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Deleting, Eliminating and Decomposing to
Hereditary Classes Are All FPT-Equivalent

Akanksha Agrawal*  Lawqueen Kanesh!  Daniel Lokshtanov?  Fahad Panolan®
M. S. Ramanujan¥ Saket Saurabh! Meirav Zehavi**

Abstract

Vertex-deletion problems have been at the heart of parameterized complexity throughout
its history. Here, the aim is to determine the minimum size (denoted by mody) of a
modulator to a graph class H, i.e., a set of vertices whose deletion results in a graph in H.
Recent years have seen the development of a research programme where the complexity of
modulators is measured in ways other than size. For instance, for a graph class H, the graph
parameters elimination distance to H (denoted by edy) [Bulian and Dawar, Algorithmica,
2016], and H-treewidth (denoted by twy) [Eiben et al. JCSS, 2021] aim to minimize the
treedepth and treewidth, respectively, of the “torso” of the graph induced on a modulator
to the graph class H. Here, the torso of a vertex set S in a graph G is the graph with vertex
set S and an edge between two vertices u,v € S if there is a path between u and v in G
whose internal vertices all lie outside S.

In this paper, we show that from the perspective of (non-uniform) fixed-parameter
tractability (FPT), the three parameters described above give equally powerful parame-
terizations for every hereditary graph class H that satisfies mild additional conditions. In
fact, we show that for every hereditary graph class H satisfying mild additional conditions,
with the exception of twy parameterized by edy, for every pair of these parameters, com-
puting one parameterized by itself or any of the others is FPT-equivalent to the standard
vertex-deletion (to H) problem. As an example, we prove that an FPT algorithm for the
vertex-deletion problem implies a non-uniform FPT algorithm for computing edy and twy.

The conclusions of non-uniform FPT algorithms being somewhat unsatisfactory, we es-
sentially prove that if H is hereditary, union-closed, CMSO-definable, and (a) the canonical
equivalence relation (or any refinement thereof) for membership in the class can be efficiently
computed, or (b) the class admits a “strong irrelevant vertex rule”, then there exists a uni-
form FPT algorithm for edy. Using these sufficient conditions, we obtain uniform FPT
algorithms for computing edy, when H is defined by excluding a finite number of connected
(a) minors, or (b) topological minors, or (¢) induced subgraphs, or when H is any of bipar-
tite, chordal or interval graphs. For most of these problems, the existence of a uniform FPT
algorithm has remained open in the literature. In fact, for some of them, even a non-uniform
FPT algorithm was not known. For example, Jansen et al. [STOC 2021] ask for such an
algorithm when H is defined by excluding a finite number of connected topological minors.
We resolve their question in the affirmative.
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1 Introduction

Delineating borders of fixed-parameter tractability (FPT) is arguably the biggest quest of pa-
rameterized complexity. Central to this goal is the class of vertex-deletion problems (to a graph
class H). In the VERTEX DELETION TO H problem, the goal is to compute a minimum set of
vertices to delete from the input graph, in order to obtain a graph contained in H. For a graph
G, mody (G) denotes the size of a smallest vertex set S such that G—S € H. If G—S € H, then
S is called a modulator to H. The parameterized complexity of vertex-deletion problems has
been extensively studied for numerous choices of H, e.g., when H is planar, bipartite, chordal,
interval, acyclic or edgeless, respectively, we get the classical PLANAR VERTEX DELETION,
ODD CYCLE TRANSVERSAL, CHORDAL VERTEX DELETION, INTERVAL VERTEX DELETION,
FEEDBACK VERTEX SET, and VERTEX COVER problems (see, for example, [23]).

In the study of the parameterized complexity of vertex-deletion problems, solution size and
various graph-width measures have been the most frequently considered parameterizations, and
over the past three decades their power has been well understood. In particular, numerous
vertex-deletion problems are known to be fixed-parameter tractable (i.e., can be solved in time
f (k)no(l), where k is the parameter and n is the input size) under these parameterizations. In
light of this state of the art, recent efforts have shifted to the goal of identifying and exploring
“hybrid” parameters such that:

(a) they are upper bounded by the solution size as well as certain graph-width measures,

(b) they can be arbitrarily (and simultaneously) smaller than both the solution size and graph-
width measures, and

(c) a significant number of the problems that are in the class FPT when parameterized by
solution size or graph-width measures, can be shown to be in the class FPT also when
parameterized by these new parameters.

Two recently introduced parameters in this line of research are: (a) H-elimination distance
and (b) H-treewidth of G. The H-elimination distance of a graph G to H (denoted edy(G)) was
introduced by Bulian and Dawar [11] and roughly speaking, it expresses the number of rounds
needed to obtain a graph in H by removing one vertex from every connected component in each
round. We refer the reader to Section 2 for a more formal definition. The reader familiar with
the notion of treedepth [64] will be able to see that this closely follows the recursive definition
of treedepth. That is, if H is the class of empty graphs, then the H-elimination distance of
G is nothing but the treedepth of G. In fact, if H is union-closed (as will be the case for all
graph classes we consider in this paper), then one gets the following equivalent perspective on
this notion. The H-elimination distance of G is defined as the minimum possible treedepth of
the torso of a modulator of G to H. Here, the torso of a vertex set S in a graph G is the graph
with vertex set S and an edge between two vertices u,v € S if there is a path between u and v
in G whose internal vertices all lie outside S. Consequently, it is easy to see that H-elimination
distance of G is always upper bounded by both the size of the smallest modulator of G to H
(i.e., mody(G)) as well as the treedepth of G*.

The second parameter of interest for us is H-treewidth which, roughly speaking, aims to
“generalize” treewidth and solution size, the same way that elimination distance aims to gen-
eralize treedepth and solution size. This notion was recently introduced by Eiben et al. [27]
and builds on a similar hybrid parameterization which was first developed in the context of
solving CSPs [38] and found applications also in algorithms for SAT [37] and Mixed ILPs [36].
Specifically, a tree H-decomposition of a graph G of width £ is a tree decomposition of G along
with a set L C V(G) (called base vertices), such that (i) each base vertex appears in exactly

!For this, we always assume that H contains the empty graph and so V(G) is a trivial modulator to H.



one bag, (ii) the base vertices in a bag induce a subgraph belonging to #, and (iii) the num-
ber of non-base vertices in any bag is at most £ + 1. The value of H-treewidth of G (denoted
twy(G)) is the minimum width taken over all tree H-decompositions of G. The utility of this
definition arises from the fact that H-treewidth of G is always upper bounded by the treewidth
of G (indeed, one could simply take a tree-decomposition of G attaining the treewidth of G
and set L = ()) and moreover, one can design fixed-parameter algorithms for several problems
parameterized by the twy of the graph [27, 47]. On the other hand, for union-closed graph
classes H, the H-treewidth of GG is nothing but the minimum possible treewidth of the torso of
a modulator of G to H. This immediately implies that the H-treewidth of G is always upper
bounded by both the treewidth of G as well as the size of the smallest modulator of G to H
(i.e., mody(G)).

It is fairly easy to see that edy(G) (respectively, twy(G)) can be arbitrarily smaller than
both mody(G) and the treedepth of G (respectively, the treewidth of G). Similarly, twy (G)
itself can be arbitrarily smaller than edy (G). We refer the reader to [39, 48] for some illustrative
examples of this fact. As both these parameters satisfy Properties (a) and (b) listed above,
there has been a sustained effort in the last few years to investigate the extent to which Property
(c) is satisfied by these two parameters. In this effort, one naturally encounters the following
two fundamental algorithmic questions:

Question 1: For which families # of graphs is ELIMINATION DISTANCE TO H
(TREEWIDTH DECOMPOSITION TO H) FPT when parameterized by edy (respec-
tively, twy)?

Question 2: For which families H of graphs is VERTEX DELETION TO H parameterized
by edH(G) (tWH(G)) FPT?

In ELIMINATION DISTANCE TO H (TREEWIDTH DECOMPOSITION TO H), the input is a
graph G and integer k and the goal is to decide whether edy (G) (respectively, twy(G)) is at
most k. The parameter in both problems is k. Both the questions listed above are extremely
wide-ranging and challenging. Indeed, for Question 1, notice that not even an XP algorithm
(running in time n®Y*) where k is edy or twy) is obvious even for well-understood graph
classes H, such as bipartite graphs. On the other hand, VERTEX DELETION TO H in this case
has a trivial n®®)-time algorithm where one simply guesses the minimum modulator to H and
checks whether the graph induced by the rest of the vertices is bipartite, in linear time. In the
absence of a resolution to Question 1, Question 2 then brings with it the challenge of solving
VERTEX DELETION TO H (or indeed, any problem) without necessarily being able to efficiently
compute edy or twy.

State of the art for Question 1. In their work, Bulian and Dawar [12] showed that the
ELIMINATION DISTANCE TO ‘H problem is FPT, when # is a minor-closed class of graphs and
asked whether it is FPT, when H is the family of graphs of degree at most d. In a partial
resolution to this question, Lindermayr et al. [56] showed that ELIMINATION DISTANCE TO H
is FPT when we restrict the input graph to be planar. Finally, Agrawal et al. [2], resolved this
question completely by showing that the problem is (non-uniformly) FPT (we refer the reader
to Section 1.4 for a definition of non-uniform FPT). In fact, they obtained their result for all
‘H that are characterized by a finite family of induced subgraphs. Recently, Jansen and de
Kroon [46] extended the aforementioned result of Agrawal et al. [2] further, and showed that
TREEWIDTH DECOMPOSITION TO H is also (non-uniformly) FPT for H that are characterized
by a finite family of induced subgraphs. In the same paper they also showed that TREEWIDTH
DECOMPOSITION TO H (ELIMINATION DISTANCE TO H) is non-uniformly FPT for H being

2



the family of bipartite graphs. Even more recently, Fomin et al. [30] showed that for every
graph family H expressible by a first order-logic formula ELIMINATION DISTANCE TO H is
(non-uniformly) FPT. Since a family of graphs characterized by a finite set of forbidden induced
subgraphs is expressible in this fragment of logic, this result also generalizes the result of Agrawal
et al. [2]. Until this result of Fomin et al., the research on Question 1 has essentially proceeded
on a case-by-case basis, where each paper considers a specific choice of H.

State of the art for Question 2. In a recent paper, Jansen et al. [48] provide a general
framework to design FPT-approximation algorithms for edy and twy for various choices of
‘H. For instance, when H is bipartite or characterized by a finite set of forbidden (topological)
minors, they give FPT algorithms (parameterized by twy) that compute a tree H-decomposition
of G whose width is not necessarily optimal, but polynomially bounded in the H-treewidth of
the input, i.e., an approximation. These approximation algorithms enable them to address
Question 2 for various classes H without having to exactly compute edy(G) or twy(G) (i.e.,
without resolving Question 1 for these classes). Towards answering Question 2, they give the
following FPT algorithms for VERTEX DELETION TO H parameterized by twy. Let H be a
hereditary class of graphs that is defined by a finite number of forbidden connected (a) minors,
or (b) induced subgraphs, or (c¢) H € {bipartite graphs, chordal graphs}. There is an algorithm
that, given an n-vertex graph G, computes a minimum vertex set X such that G — X € H in
time f(twy(G)) - n°0). Note that all of these FPT algorithms are uniform.

1.1 Our Motivation

The starting point of our work lies in the aforementioned recent advances made by Agrawal
et al. [2], Fomin et al. [30] and Jansen et al. [48]. A closer look at these algorithms shows
an interesting property of these algorithms: known algorithms for ELIMINATION DISTANCE
TO H and TREEWIDTH DECOMPOSITION TO H utilize the corresponding (known) algorithms
for VERTEX DELETION TO H in a non-trivial manner. This fact, plus the recent successes
in designing (typically, non-uniform) FPT algorithms for ELIMINATION DISTANCE TO H and
TREEWIDTH DECOMPOSITION TO H naturally raises the following questions.

Question 3: When (if at all) is the parameterized complexity of ELIMINATION Dis-
TANCE TO H or TREEWIDTH DECOMPOSITION TO H different from that of VERTEX
DELETION TO H?

Question 4: When (if at all) is the parameterized complexity of VERTEX DELETION TO
H is different from that of VERTEX DELETION TO ‘H parameterized by edy(G), or
that of VERTEX DELETION TO H parameterized by twy (G)?

Question 5: Could one obtain uniform FPT algorithms for ELIMINATION DISTANCE TO
‘H and TREEWIDTH DECOMPOSITION TO H for natural families of graphs?

The main objective of the paper is to provide satisfactory answers to Questions 3, 4 and 5.

1.2 Answering Questions 3 and 4: FPT-equivalence of deletion, elimination
and decomposition

Roughly speaking, we show:



For Question 3: If H has certain properties which are also possessed by numerous well-
studied graph classes, then there is no difference in the parameterized complexity of
ELIMINATION DISTANCE TO H, TREEWIDTH DECOMPOSITION TO H, and VERTEX
DELETION TO H. This explains, unifies and extends almost all known results aimed
at Question 1 in the literature.

For Question 4: If H has the properties referred to above, then there is no difference
in the parameterized complexity of VERTEX DELETION TO H, VERTEX DELETION
TO H parameterized by edy(G), and VERTEX DELETION TO H parameterized
by twy(G). This explains, unifies and extends almost all known results aimed at
Question 2 in the literature.

For Question 5: There are several fundamental graph classes H for which we are able to
give sufficiency conditions that imply the first uniform FPT algorithms for ELiM-
INATION DISTANCE TO H. In some of these cases, not even a non-uniform FPT
algorithm was previously known.

In what follows, we formally state our results and go into more detail about their implications
and significance. Towards that we first define a notion of FPT-equivalence. We say that two
parameterized problems are (non-uniformly) FPT-equivalent if, given an FPT algorithm for any
one of the two problems we can obtain a (non-uniform) FPT algorithm for the other problem.
Let H be a family of graphs. Then, by parameterizing VERTEX DELETION TO H, ELIMINATION
DISTANCE TO H, and TREEWIDTH DECOMPOSITION TO H, by any of mody(G), edy(G), and
twy (G) we get nine different problems. Our first result shows FPT-equivalences among eight
of these.

Theorem 1.1. H be a hereditary family of graphs that is CMSO? definable and closed under
disjoint union. Then the following problems are (non-uniformly) FPT-equivalent.

VERTEX DELETION TO H parameterized by mody(G)

VERTEX DELETION TO H parameterized by edy (G)

VERTEX DELETION TO H parameterized by twy (G)
ELIMINATION DISTANCE TO H parameterized by mody(QG)
ELIMINATION DISTANCE TO H parameterized by edy(G)
TREEWIDTH DECOMPOSITION TO H parameterized by mody(QG)
TREEWIDTH DECOMPOSITION TO H parameterized by edy(G)
TREEWIDTH DECOMPOSITION TO H parameterized by twy (G)

o RS G o v~

Notice that because twy(G) < edy(G) < mody(G), an FPT algorithm for one problem
parameterized by a smaller parameter also implies an FPT algorithm for the problem parame-
terized by the larger parameter. However, the implications in the other direction are surprising
and insightful.

1.2.1 Implications of Theorem 1.1

We now describe the various applications and consequences of our first main theorem (Theo-
rem 1.1).

2In this paper, when we say CMSO, we refer to the fragment that is sometimes referred to as CMSQ; in the
literature. We refer the reader to Section 2.3 for the formal description of this fragment.



As a classification tool that unifies and extends many known results. Theorem 1.1
is a powerful classification tool which states that as far as the (non-uniform) fixed-parameter
tractability of computing any of the parameters mody(G), edy(G) and twy(G) is concerned,
they are essentially the “same parameter” for many frequently considered graph classes H. In
other words, to obtain an FPT algorithm for any of the problems mentioned in Theorem 1.1,
it is sufficient to design an FPT algorithm for the standard vertex-deletion problem, namely,
VERTEX DELETION TO H. This implication unifies several known results in the literature.

For example, let ‘H be the family of graphs of degree at most d and recall that it was only
recently that Agrawal et al. [5] and Jansen et al. [46] showed that ELIMINATION DISTANCE TO H
and TREEWIDTH DECOMPOSITION TO H are (non-uniformly) FPT, respectively. However, using
Theorom 1.1, the fixed-parameter tractability of these two problems and in fact, even the fixed-
parameter tractability of VERTEX DELETION TO H parameterized by edy (G) (or twy(G)), is
implied by the straightforward d*n®M)-time branching algorithm for VERTEX DELETION TO H
(i.e., the problem of deleting at most k vertices to get a graph of degree at most d).

Moreover, for various well-studied families of H, we immediately derive FPT algorithms for
all combinations of VERTEX DELETION TO H, ELIMINATION DISTANCE TO H, TREEWIDTH
DECOMPOSITION TO H parameterized by any of mody(G) edy(G) and twy(G), which are
covered in Theorem 1.1. For instance, we can invoke this theorem using well-known FPT al-
gorithms for VERTEX DELETION TO H for several families of graphs that are CMSO definable
and closed under disjoint union, such as families defined by a finite number of forbidden con-
nected (a) minors, or (b) topological minors, or (c¢) induced subgraphs, or (d) H being bipartite,
chordal, proper-interval, interval, and distance-hereditary; to name a few [73, 14, 15, 13, 28, 33,
31, 49, 58, 63, 70, 71, 72, 54]. Thus, Theorem 1.1 provides a unified understanding of many
recent results and resolves the parameterized complexity of several questions left open in the
literature.

Of particular significance among the new results is the case where, invoking Theorem 1.1
and taking H to be a class defined by a finite number of forbidden connected topological minors
gives the first FPT algorithms for computing edy and twy, resolving an open problem posed
by Jansen et al. [48].

Deletion to Families of Bounded Rankwidth. We observe that Theorem 1.1 can be
invoked by taking H to be the class of graphs of bounded rankwidth, extending a result of Eiben
et al. [27].

Rankwidth is a graph parameter introduced by Oum and Seymour [69] to approximate
yet another graph parameter called Cliquewidth. The notion of cliquewidth was defined by
Courcelle and Olariu [21] as a measure of how “clique-like” the input graph is. One of the
main motivations was that several NP-complete problems become tractable on the family of
cliques (complete graphs), the assumption was that these algorithmic properties extend to
“clique-like” graphs [20]. However, computing cliquewidth and the corresponding cliquewidth
decomposition seems to be computationally intractable. This then motivated the notion of
rankwidth, which is a graph parameter that approximates cliquewidth well while also being
algorithmically tractable [69, 66]. For more information on cliquewidth and rankwidth, we refer
to the surveys by Hlineny et al. [43] and Oum [68].

For a graph G, we will use rwd(G) to denote the rankwidth of G. Let n > 1 be a fixed
integer and let H,, denote the class of graphs of rankwidth at most 7. It is known that VERTEX
DELETION TO H,, is FPT [22]. The algorithm is based on the fact that for every integer n,
there is a finite set C, of graphs such that for every graph G, rwd(G) < 7 if and only if no
vertex-minors of G are isomorphic to a graph in C, [65, 67]. Further, it is known that vertex-
minors can be expressed in CMSO, this together with the fact that we can test whether a graph
H is a vertex-minor of G or not in f(|H|)n®™M time on graphs of bounded rankwidth leads
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to the desired algorithm [22, Theorem 6.11]. It is also important to mention that for VERTEX
DELETION TO Hi, also known as the DISTANCE-HEREDITARY VERTEX-DELETION problem,
there is a dedicated algorithm running in time 20(k),0(1) [28]. For us, two properties of H,, are
important: (a) expressibility in CMSO and (b) being closed under disjoint union. These two
properties, together with the result in [22] imply that Theorem 1.1 is also applicable to #,,.
Thus, we are able to generalize and extend the result of Eiben et al. [27], who showed that for
every 7, computing twy, is FPT. Since we do not need the notion of rankwidth and vertex-
minors in this paper beyond this application, we refer the reader for further details to [43, 68].

Beyond graphs: Cut problems. Notice that in the same spirit as we have seen so far, one
could also consider the parameterized complexity of other classical problems such as cut prob-
lems (e.g., MULTIWAY CUT) as long as the parameter is smaller than the standard parameter
studied so far. With this view, we obtain the first such results for several cut problems such as
MurTiwAay CuT, SUBSET FVS and SUBSET OCT. That is, we obtain FPT algorithms for these
problems that is parameterized by a parameter whose value is upper bounded by the standard
parameter (i.e., solution size) and which can be arbitrarily smaller. For instance, consider the
MuLTIwWAY CUT problem, where one is given a graph G and a set of vertices S (called terminals)
and an integer ¢ and the goal is to decide whether there is a set of at most £ vertices whose
deletion separates every pair of these terminals. The standard parameterization for this problem
is the solution size ¢. Jansen et al. [48] propose to consider annotated graphs (i.e., undirected
graphs with a distinguished set of terminal vertices) and study the parameterized complexity of
MuLTiwAY CUT parameterized by the elimination distance to a graph where each component
has at most one terminal. Notice that this new parameter is always upper bounded by the size
of a minimum solution.

Thus, an FPT algorithm for MULTIWAY CUT with such a new parameter would naturally
extend the boundaries of tractability for the problem. We are able to obtain such an algorithm
by using Theorem 1.1. We then proceed to obtain similar FPT algorithms for the other cut
problems mentioned in this paragraph. Recall that in the SUBSET FVS problem, one is given a
graph G, a set S of terminals and an integer ¢ and the goal is to decide whether there is a set of
at most £ vertices that hits every cycle in G that contains a terminal. Similarly, in the SUBSET
OCT problem, one is given a graph G, a set S of terminals and an integer £ and the goal is to
decide whether there is a set of at most ¢ vertices that hits every odd cycle in G that contains
a terminal.

Building on our new result for MULTIWAY CUT, we obtain an FPT algorithm for SUBSET
FVS parameterized by the elimination distance to a graph where no terminal is part of a cycle,
and an FPT algorithm for SUBSET OCT parameterized by the elimination distance to a graph
where no terminal is part of an odd cycle. We summarize all three results as follows:

Theorem 1.2 (Informal version of Theorem 5.1). The following problems are FPT:

1. MurLTiwAYy CUT parameterized by elimination distance to an annotated graph where each
component has at most one terminal.

2. SUBSET FEEDBACK VERTEX SET parameterized by elimination distance to an annotated
graph where no terminal occurs in a cycle.

3. SUBSET ODD CYCLE TRANSVERSAL parameterized by elimination distance to an anno-
tated graph where no terminal occurs in an odd cycle.

In fact, we also strengthen the parameterization to an analogue of H-treewidth in the natural
way and obtain corresponding results. The details can be found in Section 5. To achieve these
results, we use Theorem 1.1. However, note that that Theorem 1.1 is defined only when H is

6



a family of graphs. In order to capture problems such as MuLTIWAY CUT, SUBSET FVS and
Subset OCT, we express our problems in terms of appropriate notions of structures and then
give a reduction to a pure graph problem on which Theorem 1.1 can be invoked.

These results make concrete advances in the direction proposed by Jansen et al. [48] to
develop FPT algorithms for MULTIWAY CUT parameterized by the elimination distance to a
graph where each component has at most one terminal.

1.2.2 Modulators to Scattered Families

Recent years have seen another new direction of research on VERTEX DELETION TO H — instead
of studying the computation of a modulator to a single family of graphs H, one can aim to
compute small vertex sets whose deletion leaves a graph where each connected component
comes from a particular pre-specified graph class [40, 45, 44]. As an example of problems in this
line of research, consider the following. Given a graph G, and a number k, find a modulator S
of size at most k (or decide whether one exists) such that in G — S, each connected component
is either chordal, or bipartite or planar. Let us call such an S, a scattered modulator. Such
scattered modulators (if small) can be used to design new FPT algorithms for certain problems
by taking separate FPT algorithms for the problems on each of the pre-specified graph classes
and then combining them in a non-trivial way “through” the scattered modulator. However,
the quality of the modulators considered in this line of research so far has been measured in the
traditional way, i.e., in terms of the size. In this paper, by using Theorem 1.1, we initiate a new
line of research where, again, it is not the modulator size that is the measure of structure, but
in some sense, the treedepth or treewidth of the torso of the graph induced by the modulator.
That is, we introduce the first extensions of “scattered modulators” to “scattered elimination
distance” and “scattered H-tree decompositions” and obtain results regarding the computation
of the corresponding modulators as well as their role in the design of FPT algorithms for other
problems (i.e., cross parameterization).

The first study of scattered modulators was undertaken by Ganian et al. [40], who introduced
this notion in their work on constraint satisfaction problems. Recently, Jacob et al. [44, 45] initi-
ated the study of scattered modulators explicitly for “scattered” families of graphs. In particular,
let Hi,...,Hg4 be families of graphs. Then, the scattered family of graphs ®(H1, ..., Hq) is de-
fined as the set of all graphs G such that every connected component of G belongs to ngl H;.
That is, each connected component of G belongs to some H;. As their main result, Jacob et
al. [44] showed that VERTEX DELETION TO H is FPT whenever VERTEX DELETION TO H,,
i € {1,...,d}, is FPT, and each of H; is CMSO expressible. Here, H is the scattered family
®(H1,...,Haq). Notice that if each of H; is CMSO expressible then so is ‘H. Further, it is easy
to observe that if each of H; is closed under disjoint union then so is . The last two properties
together with the result of Jacob et al. [44] enable us to invoke Theorem 1.1 even when H is a
scattered graph family. The effect can be formalized as follows.

Theorem 1.3. Let Hi,...,Hg be hereditary, union-closed, CMSO expressible families of graphs
such that VERTEX DELETION TO H; is FPT for every i € [d]. Let H = ®(Hi,...,Hq) and
H = Ule Hi. Then, ELIMINATION DISTANCE TO H and TREEWIDTH DECOMPOSITION TO H
are also FPT.

Notice in the above statement that if we take H' = U;izl ‘H;, then the size of a modulator
to H is different from that of a smallest modulator to H’, whereas the elimination distance to
H and H’ are the same.



1.3 New Results on Cross Parameterizations

Another popular direction of research in Parameterized Complexity is cross parameterizations:
that is parameterization of one problem with respect to alternate parameters. For an illustration,
consider ODD CYCLE TRANSVERSAL (OCT) on chordal graphs. Let H denote the family of
chordal graphs. It is well known that OCT is polynomial-time solvable on chordal graphs.
Further, given a graph G and a modulator to chordal graphs of size mody(G), OCT admits
an algorithm with running time 20(med#(G))pOM) It is therefore natural to ask whether
OCT admits an algorithm with running time f(edy(G))n®®M or f(twx(G))n®M, given an
‘H-elimination forest of G' of depth edy(G) and an H-decomposition of G of width twy(G),
respectively. The question is also relevant, in fact more challenging, when an H-elimination
forest of G of depth edy(G) or an H-decomposition of G of width twy (G) is not given. Jansen
et al. [48] specifically asked to consider this research direction in their paper. Quoting them:

“...the elimination distance can also be used as a parameterization away from trivi-
ality for solving other parameterized problems II, when using classes H in which II is
polynomial-time solvable. This can lead to interesting challenges of exploiting graph
structure. For problems which are FPT parameterized by deletion distance to H, does
the tractability extend to elimination distance to H? For example, is UNDIRECTED FEED-
BACK VERTEX SET FPT when parameterized by the elimination distance to a subcubic
graph or to a chordal graph? The problem is known to be FPT parameterized by the
deletion distance to a chordal graph [51] or the edge-deletion distance to a subcubic
graph [61].”

A step in this direction can be seen in the work of Eiben et al. [27, Thm. 4]. They present a
meta-theorem that yields non-uniform FPT algorithms when II satisfies several conditions, which
require a technical generalization of an FPT algorithm for I parameterized by deletion distance
to H. Here, we avoid resorting to such requirements and instead, provide sufficient conditions
on the problem itself, which are usually very easily checked and which enables us to obtain fixed-
parameter algorithms for vertex-deletion problems (or edge-deletion problems) parameterized
by edy(G) (twy(G)) when given an H-elimination forest of G of depth edy(G) (respectively,
an H-decomposition of G of width twy(G)). As a consequence, we resolve the aforementioned
open problem of Jansen et al. [48] on the parameterized complexity of UNDIRECTED FEEDBACK
VERTEX SET parameterized by the elimination distance to a chordal graph.

Let us now state an informal version of our result so that we can convey the main message
and highlight some consequences without delving into excessive detail at this point. We refer
the reader to Section 6 for the formal statement and full proof.

Theorem 1.4 (Informal version of Theorem 6.1). Let H be a hereditary family of graphs and
II be a parameterized graph problem satisfying the following properties.

1. I has the property of finite integer index (FII).

2. II is FPT parameterized by mody (G).

3. Either, a H-decomposition of G of width twy(G) (or a H-elimination forest of G of
depth edy (G) ) is given; or H is CMSO definable, closed under disjoint union and VERTEX
DELETION TO H is FPT.

Then, 11 is FPT parameterized by edy(G) or twy(G).

Fll is a technical property satisfied by numerous graph problems and often easily verified. The
term FlI first appeared in the works of [9, 25] and is similar to the notion of finite state [1, 10, 18].
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An intuitive way (though, formally, not correct) to understand Fll is as follows. Let IT be a graph
problem. Further, for a graph G, let opt;(G) denote the optimum (minimum or maximum)
value of solution to II. For example, if IT is DOMINATING SET then opt(G) denotes the size of a
minimum dominating set; and if IT is CYCLE PACKING then opt;(G) denotes the cardinality of
a set containing maximum number of pairwise vertex disjoint cycles. In a simplistic way we can
say that a graph problem has FII, if for every graph G, and a separation (L, R) (LUR = V(G))
we have that:
optis(G) = opty (GIL \ K]) + optry(G[R \ L))  h(|L 1 RI).

Here, h is a function of the order of separation (|L N R|) only. This immediately implies that
problems such as DOMINATING SET and CYCLE PACKING have Fll. In the context of this work,
it is sufficient for the reader to know that VERTEX DELETION TO H has Fll, whenever H is
hereditary, CMSO definable, and closed under disjoint union. We refer the reader to [9, 25, §]
for more details on FII.

Now as a corollary to Theorem 1.4 we get that UNDIRECTED FEEDBACK VERTEX SET is
FPT parameterized by edy(G) or twy(G), where H is a family of chordal graphs, answering
the problem posed by Jansen et al. [48]. Similarly, we can show that DOMINATING SET is FPT
parameterized by edy(G) or twy(G), where H is a family of interval graphs.

1.4 Answering Question 5: Towards Uniform FPT Algorithms

The FPT algorithms obtained via Theorems 1.1 and 1.4 and the extension to families of struc-
tures are non-uniform. In fact, to the best of our knowledge, all of the current known FPT
algorithms for ELIMINATION DISTANCE TO H or TREEWIDTH DECOMPOSITION TO H, are non-
uniform; except for ELIMINATION DISTANCE TO H, when H is the family of empty graphs
(which, as discussed earlier, is simply the problem of computing treedepth). However, we note
that the FPT-approximation algorithms in Jansen et al. [48] (in fact, all the algorithms obtained
in [48]) are uniform.

For the sake of clarity, we formally define the notion of uniform and non-uniform FPT
algorithms [26, Definition 2.2.1].

Definition 1.1 (Uniform and non-uniform FPT). Let II be a parameterized problem.

(i) We say that I1 is uniformly FPT if there is an algorithm A, a constant ¢, and an arbitrary
function f : N — N such that: the running time of A({x,k)) is at most f(k)|z|® and
(x,k) € I1 if and only if A((z,k)) = 1.

(ii) We say that 11 is non-uniformly FPT if there is collection of algorithms { Ay : k € N}, a
constant ¢, and an arbitrary function f: N — N, such that : for each k € N, the running
time of Ar((z,k)) is f(k)|x|® and (x, k) € II if and only if Ax({z,k)) = 1.

Towards unification, we first present a general set of demands that, if satisfied, shows that
ELIMINATION DISTANCE TO ‘H parameterized by edy(G) is uniformly FPT. Like before, we
consider a hereditary family H of graphs such that H is CMSO definable, closed under disjoint
union and VERTEX DELETION TO H is FPT. However, we strengthen the last two demands.
To explain the new requirements, we briefly (and informally) discuss a few notions concerning
boundaried graphs and equivalence classes. Essentially, a boundaried graph (a t-boundaried
graph) is a graph with an injective labelling of some of its vertices by positive integers (upper
bounded by t). When gluing two boundaried graphs G and H, denoted by G & H, we just
take their disjoint union, and unify vertices having the same label. Concerning some H, two
boundaried graphs G; and Gy are equivalent (under the canonical equivalence relation) if, for
any boundaried graph H, G1® H € H if and only if Go® H € H. A refinement of the canonical
equivalence relation (or just a refinement, for short) is an equivalence relation where any two
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boundaried graphs considered equivalent, are equivalent according to the canonical equivalence
relation (but not vice versa).

Now, the new requirements are to define a refinement R whose number of equivalence classes
for t-boundaried graphs is a function of ¢ only, here called a finite (per t) refinement, such that:

e R is closed under disjoint union: That is, if we have a boundaried graph that belongs
to some equivalence class R € R, then the disjoint union of that boundaried graph and a
non-boundaried graph from H also belongs to R. [Strengthens the closeness under disjoint
union property of H.]

e VERTEX DELETION TO R is FPT: We have a uniform FPT-algorithm (with parameters ¢
and k) that, given a t-boundaried graph G, an equivalence class R € R, and k € N, decides
whether there exists S C V(G) of size at most k such that G — S belongs to an equivalence
class “at least as good as” R. [Strengthens that VERTEX DELETION TO H is FPT.]

We prove the following.

Theorem 1.5 (Informal). Let H be a hereditary family of graphs and a finite (per t) refinement
R satisfying the following properties.

1. H is CMSO definable.
2. R s closed under disjoint union.

3. VERTEX DELETION TO R is FPT (parameterized by boundary and solution sizes).
Then, ELIMINATION DISTANCE TO H is uniformly FPT parameterized by edy(G).

We also give two conditions that seem easier to implement. Together with H being CMSO
definable and closed under disjoint union, the satisfaction of the two new condition yields the
conditions of Theorem 1.5. In particular, they allow the user to not deal with equivalence
classes at all, and to deal with boundaried graphs only with respect to a condition posed on
obstructions. Roughly speaking, the simpler conditions are as follows.

e Finite Boundaried Partial-Obstruction Witness Set: H admits a characterization
by a (possibly infinite) set @ of obstructions as induced subgraphs.® Let O; be the set
of t-boundaried graphs that are subgraphs of obstructions from @. Then, there exists
O} C Oy of finite size (depending only on t) such that: for any boundaried graph G, if
there exists O € O such that G® O ¢ H, then there exists O’ € O} such that GO’ ¢ H.

e A “Strong” Irrelevant Vertex Rule: There exist families of graphs X and ) (possibly
X =), such that: (i) Each “large” graph in X contains a “large” graph from ) as an
induced (or not) subgraph. (i) Given a (not boundaried) graph of “large” treewidth, it
contains a “large” graph in X as an induced subgraph. (ii7) Given k € N and a (not
boundaried) graph that contains a “large” graph in X’ as an induced subgraph, which, in
turn, (by condition (i)), contains a “large” graph Y in ) as an induced subgraph, “almost
all” (depending on k) of the vertices in Y are k-irrelevant.*

The reason why we claim that these conditions are “simple” is that known algorithms (for
the problems considered here) already implicitly yield them as part of their analysis. So, the
satisfaction of these conditions do not seem (in various cases) to require much “extra” work
compared to the design of an FPT algorithm (or a kernel) to the problem at hand. Using these

3Even if the more natural characterization is by forbidden minors /topological minors/subgraphs, we can trans-
late this characterization to one by induced subgraphs (which can make a finite obstruction set become infinite).

“A vertex v in G is k-irrelevant if the answers to (G, k) and (G — v, k) are the same (as instances of VERTEX
DELETION TO H).

10



sufficient conditions, we obtain uniform FPT algorithms for computing edy, when H is defined
by excluding a finite number of connected (a) minors, or (b) topological minors, or (¢) induced
subgraphs, or when H is any of bipartite, chordal or interval graphs. For most of these problems,
the existence of a uniform FPT algorithm has remained open in the literature. In fact, for some
of them, even a non-uniform FPT algorithm was not known.

2 Preliminaries

2.1 Generic Notations

We begin by giving all the basic notations we use in this paper. For a graph G, we use V(G)
and E(G) to denote its vertex set and edge set, respectively. For a graph G, whenever the
context is clear, we use n and m to denote |V (G)| and |E(G)|, respectively. Consider a graph
G. For X C V(G), G[X] denotes the graph with vertex set X and the edge set {{z,y} €
E(G) | z,y € X}. By G — X, we denote the graph G[V(G) \ X]. For a vertex v € V(G),
N¢g(v) and Ng[v] denote the set of open neighbors and closed neighbors of v in G. That is,
Ng(v) = {u € V(G) | {u,v} € E(G)} and Ng[v] = Ng(v) U {v}. For a set U C V(G),
Ng(U) = Uyer Na(u) \ U and Ng[U] = Ng(U) UU. For a vertex set C C V(G), by slightly
abusing the notation, we use Ng(C'), and Ng[C] to denote N(V(C)), and N[V (C)], respectively.
In all the notations above, we drop the subscript G whenever the context is clear.

A path P = (v1,va,--- ,v) in G is a subgraph of G where V(P) = {v1,v9, -+ ,u} C V(G)
is a set of distinct vertices and E(P) = {{v;,vit1} | i € [¢ — 1]} C E(G), where |V (P)| = ¢ for
some ¢ € [|[V(G)|]. The above defined path P is called as v; — vy path. We say that the graph
G is connected if for every u,v € V(G), there exists a u — v path in G. A connected component
of (G is an inclusion-wise maximal connected induced subgraph of G.

A rooted tree is a tree with a special vertex designated to be the root. Let T be a rooted
tree with root r € V(T'). We say that a vertex v € V(T') \ {r} is a leaf of T if v has exactly
one neighbor in T. Moreover, if V(T) = {r}, then r is the leaf (as well as the root) of T.° A
vertex which is not a leaf, is called a non-leaf vertex. Let ¢, € V(T) such that {t,t'} € E(T)
and t’ is not contained in the ¢ — r path in T', then we say that ¢ is the parent of ¢’ and t' is a
child of t. A vertex t' € V(T') is a descendant of t (t' can possibly be the same as t), if there is
at—t path in T — {parp(t)}, where parp(t) is the parent of ¢ in 7. Note that when ¢ = 7, then
T — {parp(t)} =T, as the parent of r does not exist. That is, every vertex in T is a descendant
of r.

A rooted forest is a forest where each of its connected component is a rooted tree. For a
rooted forest F', a vertex v € V(F') that is not a root of any of its rooted trees is a leaf if it is
of degree exactly one in F. The depth of a rooted tree T' is the maximum number of edges in
a root to leaf path in T'. The depth of a rooted forest is the maximum depth among its rooted
trees.

2.2 Graph Classes and Decompositions

We always assume that H is a hereditary class of graphs, that is, closed under taking induced
subgraphs. A set X C V(G) is called an H-deletion set if G — X € H. The task of finding
a smallest H-deletion set is called the H-DELETION problem (also referred to as H-VERTEX
DELETION but we abbreviate it since we do not consider edge deletion problems). Next, we
give the notion of elimination-distance introduced by Bulian and Dawar [11]. We rephrase their
definition, and our definition is (almost) in-line with the equivalent definition given by Jansen
et al. [48].

5A root is not a leaf in a tree, if the tree has at least two vertices.
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Figure 1: Let H be the family of triangle-free graphs. The figure shows a graph G with a
modulator to #H of size 12 (in red), and an H-elimination decomposition of depth 6.

Definition 2.1. For a graph class H, an H-elimination decomposition of graph G is pair (T, x, L)
where T is a rooted forest and x: V(T) — 2V(&) and L C V(G), such that:

1. For each internal node ¢ of T" we have |x(t)| <1 and x(¢) C V(G) \ L.
2. The sets (X(t))iev(r) form a partition of V(G).

3. For each edge uv € E(G), if u € x(t1) and v € x(t2) then ¢, t9 are in ancestor-descendant
relation in 7.

4. For each leaf t of T, we have x(t) C L and the graph G[x(t)], called a base component,
belongs to H.

The depth of T is the maximum number of edges on a root-to-leaf path (see Figure 1). We
refer to the union of base components as the set of base vertices. The H-elimination distance
of G, denoted edy(G), is the minimum depth of an H-elimination forest for G. A pair (T, x) is
a (standard) elimination forest if H is the class of empty graphs, i.e., the base components are
empty. The treedepth of G, denoted td(G), is the minimum depth of a standard elimination
forest.

It is straight-forward to verify that for any G and ‘H, the minimum depth of an H-elimination
forest of G is equal to the H-elimination distance as defined recursively in the introduction. (This
is the reason we have defined the depth of an H-elimination forest in terms of the number of
edges, while the traditional definition of treedepth counts vertices on root-to-leaf paths.) The
following definition captures the relaxed notion of tree decomposition.

Definition 2.2 ([48]). For a graph class H, an H-tree decomposition of graph G is a triple
(T,x, L) where L C V(G), T is a rooted tree, and x: V(T) — 2V(), such that:

1. For each v € V(G) the nodes {t | v € x(t)} form a non-empty connected subtree of T'.
2. For each edge {u,v} € E(G) there is a node t € V(G) with {u,v} C x(¢t).

3. For each vertex v € L, there is a unique ¢t € V(T') for which v € x(t), with ¢ being a leaf
of T.

4. For each node t € V(T'), the graph G[x(t) N L] belongs to H.

The width of a tree H-decomposition is defined as max(0, max;ey (7 [x(f) \ L] —1). The H-
treewidth of a graph G, denoted twy (G), is the minimum width of a tree H-decomposition
of G. The connected components of G[L] are called base components and the vertices in L are
called base vertices.

A pair (T, x) is a (standard) tree decomposition if (T,x,() satisfies all conditions of an
H-decomposition; the choice of H is irrelevant.
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In the definition of width, we subtract one from the size of a largest bag to mimic treewidth.
The maximum with zero is taken to prevent graphs G € ‘H from having twy(G) = —1.

Topological minors: Roughly speaking, a graph H is a topological minor of G if G contains a
subgraph G’ on |V (H)| vertices, where the edges in H correspond to (vertex disjoint) paths in
G’. We now formally define the above. Let Paths(G) be the set of all paths in G. We say that
a graph H is a topological minor of G if there are injective functions ¢ : V(H) — V(G) and
¢ : E(H) — Paths(G) such that (i) for all e = {h,h'} € E(H), ¢(h) and ¢(h’) are the endpoints
of p(e), (i) for distinct e,e’ € E(H), the paths ¢(e) and ¢(e’) are internally vertex-disjoint,
and (i77) there does not exist a vertex v such that v is in the image of ¢ and there is an edge
e € E(H) where v is an internal vertex in the path ¢(e).

Unbreakable Graphs. To formally introduce the notion of unbreakability, we rely on the
definition of a separation:

Definition 2.3. [Separation] A pair (X,Y) where X UY = V(G) is a separation if E(X \
Y, Y\ X)=0. The order of (X,Y) is | X NY].

Roughly speaking, a graph is breakable if it is possible to “break” it into two large parts by
removing only a small number of vertices. Formally,

Definition 2.4. [(s,c)-Unbreakable graph] Let G be a graph. If there exists a separation
(X,Y) of order at most ¢ such that | X \ Y| > s and |Y \ X| > s, called an (s, c)-witnessing
separation, then G is (s, c)-breakable. Otherwise, G is (s, c)-unbreakable.

We next state an observation which immediately follows from the above definition.

Observation 2.5. Consider a graph G, an integer k and a set S C V(QG) of size at most k,
where G is (a(k), k)-unbreakable graph with |V(G)| > 2a(k) + k. Then, there is exactly one
connected component C* in G— S that has at least a(k) vertices and |V (G)\V(C*)| < a(k)+k.

2.3 Counting Monadic Second Order Logic

The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical connectives
V, A, 0, <, =, variables for vertices, edges, sets of vertices and sets of edges, the quantifiers V
and 3, which can be applied to these variables, and five binary relations:

1. uw € U, where u is a vertex variable and U is a vertex set variable;
2. d € D, where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is that
the edge d is incident to u;

4. adj(u,v), where u and v are vertex variables, and the interpretation is that v and v are
adjacent;

5. equality of variables representing vertices, edges, vertex sets and edge sets.

Counting Monadic Second Order Logic (CMSO) extends MSO by including atomic sentences
testing whether the cardinality of a set is equal to ¢ modulo 7, where ¢ and r are integers such
that 0 < ¢ < r and r > 2. That is, CMSO is MSO with the following atomic sentence:
card, ,(S) = true if and only if |S| = ¢ (mod r), where S is a set. We refer to [6, 18, 19] for a
detailed introduction to CMSO.

We will crucially use the following result of Lokshtanov et al. [60] that allows one to obtain
a (non-uniform) FPT algorithm for CMSO-expressible graph problems by designing an FPT
algorithm for the problem on unbreakable graphs.
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Proposition 2.6 (Theorem 1, [60]). Let ¢ be a CMSO sentence and let d > 4 be a positive
integer. There exists a function o : N — N, such that for every ¢ € N there is an «a(c) € N, if
there exists an algorithm that solves CMSO[y] on (af(c), c)-unbreakable graphs in time O(n?),
then there exists an algorithm that solves CMSO[Y] on general graphs in time O(n?).

2.4 Parameterized graph problems

A parameterized graph problem II is usually defined as a subset of ¥* x ZT where, in each
instance (z,k) of II, x encodes a graph and k is the parameter (we denote by Z™ the set of
all non-negative integers). In this paper we use an extension of this definition (also used by
Bodlaender et al. [8] and Fomin et al. [34]) that permits the parameter k to be negative with
the additional constraint that either all pairs with non-positive values of the parameter are in II
or that no such pair is in II. Formally, a parametrized problem II is a subset of ¥* x Z where for
all (.%'1, kl), (.%'2, kg) € X* x Z with k1, ko < 0 it holds that (1‘1, k‘1> € IT if and only if (xg, kg) e II.
This extended definition encompasses the traditional one and is needed for technical reasons
(see Subsection 2.6). In an instance of a parameterized problem (x, k), the integer k is called
the parameter.

2.5 Boundaried Graphs

Here we define the notion of boundaried graphs and various operations on them.

Definition 2.7. [Boundaried Graphs| A boundaried graph is a graph G with a set B C V(QG)
of distinguished vertices and an injective labelling A\ from B to the set Z". The set B is called
the boundary of G and the vertices in B are called boundary vertices or terminals. Given a
boundaried graph G, we denote its boundary by §(G), we denote its labelling by \g, and we
define its label set by A(G) = {A\g(v) | v € 6(G)}. Given a finite set I C Z*, we define Fr to
denote the class of all boundaried graphs whose label set is I. We also denote by F the class

of all boundaried graphs. Finally we say that a boundaried graph is a t-boundaried graph if
AG) CA{1,...,t}.

Definition 2.8. [Gluing by @] Let G and G4 be two boundaried graphs. We denote by G1®Go
the graph (not boundaried) obtained by taking the disjoint union of G1 and Go and identifying
equally-labeled vertices of the boundaries of G1 and Ga. In G1 & Go there is an edge between two
vertices if there is an edge between them either in G1 or in Go, or both.

We remark that if (G; has a label which is not present in GG9, or vice-versa, then in G7 @& Go
we just forget that label.

Definition 2.9. [Gluing by @©;] The boundaried gluing operation @®s is similar to the normal
gluing operation, but results in a boundaried graph rather than a graph. Specifically G1 Bs Go
results in a boundaried graph where the graph is G = G1 ® G2 and a vertex is in the boundary
of G if it was in the boundary of Gy or of Ga. Vertices in the boundary of G keep their label
from Gy or Gs.

Let G be a class of (not boundaried) graphs. By slightly abusing notation we say that a
boundaried graph belongs to a graph class G if the underlying graph belongs to G.

Definition 2.10. [Replacement] Let G be a t-boundaried graph containing a set X C V(G)
such that 0g(X) = §(G). Let G1 be a t-boundaried graph. The result of replacing X with
G is the graph G* @ Gy, where G* = G\ (X \ 0(X)) is treated as a t-boundaried graph with
IG*) = 46(G).
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2.6 Finite Integer Index

Definition 2.11. [Canonical equivalence on boundaried graphs.| Let II be a parameter-
ized graph problem whose instances are pairs of the form (G,k). Given two boundaried graphs
G1,G2 € F, we say that G1 =1 G2 if A(G1) = A(G2) and there exists a transposition constant
c € Z such that

Y(F k)e FXZ (Gid Fk)ell & (God Fk+c) €1l
Here, c is a function of the two graphs G1 and Gs.

Note that the relation =y is an equivalence relation. Observe that ¢ could be negative in the
above definition. This is the reason we allow the parameter in parameterized problem instances
to take negative values.

Next we define a notion of “transposition-minimality” for the members of each equivalence
class of =1 .

Definition 2.12. [Progressive representatives [8]] Let Il be a parameterized graph problem
whose instances are pairs of the form (G, k) and let C be some equivalence class of =r. We say
that J € C s a progressive representative of C if for every H € C there exists ¢ € 7~ , such that

V(Fk)eFxZ (HeFk elle (JeFk+c) ell (1)

The following lemma guarantees the existence of a progressive representative for each equiv-
alence class of =pj.

Lemma 2.13 ([8]). Let II be a parameterized graph problem whose instances are pairs of the
form (G, k). Then each equivalence class of =m1 has a progressive representative.

Notice that two boundaried graphs with different label sets belong to different equivalence
classes of =p1 . Hence for every equivalence class C of =y there exists some finite set I C Z™
such that C C F;. We are now in position to give the following definition.

Definition 2.14. [Finite Integer Index| A parameterized graph problem I1 whose instances
are pairs of the form (G, k) has Finite Integer Index (or is FII), if and only if for every finite
I C Z*, the number of equivalence classes of =p that are subsets of Fr is finite. For each
I C Z*, we define Sy to be a set containing ezactly one progressive representative of each
equivalence class of =1 that is a subset of Fr. We also define Scr = Jpc; Sr-

The proof of next lemma is identical to the one given for [8, Lemma 8.4]

Lemma 2.15 ([8]). Let H family of graphs that is CMSO definable and union closed. Then,
VERTEX DELETION TO H has FII.

Lemma 2.16. ([46, Lemma 2]). Let H family of graphs that is CMSO definable and union
closed. Then, ELIMINATION DISTANCE TO H and TREEWIDTH DECOMPOSITION TO H is
CMSO definable.

2.7 Replacement lemma

This subsection is verbatim taken from Fomin et al. [34, Section 3.3] and is provided here only
for completion. We only need to make few simple modifications to suit our need.

Definition 2.17. Let G denote the set of all graphs. A graph parameter is a function V: G —
ZT. That is, ¥ associates a non-negative integer to a graph G € G. The parameter 1 is called
monotone, if for every G € G, and for every Vi C V,, W(G[V3]) > W(G[V1)).
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We can use ¥ to define several graph parameters such as treewidth, or given a family F of
graphs, a minimum sized vertex subset S of G, called modulator, such that G — S € F. Next
we define a notion of monotonicity for parameterized problems.

Definition 2.18. ([34, Definition 3.9]). We say that a parameterized graph problem II is positive
monotone if for every graph G there exists a unique £ € N such that for all ¢/ € N and ¢/ > ¢,
(G,0') € I1 and for all ¢’ € N and ¢! < ¢, (G, V') ¢ II. A parameterized graph problem I is
negative monotone if for every graph G there ewists a unique £ € N such that for all ¢ € N and
U >4, (G0) ¢ 11 and for all ' € N and ¢! < ¢, (G,¢') € II. 1I is monotone if it is either
positive monotone or negative monotone. We denote the integer ¢ by THRESHOLD(G,II) (in
short THR(G,1I) ).

We first give an intuition for the next definition. We are considering monotone functions and
thus for every graph G there is an integer k where the answer flips. However, for our purpose
we need a corresponding notion for boundaried graphs. If we think of the representatives as
some “small perturbation”, then it is the max threshold over all small perturbations (“adding
a representative = small perturbation”). This leads to the following definition.

Definition 2.19. ([34, Definition 3.10]). Let II be a monotone parameterized graph problem
that has FII and ¥ be a graph parameter. Let S; be a set containing exactly one progressive
representative of each equivalence class of =r1 that is a subset of Fr, where I ={1,...,t}. For
a t-boundaried graph G, we define

((G) = max THR(G & G', 1),
G'eS,
= \I/ /
n(G) max U(G &G

The next lemma says the following. Suppose we are dealing with some FII problem and
we are given a boundaried graph with boundary size t. We know it has a representative of
size h(t) and we want to find this representative. In general finding a representative for a
boundaried graph is more difficult than solving the corresponding problem. The next lemma
says basically that if we can find “OPT” of a boundaried graph efficiently then we can efficiently
find its representative. Here by “OPT” we mean «(G), which is a robust version of the threshold
function (under adding a representative). And by efficiently we mean as efficiently as solving
the problem on normal (unboundaried) graphs.

Lemma 2.20. ([34, Lemma 3.11]). Let II be a monotone parameterized graph problem that has
FII and ¥ be a graph parameter. Furthermore, let A be an algorithm for I1 that, given a pair
(G, k), decides whether it is in II in time f(|V(G)|, ¥(G)). Then for every t € N, there exists
a & € ZT (depending on 11 and t), and an algorithm that, given a t-boundaried graph G with
[V(G)| > &, outputs, in O((G)(f(|V(G)] + &, (G))) steps, a t-boundaried graph G* such that
G =i G* and |V (G*)| < &. Moreover we can compute the translation constant ¢ from G to G*
in the same time.

Proof. We give prove the claim for positive monotone problems II; the proof for negative
monotone problems is identical. Let S; be a set containing exactly one progressive repre-
sentative of each equivalence class of =1 that is a subset of Fr, where I = {1,...,t}, and
let & = maxyegs, |[V(Y)|. The set S; is hardwired in the description of the algorithm. Let
Y1,...,Y, be the set of progressive representatives in &;. Let F; = F7. Our objective is to find
a representative Yy for G such that

VFEVeFxZ (GaFk els (YoFk—9(X,Y))ell (2)
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Here, 9(X,Y}) is a constant that depends on G and Y. Towards this we define the following
matrix for the set of representatives. Let

AY,Y)] = THR(Y; & Y}, 1D)

The size of the matrix A only depends on II and ¢ and is also hardwired in the description of
the algorithm. Now given G we find its representative as follows.

e Compute the following row vector X = [THR(G @ Y1,1I),..., THR(G @ Y),II))]. For each
Y; we decide whether (G @Y, k) € II using the assumed algorithm for deciding II, letting
k increase from 1 until the first time (G @ Y;, k) € II. Since II is positive monotone
this will happen for some k < ((G). Thus the total time to compute the vector X is

OWG)(F(IV(G)] + &, m(@)))-

e Find a translate row in the matrix A(II). That is, find an integer n, and a representative
Yy such that

[THR(G @ Y1,1I), THR(G @ Ya,1I), ..., THR(G @ Y, II)]
= [THR(Y; ® Y1,1I) 4+ ng, THR(Y, @ Y3, 1) 4+ ng, ..., THR(Y; @ Y, IT) + ng)

Such a row must exist since S; is a set of representatives for II; the representative Yy for
the equivalence class to which G belongs, satisfies the condition.

e Set Y, to be G* and the translation constant to be —ny.

From here it easily follows that G = G*. This completes the proof. O

We remark that the algorithm whose existence is guaranteed by the Lemma 2.20 assumes that
the set S; of representatives are hardwired in the algorithm. In its full generality we currently
donot known of a procedure that for problems having FII outputs such a representative set.
Thus, the algorithms using Lemma 2.20 are not uniform.

Next we illustrate a situation in which one can can apply Lemma 2.20 to reduce a portion of
a graph. Let F be a family of interval graphs. Further, let II be the DOMINATING SET problem
and ¥ denote the modulator to F. That is, given a graph G,

U(G) = min |S].
SCV(G),G—SeF
It is possible to show that DOMINATING SET parameterized by ¥(G) is FPT. That is, we can
design an algorithm that can decide whether an instance (G, k) of DOMINATING SET is an Yes-
instance in time f(¥(G))-n®W. In fact, in time 2°0MY(E)pOM) " This implies that if we have
a t-boundaried graph G, then we can find a representative of it with respect to DOMINATING
SET in time 20(&)pO0) We will see its uses in this way in Section 6.

3 Structural Results

3.1 Bounded Modulators on Unbreakable Graphs

In this section we show that for any (a(k), k)-unbreakable graph G that has more than 3(«/(k)+k)
vertices and its H-elimination decomposition (resp. H-tree decomposition), (7', x, L) of depth
at most k, we have |V(G) \ L| < a(k) + k and there is a large connected component in G[L], by
proving the following two lemmas.

Lemma 3.1. Consider a graph G, an integer k, and any H-elimination decomposition (resp.
H-tree decomposition) (T,x, L) of depth (resp. width) at most k (resp. k — 1), where G is
(a(k), k)-unbreakable graph. Then, one of the following holds:
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1. |V(G)| < 3(a(k) + k), or

2. there is exactly one connected component C* in G[L] that has at least a(k) vertices, and
VIGAV(CY)| < alk) + k.

Towards proving the lemma, we begin by stating a folklore result regarding weighted trees
(an explicit proof can be found, for instance, in the full version of [5]).

Proposition 3.2. Consider a tree T' and a weight function w : V(T) = N, 7= 3oy ) w(t)

such that 1 < w(t) < 27/5, for each t € V(T). Then, there exists a non-leaf vertex t in T
such that the connected components of T — {tA} can be partitioned into two sets C; and Co, with

>ocee, W(C) £27/3 and Y e, w(C) < 27/3, where w(C) = 3 ey (o) wlt).
Next we prove useful lemma(s) about unbreakable graphs.

Lemma 3.3. Consider a family of hereditary graphs H. Furthermore, consider an integer k,
an (a(k), k)-unbreakable graph G with more than 3(a(k) + k) wvertices, and an H-elimination
decomposition (T, x, L) of depth at most k for G. Then, G[L] has a connected component with
at least a(k) vertices.

Proof. As H is hereditary, note that G must also admit an H-elimination decomposition (7”7, x’, L),
such that: i) for each ¢t € V(T") we have |x(¢)| > 1, ii) for each t € V(T"), if x(t) N L # 0,
then G[x(t) N L] is connected, and iii) the depth of 7" is at most the depth of T'. Hereafter,
we will consider an H-elimination decomposition (77, x’, L) for G that satisfies the above condi-
tions. Towards a contradiction we suppose that the size of each connected component in G[L]
is strictly less than a(k). With the above assumption, we will exhibit an (a(k), k)-witnessing
separation, which will contradict that G is (a(k), k)-unbreakable.

Let T* be the tree obtained from 7", by arbitrarily connecting one of the roots in 7" to all
the other roots. Formally, let {r1,72,---,7,} be the set of roots in 7" (note that p must be the
number of connected components in 7"). We let V(T™*) = V(T") and E(T*) = E(T")U{{r1,7:} |
i € [p]\ {1}}. Also, let wht : V(T*) — N, such that for t € V(T*) = V(T"), we have
wht(t) = x(t).

By the construction of 7% and wht, we can obtain that for each ¢t € V(T%), 1 < wht(t) < a(k)
and 7 = 3,y ey Wht(t) = n, where n = [V(G)]. Asn > 3(a(k)+k), we have 27/5 > (a(k)+k),
and hence for each t € V(T%), 1 < wht(t) < 27/5. The tree T and the weight function wht,
satisfies the premises of Proposition 3.2. Thus, using the proposition, there is a non-leaf node
t* in T* such that connected components in 7% — {¢t*} can be partitioned into two sets C; and
Ca, such that for each j € [2], wht(C;) = ZCGCJ_ wht(C) < 27/3 < 2n/3 < 2(a(k) + k), where
wht(C) = > 1ev () wht(t).

For i € [2], let Z; = Ugee, V(C) and Vi = {veV(G)\L| forsomet e Z;,x(t) = {v}}.
For i € [2], let U; = Utez, (x(t) N L). Let V; = V; UU;, for each i € [2]. From construction of T*
and wht, we obtain that |Vi| < 2(a(k) + k). As n > 3(a(k) + k), we have |Va| > a(k) + k. By
similar arguments, we obtain |Vi| > «a(k) + k. Observe that Vi, UV, = V(G) \ x(t*). Let S be
the set containing each vertex v € V(G) \ L, such that ¢, € V(T™), where x(t,) = {v}, t, is an
ancestor of t* (possibly t, = t*). Note that |S| < k.

Let Y1 = ViU S and Y = Vo U S. Note that S = Y1 NYs, [Y1\ Y| = [Y1\ S| > a(k),
Yo\ Yi| = Y2\ S| > a(k), |S| < k, and Y7 UYs = V(G). Moreover, by the construction of Y;
and Y2, we have that there is no edge {u,v} € E(G), such that u € Y7\ S and v € Y5\ S. This
implies that (Y7,Y3) is a separation of order k£ in G such that |Y7 \ Ya| > a(k), Y2\ Ya2| > a(k)
This contradicts the assumption that G is (a(k), k)-unbreakable. O

Analogous to the above, we can prove a result regarding H-tree decompositions.
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Lemma 3.4. Consider a family of hereditary graphs H. Furthermore, consider an integer
k > 2, an (a(k), k)-unbreakable graph G with more than 3(a(k) + k) vertices, and an H-tree
decomposition (T, x, L) of width at most k — 1 for G. Then, G[L] has a connected component
with at least a(k) vertices.

Proof. If L = V(G), then note G must have a connected component that have exactly one
connected component with at least (k) vertices, as G is («a(k), k)-unbreakable. Hereafter we
assume that V(G) \ L # 0. As H is hereditary, G must also admit an H-tree decomposition
(T, X', L), such that:

1. for every distinct vertices t,¢' € V(T') with x(t) N L = 0 and x(#') N L = (), we have
x(t)  x(t'),

2. for each t € V(T") with x(t) "L # 0, x(¢t) \ L C X(tpar), where tp,r is the parent of ¢ in T”.
3. for each t € V(T"), if x(t) N L # 0, then G[x(t) N L] is connected,

4. the width of T” is at most the width of T', and

5. T' is connected.

Hereafter, we will consider an H-tree decomposition (7”,x’, L) for G that satisfies the above
conditions. Towards a contradiction we suppose that the size of each connected component in
G|[L) is strictly less than a(k) vertices. We define a (partition) function p : V(T") — 2V() using
x and the properties of (77, x’, L) as follows. For each t € V(T"), where: i) x'(¢t) N L # (), we
set p(t) = x/(t) N L, and ii) otherwise, we set p(t) = x'(¢) \ X' (tpar), where tp, is the parent
(if it exists) of ¢ in T".° Notice that for each t € V(T"), p(t) # 0 (recall V(G) \ L # 0) and
{p(t) | t € V(T")} is a partition of V(G). We define the weight function wht : V(T’) — N,
by setting, for each ¢t € V(T"), wht(t) = |p(¢)|. By the construction of wht we can obtain
that, for each t € V(T'), 1 < wht(t) < max{a(k) — 1+ k} < a(k) + k (recall our assumption
that each connected component in G[L] has less than «(k) vertices). Furthermore, we have
T = ey Wht(t) =n = [V(G)].

As n > 3(a(k) + k), we have 27/5 > (a(k) + k), and hence for each ¢t € V(T”), 1 < wht(¢t) <
27/5. The tree T' and the weight function wht, satisfies the premises of Proposition 3.2. Thus,
there is a non-leaf node t* in 7" such that connected components in 77— {t*} can be partitioned
into two sets C; and Cg, such that for each j € [2], wht(C;) = ZCGCJ_ wht(C) < 27/3 = 2n/3,
where wht(C') = 3=,y () wht(t). Moreover, wht(Cy), wht(C2) > n/3 > a(k) + k. Let S = X' (%),
and note that as t* is a non-leaf node, we have |S| < k. For i € [2], V; = Uiec, p(t). Notice that
(SUV1, SUVs,) is a separation of order k, where |V7\ S|, |[V2\ S| > a(k), which contradicts that
G is (a(k), k)-unbreakable. O

Using the above two lemmas we obtain the desired result (Lemma 3.1).

Proof of Lemma 3.1. Consider an integer k, an (a(k),k)-unbreakable graph G, and an H-
elimination decomposition (resp. H-tree decomposition) (7', x, L) for G, of depth (resp. width)
k (resp. k—1). If |[V(G)| < 3(a(k) + k), then the condition required by the lemma is triv-
ially satisfied. Now consider the case when |V(G)| > 3(a(k) + k). Note that G must also
admit an H-elimination decomposition (resp. H-tree decomposition), say, (17", x’, L) such that
for each t € V(T"), G[x'(t) N L] is connected. From Lemma 3.3, G[L] has a connected com-
ponent of size at least a(k), and let D be such a connected component, and t* € V(T") be a
vertex such that V(D) C x/(t*). Let S = {v € V(G)\ L | forsomet € V(T')\ {t*},x'(t) =
{v}, where ¢ is an ancestor of t*} (resp., let S = x/(¢*) \ L). Note that |S| < k, and Ng(D) C

STf ¢ is a root, then p(t) = x'(t).
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S. The above, together with the assumption that G is (a(k), k)-unbreakable implies that
V(G)\ (SUV(D)) < a(k). From the above we can obtain that |V (G)\ L| < a(k) + k and there
is exactly one connected component in G[L] that has more than a(k) vertices. This concludes
the proof. O

3.2 Computing H-Elimination Decomposition Using its Decision Oracle

The objective of this section is to prove the following lemma.

Lemma 3.5. Consider an algorithm A, for ELIMINATION DISTANCE TO H, that runs in time
Fy - g(|V(G")), for an instance (G',¢') of the problem.” Then, for any given graph G on n
vertices, we can compute an H-elimination decomposition for G of depth ¢ = edy(G), in time

bounded by f(£) - g(n) - n®M).

Consider a family of graphs H, for which TREEWIDTH DECOMPOSITION TO H admits an
algorithm, say, Mem, which given a graph G on n vertices and an integer k, runs in time
f(k) - g(n), and output 1 if edy(G) < k and 0, otherwise. We design a recurive algorithm that
given a graph G and an integer k, and returns an H-elimination decomposition of depth at most
k, or returns that no such decomposition exists.

Consider a given graph G and an integer k. We assume that the graph G is connected, as
otherwise, we can apply our algorithm for each of its connected components. We will explicitly
ensure that, while making recursive calls, we maintain the connectivity requirement. We now
state the base cases of our recursive algorithm.

Base Case 1. If G € H and k > 0, then the algorithm returns (T" = ({r},0),x : {r} —
2V(@) V(@)), where x(r) = V(G), as the H-elimination decomposition of G.

Base Case 2. If Base Case 1 is not applicable and k < 0, then return that edy(G) > k.
For each v € V(G), let C, be the set of connected components in G — {v}

Base Case 3. If Base Case 1 and 2 are not applicable, and there is no v € V(G), such that for
every C € Cy, (C,k — 1) is a yes-instance of ELIMINATION DISTANCE TO H, then return that
edH(G) > k.

The correctnesses of Base Case 1 and 2 are immediate from their descriptions. If the first
two base cases are not applicable, then k& > 1 and edy(G) > 1 must hold. Thus, for any
‘H-elimination decomposition, say, (T, x, L) for G, T' must have at least one vertex which is not
a leaf. The third base case precisely returns that edy (G) > k, when the above condition cannot
be satisfied, thus its correctness follows. Using Mg, we can test if (G,0) is a yes-instance of
ELIMINATION DISTANCE TO H in time bounded by f(k) - g(n). Thus, we can test/apply Base
Case 1, 2 and 3 in time bounded by f(k) - g(n) - n®Y). Hereafter we assume that the base cases
are not applicable.

Recursive Step. Find a vertex v* € V(G), such that for every C € Cp+, (C,k — 1) is a yes-
instance of ELIMINATION DISTANCE TO H, using Megm. Such a v* exists as Base Case 3 is not
applicable.

Recursively obtain an ‘H-elimination decomposition (T, x¢, L¢) for the instance (C, k — 1),
for each C € Cy+. Let L* = UCECU* Lc, and let T* be the forest defined as follows. We have
V(T*) = {r"} U (Ucec,. V(Tc)), where r* is a new vertex, and E(T™) contains all edges in
E(T¢), for each C' € C,+, and for each root r in some forest in T¢, for some C,, the edge {r*,r}
belongs to E(T*). Finally, let x* : V(T*) — 2V(%) be the function such that y*(*) = {v*},
and for each C € Cy+ and a € V(TI¢), we have x*(a) = xc(a). Return (7%, x*,L*) as the
‘H-elimination decomposition for G.

"We will use the standard assumption from Parameterized Complexity that the functions f and g are non-
decreasing. For more details on this, please see Chapter 1 of the book [23].
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The correctness of the above recursive step follows from its description. Moreover, it can be
execute in time bounded by f(k) - g(n) - n®W), using &nmeq.

The overall correctness of the algorithm follows from the correctness of each of its base cases
and recursive step. Moreover, as we can always assume that £ < n and the depth of the recursion
tree can be bounded by k + 1, we can obtain that our algorithm runs in time f(k) - g(n)-n®®),
using Emnod- By exhibiting the above algorithm, we have obtained a proof of Lemma 3.5.

3.3 Computing H-Tree Decomposition Using its Decision Oracle

The objective of this section is to prove the following lemma.

Lemma 3.6. Consider an algorithm A, for TREEWIDTH DECOMPOSITION TO H, that runs in
time f(£') - g(|[V(G")|), for an instance (G’,{') of the problem.® Then, for any given graph G on
n vertices, we can compute an H-tree decomposition for G of width £ = twyy, in time bounded
by (f(€) - g(n)+ 50(62)) -nOW) 4 h(F), where h(F) depends only on the family H.

Consider a family of graphs H, for which TREEWIDTH DECOMPOSITION TO H admits an
algorithm, say, Ty, which given a graph G on n vertices and an integer k, runs in time f(k)-g(n),
and output 1 if twy(G) < k and 0, otherwise. We will assume that H is not the family of all
graphs, otherwise, the problem is trivial, i.e., we can return (T = ({t},0), x, V(G)), where
x(t) = V(G), as the H-tree decomposition of width 0.

We will design an algorithm Dy, which, for given a graph G on n vertices, will construct
an H-tree decomposition for G of H-treewidth ¢ = twy, in time bounded by (o) . f) -
[V(@)|°M 4 h(F), where h(F) is a number depending on the family F. Intuitively speaking,
we will attach a flower of obstructions on each vertex and check if the resulting graph has its
H-treewidth exactly the same as twy(G). If the H-treewidth does not increase, then we will
be able to obtain that this vertex can be part of the modulator. We repeat this procedure to
identify the vertices S C V(G) that go the the modulator. After this, we take the torso of
G[S] in G, to obtain the graph (to be denoted by) C~¥§ Then using the known algorithm of
Bodlaender [7], we compute a tree decomposition for Gg, using which we construct an H-tree
decomposition for G.

We next state an observation that will be useful in constructing an obstruction, i.e., a graph
outside H.

Observation 3.7. There exists a number h = h(H),° such that we can find a graph H ¢ H in
h many steps, where each step can be execute in constant time.

Proof. We initialise ¢ = 1 and do following steps:
1. Construct the set, G;, that contains all graph on exactly 7 vertices.

2. For each H € G;, check if (H',0) is a no-instance of TREEWIDTH DECOMPOSITION TO H,
using the algorithm Ty, and if it is a no-instance, then return the graph H (and exit).
Otherwise, increment ¢ by 1 and go to Step 1.

Let ¢ > 1, such that H does not contain some graph on (exactly) ¢ vertices. Note that ¢ is
well-defined, as H is not the family of all graphs by our assumption. Notice that at the iteration
where i = ¢, we will be able to output a graph that is not in H. Also the number of steps
executed by the procedure we described depends only on ¢ (which in turn depends only on H).
This concludes the proof. O

8 Again, we assume that the functions f and g are non-decreasing.
9That is, h depends on the family .
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We next state an easy observation using which we can compute ¢ = twy (G) with the help
of the algorithm T,,.

Observation 3.8. For a given graph G on n vertices, we can compute (using Tuw) £ = twy(G)
in time bounded by O(n) - f(twy(G)) - g(n).

Proof. We iterate over i € N (starting from 0) and check whether (G,%) is a yes-instance of
TREEWIDTH DECOMPOSITION TO H using Ty, and stop at the iteration where the instance is
a yes-instance. Note that, the iteration i at which we stop, it must hold that i = twy(G). As
twy(G) < n and f is a non-decreasing function by our assumption, our procedure achieves the
claimed running time bound. O

We now move to formal description of our algorithm. We fix an arbitrary ordering of vertices
in G, and let V(G) = {v1,v2,--- ,v,}. We compute ¢ = twy(G), using Observation 3.8. Let H*
be the graph returned by Observation 3.7, and let V/(H*) = {uj,u3, - ,u;}. We will construct
a graph G} and a set S; C V(G), for each ¢ € [n], where we add a flower of obstruction at v;
(and add v; to S;) if and only if after adding such obstructions, the H-treewidth of the resulting
graph doesn’t change. Formally, we do the following.

1. Set G, = G and Sy = 0.
2. For each i € [n] (in increasing order), we do the following:
(a) Initialize G} = G}_; and S; = S;_;.

(b) We obtain the graph G, obtained from G’_, by adding k + 2 copies of H at v as
follows. For j € [k + 2], let H? be the graph such that E(H]*) = {u’l‘yj,u;,j, LUy
and E(HY) = {{uzﬂu:]} | p,7 € [q],{up,uy} € E(H)}. Furthermore, let H =

~

H¥ — {u};}. We let G; be the graph with V(G;) = V(Gj_1) U (Ujeprg V(H))) and

E(Gi) = E(G_) U (Ujepra E(H))) U {{vi,up ;3 15 € [k+2],p € [q] and {u],u}} €
E(H)}.

(¢) Check if (G;,¢) is a yes-instance of TREEWIDTH DECOMPOSITION TO H using Tiw.
If the above is true, then set G = G; and S; = S;—1 U {v;}, and otherwise, set
G; = G;-il and Sl = Sifl.

Next we show that, there is an H-tree decomposition of optimal width for G which puts
exactly the vertices in S, in the modulator.

Lemma 3.9. There is an H-tree decomposition, (T, x,V(G)\ Syn), for G of width { = twy(G).

Proof. For each i € [n]p, the construction of G implies that G, must admit an H-tree decom-
position (TY, x4, L}) of width twy(G), such that S; = (V(G%)\ L)) N{vy,va, -+ ,v;}.10 AsH is a
hereditary family of graphs, we can obtain that for each i € [n] and x; : V(T}) — 2V(®) | where
fort € V(T)), xi(t) = X;(t)NV(G), (T}, xi, L:NV(Q)) is an H-tree decomposition for G of width
twy (G), such that S; = V(G) \ L,. The above in particular implies that, (T},, xn, V(G) \ Sp) is
an H-tree decomposition for G of width twy (G). This concludes the proof. O

Let S =S, and L = V(G)\ S. Let G be the graph obtained from G with vertex set V(G),
by taking a torso with respect to the connected components in G[L]. That is, V(G) = V(G) and
for u,v € V(G), {u,v} is an edge in G if and only if one of the following holds: i) {u,v} € E(G),

OHere we use the fact that H* is a graph that has smallest number of vertices, which does not belong to
H. Thus, deletion of v; from Gj would imply that each of the newly attached obstructions at v; (if any) are
intersected.
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or ii) there is a connected component C' in G — S (= G[L]), such that u,v € Ng(C) and u # v.
We let Gg = G[S]

We have the following observation regarding é, which follows from its construction and
Lemma 3.9.

Observation 3.10. The following properties hold:

1. A tuple (T, x,V(G)\ S) is either an H-tree decomposition for both G and G, or none.
Moreover, there is at least one such H-tree decomposition of width twy(G) for G.

2. Treewidth of Gy is twy(G).

Due to the above observation, it is now enough to compute a tree decomposition of G of
width twy(G), to obtain an H-tree decomposition for G of width twy(G). We next use the
following result, which immediately follows as a corollary from the result of Bodlaender et al. [7].

Proposition 3.11 (see, [7] or Theorem 7.17 [23]). There is an algorithm, which given a graph
G on n vertices, in time bounded by tW(G)O(tW(G)Q) -n, computes a tree decomposition of G of
width tw(G).

We are now ready to prove Lemma 3.6.

Proof of Lemma 3.6. Consider a graph G on n vertices. We construct the graph G (and és)
as described previously. From Observation 3.7 and the constructions of G} and S;, for i €
[n], implies that G (and Gg) can be constructed in time bounded by f(¢) - g(n) - n®1) +
h(F), where ¢ = twy(G). Then using Proposition 3.11 we can compute a tree decomposition,
(Ts,Xs : V(Ts) — 2V(C)) of width ¢, for Gg in time bounded by (O) . nOM) (see item 2 of
Observation 3.10). Recall that S = V(Gg). For each connected component C' in G — S, the
construction of Gg implies that Ng(C) (C S) induces a clique in Gg. Thus there must exist
t € V(Ts) such that Ng(C) C Xs(t). We construct a tree from T and a function x : V(T) —
2V(G) as follows. Initialize T = fg and y = xg. For each connected component C'in G — S, we
add a new node t¢ and add the edge {tc,t5} to E(T'), where t, is an arbitrary selected node
(if it exists) in Ty, such that Ng(C) C Xs(ts). 1 Furthermore, we set x(tc) = Ne(C) U V(O).
The above construction together with Observation 3.10 implies that (T, x, V(G) \ S) is an H-
tree decomposition for G. Note that we can construct (7, x,V(G) \ S) in time bounded by
(f(0)-g(n)+ 60(62)) @) 4 h(F). This concludes the proof. O

4 Equivalences Among Deletion, Decomposition and Elimina-
tion

The overall schema of proof of the theorem is presented in Figure 2. Notice that ones the
implications depicted in the figure are obtained, we can conclude the proof of Theorem 1.1.
We will next discuss the results that are used to obtain the proof, and we begin with a simple
observation which directly follows from the fact that twy(G) < edy(G) < mody(G).

Observation 4.1. The following implications hold:
1. Statement 8 = Statement 2 = Statement 1.
2. Statement 6 = Statement 5 = Statement /.

3. Statement 9 = Statement 8 = Statement 7.

H7f ¢, does not exist, in particular, when S = (), then we just add the node tc.
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Lemma 4.3
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Statement 6 > Statement 5 > Statement 4

1
Obs. 4.1 Obs. 4.1
L>| Statement 9 > Statement 8 ° Statement 7

Figure 2: Implications used to obtain proof of Theorem 1.1.

We prove that Statement 1 implies Statement 5 and 9 in Section 4.1, by proving the following
lemma.

Lemma 4.2. Consider a family H of graphs that is CMSO definable and is closed under disjoint
union and induced subgraphs. If VERTEX DELETION TO H parameterized by mody (G) is FPT,
then i) ELIMINATION DISTANCE TO H parameterized by edy(G) is FPT, and i) TREEWIDTH
DECOMPOSITION TO H parameterized by twy (G) is FPT.

Intuitively speaking, we obtain the proof of the above lemma as follows. Suppose that
VERTEX DELETION TO H, parameterized by mody, (G), admits an FPT algorithm, say, Myod. 2
We will intuitively explain how we obtain an FPT algorithm for ELIMINATION DISTANCE TO
‘H parameterized by edy(G), using Moq. Consider an H-elimination decomposition (7', x, L)
of depth at most k for G (if it exists). From Lemma 3.1, either the number of vertices in G is
bounded by 3(a(k) + k), in which we can resolve the instance by a brute-force procedure, or
G[L] has exactly one large connected component, denoted by D*, and V(G) \ V(D*) has size
bounded by a(k) + k. Let t be the parent (if it exists) of ¢*, where t* is the leaf containing
V(D*). Roughly speaking, we will try to determine the large component D* completely, and
then resolve the remaining instance. To this end, we will maintain a subset, A* C V(G), which
will also be the subset of vertices from G that are associated with the root-to-t path in 7', and
thus, we will always have |S| < k. We will look at the unique large connected component C*
in G — A* (see Observation 2.5), and try to fix it as much as possible in the following sense.
We will (roughly speaking) show that either an arbitrary solution for (C*, k) as an instance
for VERTEX DELETION TO H, obtained using the assumed algorithm M4, is enough for us
to completely determine D*, or we will be able to find a small connected set contained in C*,
with small neighborhood containing an obstruction to 4. In the latter case, we will further be
able to show that any such maximal connected set (with bounded neighborhood) must have a
non-empty intersection with the set of vertices in G associated with the root-to-t path in 7.
Thus, we will either be able to “grow” our set A* (upto size at most k), or resolve the instance
by brute-force. The above will give us an algorithm as required by the lemma. We note that
the algorithm for the case of TREEWIDTH DECOMPOSITION TO H parameterized by twy (G)
can be obtained in a very similar fashion, but for this case, we will maintain that the set S is

12For ease in readability, as much as possible, we will use the letters M, & and T for algorithms for the problems
VERTEX DELETION TO H, ELIMINATION DISTANCE TO ‘H and TREEWIDTH DECOMPOSITION TO H, respectively.
Moreover, the subscripts mod, elm and tw will denote the parameterizations mody (G), edx (G) and twy (G),
respectively. We note that we aren’t fixing such algorithms, but whenever a need to assume/obtain such algorithms
arises, we will be using the above letters/subscripts.
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the subset of vertices present in the bag of H-tree decomposition, that contains all the vertices
in the large component in G[L].

In Section 4.2 we show that Statement 1 implies Statement 3, assuming that Lemma 4.2
holds, by proving the following result.

Lemma 4.3. Consider a family H of graphs that is CMSO definable and is closed under disjoint
union and induced subgraphs. If VERTEX DELETION TO H parameterized by mody(G) is FPT,
then the problem is also FPT when parameterized by twy(G).

Intuitively speaking, we obtain a proof of the above lemma as follows. Suppose that VERTEX
DELETION TO H parameterized by mody (G) admits an FPT algorithm, say, Myoq. Consider
an instance (G, k) of the problem VERTEX DELETION TO H. From Lemma 4.2, we can obtain
that TREEWIDTH DECOMPOSITION TO H parameterized by twy(G) has an FPT algorithm,
say, Tww. Using the algorithm Ty, and Lemma 3.6, we compute an H-tree decomposition for
G. For each leaf t in T', where the graph G[x(¢) N L] has large number of vertices, we replace
G[x(t)NL] by another graph, using Lemma 2.20, still maintaining equivalence without increasing
the parameter. After this, we are obtain to bound the (standard) treewidth of the graph, and
resolve the instance using Courcelle’s Theorem [18]. The above gives us an FPT algorithm for
VERTEX DELETION TO H, when parameterized by twy,.

In Section 4.3 we prove that Statement 4 (resp. Statement 7) implies Statement 1, by proving
the following lemma.

Lemma 4.4. Consider a family H of graphs that is CMSO definable and is closed under dis-
joint union and induced subgraphs. If ELIMINATION DISTANCE TO H (resp. TREEWIDTH
DECOMPOSITION TO H) parameterized by mody(G) is FPT, then VERTEX DELETION TO H
parameterized by mody (G) is also FPT.

Roughly speaking, the above lemma is proved as follows. Consider an instance (G, k) of
VERTEX DELETION TO H. From Proposition 2.6, it is enough for us to focus in («a(k),k)-
unbreakable graphs, and thus we assume that G is such a graph. If G has at most 2«a(k) + k
vertices, we resolve the instance by trying all possible subsets. Otherwise, using an assumed
FPT algorithm X,0q for ELIMINATION DISTANCE TO H (resp. TREEWIDTH DECOMPOSITION
TO H) parameterized by mody(G), we compute an H-elimination decomposition (resp. H-tree
decomposition), say, (T, x, L). Now using Observation 2.5 we will to able to conclude that: i)
there is exactly one connected component C* in G[L] which has more than a(k) vertices, ii)
S* = Ng(C*) has size at most k, and iii) Z* = V(G) \ V(C*) has size at most a(k) + k. Using
the above, we are either able branch on vertices of Z*, or conclude that S* is already a solution
for the given VERTEX DELETION TO H instance. The above gives us an algorithm for VERTEX
DELETION TO H, when parameterized by mody (G), using the assumed FPT algorithm for
ELIMINATION DISTANCE TO H (resp. TREEWIDTH DECOMPOSITION TO H) parameterized by
mody(G).

4.1 Proof of Lemma 4.2

The objective of this section is to prove Lemma 4.2. We will present the result for ELIMINATION
DI1STANCE TO H, and later comment how we can adapt exactly the same idea for TREEWIDTH
DECOMPOSITION TO H. Fix any family H of graphs that is CMSO definable and is hereditary,
such that VERTEX DELETION TO ‘H admits an FPT algorithm, say, Myed, which given an
instance (G, ¢), where G’ is an n vertex graph, correctly resolves the instance in time bounded
by fmod (6) ’ nO(l).

Let (G, k) is an instance of the problem ELIMINATION DISTANCE TO H. From Proposition
2.6, it is enough for us to design an algorithm for («(k), k)-unbreakable graphs, and thus, we
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assume that G is (a(k), k)-unbreakable. If G has at most 3(ak + k) vertices, then we can resolve
the instance in FPT time, by brute force. Thus, the interesting case is when G has more than
3(ak+ k) vertices and it is (a(k), k)-unbreakable. We will begin by defining an extension version
of the problem for (large) unbreakable graphs, called a-EXTENSION H-ELIMINATION DISTANCE
(a-EXT H-ED, for short), which will lie at the heart of our FPT algorithm for ELIMINATION
DISTANCE TO H (using Mmod as a subroutine). Roughly speaking, the problem a-ExT H-ED
will (recursively) try to compute (some of) the vertices that will be mapped to the root-to-leaf
path leading the the large connected component (see Lemma 3.1), which will be enough for us
to identify the large connected component in a decomposition. Once we have the above set, we
will be able to determine the unique large connected component in the final decomposition, and
then solve the remainder of the problem using brute force as the number of vertices outside the
large connected component can be bounded by a function of k. We would like to remark that,
an intuitive level the above illustrates how the deletion and the elimination problems coincide.

(Problem Definition) a-EXTENSION H-ELIMINATION DISTANCE (a-EXT H-ED)

Input: A graph G, an integer k, a set A* C V(G) of size at most k, such that G is an (a(k), k)-
unbreakable graph and |V (G)| > 3(a(k) + k).

Question: Test if there is an H-elimination decomposition (7', y, L), where D* is the unique
connected component in G[L] of size at least «(k) (see Lemma 3.1) and t* € V(T) is the vertex
with V(D*) C x(t*), such that the following holds:

1. LN A* =10.

2. For each v € Ng(D*) U A*, there is (unique non-leaf vertex) t € V(T) \ {t*}, such that
x(t) = {v} and ¢ is an ancestor of t* in T

In the above, we say that (T, x, L) is a solution to the a-EXT H-ED instance (G, k, A*).
The objective of the remainder of this section is to prove the following lemma.

Lemma 4.5. Equipped with the algorithm Muod, we can design an algorithm for a-EXT H-ED,
that given an instance (G, k, A*), where G is a graph on n vertices, correctly decides whether or
not it is a yes-instance of the problem in time bounded by (fmod(k)+ (a(k) + k)o(a(ka)) O

We prove the above lemma by exhibiting such an algorithm for a-EXT H-ED. Let (G, k, A*)
be an instance of a-EXT H-ED. As |V (G)| > 3(a(k) + k), from Observation 2.5, G — A* has a
unique connected component of size at least «(k), we denote that connected component by C*.
Note that from the observation we also have |V(G) \ V(C*)| < a(k) + k.

We design a branching algorithm for the problem, and we will use k — |A*| as the measure
to analyse the running time of our algorithm. We start with some simple cases, when we can
directly resolve the given instance. (The time required for the execution of our base cases and
branching rules will be provided in the runtime analysis of the algorithm.)

Notice that ELIMINATION DISTANCE TO H is a special case of a-EXT-H-ELIMINATION
DISTANCE, namely, when A* = (). Thus to prove Lemma 4.2, it is sufficient to prove the more
general Lemma 4.5. Next, we give description of our branching algorithm for the a-EXT-H-
ELIMINATION DISTANCE problem.

Base Case 1: If k — |A| = 0 and C* ¢ H, then return that the instance has no solution.

Notice that if the instance admits a solution, say, (7, x, L), where D* is the unique large
connected component in G[L], then V(D*) C V(C*) (see Observation 2.5). All the vertices in
Ng(D*) U A* must be mapped to non-leaf vertices in a single root-to-leaf path. In Base Case
1, as C* ¢ H, some neighbor of D* in G outside A* must also be mapped to (a non-leaf in) the
same root-to-leaf path. Thus the correctness of Base Case 1 follows.

Intuitively speaking, our next base case deals with the case when an arbitrary deletion set
for C* of size at most k can be added to A* to make the resulting C* belong to H. We will later
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prove that if our branching rules (to be described later) and Base Case 1 is not applicable, then
indeed we can obtain a solution to our instance using this base case. Before formally describing
our next base case, we state a simple observation and introduce some notations.

The following observation uses the well-known self-reducibility property of NP-complete
problem, using which we can find a solution with the help of a decision oracle.

Observation 4.6. Given an instance (G*,¢) of VERTEX DELETION TO H, using the FPT
algorithm Muod 0of VERTEX DELETION TO H, in time frod(¥) nPD) we can obtain a minimum
sized set S C V(G*) of size at most £ such that G* — S € H or return that no such set exists.

We define a boolean variable bool as follows. If (C*, k — |A]) is a no-instance of VERTEX
DELETION TO H, then we set bool = 0. Otherwise, let S* be a minimum sized set computed
using Observation 4.6. If for any subset Z C V/(G)\(V (C*)UA*), there is a solution (7', x, V(G)\
(A*US*U Z)), for the instance (G, k, A* U S*), then set bool = 1, and otherwise, set bool = 0.
By Cayley’s Theorem [16], the number of distinct labelled forest on ¢ vertices is bounded by
¢©@). Using the above together with Observation 4.6 and the fact that [V(G)\ (V(C*)UA*)| <
a(k) + k (see Observation 2.5), allows us to construct bool in time bounded by (fmod(k) +
(a(k) + k:)o(a(ka)) -n@M) We are now ready to state our next base case.

Base Case 2: If bool = 1, then return that (G, k, A*) is a yes-instance of the problem.

The correctness of the above base case follows from the fact that whenever bool is set to 1,
then we do have a solution for the instance (G, k, A*).

Roughly speaking, we will be able to say that, if we have a yes-instance, then for any solution
(T, x, L) for the instance, when our base cases are not applicable, there is a small connected
subset X* C V(C*), with bounded neighborhood containing an obstruction, that must be
separated from the large connected component in G[L] (see Lemma 3.1). Moreover, as X* is
contained in the large connected component C*, we will be able to guarantee that at least one
vertex in the closed neighborhood of X™* must be mapped to some node in the root-to-leaf path
of the node to which vertices in D* are mapped. Before discussing further, we introduce some
notations.

For a graph G and integers p,q € N, a set B C V(@) is a (p, g)-connected set in @, if @[B]
is connected, |B| < p and |[Ng(B)| < q. We say that a (p, g)-connected set B in G is mazimal if
there does not exist another (p, ¢)-connected set B* in @, such that B C B*. Below we state a
result regarding computation of maximal (p, ¢)-connected sets in a graph, which directly follows
from Lemma 3.1 of Fomin and Villanger [35].

Proposition 4.7. For a graph G on n vertices and integers p,q € [n], the number of (p,q)-
connected sets in G is bounded by 2P*9 - n. Moreover, the set of all mazimal (p,q)-connected
sets in G can be computed in time bounded by 2PT1 . n©1)

We enumerate the set of all maximal («(k), k)-connected sets in C*, and let Ceonn be the
set containing all maximal («a(k) + k, k)-connected sets Q C V(C*), such that G[N¢+[Q]] does
not belong to H. Note that using M4 and Proposition 4.7, we can construct Ceonn in time
bounded by fimod(0) - 20(a(k)+k) . nO0(1)  We are now ready to state our branching rule.

Branching Rule 1: If there is some C' € Ccon, then for each v € Ng[C] (= Ng[C]\ A*), solve
(recursively) the instance (G, k, A*U{v}). Moreover, return yes, if and only if one such instance
is a yes-instance of the problem.

The next lemma lies at the crux of our algorithm, which will help us establish that one of
the base cases or branching rule must be applicable. For the following lemma, we suppose that
(G, A, k) has a solution and Base Case 1 and 2 are not applicable, and we consider a solution
(T, x, L) for the instance, which maximizes |V(G) \ L|. As G is (a(k), k)-unbreakable, from
Lemma 3.1 we can obtain that there is exactly one connected component, say, D*, in G[L],
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that has at least (k) vertices, and we let t* € V(T') such that x(t*) C V(D*). We define
let the set S C V(G) \ L contain all the vertices mapped to the root-to-t* path in T, that is
S={veV(G)|x(t) ={v},t#t*1is an ancestor of t* in T'}.

Lemma 4.8. We have Ceonn # 0, and for each C € Ceonn, we have S N Nex[C] # 0.

Proof. As C* is the (unique) connected component in G — A* that has at least a(k) vertices,
thus, we can obtain that V(D*) C V(C*). Let Y be the set of vertices in C* that do not
belong to the set SUV(D*), i.e., Y = V(C*)\ (V(D*)US). Let Vops be the set of connected
components in G[Y] that do not belong to H. We let Sops € S N V(C*) be the set of vertices
in SN V(C*) that are neighbors of some connected components in Yops, i.e., Sops = {v €
SNV(C*) | v e Ng(C) for some C' € Vops }. Furthermore, let Srem = (SNV(C*)) \ Sobs. Notice
that V(D*), Srem, Sobs, Y 18 & partition of V(C*) (possibly with empty-sets).

Firstly consider the case when Seps = 0, and we will argue that Base Case 2 must be
applicable, which will lead us to a contradiction. Note that for the above case, Syem = SNV (C*),
where |S| < k, and each connected component in C* — Syem = C* — S must belong to H. As
(T, x, L) is a solution for the instance, we must have A* C S. From the above two statements we
can obtain that (C*, k—|A*|) is a yes-instance of VERTEX DELETION TO H. Let S* C V(C*) be
the (same) minimum sized set computed using Observation 4.6, while computation of bool, such
that each connected component in C* — S* is in H. Note that |S*| < |Srem| = [SNV(C*)| (recall
that Sops = 0). Let Z =V(G)\ (LUA*) CV(G)\ (V(C*)U A*). We will argue that (G, k, A*)
admits a solution (T, x',V(G) \ (A* U S* U Z)), for an appropriately constructed x’, in which
case bool = 1, contradicting that Base Case 2 is not applicable. Set x(t*) = x(t*)U (V(C*)\ S*)
and for each t € V(T') \ {t*}, such that t N L # 0, we set x'(¢t) = x(¢t) \ V(C*). Let Srem =
{ur,ug, - ,up} and S* = {w,ws, - ,wye}, where note that ¢ < p. For each i € [¢], we set
X'(t;) = {w;}, where t; is the vertex in T, such that x(¢;) = {u;}. Notice that, as C* — S is
in H and H is closed under disjoint union, we can obtain that for each t € V(T), G[x'(t)] is
in 1. By the construction of x/, note that (T, x',V(G) \ (A* U S* U Z)) satisfies item 1 to 3
of Definition 2.1. Thus we can conclude that (T, x',V(G) \ (A* U S* U Z)) is a solution for
(G, k, A*).

We will next consider the case when Syps # 0. As [V(G) \ V(D*)| < a(k) + k (see Observa-
tion 3.1), we can obtain that |Y'|, and thus, the number of vertices in each connected component
in Vops is less than «(k) 4+ k. Notice that for each C' € Vops, |[Na(C)| < |S| < k, and thus, C' is
an (a(k)+ k, k)-connected set in G. Thus, for each C' € YVops, there must exists some C’ € Ceonn,
such that V(C') C V(C”). The above together with the assumption Sops # 0 (and thus, Vops 7# 0)
we can obtain that Ceonn # 0. By construction, for each C' € Ceonn, V(C) C V(C*) and Ng+[C|
is not in H. Moreover, as C* is connected and C' is a maximal (a(k) + k, k)-connected set in
C*, we can obtain that No«[C] NS # (). This concludes the proof. O

We are now ready to prove Lemma 4.5.

Proof of Lemma 4.5. From Proposition 2.6, it is enough for us to design an algorithm for
(a(k), k)-unbreakable graphs, therefore we design algorithm for case when the input graph
is (a(k), k)-unbreakable. Consider an instance (G, A* k) of a-EXT H-ED, where G is an
(a(k), k)-unbreakable graph. If the instance can be resolved using Base Case 1 or 2, then
the algorithm resolve it. Otherwise, from Lemma 4.8 we know that the branching rule must
be applicable. By our previous discussion, the we can test/apply our base cases in time
bounded by (fmod(k) + (a(k) + k)o(a(ka)) -nPM). Recall that for each set in Ceonn, We have
|Nc+[C]| < a(k)42k, and Ceonn can be constructed in time bounded by fimod(0)-20(@(k)+k).,O0),
Also, the depth of the recursion tree can be bounded by k+1 (see Base Case 1). Thus, the number

(’)(a(k)+2k))

of nodes in the recursion tree can be bounded by (a/(k) + 2k) . Thus we can bound the
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running time of our algorithm for a-EXT H-ED by (fmod (k) + fmod (0))- (cx(k) 4 k) Ok +k) ., 001)
This concludes the proof. ]

We will end this section with a remark regarding how we can obtain an FPT algorithm
for TREEWIDTH DECOMPOSITION TO H parameterized by twy (G), using Mpo4. Consider an
instance (G, k) of TREEWIDTH DECOMPOSITION TO H, and an H-tree decomposition, (7', x, L)
for it, if it exists. For the above case, we will define our extension version with respect to
A* C V(QG) of size at most k, where we would want the unique large connected component in
G[L] to have all its neighbors in A*. Notice that all our argument will work exactly with the
above minor modification. Thus, using exactly the same ideas as we presented for the case of
ELIMINATION DISTANCE TO H, we will be able to obtain an FPT algorithm for TREEWIDTH
DECOMPOSITION TO H parameterized by twy (G), as required by the lemma.

4.2 Prove of Lemma 4.3

Fix any family H of graphs that is CMSO definable and is closed under disjoint union and
taking induced subgraphs, such that VERTEX DELETION TO H admits an FPT algorithm, say,
Mmod, When parameterized by mody (@), running in time fmoq(k)-n°®). From Lemma 4.2 (see
Section 4.1), we can obtain that TREEWIDTH DECOMPOSITION TO H admits an FPT algorithm,
say, Ty, when parameterized by twy,(G), running in time fu, (k) -n°1). We will design an FPT
algorithm, My, for VERTEX DELETION TO H, parameterized by twy (G), using Myod and Tiy
as subroutines.

Let ¢ = twy(G). By instantiating Lemma 3.6 with the algorithm Ty, we can compute an
‘H-tree decomposition, (T, x, L) of H-treewidth exactly ¢, for G in time bounded by ( few(€) +
EO(£2))nO(1) + h(F). Welet S = V(G)\ L. We will assume that the constants §;, for each

€ [£ + 1] is hardcoded in the algorithm, and due to this and Lemma 2.20 our algorithm
will be non-uniform. If we are able to bound the size of each connected component in G[L] by
Zz’e[é+1] &, where &; is the number from Lemma 2.20, then notice that the treewidth of G can be
bounded by £+ Zz‘e[ﬁﬂ} &. As VERTEX DELETION TO H is CMSO expressible, for the case when
G has bounded treewidth, we can check whether (G, k) is a yes-instance of VERTEX DELETION
TO H using Courcelle’s Theorem [18] in time bounded by f(£)-n®M), where f is some computable
function. Thus (roughly speaking) our next objective will be to bound the size of x~L(t), for
each ¢ € V(T') by replacements using Lemma 2.20. Let A be the set of nodes in 7" whose bag
contain at least Zie[£+l] & vertices from L, ie., A = {t € V(T) | [x(t) N L[ = > ;ci411 &}
Furthermore, let G be the set of graphs induced by vertices in L, in each of the bags of nodes
in 4, ie., G= {G[x(t) N L] \teA} We let G = {Gl,G2,~ .G }

We create a sequence of Go,G1,--- ,Gy graphs and a sequence of constant cg,c1,--- ,¢q as
follows. Intuitively speaking, we will obtain the above sequence of graph by replacing C:’Z, for
i € [q], by some graph obtained using Lemma 2.20. Set Gy = G and ¢y = 0. We iteratively
compute Gj, for each i € [g] (in increasing order) as follows. For the graph GZ, let ¢; be the
unique leaf in 7', such that V(G;) C x(t), and let B; = x(£) \ V(G;) and b; = |B;|. Note that
|B;| < L+1, as (T X, L) is an H-tree decomposition of G. Fix an arbitrary injective function
Ag, B — {1 2,--+,b;}, and then G, is the boundaried graph with boundary B;.!3 Note that

V(G) C V(Gi_1). Also, let G) be the boundaried graph G;_; — V(G;), with boundary B;.
Using Lemma 2.20 and the algorithm Mpoq, we find the graph G} and the translation constant
c;, such that G = G} and [V(G})| < & in time bounded by O(fmod(¥) - nOW) 14

13We have slightly abused the notation, and used G to denote both a graph and a boundaried graph.
Note that for any graph G, «(G) < |V(G)| (see Definition 2.19).
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We let G; be the graph é;‘@G;, which can be computed in time bounded by O(fmod(£)-n°™M).
Let ¢* = Eie[q] ¢;. With the constructions described above, we are now in a position to prove
Lemma 4.3.

Proof of Lemma 4.3. As ‘H is CMSO definable to prove the lemma, it is enough to establish the
following statements (together with Courcelle’s Theorem [18]).

1. The instance (Gy, k + ¢*) can be constructed in time bounded by O(f(¢) -n®WM), for some
function f,

2. (Gg,k+ ¢*) and (G, k) are equivalent instances of VERTEX DELETION TO #, and

3. The treewidth of G, is at most £+ max;eq ¢; + Zie[e] xi and the H-treewidth of Gy is at
most £ + max;epg ¢;.'°

As stated perviously, we will assume that the constants &;, for ¢ € [¢ + 1] are hardcoded in the
algorithm. Thus, we can construct the set G in polynomial time. Also, note that for any i € [q],
WGE® G < u(G) < |V(G)| (see Definition 2.19). Thus, for some function f, we can construct
the instance (Gy, k + ¢*) in time bounded by f(¢) - n®1),

We will inductively argue that for each i € [q]o, (Gi, k+ sz[i]o ¢;) and (G, k) are equivalent
instances of VERTEX DELETION TO H. As Gy = G and k + ¢y = k, the claim trivially follows
for the case when i = 0. Next we assume that for some ¢’ € [¢ — 1]o, for each i' € [¢]o,
(G, k+ sz[i’]o ¢;) and (G, k) are equivalent instances of the problem. We will next prove the
statement for i = ¢'+1. It is enough to argue that (G;_1, k+2eti—1], ¢i) and (Gi, k+3 e, )
are equivalent instances. Recall that, by construction, G[V(G;)] = Gi_1[V(G;)] = G; and G, =
Gi_1— V(C?Z) are boundaried graphs with boundary Ei, and G; = C:’Z @ G. From Lemma 2.20,
é;“ =1 G;. Thus by definition, we have that (Gi_1, k + D jeli—1) ) and (G k+ 3 5cp, ¢;) are
equivalent instances of VERTEX DELETION TO H.

To prove the third statement, note that it is enough to construct an H-tree decomposition,
(Ty, xq» Lq), of Gg, where for each ¢ € V(T,), we have |x;'(t)] < £+ max;eg¢; + D ic Xi

and |X;1(t) \ Lg| <4+ maxeg e Let X = UiV (Ci), and Ly = (L \ X)U (V(Gy) \ V(G))
and T, = T. For each t € V(T) \ A, we set Xq(t) = x(t), and for each ¢ € [g], we set
Xq(t:) = (x(t:) \ V(Gy)) U V(éf) For each i € [g], note that ]V(éf)| <&, < Djerg §i- Thus
we can obtain that (7, x4, Lg) is an H-tree decomposition of G, that satisfies all the required
properties. This concludes the proof. ]

4.3 Proof of Lemma 4.4

Fix any family H of graphs that is CMSO definable and is closed under disjoint union and
taking induced subgraphs, such that ELIMINATION DISTANCE TO H (resp. TREEWIDTH DE-
COMPOSITION TO ) admits an FPT algorithm, say, Xmoq running in time f(¢) - n®®)
n is the number of vertices in the given graph G and ¢ = mody(G).

Let (G, k) be an instance of the problem VERTEX DELETION TO #H. From Proposition 2.6 it
is enough for us to design an algorithm for (a(k), k)-unbreakable graphs, and thus, we assume
that G is (a(k), k)-unbreakable. We begin with the following simple sanity checks.

Base Case 1. If G € H and k > 0, then return that (G, k) is a yes-instance of the problem.
Moreover, if k < 0, then return that the instance is a no-instance.

, where

15We remark that although k -+ c* can possibly be much larger than k, both the treewidth and the H-treewidth
of G4 are at most some additive constants (depending on H) away from k.
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Base Case 2. If |V(G)| < 2a(k) + k, then for each S C V(G), check if G — S € H, by calling
Xmod for the instance (G — S, 0). If for any such S we obtain that G — S € H, return that (G, k)
is a yes-instance, and otherwise return that it is a no instance.

Base Case 3. If G does not admit an H-elimination decomposition (resp. H-tree decomposi-
tion) of depth (resp. width) at most k, then return that (G, k) is a no-instance of the problem.

The correctness of the Base Case 1 and 2 is immediate from their descriptions. Note that
twy (G) < edy(G) < mody(G). Thus, if (G, k) is a yes-instance of VERTEX DELETION TO
H, then it must admit an H-elimination decomposition (resp. H-tree decomposition) of depth
(resp. width) at most k. The above implies the correctness of Base Case 3. Note that using
Xmod, We can test/apply all the base cases in time bounded by max{20® )tk f(k)} . nO0),

Hereafter we assume that the base cases are not applicable. We compute an H-elimination
decomposition (resp. H-tree decomposition), say, (T, x, L), by instantiating Lemma 3.5 (resp.
Lemma 3.6) with the algorithm X4, of depth (resp. width) at most k. Note that the above
decomposition can be computed as Base Case 3 is not applicable.

Let C* be a connected component in G[L] with maximum number of vertices, and let
S* = Ng(C*) and Z* = V(G)\Ng[C*]. Note that as (T, x, L) is an H-elimination decomposition
(resp. H-tree decomposition) of depth (resp. width) at most k, we can obtain that |S*| < k.
As G is (a(k), k)-unbreakable, the above together with Observation 2.5 implies that |Z*US*| <
a(k) + k. We have the following observation which immediately follows from the fact that
(T, x, L) is an H-elimination decomposition (resp. H-tree decomposition) for G of depth (resp.
width) at most k.

Observation 4.9. For any S C V(G), where |S| < k, either Z* NS #0, or G— S* € H.

The above observation leads us to the following base case and our branching rule.

Base Case 4. G — S* € H, then return that (G, k) is a yes-instance.
As |S*| < k, the correctness of the above base case immediately follows. Moreover, we can
apply Base Case 3 in time bounded by f(k) - nPW using Xmod-

Branching Rule. For each z € Z*, (recursively) solve the instance (G — {z},k — 1). Return
that (G, k) is a yes-instance if and only if for some z € Z, (G — {z},k — 1) is a yes-instance.

The correctness of the branching rule follows from Observation 4.9 and non-applicability of
Base Case 4. Moreover, we can create instances in the branching rule in polynomial time, given
the decomposition (T, x, L).

Note that the depth of the recursion tree is bounded by k + 1. Also, each fo the steps can
be applied in time bounded by max{2*®)+k f(k)} . n©1) . Thus we can bound the running
time of our algorithm by k°®) . max{200)+k f(k)}.n®M). The correctness of the algorithm is
immediate from the description and Observation 4.9. The above implies proof of Lemma 4.4.

5 Applications of Theorem 1.1 — Beyond Graphs

In this section we see applications of our main theorem (Theorem 1.1) for problems that are
not precisely captured by the families of graphs mentioned in the premise of Theorem 1.1. This
allows us to obtain the first analogous results for problems such as MuLTIWAY CUT, SUBSET
FEEDBACK VERTEX SET (SUBSET FVS, for short) and SUBSET ODD CYCLE TRANSVERSAL
(SuBseTr OCT, for short). That is, we obtain FPT algorithms for these problems that is
parameterized by a parameter whose value is upper bounded by the standard parameter (i.e.,
solution size) and which can be arbitrarily smaller. For instance, consider the MULTIWAY
CuTt problem, where one is given a graph G and a set of vertices S (called terminals) and an
integer ¢ and the goal is to decide whether there is a set of at most ¢ vertices whose deletion
separates every pair of these terminals. The standard parameterization for this problem is the
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solution size. Jansen et al. [48] propose to consider undirected graphs with a distinguished set of
terminal vertices and study the parameterized complexity of MULTIWAY CUT parameterized by
the elimination distance to a graph where each component has at most one terminal. Notice that
this new parameter is always upper bounded by the size of a minimum solution. Thus, an FPT
algorithm for MULTIWAY CUT with this new parameter would naturally extend the boundaries
of tractability for the problem and we obtain such an algorithm by using Theorem 1.1 in an
appropriate way. We then proceed to obtain similar FPT algorithms for the other cut problems
mentioned in this paragraph.

That is, we obtain an FPT algorithm for SUBSET FVS parameterized by the elimination
distance to a graph where no terminal is part of a cycle, and an FPT algorithm for SUBSET
OCT parameterized by the elimination distance to a graph where no terminal is part of an odd
cycle.

To this end, we begin by formally defining structures in the context of this paper and an
extension of H-elimination decomposition and H-tree decomposition to families of structures.

Definition 5.1. [Structure] A structure « is a tuple whose first element is a graph, say, G,
and each of the remaining elements is a subset of V(G), a subset of E(G), a vertex in V(G) or
an edge in F(G). The number of elements in the tuple is the arity of the structure.

We will be concerned with structures of arity 2 where we have the second element as a
vertex subset, and we denote the family of such structures by S. For a family &’ C S, we will
next define the notion of Sg-elimination decompositions and Sgi-tree decompositions that is
tailored to our purpose.

Definition 5.2. For a family of structures, &’ C S, an &'-elimination decomposition of a
structure (G, S), where S C V(G), is a triplet (7', x, L), where L C V(G), T is a rooted forest,
and x: V(T) — 2Y(@ such that:

1. For each internal node ¢ of T" we have |x(t)| <1 and x(¢) C V(G) \ L.

2. The sets (x(t))tcv (1) form a partition of V/(G).

3. For each edge {u,v} € E(G), if u € x(t1) and v € x(t2), then ¢;,t2 are in ancestor-
descendant relation in 7.

4. For each leaf ¢ of T, we have x(t) C L and the structure (G[x(¢)], S N x(¢)) belongs to S'.

The depth of (T, x, L) is same as the depth of T. The &’-elimination distance of the structure
(G, S), denoted eds/ (G, S), is the minimum depth of an §’-elimination decomposition of (G, S).

Definition 5.3. For a family of structures, &’ C S, an &'-elimination decomposition of a
structure (G, S), where S C V(G), is a triplet (T, x, L), where L C V(G), T is a rooted tree,
and x: V(T) — 2V(9) such that:

1. For each v € V(G) the nodes {t | v € x(¢)} form a non-empty connected subtree of 7'

2. For each edge {u,v} € E(G) there is a node t € V(G) with {u,v} C x(¢).

3. For each vertex v € L, there is a unique ¢t € V(T') for which v € x(t). Moreover, ¢ must a
leaf of T'.

4. For each node t € V(T), the structure (G[x(t) N L], x(t) N L N S) belongs to S’.

The width of an §'-tree decomposition is max(0, max;cy () [x(t) \ L| — 1). The S'-treewidth of
a structure (G, S), denoted twg (G, S), is the minimum width of an S’-tree decomposition of

(G,S).
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We remark that though the above two definitions are extendable to more general notions of
structures, we choose to give it for this restricted version as it is enough for our purpose and it
is more insightful for the reader. We now will be able to capture problems such as MULTIWAY
Cut, SUBSET FVS and SUBSET OCT. To this end, we begin by defining the following families
of structures.

Smway = {(G, S) | every connected component of G has at most one vertex from S C V(G)}

Swvs = {(G,S) | G has no cycle containing a vertex from S C V(G)}

Soct = {(G, 5) | G has no odd length cycle containing a vertex from S C V(G)}

We are now ready to state the main result of this section.
Theorem 5.1. Each of the following parameterized problems admits an FPT algorithm:
1. MuLTiwAY CUT parameterized by tws,,,. (G,S) (and thus, eds,,,, (G, S)).
2. SUBSET FVS parameterized by tws, (G, S) (and thus, eds, (G, S)), and
3. SUBSET OCT parameterized by twg, (G, S) (and thus, eds,,(G,S5)).

We will begin by explaining the intuitive idea behind the proof of the above theorem. For sim-
plicity, let us fix the problem MuLTIWAY CUT. Our first goal is to construct a CMSO definable
family of graph Hmway that is closed under disjoint union. Then, for a given instance (G, S, k)
of MuLTiwAay CUT, by appropriate “gadgeteering”, we will construct an (equivalent) instance
(G',k) of VERTEX DELETION TO Hmway, ensuring that twy, . (G’) is at most a polynomial
factor away from WS (G). Using a known FPT algorithm for MuLTIwAY CUT parame-
terized by the solution, we will be able to obtain an FPT algorithm for VERTEX DELETION
TO Hmway, parameterized by mody,,,,.,(G’). The above statement together with Theorem 1.1
will imply that VERTEX DELETION TO Hmway admits an FPT algorithm, when parameterized
by tW,.., (G'). The above, together with the equivalence of the instance (G,S,k) of MUL-
TIWAY CUT and the instance (G’, k) of VERTEX DELETION TO Hmway, and the property that
tW3.y (G') is at most a polynomial factor away from tws,, ., (G), will imply an FPT algorithm
for VERTEX DELETION TO Hmway parameterized by WSy (G).

Before moving to the formal description, we briefly discuss the construction of Hmway. For
an instance (G, S, k) of MuLTIwAY CUT, we will subdivide the edges of G and then attach a
K3 at each vertex in S to obtain the graph G’ in the VERTEX DELETION TO Hmway instance
(G', k). Roughly speaking, the family Hmway will trivially contain all “ill-formed” graphs, i.e.,
the graph that cannot be obtained via a reduction that we discussed above. Apart from the
above graphs, the family Hmway will contain all “solved graphs” (very roughly speaking). The
above will be categorized based on cut vertices whose removal results in connected components
that are K3s. We will now move towards the formal discussion of our proof of Theorem 5.1.

Some useful graphs and graph classes. For a graph G, the subdivision of G, denoted by
Gy is the graph obtained by sub-dividing the edges of G exactly once, i.e., we have V(Gsq) =
V(G)U{w. | e € E(G)} and E(Gsq) = {{u,we},{we,v} | e = {u,v} € E(G)}. A double
subdivision of a graph G is the graph (Ggsy, obtained by sub-dividing each of the edges in
G with two vertices, i.e., we have V(Gysq) = V(G) U {w,,w) | e € E(G)} and E(Gysd) =
{{u we, {weswl}, {wl, v} | e = {u,v} € E(G)}.

For a graph G and a set S C V(G), by G5, we denote the graph obtained from G by
attaching a K3 on vertices in S, i.e., V(G>?) = V(G) U {as,d’, | s € S} and E(G%?) =
E(G) U {{as, ai}, {as, s}, {ag, s} [ s € S}

Consider a graph G. A cut vertex in G is a vertex v € V(G), such that the number of
connected components in G — {v} is strictly more than the number of connected components
in G. We say that a cut vertex v € V(G) is relevant if G — {v} has a connected component C'
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with exactly two vertices and for each u € V(C), we have {u,v} € V(G). We now define the
following hereditary families of graphs.
Hmway = {G € G | each connected component of G has at most one relevant cut vertex}
Hes = {G € G | G has no cycle of length at least 4 containing a relevant cut vertex}
Hoct = {G € G | G has no odd cycle of length at least 5 containing a relevant cut vertex}

We have the following observation regarding the above defined families of graphs.

Observation 5.4. Fach H € {Hmway, Htvs, Hoct} is CMSO definable and closed under disjoint
UNLON.

Proof. From the description of the families, it clearly follows that they are closed under disjoint
union. We will next show that they are also CMSO definable. We note that checking whether a
vertex subset X C V(@) induces a connected subgraph of G, is CMSO definable, and we let this
predicate be conn(X) (see, for example, Section 7.4.1 in the book of Cygan et al. [23]). Next
we give a predicate which can check if a vertex is a relevant cut vertex in the given graph.

rel-cut(v) = Ju, v’ € V(G)\ {v}[u # v Aadj(u, v') = 1 Aadj(u,v) = 1 Aadj(v/,v) = 1A (Vw €
V(G)\ {u, v, v} Vo € {u,v'} adj(w,u) = 0)]

Now we define a predicate which can test if a connected component of a graph contains more
that contains two relevant cut vertices.

in-Hmway = ~Ju,v € V(G)[u # v A relcut(u) = 1 A relcut(v) = 1 A (3X C
V(G)(conn(X) =1 Au,v e X)]

Notice that using in-Hmway (and rel-cut(v)) we can obtain that Hmway is CMSO definable.

It is well known that checking if a graph contains a cycle of length at least 5 containing
a particular vertex is CMSO definable. We denote such a predicate by cycless(v). The above
together with the definition of rel-cut(v) implies that Hgs is CMSO definable. Since we are
allowed to have condition on cardinality of a set size modulo a number g, using cycles5(v) and
rel-cut(v) we can obtain that Hecr is CMSO definable. - d

Reduction. In the following lemma we show how we can obtain our reduction.
Lemma 5.5. Fach of the following holds:

1. An instance (G, S, k) of MULTIWAY CUT is a yes-instance if and only if (Gi’lA, k) is a yes-
instance of VERTEX DELETION TO Hmway. Moreover, thmway(Gf&A) <3-(+1)+ (@Ll)
where { = tws,,., (G, S5).

2. An instance (G, S, k) of SUBSET FVS is a yes-instance if and only if (Gi’lA,k) is a yes-
instance of VERTEX DELETION TO Hgs. Moreover, thfvs(Gi’lA) <3-(L+1)+ (Egl),
where { = twg, (G, S).

3. An instance (G, S, k) of SUBSET OCT is a yes-instance if and only if (Gdss’dA, k) is a yes-
instance of VERTEX DELETION TO Hoct. Moreover, tWHoct(GidA) <3-(+1)+2- (@Ll)
where { = twg, (G, 5).

)

7

Proof. We will prove the third statement as it is the most involved. The proof of other two
statements can be obtained by following similar arguments. Let G’ = GidA. Note that a cycle
C' in G has even (resp. odd) number of vertices, if and only if the cycle C’ with vertex set
V(C") = {u,we,wl,v | e = {u,v} € E(C)} and edge set E(C') = {{u,we}, {we,w.}, {wl,v} |
e ={u,v} € E(C)} in G', has even (resp. odd) number of vertices. Moreover, no (simple) cycle
in G’ of length at least 4 can contain a vertex from {as,a, | s € S}. Also, for any cycle C’
in G’ of odd (resp. even) length at least 4, we can obtain a cycle C' in G of odd (resp. even)
length at least 3, by contracting the edges incident to vertices in W = {we,w. | e € E(G)}.
Notice that any minimal set S C V(G’), such that G’ — S is in Hegq does not contain a vertex
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from S = {as,a, | s € S}, as there is no odd cycle in G’ of length at least 5 that contains
a vertex from S’. Also, each vertex in W has degree exactly 2 in G, and thus any cycle in
G’ containing them, must also contain their neighbors. From the above we can obtain that if
(G', k) is a yes-instance of VERTEX DELETION TO Hoct, then there is B C V(G) C V(G') of size
at most k, such that G’ — B € Hoct. From the above discussions we can obtain that (G, S, k) is
a yes-instance of SUBSET FVS if and only if (G', k) is a yes-instance of VERTEX DELETION TO
Hoct, and in particular, we can obtain that for B C V(G), G — B has no odd cycle containing a
vertex from S if and only if G’ — B has no odd length cycle with at least 5 vertices, containing
a vertex from S. This concludes the first part of the proof.

We will now argue that twy,, (G') < tws,, (G, S). To this end, consider an Sye-tree decom-
position, (T, x, L) of width ¢, for (G, S). Let T” be the tree obtained from T on 2|V (T')| vertices
as follows. Initialize 7" = T. For each ¢t € V(T'), we add a vertex tcpy to V(1”) and the edge
{t,tepy} to E(T"). We define the sets X’ and L’ as follows. Initialize X’ = X. For each edge
e = {u,v} € E(G), such that u,v € X, we add we,w., to X’. Furthermore, for each s € SN X,
we add as,al, to X’. This completes the construction of X’. We set L' = V(G') \ X'. We
next define a function \/ : V/(T") — 2V(&), where we initialize ' (#) = 0, for each ' € V(T").
Roughly speaking, for each non-leaf vertex ¢ in 7", x/(¢) will contain the vertices corresponding
to the subdivision of the edges that are contained in x(¢) \ L. Furthermore, x/(¢) will also
contain the K3, if any, that are attached to the vertices in x(¢) \ L. For t € V(T) C V(T"), set
X (1) = (x(O\L)U{we, we | e = {u,v} € E(G) and u,v € x(¢)\ L}U{as, a5 | s € (SN x(t)) \ L}.
Note that for each t € V(T), we have y'(t) € X’ and |xX'(t)] < 3 [x(t) N L| + 2 - (X)E) <
30+1)+2- (%1). Next (roughly speaking) for leaf-nodes tcpy, we will assign the remaining
vertices in accordance with x(t) as follows. For each t € V(T'), where x(t) N L # (), we let
Zt, = {we,w! | e = {u,v} € E(G),u € x(t)yNL and v € x(t)}U{as,al, | s € SNLNx(t)}. Fur-

C|
thgmore7 we set X (tepy) = X(t)UZL,, (note that by the construction of L', we have LUZL, C L.)
Recall that for any B C V(G), G — B has no odd cycle containing a vertex from S if and
only if G’ — B has no odd length cycle with at least 5 vertices, containing a vertex from S. The
above together with the construction of G’ and (17, x’, L’), and the assumption that (7T x, L) is
an Sect-tree decomposition of (G, S), implies that (77, %/, L) is an Hoct-tree decomposition of

G’ of width less than 3- (£ +1) 4 2- (é;l). This concludes the proof. O

We will now show that for each " € {Hmway, Hvs, Hoct }, VERTEX DELETION TO H admits
an FPT algorithm, using the known FPT algorithms for MurLTiwAy CUuT, SUBSET FVS and
SUBSET OCT parameterized by the solution size.

Lemma 5.6. For each H € {Hmway: Hvs; Hoct}, VERTEX DELETION TO H admits an FPT
algorithm, when parameterized by mody(G).

Proof. Consider H € {Hmway, Hfvs, Hoct }, and an instance (G, k) of VERTEX DELETION TO H,
where k > 0 (as otherwise, the problem is trivial). Let @ be the set of relevant cut vertices in
G. Note that ) can be computed in polynomial time. If Q = (), then clearly, G € H, and thus
we can return that (G, k) is a yes-instance of the problem. We will next consider the case when
Q@ # (. For each v € Q, let D, be the set of connected components D in G — {v} which is an
edge whose both endpoints are adjacent to v, i.e., D that has exactly two vertices and for each
u € V(D), we have {u,v} € E(G). Note that for any v € @, we have D, # (), and for each
D e D, V(D)NQ = 0. Let Z = Uyeq,pep,V (D), and G' = G — Z. Notice that all of the
following hold:

1. (G,k) is yes-instance of VERTEX DELETION TO Hmway if and only if (G, Q, k) is a yes-
instance of MULTIWAY CUT.

2. (G, k) is yes-instance of VERTEX DELETION TO Hgs if and only if (G',Q,k) is a yes-
instance of SUBSET FVS.
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3. (G,k) is yes-instance of VERTEX DELETION TO Hoct if and only if (G',Q, k) is a yes-
instance of SUBSET OCT.

Thus, to resolve the instance (G, k) of VERTEX DELETION TO H, when @ # (), we can now
invoke the known FPT algorithms (see [62, 24, 57, 52]) for each problem, as discussed above.
This concludes the proof. O

We are now ready to prove Theorem 5.1 by arguing the applicability of Theorem 1.1.

Proof of Theorem 5.1. For each " € {Hmway, Hvs; Hoct }, We have the following properties: i)
H is CMSO definable and closed under disjoint union (see Observation 5.4) and ii) VERTEX
DELETION TO H admits an FPT algorithm, when parameterized by mody(G). Thus, from
Theorem 1.1, for each H € {Hmway; Hfvs; Hoct }, there is an FPT algorithm for VERTEX DELE-
TION TO H, parameterized by twy(G). The above combined with Lemma 5.6 implies the proof
of the theorem. O

6 Cross Parameterizations

In this section we extend our results from previous section to problems where the parameteriza-
tions is with respect to other problems. For an illustration consider ODD CYCLE TRANSVERSAL
on chordal graphs. Let H denotes the family of chordal graphs. It is well known that OpD Cy-
CLE TRANSVERSAL is polynomial time solvable on chordal graphs. Further, given a graph
G and a modulator to chordal graphs of size mody(G), ObDD CYCLE TRANSVERSAL admits
an algorithm with running time 20(med#(G)pO1) 1t is natural to ask whether Obp CYCLE
TRANSVERSAL admits an algorithm with running time f(edy(G))n®® or f(twy(G))n®W),
given a H-elimination forest of G of depth edy(G) and H-decomposition of G of width twy (G),
respectively. The question is also relevant, in fact more challenging, when H-elimination forest
of G of depth edy(G) or H-decomposition of G of width twy(G) are not given. We provide
sufficient conditions which allows us to have an algorithm for vertex deletion problems (or edge
deletion problems) when given a H-elimination forest of G of depth edy(G) or H-decomposition
of G of width twy(G). Here, H is a family of graphs.

Theorem 6.1. Let H be a family of graphs and I1 be a monotone parameterized graph problem
and (G, k) be an instance of II. Further assume that we have following.

1. 1I has FII.
2. 11 is FPT parameterized by mody(G).

3. An H-tree decomposition (resp. H-elimination decomposition) of G of width twy(G)
(resp. depth edy(QG)) is given.

Then, there is an algorithm that, given an n-vertex graph G and an integer k, decides whether
(G, k) € 1L in time f(twy(G))-n°D (resp. f(edu(G))-n®W). That is, 11 is FPT parameterized
by twy (G) (resp. edy(G)).

Proof. The proof of this theorem is similar to the proof of Lemma 4.3, for the sake of com-
pleteness we give a complete proof here. Consider an instance (G, k) of II, and let (7', x, L) be
the given H-tree decomposition (resp. H-elimination decomposition) of width (resp. depth) at
most twy (G) (resp. edy(G)) for G, and let ¢ = twy(G) (resp. £ = edy(G)). Let Prod be an
FPT algorithm for II, running in time f(mody(G))-n®®. Using Lemma 2.20, we will next
bound the size of x(t), for each leaf ¢t in T

We will assume that the constants & from Lemma 2.20, for each i € [¢ + 1] are hardcoded
in the algorithm. We will bound the number of vertices in G[x(t) N L] by Eie[é—H] &, for
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each ¢ € V(T'), then the (standard) treewidth of G' can be bounded by £+ 3,1, 1) & (resp.
L+1+ Eie[éﬂ} &;). Using the property that II has FII, (roughly speaking) our next objective
will be to bound the size of x(t), for each t € V(T') by replacements using Lemma 2.20. Let
Z be the set of nodes in T" whose bag contains more than Zie[£+1] & vertices from L, i.e.,
A={te V()| |xt)nL| > > icje+1) &it- Furthermore, let G be the set of graphs induced
by vertices in L, in each of the bags of nodes in A, ie., G = {G[x(t) N L] | t € A}. We let
G ={G1,Ga,--+ Gy}

We create a sequence of Gy, G1,--- ,Gy graphs and a sequence of constant cg,c1,--- ,cq as
follows. Intuitively speaking, we will obtain the above sequence of graph by replacing CNJZ-, for
i € [q], by some graph obtained using Lemma 2.20. Set Gy = G and ¢y = 0. We iteratively
compute G, for each ¢ € [g] (in increasing order) as follows. For the graph G, let ; be the unique
leaf in T, such that V(G;) C x(&;), and let B; = x(#;) \ V(G;) and b; = |B;|. Note that |B;| < ¢
(resp. |B;| < €+1), as (T, x, L) is an H-elimination decomposition (resp. H-tree decomposition)
of G of depth (resp. width) ¢. Fix an arbitrary injective function Ag, B — {1,2,--- ,EZ»}, and
then G; is the boundaried graph with boundary B;.'6 Note that V(G~]) C V(Gi-1). Also,
let G! be the boundaried graph G;_; — V(G ), with boundary B;. Using Lemma 2.20 and the
algorithm P04, we find the graph éj and the translation constant ¢;, such that Gi =n G* and
\V(é;‘)\ < &, in time bounded by O(f(¢) - nO@MW) 17

We let G; be the graph é;‘ @ G, which can be computed in time bounded by O(f(¢) O,
Let ¢* = Zie[q] ¢;. With the constructions described above, we are now in a position to prove
Lemma 4.3. Note that to obtain the desired result, it is enough to prove the following statements.

1. The instance (Gy, k +c*) can be constructed in time bounded by O(g(¢) - n®W), for some
function g,

2. (Gg,k+¢*) and (G, k) are equivalent instances of II, and

3. The treewidth of G, is at most £ + maxc[g ¢ + Zz‘e[z] ¢ and the H-treewidth (resp.
H-elimination distance) of G is at most £ + max;e[g) c;.'®

As stated perviously, we will assume that the constants &;, for ¢ € [¢ 4 1] are hardcoded in the
algorithm. Thus, we can construct the set G in polynomial time. Also, note that for any i € [q],
L(éj ® Gl) < u(G) < |V(G)| (see Definition 2.19). Thus, for some function f, we can construct
the instance (G, k + ¢*) in time bounded by g(¢) - n©M).

We will inductively argue that for each i € [glo, (Gi, k+2_ ¢, ¢;j) and (G, k) are equivalent
instances of II. As Gy = G and k + ¢y = k, the claim trivially follows for the case when i = 0.
Next we assume that for some ¢’ € [g—1]o, for each 7' € [¢']o, (G, b+ 37 cpin, cj) and (G, k) are
equivalent instances of the problem. We will next prove the statement for i = i’ +1. It is enough
to argue that (Gi—1,k + > ;cp-1), ¢j) and (G, k + 3_ ¢y, ¢j) are equivalent instances. Recall
that, by construction, G[V(C:Y )] = Gi- 1[V(G))] = G; and G, = Gi1— V(éz) are boundaried
graphs with boundary Bz, and G; = G; @ G. From Lemma 2.20, G = G;. Thus by definition,
we have that (Gi—1,k + > ¢y, ¢;) and (GZ, k+>en, ¢) are equlvalent instances of II.

To prove the third statement, note that it is enough to construct an H-tree decomposition,
(Tq,Xq, q); of Gg, where for each t € V(15), we have |xq(t)| < £+ max;eg ¢i + D e Xi and
IxgH(t) \ Lg| < €+ max;epgci. (Using similar arguments we can also obtain the statement
regarding H-elimination decomposition.) Let X = Uie[q}V(@), and Ly = (L\ X)U (V(Gg) \

16\We have slightly abused the notation, and used G; to denote both a graph and a boundaried graph.

"Note that for any graph G, «(G) < |V(é)| (see Definition 2.19).

8\We remark that although k+ ¢* can possibly be much larger than k, both the treewidth and the H-treewidth
of G4 are at most some additive constants (depending on ) away from k.
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V(G)) and T, = T. For each t € V(T') \ A, we set Xq(t) = x(t), and for each i € [q], we set
Xq(ti) = (x(8:) \ V(G:)) UV(G;). For cach i € [g], note that [V(G})| < & < Y& Thus
we can obtain that (7, x4, Lg) is an H-tree decomposition of G, that satisfies all the required
properties. This concludes the proof. ]

7 Uniform FPT Algorithm

In this section we design a uniform FPT algorithm for ELIMINATION DISTANCE TO H parame-
terized by edy (G) assuming we have a specific type of algorithm for solving VERTEX DELETION
TO H parameterized by mody (G). Our algorithm is generic and in the next section we explain
the corollaries of this result for various families H. Throughout this section we assume that H
is a hereditary family of graphs and it is closed under disjoint union. Throughout the section,
k is the parameter in the input instance of ELIMINATION DISTANCE TO H. Unless specified all
the graphs mentioned in this section are 2k-boundaried graphs and we assume that £ > 2. Our
algorithm uses the recursive understanding technique [17, 42, 53].

Here, we identify a (g, k)-unbreakable induced subgraph from an input graph and we replace
it with a smaller representative graph, where ¢ is bounded by function of k. Eventually, when
the size of the graph become bounded by a function of k, we use a brute-force algorithm to
solve the problem.

Definition 7.1 (Canonical equivalence relation). The canonical equivalence relation =4 for H
over the set of boundaried graphs is defined as follows. Two graphs G1 and Gy are equivalent if
for any graph H, Gy H e H<& Go @ H e H.

We assume that we are given a refinement of the equivalence relation =4 which we call
a user defined equivalence relation. We use =, to denote this refinement of the equivalence
relation =3. We use Q(=,,) to denote the set of equivalence classes of =,,.

Definition 7.2 (Comparison of equivalence classes). Let Q1 and Q2 be two equivalence classes
in =y. Let G1 € Q1 and Go € Q2. We say that Q1 is at least as good as Qo if the following
holds. For any graph H, if Go ® H € H, then G, ® H € H.

Throughout the section we also assume that along with =,, we are given a user defined
function ug: Q(=,) x Q(=.) — {0,1} such that ug(Q,Q) = 1 for all Q € Q(=,) and it has
the following property. If ug(Q1,Q2) = 1, then @ is at least as good as Q2. We would like to
mention that the reverse may not be true. That is, even if Q] is at least as good as @}, the
user may define that ug(Q},Q5) = 0. We also assume that equivalence classes in =,, satisfies
the following property.

Definition 7.3 (Component deletion property). Let G be a graph and Q is an equivalence class
in =, such that G € Q. Let C be a connected component of G such that V(C) N d(G) = 0.
Then, G — C belongs to Q. Moreover, if F is a graph in H and 6(F) =0, then GW F € Q.

Moreover, we assume that we have an access to an algorithm, called user’s algorithm, denoted
by A, that, given a graph G, a non-negative integer k" and equivalence class Q € Q(=,,), outputs
a vertex subset S of size at most k' such that G — S belongs to an equivalence class which is at
least as good as @ (if it exists). If no such set exists, then the algorithm outputs No. We use
fu(K';|Q(=4)|, n) to denote the running time of A, where n = |V (G)|.

Next, we define the notion of state-tuple. Here two “graphs having same set of state-tuples”
can be treated as identical.

Definition 7.4 (State-tuple). A state-tuple is a tuple (D, T, x, L, P,eq), where L C D C [2k], P
is a partition of L, eq: P — Q(=4), T is a rooted forest of depth at most k and |V (T)| < (2k)?,
and x: V(T) — 2P U {#,Q} such that the following holds.
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1. For each internal node t of T we have x(t) € {#,Q, 0} U{{z}: x € (D\ L)}.
2. For each leaft of T, x(t) e PU{{z}: x € (D\ L)}.
3. The sets (x(t))ten form a partition of D, where N = {t € V(T): x(t) ¢ {#,0,0}}

Next we define a notation which we use throughout the section. Let G be a graph and T be
a rooted forest. Let y be a function from V (T') to a super set of 2V(%). Let Y be the nodes of T
that are mapped to subsets containing at least one vertex from 6(G) by the function x. Then,
we use I7(G, x) to denote the set of nodes of T' that belong to the unique paths in 7" from the
vertices in Y to the corresponding roots.

Definition 7.5. Let G and be a graph and s = (D, T, x, L, P, eq) be a state-tuple. We say that
G satisfies s if A(G) = D and there is an H-elimination decomposition (T, X, L) of G, of depth
at most k with the following properties.

(a) T is isomorphic to T|Z), where Z = I#(G,X). For any node t € Z, we use the same
notation to represent the node in T that maps to t by the isomorphism function. That is,
V(T)=Z.

(b) For any node t of T with X(t) N§(G) # 0, x(t) = Aa(X(t) N 6(GQ))
(¢) For any node t of T with X(t) # 0 and X(t) CV(G) \ 6(G), x(t) = .
(d) Let t1,...,tg be the leaf nodes of T that belong to Z. Then, P = (x(ti))iefq-

(e) For each node t of T with x(t) € P, G[X(t)] belongs to an equivalence class Q € Q(=y)
which is at least as good as eq(x(t)). That is, ug(Q,eq(x(t)) = 1.

Also, we say that G satisfies s through (f, X, E)

Definition 7.6. We say that a graph G exactly satisfies a state-tuple (D, T, x, L, P,eq) if G
satisfies (D, T, x, L, P,eq) such that a stricter condition than condition (e) in Definition 7.5
holds. That is, for each node t of T with x(t) € P, G[X(t)] belongs to the equivalence class

eq(x(t))-

Definition 7.7. Signature of a graph G, denoted by real-sig(G), is the set of all state-tuples s
such that G satisfies s.

Observation 7.8. Signature of a graph G is unique and its cardinality is bounded by a function
k and |Q(=y)].

For two graphs G and H, and an H-elimination decompositionA(T\, Xs E) of G & H, we
use Restricte/(\ig(TA7 X, L) to denote the H-elimination decomposition (T, v, F) of G obtained by
restricting (T, X, L) to G. Formally F' = LNV (G) and for any node t € V(T'), ¢¥(t) = X(1 )NV (G).

Definition 7.9. Let G and H be two graphs and s = (D,T,x,L,P,eq) be a state-tuple. We
say that (G, H) realizes s, if A(G) = D and there is an H-elimination decomposition (T, X, L)
of G* = G @ H, of depth at most k with the following conditions.

(i) G satisfies s through Restrictede(T,X,L). That is, conditions (a)-(e) in Definition 7.5
hold.

(ii) For each node t of T with X(t) # 0 and X(t) C V(H)\ §(G), x(t) = ©. (Recall that T' is
isomorphic to T[Z], where Z = I+(G,X)).
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Then, we say that (G, H) realizes s through (f, X E) We say that (G, H) exactly realizes s, if
instead of conditions (i), we have that G exactly satisfies s through Restrictede(T', X, L). In that
case, we say that (G, H) exactly realizes s through (T, %, L).

Definition 7.10. A marked signature is a subset of {s: s is a state-tuple} x {0,1}.

Observation 7.11. The number of marked signatures are bounded by a function of k and the
number of equivalence classes in =,,.

In a marked signature every state-tuple is marked as 0 or 1, where we interpret the marking
with 0 as marking “do not care”. Later we will define marked signature of a graph G where
for any tuple s that is marked with 0 (do not care), there is a tuple in the signature which is
“strictly better than” s. Towards that we define the following.

Definition 7.12. Let sy = (D1,T1,x1,L1,P1,eqy) and so = (Do, Ts, X2, L2, P2, eqy) be two
state tuples. We say that so is strictly better than sy if the following holds.

e The set Do\ Lo is a strict super set of Dy \ L.
e [For any two graphs G and H, if (G, H) exactly realizes s1, then (G, H) realizes sg.

Definition 7.13 (Validity). Let sig be a marked signature. We say that sig is valid if the
following holds. For any pair (s1 = (D1,T1,x1,L1,P1,eq97),0) in sig (i.e., a tuple that is
marked with 0), there is a pair (sg = (D2, T, X2, L2, P2,eqy),b) in sig, such that ss is strictly
better than si, where b € {0,1}.

Definition 7.14 (compatibility). Let G be a graph and sig be a marked signature. We say that
sig is compatible with G if sig is valid and the following holds.

e For any s € real-sig(GQ), {(s,0), (s,1)} N sig # 0.
e For any s ¢ real-sig(G), if (s,b) € sig, then b= 0.

We would like to mention that for a graph G, there could be many marked signatures that
are compatible with G.

Definition 7.15 (Similarity). Let sigi and sigs be two marked signatures. We say that sig
and sigo are similar if the following holds.

o {s:(s,1)€sigi} C{s:(s,0) € sigs or (s,1) € siga}, and
o {s:(s,1) € siga} C{s": (,0) € sig1 or (s',1) € sig1}.

Next we prove that if the “real signatures” of two graphs G; and Gy are same, then for
any two marked signatures sig; and sigo that are compatible with G and G3, respectively, the
marked signatures sig; and sigo are similar.

Lemma 7.16. Let Gy and Gy be two graphs such that real-sig(G1) = real-sig(G2). Let sig; and
stga be two marked signatures such that sigr is compatible with G and sigs is compatible with
Go. Then sigy and sigy are similar.

Proof. Suppose sitg; and sige are not similar. Then, at least one of the following statements is
true.

(7) There exists a state-tuple s such that (s,1) € sig; and (s,0),(s,1) ¢ siga.

(73) There exists a state-tuple s such that (s, 1) € sigs and (s,0), (s,1) ¢ sig;.
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Since the above statements are symmetric we assume that statement (i) is true and derive a
contradiction. Since (s,1) € sig;, we have that s € real-sig(G1) = real-sig(G2). Since s €
real-sig(G2) we have that either (s,1) € sigs or (s,0) € siga. This is a contradiction to the
assumption that (s,0), (s,1) ¢ sigs. O

Definition 7.17. We say that a graph R represents a graph G, if the following holds. For any
graph H, (G ® H, k) is yes-instance of ELIMINATION DISTANCE TO H if and only if (R® H, k)
is yes-instance of ELIMINATION DISTANCE TO H.

Observation 7.11 implies the following lemma.

Lemma 7.18. There is a function r such that for any graph G, there is a graph R of size
r(k,|Q(=u)|), that represents G.

Next we state two important lemmas and then using them prove our results. Later we prove
both the lemmas.

Lemma 7.19. Let G1 and Gy be two graphs such that A(G1) = A(G2). Let sigy and sigs be two
marked signatures such that sigy is compatible with G1 and sigs is compatible with Go. Moreover,
sig1 and sigy are similar. Then, for any graph H, (G1 ® H, k) is yes-instance of ELIMINATION
DISTANCE TO H if and only if (Go @ H, k) is yes-instance of ELIMINATION DISTANCE TO H.

We prove Lemma 7.19 in Section 7.1. Next we prove that given a graph (g, k)-unbreakable
graph GG, a marked signature that is compatible with G can be computed efficiently. Recall that
we are given an algorithm A, to find a deletion set of an input graph to a given equivalence
class in Q(=,,) and its running time is denoted by the function f,.

Lemma 7.20. There is a function g and an algorithm that given a (q, k)-unbreakable graph G
(recall that G is also a 2k-boundaried graph) as input, runs in time g(k, q,|Q(=u)]) - fu(k, |Q(=u
)|,n) - nPW) | and outputs a marked signature that is compatible with G, where n = |V (G)|.

We prove Lemma 7.20 in Section 7.2. Now, using Lemmas 7.19 and 7.20, we define a uniform
FPT algorithm for ELIMINATION DISTANCE TO H. We know that by Lemma 7.18, for any graph
G, there is a representative of G and its size bounded a function r of k and |Q(=,,)|. We remark
that this is an existential result and we do not the function r. So first we design an algorithm
for ELIMINATION DISTANCE TO H assuming we know the value r(k, |Q(=,)|). Later we explain
how to get rid of this assumption. In the rest of the section we use ¢ = 21 . r(k, |Q(=.))).

Lemma 7.21. There is a function ¢’ and an algorithm A, that given a (q, k)-unbreakable graph
G, runs in time g'(k,q,|Q(=.)|) - fulk,|Q(=4)|, n) - n°N) and outputs a graph R of size at most
r(k,|Q(=y)|) such that R represents G, where n = |V(G)|. Here f, is the running time of the
user’s algorithm A,.

Proof. Our algorithm uses Lemma 7.20. The pseudocode of our algorithm is given in Algo-
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rithm 7.1.

Result: A graph R that represents the input (g, k)-unbreakable graph G
1 Using Lemma 7.20 compute a marked signature sigg that is compatible with G;
2 for i =1 to r(k,|Q(=.)|) do
3 for every graph R on i vertices do
4 Using Lemma 7.20 compute a marked signature sigr that is compatible with R;
5 if siga and sigr are similar then
6 ‘ Output R;
7
8
9

end

end
end

Algorithm 7.1: Algorithm A,

Next we prove the correctness of the algorithm. By Lemma 7.18, we know that there
is a representative of G, of size at most r(k,|Q(=,)|). Thus, there is a graph R of size at
most 7(k,|Q(=y)|) such that real-sig(G) = real-sig(R). Hence, by Lemma 7.16, for any marked
signatures sigr and sigg that are compatible with R and G, respectively, we have that sigg
and sigr are similar. Moreover, by Lemma 7.19 if there is a graph R and a marked signature
stgr compatible with R such that sigg and sigr are similar, then R represents GG. Therefore,
the algorithm is correct.

Notice that the algorithm runs the algorithm of Lemma 7.20 at most r(k, |Q(=,)|)+1 times.
This implies that the total running time of the algorithm is upper bounded by ¢'(k, q, |Q(=.
) - fulk, |Q(=0)],n) - n°D) for some function ¢’. This completes the proof of the lemma. [

There is an algorithm to determine (approximately) whether a graph is unbreakable. We
use the statement from [60], although lemmas similar to it can be found in [17].

Proposition 7.22. [60] There is an algorithm Break-ALG, that given two positive integer
s,c € N and a graph G, runs in time 20(c108(s+e) . p31logn) and either returns an (5¢,0)-
witnessing separation or correctly concludes that G is (s, c¢)-unbreakable.

Next we prove the following theorem. The proof of the theorem has the same general
template employed by algorithms based on the recursive understanding technique. So, we give
a proof sketch of Theorem 7.1.

Theorem 7.1. There is a function f and an algorithm for ELIMINATION DISTANCE TO H
running in time f(k,q,|Q(=u)]) - fulk,|Q(=4)|,n) - n®WV). Here, we assume that we know the
value r(k, |Q(=4)|).

Proof sketch. We design a recursive algorithm, denoted by A, where the input is a 2k-boundaried
graph G’ and the output is a graph of size at most r(k,|Q(=,)|) that represents the input graph.
The following are the steps of the recursive algorithm A.

(1) Apply Proposition 7.22 on (G’, ¢, k) and it outputs either an (g}, k)-witnessing separation
(X,Y) or conclude that G’ is (g, k)-unbreakable.

(2) If G’ is (¢, k)-unbreakable, then compute a representative R of G’ using Lemma 7.21.

(3) Suppose we get an (5, k)-witnessing separation (X,Y) in Step (1). Let G be the bound-
aried graph G[X] with 6(G1) = (6(G)US)NV(G1) and G2 be the boundaried graph G[Y]
with 6(G2) = (6(G) U S) N V(G2). Since |§(G)| < 2k, either G; or Gy is a 2k-boundaried
graph. Without loss of generality let G is be a 2k-boundaried graph. Since (X,Y) is a
(5 » k)-witnessing separation, we have that |[V(G1)| > 5% > 2r(k, |Q(=u)])-
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(4) Recursively call A and compute a representative R of G of size at most r(k, |Q(=,)]).
(5) Recursively call A on R @5 G2 and output the result.

Let (G, k) be the given input instance of ELIMINATION DISTANCE TO H. We assume that G
is a 2k-boundaried graph with §(G) = (). Then run A on G and let R be the output. Then we
do a brute force computation on R and output accordingly. The correctness of our algorithm
follows from the correctness of Lemma 7.21, Proposition 7.22, and Definition 7.17.

Now we analyse the running time. Let T'(n, k, |Q(=,)|) be the running time of the algorithm
A. In the algorithm we make two recursive calls where the size of the input graphs are at most
[V(G1)| and |V (G2)| + r(k,|Q(=u)])- Here |V(G1)| + |V(G2)| < n+ 2k. This implies that the
running time has the following recurrence relation.

T(n,k, |Q(=u)l) = T(n1, b, |Q(=u)]) + Tnz + 7k, |Q(=0))), k, [Q(=0)]) + d(k, Q(=u), 1)

where n1 + ng < n+ 2k, and d(k, Q(=,),n) is the time taken for Steps (1) and (2). The base
case is T'(2q — 1, k, |Q(=u)|) < d(k, Q(=u),2q — 1). By solving the above recursive formula, we
get that the total running time is at most f1(k,q,|Q(=.)|) - fu(k,|Q(=u)],n) - n°D) for some
function fi.

Now to solve the problem, first we run A on the input graph and get a representative G*
of size at most r(k,|Q(=,)|) for the input graph. Then, we do a brute force computation on
G* and output accordingly. The running time of the algorithm follows from the running time
of A and the fact that the size of G* is at most r(k,|Q(=,)|). This completes the proof of the
theorem. O

Next, we explain how to get rid of the assumption that we know the value r(k, |Q(=,)|) in
Theorem 7.1. First, we notice that if we choose a value ' instead of r(k,|Q(=,)|) and if the
algorithm in Lemma 7.21 succeeds, then the output is a representative of the input graph. If
the algorithm terminates without producing an output, then our choice 7’ for r(k,|Q(=,)|) is
wrong. In that case we say that the algorithm fails. Now, we run the algorithm in Theorem 7.1
by substituting values 1,2,3,... instead of r(k,|Q(=,)|) in the order. If for a value r’ the
algorithm in Lemma 7.21 fails restart the whole algorithm with the next value ' + 1. Clearly
we will succeed on or before we reach the value r(k,|Q(=,)|). Thus, we have the following
theorem.

Theorem 7.2. There is a function fand an algorithm for ELIMINATION DISTANCE TO H
running in time f(k,q,|Q(=u)]) - fulk,|Q(=u)|,n) - n®WY. Here f, is the running time of the
user’s algorithm A,.

7.1 Proof of Lemma 7.19

To prove the lemma it is enough to prove that for any graph H such that (G @ H, k) is a yes-
instance of ELIMINATION DISTANCE TO H, (G2 @ H, k) is also a yes-instance of ELIMINATION
DISTANCE TO H. Towards that let H be an arbitrary graph such that (G; ® H, k) is a yes-
instance of ELIMINATION DISTANCE TO H. That is, edy(G1 @ H) < k. First, let us fix some
notations. Let G,I( = Gl @H, G§ = GQ@H, Bl = 5(G1), BQ = (5(G2), and D = A(Gl) = A(Gg)
Among all the H-elimination decompositions of G7, of depth at most k (recall that edy (G7) <
k), let (T1, %1, L1) be an H-elimination decomposition of G7 with maximum number of vertices
from Bj are deleted (i.e., the number of internal nodes in ﬁ that are mapped to subsets of By
by X is maximized).

Now we will derive a state-tuple s = (D, T, x, L, P, eq) in real-sig(G1) from (ﬁ, X1, El) such
that (G, H) exactly realizes s through (T, %1, L1). Recall that D = A(Gy) = A(Go).
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(i) The rooted forest T' is isomorphic to Ty [Z1], where Zy = I (G1,X1). For each node
t € Z1, we use the same notation to represent the node in T that is mapped to t by the
isomorphism function. That is, V(T') = Z;. Since |B;| < 2k and the depth of the rooted
forest T} is at most k, we have that |V (T)| < (2k)2.

(i7) Next we define y. For any node t in T', if X1(¢)N By # 0, then we set x(t) = Ag, (X1(¢)NB1).
For any node t in T, if ¥1(¢) C V(G1) \ Bi, then we set x(t) = #. For any node ¢ in T', if
X1(t) CV(GY) \ V(G1), then we set x(t) = ©.

(i4i) We define L = Ag, (B1 N Ly). From the construction of T and notice that for any leaf
node t of T, if t € V(T'), then x(t) C L. Let t1,...,t; be the leaves of T} that belong to
V(T). Then, (x(ti))ic|q forms a partition of L. We set P = (x(%i))ic[g-

(iv) Now, for each i € [¢], we set eq(x(ti)) to be the the equivalence class of =, that contains
Gix1 ().

This completes the construction of the state-tuple s = (D, T, x, L, P,eq). From the con-
struction of s, we have that s € real-sig(G1) and (G1, H) exactly realizes s through (71, X1, L1)
(see Definitions 7.6 and 7.9).

Claim 7.23. (s,1) belongs to sig;.

Proof. Since s € real-sig(G1) and sig; is compatible with G, we have that at least one among
(s,0) and (s,1) belongs to sig;. To prove that (s,1) € sig;, we prove that (s,0) does not
belong to sig;. Since sigy is a valid marked signature, if (s,0) € sig;, then there is a pair
(s1 = (D1,T1,x1,L1,P1,eq;),b) € sig; such that Dy \ L; is a strict super set of D\ L and s;
is at least as good as s. This implies that since (G, H) exactly realizes s, (G1, H) realizes s;
and more labels of the boundary vertices are there in D; \ L; than in D\ L. That is, there is
an H-elimination decomposition (7%, x*, L*) of G} such that the number of internal nodes in
T* that are mapped to subsets of By by x* is strictly more than the number of internal nodes
in T that are mapped to subsets of By by X. This contradicts our choice of the H-elimination
decomposition (ﬁ,i{l, El) of G7. O

Since (s,1) € sigy, and sig; and sigy are similar, we have that either (s,1) € sigs or
(s,0) € siga. Next we prove that indeed (s, 1) € siga.

Claim 7.24. (s,1) belongs to sig.

Proof. We know that either (s,1) € sige or (s,0) € sigs. Suppose (s,1) ¢ sigs. Then
(s,0) € siga. Since sigs is a valid marked signature and (s,0) € siga, there is a pair (sy =
(D2, T, x2, Lo, P2,eqs),b) € siga, for some b € {0, 1}, such that Do \ Lo is a strict super set of
D\ L and s3 is at least as good as s. This implies that since (G1, H) exactly realizes s, (G1, H)
realizes s and more labels of the boundary vertices are there in Dy \ Lo than in D\ L. As
like in the proof of Claim 7.23, this contradicts our choice of the H-elimination decomposition
(fl,i(\l,il) of G’{ O]

Because of Claim 7.24, s € real-sig(G2). From this we will prove that G% is a yes-instance of
ELIMINATION DISTANCE TO H. Since s € real-sig(G3), G2 satisfies s. This implies that there is
an H-elimination decomposition (77, x’, L’) of G5 with the following properties.

(a) T is isomorphic to T'[Zs], where Zy = I7/(G2,X’). For any node ¢t € Z5, we use the same
notation to represent the node in T' that maps to ¢ by the isomorphism function. That is,
V(T) = Z,.

(b) For any node t of T' with x/(t) N B2 # 0, x(¢t) = Aa(X'(t) N Ba)
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(c) For any node ¢ of T' with x/(t) # 0 and x'(t) C V(G2) \ Bz, x(t) = #.
(d) Let di,...,dy be the leaf nodes of T' that belong to Zy. Then, P = (x(d;))ice-

(e) For each node ¢ of T with x(t) € P, the equivalence class Q € Q(=,) that contains
Ga[x'(t)] is at least as good as eq(x(t)). That is, ug(Q,eq(x(t)) = 1.

Next we construct an H-elimination decomp081tlon (T Q,XQ,LQ) of G5 from s, (T\l, )A(l,il)
and (T',y', L"), and prove that that indeed (7%, X2, L2) is an H-elimination decomposition of
5, of depth at most k.

e First we will construct the rooted forest 7. Recall that Z; = Iz (G1,X1), Z2 = It (Ga,X'),
and V(T) = Zy = Z. Moreover, V(T') C V(Tl) and V(T) C V(T"). The vertex set of fg
is V(T') w (V(Th) \ V( (7). The edge set of T2 is the union of the edge sets of 7" and .
All the roots of T' and T1 are the roots of TQ From the construction of Tg, it is easy to
prove that Tg is a forest. For any leaf node t of T 5, the unique path in T2 from ¢ to the
root, is a leaf to root path either in 7" or in Tl. Therefore, the depth of the forest T2 is
at most k because the depths of TV and fl are at most k.

e Next we define Ys.

— For any internal node ¢ of Ty, if t € V(T") and x/(t) # 0, then we set Y2(t) = ' (£).
— For any internal node t of Ty, if t € V(T}) and Xl( ) C V(G ) \ V(Gy), then we set

X2(t) = X1(t). Notice that because of conditions (ii), (b), and (c), for such nodes t,
we have that x/(t) = 0.

— Now let ¢ be a leaf node of Ty. If t is a leaf node in T”, then let U' = y/(t). If t is a
leaf node in T4, then let Uy = {1(¢) \ V(G1). Then, we set Xa(t) = U’ U Uy.

— For all other nodes ¢ in Ty (which are not considered above), we set Xa(t) = 0.
e Next, we define Ly = (V(H) N L1) U (V(Gs) N L).

Next, we prove that (fg, X\Q,EQ) is indeed an H-elimination decomposition of G5 of depth
at most k. Since we have already proved that the depth of T2 is at most k, the depth of
the decomposition (TQ,XQ,LZ) is at most k. Now we prove that (TQ,XQ,LQ) satisfies all the
conditions of Definition 2.1.

Let t be an internal node in 7b and suppose that X2(t) # 0. Then, exactly one of the
following is true.

e ¢ is an internal node in 7" and Xa(t) = x/(¢).
e ¢ is an internal node in 7} and Xa(t) = X1(¢).

Thus, since (fl, X1, El) and (77, x', L") are H-elimination decompositions of G} and G, we have
that [X2(t)| <1 and x2(t) C V(G) \ Ly. Therefore, condition (1) of Definition 2.1 is satisfied.

From the construction of Y2, notice that for any v € V(G%), there is a node t € V(Ty)
such that v € X2(t). Moreover, since (x'(t))icv (1) is a partition of V/(G2) and (X1(t) N (V(GT) \
V(Gl)))teV(’ﬁ) forms a partition of V/(G7)\V(G1), we have that ()/gg(t))tev(@) forms a partition
of V(G%). Thus, condition (2) of Definition 2.1 is satisfied.

Now we prove that (Tb, X2, L2) satisfies condition (3) of Definition 2.1. Let uv € E(G*) be
an arbitrary edge. Let u € Ya(t) and u € Y2(t'). Suppose uv € E(Gg). Then, since (177, x/, L)
is an H-elimination decomposition of Go and T” is a subgraph of T b, we have that t and ¢’ are
in ancestor-descendant relation of 7: 5. Suppose uwv € E(H). Then, t and ¢’ are also belong to
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Ti. Since T} is a subgraph of T, and (fl, X1, E) is an H-elimination decomposition of G7, we
have that ¢t and ¢ are in ancestor-descendant relation of fg.

Next we prove that (fg, X2, Eg) satisfies condition (4) of Definition 2.1. That is, for each leaf
node t of 75, G*[SZQ( )] belongs to H. If x2(t) € V(G2), then G3[X2(t)] = Ga[x2(t)] is a base
component in (77, ', L') and hence it belongs to H. If X2( ) C V(H), then G5[x2(t)] = H[X2(t)]
is an induced subgraph of a base component in (Tl, X1, L) and hence it belongs to ‘H because
‘H is a hereditary family.

Now, we are in the case when X2(t) N (V(G2) \ Bz) # 0 and X2(t) N (V(G3) \ V(G2)) # 0.
Let H = H[x2(t) N V(H)] and G4 = Ga[x2(t) N V(G2)]. Then G & H' is the graph G5[x2(t)].
If By N X2(t) = 0, then by the construction of Ty, either V(G}) = 0 or V(H') = () which is a
contradiction to the assumption that X2 (¢) N (V(G2) \ Ba) # 0 and x2(t) N (V(G5) \ V(G2)) # 0.
So we assume that Bs N X2(t) # 0. This implies that ¢ is a leaf node in 7" as well as a leaf node
inTy. Let G| = G1[x1(t)NV(G1)]. Notice that G} & H' is a base component in (T\l, X1, El), and
hence G & H’ belongs to H. Since (G1, H) exactly realizes s through (1, X1, L1), we have that
G| belongs to the equivalence class eq;(X1(t)). Since G satisfies s, we have that G belongs to
an equivalence class which is at least as good as eq; (x1(¢)). This implies that G, @& H' belongs
to H because G} belongs to the equivalence class eq;(X1(t)) and G| & H' belongs to H.

This completes the proof of the lemma.

7.2 Proof of Lemma 7.20

The proof of Lemma 7.20 is identical to the proof of Lemma 4.5, where we use the algorithm
A, instead of Mno4. That is, we have a branching algorithm where the main computation boils
down to executions of A, for each state tuple s. Here, the algorithm is notationally cumbersome
compared to the proof of Lemma 4.5. Throughout the section G is a (g, k)-unbreakable graph.

If [V(G)| < 3q + k, then we do a brute force computation. Otherwise, to prove the lemma
we do the following. For each state-tuple s = (D, T, x, L, P, eq), either we identify that s €
real-sig(G) or we identify a state-tuple § = (D, T, X, L, P,€q) € real-sig(G) such that § is strictly
better than s. or we may “fail”. If we identify that s € real-sig(G), then we include (s,1) in
the output signature. If we identify that § € real-sig(G), then we include (s,0) and (3, 1) in the
output signature. If we fail to identify s or §, then we prove that indeed s ¢ real-sig(G). This
is formalized in the following lemma.

Lemma 7.25. Suppose |V (G)| > 3q+k. There is a function g1 and an algorithm Sig-Test that
given a graph G and a state-tuple s, runs in time g1(q, k) - fu(k,|Q(=4)|,n) - n®W), and outputs
exactly one of the following: (i) (s,1), (ii) (s,0) and (5 = (D,T,X,L,P,€q),1), or (i) Fail.
The algorithm has the following properties.

(a) If the output is (s,1), then s € real-sig(G).
(b) If the output is (s,0) and (§,1), then § € real-sig(G), and § is strictly better than s.
(c) If s € real-sig(G), then the output is either (i) or (ii).

First assuming Lemma 7.25, we prove Lemma 7.20.

Proof of Lemma 7.20. Initially we set sig = (). For each state-tuple s, we run Sig-Test. If
the output is (s,1), then we add (s,1) to sig. If the output is (s,0) and (§,1), then we add
(s,0) and (§,1) to sig. Finally we output sig. The correctness of the algorithm follows from
the correctness of Sig-Test. Since the number of state-tuples is bounded by k and |Q(=,)|, by
Lemma 7.25, the running time of the algorithm follows. O
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7.2.1 Proof of Lemma 7.25

First we give an overview of our algorithm Sig-Test. Let s € real-sig(G). To identify that s is
indeed belongs to real- sig(G) we have to test the existence of an H- elimination decomposition
(T Xs ) of G, of depth at most k, such that G satisfies s through (7', %, L). Since G is (q, k)-
unbreakable and |V/(G)| > 3¢ + k, by Lemma 3.1 we know that there is exactly one connected
component C* in G[L L] that has at least ¢ vertices and [V(G)\ V(C)| < ¢+ k. This implies
that |V (T)| < ¢+ k. Thus, we can guess the rooted forest T and the leaf node * in T such that
V(C*) C x(t*). Let EQ* be the equivalence class mentioned in the state-tuple corresponding
to the leaf node t* (assuming C* contains some boundary vertices). Then X(¢*) belongs to an
equivalence class which is at least as good as FQ*. Using branching rules we almost identify
the values X(t) for all the nodes ¢ except the nodes in the unique path P* from t* to the root.
Finally we will have a connected component D* such that N(D*) € ey (p+) X(¢)- In this step
we run the user’s algorithm 4, to identify the vertices S of D* to be placed in X(t) for the
internal nodes of T' in the path from ¢* to the root such that x(¢) = # and D* — S belongs
to an equivalence class which is at least as good EQ. If S does not contain any vertex from
5(G), then we identify a witness (i.e., the H-climination decomposition (T',%, L)) for the fact
that s € real-sig(G). In that case the algorlthm Sig-Test outputs (s,1). If SNJ(G) # 0, then we
get a witness for another state-tuple § and we prove that 5 is at least as good as s. In that case
the algorithm Sig-Test outputs (s,0) and (8, 1). If A, outputs No, then Sig-Test outputs Fail.
Now we formally prove Lemma 7.25. We start by defining the notion of a partial solution.

Definition 7.26 (Partial solution). Given a graph G and a state-tuple s = (D, T, x, L, P,eq),
a partial solution of (G,s) is a tuple e = (D, T*, x*, L*) where T* is a rooted forest of depth at
most k and x*: V(T*) — 2V(©) and L* C V(Q), such that the following properties hold.

(a) A(G) =D and \g(L*N6(G)) = L.
(b) For each internal node t of T* we have |x*(t)| <1 and x*(t) CV(G)\ L
(c) The sets (x*(t))iev(r+) form a partition of a subset of V(G).

(d) T is isomorphic to T*|Z], where Z = Ip«(G,x*). For any node t € Z, we use the same

notation to represent the node in T that maps to t by the isomorphism function. That is,
V(T)=Z.

(e) For any node t of T with x*(t) N6(G) # 0, x(t) = Aa(x*(t) N §(G))
(f) For each node t of T with x*(t) # 0 and x*(t) CV(G) \ §(G), x(t) = &.
(9) Letty,... te be the leaf nodes of T* that belong to Z. Then, P = (x(t:))ie|q-

(h) For any two nodes t and t' in T* such that they are not in an ancestor-descendant rela-
tionship, there is no edge in G between a vertex in x*(t) and x*(t').

For a partial solution e = (D,T*,x*,L*) of (G,s), we use Used,«(G) to denote the set
Usev(r+) X*(t). That is, in the partial solution e we have identified the places of Used\+(G).
The objective is to keep including vertices from V(G) \ Usedy«(G) to the sets {x*(¢)}rev (7
through branching rules.

Recall that (G,s = (D, T, x, L, P,eq)) is the input of the algorithm Sig-Test. To understand
the steps of the algorithm let us assume that s € real-sig(G) and (T, X, ) be an H-elimination
decomposition of GG, of depth at most k, such that G satisfies s through (T X ) As mentioned
earlier, since G is (g, k)-unbreakable and |V (G)| > 3¢ + k, by Lemma 3.1, there is exactly one
connected component C* in G[L] that has at least ¢ vertices and |V(G) \ V(C*)| < ¢+ k and
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hence |V (T)| < q+ k. Therefore, as a first step we guess the tree 7', all the nodes in ¢ such that
X(t) contains at least one vertex from §(G), X(t) N d(G), and the node t* such that Y (t*) = C*.
Since |0(G)| < 2k and \V(fﬂ < ¢ + k the number of choices for this guess is bounded by
(¢ + k‘)o(‘”k)A. Thus, we assume that initially we have a partial solution e = (D,T*, x*, L*),

where T* = T with the following properties. (Recall that 7" is an induced subgraph of T).
e For any node t € V(T'), x*(t) C 6(G) and x(t) = Aa(x*(t) N 6(Q)).
¢ 0(G) = Usev () X" (®)-

We remind that we also know the node t* € V(T*) = V(T') such that the vertices of the
“unknown” large component C* belong to X(¢*). Now on, we assume that our instances contain
(G, s,e,t*) where e is a partial solution and t* is the special leaf node in the rooted forest T™*
of e. The objective is to construct an H-elimination decomposition (T,%,L) of G (we call it
as solution) obeying the partial solution e such that either G satisfies s through (7',%, L) or
G satisfies § (derived from the solution) through (f, Xs E) with the property that § is strictly
better than s. We formally define when a solution obeys a partial solution.

Definition 7.27. Let s = (D, T, X,AL,P,Aeq) be a state-tuple and e = (D, T*, X*, L*) be a partial
solution. We say that a solution (T, X, L) obeys the partial solution e if T is isomorphic to T*

(we use the same vertez to denote its image in the isomorphism function, i.e., V(T) = V(T*))
and for each t € V(T') =V (T™), x*(t) C x(¢).

Next we explain about our branching rules. For each instances created in the branching
rule, at least for one internal node t € V(T*) with x*(¢) = 0, we will have a assigned a vertex
from V(G) to it. That is, in the new instance (G, s,e¢’ = (D, T*, X', L"), t*) created there is at
least one new internal node t € V(T*) with x*(¢) = 0 and x/(t) # 0. Since |V(T*)| < ¢+ k
and for each internal node ¢, |x/(t)| < 1, we use the number of internal nodes t with x*(¢) = ()
as a measure for our branching algorithm. In our branching rules, the measure decreases by
at least one after the application of each branching rule. Next we explain our branching rules.
A branching step creates more instances. If for any of the instance the output is (s, 1), then
the output of our algorithm is (s,1). If this is not the case and at least one of them outputs
(s,0) and (8, 1), then the output of our algorithm is (s,0) and (5, 1). If for all the instances, the
output is Fail, then we output Fail.

Our first branching rule attempt to fix “neighborhood” inconsistencies, below we begin by
explaining what we mean by an inconsistency that our first branching rules attempts to fix.
Suppose there are (not necessarily distinct) vertices u,u’ in the same connected component of
G' = G — Used,»(T*) and two nodes ¢t and t' in T* such that ¢t and ¢ are not in ancestor-
descendant relationship, and u and ' have neighbors in x*(¢) and x*(¢'), respectively. Then
consider any u — u’ path P in G’ (which exists, since u and u' are in the same connected
component of G'). We remark that if u = v/, then P is a path on one vertex. For the above,
we say that (u,u/, P) is an inconsistent triplet.

We will observe that for any solution (7', X, L) obeying the partial solution e, V/(P)N (V(G)\
L) # (. In fact, we can establish a stronger statement than the above, which guarantees that
at least one among the first and the last ¢ many vertices in P, belongs to V(G) \ L. The above
property is obtained because at least one of u or v/ cannot belongs to the unique connected
component of size at least ¢ in G[L], for any solution (T,%,L) (see Lemma 3.1). The above
leads us to the following branching rule.

Branching Rule 1: Let (u,u’, P) is an inconsistent triplet in (G,s,e = (D, T*, x*, L*),t*).
Then for each vertex v in the first g vertices or in the last ¢ vertices in the path P and for
each internal node ¢t € V(T™*) such that x*(¢t) = 0 and x(¢) = #, construct a new instance
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(G,s,e/ = (D, T*, ), L*),t*) if € is a partial solution for (G, s) and solve it. Here x'(t) = {v}
and x/(t1) = x*(¢1) for all ¢; # t.

The correctness of the branching rule follows from Lemma 3.1. Notice that if Branching
Rule 1 is not applicable, then there is no “crossing edge” inconsistencies. That is, let (G, s,e =
(D, T*, x*,L*),t*) be an instance such that Branching Rule 1 is not applicable. Then for any
connected component C' of G — Usedy+(G), there is a leaf node ¢ in T* such that for any vertex
w € Ng(V(C)), there is an ancestor ¢’ of ¢ (¢ maybe equal to t) with w € x*(¢').

Next, we do a branching rule similar to the Branching Rule 1 in the proof of Lemma 4.2.
Recall that for a graph G and integers p, ¢’ € N, aset B C V(G) is a (p, ¢')-connected set in G, if
G[B] is connected, |B| < p and |[Ng(B)| < ¢'. A (p, ¢')-connected set B in G is mazimal if there
does not exist another (p, ¢’)-connected set B* in G, such that B C B*. Using Proposition 4.7
we can enumerate all maximal (p, ¢')-connected sets in time 2P . nO),

Since the the family H is closed under disjoint union, if there is a graph H ¢ H, then there
is a connected component H' of H such that H' ¢ H. Let (G,s,e = (D,T*,x*, L*),t*) be an
instance and let (T X, ) be a hypothetical solution obeying the partial solution e. Let C' be a
maximal (g+k, k)-connected set in G such that G[C'] ¢ H where C" = V(C')\ Used,~(G)]. Then
by the hereditary property of H, there exists a connected component F'in G [C'] such that F ¢ H.
Then observe that for the solution (7', ¥, L) obeying the partial solution e, V/(F)N(V(G)\L) # 0.
This leads to the following branching rule. Let C be the set of all maximal (g + k, k)-connected
set in G.

Branching Rule 2: Let (G,s,e = (D, T*,x*,L*),t*) be an instance. Let C' € C such that
G[C'] ¢ H where C! = @ \ Usedy+(G). Let F be a connected component in G[C"] such that
F ¢ H. Then for each v € V(F) and for each internal node ¢ € V(T*) such that x*(¢) = () and
X(t) = #, construct a new instance (G,s,e’ = (D, T*, X/, L*),t*) if ¢ is a partial solution for
(G, s) and solve. Here x'(t) = {v} and x/(t1) = x*(t1) for all ¢; # t.

Towards the correctness of Branching Rule 2, notice that V(F') cannot be a subset of Y (¢')
for any leaf node ' because F' ¢ H. Now suppose V(F) C [Jycr X(t') where R is the set of leaf
nodes of T. Then, since F' is connected there exists a two distinct leaf nodes ¢1; and ¢ such that
there is an edge in G between a vertex in X(¢;) and a vertex in Y(t2). This contradicts the fact
that (7, %, L) is an H-climination decomposition.

Now, we prove the following lemma.

Lemma 7.28. Suppose Branching Rule 1 is not applicable for an instance (G, s,e = (D, T*, x*, L*),t*).
Let Y = Jycp X*(t') where R is the set of leaf nodes of T*. Then there is a unique connected
component J* in G — (Used\(G) \ Y') that has at least q vertices, and |V (G)\ V(J*)| < ¢+ k.

Proof. Since Branching Rule 1 is not applicable for any connected component C'in G—(Used,+(G)\
Y'), there is a leaf node t¢ in T such that for any vertex w € Ng(C), there is a node ¢’ in the
unique path in 7* from ¢¢ to the root such that w € x*(t¢).

Let G be the set of all graphs. Now we construct a G-elimination decomposition (77, x1, L1)
from e as follows. Initially set x1(t) = x*(¢) for all ¢ € V(T™*). For each connected component C
in G— (Usedy«(G)\Y), add V(C) to x1(tc). Then (T*, x1, L1) is a G-elimination decomposition.
Now the lemma follows by applying Lemma 3.1 on (7, x1, L1). O

Now let (G,s,e = (D, T*, x*,L*),t*) be an instance such that Branching Rules 1 and 2
are not applicable. Let (f, X Z) be a hypothetical solution obeying the partial solution e.
Let Y = Upecp X*(t') where R is the set of leaf nodes of T*. Then by Lemma 7.28, there is
a unique connected component J* in G — (Used,+(G) \ Y) that has at least ¢ vertices, and
[V(G)\ V(J*)| < g+ k. Now since |V(G) \ V(J*)| < ¢+ k, for each vertex v € V(G) \ V(J*),
we can guess the node t, € V(T*) = V(T)) such that v € {(t,). Thus, according to our guess we
update the function x*. That is, we update x*(t,) := x*(t,) U{v}. Also notice that if there is a
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vertex u € V(J*), an edge uw € E(G) and a node ¢t € V(T*) such that w € x*(¢), and t*, ¢ are
not in an ancestor-descendant relation, then clearly there is an internal node ¢, in T™* such that
X(ty) = {u}. Thus, we also guess the node ¢, for such vertices. This implies that after these
steps for any vertex € V(G)\Used,+(G), and any edge xy € FE(G) either y € V(G)\Usedy+(G)
or there is a node ¢ in the unique path P* in 7™ from ¢* to the root such that y € x*(¢).

Next, we prove that at this stage by running one execution of the user defined function A,

we get the output (7) (s,1) or (i) (s,0) and (5, 1).

Lemma 7.29. Let I = (G, s,e,t*) be an instance such that Branching Rules 1 and 2 are not
applicable, where s = (D, T,x, L, P,eq) and e = (D, T*,x*,L*). Let (T\, X, E) be a hypothetical
solution obeying the partial solution e. Let P* be the unique path in T from t* to the root. Let
k' be the number of nodes t in V(P*) such that x(t) = #& and x*(t) = 0. Notice that for any leaf
node t in T* such that x*(t)Nd(G) # 0, we have A\g(x*(t)NI(G)) = Aa(X(t)NI(G)) = x(t) € P.
Let EQ* be the equivalence class in =, such that eq(x(t*)) = EQ*. Let U = V(G) \ Used,+(G)
and G* = G[U U x*(t*)]. Suppose we have the following two conditions.

(a) 5(G) € Usevre) X (1).

(b) For any vertex x € U and any edge xy € E(Q), either y € U or there is a node t € V (P*)
such that y € x*(t).

Then, the below conditions are true.

(i) There is vertex subset S of size at most k' such that G* — S belongs to an equivalence class
which is at least as good as EQ*.

(i1) Given a vertex subset S of size at most k' such that G* — S belongs to an equivalence class
which is at least as good as EQ*, then we can construct an H-elimination decomposition
(T*,%, Z*) of G of depth at most k, in polynomial time such that the following holds.

— If SN6(G) =0, then G satisfies s through (T*,, Z*).

— If SN6(G) # 0, then we can construct a state-tuple 5 = (D, T,x',L',P',eq’) in
polynomial time such that G satisfies § through (T*,v,Z*), and § is strictly better
than s.

Proof. First we prove property (i) of the lemma. For the sake of contradiction, suppose there
is no vertex subset S of size at most k' in G* such that G* — S belongs to a class which is at
least as good as FQ*. Recall that (T, X, Z) is a solution obeying the partial solution e. Let
S§* = V(G*)\ L. Then G* — S* belongs to a class which is at least as good as FQ*. This
implies that [S*| > k'. Let X = U,y (pey o=y X(t) N S*. Notice that [X| < k. We prove that
G* — X belongs to a class which is at least as good as FQ* and that will be a contradiction
to our assumption. Let F' = 5\ X. Since ey (po) X(¢) N F = (), F has neighbors only in

Usev (poygeey X(t) (because F' C V(G*) and (T, R, L) is a solution), and Branching Rule 2 is not
applicable, we have that G[F] € H. Moreover, F N §(G) = (). Thus, by the component deletion
property (see Definition 7.3), we have that G* — X = (G* —S*) W G[F] belongs to an equivalence
which is at least as good as EQ*. This is a contradiction to our assumption that there is no
vertex subset S of size at most k&’ in G* such that G* — S belongs to a class which is at least as
good as EQ*. This completes the proof of property (7).

Now we prove property (ii). Suppose there is a vertex subset S = {v1,..., v} such that
¢ < k' and G* — S belongs to an equivalence class which is at least as good as EQ*. Now
we construct an H-elimination decomposition (7*,, Z*) as follows. Let W = {t1,...,t;} be a

subset of nodes in P* such that for all i € [¢] x(t;) = & and x*(t;) = 0. Now for each i € [/],
we set ¥(t;) = {v;}. For each t € V(T™)\ (W U {t*}), we set ¢(t) = x*(t). Finally, we set
P(t*) = V(G*)\ S. Let R be the set of leaf nodes in T*. We define Z* = | J,cp % (1).
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Claim 7.30. The graph G (t*)] is in an equivalence class which is at least as good as EQ*.
For each t € R\ {t*}, ¥(t) C X(t) and if Y(t)NO(G) # 0, then G[)(t)] is in an equivalence class
which is at least as good as eq(x(t)).

Proof. Since (t*) = V(G*)\ S, by our assumption (i.e., premise of the condition (7)), we have
that G[¢(t*)] is in an equivalence class which is at least as good as EQ*.

From the construction of ¢ we have that for each ¢t € R\ {t*}, ¥(t) = x*(¢) C x(t). Now
fix a node t € R\ {t*} such that ¢(t) N 6(G) # 0. Then, we know that G[(¢)] is an induced
subgraph of G[X(t)]. In fact we prove that G[¢(t)] is a union of some connected components of
G[X(t)]. Suppose not. Then there is an edge xy in the graph G[x(¢)] such that = € 1¥(t) and
y & ¥(t). Since y € X(t), we have that y ¢ x*(¢') for any ¢’ # t because (f, X, E) obeys the
partial solution e. This implies that y € U. This contradicts condition (b) in the lemma. So
G[y(t)] is obtained by deleting some connected components from G[x(t)]. Moreover, we know
that ¢(t) N0(G) = x(t) N 6(G). Thus, by the component deletion property (see Definition 7.3),
we have that G[¢(t)] and G[X(t)] are in same equivalence class which is at least as good as
eq(x(t)). This completes the proof of the claim. O

Claim 7.31. (T*,4, Z*) is an H-elimination decomposition of G of depth at most k.

Proof. Since e is a partial solution, we have that the depth of T* is at most k. Now we prove
that (T*,1, Z*) satisfies the conditions of Definition 2.1. From the construction of v, we have
that |¢(t)] <1 and ¢(t) C V(G) \ Z* for any t € W. For any internal node t of T* such that
t¢ W, () = x(t) C V(G)\ Z2* and |4(t)] = |R(t)] < 1 because (T,%,L) is H-elimination
decomposition. This implies that condition (1) of Definition 2.1 holds. From the construction
of ¢, condition (2) of Definition 2.1 holds.

Now we prove condition (3) of Definition 2.1. Let uv € E(G) and u € 9(t) and v € (t')
for some ¢,#' € V(T*). Suppose V(P*) N {t,t'} = 0. Then, ¥(t) = x*(t) C X(t) and ¢(t') =
X*(#') € X(t)). Then, since (T,%,L) is an H-elimination decomposition, we have that ¢ and
t' are in ancestor-descendant relationship in T*. Suppose t,' € V(P*). Then ¢t and t' are
in ancestor-descendant relationship in 7*. Now consider the case when |V (P*) N {t,t'}| = 1.
Without loss of generality let ¢t € V(P*) and t' ¢ V(P*). Thus, from the construction of v,
we have that v € ¥(t') = x*(¢') C X(t'). If u € x*(t), then ¢t and ¢’ are in ancestor-descendant
relation in 7*. Otherwise we contradict the fact that e is a partial solution. If u ¢ x*(¢), then
u € U =V(G*)\ x*(t*). Then, it will contradict condition (b) of the lemma. Thus, we have
proved condition (3) of Definition 2.1.

Next we prove condition (4) of Definition 2.1. Recall that for any leaf node t € R\ {t*},
Y(t) = x*(t) € X(t). Also, since (T,%,L) is an H-elimination decomposition, G[X(t)] € H.
Thus, since G[¢(¢)] is an induced subgraph of G[X(t)], we get that G[i(t)] € H because H is
an hereditary family. Recall that ¢(t*) = V(G*) \ S. Since G* — S is in an equivalence class
which is at least as good as EQ* (see Claim 7.30), we have that G[¢(t*)] € H. This completes
the proof of the claim. ]

Claim 7.32. If SN6(G) =0, then G satisfies s through (T* 1, Z*).

Proof. Since the hypothetical solution (f, X, E) obeys the partial solution e = (D,T™, x*, L*),
G satisfies s through (T,%, L), and for each t € V(T) = V(T*), x*(t) C X(t). We need to
prove that G satisfies s through (7*,4,Z*). Since T™* is isomorphic to f, condition (a) of
Definition 7.5 is true. Since for any node ¢t € V/(T), ¥(t) N 6(G) = X(t) N d(G), condition (b) of
Definition 7.5 is true. Notice that for any v; € S, we set ¢(t;) = {v;}, where x(¢;) = #. This
implies that condition (c¢) of Definition 7.5 is true. Notice that for any vertex v € §(G), there
is a node ¢ such that v € 1(¢) and v € x(¢). This implies that condition (d) of Definition 7.5 is
true. Condition (e) of Definition 7.5 follows from Claim 7.30. O
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Claim 7.33. If SN46(G) # 0, then we can construct a state-tuple § = (D, T, x', L', P’ eq’) in
polynomial time such that G satisfies § through (T*,1,Z*), § is strictly better than s.

Proof. First we define the function x’. Recall that S = {v1,...,v}, and W = {t1,...,t;}
be a subset of nodes in P* such that for all i € [¢] x(¢t;) = & and x*(¢;) = 0. For any t €
V(T*)\{t1,...,te, t*}, we set x'(t) = x(t). For any i € [¢], if v; € §(G), then x'(t;) = { g (vi)}.
Otherwise x'(t;) = #. Finally, x'(t*) = Ag(¢¥(t*) N 6(G)). The construction of x' and the
fact that S N d(G) # 0 implies that D\ L € D\ L’. Let R' C R be the set of leaf nodes
in T* such that for any t € R, ¢(t) N 6(G) # 0. Then P' = (X'(t))ier. Notice that for
each t € R\ {t*}, x(t) = x/(t) and X/(t*) C x(t). Now we define eq’. For any ¢t € R/, we
define eq’'(}/(t)) = eq(x(t)). Finally L' = L\ Ag(S N 4(G)). This completes the construction of
5= (D,T,x',L',P' eq). Using arguments similar to the one in Claim 7.32, one can prove that
G satisfies § through (7,4, Z*), and hence it is omitted here.

Next we prove that § is strictly better than s. We have already proved that D\ L € D\ L.
Let H be a graph such that G @& H exactly realizes s through (T\,n, Ly) and (T\, Xs E) is equal
to Restrictedi(T',m, L1). Thus we have the following.

(i) G exactly satisfies s through (T, ¥, L).
(14) For each node t of T with n(t) # () and n(t) C V(H) \ 6(G), x(t) = Q.

We will prove that G @ H realizes 5. Towards that we will construct an H-elimination
decomposition (f, ¢,La) of G @ H, of depth at most k, such that G @ H realizes § through
(T, ¢, Ly). Statement (i) implies that for any ¢ € R', G[X(t)] belongs to eq(x(t)). Recall that T*
is isomorphic to 7 and V(T*) = V(T)). From the construction of 3, we have that for any node
t € V(T), x(t) = Q if and only if x/(t) = ©. Now we construct the function ¢. Let V = V(G)
and V' = V(G @ H) \ V(G). For any node t € V(T)), we define ¢(t) = (¢(t) N V) U (n(t) N V').
Let Ly = ;e #(t) where R is the set of leaf nodes in T.

Now we prove that G @ H realizes § through (f, ¢, Lo). It is easy to verify that (7,4, Z*) is
equal to Restrictedg(f, ¢, La). We have already mentioned that G satisfies § through (7%, v, Z*).
Next we prove that indeed (f, ¢, Lo) is an H-elimination decomposition of G & H. It is easy to
verify that conditions (1) and (2) of Definition 2.1 holds. Now we will prove that condition (3)
of Definition 2.1 holds. Let uv be an edge in G @ H and t,t' € V(T) such that u € ¢(t) and
v € ¢(t'). Suppose u,v € V(G). Then, since G satisfies § through (T*,, Z*), which is equal
to Restricted(;(f, ¢, Ly), we have that t and t' are in ancestor-descendant relation. Suppose
u,v € V(H). Then, since (T\, n, L1) is an H-elimination decomposition of G @ H, from the
construction of ¢, we have that ¢ and ¢’ are in ancestor-descendant relation. Thus, we have
proved that condition (3) of Definition 2.1 holds.

Next we prove that condition (4) of Definition 2.1 holds. Let Sy = {v € §(H): A\g(v) €
Ac(SN(G))}. That is Sy is the set of boundary vertices in H that has the same label as
the vertices in S N 0(G). Let t be a leaf node. Let G1 = G[n(t) N V(G)] = G[X(t)] and
Hy = Hlp(t) N V(H)]. Let Gy = Glo(t) N V(G)] = G[¢(t)] and Hy = H[(n(t) N V(H)) \ Sa]-
Notice that G[n(t)] = G1 & H1 and G[¢p(t)] = G2 & Ha. Since G @& H exactly realizes s through
(T, n, L1), we have that Gy belongs to the equivalence class eq(x(t)) and Gy & Hy € H. Since
G satisfies § through (7,1, Z*) G5 belongs to an equivalence class which is at least as good as
eq'(}/'(t)) = eq(x(t)). This implies that Go @ Hy; € H. Since Hj is an induced subgraph of H;
and Go @ Hy € H, by the hereditary property of H, we have that Gy & Hy € H. O

This completes the proof of the lemma. ]

Because of Lemma 7.29, in the final step of our algorithm Sig-Test, we run the algorithm
A, on the input (G*, EQ*, k') as defined in Lemma 7.29. If the algorithm A4, fails to output
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a solution, then we output Fail. Otherwise, let S be the output of the algorithm A4,. If
SNH(G) = 0, then we output (s,1). If SNIHG) # 0, then we construct § (as mentioned in
Lemma 7.29) and output (s,0) and (8, 1).

Running time analysis FEach branching rules makes a function of ¢+ % many branches. Since
the number of nodes in T™ is at most ¢ + k and in each branch of the branching algorithm the
number of internal nodes ¢ with x*(¢) = () decreases by 1, the depth of the branching algorithm
is at most ¢ + k. In the final step we run the algorithm A,. This implies that the running time
of the algorithm is upper bounded g¢;(q, k) - fu(k,|Q(=.)|,n) - n®Y for some function g;.

8 Applications of the Uniform Algorithm

The objective of this section is to prove the following theorem.

Theorem 8.1. ELIMINATION DISTANCE TO H admits a uniform FPT algorithm, for the case
when H is any one of the following:

the family of chordal graphs,

the family of interval graphs,

the family of bipartite graphs,

RIS

for a fized finite family of graphs Q, a graph is in H, if and only if it does not contain any

graph from O as an induced subgraph,

5. for a fixed finite family of graphs Q, a graph is in H, if and only if it does not contain any
graph from Q as a minor,"® or

6. for a fixed finite family of graphs Q, a graph is in H, if and only if it does not contain any

graph from QO as a topological minor.

For any fixed finite family of graphs F, we can find a finite family of graphs F’, such that
a graph does not contain any minor from F if and only if it does not contain any topological
minor from F’. Thus, item 5 in Theorem 8.1 is subsumed by item 6 (see for instance, [33] for a
discussion on this). Thus, we will not focus on proving item 5, and our rest of the section will
focus on proving the theorem for all other items its statement.

We denote the families of bipartite, chordal, interval graphs by Hyip, Hedl, and Hine, respec-
tively. For a fixed finite family of graphs F, we denote the families of graphs that have no graph
from F as an induced subgraph and a topological minor by Hz, , and Hz,,, respectively.

To invoke Theorem 7.2, we need to define a refinement of the canonical equivalence class
(see Definition 7.1) for the graph families of our concern. To this end, we introduce the notion
of obstructions.

Obstructions to a family of graphs. For a family of graphs #, a family of (possibly infinite)
set of graphs O is an induced obstruction set to H, if a graph G € H if and only if G does not
contain any graph from O as an induced subgraph. Notice that we have the following: i) the
family Oy of all cycles of odd length is an induced obstruction set for Hpjp and ii) the family
Ocqr of all cycles of length at least 4 is an induced obstruction set for Hq.

The set of obstructions to interval graphs have been completely characterized by Lekkerk-
erker and Boland, [55]. A graph is an interval graph if and only if it does not contain any of
the following graphs as an induced subgraph (see Figure 3).2

19 As minor closed families are characterized by a finite family of forbidden minors by Robertson-Seymour
Theorem, so the condition on finiteness for this case is not necessary.
20The figure is borrowed from [4].
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Long claw Whipping top Net Tent

Figure 3: The set of obstructions for the family of interval graph.

e Long Claw. A graph O such that V(Q) = {t,t,,t,¢, b1, ba, b3} and E(Q) = {(tg, b1), (t, b3),
(t, bQ), (C, bl), (C, bz), (C, bg)}

e Whipping Top. A graph O such that V(OQ) = {t¢,t,,t,¢, b1, b2, b3} and E(Q) = {(t¢, b1),
(tr,b2), (c,t), (¢, b1), (c,b2), (b3, te), (b3, b1), (b3, ), (b3, b2), (b3, 1)}

e -AW. A graph O such that V(Q) = {ts,t,,t,c} U {b1,ba,...,b.}, where t; = by and
tr =byy1, E(OQ) ={(t,¢), (te,b1), (tr, b))} U{(c,b;) | i € [2]} U{(bi,bit1) | i € [z — 1]}, and
z>2. A t-AW where z = 2 will be called a net.

e [-AW. A graph O such that V(OQ) = {ty, t,,t,c1,c2} U{b1,ba,...,b.}, where t, = by and

tr = bz, E(@)) - {(tvcl)ﬂ (ta 02)7(61702)7(t5ab1)’ (tT,bz)ﬂ(tevcl)a(t%C?)} U {(C7 bi) ’ i€
(2]} U{(bi,bi+1) | i € [z — 1]}, and z > 1. A -AW where z = 1 will be called a tent.

e Hole. A chordless cycle on at least four vertices.

We denote the above family of graph by Oj,, which is an induced obstruction set for Hint.

Let G denote the family of all graphs. Consider a finite set of graphs F. Notice that an
induced obstruction set for Hz, , is the same as O, , = F. Let Ox,, be the family of all graphs
that are not contained in Hgz,,, i.e., Ox,, = G\ Hz,,. Notice that each graph in Qg,, must
contain some G € F as a topological minor. Thus, we can obtain that Oz, is an induced
obstruction set for Hz,, .

Let H = {Hcdl, Hints Hoip} U {HF,i» HFop | F is a finite family of graphs}. From our previ-
ous discussions we can obtain that each H € H has an induced obstruction set Q. In the rest of
the section, for H € H, we will work with the corresponding O that we stated previously. For the
sake of simplicity, throughout this section we will assume that the label set of any boundaried
graph G, we have A(G) C N, where 0 € A(G) and for no vertex v € §(G), we have Ag(v) = 0.

Definition 8.1 (Boundaried Partial Obstruction). Consider a family of graphs H and an in-
duced obstruction set O for it. A partial obstruction of H from O is any graph that is an
induced subgraph of some graph in Q. A boundaried partial obstruction of H is boundaried
graph whose unboundaried counterpart (graph after forgetting the labels of the boundary) is a
partial obstruction from @. We denote the set of all boundaried partial obstruction from O of
‘H by BPOg(H). (We skip the subscript in the above notation whenever the context is clear.)

Definition 8.2 (Relevant Boundaried Partial Obstruction). Consider a family of graphs # and
an induced obstruction set O for it. We say that O € BPO(H) is relevant if there does not exist
another boundaried partial obstruction O’ € BPO(H), such that:
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1. |[V(O"] < |V(0)|, and
2. for every boundaried graph G, O @ G ¢ H if and only if O’ & G ¢ H.

In the next observation we show that for each t € N, we can compute the set of relevant
boundaried partial obstructions in time bounded by ¢ alone.

Observation 8.3. For each H € H, there exists a function ([H] : N — N, such that for any
t € N, we can find an inclusion-wise maximal set of relevant t-boundaried partial obstructions,
denoted by, RBPO(H,t) (with respect to Q) in time bounded by ([H](t), such that |RBPO(H,t)| <

CIHI(®).

Proof. Note that for the family of chordal graphs, if we have a boundaried graph G with
A(G) C{1,...,t}, the following state information is enough: for every pair of labels in A(G),
whether there no path, a path with exactly one edge, or all paths have at least two edges,
between the corresponding vertices associated with the labels. Notice that for each such state
information, keeping one partial obstruction is enough for us, which can be found easily based
on the state information. Similarly for all other graph classes, we can argue that only bounded
number of state information are required, corresponding to each of which keeping one partial
obstruction is enough for our purpose. ]

For H € H and ¢t € N let ¢[H,t] = |RBPO(#,t)|, we fix an arbitrary ordering among
the t-boundaried graphs in RBPO(#,t), and we let RBPO(H,t) = {P[H,t,1], P[H,t,2], -,
P[H,t,q[H,t]]}. We will next define the notion of “behaviour” of a boundaried graph, that will
help us in defining our (refinement of) canonical equivalent class (see Definition 7.1).

Definition 8.4. Consider H € H, ¢t € N and a t-boundaried graphs G. The [H, t]-behaviour of
G is the vector bhv[H,t](G) = (21,22, -, Zgpp,1), Where for i € [q[H,1]], z; = 1 if and only if
G @ P[H,i] € H.

Definition 8.5. Consider X € H and ¢t € N. Let G; and Gy be two t-boundaried graphs,

such that A(G1) = A(G2) and ¢ is the largest number in A(G7). We say that Gy and G, are
H-behaviour equivalent, denoted by Gy =,.3; G2, if bhv[H,t](G1) = bhv[H, ](Gs).!

Notice that =, 3, defines an equivalence class over the boundaried graphs. We use Q(=, %)
to denote the set of equivalence classes of =, 3. The next observation follows from Definition 8.5.

Observation 8.6. For each H € H, and boundaried graphs G1 and G2, such that G1 =,y G2,
we have G1 =y G2. Also, =, satisfies the requirement of Definition 7.3.

We will next give a definition that will be useful in obtaining the user defined function ugy,.

Definition 8.7. Consider H € H, and two distinct equivalence classes Q1,Q2 € Q(=u ).
Moreover, let ¢; and t be the largest numbers in A(G1), for G1 € Q1 and A(G3), for G2 € Q2,
respectively. We say that Q1 is at least as good as Q2 if each of the following holds:
1. t1 < t9, and
2. for each H € RBPO(H,t;) C RBPO(H,t2), whenever for any Ga € Q2, G2 @ H € H, then
any G1 € Q1 we have G1 ® H € H.

Using the above definition we are now ready to define the function ugy,.

Definition 8.8. For # € H, we define the function ugy : Q(=,n) X Q(=un) — {0,1} as
follows: for Q1,Q2 € Q(=y,%), if Q1 is at least as good as Q2 as per Definition 8.7, then set
ugy (Q1,Q2) = 1, otherwise set ugy (Q1,Q2) = 0.

21The letter u in =, % is to denote that it is a user defined equivalence class, as we are the user in this section.
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We have now defined a refinement of =7 and ugy,, for each ‘H € H. We will next focus on
designing the “user’s algorithm”. To this end, we begin by defining the notion of an irrelevant
vertex.

Definition 8.9 (Irrelevant Vertex). Consider a family of graphs H, a graph G, and an integer
k € N. A vertex v € V(G) is (H, k)-irrelevant if there exists S C V(G) of size at most k
such that G — S € H if and only if there exists S’ C V(G — {v}) of size at most k such that
(G—{v}) -5 eH.

We now extend the above definition to boundaried graphs.

Definition 8.10 (Boundaried Irrelevant Vertex). Consider a family of graphs H, a boundaried
graph G, and an integer k € N. A vertex v € V(G) \ 0(G) is boundaried (H, k)-irrelevant if for
every boundaried graph H, v is (H, k)-irrelevant in G & H.

Definition 8.11 (Boundaried Obstruction Irrelevant Vertex). Consider H € H, a t-boundaried
graph G, where t is the largest integer in A(G), and an integer k € N. A vertex v € V(G) \ 6(G)
is boundaried obstruction (H, k)-irrelevant if for every H € RBPO(H,t), v is (H, k)-irrelevant in
G®H.

Lemma 8.12. Consider H € H, a t-boundaried graph G, where t is the largest integer in A(G),
and an integer k € N. A vertex v € V(G) \ 6(G) is boundaried (H, k)-irrelevant if and only if it
is boundaried obstruction (H, k)-irrelevant.

Proof. Let v € V(G) \ 6(G). One direction is trivial: If v is boundaried (#, k)-irrelevant, then
it is boundaried obstruction (#,k)-irrelevant. Indeed, suppose that v is boundaried (#,k)-
irrelevant. Then, for every boundaried graph H, v is (H, k)-irrelevant in G @ H. In particular,
for every O € RBPO(#H,t), v is (H,k)-irrelevant in G & O. So, v is boundaried obstruction
(H, k)-irrelevant.

Now, consider the reverse direction. Suppose v is boundaried obstruction (H, k)-irrelevant.
Then, for every O € RBPO(H,t), v is (H, k)-irrelevant in G & O. We need to prove that for any
boundaried graph H, v is (H, k)-irrelevant in G& H. Towards that, let us fix a boundaried graph
H. Without loss of generality, we can suppose that §(H) C {1,...,t} (else, we can “unlabel”
the vertices in H having a larger label, and thereby we do not change G @& H). Targeting a
contradiction, suppose that v is not (#, k)-irrelevant in G @ H. So, because H is hereditary, this
means that there exists S’ C V(G@® H — {v}) of size at most k such that (GEH —{v})— 5" € H,
but there does not exist S C V(G @ H) of size at most k such that G H —S € H. In particular,
Go® H—(S"U{v}) ¢ H, so G H must have an obstruction O* in O (as an induced subgraph)
that contains v and is disjoint from S’. Let O’ be the subgraph of O*[V(H)] whose boundary
is the boundary vertices of H that occur in O*. So, O’ is a t-boundaried partial obstruction
of # such that G O' — (' NV(G)) ¢ Hand G O — (' NV(G)) U{v}) € H. By the
definition of RBPO(H, t), there exists O € RBPO(#H, t) such that G® O — (S’ NV (G)) ¢ H and
GO0 —((SNV(G))U{v}) € H. However, v is (H, k)-irrelevant in G @ O, and thus we have
reached a contradiction. d

For the families of graph that we are interested in, our objective will be to find an “irrelevant”
vertex, towards obtaining a “user’s algorithm”. We first explain intuitively how we intend to
obtain such a rule. For simplicity consider the family of chordal graphs. We know that any
chordal graph with large treewidth must contain a large clique. More generally, any graph from
which we can delete a small set of vertices so that the resulting graph is a chordal graph, either
it contains a large clique, or its treewidth can be bounded by the size of the small deletion
set. We remark that whenever a graph has a large clique, using the known (FPT /kernelization)
algorithms for CHORDAL VERTEX DELETION [63], we will be able to find an irrelevant vertex.
We give generic definitions below, and then we will see how our families fit into these definitions.
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Definition 8.13. Consider families of graphs G and G. We say that G has trecwidth property
with respect to QV, if there is a function 7 : N — N; such that any graph G € G with tw(G) > ¢,
contains a graphs G € G with |V(G')| > 7(£) as an induced subgraph. In that above, we say
that 7 is a tw-certificate for the treewidth-property of G with respect to G.

We will now extend the above definition to the classes where we can find large subgraphs of
desired type in bounded amount of time.

Definition 8.14. Consider families of graphs G and g such that G has treewidth-property with
respect to Q with tw-certificate 7 : N — N. We say that G has efficient treewidth-property with
respect to g if there a function g : N — N and an algorithm, which given an n-vertex graph
G € G and an integer ¢ € N, in time bounded by g(¢) - n®W) | either correctly concludes that
tw(G) < £, or outputs a graph G/ € G, such that: i) [V(G')] > 7(¢) and ii) G’ is an induced
subgraph of G.

Definition 8.15. Consider families of graphs Q, QV, and H, where 5 C H. We say that Q\ is
(5, H)-deletable, if there is a function p : N — N, such that: for any graph G € G which contains
a graph G’ € G with at least k vertices as an induced subgraph, there exists Z C V(G') C V(G)
of size at least u(k), such that each vertex u € Z is (H, k)-irrelevant in G. In the above, we say
that  is a del-certificate of G being (G, H)-deletable.

Definition 8.16. Consider families of graphs g Q and H, where Q C H and Q is (g H)-

deletable, where 11 is a del-certificate of G being (@, H)-deletable. A (g g, H)-irrelevance detector
is an algorithm, which given an n-vertex graph G € G and an induced subgraph G’ € G of G,

where k = |V(G’)|, outputs a subset Z C V(G’) C V(G) of size at least u(k), such that each
vertex in Z is (H, k)-irrelevant in G.

Now we will state results which follow from the known results, that will be important in
obtaining our “user’s algorithm”. The next result says that, given a graph which admits a
k-sized deletion set to chordal graphs, along with a large clique, then we will be able to obtain
large set of vertices in this clique that are irrelevant for us. We remark that each of this vertices
are “individually” irrelevant to us, and we won’t be deleting all of them together. The above
discussed result simply corresponds to the marking of vertices in a maximal clique in the clique-
tree of the input graphs, obtained after removing a small deletion set. (A similar result can
also be obtained for interval graphs.) Explicitly we can obtain such a result in various paper,
like [63, 50, 3], where to the best of our knowledge, the first time such a result appeared in [63].
For an explicit reference, we direct the readers to Lemma 4.1 and Section 3.3 of [3]. We would
like to remark that, whenever a reduction rule from the above result, deletes a vertex and
decrements k by 1, we can instead add such a vertex to our “relevant set”. Also, since we will
assume that the input graph comes with the promise that it admits an at most k-sized deletion
set to chordal graphs, the known algorithms cannot return no for such a graph with the integer
k as input. Also, the kernelization algorithm for INTERVAL VERTEX DELETION given in, say, [3],
never explicitly returns yes.

Observation 8.17. There are computable (non-decreasing) functions fed, gedi : N = N, and an
algorithm, which given an n-vertex graph G, an integer k > 1 and a mazimal clique G" in G such
that: i) mody,, (G) <k, and ii) |V(G")| > gy, (k); in time bounded by fu., (k) -n®WY), outputs
a set X CV(G'), such that | X| < gy, (k) and each vertex in V(G')\ X is (Hcai, k)-irrelevant
in G.

A result similar to the above can be obtained for the family of interval graphs, say, using
Lemma 4.2 and Section 5 of [4].
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Observation 8.18. There are computable (non-decreasing) functions fint, gint : N = N, and an
algorithm, which given an n-vertex graph G, an integer k > 1 and a mazimal clique G' in G such
that: i) mody, (G) <k, and ii) |V(G")| > gy, (k); in time bounded by fy, (k) -n®D), outputs
a set X CV(G"), such that | X| < gy, (k) and each vertex in V(G') \ X is (Hint, k)-irrelevant
in G.

Next we state a result which will help us find an irrelevant vertex for the case of Hy;p, which
can be obtained from Lemma 3.2 of [59].

Observation 8.19. There are computable (non-decreasing) functions fuip, gbip : N = N, and an
algorithm, which given an n-vertex graph G, an integer k > 1, and a well-linked set Z in G such
that: i) modyy, (G) <k, and ii) |Z| > gy, (k);** in time bounded by fy, (k) - n®W  outputs a
set X C Z, such that | X| < gy, (k) and each vertex in V(G') \ X is (Hpip, k)-irrelevant in G.

In the next lemma we show how we can turn Observation 8.17 to 8.19 to find a boundaried
(H, k)-irrelevant vertex (together with the known algorithms for deletion to H € H [70, 63, 14,
33, 23, 59)).

Lemma 8.20. Consider H € {Hchi, Hint, Hbip}- There are computable functions f3;, g5, : N x
N — N, and an algorithm, which given a t-boundaried graph G, where t is the largest number in
A(G), an integer k > 0, and an equivalence class Q = (t*, A C [t*], (21, 22, , 2Zg|p1q,%]))s SUCh
that if t* # 0, then t* € A; in time bounded by f3;(t, k) - nPW) it does one of the following:

1. correctly conclude that tw(G) < g5, (t + k),,
2. find a boundaried (H, k)-irrelevant vertex v € V(G) \ 0(G), or

3. correctly conclude that there is no S C V(G) of size at most k, such that G — S belongs to
an equivalence class Q', where ug;_[cdl(Q’, Q) =1 (see Definition 8.8).

Proof. We explain the proof for the case when H = Hcq, as the proof for all the other cases
can be obtained in a similar fashion. Recall that we have an ordering on RPBO(Hq, t), which
has allowed us to assume that RBPO(#H,t) = {P[H,t,1], P[H,t,2],---, P[H,t,q[H,t]]}. Let
q = |RPBO(Hcdi,t)|. The problem CHORDAL VERTEX DELETION admits an FPT algorithm
running in time f(k) - n®Y), where f is a computable function [63].

Let g3,(t', k') = [RPBO(Hedi, t')|- 9tea (') + 2 icgptog ey |V (P[Hea, ][+ +1, for ',k € N,
where gy, is the function from Observation 8.17. For each i € [g], such that z; = 1, we do the
following;:

1. If (G ® P[H,t,i],k) is a no-instance of CHORDAL VERTEX DELETION, then report that
there is no S C V(G) of size at most k, such that G — S belongs to an equivalence class
Q', where ugy, , (Q',Q) = 1. The correctness of this step of the algorithm follows from its
description. Moreover, it can be executed in time bounded by f(k) - n®®).

2. We now assume that (G @ P[H,t,i], k) is a yes-instance of CHORDAL VERTEX DELETION,
and we compute a tree decomposition (T, x) for G & P[H,t,i], where each bag is a clique
along with at most k 4+ 1 more vertices (see [41]). If each bag in the tree decomposition
has at most gj,(t) + 1 vertices, then the tree width of G & P[H,t,i] (and thus, G) can be
bounded by g;,(t, k). Note that the above step can be done in time bounded by f (k) O,

22For the definition of well-linked sets, please see [59]
23The treewidth of a boundaried graph is same as the treewidth of its unboundaried counterpart.

58



3. Otherwise, we can obtain that there is a clique G’ in G® P[H, t], such that V(G') C V(G),
and ii) |V (G")| > |RPBO(Hcdi, t)| - g, (k) vertices. Now using Observation 8.3, we obtain
X; CV(G"), such that: i) | X;| < gy, (k), and ii) each v € V(G') \ X; is (Hcal, k)-relevant
in G.

cdl

Let X = Ui X; and Y = V(G'\). We note that we use the same G’ to compute Xjs, for
each i € [q]. Note that | X| < |RPBO(Hcdi, t)| - g1, (k) and |V(G')| > |RPBO(Hear, t)| - g1, (K),
and thus Y # (). Moreover, notice that each v € Y is a boundaried (Hcqi, k)-irrelevant vertex.
This concludes the proof. O

Using Lemma 3.1, Theorem 6 and 7 from [32], we can obtain the following result for Hz,,,.
Roughly speaking, the notion of “irrelevance” with respect to extended-folio presented in [32] is
a stronger notion than the one we give in Definition 8.9 (which is equivalent to Definition 8.10,
see Lemma 8.12). This allows us to directly borrow their algorithmic detection of irrelevant
vertices for our case.

Observation 8.21. Consider a fixed finite family of graphs F. There are computable functions
f}mp,g*fmp :Nx N — N, and an algorithm, which given an n-vertex t-boundaried graph G and
an integer k > 1, in time bounded f}top(t, k) - nPW | either correctly concludes that tw(G) <
g7 (t,k), or finds a boundaried (Hr,,, k)-irrelevant vertex v € V(G) \ 0(G).

We will next prove a lemma that will allow us to find irrelevant vertices for Hr, ,, where F
is a finite family of graphs, using an application of the Sunflower Lemma [29, 23].

Lemma 8.22. Consider a fized finite family of graphs F. There are computable functions
[Fuar 97 : N = N, and an algorithm, which given an n-vertex t-boundaried graph G and an
integer k > 1, where n > gz, ,(k), in time bounded fz. ,(k)-n®WY, finds a boundaried (Hr,,, k)-
irrelevant vertex v € V(G) \ 6(G).

Proof. Let H = HF,,. Let c = cr be maximum among the size of the largest graph in F, denoted
by d, and the size of F. So, cis a fixed constant. Let O = {O : O is a t-boundaried graph that is
an induced subgraph of at least one graph in F}. Notice that |0 < ¢-2¢- ?ig(t’c) (5) < 0(1),
and for each O € O, |[V(0)| < c¢. We define f£_,(x) = |O|, and gz, ,(z) = d*>-d!- (x —1)?-|O| +1
for all z € N.

Now, we describe the algorithm. Let (G, k) be its input. Then:

1. Initialize M = 0.
2. For every O € O:

(a) Let @ =G 0.

(b) Let U =V(G') and Q={A C U : G'|4] € F}.

(c) Call the algorithm in Theorem 2.26 [23] on (U, Q, k) to obtain (U, H', k).
)

(d) Update M + M U (U'NV(Q)).
3. Return any vertex v from V(G) \ M.

We first argue that V(G) \ M # (), thus the algorithm returns a vertex. For this purpose,
note that the number of iterations is |O]. By Theorem 2.26 [23], in each one of them, at most
d?-d!- (k—1)? new vertices are inserted into M. Thus, at the end, |[M| < d?-d!- (k—1)¢-|0| <
9F.4(k). Second, we consider the time complexity of the algorithm. Notice that the algorithm
in Theorem 2.26 [23] runs in polynomial time, hence each iteration is performed in polynomial
time, which means that the overall runtime is |O| - n1) < fz (k) - n®1) < nOM),
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We now consider the correctness of the algorithm. Trivially, RBPO(H,t) C O. So, by Lemma
8.12, it suffice to show that v is k-irrelevant in G @ O for every O € O. For this purpose, fix
some O € O, and consider the iteration corresponding to this O. We need to show that (G’, k)
is a yes-instance if and only if (G’ —v, k) is a yes-instance. One direction is trivial: If (G’ k) is a
yes-instance, then (G’ — v, k) is a yes-instance. For the other direction, suppose that (G’ — v, k)
is a yes-instance. Let U* = V(G' —v) and Q* = {A C U* : G'[A] € F}. Then, (U*,Q* k) is a
yes-instance of d-HITTING SET. As v ¢ M, we have that U’ C U* and Q' C Q*. However, this
means that (U’, @', k) is also a yes-instance of d-HITTING SET. In turn, because (U, Q, k) and
(U', Q' k) are equivalent (see, for example, Theorem 2.26 [23]), we have that (U, Q, k) is also a
yes-instance of d-HITTING SET. Hence, (G', k) is a yes-instance. This completes the proof. [

We next handle the bounded treewidth case.
Lemma 8.23. There is a function fy, and an algorithm that given H € H, a t-boundaried
graph G, integers k,£ € N, and an equivalence class Q = (t*,{t*} C A C [t*], (21, - -, Zgp,1)))
such that the tw(G) < £, runs in time fy(k,£,t)n®1) and outputs a vertex subset S of size at

most k such that G — S belongs to an equivalence class which is at least as good as Q.

Proof sketch. Recall that RBPO(#H,t) = {P[H,t,1], P[H,t,2],---, P[H,t,q[H,t]]}. For sim-
plicity, let us denote H; = P[H,t,i] for all i € [q[H,t]]. Recall that a graph G’ belongs to an
equivalence class which is at least as good as @ if the following holds.

(i) max A(G") < t* and A(G') C A
(ii) For each i € ¢[H,t]], if z; =1 then G’ & H € H.

One can write a CMSO formula 11 such that a t-boundaried graph G’ satisfies the formula v; if
and only if the property (i) holds. Also, one can write a CMSO formula 15 such that G’ satisfies
the formula 15 if and only if G’ € H.

Here our objective is to test whether there are k vertices xi,...,x such that for each
i€ q[H,t]], (G® H;) — S satisfies ¢; and for each i € [¢[H,t]]] such that z; =1, (G® H;) — S
satisfies 19, where S = {x1,...,x}. We can write one CMSO formula for it. Towards that we

construct a graph
G = ((G D Hl) D HQ) .. ) &>, Hq[’H,t]]'

Then we will have free variables for each vertex subsets V(G), V(H1),...V(Hyjy)) and for
each edge subsets E(G), E(H1),... E(Hgpy). Then, each graph G @ H; is specified by four
free variables V(G),V (H;), E(G), and E(H;). Thus, our objective is to test the existence of a
vertex subset S C V(G*) of size k such that for each ¢, the subgraph G & H; satisfies ¢; and if
z; = 1, then it satisfies 1. Thus, it can be expressed using a CMSO formula 1. This formula
size is upper bounded by a function of k,¢ and H.

We know that tw(G) < £ and {H1, Ha, ..., Hyy } is a fixed finite set of graphs independent
of the input graph, we have that the tw(G*) is upper bounded by a function of k,¢,t and H.
Therefore the lemma follows from Courcelle’s Theorem [18]. O

We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. Consider H € H. Let f*,g* : N x N — N be the appropriate functions
based on H returned by Lemma 8.20, Observation 8.21 or Lemma 8.22. To prove the theorem, we
will use Theorem 7.2, together with the refinement of the equivalence class given in Definition 8.5,
the function ugy,, given in Definition 8.8, and the algorithm A we describe next. Our algorithm
A will take as input a ¢-boundaried graph G, where ¢t € I'(G), an integer k, and an equivalence
class Q € Q(=,,%), in time bounded by h(t, k) -nOW it will check if there is S C V(G) of size
at most k, such that G — S is in the equivalence class @', where ugy (Q', Q) = 1.
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If Lemma 8.20, Observation 8.21 or Lemma 8.22 concludes that the treewidth of G is bounded
by g*(t, k), then we resolve the instance using Lemma 8.23. Also, if using one of Lemma 8.20,
Observation 8.21 or Lemma 8.22 we are able to obtain the a set S of desired type does not
exists, the algorithm returns no. Otherwise, we have a boundaried (H,k)-irrelevant vertex
v € V(G), and we do the following: i) If v ¢ 6(G), we (recursively) solve the instance (G, k, Q);
ii) Otherwise, let Q' = ¢/, A’,Z’ be the equivalence class obtained from @ = (t*,A,Z), where
A = A\ Ag(v), t’ is the largest number in A’, and Z’ is the restriction of z to RBPO(H,t') C
RBPO(H,t*). We (recursively) solve the instance (G — {v},k,Q’). The correctness of the
algorithm follows from its description. Also, from Lemma 8.20, Observation 8.21, Lemma 8.22
and Lemma 8.23, we can obtain that the algorithm is uniform and it runs in time bounded by
h(t, k) - n®® for some function h: N x N — N. O

9 Conclusion

In this paper, we have shown that as far as the task of identifying the boundaries of tractability
in parameterized complexity is concerned, two recently popular hybrid sparameterizations that
combine solution size and width measures (H-elimination distance and H-treewidth) are effec-
tively only as powerful as the standard parameterization by the size of the modulator to H for
a host of commonly studied graph classes H. This is a surprising result, and one that unifies
several recent results in the literature. Moreover, using our main result, we have resolved several
open problems that were either stated explicitly or have naturally arisen in recent literature.
We have also developed a framework for cross-parameterization and demonstrated how this can
be applied to answer an open problem posed by Jansen et al. [48].

Hybrid parameterizations have been the subject of a flurry of interest in the last half-a-decade
and it would be interesting to identify new, algorithmically useful, hybrid parameterizations
that are provably stronger than existing ones. Further, as our characterization result gives
non-uniform algorithms, we have developed a framework to design uniform FPT algorithms to
compute elimination distance to H when H has certain properties. We have demonstrated that
these properties are fairly mild by showing a number of well-studied graph classes that possess
these properties.

We leave the following questions arising from our work as interesting future research direc-
tions.

e Is ELIMINATION DISTANCE TO H parameterized by twy(G) equivalent to the eight prob-
lems in Theorem 1.1 for hereditary, union-closed and CMSO definable H? We conjecture
that the answer is yes.

e Could one develop a framework to design uniform FPT algorithms for TREEWIDTH DE-
COMPOSITION TO H in the same spirit as our framework to design uniform FPT algorithms
for ELIMINATION DISTANCE TO H?

Finally, although we provide powerful classification tools, the fact still remains that twy(G) <
edy(G) < mody(G) and that each parameter could be arbitrarily smaller than the parameters
to its right. Thus, it is still an interesting direction of research to study VERTEX DELETION
TO H for specific classes ‘H parameterized by ed(G) and twy(G) and aim to optimize the
running time, in the spirit of Jansen et al [48].
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A Problem Definitions

CHORDAL VERTEX DELETION
Input: An undirected graph G, and a positive integer k.
Output: Does there exist a vertex subset S of size at most k such that G — .S is a chordal graph?

FEEDBACK VERTEX SET (FVS)
Input: An undirected graph G, and a positive integer k.
Output: Does there exist a vertex subset S of size at most k that intersects all cycles in G7

HiTTING SET

Input: A universe U, a family A of sets over U, and an integer k.

Output: Does there exist a set X C U of size at most k that has a nonempty intersection with
every element of A?

INTERVAL VERTEX DELETION
Input: An undirected graph G, and a positive integer k.
Output: Does there exist a vertex subset S of size at most k such that G—.S is an interval graph?

ODpD CYCLE TRANSVERSAL (OCT)
Input: An undirected graph G, and a positive integer k.

Output: Does there exist a vertex subset S of size at most k that intersects all odd cycles in
G?

MuTtiway CuT

Input: An undirected graph G, a vertex subset T, and a positive integer k.

Question: Does there exist a vertex subset S of size at most k£ such that each connected com-
ponent of G — S has at most one vertex of 17

PLANAR VERTEX DELETION
Input: An undirected graph G, and a positive integer k.
Output: Does there exist a vertex subset S of size at most k such that G — S is a planar graph?

SUBSET FEEDBACK VERTEX SET (SUBSET FVS)

Input: An undirected graph G, a vertex subset T, and a positive integer k.

Output: Does there exist a vertex subset S of size at most k that intersects all cycles containing
a vertex of 17

SUBSET ODD CYCLE TRANSVERSAL (SUBSET OCT)

Input: An undirected graph G, a vertex subset T', and a positive integer k.

Output: Does there exist a vertex subset S of size at most k that intersects all odd cycles
containing a vertex of 1?7

TOPOLOGICAL MINOR DELETION
Input: An undirected graph G, a family of undirected graphs F, and a positive integer k.
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Output: Does there exist a vertex subset S of size at most k£ such that G — S contains no graph

from H as a topological minor?

VERTEX COVER
Input: An undirected graph G, and a positive integer k.
Output: Does there exist a vertex subset S of size at most k£ such that G — S is edgeless?
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