
Stochastic Vertex Cover with Few Queries

Soheil Behnezhad∗

Stanford University
Avrim Blum†

TTIC
Mahsa Derakhshan∗

Princeton University

Abstract

We study the minimum vertex cover problem in the following stochastic setting. Let G be an
arbitrary given graph, p ∈ (0, 1] a parameter of the problem, and let Gp be a random subgraph
that includes each edge of G independently with probability p. We are unaware of the realization
Gp, but can learn if an edge e exists in Gp by querying it. The goal is to find an approximate
minimum vertex cover (MVC) of Gp by querying few edges of G non-adaptively.

This stochastic setting has been studied extensively for various problems such as minimum
spanning trees, matroids, shortest paths, and matchings. To our knowledge, however, no non-
trivial bound was known for MVC prior to our work. In this work, we present a:

• (2 + ε)-approximation for general graphs which queries O( 1
ε3p ) edges per vertex, and a

• 1.367-approximation for bipartite graphs which queries poly(1/p) edges per vertex.

Additionally, we show that at the expense of a triple-exponential dependence on p−1 in the
number of queries, the approximation ratio can be improved down to (1+ε) for bipartite graphs.

Our techniques also lead to improved bounds for bipartite stochastic matching. We obtain
a 0.731-approximation with nearly-linear in 1/p per-vertex queries. This is the first result to
break the prevalent (2/3 ∼ 0.66)-approximation barrier in the poly(1/p) query regime, improving
algorithms of [Behnezhad et al., SODA’19] and [Assadi and Bernstein, SOSA’19].

∗Part of the work was done while the first and the third authors were interns at TTIC.
†This work was supported by the National Science Foundation under grant CCF-1733556.
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1 Introduction

We study the following stochastic vertex cover problem. Let G = (V,E) be a given n-vertex graph,
p ∈ (0, 1] a parameter of the problem, and let Gp ⊆ G be a random subgraph that includes each
edge in E independently with probability p. We are unaware of the realization of Gp, but can learn
if an edge e ∈ E is realized in Gp by querying it. The goal is to find an approximate minimum
vertex cover (MVC) of Gp by querying, non-adaptively, few edges in G.

This stochastic setting has been studied extensively over the last two decades for various prob-
lems such as minimum spanning trees and matroids [14, 15], packing problems [22], shortest paths
[21], and most relevant to our work, matchings [9, 10, 2, 3, 8, 22, 5, 1, 7, 6, 4]. There has also been
quite a lot of related work on “network reliability” in random subgraphs; see the book [11] for some
classic results of the 1980’s as well as [18, 16] and the references therein for more recent works.
While this is by no means a comprehensive list of all the related works, we are, to our knowledge,
the first to consider a covering problem in the setting.

It would be useful to overview the known bounds for the matching problem. It was shown by
Blum et al. [9, 10] that a (1/2− ε)-approximate matching of Gp can be found by querying Op,ε(1)
edges of each vertex in G, where the dependence on p was exponential. Later, Assadi, Khanna, and
Li [2] improved the dependence on p and obtained the same approximation with poly(1/εp) queries.
Numerous follow up works [3, 22, 7, 1, 6, 4] then improved the approximation ratio. Particularly,
the algorithm of Assadi and Bernstein [1] (see also [7]) obtains a (2/3 − ε)-approximation with
poly(1/εp) queries. It was already observed in [2] that 2/3-approximation is a barrier for the
problem. Recently, Behnezhad, Derakhshan, and Hajiaghayi [6] broke this barrier and showed that
one can obtain a (1− ε)-approximation with Oε,p(1) per-vertex queries, where the dependence on ε
and p is super-polynomial. Determining the best approximation achievable via poly(1/εp) queries
remains an important open question for the stochastic matching problem.

In light of this progress on the approximate matching problem, it is natural to ask whether the
same can also be achieved for the dual minimum vertex cover problem. Particularly,

Question 1. Can we find an approximate MVC of Gp by querying few, preferrably poly(1/p), edges
of each vertex in the base graph G?

Observe that a vertex cover of G is also a valid vertex cover of Gp since Gp ⊆ G. However, since
some of the edges of G may not belong to Gp, the MVC of Gp might be smaller than that of G. In
fact, the MVC of G may be as large as 1/p times the MVC of Gp in expectation — an example is
when G is simply a matching. It turns out that to obtain any constant approximation (independent
of p), Ω(n/p) total queries are necessary; see Theorem 7.5. One may wonder if randomly querying
the edges of G may help. However, we show that the set of queried edges must be picked with
much more care — see Section 7.6 for why random queries do not work.

Perhaps the simplest known constant approximation for the MVC problem is through maximal
matchings. The set of endpoints of the edges in a maximal matching is well-known to form a 2-
approximate MVC. For this to hold, however, the maximality of the matching is essential, and even
a (1−ε)-approximate maximum matching that is not maximal is not useful. Unfortunately, none of
the works above on the stochastic matching problem yield a maximal matching of Gp. In fact, we
prove a separation (Theorem 7.2) via a simple lower bound, that, unlike approximate matchings,
finding a maximal matching of Gp requires Ω(n log n) total queries. The situation seems even more
complicated on the algorithmic side. In fact, we do not know if a maximal matching of Gp can be
found with o(n2) queries (note that the whole graph Gp can be learned with O(n2) queries).
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1.1 Our Results

In this work, we make progress on Question 1 on several fronts.

Our main end results are in the poly(1/p) query regime and we prove the following two results
for general and bipartite graphs, respectively.

Result 1 (see Theorem 6.2). For any graph G, any ε > 0, and any p ∈ (0, 1], there is a poly-time
algorithm that finds a (2 + ε)-approximate MVC of Gp via O( 1

ε3p
) per-vertex queries.

Result 2 (see Theorem 6.1). For any bipartite graph G, and any p ∈ (0, 1], there is a poly-time
algorithm that finds a 1.367(≈ e+1

e )-approximate MVC of Gp via poly(1/p) per-vertex queries.

As discussed, Ω(1/p) per-vertex queries are necessary to obtain any constant approximation; see
Theorem 7.5. Therefore, Result 1 is asymptotically query-optimal. Note, on the other hand, that
for p = 1, the problem reduces to the non-stochastic MVC problem. This means that, restrict-
ing ourselves to polynomial-time algorithms, the approximation ratio achieved in Result 1 is also
optimal for general graphs (up to an additive ε) under the Unique Games Conjecture [19].

For bipartite graphs, however, the UGC based lower bound does not hold. Indeed, an optimal
MVC can be found in polynomial time. Result 2 asserts that in the stochastic setting, too, one can
get around the 2-approximation barrier with just poly(1/p) per-vertex queries.

To prove Result 2 we prove a number of tools (overviewed in Section 2) that, in a sense, give
a better understanding of matchings in stochastic graphs. Using these tools, we also obtain the
guarantee of Corollary 1.1 for stochastic matching in bipartite graphs, improving the previous close
to 2/3 approximations of [7, 1] (which respectively obtain 0.656 and (2/3− ε)-approximations) in
the poly(1/p) query regime. We note that Corollary 1.1, importantly, is the first result to break
the 2/3-approximation barrier of [2] with just poly(1/p) queries.

Corollary 1.1. For any bipartite graph G, and any p ∈ (0, 1], there is a poly-time algorithm that

finds a 0.731(≈ e
e+1)-approximate matching of Gp in expectation via O( log 1/p

p ) per-vertex queries.

Finally, we turn our attention to the regime where super-polynomial-in-1/p queries per-vertex
are allowed. We show that in this setting, the approximation guarantee of Result 2 can be improved
all the way to (1 + ε).

Result 3 (see Theorem 6.3). For any bipartite graph G, any ε > 0, and any p ∈ (0, 1], there is a
poly-time algorithm that finds a (1 + ε)-approximate MVC of Gp via Oε,p(1) per-vertex queries.

We note that the dependence of the number of per-vertex queries in Result 3 on p is in the
order exp(exp(exp(poly(1/p)))). It remains an important open problem to determine whether a
(1 + ε)-approximation for bipartite graphs is achievable via poly(1/εp) queries. (The same is also
open for stochastic matching as discussed.)

2 Main Techniques

All of our algorithms in this paper for the stochastic MVC problem return a subset C ⊆ V which
is with probability one a vertex cover of Gp. That is, all the edges of Gp have at least one endpoint
in C at all times. Let Q denote the subset of edges in G that we query and let S denote the rest
of the edges. Observe that since we are unaware of the realization of edges in S, we have to cover
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them all, no matter which ones are realized. Therefore, once we fix the subgraph Q to be queried,
the “best algorithm” is well-defined: Report a MVC of graph H := Qp ∪ S which includes the
realized edges in Q, but all the edges in S.1 Observe that since we require Q to be sparse, the vast
majority of edges will be in S and are always assumed to be realized. The challenge is to ensure
that the extra covering constraints imposed by these edges do not increase the size of our vertex
cover by much, compared to the actual minimum vertex cover of Gp.

The discussion above actually unveils an interesting connection between the stochastic vertex
cover problem and the stochastic matching problem particularly in bipartite graphs where by
König’s famous theorem MVC and maximum matching have the same size. On the one hand, the
stochastic matching problem asks for a subgraph Q, such that if we remove all the rest of the
edges S := E \Q from Gp, the size of maximum matching in graph Gp \ S remains close to that of
Gp. On the other hand, the stochastic vertex cover problem asks for a subgraph Q such that if we
add all the edges S := E \ Q to Gp, the size of the maximum matching (which equals the size of
MVC) in Gp ∪ S remains close to that of Gp.

Now let us describe how we actually pick subgraph Q to query, and how we analyze the size of
the minimum vertex cover achieved by querying this subgraph.

The Half-Stochastic Matching Lemma: This lemma, which we prove in Section 4, is one of
the main components of our paper. It mainly provides a partitioning Q,S of the edge-set E of G.
Let H := Qp ∪ S denote a “half-stochastic” graph which includes each edge of Q independently
with probability p but includes all the edges of S with probability 1. We use this partitioning in
our algorithm for Result 2 in particular. There, we query only the edges in Q and report the MVC
of graph H, as outlined before. As a result, the partitioning should clearly ensure Q has a small
maximum degree. In addition, the nice property of this partitioning is that the edges e ∈ S have a
relatively small probability ≤ ε2p of being part of matchingM(H), whereM is a (near) maximum
matching algorithm that is also provided by the lemma. Next, we describe some of the challenges
that we face in proving this lemma and how we overcome them.

Let us start with the trivial partitioning Q0 = ∅, S0 = E and let M be an arbitrary (possibly
randomized) maximum matching algorithm. The problem with this solution is that an edge e ∈
S0 may have a large probability of being part of M(H0). This occurs if some edges in H0 are
crucial for the matching to be maximum. We can try to put these edges of S0 violating the
probability constraint in Q0, and obtain a new partitioning Q1, S1. The problem, however, is that
the corresponding graph H1 has a different distribution than graph H0. Thus, it could be that
edges in S1 that previously had a small probability of joining M(H0) now become crucial for the
maximum matching of H1. This can in fact continue for a super-constant number of iterations,
inevitably violating the maximum degree constraint of Q.

Instead of using an arbitrary maximum matching algorithm, our first idea is to use a special
matching algorithm M that maximizes the following objective:

Φ :=
∑
e∈E

(
Pr[e ∈M(H)]− εPr[e ∈M(H)]2

)
.

The first term in the sum, intuitively, ensures that the size of matchings produced by the algorithm
is large. The second term, intuitively, is to ensure the edges tend to have small probabilities of
joining M(H). A nice “averaging” property of this objective, is that if some matching algorithm
M1 guarantees an objective of Φ1 and another algorithm M2 guarantees Φ2, then the algorithm
that with probability 1/2 picks the output of M1 and with probability 1/2 the output of M2, has

1Since exact MVC is NP-hard for general graphs, we actually end up using a different algorithm for Result 1.
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objective strictly larger than Φ1+Φ2
2 , unless the vast majority of edges have the same probability of

joining M1 and M2.

We plug in this new matching algorithm in the aforementioned framework for obtaining a list of
partitionings (Q0, S0), . . . , (Qk, Sk). But now, we use the averaging property of our special matching
algorithm to argue that we reach our desired partitioning for some k = poly(1/εp).

A New Vertex-Independent Matching Algorithm: Now suppose that we have the parti-
tioning (Q,S) provided by the lemma discussed above. How should we argue that the MVC of
graph H = Qp ∪ S approximates the MVC of the actual realization Gp? One of the key parts
of our analysis, which we discuss thoroughly in Section 5, is a new vertex-independent matching
(VIM) lemma. VIMs were introduced recently in [6] (further refined in [4]) and were shown to
be extremely useful for stochastic matchings. Roughly speaking, given a stochastic graph Gp and
an arbitrary matching algorithm A, a VIM algorithm B has the property that its matching B(Gp)
approximates A(Gp) (in both the total size and marginal probabilities of edges/vertices joining
the matching), but in addition, for “most” vertices u and v of the graph, whether or not they are
matched in B(Gp) are independent events. In the works of [6, 4] for example, this independence
is satisfied for u, v ∈ V if they are at distance at least polylog ∆ in G, where ∆ is the maximum
degree of G. This requirement on the distance to achieve independence is provably necessary for
the approach taken in [6, 4] which is through distributed local algorithms. In contrast, we use
a completely different approach to achieve independence in this work. Our new VIM works for
bipartite graphs, but unlike prior works, for any two vertices u and v (in different partitions) that
are non-adjacent, we have independence. This independence in particular holds, even if u and v are
connected via a path of length 3. This better guarantee on independence is the key, for example, to
why we are allowed to break the RS-barrier for stochastic matchings via poly(1/p) queries, whereas
the previous approaches [6, 4] required a super-polynomial in 1/p queries. It is also used, crucially,
in the analysis of the stochastic MVC algorithm we described above for Result 2.

3 Preliminaries & Paper Organization

Notation. For any graph G, we use ν(G) to denote the size of the minimum vertex cover of G
and use µ(G) to denote the size of the maximum matching of G. A “fractional matching” x of
a graph G = (V,E) is an assignment {xe}e∈E to the edges, where xe ∈ [0, 1] and for each vertex
v ∈ V , xv :=

∑
e3v xe ≤ 1. We use |x| :=

∑
e xe to denote the size of a fractional matching and

for any subset E′ ⊆ E, use x(E′) to denote
∑

e∈E′ xe. For any integer k we use [k] to denote set
{1, . . . , k}. We say S1, . . . , Sk “partitions” set S if S1∪ . . .∪Sk = S and Si∩Sj = ∅ for all i, j ∈ [k].

As in the literature (see e.g. [9, 6]), we say a (random) matching M provides an 0 < α ≤ 1
approximation for the stochastic matching problem if M ⊆ Gp and E|M | ≥ α ·E[µ(Gp)]. We say a
(random) subset C ⊆ V is a β ≥ 1 approximate stochastic minimum vertex cover, if any edge in
Gp has at least an endpoint in C with probability 1, and E|C| ≤ β · E[ν(Gp)].

We use the following well-known propositions throughout the paper.

Proposition 3.1 (König’s Theorem). In any bipartite graph G, ν(G) = µ(G).

Proposition 3.2 (Chebyshev’s inequality). Let X be a random variable with finite expected value
E[X] and finite non-zero variance Var[X]. For any λ > 0,

Pr[|X − EX| ≥ λ] ≤ Var[X]

λ2
.
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Paper organization. In Sections 4 and 5 we prove two of the main tools introduced in this
paper, particularly the “half-stochastic matching lemma” and the “new vertex-independent match-
ing lemma”. In Section 6 we present our algorithms for the stochastic MVC problem and also the
improved result for the stochastic matching problem. Finally, in Section 7 we prove several lower
bounds for both the stochastic vertex cover problem and the stochastic matching problem.

4 Tool I: The Half-Stochastic Matching Lemma

The Half-Stochastic Matching Lemma, constructively, gives a partitioning (Q,S) of the edge-set E
of graph G. This partitioning is accompanied with a special near-maximum matching algorithm
M that operates on the “half-stochastic” random subgraph H of G in which each edge of Q is
stochastic (i.e. realized with probability p) and each edge of S appears with probability one.

Although this lemma seems to be about matchings only, it actually plays an important role
in the stochastic vertex cover algorithm for Theorem 6.1 in both the algorithm in deciding which
edges to query, and the analysis of the approximation ratio achieved by this algorithm.

Lemma 4.1 (Half-Stochastic Matching Lemma). Let G = (V,E) be a (possibly non-bipartite)
graph and let ε ∈ [0, 1] and p ∈ [0, 1] be two given parameters. There is a partitioning of E into
subsets Q and S such that:

(i) The maximum degree in Q is O( 1
ε11p6

).

Moreover, Q and S are such that there exists a randomized matching algorithm M, where by
letting H := Qp ∪ S denote a random graph which includes all edges in S, but includes each edge
of Q independently with probability p, we get:

(ii) E|M(H)| ≥ (1− 2ε) · E[µ(H)]. That is, the matching algorithm M should find an approxi-
mate maximum matching of H in expectation.

(iii) For any edge e ∈ S, Pr[e ∈M(H)] ≤ ε2p.

We note that the probabilistic statements above are with respect to both the inherent random-
ization in graph H, and also the randomization used in algorithm M.

We now turn to present the proof of Lemma 4.1. To do so, we have to output a triplet (Q,S,M)
where Q and S form a partitioning of E, and M is a matching algorithm.

For some k = Oε,p(1) which we specify later, we construct a list (Q0, S0), (Q1, S1), . . . , (Qk, Sk)
of partitionings. We will argue that if k is large enough, there is one of the partitions, (Qi, Si),
which satisfies all the properties required by Lemma 4.1. This will be our partitioning (Q,S).

The construction. The base partitioning is simply Q0 = ∅, S0 = E and for each i ≥ 0,
(Qi+1, Si+1) is constructed from the previous partitioning (Qi, Si). To describe the construction,
let us define for each partitioning i a random graph Hi which includes each edge of Qi independently
with probability p, and includes every edge of Si with probability 1. We will also soon formalize a
special randomized matching algorithm Mi that we run on graph Hi. Having Mi, for each i ≥ 0
we define

Di := {e ∈ Si | Pr[e ∈Mi(Hi)] > ε2p}, (1)
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and construct (Qi+1, Si+1) in the following way:

Qi+1 ← Qi ∪Di and Si+1 ← Si \Di. (2)

Observe that in the construction above, each partitioning (Qi+1, Si+1) is obtained from the
previous partitioning (Qi, Si) by “moving” the edges of Di (which are all by definition in Si) from
Si to partition Qi. For this reason, we have

Q0 ⊂ Q1 ⊂ . . . ⊂ Qk and S0 ⊃ S1 ⊃ . . . ⊃ Sk.

Let us emphasize that graphs H0, H1, . . . ,Hk have different distributions. Intuitively, since Qi
grows as i increases, and graph Hi includes only p fraction of the edges in Qi but all the edges in
Si, random graph Hi tends to get smaller and smaller by increasing i. In fact it would be useful to
consider a coupling (H0, H1, . . . ,Hk) as follows: On each edge e we draw an independent p-Bernouli
random variable Xe and use this to define Hi for all i as:

Hi = {e | (e ∈ Qi and Xe = 1) or (e ∈ Si)}. (3)

This coupling is useful because in each outcome of the joint distribution (H0, . . . ,Hk), each graph
Hi is a subgraph of the previous graph Hi−1.

Let us now finalize our construction by formalizing algorithm Mi.

The Matching Mi: For any i and any (possibly randomized) matching algorithmM′, we define

Φi(M′) :=
∑
e∈E

(
Pr
M′,Hi

[e ∈M′(Hi)]− ε Pr
M′,Hi

[e ∈M′(Hi)]
2

)
, (4)

where let us emphasize that the probabilities are taken over both the possible randomization in
algorithm M′, and the randomization in graph Hi (regarding the realization of edges belonging to
Qi). Having this definition, we now simply let Mi be the algorithm maximizing Φi, i.e.:

Mi := arg max
M′

Φi(M′),

and we use Φi := Φi(Mi) to simply denote the optimal objective value obtained by this algorithm.

Let us, for now, not concern ourselves with how the objective function (4) can be maximized
in polynomial time and assume that this algorithm Mi is simply given. We will later address this
issue and obtain a polynomial-time algorithm once it becomes clear how we use Mi.

The intuition behind objective (4). To see the intuition behind why we define the objective
function (4) this way, first note by linearity of expectation that

Φi = E|Mi(Hi)| − ε
∑
e∈E

Pr[e ∈Mi(Hi)]
2. (5)

The intuition behind the first term is clear: We want the expected size of the matching to be large;
Observation 4.3 below formalizes this by showing that the matching algorithm Mi maximizing
Φi must be a (1 − ε)-approximate matching. The second term, on the other hand, ensures that
the marginal probabilities of edges appearing in the matching tend to be small. This is useful for
Property (iii) of Lemma 4.1 which requires small marginals for all edges in S.

Observation 4.2. For any i, E|Mi(Hi)| ≥ Φi.

8



Proof. By Equation (5), E|Mi(Hi)| = Φi + ε
∑

e∈E Pr[e ∈Mi(Hi)]
2 ≥ Φi.

Observation 4.3. E|Mi(Hi)| ≥ (1− ε) · E[µ(Hi)].

Proof. Consider a deterministic algorithmM′ that picks an arbitrary maximum matching M of its
random input Hi. Since E|M | = E[µ(Hi)], we have

Φi(M′) = E[µ(Hi)]− ε
∑
e∈E

Pr[e ∈M ]2 ≥ E[µ(Hi)]− ε
∑
e∈E

Pr[e ∈M ] = (1− ε) · E[µ(Hi)].

Since Mi maximizes Φi = Φi(Mi), we get Φi ≥ Φi(M′) ≥ (1 − ε) · E[µ(Hi)]. Combined with
E|Mi(Hi)| ≥ Φi due to Observation 4.2, this implies E|Mi(Hi)| ≥ (1− ε) · E[µ(Hi)].

We now turn to prove that one of the partitionings (Qi, Si) must satisfy the properties required
by Lemma 4.1. The next set of claims are used for this purpose.

Claim 4.4. It holds that

µ(G) ≥ Φ0 ≥ Φ1 ≥ . . . ≥ Φk ≥ (1− ε) · p · µ(G).

Claim 4.5. There is an interval I = {s, . . . , s+ k′} in [k] with |I| ≥ 1
300ε

6p3k such that

|Φi − Φj | ≤ 0.01ε6p3µ(G) for all i < j in I.

Claim 4.6. Let I be as defined in Claim 4.5. Either there is some i ∈ I where E|Di ∩Mi(Hi)| <
εpµ(G), or otherwise for any i, j ∈ I with i < j, it holds that

E|Di ∩Mj(Hj)| ≥ 0.25ε3p2 · µ(G).

Claims 4.4 and 4.5 are proved in Section 4.1 and Claim 4.6 is proved in Section 4.2. Claim 4.6
is, in particular, the key part of the proof. It is proved by showing that if the condition of Claim 4.6
is not satisfied, then the randomized matching algorithm that with probability 0.5 picks the output
of Mj(Hj) and otherwise the output of Mi(Hi), should obtain a larger objective than Φi which
we show is a contradiction.

Having proved these claims, we now turn to prove Lemma 4.1.

Proof of Lemma 4.1. First, we set k = 5 · 300
ε9p5

. Since for any i, each edge in Di has probability at

least ε2p of being in matchingMi(Hi), and that the probabilities around each vertex sum up to at
most one, there are at most 1/ε2p edges connected to each vertex in Di. This implies that for any
j ∈ [k], Qj has maximum degree at most k · 1

ε2p
= O( 1

ε11p6
), satisfying Property (i). Now we prove

there exists some (Qi, Si) satisfying Properties (ii) and (iii) as well.

Let I be as provided by Claim 4.5. There are two possible cases:

Case 1 — There is some i ∈ I where E|Di ∩Mi(Hi)| < εpµ(G):

In this case, we can let Q ← Qi, S ← Si, which implies graph H of Lemma 4.1 has the same
distribution as Hi. We now let matching algorithm M, required by Lemma 4.1, to be the same as
matching algorithm Mi, except that we exclude the edges of Di from the matching. That is, we
let M(H) =Mi(Hi) \Di.

Since we exclude the edges in Di from the matching, we get that for all edges e ∈ S, Pr[e ∈
M(H)] ≤ ε2p satisfying Property (iii). On the other hand,

E|M(H)| = E[|Mi(Hi) \Di|] = E|Mi(Hi)| − E|Di ∩Mi(Hi)|

9



> E|Mi(Hi)| − εpµ(G) (By the assumption of Case 1.)

≥ (1− ε)E[µ(Hi)]− εpµ(G) (By Observation 4.3.)

≥ (1− 2ε)E[µ(Hi)] (Since E[µ(Hi)] ≥ pµ(G).)

= (1− 2ε)E[µ(H)]. (Since H and Hi have the same distribution.)

This proves M is a (1− 2ε)-approximate matching algorithm, satisfying Property (ii).

Case 2 — For all i ∈ I, E|Di ∩Mi(Hi)| ≥ εpµ(G):

In this case, by Claim 4.6, we have E|Di ∩Mj(Hj)| ≥ 0.25ε3p2 · µ(G) for all i < j in I. Let us
denote I = {a1, a2, . . . , a`} where a1 < . . . < a`. Letting j = a`, we thus get

E|Dai ∩Ma`(Ha`)| ≥ 0.25ε3p2 · µ(G) for all i ∈ {1, . . . , `− 1}.

On the other hand, observe from construction (2) that sets Da1 , . . . , Da`−1
are all pairwise disjoint.

This implies

E|Ma`(Ha`)| ≥
`−1∑
i=1

E|Dai ∩Ma`(Ha`)| ≥ (`− 1) · 0.25ε3p2 · µ(G). (6)

Recall from Claim 4.5 that ` = |I| ≥ 1
300ε

6p3k. Since we set k = 5 · 300
ε9p5

, we get ` ≥ 5
ε3p2

which

combined with (6) implies E|Ma`(Ha`)| > µ(G) which is a contradiction since Ha` is a subgraph of
G and cannot have a larger matching than µ(G). This contradiction implies that if we set k large
enough, this second case essentially does not happen. As a result, we always end up at Case 1,
which we just showed how it proves Lemma 4.1.

The proof of Lemma 4.1 is thus complete.

Finally, we remark that our techniques also lead to a partitioning with the same guarantee as
in Lemma 4.1 that can be found in polynomial time. We defer the details of this polynomial-time
implementation to Appnedix A.1.

4.1 Proofs of Claims 4.4 and 4.5

Proof of Claim 4.4. As discussed, in the coupling of Eq 3, Hi is always a subgraph of Hi−1. As a
result, matching algorithm Mi is also applicable on graph Hi−1, implying that Φi−1 ≥ Φi for all i.

To see why µ(G) ≥ Φ0, note from Observation 4.2 that E|M0(H0)| ≥ Φ0. On the other hand,
no matter what matching algorithm we use for M0, we have E|M0(H0)| ≤ µ(G) as the output
must be a matching in H0 and thus G. Combining the two bounds gives µ(G) ≥ Φ0.

Finally, to see why Φk ≥ (1− ε) · p · µ(G), fix a maximum matching M of G which has to have
size µ(G). Every edge e ∈M either is in Qk or Sk; in either case, e ∈ Hk with probability at least
p. We thus have E[µ(Hk)] ≥ E|M ∩Hk| ≥ p|M | = p · µ(G). Now consider a choice for Mk which
deterministically picks a maximum matching Mk of Hk. This proves

Φk ≥
∑
e∈E

Pr[e ∈Mk]− εPr[e ∈Mk]
2 ≥

∑
e∈E

Pr[e ∈Mk]− εPr[e ∈Mk]

= (1− ε)
∑
e∈E

Pr[e ∈Mk] ≥ (1− ε) · E|Mk| = (1− ε) · E[µ(Hk)] ≥ (1− ε) · p · µ(G),

completing the proof.

10



Proof of Claim 4.5. Let us define Ij for any j ∈ {1, . . . , d100/ε6p3e} as follows

Ij := {i : (1− 0.01jε6p3)µ(G) < Φi ≤ (1− 0.01(j − 1)ε6p3)µ(G)}.

Recall from Claim 4.4 that µ(G) = Φ0 ≥ Φ1 ≥ . . . ≥ Φk ≥ (1−ε)pµ(G). Thus, I1, I2, . . . partition [k]
into consecutive intervals where for all elements i, j in the same interval, |Φi−Φj | ≤ 0.01ε6p3µ(G).

Since there are only d100/ε6p3e intervals and
∑

j |Ij | = k (as every i ∈ [k] belongs to exactly

one of the intervals) there is at least one interval I with |I| ≥ k
d100/ε6p3e+1

> 1
300 · ε

6p3k. This

interval I satisfies the required property of the claim by its definition, and has the desired size.

4.2 Proof of Claim 4.6

Proof of Claim 4.6. Suppose for the sake of contradiction that

E|Di ∩Mi(Hi)| ≥ εpµ(G) for all i ∈ I, (7)

and that there are i, j ∈ I such that i < j and

E|Di ∩Mj(Hj)| < 0.25ε3p2 · µ(G). (8)

Consider a matching Mi,j(Hi) which with probability 1/2 returns the output of Mi(Hi) and with
probability 1/2 returns the output ofMj(Hj). Since i < j, by the coupling (3), Hj is a subgraph of
Hi and thus any matching in Hj is a matching in Hi. As a result,Mi,j is a valid matching algorithm
for graph Hi. We prove that under (7) and (8), algorithm Mi,j should satisfy Φi(Mi,j) > Φi(Mi)
which contradicts the assumption that Mi maximizes Φi(Mi).

From the definition of objective Φi(Mi,j) we have

Φi(Mi,j) =
∑
e∈E

Pr[e ∈Mi,j(Hi)]− εPr[e ∈Mi,j(Hi)]
2

=
∑
e∈E

(
Pr[e ∈Mi(Hi)] + Pr[e ∈Mj(Hj)]

2

)
− ε
(

Pr[e ∈Mi(Hi)] + Pr[e ∈Mj(Hj)]

2

)2

.

Let us for simplicity of notation use pi(e) := Pr[e ∈ Mi(Hi)] and pj(e) := Pr[e ∈ Mj(Hj)]. The
equality above therefore can be expressed as

Φi(Mi,j) =
∑
e∈E

(
pi(e) + pj(e)

2

)
− ε
(
pi(e) + pj(e)

2

)2

. (9)

Basic mathematical calculations give that for any e,(
pi(e) + pj(e)

2

)2

=
pi(e)

2 + pj(e)
2 + 2pi(e)pj(e)

4

=
pi(e)

2

2
+
pj(e)

2

2
− pi(e)

2

4
− pj(e)

2

4
+

2pi(e)pj(e)

4

=
pi(e)

2

2
+
pj(e)

2

2
−
(
pi(e)− pj(e)

2

)2

. (10)

Replacing (10) back into (9) gives

Φi(Mi,j) =
∑
e∈E

(
pi(e) + pj(e)

2

)
− ε

(
pi(e)

2

2
+
pj(e)

2

2
−
(
pi(e)− pj(e)

2

)2
)

11



=
∑
e∈E

(
pi(e)− εpi(e)2

2

)
+

(
pj(e)− εpj(e)2

2

)
+ ε

(
pi(e)− pj(e)

2

)2

.

(By simply moving the terms in the previous line.)

=
Φi

2
+

Φj

2
+ ε

∑
e∈E

(
pi(e)− pj(e)

2

)2

(See below.)

≥ Φi − 0.01ε6p3µ(G) + ε
∑
e∈E

(
pi(e)− pj(e)

2

)2

(Since |Φi − Φj | ≤ 0.01ε6p3µ(G) by Claim 4.5.)

The third equality above, simply comes from the definition (4) for Φi, which implies Φi =
∑

e Pr[e ∈
Mi(Hi)]− εPr[e ∈Mi(Hi)]

2 =
∑

e pi(e)− εpi(e)2, and from the same bound applied on Φj .

Now define subset D′i := {e ∈ Di | pj(e) < 0.5ε2p} of Di. Using this subset only instead of the
set E of edges in the inequality above gives

Φi(Mi,j) ≥ Φi − 0.01ε6p3µ(G) + ε
∑
e∈D′i

(
pi(e)− pj(e)

2

)2

≥ Φi − 0.01ε6p3µ(G) + ε
∑
e∈D′i

(
ε2p− 0.5ε2p

2

)2

(Since for any e ∈ D′i, pj(e) < 0.5ε2p by definition of D′i and pi(e) ≥ ε2p by definition of Di.)

= Φi − 0.01ε6p3µ(G) + ε
∑
e∈D′i

ε4p2

16

= Φi − 0.01ε6p3µ(G) +
ε5p2

16
|D′i|.

To obtain the claimed contradiction, we will prove that

|D′i| ≥ 0.5εpµ(G), (11)

which combined by inequality above proves

Φi(Mi,j) ≥ Φi − 0.01ε6p3µ(G) +
ε6p3

32
µ(G) > Φi + 0.01ε6p3µ(G), (12)

which contradicts Φi being the maximum objective achievable.

To complete the proof, it thus only remains to prove (11). We have

E|Di ∩Mj(Hj)| =
∑
e∈Di

pj(e) =
∑

e∈Di\D′i

pj(e) +
∑
e∈D′i

pj(e) ≥
∑

e∈Di\D′i

pj(e) ≥ (|Di| − |D′i|)0.5ε2p.

Also note that

εpµ(G)
(7)

≤ E|Di ∩Mi(Hi)| =
∑
e∈Di

pi(e) ≤
∑
e∈Di

1 = |Di|.

Combining the two bounds above gives

E|Di ∩Mj(Hj)| ≥ (εpµ(G)− |D′i|)0.5ε2p = 0.5ε3p2µ(G)− 0.5ε2p|D′i|,
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which combined with the bound E|Di ∩Mj(Hj)| < 0.25ε3p2 · µ(G) of (8) gives

0.25ε3p2µ(G) > 0.5ε3p2µ(G)− 0.5ε2p|D′i|.

By moving the terms, we get

|D′i| >
0.25ε3p2µ(G)

0.5ε2p
= 0.5εpµ(G).

This is the desired bound of inequality (11), which as discussed above completes the proof.

5 Tool II: A New Vertex-Independent Matching Lemma

The notion of “vertex-independent matchings” for stochastic graphs was introduced first in [6].
In this section, we present a new vertex-independent matching lemma for bipartite graphs, that
unlike the previous ones [6, 4], which required the vertices to be far apart in the graph to have
independence, guarantees independence for any pair of non-adjacent nodes, even if there is a short
path of length 3 between them. This stronger guarantee on the independence is the key to improve
per-vertex queries from Op(1) down to poly(1/p).

We use the vertex-independent lemma to prove the following which use for our bipartite MVC
approximate algorithm.

Lemma 5.1. Let G = (V,E) be a bipartite graph, let realization Gp = (V,Ep) be a random subgraph
of G that includes each of its edges independently with probability p. Let (Q,S) be a partitioning
of E and denote Qp := Q ∩ Ep and Sp := S ∩ Ep. Suppose also that we are given a (possibly
randomized) matching algorithm M, and a fractional matching q on E such that:

1. For any edge e ∈ Q, qe = PrQp,M[e ∈M(Qp)].

2. For any edge e ∈ S, qe ≤ ε5p for some ε > 0.

Then E[µ(Gp)] ≥ (1− 6ε) e
e+1 |q|.

We first present the vertex-independent matching algorithm in Section 5.1 and use it to prove
Lemma 5.1 in Section 5.2.

5.1 The Vertex-Independent Matching Algorithm

In this section we present our vertex-independent matching algorithm which satisfies the following:

Lemma 5.2 (Bipartite Vertex-Independent Matching Lemma). Let Γ(A,B,EΓ) be a bi-
partite graph, let Γp be a random subgraph of Γ that contains any of its edges independently with
probability p, let A be an arbitrary matching algorithm, possibly randomized, and let MA be the
matching obtained by running A on Γp. There is a randomized algorithm (Algorithm 1) for con-
structing a matching MB of Γp such that:

(i) E|MB| ≥ (1− 1
e ) · E|MA|.

(ii) For any vertex v ∈ A, Pr[v ∈MB] ≤ Pr[v proposes] = Pr[v ∈MA].
(See Algorithm 1 for how the vertices on the A side “propose”.)

(iii) For any vertex u ∈ B, Pr[u ∈MB] ≤ Pr[u ∈MA].
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(iv) For any non-adjacent v ∈ A, u ∈ B (i.e. (u, v) 6∈ E), whether v proposes (see Algorithm 1) is
independent of event u ∈MB.

We emphasize that MA (resp. MB) has two sources of randomization, one in the randomization of
graph Γp, and one the possible randomization in algorithm A (resp. B). The probabilistic statements
above are with regards to both.

Proof. We start by describing the algorithm for constructing matching MB.

For any vertex v ∈ A, let us use Rv to denote the realization status of edges connected to v
in graph Γp. That is, Rv reveals which edges connected to v are realized and which ones are not
realized, but crucially does not reveal any information about the realization of the rest of the edges.
Using this information, for any edge e = (v, u) with v ∈ A, u ∈ B, we define pe := Pr[e ∈MA | Rv].
That is, in defining pe for any edge e = (v, u) we only need to know which edges connected to v are
realized in Γp, and are essentially unaware of realization of the rest of the edges in Γp. Similarly,
for any vertex v ∈ A we denote pv :=

∑
e3v pe = Pr[v ∈MA | Rv].

Observe that for any v ∈ A, 0 ≤ pv ≤ 1 since pv corresponds to the probability that v is matched
in MA conditioned on the realization of its edges. Importantly, however, this does not hold for
vertices of the other partition, and

∑
e3u pe may, in fact, exceed one for u ∈ B.

Having defined pe and pv as above, the claimed Algorithm 1 in Lemma 5.2 can be formalized:

Algorithm 1. The algorithm for constructing matching MB on Γp.

1 for any vertex v ∈ A do
2 Vertex v either proposes to exactly one neighbor u, or does not propose at all. This is

decided by a random procedure, where each neighbor u has probability exactly p(u,v)

of being proposed to by v, and there is a probability 1− pv that v does not propose.

3 for any vertex u ∈ B do
4 Among the vertices who sent proposals to vertex u, if any, u chooses an arbitrary

winner v and we add (u, v) to matching M ′B.

5 return MB.

We now prove the properties of Lemma 5.2.

Property (i). Fix an arbitrary vertex u ∈ B, and let {v1, . . . , vd} be its neighbors in A. Let Yi
be the indicator random variable for the event that vi proposes to u. First, observe that

E[Yi] = E[p(vi,u)] = E[Pr[(u, vi) ∈ A(Γp) | Rv]] = Pr[(u, vi) ∈ A(Γp)].

As a result, ∑
i

E[Yi] =
∑
i

Pr[(u, vi) ∈ A(Γp)] = Pr[u ∈ A(Γp)]. (13)

Moreover, observe that Rv1 , . . . , Rvd are mutually independent since the edges of v1, . . . , vd are
all disjoint. Thus, the proposals of v1, . . . , vd are also mutually independent and so are random
variables Y1, . . . , Yd. Now observe that u remains unmatched in MB if and only if none of its
neighbors proposes to it; combined with the independence discussed, this implies

Pr[u ∈MB] = 1−
∏
i

Pr[Yi = 0] = 1−
∏
i

(1− E[Yi]).
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Fixing the sum
∑

i E[Yi] to be S, 1−
∏
i(1−E[Yi]) is minimized for E[Y1] = . . . = E[Yd] = S

d . Thus

Pr[u ∈MB] ≥ 1−
d∏
i=1

(
1− S

d

)
= 1−

(
1− S

d

)d
≥ (1− 1/e)S

(13)
= (1− 1/e) Pr[u ∈ A(Γp)]. (14)

Now, by linearity of expectation over all choices of u ∈ B, we get

E|MB| =
∑
u∈B

Pr[u ∈MB]
(14)

≥ (1− 1/e)
∑
u∈B

Pr[u ∈ A(Γp)] = (1− 1/e)E|MA|,

completing the proof.

Property (ii). If a vertex v ∈ A does not propose, it remains unmatched in MB. Thus:

Pr[v ∈MB] ≤ Pr[v proposes] = E[pv] = Pr[v ∈MA].

Property (iii). For any vertex u ∈ B,

Pr[u ∈MB] ≤ Pr[u receives a proposal] ≤
∑

v∈N(u)

E[p(v,u)] = Pr[u ∈MA].

Property (iv). Observe that in order to determine u ∈MB, it suffices to reveal the proposals of
its neighbors in A. If one of them proposes to u then u is matched and otherwise it is not. Now
since (u, v) 6∈ E as assumed by Property (iv), the proposals of v remains completely unknown and
independent of u ∈MB.

5.2 Proving Lemma 5.1 via the Vertex-Independent Lemma 5.2

To prove Lemma 5.1, we prove two different bounds on the expected size of µ(Gp). The first one
is easy to prove and is as follows:

Claim 5.3. E[µ(Gp)] ≥ q(Q).

Proof. As assumed in Lemma 5.1, qe = Pr[e ∈M(Qp)] for any e ∈ Q. By linearity of expectation,
this implies E|M(Qp)| = q(Q). Since Qp ⊆ Ep, any edge in M(Qp) appears in Gp and thus the
same lower bound also holds for E[µ(Gp)] completing the proof.

The second bound is the main part of the proof, and reads as follows:

Claim 5.4. E[µ(Gp)] ≥ (1− 6ε)
(
e−1
e · q(Q) + q(S)

)
.

Let us first see how the combination of Claims 5.3 and 5.4 proves Lemma 5.1. Observe that
since each edge of G is either in Q or S, |q| = q(Q) + q(S). Now consider two cases:

Case 1 — q(Q) ≥ e
e+1 |q|: In this case, Claim 5.3 already implies Lemma 5.1.

Case 2 — q(Q) < e
e+1 |q|: In this case, by Claim 5.4, we have

E[µ(Gp)] ≥ (1− 6ε)

(
e− 1

e
· q(Q) + q(S)

)
.
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The right hand side is minimized, when as much of the weight of q comes from Q instead of S.
But, by the assumption of Case 2, q(Q) < e

e+1 |q|. Thus:

EGp [µ(Gp)] ≥ (1− 6ε)

(
e− 1

e
· e

e+ 1
· |q|+ 1

e+ 1
· |q|

)
= (1− 6ε)

e

e+ 1
|q|,

which is the desired bound of Lemma 5.1.

5.2.1 Proof of Claim 5.4

In order to argue that Gp has a matching of our desired expected size, we construct a fractional
matching x on it. Since the graph is bipartite, any fractional matching can be turned into an
integral matching of at least the same size. As a result, it suffices to argue that fractional matching
x has our desired size in expectation.

To construct fractional matching x, we first use the vertex-independent matching Algorithm 1
of Lemma 5.2 to construct an integral matching MB on Qp (the parameters that we feed into
Lemma 5.2 are formalized below). We then use MB to define y : E → R+ which will be very
close to our final fractional matching x, except that for a small fraction of vertices, the value of
yv :=

∑
e3v ye may exceed one due to deviations in our random process. We then scale down y to

obtain our fractional matching x and finally argue that x is large enough.

For brevity, we use (v prop) and (v prop) to indicate respectively the events that a vertex v ∈ A
proposes and does not propose in Algorithm 1 for constructing MB.

The formal definition of y, given matching MB is given below:

ye ←


1 if e ∈MB (this implies e ∈ Qp)
qe/(pPr[v prop] Pr[u 6∈MB]) if e ∈ Sp, u 6∈MB, and v prop

0 otherwise,

∀e = (u, v) ∈ E,
v ∈ A, u ∈ B.

(15)

As discussed, y is not necessarily a valid fractional matching since for some vertices v, yv may
be larger than 1 due to some low probability (but still likely to occur) events. To resolve this, we
define the final, always valid, fractional matching x as follows:

xe ←

{
ye/(1 + ε) if yv ≤ 1 + ε and yu ≤ 1 + ε,

0 otherwise,
∀e = (u, v) ∈ E. (16)

The Matching MB: As discussed, we use Lemma 5.2 to construct matching MB. In order to use
this lemma, we have to specify: (i) what graph we run the matching algorithm of this lemma on,
and (ii) what algorithm A we feed into the lemma. For the first question, the graph Γ on which
we run the lemma is simply the subgraph Q of G, and we let Γp correspond to the realized edges
Qp. This ensures that the reported matching MB of Lemma 5.2 satisfies MB ⊆ Qp. For the second
question, we first define an auxiliary matching M ′A :=M(Qp) and let MA include each edge of M ′A
independently with probability 1− ε. This down sampling step is rather technical and is there to
just ensure Pr[w ∈MA] ≤ 1− ε for any vertex w.

Defining MA this way, as a corollary of Lemma 5.2 we get:

Corollary 5.5. The matching MB constructed as above on subgraph Qp satisfies:

(i) E|MB| ≥ (1− 1
e )E|MA| = (1− ε)(1− 1

e ) · q(Q).
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(ii) For any vertex v ∈ A, Pr[v ∈MB] ≤ Pr[v prop] = Pr[v ∈MA] = (1− ε) Pr[v ∈M(Qp)].

(iii) For any vertex u ∈ B, Pr[u ∈MB] ≤ Pr[u ∈MA] = (1− ε) Pr[u ∈M(Qp)].

(iv) For any v ∈ A, u ∈ B with (u, v) ∈ S, events (v prop) and (u ∈MB) are independent.

Proof. The first three are simply followed by the properties of Lemma 5.2 combined with the
definition of MA above. The last property holds since (u, v) ∈ S implies (u, v) 6∈ Q (since each
there are no parallel edges and each edge belongs to exactly one of Q and S) which combined with
Property (iv) of Lemma 5.2 implies the stated independence.

Having defined MB, the definitions of y and x are complete. We now turn to analyze their size.
We first analyze the size of y and then prove the size of x is actually very close to that of y by
bounding the probability of deviations leading to vertices to have yv > 1 + ε.

The Expected Size of y: We have E|y| =
∑

e∈E E[ye] =
∑

e∈Q E[ye] +
∑

e∈S E[ye]. For edges
e ∈ Q we have ye = 1 iff e ∈MB, which combined with MB ⊆ Qp implies

∑
e∈Q E[ye] = E|MB|. On

the other hand, by definition of y on edges in S, we have

E|y| = E|MB|+
∑
e∈S

Pr[e ∈ Sp, u 6∈MB, v prop] · qe
pPr[u 6∈MB] Pr[v prop]

.

For any e ∈ S, e ∈ Sp iff e is realized which is independent of how matching MB is constructed.
This holds because in constructing matching MB we do not look at the realized edges Sp of S. On
the other hand, by Corrolary 5.5 Property (iv), u ∈MB and v prop are also independent, hence

E|y| = E|MB|+
∑
e∈S

qe

≥ (1− ε)(1− 1/e) · q(Q) +
∑
e∈S

qe (By Corollary 5.5 Property (i))

≥ (1− ε)
(

(1− 1/e) · q(Q) + q(S)
)
. (17)

Note that y, as proved above, is as large as the lower bound required by Claim 5.4. However,
we want to show that E|x| is also this large (up to 1−Θ(ε) factors). This is what we prove next.

The Expected Size of x: Take an edge e = (v, u) ∈ E. Observe from the construction of x that
either xe = ye/(1 + ε), or xe = 0 if yv > 1 + ε or yu > 1 + ε. This implies that

E|x| =
∑
e∈E

E[xe] =
∑

e=(u,v)∈E

E[ye/(1 + ε) | yv ≤ 1 + ε, yu ≤ 1 + ε].

Now an edge e ∈ E either belongs to Q or S. For edges e = (u, v) ∈ Q, it is not hard to see that
we have xe = ye/(1 + ε) with probability one, and thus

E[xe] = E[ye]/(1 + ε) ∀e ∈ Q. (18)

The reason behind this, is that if e = (u, v) ∈ Q then by construction of y, ye = 111(e ∈ MB).
Further, if it occurs that ye = 1, then both of its endpoints are matched in MB and hence we have
ye′ = 0 for all other edges e′ connected to either u or v, again by construction of y. As a result,
ye = 1 implies yu = yv = 1 and thus xe = ye/(1 + ε); otherwise xe = ye = 0, proving (18).

The situation, however, is more complicated for edges e ∈ S as in this case y on the endpoints
of e may exceed one. We show, however, that this occurs with a small enough probability that we
can still argue that it does not affect the expected value of xe by much, and E[xe] ≈ E[ye].
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Claim 5.6. For any vertex u ∈ B, E[yu | u 6∈MB] ≤ qu.

Proof. Let v1, . . . , vd be the neighbors of u in S, and let ei = (u, vi). We have

E[yu | u 6∈MB] =

d∑
i=1

qei
pPr[u 6∈MB] Pr[vi prop]

· Pr[ei ∈ Sp, u 6∈MB, vi prop | u 6∈MB].

By independence of events in the probability (justified before), we can simplify this to

E[yu | u 6∈MB] =
d∑
i=1

qei
Pr[u 6∈MB]

=

∑d
i=1 qei

Pr[u 6∈MB]
.

Now let qSu denote the sum of fractional value written on edges of u in S and let qQu denote the
same but on edges of v in Q. The nominator equals qSu . Also from Corollary 5.5 Property (iii),
thus Pr[u ∈MB] ≤ (1− ε)qQu , we get Pr[u 6∈MB] ≥ 1− (1− ε)qQu ≥ 1− qQu . Combining them gives

E[yu | u 6∈MB] ≤ qSu

1− qQu
=

qu · qSu
qu(1− qQu )

=
qu · qSu

qu − qu · qQu
≤ qu · qSu
qu − qQu

=
qu · qSu
qSu

= qu,

as desired.

Claim 5.7. For any vertex u ∈ B, E[yu | yu ≤ 1 + ε, u 6∈MB] ≥ E[yu]− εqu.

Proof. As proved in Claim 5.6, E[yu | u 6∈ MB] ≤ qu. We prove the desired inequality of the claim
via a concentration bound on random variable y′u := (yu | u 6∈MB).

Let v1, . . . , vd be the neighbors of u in S, and let ei = (u, vi). Let us for simplicity define random
variable y′ei := (yei | u 6∈ MB). Since we have conditioned on u 6∈ MB, we get by definition of y

that y′u =
∑d

i=1 y
′
ei . Now we argue that y′e1 , . . . , y

′
ed

are actually independent. To see this, observe
that once we condition on u 6∈ B, the only random process that determines each y′ei is whether
edge ei is realized (i.e. ei ∈ Sp) and if vertex vi proposes. Both events are independent of u 6∈MB
since, recall, to determine u 6∈ MB we only need to know the proposals of its neighbors in Q, and
v1, . . . , vd are all neighbors of u in S.

This independence allows us to prove a concentration bound on y′u and prove the claim. We do
this via the second moment method. We have

Var[y′u] =
d∑
i=1

Var[y′ei ] =
d∑
i=1

E[(y′ei)
2]− E[y′ei ]

2 ≤
d∑
i=1

E[(y′ei)
2]

see below
≤ τ · E[y′u]

Claim 5.6
≤ τ · qu,

where τ is the maximum possible outcome of y′ei for any i ∈ [d].

Plugging this into Chebyshev’s inequality, we get

Pr[y′u > E[y′u] + δ] ≤ Var[y′u]

ε2
≤ τqu

δ2
.

Finally, for each edge ei, by construction of y, yei ≤ qei/(pPr[vi prop] Pr[u 6∈MB]) ≤ qei/pε2 where
the latter follows from Corollary 5.5. Combined with qei ≤ ε5p by Lemma 5.1 and ei ∈ S, we get

τ ≤ ε3. We thus get Pr[y′u > 1 + ε] ≤ Pr[y′u > E[y′u] + ε] ≤ ε3

ε2
qu. This concentration of y′u implies

E[yu | yu > 1 + ε, u 6∈MB] ≤ εqu and thus the stated bound of the claim.
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Similarly, for each vertex v ∈ A we can first bound the expected value of yv conditioned on
(v prop) and then prove this is concentrated, and overall argue x remains close to y. Namely:

Claim 5.8. For any v ∈ A, E[yv | yv ≤ 1 + ε, v prop] ≥ E[yv]− εqv.

Since the proof is similar to Claim 5.7 for vertices in B and there are only minor differences,
we defer it to Appendix A.

To complete the proof that E|x| ≈ E|y|, note that

E|x| = 1

2

∑
w∈A∪B

E[xw] =
1

2

∑
w∈A∪B

E[yw | yw ≤ 1 + ε]

1 + ε

Claims 5.7, 5.8
≥

(
1

2

∑
w∈A∪B

E[yw]

1 + ε

)
− 3ε|q|

≥ 1

1 + ε
|y| − 3ε|q|

(17)

≥ (1− ε)
(

(1− ε)
(

(1− 1/e) · q(Q) + q(S)
))
− 3ε|q|

≥ (1− 6ε)
(

(1− 1/e) · q(Q) + q(S)
)
.

Since as discussed E[µ(Gp)] ≥ E|x|, this completes the proof of Claim 5.4.

6 Upper Bounds

In this section, we present our main algorithms for the stochastic vertex cover problem.

6.1 Bipartite Graphs: 1.36-Approximation with poly(1
p
) Queries

Our main result in this section is the following stochastic vertex cover result for bipartite graphs:

Theorem 6.1. For any p ∈ (0, 1], any bipartite graph G = (V,E) has a subgraph Q of maximum
degree O(1/p6) where querying only the edges in Q suffices to find C ⊆ V such that:

1. C is a vertex cover of Gp with probability 1.

2. The expected size of C is at most 1.367 (≈ e+1
e ) times the size of E[ν(Gp)].

3. Both Q and C can be found in polynomial time.

To prove Theorem 6.1, we first use the Half-Stochastic Matching Lemma 4.1 to obtain a par-
titioning (Q,S) of E. We then query the edges in Q, and report the MVC of H = Qp ∪ S as the
vertex cover for Gp. We finally use the algorithmM provided by this lemma, as well as Lemma 5.1
to analyze the approximation ratio of this algorithm.

The formal algorithm is as follows:

Algorithm 2. The algorithm for Theorem 6.1.

1 Let Q,S be the partitioning found by Lemma 4.1 for the following parameters: G is the
given base graph, p is the realization probability, and let ε > 0 be a sufficiently small
constant which adjusts how close the approximation will be to e+1

e .
2 Query the edges in Q and let Qp be the edges in Q that are realized.
3 Return a minimum vertex cover C of graph H = Qp ∪ S.

Intuitively, what we do in Algorithm 2 is to query only the edges in Q, assume that the rest of
the edges in S are all realized, and report a MVC of the resulting graph H = Qp ∪ S. Note that
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the vast majority of the edges in G belong to S since Q has only a constant maximum degree. As
a result, we have to argue that the extra constraints imposed by assuming that all these edges are
realized, do not increase the vertex cover size by much.

Before analyzing the size of the vertex cover C, let us explain why it is always a valid vertex
cover of Gp and analyze the query-complexity of Algorithm 2. These will be simple consequences
of the properties provided by Lemma 4.1.

Query-Complexity and Validity of the Vertex Cover: By Property (i) of Lemma 4.1 the
maximum degree in Q is at most O(1/ε11p6); thus, we query at most O(1/p6) edges per vertex.
The validity of the vertex cover is also easy to confirm. By definition of H, an edge e ∈ E is not in
H if and only if it belongs to Q and is not realized. Therefore, all realized edges must belong to H
implying that Gp is a subgraph of H. As a result, a vertex cover of H covers all the edges in Gp.

The Approximation Ratio: We use Lemma 5.1, as well as the properties of the partitioning
provided by Lemma 4.1, to show that the expected size of the MVC in graph H, which is reported
by Algorithm 2 as the output, is not larger than (almost) e+1

e times the expected size of the
MVC in the actual realization Gp, namely that for any arbitrarily small constant δ′ (affecting ε in
Algorithm 2) it holds that:

EH [ν(H)] ≤ (1 + δ′)
e+ 1

e
· EGp [ν(Gp)].

Since the graph is bipartite, by König’s theorem, the size of maximum matching and MVC are the
same. As such, it suffices to prove

EH [µ(H)] ≤ (1 + δ′)
e+ 1

e
· EGp [µ(Gp)]. (19)

In order to show this, we define a fractional matching q on G with size |q| ≥ (1− 2ε)E[µ(H)]. We
then show that this fractional matching q satisfies the required properties of Lemma 5.1 and as a
result, implies E[µ(Gp)] has the desired size of (19).

The Fractional Matching q: Consider (random) matching M(H) and recall that M is the
matching algorithm provided by Lemma 4.1. For each edge e ∈ E, we simply let qe ← Pr[e ∈
M(H)]. Clearly q is a valid fractional matching since the probabilities around each vertex corre-
spond to its probability of being matched and thus do not exceed one. Moreover, |q| = E[M(H)] by
linearity of expectation, combined with Lemma 4.1 Property (ii) that E|M(H)| ≥ (1−2ε)E[µ(H)],
we get |q| ≥ (1 − 2ε)E[µ(H)]; hence |q| has the claimed size too. It remains to prove the two
assumptions of Lemma 5.1 are also satisfied by q. The first one requires us to give a matching
algorithm M′ where qe = Pr[e ∈ M′(Qp)] for all e ∈ Q. Letting M′(Qp) := M(H) ∩ Qp suffices
for this purpose, since recall that any edge in M(H) ∩ Q is already in Qp by definition of graph
H in Lemma 4.1 and thus Pr[e ∈ M′(Qp)] = qe. For the second assumption we need qe ≤ δ5p
for all e ∈ S (here we used δ instead of ε to avoid confusion with parameter ε that we feed into
Lemma 4.1). Indeed, by Property (iii), we have qe ≤ ε2p and it suffices to let δ = ε2/5. We can,
now, apply Lemma 5.1 to obtain:

E[µ(Gp)] ≥ (1− 4δ)
e

e+ 1
|q| ≥ (1− 4δ)(1− 2ε)

e

e+ 1
E[µ(H)].

Since we can let ε (and thus δ) be any desirably small constant, this proves (19) and our claim that
our reported vertex cover has size at most (arbitrarily close to) e+1

e E[ν(Gp)].
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Stochastic Matchings: Finally, we note that the same tools we used for this problem also lead
to Corollary 1.1. To prove it, we in fact, provide a novel analysis for a well-known Monte Carlo
algorithm for the stochastic matching problem that is very different from the algorithm we use for
Theorem 6.1. This is why the number of queries in Corrolary 1.1 and Theorem 6.1 are different.
But the new analysis, is also based on Lemma 5.1 similar to above.

We analyze the following algorithm proposed first in [7] and further analyzed in [6, 4].

Algorithm 3. A Monte-Carlo algorithm for stochastic matching [7].

1 For large enough R = O( log 1/p
p ), take independent realizations G1, . . . , GR of G.

2 For some deterministic maximum matching algorithm MM(·), query subgraph
Q := MM(G1) ∪ . . . ∪MM(GR) of G and report the maximum matching in Qp.

The following lemma is implied in [7] for Algorithm 3:

Claim 6.1 ([7]). For any desirably small constant ε > 0 (affecting the hidden constants in R), there
is a partitioning C,N of Q, and a fractional matching q on Q such that (i) E|q| ≥ (1−ε)E[µ(Gp)],
(ii) for each edge e ∈ N , qe ≤ ε5p, (iii) for each e ∈ C, qe = Pr[e ∈ MM(Gp)].

Here we briefly describe the intuition behind Claim 6.1. For the complete proof see [7].

Proof sketch of Claim 6.1. Partition the edges of graph G into two subsets: crucial edges e defined
as those with Pr[e ∈ MM(Gp)] ≥ τ for a small enough parameter τ = εO(1)p, and non-crucial edges
which include all the rest of edges e with Pr[e ∈ MM(Gp)] < τ .

Let subgraphs C and N of Claim 6.1 be respectively the set of crucial and non-crucial edges
of G that belong to Q. We define q such that the size of q on C is (1 − ε) times the expected
contribution of crucial edges to MM(Gp) and, similarly, the size of q on N is (1 − ε) times the
expected contribution of non-crucial edges to MM(Gp). This way, we guarantee property (i).

To define q on C, for any edge e ∈ C we let qe = Pr[e ∈ MM(Gp)]. It can be easily confirmed
that if the parameter R of Algorithm 3 is larger than log(1/ε)/τ , then each crucial edge is added
to Q with probability at least 1− ε. As such, fractional matching q on C has size at least (1− ε)
fraction of the expected contribution of crucial edges to MM(Gp).

On the flip side, however, Q includes only a small fraction of non-crucial edges. Hence, to
maintain the property that q on N is almost as large as the expected contribution of non-crucial
edges to MM(Gp), the value of qe must be much larger than Pr[e ∈ MM(Gp)] for e ∈ N . To
do this, suppose that we define qe to be the fraction of matchings MM(G1), . . . ,MM(GR) that
include e. Observe that each edge e in the graph, crucial or non-crucial, is expected to appear
in exactly Pr[e ∈ MM(Gp)] fraction of matchings MM(G1), . . . ,MM(GR) since each one includes e
with probability exactly Pr[e ∈ MM(Gp)]. Hence, by defining q on N this way, we get that the
expected size of q on N is at least the expected contribution of N to MM(Gp). Unfortunately,
however, q may violate fractional matching constraints with this construction. Namely, that qv
for a vertex v may exceed one. The next important observation is that this violation cannot be
too large, since the fraction of matchings MM(G1), . . . ,MM(GR) in which a vertex v is matched
via a non-crucial edge is sufficiently concentrated around the probability that v is matched via a
non-crucial edge in MM(Gp). The final fractional matching is obtained by slightly modifying this
fractional matching (particularly by discarding vertices that deviate too much and multiplying the
rest of the values by some (1− ε) factor) so that no constraints are violated.

Having it, we can now plug q into Lemma 5.1 and obtain that E[µ(Qp)] ≥ (1−5ε)( e
e+1)E[µ(Gp)],
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thereby proving Corollary 1.1.

6.2 General Graphs: (2 + ε)-Approximation with O(1
p
) Per-Vertex Queries

In this section, we prove the following result:

Theorem 6.2. For any ε > 0 and p ∈ (0, 1], any (general) graph G = (V,E) has a subgraph Q of
maximum degree O( 1

ε3p
) where querying only the edges in Q suffices to find C ⊆ V such that:

1. C is a vertex cover of Gp with probability 1.

2. The size of C is in expectation at most (2 + ε) times the minimum vertex cover of Gp.

3. It is possible to find Q and C in polynomial time.

We start with a subroutine for constructing a fractional matching on a given graph, and then
describe our algorithm which proves Theorem 6.2.

A fractional matching subroutine: Consider a simple and well-known fractional matching
algorithm which starts with a zero-size fractional matching and gradually increases the fractional
values on the edges all at the same (additive) rate. Once the fractional value around a vertex
reaches one, we mark this vertex as inactive and stop increasing the fractional value of its edges.
We will use a slightly different variant of this algorithm in Algorithm 4 where the vertices may be
made inactive sooner; i.e., once they reach a given budget; this variant is formalized below.

Let G be a graph, and for each vertex v, let b(v) ∈ (0, 1] be a given budget. Initially, every
vertex v is active and for each edge e we set xe := 0. The algorithm proceeds in at most n steps.
In each step, for any edge e whose both endpoints are active, we increase xe for all the edges in the
same rate until for a vertex we have xv :=

∑
e3v xe = b(v). When this event happens for a vertex

v it becomes inactive, which implies that for its edges e, xe will no longer change. Algorithm 4 is
the pseudo-code of this process.

It is clear that throughout the algorithm we have xv ≤ b(v) ≤ 1 for every vertex v. Hence, at
every point in the algorithm, vector x := (xe)e∈E is a fractional matching of G. Let us define x(t)

to be equal to x from an iteration of the algorithm after which for at least one edge we have xe > t.
(If xe > t never happens then x(t), is from the last iteration of the algorithm.) We can intuitively
think of the algorithm above as a continuous process over a time interval of [0, 1] that gradually
increases the fractional matching on all edges with active endpoints, all at the same additive rate,
until every vertex becomes inactive. The value of x(t) can thus be interpreted as the fractional
matching constructed by time t of this process.

Algorithm 4. Filling(G = (V,E), b : V → (0, 1])

1 For any edge e ∈ E, set xe := 0.
2 repeat
3 Call a vertex inactive iff xv :=

∑
e3v xe = b(v), and active otherwise.

4 Call an edge active iff both its endpoints are active, and inactive otherwise.
5 Pick the minimum parameter δ ∈ (0, 1) such that setting xe ← xe + δ for all the active

edges, results in at least one new inactive vertex.
6 Set xe ← xe + δ for all active edges.

7 until All the vertices are inactive
8 return fractional matching x← (xe)e∈E .
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Our stochastic vertex cover algorithm. We use Algorithm 5 to decide which edges to query
and which vertices to put in the vertex cover. Here we give an informal overview of this algorithm.

The algorithm starts by running Algorithm 4 on the static graph G with a budget of 1 per
vertex, to obtain a fractional matching x. We will, in fact, only need the fractional matching x′

constructed by this algorithm up to time t := Θ(ε3p), i.e. x′ := x(t). Once we have x′ and before
we query any edge, we commit the vertices with fractional matching value 1 in x′ to be in our final
vertex cover. Let F := {v ∈ V : x′v = 1} denote the set of these vertices and let Q be the edges
in E that do not have an endpoint in F . Note that any edge in E \ Q is already covered by F ;
hence we do not need to query them. We, thus, only query the edges in Q. Let Qp be the subset of
edges in Q that turn out to be realized. At least one of the endpoints of each edge in Qp should be
added to the vertex cover. To decide which ones join the vertex cover, we again run Algorithm 4,
but this time on subgraph Qp and we set the budget of each vertex v to be 1 − x′v. Let y be the
resulting fractional matching on Qp. We report the set C := {v ∈ V : x′v + yv = 1} as the vertex
cover. (Note from the definition that F ⊆ C, hence satisfying our earlier claim that we “commit”
F to be in the final vertex cover.)

Algorithm 5. The algorithm for Theorem 6.2.

1 Let x := Filling(G, b) where b(v) = 1 for each v ∈ V .

2 Fix t = Θ(ε3p) and let x′ := x(t).
3 Let F := {v ∈ V : x′v = 1}.
4 Query edges Q := {e = (u, v) ∈ E : u 6∈ F and v 6∈ F} with no endpoint in F .
5 Let Qp be the realized edges in Q.
6 Run y := Filling(Qp, b

′) where b′(v) = 1− x′v for each v ∈ V .
7 Report C := {v ∈ V : x′v + yv = 1} as the vertex cover of Gp.

Validity of the vertex cover. The proof of why the set C reported by Algorithm 5 is always
a valid vertex cover of Gp is simple. We start by formalizing our earlier claim that all vertices in
F also appear in C. To see this, observe that any vertex v in F by definition has x′v = 1 which
also implies yv = 0 since b′(v) = 1− x′v = 0; this in turn implies x′v + yv = 1 and thus by definition
v ∈ C. Now take an edge e of the realization Gp. If e has an endpoint in F , then this endpoint
is in C, covering e. Therefore, let us take an edge e = (u, v) in Gp whose both endpoints are in
V \ F . Observe that by definition we have e ∈ Qp. Now once we run Filling(Qp, b

′), we increase
the fractional value on e until one of its endpoints v reaches its budget b′(v). Since we have set
b′(v) = 1 − x′v and yv = b′(v), we have x′v + yv = 1 − b′(v) + b′(v) = 1 and thus v belongs to C,
covering e.

Analysis of the number of queries. Observe that in Algorithm 5, we only query the edges
in Q. Thus, it suffices to prove that the maximum degree in Q is at most O(1/ε3p) to prove that
Algorithm 5 queries at most O(1/ε3p) edges per vertex. Consider an iteration i of the algorithm
when x = xt, and let x′ be the fractional matching from the next iteration (if any). By definition of
xt and Q, at iteration i, any edge e ∈ Q has two active endpoints and thus is active itself. Moreover,
by Algorithm 4, at any iteration, all the edges that have been active in the previous iteration have
the same fractional value; thus, we have x′e > t for any e ∈ Q. Moreover, as a result of x′ being a
valid fractional matching, any vertex has at most 1/t = Θ(1/ε3p) edges in Q.

Running time of the Algorithm. The algorithm is clearly polynomial time as in each iteration
of Filling(G, b), at least one vertex becomes inactive and this can happen at most n times.
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Analysis of the approximation ratio. The more challenging part is to prove that this vertex
cover C reported by Algorithm 5 is in expectation at most (2 + ε) times larger than the minimum
vertex cover of Gp. To prove this, in Lemma 6.2, we show that it is possible to construct a fractional
matching y of graph Gp such that (2 + ε)E[|y|] ≥ E[|C|]. By weak duality, the minimum vertex
cover of a graph is larger than any of its fractional matchings; hence, C is a (2 + ε)-approximate
minimum vertex cover.

Lemma 6.2. There exists a fractional matching y of Gp such that (2 + ε)E[|y|] ≥ E[|C|].

Proof. We start by giving Algorithm 6 that constructs a fractional matching of Gp.

Algorithm 6. The algorithm for Lemma 6.2.

1 For any edge e ∈ Sp we set ye ← x
(t)
e

(1+α)p for α = 0.25ε.

2 If a vertex v does not satisfy
∑

e3v ye ≥ x
(t)
v then, for any edge e 3 v set ye ← 0.

3 For any e ∈ Qp set ye ← x′e where x′ ← Filling(Qp, b) with b(v) = 1−x(t)
v for any v ∈ V \F .

4 Report y as the fractional matching of Gp.

This algorithm consists of two stages. In the first stage, we construct a fractional matching on
edges in Sp and in the second stage, we add the edges of Qp to this matching. The first stage starts
by setting

xe :=
x

(t)
e

(1 + α)p

for any edge e ∈ S that is realized, where α = 0.25ε. Let us call a vertex bad iff it satisfies

xv :=
∑

e3v xe > x
(t)
v . For any bad vertex v we decrease xe of all the edges e 3 v to zero.

In the second stage of the algorithm, we construct a fractional matching on edges inQp. Consider

x′ := Filling(Qp, b) with b(v) = 1 − x(t)
v for any v ∈ Q. Clearly, combining x′ with y gives us a

valid fractional matching since for any vertex v ∈ V we have
∑

v∈V x
′
v + yv < 1. Hence, for any

edge in Qp we set ye := x′e. To complete the proof of this lemma, it suffices to take vertex cover C
outputted by Algorithm 5 and prove

(1 + 0.5ε)E

[∑
v∈C

yv

]
≥ |C|, (20)

as it gives us

(2 + ε)E[|X|] = 2(1 + 0.5ε)E[|X|] ≥ (1 + 0.5ε)E

[∑
v∈V

yv

]
≥ (1 + 0.5ε)E

[∑
v∈C

yv

]
≥ |C|.

For any vertex v ∈ C, let zv :=
∑

e3,v,e∈S and let wv :=
∑

e3,v,e∈Q. By Algorithm 5, any vertex

v ∈ C satisfies wv + x
(t)
v = 1. In the rest of the proof we focus on proving∑

v∈C
x(t)
v ≤

∑
v∈C

(1 + 0.5ε)E[zv], (21)

since it results in (20) as follows:

|C| =
∑
v∈C

(wv + x(t)
v )

(21)

≤
∑
v∈C

wv + (1 + 0.5ε)E[zv] ≤
∑
v∈C

(1 + 0.5ε)E[yv] = (1 + 0.5ε)E

[∑
v∈C

yv

]
.
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To prove (21), let us start by noting that if we set ze = x
(t)
e

(1+α)p for any realized edge in S, we get∑
v∈C x

(t)
v = (1 +α)

∑
v∈C E[zv] and proves (21). However, in our algorithm we decrease ze to zero

for the edges around any bad vertex and get zv = 0 for any such vertex. Thus, using Chebyshev’s
inequality, we will show that for any v, probability of being bad is small and as a result reducing the
fractional value of the edges around these vertices does not affect the expected size of our matching

significantly. Since for any v ∈ S, we have E[zv] = x
(t)
v /(1 + α), we get

Pr[zv > x(t)
v ] = Pr[zv > E[zv](1 + α)] ≤ Pr[zv − E[zv] > α].

Since any edge gets value of x
(t)
e /(1 + α)p with probability p (if realized) and zero otherwise, for

any edge e 3 v, we have:

Var[ze] = E[z2
e ]− E[ze]

2 = p
(
x(t)
e /(1 + α)p

)2
−
(
x(t)
e /(1 + α)

)2
≤

(
x

(t)
e

)2
(1− p)

p
≤ t2

p
.

Since edges are realized independently, this gives us

Var[zv] =
∑
e3v

Var[zv] ≤
1

t

t2

p
=
t

p
.

Using Chebyshev’s inequality, we have

Pr[zv − E[zv] > α] ≤ Var[zv]

α2
≤ t

pα2
.

Now let us investigate the expected size of the fractional matching after decreasing ze to zero for
any edge e 3 v adjacent to a bad vertex v. We have

E

[∑
v∈V

zv

]
≥ 1

1 + α

∑
v∈V

x(t)
v (1− t

pα2
). (22)

By setting t = 0.25α2εp = Θ(ε3p), we get

E

[∑
v∈V

zv

]
≥ 1− 0.25ε

1 + 0.25ε

∑
v∈V

x(t)
v ≥

1

1 + 0.5ε

∑
v∈V

x(t)
v .

This gives us (21) and completes the proof.

6.3 Bipartite Graphs: (1 + ε)-Approximation with Op(1) Per-Vertex Queries

In this section, we will prove the following result:

Theorem 6.3. For any constant ε > 0 and constant p ∈ (0, 1], any bipartite graph G = (V,E) has
a constant degree subgraph Q where querying only the edges in Q suffices to find C ⊆ V such that

1. C is a vertex cover of Gp with probability 1.

2. The size of C is in expectation at most (1 + ε) times the minimum vertex cover of Gp.

3. It is possible to find Q and C in polynomial time.
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We start by the following lemma. While it is a folklore result, to be self-contained we also
provide a proof for it.

Claim 6.3. Given M1 and M2, two random matchings of graph G with E[|M2|] ≥ E[|M1|], let D
denote their symmetric difference. For any ε ∈ (0, 1) graph D contains at least E[|M2|]−E[|M1|]−
εE[|M2|]

2 maximal paths of length at most 4/ε+ 1 who start and end with edges in M2.

Proof. Any maximal path of graph D that starts and ends with edges in M2 is also called an
augmenting paths. Since D is the symmetric difference of E[|M1|] and E[|M2|] it has E[|M2|] −
E[|M1|] more edges from M2 compared to M1. As a result, it contains at least E[|M2|] − E[|M1|]
augmenting paths. Also, note that any augmenting paths longer than 4/ε + 1, contains at least
2/ε edges from M2. Hence, there are most E[|M2|]/(2/ε) augmenting paths of length greater than
4/ε+ 1. As such, D contains at least

E[|M2|]− E[|M1|]−
εE[|M2|]

2

augmenting paths of length at most 4/ε+ 1.

Proof of Theorem 6.3. We provide a reduction to approximate stochastic matchings. Suppose that
we have a stochastic matching algorithm µδ that provides a (1− δ)-approximation via f(δ, p) per-
vertex queries – such algorithm exists as proved in [6] for

f(δ, p) = exp
(

exp
(

exp
(
O(δ−1)

)
× log log p−1

))
,

and takes polynomial time to run for constant δ and p. We give a (1 + ε)-approximate stochastic

minimum vertex cover algorithm that queries f( εp
2/ε+2

4 , p) = Oε,p(1) edges per vertex.

The Reduction: For δ = εp2/ε+2

4 , let Q denote the set of edges queried by algorithm µδ and let
S = E \ Q. We claim that querying set Q and picking a minimum vertex cover of (QP ∪ S) is a
(1 + ε)-approximate vertex cover algorithm. Let νε be the described algorithm. First, this clearly
gives us a valid vertex cover of Gp as it covers all the realized edges of Q and all the edges that are
not queried (i.e., edges in S). Thus, to complete the proof we need to show

E[ν(QP ∪ S)] ≤ (1 + ε) · E[ν(Gp)]. (23)

For the sake of contradiction, we assume that this inequality does not hold and show that it implies
E[|µ(Qp)|] < (1− δ)E[|µ(Gp)|], contradicting that µδ is a (1− δ)-approximate stochastic matching
algorithm. Note that since G is bipartite, the size of its maximum matching and minimum vertex
cover are equal by König’s theorem. This implies that if (23) does not hold, then we have

E[µ(QP ∪ S)] > (1 + ε)E[µ(Gp)]. (24)

We will show that in this case, matching µ(Qp) can be augmented using edges in Sp to a matching
whose size is larger than that of µ(Gp) in expectation, which is a contradiction. Let D denote the
symmetric difference of M1 := MM(Qp) and M2 := MM(QP ∪S) where MM(·) returns an arbitrary
maximum matching. Namely, D contains an edge e if it is in exactly one of these matchings. By
Claim 6.3, graph D in expectation contains at least E[|M2|]− E[|M1|]− εE[|M1|]

2 maximal paths of
length at most 4

ε + 1 which start and end with edges in M2 (i.e., augmenting paths), where

E[|M2|]− E[|M1|]−
εE[|M1|]

2
≥ E[|µ(QP ∪ S)|]− E[|µ(Qp)|]−

εE[|µ(Qp)|]
2
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≥ E[|µ(QP ∪ S)|]− E[|µ(Gp)|]−
εE[|µ(Gp)|]

2
(24)
> (1 + ε)E[|µ(Gp)|]− E[|µ(Gp)|]−

εE[|µ(Gp)|]
2

>
εE[|µ(Gp)|]

2
.

Consider one of these augmenting paths P . If all the edges of P are in Gp, flipping the membership
of its edges in M1 increases the size of this matching by one. Note that any of these augmenting
paths has at most 2

ε + 2 edges from S and these edges are realized (are in Gp) independently with

probability p. As a result, each one of these paths is in Gp with probability at least p
2
ε

+2. Since we

have at least
εE[|µ(Gp)|]

2 of these paths, applying all of them on M1 results in increasing its expected
size by at least

p
2
ε

+2 · εE[µ(Gp)]

2
= 2δE[µ(Gp)].

This means that the resulting matching has size at least

E|M1|+ 2δE[µ(Gp)] ≥ (1− δ)E[µ(Gp)] + 2δE[µ(Gp)] > E[µ(Gp)],

which is a contradiction by the fact that E[µ(Gp)] is an upper bound for E|M1|.

7 Lower Bounds

In this section, we prove several lower bounds for both the stochastic vertex cover problem and also
the stochastic matching problem. Below we state these results as a series of theorems, and give
their proofs later in the section.

Theorem 7.1. For any constant p < 1, there exist an n-vertex bipartite stochastic graph G with
realization probability p such that finding an exact minimum vertex cover or an exact maximum
matching of G with any constant probability requires querying Ω( n2

log2 n
) edges of this graph.

Theorem 7.2. Finding a maximal matching of n-vertex stochastic graphs with a constant realiza-
tion probability p ∈ (0, 1) requires Ω(n logb n) total queries for b = 1

1−p .

Theorem 7.3. There are absolute constants p0, ε0 ∈ (0, 1) such that for any p ≤ p0 and ε ≤ ε0,
finding a (1 − ε)-approximate maximum matching for a bipartite stochastic graph Gp, requires
querying a subgraph of maximum degree Ω( 1

εp).

Theorem 7.4. There are absolute constants p0, ε0 ∈ (0, 1) such that for any p ≤ p0 and ε ≤ ε0,
finding a (1 + ε)-approximate minimum vertex cover for a bipartite stochastic graph Gp, requires
querying a subgraph of maximum degree Ω( 1

εp).

Theorem 7.5. Finding a constant approximation of minimum vertex cover of n-vertex stochastic
bipartite graphs with realization probability p requires Ω(np ) total queries.

A graph that is particularly useful for our lower bounds is illustrated in Figure 1 and defined
formally in Definition 7.1.

Definition 7.1 (S(d, s,N)-graphs – Figure 1). For positive integers d, s, and N , an S(d, s,N)-
graph is defined on 2N(s+1) vertices. Of these nodes, 2N form an induced d-regular bipartite graph
B, with N nodes in each partition. In addition, each vertex of B is also connected to s vertices
outside B, each with degree exactly 1. We use S to denote the set of vertices outside B.
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s

N

d

Figure 1: An example of graph S(d, s,N) formalized in Definition 7.1 for d = 3, s = 5, and N = 6.

In proving our theorems we use, two essential properties of S(d, s,N)-graphs which we state
below as Lemma 7.2 and Lemma 7.3.

Lemma 7.2. Given a stochastic S(d, s,N)-graph G with realization probability p, consider its
subgraphs B and S from Definition 7.1 and let H be the induced subgraph of vertices in B that do
not have any realized edges to vertices in S. If M is a (1− ε)-approximate maximum matching of
Gp, it contains a matching of expected size at least |µ(Hp)| − 2Nε from H.

Proof. Let Mapx be an arbitrary (1 − ε)-approximate maximum matching of Gp. To prove this
lemma, we will show

|Mapx ∩H| ≥ |µ(Hp)| − 2Nε.

We start by giving a lower bound for |Mapx|. We do so by constructing a matching of graph Gp
which we denote by M1. In M1, we match any vertex v ∈ B that has a realized edge to a vertex in S
(i.e., any vertex in B that is not in H) using one of these edges. We also add a maximum matching
of subgraph Hp to M1. Let VH and VB respectively denote the vertex sets of graphs H and B.
Observe that we have |M1| = |VB − VH | + |µ(Hp)|. Knowing that Mapx is a (1 − ε)-approximate
maximum matching, gives us:

|Mapx| ≥ (1− ε)(|VB| − |VH |+ |µ(Hp)|) ≥ |VB| − |VH |+ |µ(Hp)| − ε2N.

We complete the proof by noting that the expected size of the maximum matching on Gp \ Hp

is upper bounded by |VB| − |VH | since any edge in Gp \ Hp has an endpoint in VB \ VH and
|VB \VH | = |VB|−|VH |. This completes the proof since it indicates that the remaining |µ(Hp)|−ε2N
edges of matching Mapx come from Hp.

Lemma 7.3. Given a stochastic S(d, s,N)-graph G with realization probability p, consider its
subgraphs B and S from Definition 7.1 and let H be the induced subgraph of vertices in B that do
not have any realized edges to vertices in S. Any (1 + ε)-approximate minimum vertex cover of Gp,
in expectation includes at most |ν(Hp)|+ 2Nε vertices from H.

Proof. Let νapx be an arbitrary (1 + ε)-approximate minimum vertex cover of Gp. To prove this
lemma, we will show

|νapx ∩Hp| ≤ ν(Hp) + 2Nε.

We start by giving an upper bound for |νapx|. We do so by constructing a vertex cover of graph
Gp which we denote by ν1. This vertex cover includes any vertex v ∈ B that has a realized edge to
a vertex in S (i.e., any vertex in B that is not in H). This covers all the edges that are not in H.
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Thus, we complete ν1 by adding a minimum vertex cover of Hp to it. Let VH and VB respectively
denote the vertex sets of graphs H and B. Observe that we have |ν1| = |VB − VH |+ |ν(Hp)|. As a
result of νapx being a (1 + ε)-approximate minimum vertex cover we get:

|νapx| ≤ (1 + ε)(|VB| − |VH |+ |ν(Hp)|) ≤ |VB| − |VH |+ |ν(Hp)|+ ε2N.

We complete the proof by noting that |VB| − |VH | is a lower bound for the number of vertices in
VB \ VH that are in vertex cover since any vertex in VB \ VH is connected to at least a degree-one
vertex. This concludes the proof as it indicates that at most |µ(Hp)| + ε2N vertices of νapx can
come from Hp.

7.1 Proof of Theorem 7.1

We start the proof by the following Lemma.

Lemma 7.4. For any constant p < 1, there exist an n-vertex bipartite stochastic graph G with
realization probability p and a constant c ≥ 0 such that finding an exact maximum matching or an
exact minimum vertex cover of G with probability at least c requires querying Ω( n2

log2 n
) edges of this

graph.

Proof. To prove this lemma, we start by an n-vertex graphG, a S(N, s,N)-graph for s = log1−p 1/N .
We then prove the existence of a constant c for which the statement of the lemma holds. Partic-
ularly, we will show that it is not possible to find an exact maximum matching/minimum vertex
cover of Gp with probability at least c using only o(n2/ log2 n) queries.

Consider subgraphs B and S of G from Definition 7.1 and let H be the induced subgraph of
vertices in B that do not have any realized edges to vertices in S. Based on Lemma 7.2, any
maximum matching of Gp should include a maximum matching of Hp. Also, based on Lemma 7.3,
any minimum vertex cover of Gp, includes exactly |ν(Hp)| vertices from Hp. Thus, to be able to
find an exact minimum vertex cover/maximum matching of Gp we need to find a minimum vertex
cover/maximum matching of Hp. Thus, we will focus on graph Hp.

Since s = Θ(logN), we have n = Θ(N logN) and N = Ω(n/ log n) (based on Definition 7.1).
This implies that if at most o(n2/ log2 n) edges are queried from G, then any edge e chosen uniformly
at random from B (defined in Definition 7.1) is queried with probability o(1) (since B has N2 =
Ω(n2/ log2 n) edges). Therefore, it suffices to show that if any random edge from B is queried with
probability o(1), then it is not possible to find an exact maximum matching/minimum vertex cover
of Hp with probability at least c for a constant c.

We claim that with a constant probability subgraph Hp has only one vertex in each part. Let us
denote this event by E and compute its probability. Since each vertex v ∈ B is in H independently
with probability (1− p)s = 1/N , we have

Pr[E] = (N(1/N)(1− 1/N)N−1)2 ≥ 1/e2.

When event E happens; i.e., H has only one vertex in each part, to be able to find its maximum
matching, if edge (u, v) is realized it also should be queried. This edge is realized with probability
p, however, as discussed above, probability of this edge being queried is o(1). This implies that
with probability at least 1/e2(p − o(1)), which is a constant, the queried edges do not contain a
maximum matching of Gp. Similarly, if edge (u, v) is not queried, to have a valid vertex cover, we
need to put one of its endpoints in the vertex cover, however, this vertex cover is not minimum if
edge (u, v) is not realized. This event happens with probability 1/e2(1− p− o(1)) which is again a
constant. As a result, setting c = min(1/e2(1− p− o(1)), 1/e2(p− o(1))) completes the proof.
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Given Lemma 7.4, we are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. We use proof by contradiction. We first assume the existence of a constant
α such that given any n-vertex stochastic graph G, it is possible to find an exact minimum vertex
cover/maximum matching of this graph with probability at least α using only o(n2/ log2 n) queries.
We then show that this results in a contradiction. Based on Lemma 7.4, for any N there exists
an N -vertex bipartite stochastic graph G′ with realization probability p and a constant c ≥ 0 such
that finding an exact minimum vertex cover or an exact maximum matching of G′ with probability
at least c requires Ω(N2/ log2N) queries. Define graph G to include s = dlog1−c(1− α)e copies of

G′ with N = n/s. Since n = Θ(N), querying o( n2

log2 n
) edges of G, means queries o( N2

log2N
) edges

of each subgraph. Observe that finding an exact maximum matching/minimum vertex cover of G
means finding an exact maximum matching/minimum vertex cover of all these s subgraphs. This
implies that the queried edges of G contain an exact maximum matching/minimum vertex cover of
Gp with probability at most 1− (1− c)s ≤ 1− (1−α) ≤ α. We conclude the proof of this theorem
by noting that this is a contradiction with the initial assumption.

7.2 Proof of Theorem 7.2

Proof of Theorem 7.2. Consider an n-vertex clique G with realization probability p. It is known
that for any constant p ∈ (0, 1), the expected size of the maximum independent set in Gp is Θ(logb n)
for b = 1/(1 − p). (See Theorem 7.3 in Book [13].) This is useful for giving a lower bound for
the size of any maximal matching M of Gp since vertices that are not in M form an independent
set. This implies 2|M | ≥ n − |MIS(Gp)| where MIS(Gp) is the maximum independent set of Gp.
Let Q be the subgraph we choose to query. If Qp contains a maximal matching then its maximum
independent set should not be larger than that of Gp. Therefore, to complete the proof, it suffices
to show that if

|Qp| = o(n logb n) <
n logb n

4
, (25)

then E[|MIS(Qp)|] = ω(logb n). To prove this, we will show that the expected number of singleton
vertices in Qp is ω(logb n). Note that based on (25), at least half of vertices have degree at most
logb n

2 in Q. For any such vertex v we have:

Pr[v is singleton in Qp] ≥ (1− p)
logb n

2 = (1/b)
logb n

2 = (
1

n
)
1
2 .

For any constant p ∈ (0, 1), this gives us:

E[|MIS(Qp)|] ≥ E[number of singleton vertices in Qp] ≥
n

2
· ( 1

n
)
1
2 =

√
n

2
= ω(logb n),

and completes the proof.

7.3 Proof of Theorem 7.3

Proof of Theorem 7.3. Consider the bipartite graph G = S(N, s,N) for s = blog1−p 10εc (given
that 10ε ≤ 1−p holds for small enough values of ε and p), and let n be the total number of vertices
in G. To prove this theorem, we show that finding a (1 − ε)-approximate maximum matching of
Gp requires Ω( 1

εp) queries for a vertex. Consider subgraphs B and S of G from Definition 7.1 and
let H be the induced subgraph of vertices in B that do not have any realized edges to vertices in
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S. Based on Lemma 7.2, any (1− ε)-approximate maximum matching of Gp, includes a matching
of expected size at least |µ(Hp)| − 2Nε from H. Let X1 and X2 with be the set of vertices in two
parts of the bipartite graph H with |X1| ≤ |X2|. Note that the expected number of vertices in each
part is

(1− p)blog1−p 10εcN ≥ 10εN ;

thus, E[|X1|] ≥ 5εN . It is well-known that such random graph Hp that has an edge between any
two vertices in X1 and X2 with a constant probability p has a matching of size |X1| with high
probability. However, for the sake of this proof we only use the fact that a matching of size |X1|
exists with probability at least 4

5 . This gives us E[|µ(Hp)|] ≥ 4εN . As a result, to find a matching
of size at least |µ(Hp)| − 2εN in Hp, any randomly chosen vertex v ∈ X1 should have at least one
queried edge in Hp with probability at least 1

2 . Let gv be the expected number of edges queried for
vertex v. Since the other endpoint of any of these queried edges is in Hp with probability

(1− p)blog1−p 10εc ≤ 10ε/(1− p),

and e is realized with probability p, we should have 10εpgv
1−p ≥ 1/2 which for any p ≤ 0.99 gives us

gv ≥ 1−p
20εp = Ω( 1

εp) and concludes the proof.

7.4 Proof of Theorem 7.4

Proof of Theorem 7.4. Consider the bipartite graph G = S(d, s,N) for

s = blog1−p 96εc and d = 1/(215εp),

and let n be the total number of vertices in G. To prove this theorem, we show that it is not
possible to find a (1 + ε)-approximate minimum vertex cover of Gp using only o(1/εp) queries
per vertex. We use proof by contradiction. We assume the existence of a (1 + ε)-approximate
minimum vertex νapx, achieved by querying only o(1/εp) edges per vertex and show that it results
in a contradiction. Consider subgraphs B and S of G from Definition 7.1, and let H be the induced
subgraph of vertices in B that do not have any realized edges to vertices in S. Based on Lemma 7.3,
any (1+ε)-approximate minimum vertex cover of Gp, includes at most |ν(Hp)|+2Nε vertices from
H, which means

|νapx ∩H| ≤ |ν(Hp)|+ 2Nε.

Let us define a subgraph H ′ of H to contain all the edges of H that are not queried. To be a valid
vertex cover, νapx should include a minimum vertex cover of H ′; i.e.,

|ν(H ′)| ≤ |νapx ∩H|.

Thus, to achieve a contradiction, it suffices to prove that the following equation does not hold if
any vertex has d′ = 1/(216εp) + 1 edges in B that are not queried:

|ν(H ′)| ≤ |ν(Hp)|+ 2Nε. (26)

Let us assume w.o.l.g., that exactly d′ edges are not queried for any vertex in B as it only decreases
the size of the minimum vertex cover. We start by giving a lower bound for |ν(H ′)|. We do so by
constructing a fractional matching M on H ′. Since by weak duality, the minimum vertex cover of
a graph is at least as large as any fractional matching of the graph, this will also be a lower bound
for |ν(H ′)|. Define x := (d′−1)(1−p)s+1. For any edge e, let me be the fractional value we assign

31



to edge e in matching M . We set me := 1/x for any edge e ∈ H ′p iff both its endpoints have degree
at most x in H ′p and zero otherwise. M is obviously a valid fractional matching since the sum of
values assigned to the edges around any vertex is at most one. Also, for any edge e = (u, v) ∈ B,
we have

E[me] = Pr[e ∈ H ′] · Pr[dv,H′ ≤ x | e ∈ H ′] · Pr[du,H′ ≤ x | e ∈ H ′], (27)

where dv,H′ is the degree of vertex v in graph H ′. To compute Pr[e ∈ H ′], note that each endpoint
of this edge is in H with probability (1− p)s. Combining this with s = blog1−p 96εc gives us

(96ε)2 ≤ Pr[e ∈ H ′]. (28)

Consider any vertex v ∈ H ′ and any of its edges e ∈ H ′, and let dv,e,H′ denote the degree of vertex
v in H ′ \ {e}. Since v has d′ − 1 edges in B \ {e}, we have E[dv,e,H′ ] = (d′ − 1)(1 − p)s = x − 1.
Moreover, we claim that as a result of dv,e,H′ being sum of independent Bernoulli random variables,
we have Pr[dv,e,H′ > x − 1] < 0.75. This can be achieved using a simple application of Chernoff
bound, and implies

Pr[dv,H′ ≤ x | e ∈ H ′] ≥
1

4
.

Combining this with (28) and (27) gives us:

|M | ≥ Nd′ 1
x

(96ε)2 1

16
≥ N962ε2

216εpx16
.

Observe that for a small enough p, we have

x = (d′ − 1)(1− p)s + 1 ≤ 96

216p(1− p)
+ 1 ≤ 2 · 96

216p(1− p)
.

This implies:

|M | ≥ N962ε2

16 · 216εp(1− p)
216p(1− p)

2 · 96
≥ N96ε

32
. (29)

After finding a lower bound for |M | which is also a lower bound for |ν(H ′)| we need to find an
upper bound for |ν(Hp)|. Recall that H is the induced subgraph of vertices in B that do not have
any realized edges to vertices in S. To give an upper bound for |ν(Hp)|, we start by computing the
expected number of edges in this graph which we denote by |Hp|. Each edge e ∈ B is in Hp with
probability p(1− p)2s ≤ p962ε2/(1− p)2. Since B has N/(215εp) edges, for a large enough (1− p)
we get

|Hp| ≤
N962ε

215(1− p)2
≤ 2N962ε

215
.

This is also an upper bound for |ν(Hp)| since minimum vertex cover is not larger than the total
number of edges. Based on (26), to complete the proof we need to show that

N96ε

32
≥ 2N962ε

215
+ 2Nε.

If we simplify both sides of the equation we get

N96ε

32
= 3Nε ≥ 2.6Nε ≥ 2N962ε

215
≥ +2Nε,

which concludes the proof.
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7.5 Proof of Theorem 7.5

Proof of Theorem 7.5. Suppose we want to get a c-approximate vertex cover for a c > 1. For any
p < 1

3c , we construct a graph G for which finding such an approximation needs at least Ω(n/p)
queries. Graph G is an arbitrary d-regular bipartite graph with d = 1

3cp . (Here we assume for
simplicity that d is an integer.) In Gp, any vertex v is a singleton with probability at least 1− dp
which means dnp/2 is an upper bound for the expected size of the vertex cover.

On the other hand, if we do not query an edge, we have to put one of its endpoints in the vertex
cover. We claim that to get a c-approximate at least half of the edges (dn/4) should be queried.
Since any vertex can cover at most d edges, not querying dn/4 edges results in a vertex cover of size
at least n/4. Thus, if at most dn/4 edges are queried, the approximation factor of the algorithm

would be at least n/4
dnp/2 = 1

2dp = 3c
2 ≥ c. To conclude, to be able to get a c-approximate at least

n
6cp = Ω(n/cp) (half the number of edges) queries are needed.

7.6 Why Random Queries Do Not Work

One simple approach that, in the first sight, might seem appealing for finding approximate vertex
covers of a stochastic graph G is simply picking a random subset of edges of any vertex to form a
subgraph Q, query these edges and find the vertex cover based on that. In this section, we will show
that this approach, in fact, does not have a good performance for some instances of the problem.
Namely, we show that there exists a graph G such that querying a subgraph Q of G obtained via
sampling s = o(n) edges per any vertex does not give us better than a (1

p − o(1))-approximate
vertex cover of Gp. Note that to find a valid vertex cover, any edge in G that is not queried should
be covered; i.e., edges in S := G \ Q. Therefore, the final vertex cover found via this sampling
technique has size at least |ν(S ∪Qp)| in expectation.

We construct an n-vertex bipartite graph G as follows. For a number N with N = o(n) and
N = ω(s), graph G contains a complete bipartite graph H of N vertices and a matching M of size
(n−N)/2. Moreover, for any e = (u, v) ∈ M , vertex u has edges to all the vertices in one part of
H and v has edges to all the vertices in the other part of H. Note that such a number N exists
since s = o(n). Let us first give an upper bound for |ν(Gp)| by constructing a vertex cover C of this
graph. C contains all the vertices of graph H and an endpoint of any edge in M that is realized
(an endpoint of any edge in M ∪ Gp). This set clearly covers all the edges of Gp. Since any edge
in M is realized with probability p, we have

E[|ν(Gp)|] ≤ E[|C|] = N +
p(n−N)

2
≤ pn/2 +N/2 = pn/2 + o(n). (30)

Having established this upper bound, the next step is to give a lower bound for |ν(S∪Qp)|. Consider
an edge e = (u, v) ∈ M , and let us compute Pr[e ∈ Q]. Both end pints of this edge have degree
N/2 + 1 in graph G. Since each vertex randomly chooses s edges, for the probability of e being
sampled we have:

Pr[e ∈ Q] ≤ 2s

N/2 + 1
= o(1).

As a result the expected number of edges sampled from matching M is at most (1−o(1))|M |. Since
any edge that is not queried (sampled) should be covered, any valid vertex cover of S ∪Qp should
contain at least one end point of edges in M that are not sampled. Hence, we have

E[|ν(S ∪Qp)|] ≥ (1− o(1))|M | = (1− o(1))(n−N)/2 = n/2− o(n).
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Combining this with (30) gives us:

E[|ν(S ∪Qp)|]
E[|ν(Gp)|]

≥ n/2− o(n)

pn/2 + o(n)
=

1

p
− o(1).

This proves our claim as it means that by randomly sampling o(n) edges for any vertex in graph
G, one cannot construct a valid vertex cover of Gp with an approximation ratio smaller than
(1/p− o(1)).
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A Deferred Proofs

A.1 Polynomial-Time Implementation of Algorithm 2

Algorithm 2 which proves Theorem 6.1 relies on a partitioning of Lemma 4.1. The described proof
for this lemma, as stated above, is not through a polynomial-time construction. In this section, we
address this issue and explain how the guarantee of Lemma 4.1 can also be achieved in polynomial
(randomized) time, which leads to Algorithm 2 running in polynomial-time.

The reason that our algorithm for finding the partitioning (Q,S) of Lemma 4.1 is not polynomial-
time, is that we assume each matching algorithmMi maximizes the quadratic objective (4) which
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is not clear how to do in polynomial time. Here, however, we show how it is possible to get around
this barrier and achieve the same guarantee in polynomial time too.

Suppose that we define partitionings (Qi, Si) as before, but instead of using a matching al-
gorithm Mi for each which maximizes Φi(Mi), we use simply an arbitrary maximum matching
algorithm M′i. What can go wrong? We used the assumption that Mi maximizes Φi(Mi) in
Claim 4.4 which led to Claim 4.5, proving existence of Ω(ε6p3k) partitionings where every pair of
them achieve the same objective up to an additive O(ε6p3µ(G)) difference. It was also used crucially
in the proof of Claim 4.6, where we constructed an algorithmMi,j which returns either the output
ofMi(Hi) or that ofMj(Hj) each with probability 1/2. There we argued that if the desired bound
of Claim 4.6 does not hold, then Φi(Mi,j) > Φi(Mi) + 0.01ε6p3µ(G) (see (12)), contradicting the
assumption that Φi(Mi) is the maximum possible achievable objective. However, in order for this
to lead to a contradiction, we do not necessarily need Φi(Mi) to have the maximum possible value.
Rather, it is sufficient to merely guarantee Φi(Mi,j) < Φi(Mi) + 0.01ε6p3µ(G) for all i < j. Also
in order to guarantee Claim 4.5, it suffices to have, say, Φi(Mi) ≥ Φj(Mj)±O((εp)10) for all i < j.

To achieve this guarantee, we first present in Claim A.1 a polynomial-time randomized algorithm
for estimating Φi(M′) with O(1) additive error, for any given polynomial-time algorithm M′.

Claim A.1. Given any matching algorithm M′, it is possible to estimate the value of Φi(M′) (for
any i) with O(1) additive error in polynomial time, with high probability.

Proof. For each edge e, let pe := Pr[e ∈M′(Hi)] and recall from (4) that Φi(M′) =
∑

e∈E pe− εp2
e.

We do not know the value of pe but can estimate it by random sampling. Take t = n6 independent
outputs M1, . . . ,Mt of the random matchingM′(Hi). Let Xe :=

∑t
i=1 111(e ∈Mi) be the number of

these matchings that include e. Since EXe = t · pe, a simple application of Chernoff bound gives

Pr
[
|Xe − tpe| ≥

√
2t lnn

]
≤ 2e−4 lnn ≤ 2n−4.

Therefore, by letting qe := 1
tXe and a union bound over the less than n2/2 choices of e, we get that

with probability at least 1− n−2, for any edge e it holds that |qe − pe| <
√

2t lnn
t < 1

n2 .

Using this estimator qe instead of pe, with probability 1 − n−2 we get the following estimator
with constant additive error∑

e∈E
qe − εq2

e = Φi(M′)±O
(
n2 · 1

n2

)
= Φi(M′)±O(1),

completing the proof.

Having this estimator, we then use an arbitrary maximum matching algorithm M′i for each
partitioning (Qi, Si) and based on that construct the next partitioning (Qi+1, Si+1). Then for a
margin δ = Θ((εp)10µ(G)), if it happens for some j > i, that our estimator predicts Φj(M′j) >
Φi(M′i) + δ or Φi(M′i,j) > Φi(M′i) + δ (where Φi(M′i,j) returns the matching Φi(M′i) with
probability 1/2 and Φj(M′j) otherwise), we simply use that algorithm instead of M′i for i. Note
that using this new algorithm may cause Di to change and so we may need to re-construct the the
partitionings (Qi+1, Si+1), . . . , (Qk, Sk).

Finally, we argue why this process stops after polynomially many iterations. Every time that
we change the matching algorithm of a partitioning (Qi, Si), its objective Φi (and not just its
estimation) increases by O((εp)10µ(G)). On the other hand, by definition (4), the value of Φi for
any i is upper bounded by the maximum matching µ(G) of G. Hence, this Θ((εp)10µ(G)) increase
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in Φi can only happen for at most O((εp)−10) steps for any fixed partitioning (Qi, Si). This, in turn,
implies that the total number of changing the matching algorithm for any of the k partitionings is
bounded by kO(1/ε10p10) = Oε,p(1). As a result, the whole process takes Oε,p(1) · poly(n) time.

A.2 Proof of Claim 5.8

In this section, we prove Claim 5.8. We start with the notation we use in the proof.

Notation: We fix an arbitrary vertex v ∈ A and prove Claim 5.8 for it. We use u1, . . . , ud to
denote the neighbors of v in S, and denote ej = (uj , v). We also let A′ = {v1, . . . , vn′} = A \ {v}
be the set of all vertices in A excluding v.

We start with an auxiliary claim that will be helpful both in bounding the expected value of
random variable (yv | v prop) and also proving a concentration bound for it.

Claim A.2. It holds that 1
Pr[v prop]

∑d
i=1 qei ≤ qv.

Proof. Observe from Corrolary 5.5 Property (ii) that Pr[v prop] = (1− ε) Pr[v ∈M(Qp)]. Thus,

Pr[v prop] = 1− Pr[v prop] = 1− (1− ε) Pr[v ∈M(Qp)] ≥ 1− Pr[v ∈M(Qp)].

As a result, we get ∑d
i=1 qei

Pr[v prop]
≤

∑d
i=1 qei

1− Pr[v ∈M(Qp)]
.

Let qSv denote the sum of qe’s written on edges e ∈ S connected to v and let qQv denote the same
but on edges of v in Q. Observe that the nominator of the fraction above is exactly qSv and the
denominator is 1 − qQv by the first assumption of Lemma 5.1. Combined with qSv + qQv = qv and
qv ≤ 1 (since q is a valid fractional matching by Lemma 5.1) we get∑d

i=1 qei
1− Pr[v ∈M(Qp)]

=
qSv

1− qQv
=

qv · qSv
qv(1− qQv )

=
qv · qSv

qv − qv · qQv
≤ qv · qSv
qv − qQv

=
qv · qSv
qSv

= qv, (31)

which is the stated bound.

Let us first bound the expected value of yv conditioned on event (v prop).

Claim A.3. Let v be as above. Then E[yv | v prop] ≤ qv.

Proof. We have

E[yv | v prop] =
d∑
i=1

qei
pPr[ui 6∈MB] Pr[v prop]

· Pr[ei ∈ Sp, u 6∈MB, v prop | v prop].

Event ei ∈ Sp is independent of u 6∈MB, v prop as discussed before and v prop and u 6∈MB are also
independent by Corollary 5.5 Property (iv). This means

E[yv | v prop] =
d∑
i=1

qei
pPr[ui 6∈MB] Pr[v prop]

· pPr[ui 6∈MB] =
1

Pr[v prop]

d∑
i=1

qei .

Applying Claim A.2 on the RHS concludes the claim.
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Claim A.4. For any pair of edges ei = (v, ui) and ej = (v, uj) with ei 6= ej and {ui, uj} ⊆
{u1, . . . , ud}, let y′ei = (yei | v prop) and y′ej = (yej | v prop). We have Cov(y′ei , y

′
ej ) ≤ 0.

Proof. To prove this claim, we will use some known facts about negatively associated (NA) random
variables. By definition, a set of random variables are NA, if any two monotone nondecreasing
functions f and g defined on disjoint subsets of them satisfy E[f.g] ≤ E[g].E[f ]. Below are three
facts about negative association based on [20, 17, 12].

(1) Any set of Bernoulli random variables whose sum is upper-bounded by one are NA.

(2) If A is a set of NA random variables, B is a set of NA random variables with A and B
independent of each other, A ∪B is also a set of NA random variables.

(3) Let X = {x1, . . . , xm} be a set of NA random variables. If f1, . . . , fk are a set of monotone
nondecreasing functions defined on disjoint subsets of X, then f1, . . . , fk are NA.

(4) Let {x1, . . . xm} be a set of NA random variables. Then, for any i 6= j, Cov(xi, xj) ≤ 0.

We will start by showing that random variables y′e1 , . . . , y
′
ed

are NA where for any i ∈ [d], we
define y′ei = (yei | v prop). For the rest of the proof, we will omit the condition v prop from all the
statements for simplicity.

For any pair of vertices i ∈ A/{v} and j ∈ B, let us define Bernoulli random variable xi,j to be
equal to one iff vertex i sends a proposal to vertex j. Note that for any i, we have

∑
j∈B xi,j ≤ 1.

Also, since vertices send their proposals independently from each other, invoking the first two facts
above implies {xi,j : ∀i ∈ A/{v}, j ∈ B} is a set of NA Bernoulli random variables. Now, for any
vertex uj ∈ {u1, . . . , ud}, we define random variable zj to be equal to one if uj ∈MB. Note that we
have zj = 1 iff j receives at least one proposal from A/{v} and so it is a monotone nondecreasing
function of {xi,j : i ∈ A/{v}}. Since for any zj and z′j these subsets are disjoint, invoking the
third fact implies zi, . . . , zd are NA. Finally, for any edge, we know y′ei is a monotone nondecreasing
function of zi and whether ei is realized. Based on the third fact, this implies negative association
of y′e1 , . . . , y

′
ed

. Thus, by the fourth property Cov(y′ei , y
′
ej ) ≤ 0 for any i 6= j.

We are now ready to prove Claim 5.8.

Proof. As proved in Claim 5.6, E[yv | v prop] ≤ qv. We prove the desired inequality of the claim
via a concentration bound on random variable y′v := (yv | v prop). Let us for simplicity also define
random variable y′ei := (ye | v prop) and observe that y′v =

∑d
i=1 y

′
ei .

By Claim A.4 we know Cov(y′ei , y
′
ej ) ≤ 0 for any i 6= j. We can thus bound the variance of y′v

as follows:

Var[y′v] =
d∑
i=1

Var[y′ei ] + 2
∑

1≤i<j≤d
Cov(y′ei , y

′
ej )

≤
d∑
i=1

E[(y′ei)
2]− E[y′ei ]

2 ≤
d∑
i=1

E[(y′ei)
2]

see below
≤ τ · E[y′v]

Claim A.3
≤ τ · qv,

where τ is the maximum possible outcome of y′ei for any i ∈ [d].

Plugging this into Chebyshev’s inequality, we get

Pr[y′v > E[y′v] + δ] ≤ Var[y′v]

δ2
≤ τqv

δ2
.
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Finally, for each edge ei, by construction of y, y′ei ≤ yei ≤ qei/(pPr[v prop] Pr[ui 6∈MB]) ≤ qei/pε2

where the latter follows from Corollary 5.5. Combined with qei ≤ ε5p by Lemma 5.1 and ei ∈ S,

we get τ ≤ ε3. We thus get Pr[y′v > 1 + ε] ≤ Pr[y′v > E[y′v] + ε] ≤ ε3

ε2
qv. This concentration of y′v

implies E[yv | yv ≤ 1 + ε, v prop] ≤ εqv and thus the stated bound of the claim.
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