is �nishes the proof of the claim. �

Recall that it su�ces to show the success probability ofBudgetMG-Unit is at least 1/20when𝐵 ≥ 10E[𝐶𝑡𝑜𝑡 (O)].
�e following key lemma states that with probability at least 3/20 that either BudgetMG-Unit succeeds to
collect at least one unit of reward, or the summation of the conditional expectation is large.

Lemma 15. (Key Lemma) With probability at least 3/20, either
∑𝜏
𝑗=1 T𝑗 ≥ 2 or

∑𝜏
𝑗=1𝑋 𝑗 ≥ 1. Equivalently,

one has

Pr
[
𝜏∑︁
𝑗=1
T𝑗 ≥ 2 ∨

𝜏∑︁
𝑗=1

𝑋 𝑗 ≥ 1
]
≥ 3/20.

Proof. Recall that T𝑗 = E[𝑋 𝑗 | F𝑗−1], T =
∑𝜏
𝑗=1 T𝑗 , and Ω is the set of all possible trajectories. To prove the

statement, we bound the probability of a few bad cases:
Case (1): [T < 2,

∑𝜏
𝑗=1𝑋 𝑗 = 0 and the switching budget runs out �rst.]

Let Ω1 = {𝜔 ∈ Ω | T (𝜔) =
∑𝜏
𝑗=1 T𝑗 (𝜔) < 2,

∑𝜏
𝑗=1𝑋 𝑗 (𝜔) = 0, 𝜏 = 27 · 𝐵} be the set of trajectories

corresponding to Case (1).
Conditioning on any sample path (trajectory)𝜔 ∈ Ω1, there must exist 𝑗 ∈ [27 ·𝐵] such that T𝑗 (𝜔) ≤ 2

27𝐵 =

2−6 · 𝐵−1. By Claim 14, we know that

Γ𝑖 𝑗+1 ≥
E[𝐶 𝑗 + 1 | 𝜔 [0:𝑗−1]]

T𝑗 (𝜔)
≥ 1
T𝑗 (𝜔)

≥ 26 · 𝐵.

Recall that M is the initial instance accepted by BudgetMG-Unit, and suppose the M ′ is the resulting
instance at the end of BudgetMG-Unit (their di�erence can be determined by 𝜔).
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Conditioning on 𝜔 , we let O′ be the optimal strategy for instanceM ′. If BudgetMG-Unit does not collect
any reward, we still need to collect one unit reward fromM ′. If BudgetMG-Unit succeeds to collect at
least one unit of reward, O′ does nothing and halts immediately. Note that E[𝐶𝑡𝑜𝑡 (O′) | 𝜔] is a random
variable with randomness from 𝜔 .
By Lemma 11, we have

E[𝐶𝑡𝑜𝑡 (O′)] ≤ E[𝐶𝑡𝑜𝑡 (O)] ≤ 𝐵/10.

Recall that the smallest grade of all available Markov system does not decrease and thus grades of all S are
at least 26 · 𝐵 when BudgetMG-Unit halts. We want to bound the probability Pr[𝐶𝑡𝑜𝑡 (O′) ≤ 𝐵]. We need
the following claim:

Claim 16. For any positive real number 𝐵 and anyMG-Metric instanceM, if the grades of all Markov system
are at least 𝜁 · 𝐵 for some constant 𝜁 ≥ 1, then for any strategy ALG with total cost budget 𝐵, one has

Pr[ALG succeeds to collect at least one unit reward ] ≤ 1/𝜁 .

Proof. With the inputM, let Γ(S𝑖) be the grade of the inactive S𝑖 and 𝑢 ′𝑖 be the dummy state of the initial
state 𝑢𝑖 of S𝑖 . We �rst simplify the game by only requiring to pay the unit switching cost once for each
Markov system. Equivalently, only the initial state 𝑢 𝑗 has its corresponding dummy state 𝑢 ′𝑗 in S𝑗 , and
when the player decides to switch to S𝑗 again, she switches to the current normal state (instead of the
dummy state). 3 Consider an arbitrary strategy ALG. Obviously, the cost of ALG is only less in this
simpli�ed game (trajectory-wise).
Now, imagine that we run ALG on a composition game G = S𝑢′1 (Γ(S1)) ◦ S𝑢′2 (Γ(S2)) ◦ · · · ◦ S𝑢′𝑚 (Γ(S𝑚)):
�e new composition game has the same set of Markov chains; hence a trajectory in the original game is
also a trajectory in the new game. We know S𝑢′

𝑖
(Γ(S𝑖)) is a fair game and any combination (simultaneous,

sequential, or interleaved) of independent fair games is still fair (e.g., Lemma 5.4 in [DTW03]). Hence, G
is a fair game.
We use 𝑝 𝑗 to denote the probability that ALG makes system S𝑗 reach its target state and 𝐶 𝑗 be the cost
that ALG spends on S𝑗 in G. Indeed, one can see 𝐶 𝑗 is also the cost ALG spends on S𝑗 in the simpli�ed
game. As the composition game is fair, thus we know the expected “pro�ts-cost” of ALG is at most 0. In
particular, one has

∑𝑚
𝑗=1 Γ(S𝑗 )𝑝 𝑗 −

∑𝑚
𝑗=1 E[𝐶 𝑗 ] ≤ val(G) = 0.

For each 𝑗 ∈ [𝑚], one has Γ(S𝑗 ) ≥ 𝜁 · 𝐵. As the budget is 𝐵,
∑𝑚
𝑗=1 E[𝐶 𝑗 ] ≤ 𝐵. Hence, we have that

Pr[ALG succeeds to collect at least one unit reward ] ≤
𝑚∑︁
𝑗=1

𝑝 𝑗 ≤
𝐵

min𝑗 Γ(S𝑗 )
≤ 𝐵

𝜁 · 𝐵 = 1/𝜁 .

�is �nishes the proof of the claim. �

Note that the randomness of O′ comes from 𝜔 . Applying Claim 16 to O′ with total cost budget 𝐵, we can
see

Pr[O′ succeeds to collect at least one unit reward ∧𝐶𝑡𝑜𝑡 (O′) ≤ 𝐵 | 𝜔 ∈ Ω1] ≤ 2−6,

which means that E[𝐶𝑡𝑜𝑡 (O′) | 𝜔 ∈ Ω1] ≥ 𝐵(1−2−6) ≥ 0.9𝐵. Combining the fact that E[𝐶𝑡𝑜𝑡 (O′)] ≤ 𝐵/10,
we know that

Pr[𝜔 ∈ Ω1] ≤ 1/9.
3Hence, the simpli�ed game can be reduced to a Markov game without switching cost, hence solved optimally.
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Case (2): T < 2,
∑𝜏
𝑗=1𝑋 𝑗 = 0 and the movement budget runs out �rst. We de�ne some additional variables

to analyze this case. Let 𝜉 (𝜔) be the movement cost of the (next) move which breaks Condition A and
makes BudgetMG-Unit halt. We divide Case (2) further into the following cases.
Sub-case (2.1):[Large breaking cost.] �is Sub-case corresponds to the set Ω2.1 = {𝜔 ∈ Ω : T (𝜔) <
2,
∑𝜏
𝑗=1𝑋 𝑗 (𝜔) = 0,

∑𝜏
𝑗=1𝐶 𝑗 (𝜔) + 𝜉 (𝜔) ≥ 27 · 𝐵, 𝜉 (𝜔) ≥ 26 · 𝐵}. As 𝜉 (𝜔) ≥ 26 · 𝐵, conditioning on 𝜔 ∈ Ω2.1,

it is impossible for O′ to make S𝜏 reach the target state within budget 𝐵. Here we say O′ does something
within budget 𝐵, means the event that O′ does something and its total cost is no more than 𝐵 at the time
of accomplishment.
For those𝜔 ∈ Ω2.1, as 𝜉 (𝜔) ≥ 26 ·𝐵, we knowBudgetMG-Unitmust have decided to play someMarkov sys-
tem whose grade is at least 26 ·𝐵. More speci�cally, let𝑢 be �nal current state of S𝜏 when BudgetMG-Unit
halts, and by the de�nition we have 𝐶𝑢 = 𝜉 (𝜔). By the de�nition, we know that 𝛾𝑢 ≥ 𝐶𝑢 ≥ 26 · 𝐵. We
de�ne S𝑖𝜏+1 to be the (inactive) system with the second smallest grade when the 𝜏-th switch occurs (S𝑖𝜏
has the smallest grade then), and Γ𝑖𝜏+1 is the corresponding grade. One can see that Γ𝑖𝜏+1 ≥ 𝛾𝑢 ≥ 26 · 𝐵.
Similar to Case (1), by Claim 16, one has

Pr[O′ succeeds to collect at least one unit reward within Budget 𝐵 | 𝜔 ∈ Ω2.1] ≤ 2−6,

which implies that Pr[𝜔 ∈ Ω2.1] ≤ 1/9 by the fact that E[𝐶𝑡𝑜𝑡 (O′)] ≤ 𝐵/10.
Sub-case (2.2):[Small expected movement cost, small breaking cost.] Particularly, this Sub-case corre-
sponds to the set Ω2.1 = {𝜔 ∈ Ω : T (𝜔) < 2,

∑𝜏
𝑗=1𝑋 𝑗 (𝜔) = 0,

∑𝜏
𝑗=1 E[𝐶 𝑗 | 𝜔 [0:𝑗−1]] ≤ 24 · 𝐵,∑𝜏

𝑗=1𝐶 𝑗 (𝜔) +
𝜉 (𝜔) > 27 · 𝐵, 𝜉 (𝜔) ≤ 26 · 𝐵}. Obviously, if

∑𝜏
𝑗=1𝐶 𝑗 (𝜔) + 𝜉 (𝜔) > 27 · 𝐵 and 𝜉 (𝜔) ≤ 26 · 𝐵, then we

know
∑𝜏
𝑗=1𝐶 𝑗 (𝜔) ≥ 26 · 𝐵. �us the probability of this Sub-case can be bounded by Markov Inequality. In

particular, one has

Pr[𝜔 ∈ Ω2.1] ≤ Pr
[
𝜔 ∈ Ω :

𝜏∑︁
𝑗=1
𝐶 𝑗 (𝜔) ≥ 26 · 𝐵 ∧

𝜏∑︁
𝑗=1
E[𝐶 𝑗 | 𝜔 [0:𝑗−1]] ≤ 24 · 𝐵

]
≤ Pr

[
𝜏∑︁
𝑗=1
𝐶 𝑗 (𝜔) ≥ 26 · 𝐵 |

𝜏∑︁
𝑗=1
E[𝐶 𝑗 | 𝜔 [0:𝑗−1]] ≤ 24 · 𝐵

]
≤ 2−2,

where the last step follows by applying Markov Inequality on the probability space {𝜔 ∈ Ω :
∑𝜏
𝑗=1 E[𝐶 𝑗 |

𝜔 [0:𝑗−1]] ≤ 24 · 𝐵}.
Sub-case (2.3):[Large expected movement cost, small breaking cost.] �e corresponding sample path set
is Ω2.3 = {𝜔 ∈ Ω : T (𝜔) < 2,

∑𝜏
𝑗=1𝑋 𝑗 (𝜔) = 0,

∑𝜏
𝑗=1 E[𝐶 𝑗 | 𝜔 [0:𝑗−1]] > 24 · 𝐵,∑𝜏

𝑗=1𝐶 𝑗 (𝜔) + 𝜉 (𝜔) >

27 · 𝐵, 𝜉 (𝜔) ≤ 26 · 𝐵}.
LetM ′′ be the instance when the 𝜏-th switch occurs, 𝑘 ′′ be the remaining number of rewards we need to
collect, and let O′′ be the optimal strategy forM ′′ with the objective 𝑘 ′′. By the same proof of Lemma 11
(trajectory-wise), we also have

E[𝐶𝑡𝑜𝑡 (O′′)] ≤ E[𝐶𝑡𝑜𝑡 (O)] ≤ 𝐵/10.

Conditioning on any sample path 𝜔 ∈ Ω2.3, we know that T (𝜔) =
∑𝜏
𝑗=1 E[𝑋 𝑗 | 𝜔 [0:𝑗−1]] ≤ 2 and∑𝜏

𝑗=1 E[𝐶 𝑗 + 1 | 𝜔 [0:𝑗−1]] ≥ 24 · 𝐵. �en there exists 𝑗 ≤ 𝜏 such that E[𝐶 𝑗+1 |𝜔 [0:𝑗−1] ]
E[𝑋 𝑗 |𝜔 [0:𝑗−1] ] ≥ 23 · 𝐵 and by

Claim 14, we know Γ𝑖 𝑗+1 ≥ 23 · 𝐵.

13



Denote the subset Ω2.3.1 = {𝜔 ∈ Ω2.3 : Γ𝑖𝜏 ≥ 23 · 𝐵}. We know that

Pr[O′′ succeeds to collect at least one unit reward within Budget 𝐵 | 𝜔 ∈ Ω2.3.1] ≤ 2−3.

by Claim 16. Hence, by the fact that 𝐵/10 ≥ E[𝐶𝑡𝑜𝑡 (O′′)] ≥ E[𝐶𝑡𝑜𝑡 (O′′) | 𝜔 ∈ Ω2.3.1] Pr[Ω2.3.1] ≥
𝐵(1 − 2−3) Pr[Ω2.3.1], we can see that Pr[Ω2.3.1] ≤ 4/35 .
Otherwise, consider those 𝜔 ∈ Ω2.3 \Ω2.3.1 such that Γ𝑖𝜏 < 23 · 𝐵. By the greedy property of the algorithm,
we know that Γ𝑖 𝑗 ≤ Γ𝑖𝜏 for all 1 ≤ 𝑗 ≤ 𝜏 . By Claim 14, we know that 23 · 𝐵 ≥ Γ𝑖 𝑗+1 ≥

E[𝐶 𝑗+1 |𝜔 [0;𝑗−1] ]
E[𝑋 𝑗 |𝜔 [0:𝑗−1] ] for

1 ≤ 𝑗 ≤ 𝜏 − 1. As T (𝜔) = ∑𝜏
𝑗=1 E[𝑋 𝑗 | 𝜔 [0:𝑗−1]] ≤ 2, then we know that

∑𝜏−1
𝑗=1 E[𝐶 𝑗 + 1 | 𝜔 [0:𝑗−1]] ≤ 24 · 𝐵.

However,
∑𝜏
𝑗=1𝐶 𝑗 (𝜔) > 26𝐵 for this case. Use the same Markov inequality argument as in Sub-case (2.2),

one has

Pr[𝜔 ∈ Ω2.3 \ Ω2.3.1] ≤ Pr
[
𝜔 ∈ Ω :

𝜏−1∑︁
𝑗=1
𝐶 𝑗 (𝜔) ≥ 26 · 𝐵 ∧

𝜏−1∑︁
𝑗=1
E[𝐶 𝑗 | 𝜔 [0:𝑗−1]] ≤ 24 · 𝐵

]
≤ Pr

[
𝜏−1∑︁
𝑗=1
𝐶 𝑗 (𝜔) ≥ 26 · 𝐵 |

𝜏−1∑︁
𝑗=1
E[𝐶 𝑗 | 𝜔 [0:𝑗−1]] ≤ 24 · 𝐵

]
≤ 2−2.

Union Bound: By union bound over Case (1) and Case (2), we have that

Pr[𝜔 ∈ Ω : BudgetMG-Unit fails and 𝑇 (𝜔) < 2] = Pr[Ω1 ∪ Ω2.1 ∪ Ω2.2 ∪ Ω2.3]
≤ Pr[Ω1] + Pr[Ω2.1] + Pr[Ω2.2] + Pr[Ω2.3]
≤ 1/9 + 1/4 + 1/9 + Pr[Ω2.3 \ Ω2.3.1] + Pr[Ω2.3.1]
≤ 1/9 + 1/4 + 1/9 + 1/4 + 4/35
< 17/20.

�is completes the proof. �

�e lemma below complements Lemma 15 and shows that if the summation of conditional expectation is
large, then the algorithm should succeed with a constant probability.

Lemma 17. Suppose 𝑋1, 𝑋2, · · · , 𝑋𝑛 are a sequence of random variables taking values in {0, 1}, and F𝑗 =

𝜎 (𝑋1, · · · , 𝑋 𝑗 ) is the �ltration de�ned by the sequence. Given any real number 𝜇, if
∑𝑛
𝑗=1 E[𝑋 𝑗 | F𝑗−1] ≥ 𝜇,

then

Pr
[
𝑛∑︁
𝑗=1

𝑋 𝑗 ≥ 1
]
≥ 1 − 𝑒−3𝜇/8.

�e proof of Lemma 17 can be found in Appendix B.2. By Lemma 15, one has

Pr

27𝐵∑︁
𝑗=1

𝑋 𝑗 ≥ 1
 + Pr[𝑇 ≥ 2] ≥ Pr


27𝐵∑︁
𝑗=1

𝑋 𝑗 ≥ 1 ∨𝑇 ≥ 2
 ≥ 3/20. (1)

By Lemma 17, one has

Pr

27𝐵∑︁
𝑗=1

𝑋 𝑗 ≥ 1 | 𝑇 ≥ 2
 ≥ 1 − 𝑒−3/4 ≥ 1/2. (2)
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By combining Equation 1 and Equation 2, one can easily show that

Pr

27𝐵∑︁
𝑗=1

𝑋 𝑗 ≥ 1
 ≥ Pr


27𝐵∑︁
𝑗=1

𝑋 𝑗 ≥ 1 | 𝑇 ≥ 2
 · Pr[𝑇 ≥ 2] ≥ (1 − 𝑒−3/4) · Pr[𝑇 ≥ 2]

≥(1 − 𝑒−3/4) · ©­« 3
20 − Pr


27𝐵∑︁
𝑗=1

𝑋 𝑗 ≥ 1
ª®¬ ≥

1
2 ·

©­« 3
20 − Pr


27𝐵∑︁
𝑗=1

𝑋 𝑗 ≥ 1
ª®¬ ,

which implies that

Pr

27𝐵∑︁
𝑗=1

𝑋 𝑗 ≥ 1
 ≥ 1/20.

�us we complete the proof of Lemma 13. �

�eorem 3 follows from Lemma 12 and Lemma 13 directly.
�e simple index-based strategy achieves a constant approximation factor in unit metric space. However,
there is a simple counter-example on general metric, which shows BudgetMG-Unitmay perform arbitrar-
ily bad. See Appendix B.3 for the example. �is suggests that new techniques are needed for more general
metric. �is is the focus of the next section.

5 Markov Game with General Metric

In this section, we consider MG-Metric (De�nition 4). Note that our requirement is also more general:
we need to collect 𝐾 units of rewards (make 𝐾 chains reach their targets). Our main result is an e�cient
strategyMG-Metric which can achieve a constant factor approximation.
MG-Metric (SeeAlgorithm 6 inAppendix) adopts the same doubling framework asAlgo-MG (Algorithm 1),
except that we need a more complicated sub-procedure BudgetMG-Metric (which approximates the bud-
geted version). In particular, BudgetMG-Metric should satisfy the precondition of Lemma 12. i.e., the
expected total cost of BudgetMG-Metric is bounded by 𝑐2E[𝐶𝑡𝑜𝑡 (O(M, 𝐾))] for some universal constant
𝑐2, and it can collect 𝐾 units of rewards with constant probability when 𝐵 is large enough. For clarity, we
present the lemma below, which is the precondition of Lemma 12 specialized forMG-Metric.

Lemma 18. For any inputM with the objective number of rewards 𝐾 , let O be the optimal strategy for this
instance. If 𝐵 ≥ 10E[𝐶𝑡𝑜𝑡 (O)], with probability at least 0.1, BudgetMG-Metric (Algorithm 4) can collect at
least 𝐾 units of rewards (i.e. make at least 𝐾 system reach their targets) with budget 𝑂 (1)𝐵 in expectation.

It su�ces to prove that sub-procedure BudgetMG-Metric (Algorithm 4) satis�es this lemma, which is the
main task of this section.

5.1 Stochastic 𝑘-TSP.

�esub-procedureBudgetMG-Metricmakes use of an𝑂 (1)-approximation for the Stochastic- 𝑘-TSP prob-
lem [ENS18, JLLS20], de�ned as follows.
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De�nition 19 (Stochastic- 𝑘-TSP). We are given a metricM = (S, 𝑑) with a root ∈ S and each vertex 𝑣 ∈ S
has an independent stochastic selection cost 𝐶𝑠𝑙 (𝑣) ∈ R≥0. All cost distributions are given as input but the
actual cost instantiation𝐶𝑠𝑙 (𝑣) is only known a�er vertex 𝑣 is visited. Suppose a vertex 𝑣 can only be selected
if 𝑣 is visited.4 �e goal is to adaptively �nd a tour 𝑇 originating from the root and select a set 𝑆 of 𝑘 visited
vertices while minimizing the expected total cost, which is the sum of the length of𝑇 and the cost of the selected
vertices:

E
[
Length(𝑇 ) +

∑︁
𝑣∈𝑆

𝐶𝑠𝑙 (𝑣)
]
.

�eorem 20 (�eorem 2 in [JLLS20]). �ere is a non-adaptive constant factor approximation algorithm
ALGktsp for Stochastic- 𝑘-TSP.

Remark 21. It is important to note that the strategy in [JLLS20] is non-adaptive. Here a non-adaptive strategy
is an ordering Π of all vertices and Π is independent of the realization of the costs. Note that the strategy visits
the vertices according to the ordering Π andmay stop and choose 𝑘 visited vertices before visiting all vertices by
some criterion, depending on the realization of the costs. We use 𝛼ktsp = 𝑂 (1) to be the constant approximation
ratio of this algorithm.

As mentioned, ALGktsp is not only a sub-procedure which can output an ordering of the chains (vertices).
In fact there is also some probing and selection process a�er outpu�ing the ordering in ALGktsp. We let
𝐶𝑠𝑙 (ALGktsp) and𝐶𝑠𝑤 (ALGktsp) be the (random) selection cost and switching cost ofALGktsp respectively.

5.2 Reduction to Stochastic- 𝑘-TSP

5.2.1 A Fair GameMG-Metric-Fair.

We de�ne another new game which is closely related to the teasing game S𝑇 (see de�nition 9) and plays
a key role in the following proof.

De�nition 22 (MG-Metric-Fair). We are given a �nite metric spaceM = (S∪{R}, 𝑑) (there is no additional
assumption on metric 𝑑). Each nodeS𝑖 ∈ S is identi�ed with a Markov system S𝑖 = 〈𝑉𝑖 , 𝑃𝑖 ,𝐶𝑖 , 𝑠𝑖 , 𝑡𝑖〉. Similarly,
at the beginning of the game, the player is at the root R, and needs to pay the switching cost 𝑑 (R,S𝑖) if he
wants to play Markov system S𝑖 . Switching from S𝑖 to S𝑗 incurs a switching cost of 𝑑 (S𝑖 ,S𝑗 ). Let 𝑉 𝐹𝑖 ⊆ 𝑉𝑖
denote the subset of states S𝑖 has been transited to by the player during the game. If 𝑡𝑖 ∈ 𝑉 𝐹𝑖 , he can pay the
prevailing cost as the fair movement cost and get one reward from S𝑖 . �e objective is to adaptively collect at
least𝐾 units of rewards (making at least𝐾 Markov system reach their targets), while minimizing the expected
total cost (fair movement cost plus switching cost).

Let 𝐶𝐹𝑚𝑣 (P), 𝐶𝑠𝑤 (P) and 𝐶𝐹𝑡𝑜𝑡 (P) be the (random) fair movement cost, switching cost and total cost of any
strategy P under the rule of MG-Metric-Fair respectively. LetO𝑓 𝑎𝑖𝑟 be the optimal strategy toMG-Metric-
Fair. We have the following claim. �e proof can be found in Appendix C.4.

Claim 23. �e following inequality holds: E[𝐶𝐹𝑡𝑜𝑡 (P)] = E[𝐶𝑠𝑤 (O𝑓 𝑎𝑖𝑟 ) +𝐶𝐹𝑚𝑣 (O𝑓 𝑎𝑖𝑟 )] ≤ E[𝐶𝑡𝑜𝑡 (O)] .
4 In the original version in [JLLS20], there is one more condition that we are currently at vertex 𝑣 to select it. Up to a factor

of 2, our version of the problem is equivalent to the original version.
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5.2.2 �e reduction.

At a high level, BudgetMG-Metric reduces an instance of MG-Metric to an instance of Stochastic- 𝑘-TSP
which has the same metric. A Markov chain S in MG-Metric is replaced by a random variable, i.e. the
random selection cost. More speci�cally, for each S = 〈𝑉 , 𝑃,𝐶, 𝑠, 𝑡〉, we consider the teasing game S𝑇 . Let
𝐶𝑠𝑙 (S) be the (random) prevailing cost of a non-qui�ing strategy where being non-qui�ing means that the
player continues to playS𝑇 until it reaches the target state. �enwe treatS as a vertex in Stochastic- 𝑘-TSP
and let its selection cost distributed as 𝐶𝑠𝑙 (S).
We note that the distribution of 𝐶𝑠𝑙 (S) (in particular, Pr[𝐶𝑠𝑙 (S) ≤ 𝐵] for any real number 𝐵) can be
computed e�ciently using the technique for computing grade (see Lemma 37 in Appendix C.2).
We establish a simple relation between the optimal cost of Stochastic- 𝑘-TSP and optimal cost of our origi-
nal problemMG-Metric. We letE[𝐶𝑠𝑙 (P)], E[𝐶𝑠𝑤 (P)], E[𝐶𝑘𝑡𝑠𝑝 (P)] be the expected selection cost, expected
switching cost and expected total cost of any strategy P for the Stochastic- 𝑘-TSP problem, respectively.
Let O𝑘𝑡𝑠𝑝 be the optimal strategy to Stochastic- 𝑘-TSP. Note that we use the same notation 𝐶𝑠𝑤 (·) to rep-
resent the switching cost for all games we have de�ned since the switching costs are counted in the same
way.
Given any instanceM, let O be the optimal strategies for this instanceM for our original problem MG-
Metric. Now, we claim that the optimal cost of Stochastic- 𝑘-TSP is no more than the optimal cost of our
original problem. �e proof of Claim 24 is via the fair game we introduced in Section 5.2.1 and can be
found in Appendix C.4.

Claim 24. With the notations de�ned above, it holds that

E[𝐶𝑘𝑡𝑠𝑝 (O𝑘𝑡𝑠𝑝)] = E[𝐶𝑠𝑤 (O𝑘𝑡𝑠𝑝) +𝐶𝑠𝑙 (O𝑘𝑡𝑠𝑝)] ≤ E[𝐶𝑡𝑜𝑡 (O)] .

Recall we are under the assumption that E[𝐶𝑡𝑜𝑡 (O)] ≤ 𝐵/10. �en we have

E[𝐶𝑘𝑡𝑠𝑝 (ALGktsp)] ≤𝛼ktspE[𝐶𝑘𝑡𝑠𝑝 (O𝑘𝑡𝑠𝑝)]
≤𝛼ktspE[𝐶𝑡𝑜𝑡 (O)]
≤𝛼ktsp𝐵/10,

where the �rst line is by �eorem 20 and the second line follows from Claim 24.

5.3 Sub-procedure BudgetMG-Metric.

Now we provide a high level description of BudgetMG-Metric. �e details can be found in Algorithm 4.
We �rst transform the problem to a Stochastic- 𝑘-TSP instanceM𝑘𝑡𝑠𝑝 , by reducing each Markov chain to a
related random variable. �en we use the constant factor approximation algorithm ALGktsp developed in
[JLLS20] to obtain an ordering Π of vertices (chains). Let Π𝑝𝑟𝑒 𝑓 be the pre�x of Π such that the switching
cost for traversing Π𝑝𝑟𝑒 𝑓 is no larger than 10𝛼ktsp𝐵. Since the expected cost of the ALGktsp of instance
M𝑘𝑡𝑠𝑝 is at most 𝛼ktsp𝐵/10, with a large constant probability, one can collect 𝐾 units of rewards from
Π𝑝𝑟𝑒 𝑓 , by Markov inequality. Obviously, ignoring the switching cost, the optimal way (optimal in terms
of movement cost) of collecting 𝐾 units of rewards from Π𝑝𝑟𝑒 𝑓 is to play the chains in Π𝑝𝑟𝑒 𝑓 according to
grade. However, such play may switch frequently among the chains and incur a huge switching cost. To
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keep the switching cost under control, we visit each chain in Π𝑝𝑟𝑒 𝑓 only once (by the way we de�ne the
pre�x, we can see the switching cost is certainly within the given budget).
A key question now is to decide when to switch to the next if the current state is not economical to keep
playing (it requires a large expected movement cost to reach the target of the chain). It turns out that we
can �nd a threshold 𝛾 𝑗+1 (which is computed from the 𝐾-th order statistics of {𝐶𝑠𝑙 (S)}S∈Π𝑝𝑟𝑒𝑓

), such that
if the grade of the current state is larger than the threshold, or our algorithm has spent too much on this
chain, say a movement budget 100𝛼ktsp𝐵 for each chain, then it is time to switch to the next chain on the
Π𝑝𝑟𝑒 𝑓 .
As mentioned, our algorithm needs to estimate the distribution of the 𝐾-th order statistic for a collection
of random variables (that is the 𝐾-th smallest value). �is can be approximated simply either by sampling
(Monte Carlo) or the Bapat-Beg theorem and the fully polynomial randomized approximation scheme
(FPRAS) for estimating the permanent [JSV04] (see the details in Appendix C.1). In the following, we
safely ignore the estimation error and error probability for clarity purpose.

Algorithm 4: Algorithm BudgetMG-Metric

1 Input: �e instanceM, objective number of rewards 𝐾
2 Process:
3 Compute the grades of all states and sort them in increasing order {𝛾 𝑗 }𝑛𝑗=1;
4 Reduce the instanceM to a Stochastic- 𝑘-TSP instanceM𝑘𝑡𝑠𝑝 , by replacing each S ∈ M with a

vertex inM𝑘𝑡𝑠𝑝 with selection cost distributed as 𝐶𝑠𝑙 (S) (See the de�nition of 𝐶𝑠𝑙 (S) in
Section 5.2.2);

5 Π ← ALGktsp(M𝑘𝑡𝑠𝑝) (Π is an ordering of vertices) ;
6 Let Π𝑝𝑟𝑒 𝑓 = {S0 = R,S1,S2, · · · ,S𝑚} be the longest pre�x of Π such that∑𝑚−1

𝑖=0 𝑑 (S𝑖 ,S𝑖+1) ≤ 10𝛼ktsp𝐵;
7 Estimate the distribution of 𝐾-th order statistic 𝐶 [𝐾 ]

𝑠𝑙
(S) for {𝐶𝑠𝑙 (S)}S∈Π𝑝𝑟𝑒𝑓

;
8 Find the unique 𝛾 𝑗 , 𝑗 ∈ [𝑛] such that Pr[𝐶 [𝐾 ]

𝑠𝑙
(S) ≤ 𝛾 𝑗 ] < 0.3 ∧ Pr[𝐶 [𝐾 ]

𝑠𝑙
(S) ≤ 𝛾 𝑗+1] ≥ 0.3 ;

9 for 𝑖 = 1, · · · ,𝑚 do
10 Pay switching cost 𝑑 (S𝑖−1,S𝑖) and switches to S𝑖 ;
11 Play S𝑖 until it reaches its target state or some condition(s) in A (de�ned below) holds. ;
12 If S𝑖 reaches its target state, let 𝐾 ← 𝐾 − 1;
13 end
14 Return: �e updated instanceM; the remaining number of target states 𝐾 ;
15 ;
16 De�ne: Conditions A (bad events):;
17 (I) �e next move on S𝑖 makes the movement cost on S𝑖 exceed 100𝛼ktsp𝐵;
18 (II) �e current grade of S𝑖 is more than 𝛾 𝑗 ;

5.4 Analysis.

Recall that it su�ces to prove that BudgetMG-Metric satis�es Lemma 18. We only need to consider the
case 𝐵 ≥ 10E[𝐶𝑡𝑜𝑡 (O)], and prove two guarantees of BudgetMG-Metric:
i) It can succeed to make 𝐾 Markov system reach their target states with probability at least 0.1;
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ii) �e expectation of its total cost is bounded by 400𝛼ktsp𝐵.
Recall that𝐶𝑠𝑙 (S) represents the (random) selection cost of S under the rule of Stochastic- 𝑘-TSP. �e set
Π𝑝𝑟𝑒 𝑓 we found in the line 5 of Algorithm 4 has some good properties stated below:

Lemma 25. Suppose 𝐵 ≥ 10E[𝐶𝑡𝑜𝑡 (O)]. �e set Π𝑝𝑟𝑒 𝑓 found in the line 5 of Algorithm 4 satis�es that
with probability at least 0.99, one has

∑𝐾
𝑖=1𝐶

[𝑖 ]
𝑠𝑙
(S) ≤ 10𝛼ktsp𝐵, where 𝐶 [𝑖 ]𝑠𝑙 (S) is the 𝑖-th order statistic for

{𝐶𝑠𝑙 (S)}S∈Π𝑝𝑟𝑒𝑓
.

Proof. As 𝐵 ≥ 10E[𝐶𝑡𝑜𝑡 (O)], we know that 𝐵 ≥ 10E[𝐶𝑠𝑙 (O𝑘𝑡𝑠𝑝) +𝐶𝑠𝑤 (O𝑘𝑡𝑠𝑝)] by Claim 24.
By �eorem 20, we know that 𝛼ktsp𝐵 ≥ 10E[𝐶𝑠𝑙 (ALGktsp) + 𝐶𝑠𝑤 (ALGktsp)]. By Markov Inequality, we
know that

Pr[𝐶𝑠𝑙 (ALGktsp) +𝐶𝑠𝑤 (ALGktsp) ≥ 10𝛼ktsp𝐵] ≤ 0.01. (3)

If
∑𝐾
𝑖=1𝐶

[𝑖 ]
𝑠𝑙
(S) > 10𝛼ktsp𝐵, then it means that

𝐶𝑠𝑙 (ALGktsp) +𝐶𝑠𝑤 (ALGktsp) ≥ 10𝛼ktsp𝐵. (4)

More speci�cally, if 𝐶𝑠𝑙 (ALGktsp) ≤ 10𝛼ktsp𝐵, as
∑𝐾
𝑖=1𝐶

[𝑖 ]
𝑠𝑙
(S) > 10𝛼ktsp𝐵, then ALGktsp needs to visit

vertices outside Π𝑝𝑟𝑒 𝑓 to select some “cheap” vertices, which incurs a switching cost larger than 10𝛼ktsp𝐵.
So either switching cost or the selection cost of ALGktsp is larger than 10𝛼ktsp𝐵.
By combining Equation 3 and Equation 4, we get

Pr
[
𝐾∑︁
𝑖=1

𝐶
[𝑖 ]
𝑠𝑙
(S) ≤ 10𝛼ktsp𝐵

]
≥ 0.99.

�

We make use of the good properties of Π𝑝𝑟𝑒 𝑓 via the fair game we de�ne in Section 5.2.1. De�ne an
important intermediate strategy GT for the input istanceM under the rule ofMG-Metric-Fair as follows:
it always chooses the Markov system in Π𝑝𝑟𝑒 𝑓 with the smallest grade (breaking ties arbitrarily) to play
under the condition that𝐶𝐹𝑚𝑣 (GT) ≤ 10𝛼ktsp𝐵, pays the fairmovement cost immediatelywhen some chain
reaches its target and halts when it makes 𝐾 systems reach their targets or the next step would break the
fair movement cost budget.
To be more clear on the stopping condition of GT on the cost budget, suppose GT has not made 𝐾 chains
reach targets, the fair movement cost spent is 𝑋 and the smallest grade among available chains (those not
in the target states) is 𝑌 . �en GT chooses the chain with smallest grade 𝑌 if 𝑋 + 𝑌 ≤ 10𝛼ktsp𝐵, and halts
if no such chain exists.5 �en we have the following claim:

Claim 26. With probability at least 0.99, GT can succeed to make 𝐾 systems reach their targets. Further, one
has:

E[𝐶𝑚𝑣 (GT)] ≤ 10𝛼ktsp𝐵.
5In fact, if there is no switching cost and no movement cost budget, GT is the optimal solution to make 𝐾 chains in Π𝑝𝑟𝑒 𝑓 to

reach targets with the minimum expected movement cost.
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Proof. �e probability of success is a direct corollary of Lemma 25, as the fair movement cost of a non-
qui�ing player on single S is exactly distributed as the selection cost 𝐶𝑠𝑙 (S). By Lemma 25, one has

Pr
[
𝐾∑︁
𝑖=1

𝐶
[𝑖 ]
𝑠𝑙
(S) ≤ 10𝛼ktsp𝐵

]
≥ 0.99,

where𝐶 [𝑖 ]
𝑠𝑙
(S) is the 𝑖-th order statistic for {𝐶𝑠𝑙 (S)}S∈Π𝑝𝑟𝑒𝑓

. Suppose there are𝑚 non-qui�ing players and
every one plays one chain on Π𝑝𝑟𝑒 𝑓 . With probability at least 0.99, the summation of the smallest 𝑘 fair
movement costs they pay will be no more than 10𝛼ktsp𝐵, in which case GT can succeed to make 𝐾 systems
reach their targets.
�e bound on movement cost follows from the de�nition and the relation that

E[𝐶𝑚𝑣 (GT)] = E[𝐶𝐹𝑚𝑣 (GT)] ≤ 10𝛼ktsp𝐵,

where the �rst equality comes from that GT is a fair player under the rule of MG-Metric-Fair. More
speci�cally, we can observe that GT is playing a series of teasing game S𝑇 , and it can get the pro�ts under
the rule ofS𝑇 and need to pay the fair movement cost under the rule of MG-Metric-Fair instead. Moreover,
its “expected fair movement cost” equals to “expected pro�ts”.
As it plays all of teasing games optimally by Lemma 10, the “expected pro�ts” equals to its “expected
movement cost”. �us, we get the equality. �

Recall again the objective is to show that BudgetMG-Metric satis�es the precondition of Lemma 18. We
prove the guarantee on success probability �rst:

Lemma 27 (Success probability). With probability at least 0.1, BudgetMG-Metric can make at least 𝐾
Markov system reach their target states.

Proof. Note that we use 𝐶𝑠𝑙 (S) for system S to represent the random selection cost under the rule of
Stochastic- 𝑘-TSP, and now we consider the instance under the original rule, i.e. inMG-Metric.
For simplicity, we use𝐶𝑚𝑣 (S, 𝛾 𝑗+1) to represent the (random) movement cost𝐶𝑚𝑣 (O(S(𝛾 𝑗+1))), where the
game S(𝛾 𝑗+1) and its optimal strategy O(S(𝛾 𝑗+1)) is used to de�ned the grade in Subsection 3.1.
Suppose we play each S ∈ Π𝑝𝑟𝑒 𝑓 one by one according to O(S(𝛾 𝑗+1)) and denote the random subset of
systems which reach their targets by Πsuc ⊆ Π𝑝𝑟𝑒 𝑓 . If |Πsuc | ≥ 𝑘 , we let 𝐶 [𝑖 ]𝑚𝑣 be the 𝑖-th order statistic for
{𝐶𝑚𝑣 (S)}S∈Πsuc and 𝑖 ∈ [𝑘], otherwise we de�ne 𝐶

[𝑖 ]
𝑚𝑣 to be the 𝑖-th order statistic when 𝑖 ∈ [|Πsuc |] and

𝐶
[𝑖 ]
𝑚𝑣 = 0 for |Πsuc | < 𝑖 ≤ 𝑘 . We have the following claim:

Pr[
𝐾∑︁
𝑖=1

𝐶
[𝑖 ]
𝑚𝑣 ≥ 100𝛼ktsp𝐵] ≤ 0.2. (5)

�is can be proved by contradiction. Suppose Pr[∑𝐾
𝑖=1𝐶

[𝑖 ]
𝑚𝑣 ≥ 100𝛼ktsp𝐵] > 0.2. Since the success probabil-

ity of GT is at least 0.99, by union bound, one can see that

Pr
[
𝐾∑︁
𝑖=1

𝐶
[𝑖 ]
𝑚𝑣 ≥ 100𝛼ktsp𝐵 ∧ GT gets 𝐾 rewards

]
≥ 0.19.
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Further, we know when event that (∑𝐾
𝑖=1𝐶

[𝑖 ]
𝑚𝑣 ≥ 100𝛼ktsp𝐵 ∧GT gets 𝐾 rewards ) happens, then the event

(𝐶𝑚𝑣 (GT) ≥ 100𝛼ktsp𝐵 ∧ GT gets 𝐾 rewards ) also happens, as
∑𝐾
𝑖=1𝐶

[𝑖 ]
𝑚𝑣 is the minimum possible move-

ment cost of any strategy which makes 𝐾 systems on Π𝑝𝑟𝑒 𝑓 reach targets. �is implies that

Pr
[
𝐶𝑚𝑣 (GT) ≥ 100𝛼ktsp𝐵 ∧ GT gets 𝐾 rewards

]
≥ Pr

[
𝐾∑︁
𝑖=1

𝐶
[𝑖 ]
𝑚𝑣 ≥ 100𝛼ktsp𝐵 ∧ GT gets 𝐾 rewards

]
≥ 0.19.

Further, the inequality Pr[𝐶𝑚𝑣 (GT) ≥ 100𝛼ktsp𝐵] ≥ 0.19 follows directly and the expected movement cost
of GT is at least 100𝛼ktsp𝐵 ∗ 0.19 = 19𝛼ktsp𝐵. �is contradicts Claim 26. �us we complete the proof of
Equation 5.

Moreover, we know that Pr[𝐶 [𝑘 ]
𝑠𝑙
(S) ≤ 𝛾 𝑗+1] ≥ 0.3 by the condition in Line 8 in BudgetMG-Metric. By

Union bound, we know that

Pr
[
𝐶
[𝑘 ]
𝑠𝑙
(S) ≤ 𝛾 𝑗+1 ∧

𝐾∑︁
𝑖=1

𝐶
[𝑖 ]
𝑚𝑣 ≤ 100𝛼ktsp𝐵

]
≥ 0.1,

which implies the success probability of BudgetMG-Metric. More speci�cally, the event 𝐶 [𝑘 ]
𝑠𝑙
(S) ≤ 𝛾 𝑗+1

ensures that the random subset |Πsuc | ≥ 𝐾 , in which case event
∑𝐾
𝑖=1𝐶

[𝑖 ]
𝑚𝑣 ≤ 100𝛼ktsp𝐵 implies that our

algorithm BudgetMG-Metric can make at least 𝐾 chains reach target states. �

Now it remains to bound the expected total cost of BudgetMG-Metric. We state a technical result at �rst.

Claim 28. With probability at least 0.65, GT can succeed to make 𝐾 systems reach their targets with no less
movement cost than BudgetMG-Metric. In other word, one has

Pr[GT gets 𝐾 rewards ∧𝐶𝑚𝑣 (GT) ≥ 𝐶𝑚𝑣 (BudgetMG-Metric)] ≥ 0.65.

Proof. On one hand, by Claim 26, we know the success probability of GT is at least 0.99, i.e.

Pr[GT gets 𝐾 rewards ] ≥ 0.99. (6)

On the other hand, we know that Pr[𝐶 [𝐾 ]
𝑠𝑙
(S) > 𝛾 𝑗 ] ≥ 0.7, which means that

Pr[𝐶 [𝐾 ]
𝑠𝑙
(S) ≥ 𝛾 𝑗+1] ≥ 0.7, (7)

as we have assumed that the grade is distinct of each other. By Union Bound over Equation 6 and Equa-
tion 7, one has

Pr[GT gets 𝐾 rewards ∧𝐶 [𝐾 ]
𝑠𝑙
(S) ≥ 𝛾 𝑗+1] ≥ 0.69.

Conditioning on that 𝐶 [𝐾 ]
𝑠𝑙
(S) ≥ 𝛾 𝑗+1 holds and GT succeeds to get 𝐾 units of rewards, the grade of all

𝑀𝑎𝑟𝑘𝑜𝑣𝑠𝑦𝑠𝑡𝑒𝑚 ∈ Π𝑝𝑟𝑒 𝑓 a�erGT halts are at least𝛾 𝑗+1. �is is true asGT always chooses the𝑀𝑎𝑟𝑘𝑜𝑣𝑠𝑦𝑠𝑡𝑒𝑚
in the Π𝑝𝑟𝑒 𝑓 with the smallest grade to advance. As BudgetMG-Metric never plays the system when the
grade of its current state exceeds 𝛾 𝑗+1, we know 𝐶𝑚𝑣 (GT) ≥ 𝐶𝑚𝑣 (BudgetMG-Metric). In particular,

Pr[𝐶𝑚𝑣 (GT) ≥ 𝐶𝑚𝑣 (BudgetMG-Metric)] ≥ Pr[GT gets 𝐾 rewards ∧𝐶 [𝐾 ]
𝑠𝑙
(S) ≥ 𝛾 𝑗+1] ≥ 0.69.
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Combining these together, one has

Pr[GT gets 𝐾 rewards ∧𝐶𝑚𝑣 (GT) ≥ 𝐶𝑚𝑣 (BudgetMG-Metric)]
= Pr [𝐶𝑚𝑣 (GT) ≥ 𝐶𝑚𝑣 (BudgetMG-Metric) | GT gets 𝐾 rewards] · Pr[GT gets 𝐾 rewards]

≥ Pr
[
𝐶
[𝐾 ]
𝑠𝑙
(S) ≥ 𝛾 𝑗+1 | GT gets 𝐾 rewards

]
· Pr[GT gets 𝐾 rewards]

≥ Pr
[
𝐶
[𝐾 ]
𝑠𝑙
(S) ≥ 𝛾 𝑗+1 | GT gets 𝐾 rewards

]
∗ 0.99,

where the �rst inequality comes from the argument above and the second inequality comes from Equa-
tion 6.
�e remaining is to bound Pr

[
𝐶
[𝐾 ]
𝑠𝑙
(S) ≥ 𝛾 𝑗+1 | GT gets 𝐾 rewards

]
. By conditional probability, we know

that

Pr
[
𝐶
[𝐾 ]
𝑠𝑙
(S) ≥ 𝛾 𝑗+1 | GT gets 𝐾 rewards

]
=
Pr[𝐶 [𝐾 ]

𝑠𝑙
(S) ≥ 𝛾 𝑗+1 ∧ GT gets 𝐾 rewards]
Pr[GT gets 𝐾 rewards] ≥ 0.69,

which can complete the proof with elementary calculation. �

Now we are ready to bound the total cost.

Lemma 29 (Bounded expected cost). �e expected total cost of BudgetMG-Metric is upper bounded by
𝑂 (1)𝐵. More speci�cally, one has

E[𝐶𝑡𝑜𝑡 (BudgetMG-Metric)] ≤ 410𝛼ktsp𝐵.

Proof. We prove this by contradiction. Suppose E[𝐶𝑡𝑜𝑡 (BudgetMG-Metric)] > 410𝛼ktsp𝐵. Recall that the
switching cost of BudgetMG-Metric is at most 10𝛼ktsp𝐵. �en the assumption implies that

E[𝐶𝑡𝑜𝑡 (BudgetMG-Metric)] > 400𝛼ktsp𝐵.

In fact, BudgetMG-Metric plays each system in Π𝑝𝑟𝑒 𝑓 independently of other system. Recall that we let
𝐶𝑚𝑣 (S) be the (random)movement cost𝐶𝑚𝑣 (O(S(𝛾 𝑗+1))). �e only di�erence betweenBudgetMG-Metric
and O(S(𝛾 𝑗+1)) on S is that BudgetMG-Metric stops playing S if the next step will break the movement
budget 100𝛼ktsp𝐵. We let 𝐶 ′𝑚𝑣 (S) be the (random) movement cost BudgetMG-Metric spends on S and
obviously, we have E[𝐶𝑚𝑣 (BudgetMG-Metric)] = ∑

S∈Π𝑝𝑟𝑒𝑓
E[𝐶 ′𝑚𝑣 (S)].

�e assumption implies that
∑
S∈Π𝑝𝑟𝑒𝑓

E[𝐶 ′𝑚𝑣 (S)] > 400𝛼ktsp𝐵. By the Condition (I) in A, 𝐶 ′𝑚𝑣 (S) ∈
[0, 100𝛼ktsp𝐵]. By Cherno� bound (�eorem 30), one has:

Pr


∑︁
S∈Π𝑝𝑟𝑒𝑓

𝐶 ′𝑚𝑣 (S) ≤ 200𝛼ktsp𝐵
 ≤ Pr


���� ∑︁
S∈Π𝑝𝑟𝑒𝑓

𝐶 ′𝑚𝑣 (S) − E[
∑︁

S∈Π𝑝𝑟𝑒𝑓

𝐶 ′𝑚𝑣 (S)]
���� ≥ 300𝛼ktsp𝐵

 ≤ 2𝑒−9/2 ≤ 0.1,

which means with probability at least 0.9, the movement cost of BudgetMG-Metric exceeds 200𝛼ktsp𝐵, i.e.

Pr[𝐶𝑚𝑣 (BudgetMG-Metric) ≥ 200𝛼ktsp𝐵] = Pr


∑︁
S∈Π𝑝𝑟𝑒𝑓

𝐶 ′𝑚𝑣 (S) ≥ 200𝛼ktsp𝐵
 ≥ 0.9. (8)
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In particular, by Claim 28, with probability at least 0.65,GT paysmoremovement cost thanBudgetMG-Metric.
�en by union bound, one has

Pr[𝐶𝑚𝑣 (GT) ≥ 200𝛼ktsp𝐵] ≥ 0.55,

which implies that E[𝐶𝑚𝑣 (GT)] ≥ 110𝛼ktsp𝐵 and contradicts Claim 26.
�us we complete the proof. �

Hitherto we have proved that BudgetMG-Metric satis�es Lemma 18, and thus �nished the proof of the
main result:

�eorem 5. �ere is a constant factor approximation algorithm for the MG-Metric problem.

6 Conclusions and Open Problems

In this work, we present a simple index strategy for MG-Unit and a more involved algorithm for MG-
Metric, both achieving constant approximation ratios. We did not a�empt to optimize the exact constants
and the constants directly implied from our analysis are quite large for both problems. 6 Designing new
algorithms or analysis with small approximation constants is a very interesting further direction. In par-
ticular, we suspect the approximation ratio of MG-Unit is a small constant.
One interesting future direction is to study the general problem proposed in [GJSS19] with switching cost.
In particular, there is a given combinatorial constraint F ⊆ 2[𝑛] , and our goal is to make a subset 𝐹 ∈ F of
chains reach their targets. Another interesting extension is to signi�cantly generalize the stochastic reward
𝑘-TSP studied in [ENS18, JLLS20] as follows: we have metric graph, in which each node is associated with
a Markov chain. Each target state of a Markov chain is associated with a random reward 𝑅𝑣 ∈ Z+, which
is realized when we reach the target. �e goal is to collect a total reward of at least 𝑘 .
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6�e approximation ratio implied from the current analysis of MG-Unit is around 105, estimated as follows. BudgetMG-Unit
uses 28𝐵 budget and can succeed with probability at least 1/20 conditioning on that the expected cost of optimal solution is no
more than 𝐵/10. Plugging these constants in Lemma 12, we know the 𝛽 in the doubling framework should be set as 1/𝛽2 =

1− 1/20 = 0.95, and the �nal approximation ratio can be around 28 ∗ 10
𝛽−1 ≈ 105. �e approximation ratio of MG-Metric depends

on the the approximation ratio for Stochastic- 𝑘-TSP, which is already quite large.
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A Appendix for Section 3

A.1 Concentration Inequalities

We need the following two well known concentration inequalities.

�eorem 30 (Cherno�-Hoe�ding Bound). Let 𝑋1, 𝑋2, · · · , 𝑋𝑛 be independent random variables taking val-
ues in [0, 1] and de�ne 𝑋 := 1

𝑛

∑
𝑖∈[𝑛] 𝑋𝑖 . �en for any 𝜖 ∈ [0, 1], we have

P [|𝑋 − E[𝑋 ] | ≥ 𝜖] ≤ 2 exp
(
−𝑛𝜖2/2

)
.

�eorem 31 (Freedman’s Inequality, �eorem 1.6 in [Fre75]). Consider a real-valued martingale di�erence
sequence {𝑋𝑡 }𝑡 ≥0 such that 𝑋0 = 0, and E[𝑋𝑡+1 |F𝑡 ] = 0 for all 𝑡 , where {F𝑡 }𝑡 ≥0 is the �ltration de�ned by the
martingale. Assume that the sequence is uniformly bounded, i.e., |𝑋𝑡 | ≤ 𝑀 almost surely for all 𝑡 . Now de�ne
the predictable quadratic variation process of the martingale to be𝑊𝑡 =

∑𝑡
𝑗=1 E[𝑋 2

𝑗 |F𝑗−1] for all 𝑡 ≥ 1. �en
for all ℓ ≥ 0 and 𝜎2 > 0 and any stopping time 𝜏 , we have

P
[��� 𝜏∑︁
𝑗=0

𝑋 𝑗

��� ≥ ℓ ∧𝑊𝜏 ≤ 𝜎2for some stopping time 𝜏
]
≤ 2 exp

(
− ℓ2/2
𝜎2 +𝑀ℓ/3

)
.

A.2 �e Doubling Technique

A.2.1 Proof of Lemma 11

Lemma 11. For any 𝑗 ≥ 𝑖 ≥ 1 and any Algorithm BudgetMG, one has

E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖))] ≥ E[𝐶𝑡𝑜𝑡 (O(M 𝑗 , 𝑘 𝑗 ))] .

Notice that the randomness is over an entire run of Algo-MG.

Proof. For any phases 𝑖 ≥ 0, we de�ne:

• 𝜔𝑖,S : the trajectory of Markov system S traversed by Algo-MG in the �rst 𝑖 phases.

• 𝜔𝑖 = ∪S∈S𝜔𝑖,S : the collection of the trajectories of all Markov system systems traversed by Algo-MG
in the �rst 𝑖 phases.

At a �rst glance, O(M 𝑗 , 𝑘 𝑗 ) is a sub-tree ofO(M𝑖 , 𝑘𝑖) and this inequality holds directly. But this is not true
as O(M 𝑗 , 𝑘 𝑗 ) is required to start at the root R.
In particular, we know thatM𝑖 and 𝑘𝑖 can be determined by 𝜔𝑖 . First, for all 𝑗 ≥ 𝑖 ≥ 0, we have that

E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖))] = E𝜔 𝑗

[
E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖)) | 𝜔 𝑗 ]

]
.

Now, �xing any possible 𝜔 𝑗 , it su�ces to prove that

E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖)) | 𝜔 𝑗 ] ≥ E[𝐶𝑡𝑜𝑡 (O(M 𝑗 , 𝑘 𝑗 )) | 𝜔 𝑗 ] . (9)
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Note that we can represent the strategy O(M𝑖 , 𝑘𝑖) as a decision tree. No ma�er what (M 𝑗 , 𝑘 𝑗 ) is for the
𝑗-th phase, we consider the algorithm ALG(M 𝑗 , 𝑘 𝑗 ) which uses the decision tree of O(M𝑖 , 𝑘𝑖), pretending
not to know 𝜔 𝑗 \ 𝜔𝑖 . �e only di�erence is that we do not charge the movement cost of ALG(M 𝑗 , 𝑘 𝑗 ) for
those transitions occurring at 𝜔 𝑗 \ 𝜔𝑖 .
�us we know that

E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖)) | 𝜔 𝑗 ] ≥ E[𝐶𝑡𝑜𝑡 (ALG(M 𝑗 , 𝑘 𝑗 )) | 𝜔 𝑗 ] ≥ E[𝐶𝑡𝑜𝑡 (O(M 𝑗 , 𝑘 𝑗 )) | 𝜔 𝑗 ],

where the second inequality comes from the optimality of O(M 𝑗 , 𝑘 𝑗 ). By integrating over all possible 𝜔 𝑗 ,
we can complete the proof. �

A.2.2 Proof of Lemma 12

Lemma 12. We are given some MG-Metric (or MG-Unit) instanceM, objective number of rewards 𝑘 and
non-negative real number 𝐵 ∈ R≥0. For any 𝐵 > 𝑐1E[𝐶𝑡𝑜𝑡 (O(M, 𝑘))], if we can get an algorithm BudgetMG
with E[BudgetMG] ≤ 𝑐2𝐵 and can succeed with probability more than 0.01 where 𝑐1, 𝑐2 are some universal
constant, then we can get an 𝑂 (1)-approximation algorithm for MG-Metric (or MG-Unit).

Proof. Assume that minS∈S 𝑑 (S,R) = 1. If there is an algorithm BudgetMG satisfying the precondition
in this lemma, we can put it into the general framework Algo-MG and argue that Algo-MG is an 𝑂 (1)-
approximation algorithm forMG-Metric (orMG-Unit). LetM, 𝐾 be the original input in Algorithm 1 and
for simplicity let O be the optimal strategy O(M, 𝐾).
We need some notations for any phases 𝑖 ≥ 0, 𝑗 ≥ 1:

• 𝑢 𝑗 (𝜔𝑖): probability that Algo-MG enters phase 𝑗 + 1 conditioning on 𝜔𝑖 .
• 𝑢 𝑗 : probability that Algo-MG enters phase 𝑗 + 1.

Notice that 𝑢𝑖−1(𝜔𝑖−1) is the indicator variable that Algo-MG enters phase 𝑖 . For 𝑖-th phase, as the budget
of BudgetMG(M𝑖−1, 𝑘𝑖−1, 𝐵𝑖) is 𝐵𝑖 = 𝑐2𝛽𝑖 , the total cost of Algo-MG is at most 2𝑐2𝛽𝑖 for 𝑖th phase. Note
that E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖))] is a random variable with randomness from 𝜔𝑖 .
Let 1𝜔𝑖−1 be the indicator variable that E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖)) | 𝜔𝑖−1] ≥ 1

𝑐1
𝛽𝑖 . If the precondition in the state-

ment holds, we know that there exists some universal constant 𝛽 > 1, for any phase 𝑖 ≥ 0, and any possible
𝜔𝑖−1 such that the algorithm Algo-MG satis�es

𝑢𝑖 (𝜔𝑖−1) ≤
𝑢𝑖−1(𝜔𝑖−1)

𝛽2
+ 1𝜔𝑖−1 . (10)

To make it more clear, we only need to consider the case when𝑢𝑖−1(𝜔𝑖−1) = 1 and 1𝜔𝑖−1 = 0, as𝑢𝑖−1(𝜔𝑖−1) =
0 can imply 𝑢𝑖 (𝜔𝑖−1) = 0 directly and the inequality holds. Besides, if 1𝜔𝑖−1 = 0, then we know 𝑢𝑖 (𝜔𝑖−1) ≥
1 − 0.01 = 0.99 by the precondition of the statement. Se�ing 1/𝛽2 ≥ 0.99 can handle this case.
Now our objective is to show that E[𝐶𝑡𝑜𝑡 (Algo-MG)] ≤ 𝑂 (1) · E[𝐶𝑡𝑜𝑡 (O)] by using Equation 10.
As we have shown E[𝐶𝑡𝑜𝑡 (O) | 𝜔𝑖−1] ≥ E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖)) | 𝜔𝑖−1] in the proof of Lemma 11 for any
possible 𝜔𝑖−1, then E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖)) | 𝜔𝑖−1] ≥ 𝐵 means that E[𝐶𝑡𝑜𝑡 (O) | 𝜔𝑖−1] ≥ 𝐵 for any real number
𝐵, which gives us:

Pr[E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖)) ≥ 𝐵] ≤ Pr[E[𝐶𝑡𝑜𝑡 (O)] ≥ 𝐵]
=1E[𝐶𝑡𝑜𝑡 (O) ≥𝐵 ],
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where 1E[𝐶𝑡𝑜𝑡 (O) ≥𝐵 ] is a deterministic indicator variable that E[𝐶𝑡𝑜𝑡 (O) ≥ 𝐵]. By taking expectation of
both sides of Equation 10, we have

𝑢𝑖 ≤ 𝑢𝑖−1/𝛽2 + Pr[E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖)) ≥
1
𝑐1
𝛽𝑖]], ∀𝑖 ≥ 0.

Multiplying 𝛽𝑖 on both sides and taking summation of all 𝑖 , we have∑︁
𝑖≥1

𝑢𝑖 · 𝛽𝑖 ≤ 𝑢0/𝛽 + 1/𝛽 ·
∑︁
𝑖≥1

𝑢𝑖 · 𝛽𝑖 +
∑︁
𝑖≥1

Pr[E[𝐶𝑡𝑜𝑡 (O(M𝑖 , 𝑘𝑖))] ≥
1
𝑐1
𝛽𝑖] · 𝛽𝑖

≤ 𝑢0/𝛽 + 1/𝛽 ·
∑︁
𝑖≥1

𝑢𝑖 · 𝛽𝑖 +
∑︁
𝑖≥1

Pr[E[𝐶𝑡𝑜𝑡 (O)] ≥
1
𝑐1
𝛽𝑖] · 𝛽𝑖

= 1/𝛽 + 1/𝛽 ·
∑︁
𝑖≥1

𝑢𝑖 · 𝛽𝑖 +
∑︁
𝑖≥1

1E[𝐶𝑡𝑜𝑡 (O) ] ≥ 1
𝑐1
𝛽𝑖 · 𝛽𝑖

≤ 1/𝛽 + 1/𝛽 ·
∑︁
𝑖≥1

𝑢𝑖 · 𝛽𝑖 +𝑂 (1) · E[𝐶𝑡𝑜𝑡 (O)],

which implies that

(1 − 1/𝛽) ·
∑︁
𝑖≥1

𝑢𝑖 · 𝛽𝑖 ≤ 1/𝛽 +𝑂 (1) · E[𝐶𝑡𝑜𝑡 (O)] .

Besides, recall the assumption that minS∈S 𝑑 (S,R) = 1, one has E[𝐶𝑡𝑜𝑡 (O)] ≥ 1 and that

E[𝐶𝑡𝑜𝑡 (Algo-MG)] ≤ 𝑂 (1) ·
∑︁
𝑖≥0
(𝑢𝑖 − 𝑢𝑖+1) · 𝛽𝑖+1 = 𝑂 (1) (𝛽 − 1) ·

∑︁
𝑖≥0

𝑢𝑖 · 𝛽𝑖 .

Combining these together, we get E[𝐶𝑡𝑜𝑡 (Algo-MG)] ≤ 𝑂 (1) · E[𝐶𝑡𝑜𝑡 (O)]. �

B Appendix for Section 4

B.1 Algorithm.

Algorithm B.1 is simply an instantiation of the doubling framework Algorithm 2.
Algorithm 5: Algorithm for MG-Unit (for analysis purpose)
1 Set 𝛽 ∈ (1, 2);
2 Set 𝑘0 = 1;
3 SetM0 =M;
4 Set 𝑐1 = 𝑂 (1);
5 for phase 𝑖 = 0, 1, · · · do
6 (M𝑖 , 𝑘𝑖) ← BudgetMG-Unit(M𝑖 , 𝑐1𝛽

𝑖) (Algorithm 3);
7 if 𝑘𝑖 ≤ 0 then
8 Break
9 end

10 end

One has the following claim:

26



Claim 32. Algorithm 5 has expected cost at least that of Algorithm 2.

Proof. Actually, Algorithm 5 and Algorithm 2 proceed in the same manner, but whilst Algorithm 2 halts
when �nding a unit reward, Algorithm 5 continues until the end of the phase. Algorithm 2 only costs
less. �

By the previous claim, it su�ces to prove that Algorithm 5 achieves a constant approximation factor for
MG-Unit.

B.2 Proof of Lemma 17

Lemma 17. Suppose 𝑋1, 𝑋2, · · · , 𝑋𝑛 are a sequence of random variables taking values in {0, 1}, and F𝑗 =

𝜎 (𝑋1, · · · , 𝑋 𝑗 ) is the �ltration de�ned by the sequence. Given any real number 𝜇, if
∑𝑛
𝑗=1 E[𝑋 𝑗 | F𝑗−1] ≥ 𝜇,

then

Pr[
𝑛∑︁
𝑗=1

𝑋 𝑗 ≥ 1] ≥ 1 − 𝑒−3𝜇/8.

Proof. We construct a Martingale di�erence sequence (MDS) 𝑌1, · · · , 𝑌𝑛 to prove this lemma where 𝑌𝑗 =
𝑋 𝑗 − E[𝑋 𝑗 | F𝑗−1]. It is easy to check that {𝑌𝑗 } is a MDS: First E[|𝑌𝑗 |] ≤ 1. Second, E[𝑌𝑗 | F𝑗−1] = E[𝑋 𝑗 |
F𝑗−1] − E[𝑋 𝑗 | F𝑗−1] = 0.
We try to use Freedman’s Inequality (�eorem 31). One has

𝑊𝑡 =

𝑡∑︁
𝑗=1
E[𝑌 2

𝑗 | F𝑗−1] ≤
𝑡∑︁
𝑗=1
E[𝑋 2

𝑗 | F𝑗−1] ≤
𝑡∑︁
𝑗=1
E[𝑋 𝑗 | F𝑗−1] .

Hence we have

Pr[
𝑛∑︁
𝑗=1

𝑋 𝑗 = 0] = Pr
[
𝑛∑︁
𝑗=1

𝑌𝑗 = −
𝑛∑︁
𝑗=1
E[𝑋 𝑗 | F𝑗−1]

]
≤ Pr

[
𝑛∑︁
𝑗=1

𝑌𝑗 ≤ −𝜇 ∧𝑊𝑛 ≤ 𝜇
]

≤ exp(−3𝜇/8) .

�

B.3 A Counter Example

�e simple index-based strategy is a constant factor approximation in unit metric space. However, there
is a simple counter example with non-unit switching cost in which BudgetMG-Unit performs arbitrarily
worse than the optimal strategy.
Consider the following instance: We are given a metric spaceM = (S ∪ {R}, 𝑑). �ere are only two kinds
of Markov system. �e �rst kind of Markov system S =< {𝑠, 𝑡, 𝑥} , 𝑃,𝐶, 𝑠, 𝑡 >, where𝐶𝑠 = 0,𝐶𝑥 = +∞, and
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𝑃𝑠,𝑡 = 𝜖, 𝑃𝑠,𝑥 = 1 − 𝜖, 𝑃𝑥,𝑡 = 1. �e second kind of Markov system S′ has the similar structure, except that
𝑃 ′𝑠,𝑡 = 𝜖/2 and 𝑃 ′𝑠,𝑥 = 1 − 𝜖/2. �e in�nite set S = {S1,S2, · · · } ∪ {S′1,S′2, · · · }.

Let 𝑑 (R,S𝑘 ) = 1 for all 𝑘 and 𝑑 (Sk,Sj) = 1 for 𝑘 ≠ 𝑗 . Let 𝑑 (S′𝑗 ,R) = 𝑑 (S′𝑗 ,S𝑘 ) =
∑𝑗

𝑖=1 2−𝑖+1 for all 𝑘 . As for
the distances between the second kind of Markov system, for 𝑘 < 𝑗 , we set 𝑑 (S′

𝑘
,S′𝑗 ) =

∑𝑗−1
𝑖=𝑘−1 2

−𝑖 .
We are at R in the beginning and need to pay the switching cost to advance any one of Markov system.
�e optimal strategy is obviously pay unit switching cost and continue playing the second kind of Markov
system until ge�ing unit reward, and the total cost is no more than 2. But the greedy algorithm 2 always
chooses one of the �rst kind of Markov system S𝑖 to advance, with the expected cost 1/𝜖 , which can be
large arbitrarily.

C Appendix for Section 5

C.1 Estimate Order Statistics

De�nition 33 (Permanent). �e permanent of an 𝑛 × 𝑛 matrix 𝐴 is de�ned by

per(𝐴) =
∑︁
𝜎

𝐴𝑖,𝜎 (𝑖) ,

where the sum is over all permutations 𝜎 of {1, 2, · · · , 𝑛}.

�eorem 34 (Bapat-Beg theorem). Let 𝑋1, · · · , 𝑋𝑛 be independent real valued random variables with cu-
mulative distribution functions respectively 𝐹1(𝑥), · · · , 𝐹𝑛 (𝑥). Write 𝑋 (1) , · · · , 𝑋 (𝑛) for the order statistics.
�en the joint probability distribution of the 𝑛1, · · · , 𝑛𝑘 order statistics (with 𝑛1 < 𝑛2 < · · · < 𝑛𝑘 and
𝑥1 < 𝑥2 < · · · < 𝑥𝑘 ) is

𝐹𝑋 (𝑛1) ,...,𝑋 (𝑛𝑘 )
(𝑥1, . . . , 𝑥𝑘 ) = Pr

(
𝑋 (𝑛1) ≤ 𝑥1 ∧ 𝑋 (𝑛2) ≤ 𝑥2 ∧ · · · ∧ 𝑋 (𝑛𝑘 ) ≤ 𝑥𝑘

)
=

𝑛∑︁
𝑖𝑘=𝑛𝑘

· · ·
𝑖3∑︁

𝑖2=𝑛2

𝑖2∑︁
𝑖1=𝑛1

𝑃𝑖1,...,𝑖𝑘 (𝑥1, . . . , 𝑥𝑘 )
𝑖1! (𝑖2 − 𝑖1)! · · · (𝑛 − 𝑖𝑘 )!

,

where

𝑃𝑖1,...,𝑖𝑘 (𝑥1, . . . , 𝑥𝑘 ) =

per



𝐹1 (𝑥1) · · · 𝐹1 (𝑥1) 𝐹1 (𝑥2) − 𝐹1 (𝑥1) · · · 𝐹1 (𝑥2) − 𝐹1 (𝑥1) · · · 1 − 𝐹1 (𝑥𝑘 ) · · · 1 − 𝐹1 (𝑥𝑘 )
𝐹2 (𝑥1) · · · 𝐹2 (𝑥1) 𝐹2 (𝑥2) − 𝐹2 (𝑥1) · · · 𝐹2 (𝑥2) − 𝐹2 (𝑥1) · · · 1 − 𝐹2 (𝑥𝑘 ) · · · 1 − 𝐹1 (𝑥𝑘 )

...
...

...

𝐹𝑛 (𝑥1) · · · 𝐹𝑛 (𝑥1)︸                ︷︷                ︸
𝑖1

𝐹𝑛 (𝑥2) − 𝐹𝑛 (𝑥1) · · · 𝐹𝑛 (𝑥2) − 𝐹𝑛 (𝑥1)︸                                           ︷︷                                           ︸
𝑖2−𝑖1

· · · 1 − 𝐹𝑛 (𝑥𝑘 ) · · · 1 − 𝐹𝑛 (𝑥𝑘 )︸                           ︷︷                           ︸
𝑛−𝑖𝑘


�eorem 35. �ere exists a fully polynomial randomized approximation scheme for the permanent of an
arbitrary 𝑛 × 𝑛 matrix A with nonnegative entries.

Lemma 36. For the set of distributions𝐶1
𝑠𝑙
,𝐶2
𝑠𝑙
, · · · ,𝐶𝑛

𝑠𝑙
from which we can take i.i.d. samples, de�ne𝐶 [𝐾 ]

𝑠𝑙
be

the 𝐾-th order statistic. For any real number 𝑥 ∈ 𝑅, we can estimate the value Pr[𝐶 [𝑘 ]
𝑠𝑙
≤ 𝑥] within additive

error 𝜖 with probability at least 1 − 1/poly(𝑛) in polynomial time.
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Proof. 𝑂 (log𝑛) samples are enough to get an estimation of Pr[𝐶 [𝑘 ]
𝑠𝑙
(S) ≤ 𝑥] within additive error 𝜖 = 0.01

with probability at least 1 − 1/poly(𝑛) by using Cherno�-Hoe�ding Bound (�eorem 30).
�is can also be replaced by the fully polynomial randomized approximation scheme (FPRAS) in [JSV04]
to estimate the permanent of 𝑛 − 𝑘 matrices constructed according to Bapat-Beg theorem. �

C.2 Computation of Index and CDF

Lemma 37. We can calculate the cumulative distribution function of 𝐶𝑠𝑙 (S) e�ciently.

Proof of Lemma 37. Consider the Markov system 〈𝑉 , 𝑃,𝐶, 𝑠, 𝑡〉. For simplicity, we denote the Gi�ins
index of states in 𝑉 as 𝛾1 < 𝛾2 < · · · < 𝛾𝑛 where |𝑉 | = 𝑛 and 𝛾1 = 0 being the Gi�ins Index of the target
state 𝑡 .
For any 𝛾𝑖 ≤ 𝐵 < 𝛾𝑖+1, we know that

Pr[𝐶𝑠𝑙 (S) ≤ 𝐵] = Pr[𝐶𝑠𝑙 (S) ≤ 𝛾𝑖] .

Let𝑈 contain those states whose Gi�ins Index are larger than 𝛾𝑖 . For state 𝑣 , let 𝑥𝑣 be the probability that
the non-qui�ing player can get no more than 𝛾𝑖 units of pro�ts under the rule of S𝑇 conditioning on he
is at state 𝑣 currently. �en we know that 𝑥𝑣 =

∑
𝑢∈𝑁 (𝑣) 𝑃𝑣,𝑢𝑥𝑢 , where 𝑁 (𝑣) = {𝑢 ∈ 𝑉 | 𝛾𝑢 ≤ 𝛾 𝑗 } if 𝑣 ∉ 𝑈 ;

and 𝑥𝑣 = 0 if 𝑣 ∈ 𝑈 .
�en it involves solving a 𝑖 × 𝑖 system of equations, which can be done some standard techniques like LU
decomposition in 𝑂 (𝑖3) time. �

C.3 Algorithm Framework

We present our Algorithm Framework (Algorithm 6) here.

Algorithm 6: Algorithm MG-Metric

1 Input: �e instanceM, objective number of rewards 𝐾
2 Process:
3 set 𝛽 ∈ (1, 2);
4 set 𝑘0 ← 𝐾 ;
5 setM0 ←M;
6 for phase 𝑖 = 1, · · · do
7 (M𝑖 , 𝑘𝑖) ← BudgetMG-Metric(M, 𝐾, 50000𝛽𝑖);
8 if 𝑘𝑖 ≤ 0 then
9 Break

10 end
11 end
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C.4 Omitted Proof

C.4.1 Proof of Claim 23

Claim 23. �e following inequality holds: E[𝐶𝐹𝑡𝑜𝑡 (P)] = E[𝐶𝑠𝑤 (O𝑓 𝑎𝑖𝑟 ) +𝐶𝐹𝑚𝑣 (O𝑓 𝑎𝑖𝑟 )] ≤ E[𝐶𝑡𝑜𝑡 (O)] .

Proof. From another perspective, the player is playing a series of the teasing game S𝑇 with switching cost.
In the rule of S𝑇 , the player can get some amount of pro�ts on the target state of S, while in the rule
MG-Metric-Fair, the player should pay the same amount of fair movement cost.
By Lemma 10, we know that S𝑇 is a fair game. In fact, if we exempt the switching cost, we can treat
𝐶𝐹𝑚𝑣 (O) as the summation of pro�ts and 𝐶𝑚𝑣 (O) as the movement cost of a series of fair game S𝑇 for the
strategy O. Because of the fairness, one has E[𝐶𝐹𝑚𝑣 (O)] ≤ E[𝐶𝑚𝑣 (O)] and further

E[𝐶𝑠𝑤 (O) +𝐶𝐹𝑚𝑣 (O)] ≤ E[𝐶𝑡𝑜𝑡 (O)] . (11)

�en by the optimality of O𝑓 𝑎𝑖𝑟 , we know

E[𝐶𝑠𝑤 (O𝑓 𝑎𝑖𝑟 ) +𝐶𝐹𝑚𝑣 (O𝑓 𝑎𝑖𝑟 )] ≤ E[𝐶𝑠𝑤 (O) +𝐶𝐹𝑚𝑣 (O)] . (12)

Combining Equation 11 and Equation 12, we complete the proof of the claim. �

C.4.2 Proof of Claim 24

Claim 24. With the notations de�ned above, it holds that

E[𝐶𝑘𝑡𝑠𝑝 (O𝑘𝑡𝑠𝑝)] = E[𝐶𝑠𝑤 (O𝑘𝑡𝑠𝑝) +𝐶𝑠𝑙 (O𝑘𝑡𝑠𝑝)] ≤ E[𝐶𝑡𝑜𝑡 (O)] .

Recall that we have de�ned the gameMG-Metric-Fair and E[𝐶𝐹𝑚𝑣 (P) +𝐶𝑠𝑤 (P)] is the expected fair move-
ment cost plus the expected switching cost of any strategy P under the rule of MG-Metric-Fair. Now we
let E[𝐶𝑠𝑙 (P)] and E[𝐶𝑠𝑤 (P)] be the expected selected cost and expected switching cost of any strategy P
under the rule of Stochastic- 𝑘-TSP respectively. Let O𝑘𝑡𝑠𝑝 be the optimal strategy to Stochastic- 𝑘-TSP.
Note that we use the same notation 𝐶𝑠𝑤 (·) to represent the expected switching cost as these three games
have the same rules about switching costs.
Given any instanceM, let O and O𝑓 𝑎𝑖𝑟 be the optimal strategies for this instanceM under the rule of
MG-Metric and MG-Metric-Fair respectively, and letM𝑆𝐶 be the Stochastic- 𝑘-TSP instance transferred
fromM by the above argument. Now we show how to prove claim 24.

Proof. In fact, with the notation de�ned above, one has

E[𝐶𝑠𝑤 (O𝑘𝑡𝑠𝑝) +𝐶𝑠𝑙 (O𝑘𝑡𝑠𝑝)] ≤ E[𝐶𝑠𝑤 (O𝑓 𝑎𝑖𝑟 ) +𝐶𝐹𝑚𝑣 (O𝑓 𝑎𝑖𝑟 )] ≤ E[𝐶𝑡𝑜𝑡 (O)] .

We only need to prove the �rst inequality as the second equality has been proved in Claim 23.
To see the �rst inequality, we can look at Stochastic- 𝑘-TSP from another perspective. Suppose we know
the decision tree of O𝑓 𝑎𝑖𝑟 , and construct another strategy ALG𝐹 based on the decision tree under a special
rule equivalent to Stochastic- 𝑘-TSP: whenever O𝑓 𝑎𝑖𝑟 plays some system S𝑖 for the �rst time, ALG𝐹 can
observe the whole sample path on S𝑖 and know the largest Index of states on the sample path, and it
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can take one unit reward from S𝑖 later by paying the corresponding largest Index. �en we know that
E[𝐶𝑠𝑤 (ALG𝐹 ) +𝐶𝑠𝑙 (ALG𝐹 )] = E[𝐶𝑠𝑤 (ALG𝐹 ) +𝐶𝐹𝑚𝑣 (ALG𝐹 )], as the distribution on fair movement cost
of ALG𝐹 is exactly the distribution on selected cost if we play Stochastic- 𝑘-TSP by ALG𝐹 .
Besides, we know E[𝐶𝑠𝑤 (O𝑘𝑡𝑠𝑝) + 𝐶𝑠𝑙 (O𝑘𝑡𝑠𝑝)] ≤ E[𝐶𝑠𝑤 (ALG𝐹 ) + 𝐶𝑠𝑙 (ALG𝐹 )] by the optimality, which
completes the proof of this claim. �

D Non-optimality of Indexing Strategies

In this section, we extend the result in [BS94] to show that even when the switching cost is a constant,
there is no optimal indexing strategy for our problem in general metric. More speci�cally, we de�ne what
is an index as follows:

De�nition 38 ([BS94]). An index in the presence of switching cost is any function 𝛾 which speci�es a value
𝛾 (𝑠𝑖 ,S𝑖 , 𝐼𝑖) for any Markov system S𝑖 where 𝑠𝑖 is the current state of Markov system S𝑖 and 𝐼𝑖 is the indicator
that S𝑖 is currently active.

Involving the indicator is to capture the intuition that for two identical systems, the active one should be
more a�ractive than the inactive one. See more discussion in [BS94].
We say 𝛾 is an optimal index in the presence of switching cost if it is optimal by always playing the system
with the smallest index until any one reaches its target.
Now we de�ne two kinds of Markov system with speci�ed notations. First let [𝑥𝛿1 + (1 − 𝑥)𝛿0] =

{𝑉 , 𝑃,𝐶, 𝑠, 𝑡} where 𝑉 = {𝑠, 𝑡, 𝑣0, 𝑣1}, 𝑃𝑠,𝑣1 = 𝑥 , 𝑃𝑠,𝑣0 = 1 − 𝑥 , and 𝑃𝑥𝑖 ,𝑡 = 1 for 𝑖 ∈ {0, 1}. As for the
movement cost, we let 𝐶𝑠 = 𝑐,𝐶𝑣0 = 0 and 𝐶𝑣1 = 1. Second, let [𝛿𝑎] = {{𝑠, 𝑡}, 𝑃,𝐶, 𝑠, 𝑡} where 𝑃𝑠,𝑡 = 1 and
𝐶𝑠,𝑡 = 𝑎. In the following, we assume the switching cost is 𝑐 , same as 𝐶𝑠 .
In this notation, we use 𝛾 ( [𝑥𝛿1 + (1 − 𝑥)𝛿0]; 𝐼 ) and 𝛾 (𝛿𝑎 ; 𝐼 ) to denote the value of the optimal index on
the Markov system [𝑥𝛿1 + (1 − 𝑥)𝛿0] and [𝛿𝑎] respectively. Recall that 𝐼 = 1 denotes that the system is
currently active.

Claim 39 (Similar to Claim 1 in [BS94]). Any index 𝛾 that is optimal in the presence of switching cost 𝑐 must
be a strict monotone transformation of an index 𝛾 which satis�es

𝛾 ( [𝛿𝑎]; 1) = 𝑎, (13)
𝛾 ( [𝛿𝑎]; 0) = 𝑎 + 𝑐. (14)

for any values of 𝑎 and 𝑐 .

Without loss generality, we assume the optimal index 𝛾 satis�es equation 13 and equation 14. Now we use
the following claim to establish the impossibility of an optimal index:

Claim 40. �ere is no consistent way to de�ne an index 𝛾 on Markov system of the form [𝑥𝛿1 + (1 − 𝑥)𝛿0] if
the resulting strategy is to be invariably optimal. Consequently, an optimal index cannot exist.

Proof. Consider such a game where there are two systems, [𝛿𝑎] and [𝑥𝛿1 + (1 − 𝑥)𝛿0] and suppose the
optimal decision-player is on the �rst system [𝛿𝑎] and is indi�erent from playing either one of the �rst step:
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he can either play [𝛿𝑎] or switch to [𝑥𝛿1+(1−𝑥)𝛿0] and switches back if only if the state of [𝑥𝛿1+(1−𝑥)𝛿0]
moves to 𝑣1.
In particular, we have 𝑎 = 2𝑐 + 𝑥 (𝑎 + 𝑐) and elementary calculation shows that the value of 𝑎 should be
2+𝑥
1−𝑥 𝑐 under the condition that 𝑎 + 𝑐 ≤ 1 in this scenario. Let 𝜇 (𝑥, 𝑐) := 2+𝑥

1−𝑥 𝑐 and if 𝜇 (𝑥, 𝑐) + 𝑐 ≤ 1, we have

𝛾 ( [𝑥𝛿1 + (1 − 𝑥)𝛿0] ; 0) = 𝛾 ( [𝛿𝜇 (𝑥,𝑐) ]; 1) = 𝜇 (𝑥, 𝑐) =
2 + 𝑥
1 − 𝑥 𝑐. (15)

Now consider a new game where suppose the optimal decision-player is on the second system and can
either: switches to the �rst system directly; or plays [𝑥𝛿1 + (1 − 𝑥)𝛿0] for one step and switches to [𝛿𝑎] if
the state moves to 𝑣1.
Similarly, by simple calculation, let 𝑣 (𝑥, 𝑐) := 𝑥𝑐

1−𝑥 and under the condition that 𝑣 (𝑥, 𝑐) + 𝑐 ≤ 1 we have

𝛾 ( [𝑥𝛿1 + (1 − 𝑥)𝛿0] ; 1) = 𝛾 ( [𝛿𝑣 (𝑥,𝑐) ]; 0) = 𝑣 (𝑥, 𝑐) + 𝑐 = 𝑐/(1 − 𝑥). (16)

Hence we show that 𝛾 ( [𝑥𝛿1 + (1 − 𝑥)𝛿0] ; 0) = 2+𝑥
1−𝑥 𝑐 if 3𝑐 ≤ 1 − 𝑥 , and 𝛾 ( [𝑥𝛿1 + (1 − 𝑥)𝛿0] ; 1) = 𝑐/(1 − 𝑥)

if 𝑐 ≤ 1 − 𝑥 by the above two games.
Now consider the last game to show contradiction. Suppose there are two systems [𝑥𝛿1 + (1 − 𝑥)𝛿0] and
[𝑦𝛿1+(1−𝑦)𝛿0] where 𝑥 ≥ 𝑦 but the player is current at system [𝑥𝛿1+(1−𝑥)𝛿0]. Suppose 3𝑐 ≤ 1−𝑥 ≤ 1−𝑦.
If we have

min{𝑐 + 𝑥, 𝑐 + 𝑥 (2𝑐 + 𝑦)} ≤ min{2𝑐 + 𝑦, 2𝑐 + 𝑦 (2𝑐 + 𝑥)},

then the optimal strategy can play the �rst system for the �rst step and hence the constraint is 2𝑥 ≤ 1+ 2𝑦
and we have

𝛾 ( [𝑥𝛿1 + (1 − 𝑥)𝛿0]; 1) ≤ 𝛾 ( [𝑦𝛿1 + (1 − 𝑦)𝛿0]; 0).

To conclude, the constraints are 𝑦 ≤ 𝑥, 3𝑐 + 𝑥 ≤ 1 and 2𝑥 ≤ 1 + 2𝑦.
By se�ing 𝑥 = 4/5, 𝑦 = 2/5 and 𝑐 = 1/100, all the constraints are satis�ed and one has 𝛾 ( [𝑥𝛿1 + (1 −
𝑥)𝛿0]; 1) = 1

1−𝑥 𝑐 = 1/20 > 𝛾 ( [𝑦𝛿1 + (1 − 𝑦)𝛿0]; 0) = 2+𝑦
1−𝑦𝑐 = 1/25, which is a contradiction completing the

proof. �
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