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Abstract

Subexponential parameterized algorithms are known for a wide range of natural problems on planar graphs,
but the techniques are usually highly problem specific. The goal of this paper is to introduce a framework for

obtaining nO(
√
k) time algorithms for a family of graph modification problems that includes problems that can

be seen as generalized cycle hitting problems.

Our starting point is the Node Unique Label Cover problem (that is, given a CSP instance where each
constraint is a permutation of values on two variables, the task is to delete k variables to make the instance
satisfiable). We introduce a variant of the problem where k vertices have to be deleted such that every 2-
connected component of the remaining instance is satisfiable. Then we extend the problem with cardinality
constraints that restrict the number of times a certain value can be used (globally or within a 2-connected

component of the solution). We show that there is an nO(
√
k) time algorithm on planar graphs for any problem

that can be formulated this way, which includes a large number of well-studied problems, for example, Odd
Cycle Transversal, Subset Feedback Vertex Set, Group Feedback Vertex Set, Subset Group
Feedback Vertex Set, Vertex Multiway Cut, and Component Order Connectivity.

For those problems that admit appropriate (quasi)polynomial kernels (that increase the parameter only

linearly and preserve planarity), our results immediately imply 2O(
√
k·polylog(k)) · nO(1) time parameterized

algorithms on planar graphs. In particular, we use or adapt known kernelization results to obtain

2O(
√
k·polylog(k)) ·nO(1) time (randomized) algorithms for Vertex Multiway Cut, Group Feedback Vertex

Set, and Subset Feedback Vertex Set.

Our algorithms are designed with possible generalization to H-minor free graphs in mind. To obtain

the same nO(
√
k) time algorithms on H-minor free graphs, the only missing piece is the vertex version of a

contraction decomposition theorem that we currently have only for planar graphs.

1 Introduction

For most NP-hard graph problems, restriction to planar graphs does not seem to impact complexity: they
remain NP-hard. However, in many cases, planarity can be exploited to obtain improved algorithms compared
to what is possible for general graphs. In terms of approximability, polynomial-time approximation schemes
(PTAS) are known for the planar restrictions of many problems that are APX-hard (or worse) on general
graphs [2–8, 10, 12, 21, 27, 28, 34, 35]. Planarity can decrease also the exponential time needed to compute exact
solutions. The Exponential-Time Hypothesis (ETH) implies for many NP-hard problems that they cannot be
solved in time 2o(n) on n-vertex graphs. An n-vertex planar graph has treewidth O(

√
n) and there is a long list

of problems that can be solved in time 2Õ(t) · nO(1) on graphs with treewidth at most t (the Õ-notation hides

polylogarithmic factors). Putting together these two results gives 2Õ(
√
n) time algorithms on n-vertex planar

graphs. This form of running time can be considered essentially optimal, as usually it can be shown that no
2o(
√
n) time algorithm exists, assuming the ETH. Therefore, the appearance of the square root in the exponent is

the natural behavior of the running time for many problems.
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This “square root phenomenon” has been observed also in the context of parameterized problems: subex-

ponential running times of the form 2Õ(
√
k) · nO(1) and f(k) · nÕ(

√
k) are known for a wide range of prob-

lems, with matching lower bounds ruling out 2o(
√
k) · nO(1) and f(k) · no(

√
k) time algorithms, assuming the

ETH [11, 14, 23, 36, 37, 41–45]. The lower bounds usually follow a well-understood methodology: either they
can be obtained from known planar NP-hardness proofs or they are based on grid-like W[1]-hardness proofs
(see [13, Section 14.4.1]). On the other hand, there is no generic argument for obtaining subexponential running
times with the square root in the exponent. As treewidth can be much larger than the parameter k (representing
for example the size of the solution we are looking for), the fact that planar graphs have treewidth O(

√
n) does

not help us on its own. While there are certain algorithmic ideas that were used multiple times, the algorithms
are highly problem-specific and they do not give a general understanding of why planar parameterized problems
should have subexponential algorithms on planar graphs. In fact, there is an example of a natural problem,
Steiner Tree, which was shown not to have 2o(k) · nO(1) time algorithms on planar graphs, assuming the
ETH [43]. Thus we cannot take it for granted that every reasonable parameterized problem has subexponential
algorithms on planar graphs.

There is a set of basic problems for which we can obtain subexponential parameterized algorithms using an
argument called bidimensionality [15, 17, 18, 22, 24–26]. Let us consider for example the Feeback Vertex Set
problem, where given a graph G and an integer k, the task is to find a set Z of at most k vertices that hits all
the cycles, that is, G − Z is a forest. It is known that if a planar graph G has treewidth t, then G contains
an Ω(t) × Ω(t) grid minor, which shows that there are Ω(t2) vertex-disjoint cycles, requiring at least that many
vertices for the solution. Therefore, there is a constant c such that if G has treewidth at least c

√
k, then we can

safely answer “no”; otherwise, if treewidth is at most c
√
k, then a standard 2Õ(t) ·nO(1) treewidth based algorithm

achieves running time 2Õ(
√
k) · nO(1). There are a few other problems that can be handled by similar arguments

(for example, Independent Set, Dominating Set, Longest Path, Longest Cycle), but the technique is
not very robust and does not extend to most generalizations of the problems. Two well-studied generalizations
of Feedback Vertex Set are Odd Cycle Transversal (OCT, hit every cycle of odd length) and Subset
Feedback Vertex Set (SFVS, hit every cycle that contains at least one vertex of the terminal set T ). Now
a large grid minor does not imply an immediate answer to the problem: it could be that every cycle in the grid
minor is of even length or they do not contain any terminal vertices.

The main contribution of this paper is formulating a family of deletion-type problems and showing that each

such problem can be solved in time nO(
√
k) on planar graphs. Our original motivation comes from cycle-hitting

problems such as OCT and SFVS, but our framework is much wider than that: it also includes problems such as
Vertex Multiway Cut and Component Order Connectivity (where the task is to delete k vertices such
that every component has size at most t). A key feature of our framework is the ability to reason about problems
that are defined in terms of the 2-connected components of the graph G − Z resulting after the deletions. For
example, SFVS can be defined as saying that in G− Z every 2-connected component is either of size at most 2
or terminal free. Odd Subset Feedback Vertex Set, the common generalization of OCT and SFVS can be
defined as saying that every 2-connected component is either bipartite or terminal free. The most novel technical
ideas of our proofs are related to handling these constraints on 2-connected components.

It may look underwhelming that we are targeting running time nO(
√
k) for the above-mentioned problems:

after all, they are known to be fixed-parameter tractable, many of them with 2Õ(k) · nO(1) time algorithms,

hence the natural expectation is that they can be solved in time 2Õ(
√
k) · nO(1) on planar graphs. However,

let us observe that a polynomial kernelization together with an nO(
√
k) time algorithm delivers precisely this

running time. A polynomial kernelization of problem Π is a polynomial-time algorithm that, given an instance
x of Π with parameter k, produces an equivalent instance x′ of Π with parameter k′ such that |x′| = |k′|O(1)

and k′ = kO(1). In other words, the kernelization compresses the problem to a small instance x′ whose size is
polynomially bounded in the new parameter k′ (hence also in the original parameter k). We need two additional
properties of the kernelization for our applications. First, we require that the parameter be increased only linearly,
that is, k′ = O(k). Second, we need that if x is a planar instance, then x′ is also planar. In general, a kernelization
for a problem defined on general graphs does not need to keep planarity during the compression; therefore, we
need a kernelization for the planar version of the problem. If we perform such a kernelization and then we solve

the resulting instance (x′, k′) using our algorithm, then the running time is |x′|Õ(
√
k′) = kÕ(

√
k) = 2Õ(

√
k), plus the

polynomial running time of the kernelization. Thus our nO(
√
k) time algorithm can be seen as an important step
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towards obtaining subexponential FPT algorithms. As we shall see, for some problems the required kernelization
results already exist (or existing results can be adapted to preserve planarity), hence new subexponential FPT
algorithms follow from our work.

In order to appreciate our technical contributions, it is useful to take the following perspective. We can
classify the problems considered here into three groups, characterized by a distinctive set of tools required to
obtain subexponential FPT algorithms. Below we briefly highlight the technical tools that become relevant, and
then proceed with a more detailed explanation. The first technique is well known, for the second we need to put
together known pieces and extend them, and we use a significantly novel approach for the third technique.

• Technique 1: Bidimensionality. As explained above, for some problems (e.g., Feedback Vertex Set),
we can exploit the fact that the answer is trivial if there is a grid of size Ω(

√
k) × Ω(

√
k), hence we may

assume that treewidth is O(
√
k). Then a 2Õ(t) ·nO(1) algorithm on graphs of treewidth t gives an algorithm

with running time 2Õ(
√
k) · nO(1).

• Technique 2: Kernelization, contraction decomposition, guessing. A contraction decomposition
theorem can be ue used to find a set A that has intersection O(

√
k) with the solution Z. After guessing this

intersection A∩Z, we can remove it from the graph. We know that each component of A\Z is disjoint from
the solution and in some problems such as OCT, the component can be contracted and represented by a
single vertex (after appropriate modifications). If the contraction decomposition theorem ensures that the

contracted graph has treewidth O(
√
k), then the procedure involves guessing nO(

√
k) possibilities, followed

by a 2Õ(
√
k) ·nO(1) time treewidth algorithm. Together with a kernelization, this is sufficient for our purposes.

For edge-deletion problems, the required contraction decomposition theorems are readily available. While
the technique is simple and may be implicit in earlier work, our main technical contribution for this group
of problems is precisely formulating the required contraction decomposition theorem for vertex-deletion
problems and proving it for planar graphs.

• Technique 3: Guessing the 2-connected components. The technique of solving OCT sketched above
essentially relied on the assumption that if a set of edges is disjoint from the solution, then they can be
contracted and represented by a single vertex. For problems that are defined through the 2-connected
components of the remaining graph G − Z, it is not clear how such a contraction could be performed, as
it could significantly change the structure of 2-connected components. Nevertheless, our main contribution
for this group of problems is a way of making the approach via contraction work. If a connected set I of
vertices is disjoint from the solution Z, then the vertices of I are contained in some number of 2-connected
components of G − Z. We show that we can identify polynomially many possibilities for the union B of
all (but one) of these components. Then we can contract I to a vertex vI and implement the problem as
a binary constraint satisfaction (CSP) instance on the contract graph. The variable vI stores the correct
choice of this union B and constraints ensure that this choice is consistent with the 2-connected structure
of G− Z.

To formally state our main technical results, we need to introduce the framework of constraint satisfaction
problems (CSPs). A binary CSP (or 2-CSP) instance consists of a set X of variables, a domain D, and a set
of constraints on two variables. A constraint ((x1, x2), R) requires that in a satisfying assignment α : X → D,
we have (α(x1), α(x2)) ∈ R. We say that a relation R is a permutation if for every x ∈ D there is at most one
y1 ∈ D with (y1, x) ∈ R and at most one y2 ∈ D with (x, y2) ∈ R. Permutation CSP is an instance where every
relation is a permutation. Given a CSP instance the constraint graph or primal graph is the graph with vertex
set X where two vertices are adjacent if there is a constraint on them. With some abuse of notation, we often
identify the variables and constraints with the vertices and edges of the constraint graph, respectively.

The most basic question about CSP is satisfiability. Observe that this is trivial for a permutation CSP, as
the value of a variable uniquely determines the values of the neighboring variables. However, for unsatisfiable
instances, maximizing the number of satisfied constraints or minimizing the number of unsatisfied constraints is
still a non-trivial task. We can also define these optimization problems using the language of deletion problems,
which is more natural in our applications. In the (Perm) CSP Edge Deletion problem, we need to make
a (permutation) CSP instance satisfiable by removing at most k constraints. This problem is often called the
Unique Label Cover problem in the approximation algorithms literature [1, 32, 33, 40]. In (Perm) CSP
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Vertex Deletion, the instance needs to be made satisfiable by removing at most k variables (together with
all the constraints appearing on them); this problem is also called Node Unique Label Cover. Given a tree
decomposition of width at most t of the constraint graph, these CSP deletion problems can be solved in time
|D|O(t) ·nO(1) using standard dynamic programming techniques. This algorithm will be a basic tool in our results.

To express a wider range of problems, we augment the CSP deletion problems with size constraints. Let G
be the constraint graph and let Z be the set of edges or vertices that we delete from the instance. Let C be a
connected component of the constraint graph after the removal of Z. A size constraint may restrict the size of
such a component, or the number of certain types of vertices that appear in a component, or the number of times
certain values can appear in the component, etc. We define size constraints in the following very general way. Let
w : X ×D → N be a function and let q ∈ N. Then an assignment α : X → D satisfies the ≤-constraint (w, q) on
component C if

∑
x∈C w(x, α(x)) ≤ q. We say that the constraint is Q-bounded if q ≤ Q. A ≥-constraint (w, q)

is defined similarly. A CSP deletion instance can be augmented with more than one size constraint, in particular,
a ≤- and a ≥- constraint together can express equality.

Our first main technical result considers permutation CSP deletion problems and formalizes Technique 2
described above.

Theorem 1.1. Perm CSP Edge Deletion and Perm CSP Vertex Deletion with a set S of Q-bounded

≤- or ≥-constraints can be solved in time (|X|+ |D|+Q|S|)O(
√
k) if the constraint graph is planar.

By simple reductions, we can obtain the following corollaries as example applications:

Corollary 1.1. The following problems can be solved in time nO(
√
k) on planar graphs: OCT, Group

Feedback Vertex Set (where the group is part of the input), Vertex Multiway Cut with Undeletable
Terminals, Vertex Multiway Cut with Deletable Terminals, Component Order Connectivity
(where t is part of the input), and the edge-deletion versions of all these problems.

As mentioned earlier, if appropriate kernels are available, then Corollary 1.1 implies subexponential FPT
algorithms on planar graphs. In particular, the kernelization needs to preserve planarity, which is not necessarily
a goal in kernelization algorithms designed to work on general graphs. We use/adapt (quasi)polynomial
(randomized) kernels from the literature to obtain subexponential FPT algorithms for the following problems
(see Section 3.3 for more details):

Corollary 1.2. The following problems can be solved in randomized time 2Õ(
√
k) ·nO(1) on planar graphs: Odd

Cycle Transversal, Edge Multiway Cut, Vertex Multiway Cut, Group Feedback Vertex Set (for
a fixed group), Group Feedback Edge Set (where the size of the group is kO(1)).

Note that a subexponential FPT algorithm is known for OCT on planar graphs, but it uses more problem specific
arguments [41]. In particular, it is not based on a polynomial kernel for OCT, which was not known when [41]
was published.

Let us turn now our attention towards Technique 3, which allows us to handle problems defined by properties
of the 2-connected components of the graph. In order to model such problems, we introduce first the 2-connected
version of the permutation CSP deletion problem. In 2Conn Perm CSP Edge/Vertex Deletion, we need
to delete at most k constraints/variables such that the remaining instance is satisfiable on every 2-connected
component of the constraint graph. Note that even if every 2-connected component is satisfiable, this does
not mean that the whole instance is satisfiable: a cut vertex appearing in 2-connected components C1 and C2

may need to receive different values in satisfying assignments of the two components. Similarly to Perm CSP
Edge/Vertex Deletion, we augment the problem with size constraints, but now the constraints restrict the
value of

∑
v∈C w(v, α(v)) on each 2-connected component C and for technical reasons we allow only ≤-constraints.

The main technical result is the following:

Theorem 1.2. 2Conn Perm CSP Edge Deletion and 2Conn Perm CSP Vertex Deletion with a set S
of Q-bounded ≤-constraints can be solved in time O(|X|+ |D|+Q|S|)O(

√
k) if the constraint graph is planar.

Again by simple reductions, we can obtain the following corollaries:
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Corollary 1.3. The following problems can be solved in time nO(
√
k) on planar graphs: Subset Feedback

Vertex Set, Two Subset Feedback Vertex Set, Subset OCT, Subset Group Feedback Vertex Set
(where the group is part of the input), 2Conn Component Order Connectivity (where t is part of the input),
and the edge-deletion versions of all these problems.

We can adapt the Subset Feedback Vertex Set kernel of Hols and Kratsch [30] to preserve planarity, yielding
a subexponential FPT algorithm when combined with Corollary 1.3.

Theorem 1.3. Subset Feedback Vertex Set can be solved in randomized time 2Õ(
√
k) · nO(1) on planar

graphs.

Currently no polynomial kernel is known for Subset Odd Cycle Transversal. Note that this problem is a
common generalization of OCT and Subset Feedback Vertex Set. We could use such a (planarity preserving)
kernel and Corollary 1.3 to obtain a subexponential FPT algorithm for Subset Odd Cycle Transversal on
planar graphs, which would be a common generalization of the subexponential FPT algorithms for OCT and
Subset Feedback Vertex Set.

We would like to emphasize that our framework could be applied to a much wider range of problems than

those explicitly stated in Corollaries 1.1 and 1.3. For example, we obtain nO(
√
k) time algorithms on planar graphs

for problems of the type “delete k vertices such that every 2-connected component is either (1) bipartite or (2)
contains at most 3 red and at most 5 blue terminals.” A useful feature of our framework is that if two properties
can be expressed as the specified permutation CSP with size constraints, then the OR of the properties can be
expressed as well (by a permutation CSP on the union of the two domains) and also the AND of the properties
(by a permutation CSP on the product of the two domains). However, these results give subexponential FPT
algorithms only if suitable polynomial kernels are also available. Our work decouples the question of kernels
(which is an interesting question on its own right) from the question of obtaining subexponential running time in
planar graphs.

1.1 Technical Overview In this section, we give an intuitive overview of the main technical ideas for
subexponential FPT algorithms that will be developed in detail in later sections.

Bidimensionality. Earlier we briefly recalled how bidimensionality can be used to obtain subexponential
parameterized algorithms on planar graphs for some problems. As our results concern problems where
bidimensionality is not applicable, we do not want to elaborate further on this technique. The following
bidimensional problems are listed only to contrast them with later problems that do not have this property.

• Feedback Vertex Set (remove k vertices to make the graph acyclic). As we have seen, the existence of
a c
√
k × c

√
k grid implies that there is no solution of size k.

• Even Cycle Transversal (remove k vertices to destroy every even cycle). It can be shown that a
c
√
k × c

√
k grid contains k vertex-disjoint even cycles, hence implying that there is no solution of size k.

• ≥ `-Cycle Transversal (remove k vertices to destroy every cycle of length at least `). Again, for fixed
`, a c`

√
k × c`

√
k grid minor implies that there is no solution of size k,

• Component Order Connectivity (remove k vertices such that every component has size at most t).
For fixed t, a ct

√
k × ct

√
k grid minor implies that there is no solution of size k.

• 2Conn Component Order Connectivity (remove k vertices such that every 2-connected component
has size at most t). For fixed t, a ct

√
k × ct

√
k grid minor implies that there is no solution of size k.

We remark that if ` is part of the input, then ≥ `-Cycle Transversal is NP-hard even for k = 0, as it contains
the Hamiltonian Cycle problem. For (2Conn) Component Order Connectivity, if t is part of the input,
then it becomes W[1]-hard (see the full version for details), but our techniques show that they can be solved in

time nO(
√
k).

Edge-Deletion Problems. The edge-deletion version of OCT (delete k edges to make the graph bipartite,

also called Edge Bipartization) will be a convenient example to explain the main ideas behind the nO(
√
k) time

algorithm following from Technique 2. For the clean treatment of the problem, let us introduce the following two
minor extensions:
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Figure 1: Contracting the undeletable edge uv in the Edge Bipartization problem. The numbers on the edges
show their parity.

• The input contains a set U ⊆ E(G) of undeletable edges and the solution Z ⊆ E(G) has to be disjoint from
U .

• The edges are of two types, odd and even, and the task is to destroy every cycle whose total parity is odd.

Our first observation is that if we have an undeletable edge uv, then we can simplify the instance: let us remove
v, and for every edge vw, let us introduce an edge uw whose parity is the parity of uv plus the parity of vw (see
Figure 1). It is not difficult to observe that this does not change the problem: for any closed walk going through
u in the new graph, there is a corresponding closed walk with the same parity in the original graph.

The second key step is the use of the following contraction decomposition theorem:

Theorem 1.4. ( [19,20,34,35]) Let G be a planar graph and ` ≥ 1. In polynomial-time, we can find a partition
of the edge set E(G) = E1 ] E2 ] · · · ] E` such that, for every i ∈ [`], it holds that

tw
(
G/Ei

)
= O(`).

Let us invoke the algorithm of Theorem 1.4 with ` =
√
k and let Z ⊆ E(G) be a hypothetical solution of size at

most k. Then for some i ∈ [`], we have |Z ∩ Ei| ≤
√
k. Let us guess this value of i (we have

√
k possibilities)

and let us guess the set of edges Zi = Z ∩ Ei (we have nO(
√
k) possibilities). Now we can remove Zi from the

instance and mark every edge in Ei \Z as undeletable. Then, as described above, we can modify the instance by
contracting every edge in Ei \ Z. We argue that the resulting graph G′ = G/(Ei \ Z) has treewidth O(

√
k). By

Theorem 1.4, the graph G/Ei has treewidth O(
√
k) and G/Ei can be obtained from G/(Ei \ Zi) by |Zi| further

contractions. As contracting an edge can decrease treewidth only by at most 1 and |Zi| ≤
√
k, it follows that

tw(G/(Ei \Z)) has treewidth O(
√
k). Therefore, using known 2O(tw(G)) ·nO(1) time algorithms, we can solve the

resulting equivalent instance on G′ in time 2O(
√
k) · nO(1).

Vertex-Deletion Problems. We can try to handle vertex-deletion problems such as OCT in a similar way,
but we need to overcome some technical difficulties. Again, we can extend the problem with parities of the edges
and a set U ⊆ E(G) of undeletable edges, meaning that if uv ∈ U , then neither endpoint of uv can be deleted.
Then we would need a vertex-partition version of a contraction decomposition, where we contract each connected
component of a vertex set Vi into a single vertex (which is the same as saying that we contract every edge induced
by Vi).

Theorem 1.5. Let G be a planar graph and ` ≥ 1. In polynomial time, we can find a partition of the vertex set
V (G) = V1 ] V2 ] · · · ] V` such that, for every i ∈ [`], it holds that

tw
(
G/E(G[Vi])

)
= O(`).
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Figure 2: The 7 vertices of Z ∩ Vi split Vi into 12 segments.

Now we can proceed similarly as in the edge version: we guess an i where Zi := Vi ∩ Z has size at most√
k, guess Zi, and mark every edge in G[Vi \ Zi] as undeletable. Then we can again contract these edges and

arrive to an instance on G′ = G/E(G[Vi \Zi]). We would need to connect the treewidth of G′ with the treewidth
of G/E(G[Vi]), but this is not as obvious as in the edge-deletion case. We prove the following extension of
Theorem 1.5 that makes the connection apparent. Intuitively, we can think of Vi as collection of some kind of
nested layers (see Figure 2). Accordingly, we call each component I of Vi \ Z a segment.

Theorem 1.6. Let G be a planar graph and ` ≥ 1. In polynomial time, we can find a partition of the vertex set
V (G) = V1 ] V2 ] · · · ] V` such that, for every i ∈ [`] and every W ⊆ Vi, it holds that

tw
(
G/E(G[Vi \W ])

)
= O(`+ |W |).

This extended stronger bound on treewidth allows the algorithm to go through for the vertex-deletion case without
any difficulty. To make this formal, the following corollary combines Theorem 1.6 with the guessing of i and Vi∩Z.

Corollary 1.4. Let G be a planar graph and k ≥ 1. In time nO(
√
k), we can find a sequence V1, . . . , Vh ⊆ V (G)

of sets of vertices with h = nO(
√
k) such that for every Z ⊆ V (G) with |Z| ≤ k, the following holds for at least

one 1 ≤ i ≤ h:

1. Vi ∩ Z = ∅, and

2. tw(G/E(G[Vi])) = O(
√
k).

That is, by trying every Vi, we are guaranteed to find one that can be safely contracted (as it is disjoint from the
solution) and the contracted graph has treewidth O(

√
k).

Permutation CSPs. The arguments presented above can be generalized to every CSP deletion problem
with permutation constraints, that is, for Perm CSP Vertex Deletion. There are two problem-specific points
in the algorithm:

(1) We used a 2O(t) · nO(1) time algorithm on graphs of treewidth t.

(2) We need a way of contracting the vertices in a component C of undeletable edges to a single vertex.

Condition (1) certainly holds for permutation CSP deletion problems over a fixed domain D: using standard
dynamic programming techniques, we can find a minimum set of deletions that make the instance satisfiable. For
(2), let us observe that if C is a set of variables that are connected by an undeletable set of edges, then knowing
the value of any variable x ∈ C allows us to deduce the value of any other variable y ∈ C: the value of a variable
uniquely determines the value of all its neighbors. Therefore, we can represent all the variables in C by one of the
variables, say x, and every constraint involving some y ∈ C can be replaced by an equivalent constraint involving

x. Therefore, we get nO(
√
k) time algorithms for Perm CSP Edge/Vertex Deletion on planar graphs the

same way as we get such algorithms for Edge Bipartization and OCT.
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Size Constraints. Our goal is to extend the permutation CSP deletion problems with size constraints that
restrict the number of appearances of certain values in each connected component of G− Z. We need to check if
(1) and (2) above still holds if we extend the problem with a set S of ≤- or ≥-constraints, as defined earlier in
the introduction. For (1), it is routine to extend a dynamic programming algorithm over a tree decomposition to
enforce that a size constraint holds globally for G − Z. If there are |S| size constraints, and each size constraint
bounds a value up to Q, then this adds a factor of Q|S| overhead to the number of states of the dynamic
programming table. However, we need to ensure that the size constraints hold for each component separately,
and we cannot bound the number of components of G − Z. But from the viewpoint of dynamic programming,
all that matters is that in a tree decomposition of width t, every bag can intersect t + 1 of the components of
G− Z. Therefore, it is sufficient to extend the dynamic programming with counters that keep track of each size
constraint in at most t + 1 components. Therefore, the |S| size constraints add only a factor of QO(t|S|) to the
running time.

For (2), let us first observe that every variable of C is in the same component of G− Z. Therefore, knowing
the value of one variable in C allows us to tell how the variables of C contribute to the size constraint. Therefore,
when contracting C to a single representative vertex, we can define the size constraint on that variable in a way
that faithfully represents the contribution of C to the size constraints.

2-Connected Components. To explain Technique 3, let us consider for example the Subset Feedback
Vertex Set problem, where we require that every 2-component of G−Z be either of size at most 2, or terminal
free. Now if I is a segment of undeletable edges, then contracting I is highly problematic, as this could change
the 2-connected components of G − Z (see Figure 3). For example, in the figure the color of the rectangles
represent the 2-connected components where they belong, but after the contraction of I it is no longer possible to
recover that rectangles of different color are supposed to be in different 2-connected components. Nevertheless,
we manage to do the seemingly impossible: given a set Vi of Corollary 1.4, we represent the problem as a CSP
instance whose constraint graph is G/E(G[Vi]) and hence has treewidth O(

√
k).

A key idea in our handling of this issue is that guessing of a small number of vertices allows us to recover all
(but one) of the 2-connected components visited by I in G−Z. For example, in the figure, if we know that a, b, c
are precisely the vertices of Z that are adjacent to these components, and u, v, w are precisely the cut vertices
where these components are connected to the rest of the graph, then this information is sufficient to recover
all the 2-connected components visited by I in G − Z. If we can argue that there is only a constant number
of such vertices that are important to localizing the 2-connected components, then there is only polynomially
many possibilities for the 2-connected components where I appears in G − Z. Our main technical contribution
is showing that (after some preprocessing and careful choice of Vi in Theorem 1.6), we may assume that indeed
there is only a constant number of such vertices for every segment I of Vi \ Z.

Let us make these ideas more formal. Let us consider the decomposition of G−Z into 2-connected components;
we may assume that this is a rooted decomposition (see Figure 4). Let I be a set of vertices such that G[I] is
connected, and let us consider the 2-connected components that contain at least one vertex of I. There is a unique
such component closest to the root, which we call the root r(I) of I. The union of the vertices of every other
2-connected component intersected by I is called the body B(I) of I (it is possible that B(I) = ∅). Note that a
2-connected component of G − Z can be the root of multiple segments, can be both the root of some segment
and the body of some other, but it can be in the body of only a single component: if a 2-connected component C
is in the body of I, then I contains the vertex of C joining it with the parent component. The following lemma
can be seen as an extension of Corollary 1.4: for each Vi, we also produce a collection Bi of sets that are possible
candidates for the bodies of the components of G[Vi].

Lemma 1.1. Given a planar graph and an integer k, we can compute in time nO(
√
k) a sequence

(V1,B1), . . . , (Vh,Bh) with h = nO(
√
k), where Vi ⊆ V (G) and Bi contains nO(1) sets of vertices, such that the

following holds. For every Z ⊆ V (G) with |Z| ≤ k, there is at least one 1 ≤ i ≤ h such that

1. Vi ∩ Z = ∅,

2. tw(G/E(G[Vi])) = O(
√
k), and

3. for every component I of G[Vi], the body of I in G− Z is a set from Bi.

We remark that it seems unavoidable that only the body of I appears in Lemma 1.1 and not the union of every
2-connected component visited by I. The reason is that it may happen that G− Z is 2-connected, in which case
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Figure 3: Top: After removing Z = {a, b, c}, segment I is contained in 5 different 2-connected components of
G − Z, as shown by the colors. Cut vertices are circled black dots. In particular, cut vertices u, v, w connect
the 2-connected components visited by I to the rest of the graph. Bottom: After contracting I, it is no longer
possible to recognize these 2-connected components.

some collection Bi would need to contain precisely the set V (G) \ Z. But it is certainly easy to construct an
instance that has nO(k) solutions Z for which G−Z is 2-connected. For such an instance, the output of Lemma 1.1
would need to contain all these nO(k) sets. The definition of body avoids this issue: if G−Z is 2-connected, then
the body of I is empty.

Representing a Hypothetical Solution. With Lemma 1.1 at hand, we can translate a 2Conn Perm
CSP Vertex Deletion instance to a CSP deletion problem the following way. We invoke Lemma 1.1, and try
every 1 ≤ i ≤ h. For a fixed i, we define a CSP instance whose constraint graph is G′ = tw(G/E(G[Vi])). We may
assume that every set B ∈ Bi has the property that every 2-connected component induced by B is satisfiable in
the permutation CSP instance: if not, then this B cannot be the body of any segment in the solution G−Z. Let
us consider a hypothetical solution G−Z, the decomposition of G−Z into 2-connected components, and satisfying
assignments of the permutation CSP instances induced by each 2-connected component of G − Z. We describe
how the variables can represent this solution. If variable vI corresponds to the contraction of some component I
of G[Vi], then it needs to store the following pieces of information:

• the value of one of the variables in r(I) ∩ I in a satisfying assignment of r(I) (which also determines the
value of every other variable in r(I) ∩ I), and

• the body B ∈ Bi of I in the hypothetical solution Z that we are looking for.

Note that vI does not contain any information about the values of the variables of I outside r(I). However, this
information is not necessary if the guess of the body B is correct: by our assumption on Bi, every 2-connected
component induced by B is satisfiable in the permutation CSP. It is the job of the variables corresponding to the
vertices of B\I to enforce that the guess of vI about the body B is correct. This is only possible if the information
stored at a variable v ∈ B \ I is sufficient to determine whether v is in the same 2-connected component as a
segment I, or more precisely, whether v is in the body of I. Therefore, if v 6∈ Vi, then v stores the following pieces
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Figure 4: The rooted decomposition of the 2-connected components of G−Z with 6 segments (shown by colored
lines). The shading shows the bodies of the segments, the root components are shown by highlighted boundaries.

of information:

• The value of v in the satisfying assignment of the 2-connected component where v appears.1

• The segment I whose body contains v (if exists).

• The body B of this segment I (if exists).

• The cut vertex that joins the 2-connected component of v to its parent component.

• The level of the 2-connected component of v in the rooted decomposition into 2-connected components.

We show that if the variables store all this information, then binary constraints can ensure that the stored
information consistently describe the 2-connected structure of the instance and ensure the correctness of the
hypothetical solution Z. Therefore, we can solve the 2Conn Perm CSP Vertex Deletion instance by checking
whether the constructed CSP instance can be made satisfiable by the removal of k variables. As the primal graph

of this instance is G/E(G[Vi]), Lemma 1.1 guarantees that it has treewidth O(
√
k), leading to an nO(

√
k) time

algorithm.
There is a technical detail, which will become important when introducing size constraints. We said that the

values of the variables in the CSP instance describe a decomposition of G − Z into 2-connected components.
However, this decomposition may be coarser than the actual decomposition into 2-connected components.
Fortunately, this does not cause any problem for 2Conn Perm CSP Vertex Deletion: if the instance is
satisfiable on every component of the coarser decomposition, then it follows that it is satisfiable on every subset
of each such component.

1This is not well defined for cut vertices, which appear in more than one 2-connected component. Further tricks are needed to
handle the value of cut vertices.
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Figure 5: (a) A set X of vertices that is disjoint from the solution. (b) Torso: removing X and adding a clique
on N(X). (c) Contract to Undeletable: set X is contracted to a single undeletable vertex.

Size Constraints for 2-Connected Components. In the 2Conn Perm CSP Vertex Deletion
problem, we want to introduce size constraints that restrict the appearance of the values in each 2-connected
component. Given that the CSP instance constructed above can identify the 2-connected components of G− Z,
we can augment the dynamic programming algorithm for CSP deletion with size constraints on the 2-connected
components. The technical issue mentioned in the previous paragraph does not matter for ≤-constraints: if such
constraints are satisfied for a superset of a 2-connected component, then they are satisfied for the component
as well. However, because of this issue, we cannot introduce ≥-constraints 2Conn Perm CSP Vertex

Deletion. In particular, we do not have an nO(
√
k) time algorithm for the version of 2Conn Component

Order Connectivity where each 2-connected component has to be of size exactly t, with t being part of the
input.

Kernelization. There is a somewhat counterintuitive phenomenon when considering kernelization algorithms
for restricted graph classes. Even though problem Planar Π is a special case of problem Π, a polynomial
kernelization for Π does not imply a polynomial kernelization for Planar Π. The reason is that a kernelization
algorithm for general graphs need not produce a planar output when the input is planar, thus it does not necessarily
produce an instance of Planar Π.

There is a particular kernelization step, which we call Mark and Torso, that was used for many of the
problems considered in the paper. Unfortunately, this step can ruin planarity (see Figure 5). Given a set X
that is guaranteed to be disjoint from the solution, we put a clique on N(X) and remove X from the graph.
Intuitively, we introduce all possible shortcuts for the paths that could go through X, which means that X is
no longer necessary in the graph. Clearly, adding a large clique ruins planarity. To obtain planarity-preserving
kernels, we replace Torso with what we call Contract to Undeletable: we contract X to a single vertex and mark
it undeletable. This step also retains every path going through X, but leaves a somewhat larger graph. However,
after some processing (removing vertices with the same neighborhood), we can prove a combinatorial bound
showing that in planar graphs (and more generally, in H-minor-free graphs) the number of such undeletable
vertices that we introduce is polynomial in the size of the rest of the graph.

A minor technical issue is that this technique requires that we can mark vertices as undeletable in the
output instance, but some of the known kernelization algorithms do not work if we extend the input with
undeletable vertices. This does not cause a problem for our algorithmic applications, but it means that some of
the kernelization results should be stated as a compression into the problem extended with undeletable vertices
(see Section 3.3 for details).

There are additional adaptations that need to be done, and additional results that we use from the literature,
which we only briefly highlight here.

• In the Subset FVS kernel of Hols and Kratsch [30], there is another step beyond Mark and Torso that
does not preserve planarity. We need to carefully redo that part using different arguments that use and
preserve planarity.

• For Group Feedback Vertex Set, contracting X to a single vertex and bounding the number of such
vertices is more complicated, as we have to take into account the group elements on the edges.

• The recent work of Wahlström [49] provides quasipolynomial kernels (which is suitable for our applications),
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but only for edge-deletion problems.

• The work of Jansen et al. [31] provides deterministic kernels, but only for planar graphs and no generalization
is known for H-minor-free graphs.

Extension to H-Minor-Free Graphs. Graphs excluding a fixed graph H as a minor are often considered
to be a generalization of planar and bounded-genus graphs [16, 19]. Indeed, many of the good algorithmic and
combinatorial properties of planar graphs appear to be generalizable to H-minor-free graphs for every fixed H:
the Graph Minors Structure Theorem of Roberston and Seymour [47] provides a roadmap for proving such results.

While results for H-minor-free graphs are (understandably) more complicated to prove than for planar graphs,
often the increase of complexity is hidden in “black box” results that can be used as convenient tools. Therefore,
in addition to increasing the generality of the result, there is another potential motivation for the generalization to
H-minor-free graphs: to develop cleaner and more robust arguments. Arguments about planar graphs typically
rely on topological intuition, which can be misleading and formal proofs require very careful treatment of all
possible situations. On the other hand, if an argument for H-minor-free graphs only uses some black box results,
then it can be actually simpler than its planar counterpart and could reveal better the nature of the problem.

With this goal in mind, we developed our results in a way that would work also for H-minor-free graphs.
The only point where we use specific geometric properties of planar graphs is in the proof of Theorem 1.6 and
indeed the only missing piece is the generalization of Theorem 1.6 to H-minor-free graphs. For the edge partition
version, such a generalization is known:

Theorem 1.7. (Demaine et al. [19]) For every fixed H, there is a cH > 0 such that the following holds.
Let G be an H-minor-free graph and ` ≥ 1. In polynomial time, we can find a partition of the edge set
E(G) = E1 ] E2 ] · · · ] E` such that, for every i ∈ [`], it holds that

tw
(
G/Ei

)
= cH · `.

This allows us to generalize for example the edge-deletion version of Theorem 1.1 to H-minor-free graphs.
However, we need the vertex partition version of Theorem 1.7 for two reasons: to handle vertex-deletion problems
and to handle the 2-connected versions of the problems (where the cut vertices make it necessary to work with
a vertex partition, even in the edge-deletion version). We formulate as a conjecture that Theorem 1.6 can be
generalized in a similar way to H-minor-free graphs.

Conjecture 1.1. For every fixed H, there is a cH > 0 such that the following holds. Let G be an H-minor-free
graph and ` ≥ 1. In polynomial time, we can find a partition of the vertex set V (G) = V1 ]V2 ] · · · ]V` such that,
for every i ∈ [`] and every W ⊆ Vi, it holds that

tw
(
G/E(G[Vi \W ])

)
= cH · (`+ |W |).

It is likely that the techniques in the proof of Theorem 1.7, together with additional ideas from the proof of
Theorem 1.6 could lead to a proof of Conjecture 1.1. However, this would require going into the details of the
proof of Theorem 1.7 (see [19]), carefully checking and adapting every step to the vertex-partition case, which
is beyond the scope of this paper. Therefore, in the rest of the paper, we point out whenever a result can be
generalized to H-minor-free graphs assuming Conjecture 1.1. We also make it clear which of the kernelization
results keep not only planarity, but H-minor-freeness as well.

1.2 Organization The paper is organized as follows. Section 2 introduces basic notions related to graph theory,
parameterized algorithms, and CSPs. Section 3 formally defines the problems considered in the paper, states our
results for the technical CSP problems, and briefly goes through problems of interest that can be reduced to these
technical problems. Additionally, we state the kernelization results known from the literature or adapted in this
paper, and obtain subexponential FPT algorithms as corollaries.

The next two sections provide technical details of our results. In Section 4, we prove our results on contraction
decompositions by partitioning the vertices (Theorem 1.6) and the guessing of the bodies of the segments
(Lemma 1.1). Section 5 first presents a dynamic programming algorithm for CSP deletion with size constraints
on graphs of bounded treewidth. Then we show how to use this tool to obtain the algorithms for (2Conn) Perm
CSP Edge/Vertex Deletion.
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2 Preliminaries

2.1 Basics We use N = {0, 1, 2, 3, . . . } to denote the natural numbers starting from 0. For a positive integer
q, we denote the set {1, 2, . . . , q} by [q].

In this article, we consider simple graphs with a finite number of vertices. For an undirected graph G, sets
V (G) and E(G) denote its set of vertices and edges, respectively. Unless otherwise specified, we use n to denote
the number of vertices of the input graph G. We denote an edge e with two endpoints u, v as e = uv. Two
vertices u, v in V (G) are adjacent to each other if uv ∈ E(G). The open neighborhood of a vertex v, denoted by
NG(v), is the set of vertices adjacent to v and its degree degG(v) is |NG(v)|. The closed neighborhood of a vertex
v, denoted by NG[v], is the set N(v) ∪ {v}. We omit the subscript in the notation for neighborhood and degree
if the graph under consideration is clear. For S ⊆ V (G), we define N [S] =

⋃
v∈S N [v] and N(S) = N [S] \ S.

For S ⊆ V (G), we denote the graph obtained by deleting S from G by G−S and the subgraph of G induced
on the set S by G[S]. For two subsets S1, S2 ⊆ V (G), the set E(S1, S2) denotes the edges with one endpoint in
S1 and another one in S2. We say S1, S2 are adjacent if E(S1, S2) 6= ∅. For a subset F ⊆ E(G) of edges we write
V (F ) to denote the collection of endpoints of edges in F . The subgraph of G with V (F ) as its set of vertices and
F as its set of edges is denoted by G[F ].

A set of vertices S ⊆ V (G) is said to be an independent set in G if no two vertices in S are adjacent to each
other. A set of vertices S is a vertex cover of G if V (G) \S is an independent set in G. A tree-decomposition of a
graph G is a pair (T, β) where T is a tree and β : V (T )→ 2V (G) such that (i)

⋃
t∈V (T ) β(t) = V (G), (ii) for every

edge uv ∈ E(G) there is a t ∈ V (T ) such that {u, v} ⊆ β(t), and (iii) for every vertex v ∈ V (G) the subgraph of
T induced by the set {t | v ∈ β(t)} is connected. The width of a tree decomposition is maxt∈V (T ){|β(t)| − 1} and
the treewidth of G, denoted by tw(G), is the minimum width over all tree decompositions of G.

For a tree decomposition (T, β) we distinguish one vertex r of T which will be the root of T . This introduces
natural parent-child and ancestor-descendant relations in the tree T .

A path P = (v1, . . . , v`) is a sequence of distinct vertices such that any pair of consecutive vertices are adjacent
with each other. The vertex set of P , denoted by V (P ), is the set {v1, . . . , v`}. The vertices v1 and v` are called
endpoints of the path whereas the other vertices in V (P ) are called internal vertices. For two vertices u, v ∈ V (G),
we use distG(u, v) to denote the length of the shortest path with endpoints u, v. A cycle C = (v1, . . . , v`) is a
sequence of distinct vertices such that any pair of consecutive vertices and v1, v` are adjacent with each other. A
graph is connected if there is a path between every pair of its vertices and it is disconnected otherwise. A subset
S of V (G) is a connected set of vertices if G[S] is connected. A connected component of a graph G is a maximal
connected set of vertices. A cut vertex of a graph G is a vertex v such that the number of connected components
of G − {v} is strictly larger than that of G. A connected graph that has no cut vertex is called 2-connected. A
2-connected component of G is a maximal subset C ⊆ V G(G) such that G[C] is 2-connected.

2.2 Planar Graphs and Minors A planar graph is a graph that can be embedded in the Euclidean plane,
that is, there exists a mapping from every vertex to a point on a plane, and from every edge to a plane curve on
that plane, such that the extreme points of each curve are the points mapped to the endpoints of the corresponding
edge, and all curves are disjoint except on their extreme points. A plane graph G is a planar graph with a fixed
embedding. Its faces are the regions bounded by the edges, including the outer infinitely large region.

The contraction of an edge uv in G deletes vertices u and v from G, and adds a new vertex which is adjacent
to vertices that were adjacent to u or v. This process does not introduce self-loops or parallel edges. The resulting
graph is denoted by G/e. For F ⊆ E(G), the graph G/F denotes the graph obtained from G by contracting each
connected component in the subgraph G[F ] to a vertex. Similarly, for S ⊆ V (G), the graph G/S denotes the
graph obtained from G by contracting each connected component in the subgraph G[S] to a vertex.

A graph H obtained by a sequence of such edge contractions starting from G is said to be a contraction of
G. A graph H is a minor of G if H is a subgraph of some contraction of G. For a graph H, a graph G is said to
be H-minor-free if G can not be contracted to H. We use the following result about H-minor-free graphs.

Theorem 2.1. (Kostochka [38], Thomason [48]) Let G be an H-minor-free graph. Then there is a constant
dH such that ∑

v∈V (G)

degG(v) ≤ dH |V (G)|.

Moreover, one can choose dH = O(h
√

log h) where h denotes the number of vertices of H.
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2.3 Parameterized Algorithms and Kernelization An instance of a parameterized problem is of the form
(I; k) where I is an instance of a (classical) decision problem and k ∈ N is the parameter. A parameterized
problem is said to be fixed parameter tractable (FPT) if there exists an algorithm A, a computable function f ,
and a constant c such that, given any instance (I; k) of the parameterized problem, the algorithm A correctly
decides whether (I; k) is a Yes-instance in time O(f(k)|I|c). An accompanying theory of hardness can be used
to identify parameterized problems that are unlikely to admit FPT algorithms. For the purpose of this article, we
call the class of such problems as W[1]-Hard.

Instances (I; k) and (I ′; k′) of a parameterized problem are equivalent if (I; k) is a Yes-instance if and only if
(I ′; k′) is a Yes-instance. A compression for a parameterized problem is an algorithm B that, given an instance
(I, k) of the problem, works in time O((|I|+ k)c) (for some constant c) and returns an equivalent instance (I ′, k′)
of some problem. A compression is said to be a kernel if (I ′, k′) is an instance of the same problem. If there exists
a computable function g such that size of an output obtained by algorithm B for (I, k) is at most g(k), we say
that problem admits a compression of size g(k). If g(k) is a polynomial function, then we say the problem admits
a polynomial compression. If g(k) = kpolylog(k), then we say the problem admits a quasipolynomial compression.
Consider the parameterized problems whose input contains a graph. We say a compression is minor-preserving
if the graph in the reduced instance (I ′, k′) is H-minor-free whenever the graph in the input instance (I, k) is
H-minor-free. We define similar notion for kernels.

We refer readers to [13] for a detailed exposition on the subject.

2.4 Constraint Satisfaction Problems A CSP-instance is a tuple Γ = (X,D, C) where X is a finite set
of variables, D is a finite domain, and C is a set of constraints c = ((x1, . . . , xa(c)), R) where x1, . . . , xa(c) ∈ X
and R ⊆ Da(c). We refer to a(c) as the arity of constraint c. An assignment α : X → D satisfies a constraint
c = ((x1, . . . , xa(c)), R) ∈ C if (α(x1), . . . , α(xa(c))) ∈ R. If α does not satisfy c, then we say that α violates c. An
assignment α : X → D satisfies Γ if it satisfies every constraint c ∈ C. The instance Γ is satisfiable if there is a
satisfying assignment.

We say that a CSP-instance Γ = (X,D, C) is binary if a(c) ≤ 2 for all c ∈ C. In the remainder of this work,
we restrict ourselves to binary CSP-instances. Let c ∈ C be a constraint. We call c a unary constraint if a(c) = 1
and a binary constraint if a(c) = 2. A binary constraint c = ((x1, x2), R) ∈ C is called a permutation constraint
if for every a ∈ D it holds that |{b ∈ D | (a, b) ∈ R}| ≤ 1 and |{b ∈ D | (b, a) ∈ R}| ≤ 1. A binary CSP-instance
is called is Permutation-CSP-instance if every binary constraint is a permutation constraint.

Let Γ = (X,D, C) be a binary CSP-instance. The constraint graph of Γ is defined as the graph G(Γ) with
vertex set V (G(Γ)) := X and edge set

E(G(Γ)) := {xy | ((x, y), R) ∈ C}.

Let Y ⊆ X be a subset of the variables. We define Γ[Y ] := (Y,D, C[Y ]) to be the induced subinstance of Γ
where C[Y ] contains all constraints c = ((x1, . . . , xa(c)), R) ∈ C such that xi ∈ Y for all i ∈ [a(c)]. Observe
that G(Γ[Y ]) = (G(Γ))[Y ]. Also, for F ⊆ E(G(Γ)), we define C[F ] to be the set of all binary constraints
c = ((x1, x2), R) ∈ C such that x1x2 ∈ F . Moreover, we define C − F := C \ C[F ] and Γ− F := (X,D, C − F ).

3 Permutation CSPs with Size Constraints

3.1 Problem Definitions In this work, we shall be interested in vertex- and edge-deletion problems on
Permutation-CSP-instances. In the following, we formally define the problems on CSP-instances and state the
main algorithmic results on planar input instances (more details on the algorithms are given in Section 5). Then,
we demonstrate the wide applicability of these problems by reducing various well-known cycle hitting problems
to the defined problems on Permutation-CSP-instances. Finally, we list several kernelization results which, in
combination with our algorithmic results for vertex- and edge deletion problems on Permutation-CSP-instances,
lead to various subexponential parameterized algorithms for certain cycle hitting problems on planar graphs.

The Basic Edge-Deletion Problem. We start by considering the basic edge deletion problem for
Permutation-CSPs.
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Perm CSP Edge Deletion Parameter: k
Input: A Permutation-CSP-instance Γ = (X,D, C), a set of undeletable edges U ⊆ E(G(Γ)), and an integer
k
Question: Is there a set Z ⊆ E(G(Γ)) \ U such that |Z| ≤ k and Γ− Z := (X,D, C − Z) is satisfiable?

In this work, we are only interested in CSP-instances Γ where G(Γ) satisfies a certain property. We call a
binary CSP-instance Γ planar if the graph G(Γ) is planar. Similarly, a binary CSP-instance Γ is H-minor-free if
G(Γ) is H-minor-free. This allows to define the problems Planar Perm CSP Edge Deletion and H-Minor-
Free Perm CSP Edge Deletion where we restrict ourselves to input CSP-instances Γ that are planar or
H-minor-free. We remark here that we follow similar naming conventions for other vertex- and edge deletion
problems without explicitly defining them.

The next theorem is essentially a simple consequence of the contraction decompositions for H-minor-free
graphs due to Demaine et al. [19]. Still, in combination with recent kernelization results due to Wahlström [49],
it already leads to improved FPT algorithms for certain edge deletion problems on H-minor-free graphs.

Theorem 3.1. There is an algorithm solving H-Minor-Free Perm CSP Edge Deletion in time (|X| +
|D|)O(cH

√
k) where cH is a constant depending only on H.

Size Constraints for Connected Components. Next, we turn our attention to vertex-deletion problems.
To increase the applicability of our results, we also extend the CSP-instances with certain size constraints. In
this section, we focus on size constraints that bound the total weight of a connected component (after removing
the solution).

Let Γ = (X,D, C) be a binary CSP instance. A 1cc-size constraint is a triple (w, q, op) where w : X ×D → N
is a weight function, q ∈ N, and op ∈ {≤,≥}. An assignment α : X → D satisfies (w, q, op) on Γ if(∑

v∈C
w(v, α(v)), q

)
∈ op

for every connected component C of G(Γ). (Here, (p, q) ∈≤ if q ≤ p and (p, q) ∈≥ if q ≥ p.)
A Permutation-CSP-instance with 1cc-size constraints is a pair (Γ,S) where Γ = (X,D, C) is a Permutation-

CSP-instance and S is a set of 1cc-size constraints. We say that (Γ,S) is satisfiable if there is an assignment
α : X → D which satisfies Γ as well as every constraint (w, q, op) ∈ S on Γ. Also, we define

‖S‖ :=
∏

(w,q,op)∈S

(2 + q).

Perm CSP Vertex Deletion with Size Constraints Parameter: k
Input: A Permutation-CSP-instance with 1cc-size constraints (Γ,S) with Γ = (X,D, C), a set of undeletable
variables U ⊆ X, and an integer k.
Question: Is there a set Z ⊆ X \ U such that |Z| ≤ k and (Γ[X \ Z],S) is satisfiable?

Theorem 3.2. There is an algorithm solving Planar Perm CSP Vertex Deletion with Size Constraints

in time (|X|+ |D|+ ‖S‖)O(
√
k).

Satisfiable 2-Connected Components. Next, we state the corresponding problems and results for 2-
connected components.

Let Γ = (X,D, C) be a binary CSP instance. A 2cc-size constraint is a pair (w, q) where w : X ×D → N is a
weight function, and q ∈ N. Let W ⊆ X. An assignment α : W → D satisfies (w, q) on W if∑

v∈W
w(v, α(v)) ≤ q.

Observe that, in comparison to 1cc-size constraints, we only allow to check for upper bounds on the weighted size
of a set W ⊆ X.
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A Permutation-CSP-instance with 2cc-size constraints is a pair (Γ,S) where Γ = (X,D, C) is a Permutation-
CSP-instance and S is a set of 2cc-size constraints. For W ⊆ X, we say that (Γ,S) is satisfiable on W if there is
an assignment α : W → D that satisfies Γ[W ] as well as all 2cc-size constraints (w, q) ∈ S on W . As before, we
define

‖S‖ :=
∏

(w,q,op)∈S

(2 + q).

2Conn Perm CSP Vertex Deletion with Size Constraints Parameter: k
Input: A Permutation-CSP-instance with 2cc-size constraints (Γ,S) with Γ = (X,D, C), a set of undeletable
variables U ⊆ X, and an integer k.
Question: Is there a set Z ⊆ X \ U such that |Z| ≤ k and (Γ,S) is satisfiable on W for every 2-connected
component W of the graph G(Γ[X \ Z]).

Theorem 3.3. There is an algorithm solving Planar 2Conn Perm CSP Vertex Deletion with Size

Constraints in time (|X|+ |D|+ ‖S‖)O(
√
k).

3.2 Reductions Next, we list several standard vertex and edge deletion problems can be interpreted as special
cases of the problems discussed above. In all the cases, the constraint graph of the CSP-instance we construct is
the same as the input graph for the problem in question. In particular, restrictions of the input graph immediately
translate to corresponding restrictions of the constructed CSP instance. Also, if the problem in question marks
certain vertices as undeletable, this immediately translates to a set of undeletable variables in the CSP instance.
Here, we only focus on vertex deletion problems. However, the edge deletion versions of all problems naturally
translate to the edge deletion versions of the CSP problems.

We start by covering some problems that can be reduced to Perm CSP Vertex Deletion with Size
Constraints (more details on the reductions can be found in the full version). We first consider some problems
where the size constraints are not required to build the reduction. We start with the problem of eliminating all
odd cycles in a graph.

Odd Cycle Transversal (OCT) Parameter: k
Input: A graph G, and an integer k
Question: Does there exist a set Z ⊆ V (G) of size at most k that hits all odd cycles, i.e., G−Z is bipartite?

This problem can be translated into a Permutation-CSP-instance Γ = (X,D, C) with

• X := V (G),

• D := {0, 1}, and

• binary constraints ((v, w), R6=) for all vw ∈ E(G) where R6= := {(0, 1), (1, 0)}.

It is easy to verify that Z ⊆ V (G) is a solution for (G, k) if and only if Z is a solution for (Γ, k).

More generally, the same approach can be used to reduce Group Feedback Vertex Set to Perm CSP
Vertex Deletion with Size Constraints. Let Σ be a group. A Σ-labeled graph is a pair (G,λ) where G is a
graph and λ : {(v, w), (w, v) | vw ∈ E(G)} → Σ is a mapping satisfying λ(v, w) = (λ(w, v))−1 for all vw ∈ E(G).
A cycle C = (v1, . . . , v`) is a non-null cycle if λ(C) := λ(v1, v2)λ(v2, v3) . . . λ(v`−1, v`)λ(v`, v1) 6= 1Σ where 1Σ

denotes the identity element of Σ (this notion is well-defined; see [29]).

Group Feedback Vertex Set (Group FVS) Parameter: k
Input: A Σ-labeled graph G, and an integer k
Question: Does there exist a set Z ⊆ V (G) of size at most k that hits all non-null cycles?

Next, we consider two problems where the reductions use the size constraints.

Vertex Multiway Cut Parameter: k
Input: A graph G, a set T ⊆ V (G), and an integer k
Question: Does there exist a set Z ⊆ V (G) \T of size at most k such that all vertices from T lie in different
connected components of G− Z?
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Consider the instance (Γ,S, U) with Γ = (X,D,C) and

• X := V (G),

• D := {~},

• binary constraints ((v, w), {(~,~)}) for all vw ∈ E(G),

• U := T is the set of undeletable variables, and

• S = {(w, 1,≤)} where w : X × D → N is defined via w(v,~) = 1 for all v ∈ T , and w(v,~) = 0 for all
v ∈ V (G) \ T .

Again, it is easy to verify that Z is a Vertex Multiway Cut solution for (G,T, k) if and only if Z is a solution
for (Γ,S, U, k).

A second example is the problem Component Order Connectivity.

Component Order Connectivity Parameter: k
Input: A graph G and integers k, t
Question: Does there exist a set Z ⊆ V (G) of size at most k such that |C| ≤ t for every connected component
C of G− Z?

Next, we turn to problems that can be reduced to 2Conn Perm CSP Vertex Deletion with Size
Constraints. The first example is the Subset Feedback Vertex Set problem which asks to eliminate all
cycles visiting a terminal vertex t ∈ T in a graph G.

Subset Feedback Vertex Set (Subset FVS) Parameter: k
Input: A graph G, a set T ⊆ V (G), and an integer k
Question: Does there exist a set Z ⊆ V (G) of size at most k that hits all T -cycles?

A set Z ⊆ V (G) is a solution for Subset FVS if and only if |W | ≤ 2 or W ∩ T = ∅ for every 2-connected
component W of G− Z. Consider the CSP-instance Γ = (X,D, C) with

• X := V (G),

• D := {~} ] V (G) ] E(G),

• unary constraints (v, {e ∈ E(G) | v ∈ e} ∪ {v}) for all v ∈ T ,

• unary constraints (v, {~} ∪ {e ∈ E(G) | v ∈ e}) for all v /∈ T , and

• binary constraints ((v, w), R=) for all vw ∈ E(G) where R= := {(a, a) | a ∈ D}.

It is not difficult to show that Z is a Subset FVS solution for (G,T, k) if and only if Z is a solution for (Γ, k).

Using the framework of Permutation-CSPs, we can also cover more specialized problems such as the following
variant of Subset FVS.

Two Subset Feedback Vertex set (Two Subset FVS) Parameter: k
Input: A graph G, a set T ⊆ V (G), and an integer k
Question: Does there exist a set Z ⊆ V (G) of size at most k that hits all cycles C such that |C ∩ T | ≥ 2?

Another example is the Subset Group Feedback Vertex Set problem which in particular contains
Subset OCT as a special case.

Subset Group Feedback Vertex Set (Subset Group FVS) Parameter: k
Input: A Σ-labeled graph G, a set T ⊆ V (G), and an integer k
Question: Does there exist a set Z ⊆ V (G) of size at most k that hits all non-null T -cycles?

As the last example, we consider 2Conn Component Order Connectivity which again relies on the size
constraints.
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2Conn Component Order Connectivity Parameter: k
Input: A graph G and integers k, t
Question: Does there exist a set Z ⊆ V (G) of size at most k such that |W | ≤ t for every 2-connected
component W of G− Z?

This problem can be formulated as an instance (Γ,S) with Γ = (X,D, C) and

• X := V (G),

• D := {~},

• binary constraints ((v, w), {(~,~)}) for all vw ∈ E(G), and

• S = {(w, t)} where w : X ×D → N is defined via w(v,~) = 1 for all v ∈ V (G).

We complete this part by explicitly listing some algorithmic consequences of the reductions described above
and Theorems 3.2 and 3.3.

Corollary 3.1. There are algorithms for the following problems:

1. Planar Component Order Connectivity running in time (n+ t)O(
√
k),

2. Planar Two Subset FVS running in time nO(
√
k),

3. Planar Subset Group FVS running in time (n+ |Σ|)O(
√
k), and

4. Planar 2Conn Component Order Connectivity running in time (n+ t)O(
√
k).

For the other problems, we combine Theorems 3.2 and 3.3 with kernelization results to obtain subexponential
FPT algorithms.

3.3 Kernels and Subexponential FPT Algorithms We can combine the subexponential parameterized
algorithms for the problems discussed above with existing kernelization results to also obtain subexponential
FPT algorithms. For this to work, we need two additional properties of the kernelization. First, we require that
the parameter is only increased linearly. Second, if the input graph is planar (resp. H-minor-free), then the graph
of the reduced instance also has to be planar (resp. H-minor-free). In many cases, existing kernelizations do not
satisfy the second property. However, it is usually possible to modify the kernels appropriately. In the following,
we list the kernelization results relevant for this work, and briefly comment on where modifications to existing
kernels are required. All details for these results can be found in the full version.

We start by considering edge deletion versions of the problems above (to refer to the edge deletion version of
a problem, we simply replace the word Vertex by Edge in the problem name, or add the word Edge if the word
Vertex does not appear). In a recent work, Wahlström [49] obtained quasipolynomial kernels for the following
problems. Also, it can be checked that all these kernels preserve minors of the input graph and do not increase
the parameter in question.

Theorem 3.4. (Wahlström [49]) The following problems have randomized quasipolynomial kernels with failure
probability O(2−n):

1. Edge Multiway Cut parameterized by solution size,

2. Group Feedback Edge Set parameterized by solution size, for any group, such that the group remains
the same in the reduced instance,

3. Subset Feedback Edge Set with undeletable edges, parameterized by solution size.

Moreover, if the graph in the input instance is H-minor-free then the graph in the reduced instance is also H-
minor-free, and the parameter does not increase in the reduced instance.
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Since all the reductions presented above also go through for the edge deletion versions of the problems, we
obtain the following corollary by combining Theorem 3.1 and the last theorem.

Corollary 3.2. There are randomized algorithms solving the following problems with failure probability O(2−n):

1. H-Minor-Free Edge Multiway Cut in time 2O(cH ·
√
k·polylog(k))nO(1), and

2. H-Minor-Free Group Feedback Edge Set in time |Σ|O(cH ·
√
k·polylog(k))nO(1).

Here, cH denotes a constant that only depends on H.

We remark that a subexponential fpt algorithm for Planar Edge Multiway Cut was already given in [46].
Observe that Subset Feedback Edge Set is not covered by the corollary since restrictions need to be

enforced on 2-connected components (after removing the solution). However, we can still obtain a subexponential
FPT algorithm on planar graphs by reducing the edge deletion version to the vertex deletion version with
undeletable vertices. Observe that we can easily introduce undeletable vertices into the above reduction by using
the set of undeletable variables in the definition of Perm CSP Vertex Deletion with Size Constraints
and 2Conn Perm CSP Vertex Deletion with Size Constraints. So we obtain the following corollary
from combining Theorems 3.3 and 3.4.

Corollary 3.3. There is a randomized algorithm with failure probability O(2−n) solving Planar Subset

Feedback Edge Set with Undeletable Edges in time 2O(
√
k·polylog(k))nO(1).

Next, let us come back to vertex deletion problems. Here, the situation is generally more complicated
since existing kernels for the problems we are interested in usually do not preserve H-minor-freeness. We present
modifications to several kernels from [30,39]. These modifications require us to introduce undeletable vertices into
the problem definition. Strictly speaking, this means that our results are not kernelizations, but only compressions.
However, for the purpose of designing subexponential FPT algorithms, this does not pose any additional problems
since all reductions presented above can trivially be extended to take undeletable vertices into account. For any
problem Π discussed above, we use Π with Undeletable vertices to refer to the variant of the problem
where undeletable vertices are added. Also, Vertex Multiway Cut with Deletable Terminal refers to the
variant of Vertex Multiway Cut where terminal vertices may be deleted in the solution.

Theorem 3.5. Let Π be Vertex Multiway Cut with Deletable Terminal or Subset Feedback Vertex
Set. There is an algorithm that given an instance (G,T, k) of H-Minor Free Π constructs an equivalent
instance (G′, T, F, k′) of H-Minor Free Π with Undeletable vertices in randomized polynomial time and
with failure probability O(2−|V (G)|) such that |V (G′)| ∈ (cH · k)O(1) and k′ ≤ k.

Theorem 3.6. There is an algorithm that given an instance (G,λ,Σ, T, k) of H-Minor-Free Group Feed-
back Vertex Set constructs an equivalent instance (G′, λ′,Σ, T, F, k′) of H-Minor-Free Group Feed-
back Vertex Set with Undeletable vertices in randomized polynomial time and with failure probability
O(2−|V (G)|) such that |V (G′)| ∈ kO(|Σ|·|V (H)|) and k′ ≤ k.

We get the following result by combining Theorems 3.3 and 3.5.

Corollary 3.4. There is a randomized algorithm solving Planar Subset Feedback Vertex Set with failure

probability O(2−n) in time 2O(
√
k·log k)nO(1) where k denotes the solution size.

Similarly, we can get the following result by combining Theorems 3.2 and 3.6.

Corollary 3.5. There is a randomized algorithm solving Planar Group Feedback Vertex Set with failure

probability O(2−n) in time 2O(
√
k·log k·|Σ|)nO(1) where k denotes the solution size and Σ the input group.

For Vertex Multiway Cut on planar graphs, we can actually get a stronger result by exploiting existing
kernels on planar graphs.

Theorem 3.7. (Jansen et al. [31]) Planar Vertex Multiway Cut parameterized by solution size admits
a deterministic polynomial kernel where the parameter in the reduced instance is not increased.

Corollary 3.6. There is a (deterministic) algorithm solving Planar Vertex Multiway Cut in time

2O(
√
k·log k)nO(1) where k denotes the solution size.
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4 Structural Analysis

The next two sections are devoted to the proofs of Theorems 3.1, 3.2 and 3.3. In this section, we start by providing
all necessary structural tools. In particular, we prove Theorem 1.6 and Lemma 1.1.

4.1 Contraction Decompositions

4.1.1 Edge Partitions We first concern ourselves with the contraction decompositions for planar andH-minor-
free graphs. For the edge deletion problem Perm CSP Edge Deletion our algorithm relies on a contraction
decomposition due to Demaine et al. [19] (see Theorem 1.7).

Theorem 4.1. (Demaine, Hajiaghayi, Kawarabayashi [19]) Let G be an H-minor free graph and k ≥ 1.
Then there is a partition of the edge set E(G) = E1 ] E2 ] · · · ] Ek such that, for every i ∈ [k], it holds that

tw
(
G/Ei

)
≤ cHk

for some constant cH depending only on H. Moreover, given the graph G and k ≥ 1, the partition E(G) =
E1 ] E2 ] · · · ] Ek can be computed in polynomial time.

To be more precise, the algorithm from Theorem 3.1 relies on the following corollary which allows us to
declare certain edges to be uncontractible.

Corollary 4.1. Let G be an H-minor free graph and k ≥ 1. Then there is a partition of the edge set
E(G) = E1 ] E2 ] · · · ] Ek such that, for every i ∈ [k] and every W ⊆ Ei, it holds that

tw
(
G/(Ei \W )

)
≤ cHk + |W |

for some constant cH depending only on H. Moreover, given the graph G and k ≥ 1, the partition E(G) =
E1 ] E2 ] · · · ] Ek can be computed in polynomial time.

Proof. The statement follows from Theorem 4.1 by observing that the contraction of a single edge decreases the
treewidth of a graph by at most one.

4.1.2 Vertex Partitions Next, we turn to the vertex version of the contraction decomposition. In this work,
we prove such a statement only for planar graphs. More precisely, we obtain the following theorem which implies
Theorem 1.6 (here, we give an explicit upper bound on the treewidth of the contracted graph and avoid using
O-notation).

Theorem 4.2. Let G be a planar graph and k ≥ 1. Then there is a partition of the vertex set V (G) =
V1 ] V2 ] · · · ] Vk such that, for every i ∈ [k] and every W ⊆ Vi, it holds that

tw
(
G/E(G[Vi \W ])

)
≤ 3k + 14|W |+ 2.

Moreover, given the graph G and k ≥ 1, the partition V (G) = V1 ] V2 ] · · · ] Vk can be computed in polynomial
time.

The remainder of this subsection is devoted to proving the theorem. First consider the case k = 1. Then W
forms a vertex cover of the graph G/E(G[V1 \W ]) and thus, tw(G/E(G[V1 \W ])) ≤ |W |. So suppose k ≥ 2.

Let G be a planar graph and let us fix an embedding of G in the plane. Let F (G) denote the faces of the
embedding. We define the radial graph R := R(G) with vertex set V (R) := V (G) ∪ F (G) and edge set

E(R) := {vf | v ∈ V (G), f ∈ F (G), v is incident to f}.

Note that R is a connected, bipartite graph with bipartition (V (G), F (G)). Also pick f0 to be the exterior face
of the embedding. For j ≥ 1 define

Lj := {v ∈ V (R) | distR(f0, v) = 2j − 1}

to be the j-th vertex layer. Note that Lj ⊆ V (G) for all j ≥ 1. For a vertex v ∈ V (G) define L(v) := j for the
unique j ≥ 1 such that v ∈ Lj .
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Observation 4.1. Let vw ∈ E(G). Then |L(v)− L(w)| ≤ 1.

Proof. There is a face f ∈ F (G) such that v and w are incident to f . Hence, distR(v, w) ≤ 2. This implies the
observation.

For later reference we give a second description of the layers (with respect to the fixed embedding of G). For
j ≥ 1 define L′j to be the set of vertices incident to the exterior face of the embedding after deleting all vertices
from L′1 ∪ · · · ∪ L′j−1. The following observation follows from a simple induction on j ≥ 1.

Observation 4.2. Lj = L′j for all j ≥ 1.

Definition 4.1. An embedding of a graph G is 1-outerplanar if it is planar and all vertices lie on the exterior
face. For k ≥ 2 an embedding of a graph G is k-outerplanar if it is planar and, after deleting all vertices on the
exterior face, the resulting embedding is (k − 1)-outerplanar. A graph is k-outerplanar if it has a k-outerplanar
embedding.

We first record a property of 1-outplanar graphs that plays an important role later on.

Lemma 4.1. Let G be a 1-outerplanar graph and let W ⊆ V (G). Also fix some 1-outerplanar embedding of G
and let f0 denote the exterior face. Then∑

f∈F (G)\{f0}

max{|NR(G)(f) ∩W | − 1, 0} ≤ 13|W |.

Proof. Consider the radial graph R := R(G) which is planar and bipartite. Let H := R[W ∪F (G)] be the induced
subgraph on W and F (G). For i ≥ 0 let Fi := {f ∈ F (G) | |NR(G)(f) ∩W | = i}. Then

∑
i≥3

i · |Fi| ≤ |E(H)| ≤ 2

∑
i≥3

|Fi|+ |W |

− 4

which implies that ∑
i≥3

(i− 2) · |Fi| ≤ 2|W |.

In particular, ∑
i≥3

(i− 1) · |Fi| ≤ 4|W |.

It remains to bound the size of F2. Consider the graph H2 := R[W ∪ F2] in which every vertex in F2 has
exactly two neighbors. By outerplanarity, for each f ∈ F2, it holds that |{f ′ ∈ F2 | NR(f) = NR(f ′)}| ≤ 3.
Moreover, there are at most 3|W | elements from F2 with pairwise distinct neighborhoods since H2 is planar
(every planar graph with n vertices has at most 3n− 6 edges). Hence, |F2| ≤ 9|W |.

So in total ∑
f∈F (G)\{f0}

max{|NR(G)(f) ∩W | − 1, 0} = |F2|+
∑
i≥3

(i− 1) · |Fi| ≤ 13|W |.

Observation 4.3. The graph G[Lj ∪ Lj+1 ∪ · · · ∪ Lj+k] is (k + 1)-outerplanar.

Proof. This follows from Observation 4.2 and the definition of the sets L′j , j ≥ 1.

An important feature of k-outerplanar graphs is that their treewidth is bounded by a linear function in k.

Theorem 4.3. (Bodlaender [9]) Let G be a k-outerplanar graph. Then tw(G) ≤ 3k − 1.
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This implies that

(4.1) tw(G[Lj ∪ Lj+1 ∪ · · · ∪ Lj+k]) ≤ 3k + 2

for all j ≥ 1. Next, we define

Vi :=
⋃

j≡i mod k

Lj

for all i ∈ [k]. Note that this partition can be computed in polynomial time since an embedding for a planar
graph can be computed in polynomial time. Fix i ∈ [k] and W ⊆ Vi.

Let C1, . . . , C` be the connected components of G[Vi \W ]. We refer to these components as the articulation
points. Note that Cr ⊆ Lj for some j ≡ i mod k by Observation 4.1 (recall that k ≥ 2). Consistent with previous
notation, let L(Cr) := j for the unique j ≥ 1 such that Cr ⊆ Lj .

Now let G′ be the graph with vertex set

V (G′) := (V (G) \ Vi) ∪ {Cr, C ′r | r ∈ [`]}

and edge set

E(G′) := E(G[V (G) \ Vi]
∪ {vCr | L(v) + 1 = L(Cr) ∧ ∃w ∈ Cr : vw ∈ E(G)}
∪ {vC ′r | L(v) = L(Cr) + 1 ∧ ∃w ∈ Cr : vw ∈ E(G)}.

Lemma 4.2.
(
G/E(G[Vi \W ])

)
−W = G′/{CrC ′r | r ∈ [`]}.

Proof. Clearly,
(
G/E(G[Vi \W ])

)
−W is obtained from G by contracting Cr to a single vertex for all r ∈ [`],

and deleting all vertices from W . Similarly, G′/{CrC ′r | r ∈ [`]} is obtained from G by contracting Cr to a single
vertex for all r ∈ [`], and deleting all vertices from W . Note that all edges from the graph

(
G/E(G[Vi \W ])

)
−W

are present by Observation 4.1.

In order to bound the treewidth of G/E(G[Vi \W ]) we proceed in three steps. For the first step we provide an
upper bound on the treewidth of G′. Then, in the second step, we prove that contraction of pairs of articulation
points does not increase the treewidth significantly. Finally, all vertices from W are added to all bags which
increases the treewidth only by |W |.

Let D1, . . . , Dt be the connected components of G′ and let p ∈ [t]. For j ≡ i mod k define

Uj := {C ′r | L(Cr) = j} ∪ Lj+1 ∪ · · · ∪ Lj+k−1 ∪ {Cr | L(Cr) = j + k}.

Clearly, there is some j ≡ i mod k such that Dp ∩ Uj 6= ∅. Moreover, there are no outgoing edges from the set
Uj in the graph G′ by Observation 4.1. Hence, Dp ⊆ Uj .

This implies that G′[Dp] is a minor of the graph G[Lj ∪ Lj+1 ∪ · · · ∪ Lj+k]. So tw(G′[Dp]) ≤ 3k + 2 by
Equation (4.1).

For the second step consider the following DAG H with vertex V (H) := {D1, . . . , Dt} ∪ {C1, . . . , C`} and
edges

E(H) := {(Cr, Dp) | Cr ∈ Dp} ∪ {(Dp, Cr) | C ′r ∈ Dp}.

Note that, for edges (Dp, Cr) and (Cr, Dp′), it holds that Dp ⊆ Uj and Dp′ ⊆ Uj+k for some j ≡ i mod k.
Moreover, each articulation point has exactly one incoming and one outgoing edge. Together this proves that H
is a DAG.

For p ∈ [t] we denote by deg−H(Dp) the number of incoming edges for the vertex Dp in the graph H.

Lemma 4.3.
∑
p∈[t] : deg−H(Dp)≥2 deg−H(Dp)− 1 ≤ 13|W |.

Proof. Fix j ≡ i mod k and let Sj := Lj ∪ Lj+1 ∪ · · · ∪ Lj+k. Also fix A to be the vertex set of a connected
component of G[Sj ]. We define Uj,A to be the “intersection” of Uj and A, i.e.,

Uj,A := {C ′r | L(Cr) = j, Cr ⊆ A} ∪ (Lj+1 ∩A) ∪ · · · ∪ (Lj+k−1 ∩A) ∪ {Cr | L(Cr) = j + k,Cr ⊆ A}.
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We prove that

(4.2)
∑

p∈[t] : Dp⊆Uj,A∧deg−H(Dp)≥2

deg−H(Dp)− 1 ≤ 13|W ∩A ∩ Lj |.

First observe that this implies the lemma since, for each p ∈ [t], there is some j ≡ i mod k and some component
A of the graph G[Sj ] such that Dp ⊆ Uj,A.

By Observation 4.2 it holds that Lj ∩ A are exactly those vertices incident to the exterior face of G[A].
In particular, G[Lj ∩ A] is connected and 1-outerplanar. Let B be the vetex set of a connected component of
G[A \ Lj ]. We define

Nj(B) := {v ∈ Lj | ∃w ∈ B : distR(v, w) ≤ 2}.

It is easy to verify that G[Nj [B]] is a cycle. More precisely, Nj(B) forms a face cycle of G[Lj ∩A].
For a connected component B of G[A \ Lj ] define the articulation degree adeg(B) to be the number of

articulation points Cr such that Nj [B] ∩ Cr 6= ∅. We argue that∑
B

max{adeg(B)− 1, 0} ≤ 13|W ∩A ∩ Lj |

where B ranges over connected components of G[A\Lj ]. Note that this implies Equation (4.2). For a component
B it holds that adeg(B) ≤ max{|Nj(B) ∩W |, 1}. Hence, it suffices to prove that∑

B

max{|Nj(B) ∩W | − 1, 0} ≤ 13|W ∩A ∩ Lj |.

But this follows from Lemma 4.1 since each Nj(B) forms a face cycle of G[Lj ∩A].

Now let C be a set of articulation points such that |C| ≤ 13|W | and deg−H−C(Dp) ≤ 1 for all p ∈ [t]. Then

H−C is a tree. This means there a tree decomposition of
(
G/E(G[Vi \W ])

)
−(C∪W ) of width 3k+2 by stitching

the tree decompositions for the components Dp, p ∈ [t], together along the tree structure of H − C. Adding the
vertices from C ∪W to all bags than gives a tree decomposition of G/E(G[Vi \W ]) of width 3k+ 14|W |+ 2. This
completes the proof of Theorem 4.2.

4.2 Guessing Bodies of Segments Next, we concern ourselves with the guessing of the bodies which is
related to problems defined over 2-connected components. In particular, we prove Lemma 1.1. More precisely, in
Lemma 1.1, the sets Vi are obtained from the Contraction Decomposition Theorem (Theorem 4.2) proved in the
last subsection. Here, we concern ourselves with the problem of finding the body sets Bi. Towards this end, we
assume that we are already given a suitable partition of the vertex set (later, this partition is replaced with the
partition computed in Theorem 4.2).

So let G be a graph and fix Z ⊆ V (G) to be a solution of size |Z| ≤ k. Also fix a partition V (G) = V1]· · ·]V`.
We refer to the connected components of the graph G[Vi \ Z] as the i-segments. A segment is an i-segment

for some i ∈ [`]. Let I denote the set of all segments.
In the following, we are interested in the 2-connected components of G−Z. We shall represent the 2-connected

components of G−Z as a pair (T, γ) where T is a forest and γ : V (T)→ 2V (G) is a function as follows. Let us first
consider the block-cut tree T′ which contains a node tC for every 2-connected component C of G−Z, and a node
sv for every cut vertex v of G−Z. Also, there is an edge between tC and sv if and only if v ∈ C. It is well knwon
that T′ is a forest where each connected component of T′ corresponds to some connected component of G−Z. For
each connected component of T′ we fix a unique root node tC that corresponds to some 2-connected component of
G−Z. For simplicity, let us fix a “canonical” rooting as follows. We assume that the vertices of the input graph
G are ordered (the order is arbitrary). Now, we can order the 2-connected components of G−Z lexicographically.
For each connected component T of T′, we pick the lexicographically smallest 2-connected component as the root
of T .

Now, T is obtained from T′ by identifying each node sv with its parant tC , i.e., T has a node tC for every
2-connected component of G−Z. We set γ(tC) = C. For t ∈ V (T) define Desc(t) to be the set of descendants of
t, including t itself.
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Now, consider a segment I ∈ I. We need to define several objects based on the decomposition (T, γ) into the
2-connected components of G − Z. First, let rZ(I) denote the unique node t ∈ V (T) which is closest to a root
node t0 and for which I ∩ γ(t) 6= ∅. Also, let BZ(I) := {t ∈ V (T) \ {rZ(I)} | I ∩ γ(t) 6= ∅} be the body of I.
Observe that rZ(I) /∈ BZ(I). Moreover, let WZ(I) := Desc(rZ(I)) \ {rZ(I)} denote the set of all nodes that are
descendants of rZ(I), excluding rZ(I). Observe that rZ(I) /∈WZ(I), but BZ(I) ⊆WZ(I).

Finally, we define r̂Z(I) := γ(rZ(I)), B̂Z(I) :=
⋃
t∈RZ(I) γ(t) and ŴZ(I) :=

⋃
t∈WZ(I) γ(t) to be the

corresponding sets of vertices in the graph G. To simplify notation, we will regularly omit the index Z if it
is clear from context.

The next theorem allows us to compute the body sets. Actually, for technical reasons, the objects we guess
are slightly more complicated and also need to contain information about the sets r̂Z(I) ∩ I.

Theorem 4.4. Let G be an H-minor-free graph and let V1, . . . , V` be a partition of the vertex set V (G). Also
let Z ⊆ V (G) be an (unknown) set of vertices of size |Z| = k and let (T, γ) be the (rooted) decomposition into
2-connected components of G− Z.

Then there is a constant cH , an index i ∈ [`], and a sequence of vertices s̄ = (s1, . . . , sr) ∈ (V (G))r of length
r = O(cH

k
` ) such that the following conditions are satisfied:

(I) Vi ∩ Z = {s1, . . . , sj} for some j ∈ {0, . . . , r}, and

(II) given G,V1, . . . , V`, i, s̄, j one can compute in time nO(cH), for each i-segment I, a family of sets F(I) ⊆
2V (G) × 2V (G) of size |F(I)| ≤ ncH such that (B̂Z(I), r̂Z(I) ∩ I) ∈ F(I).

Observe that this is non-trivial since both B̂Z(I) and r̂Z(I) ∩ I depend on Z which is only partially given to
the algorithm. The remainder of this subsection is devoted to proving the theorem.

Let dH = O(h
√

log h) denote the constant from Theorem 2.1, i.e.,
∑
v∈V (G) degG(v) ≤ dH |V (G)| holds for

every H-minor-free graph G.

Lemma 4.4. Let G be an H-minor-free graph and suppose V (G) = U ]Z such that degG(u) > 2dH for all u ∈ U .
Then |U | ≤ |Z|.

Proof. Suppose towards a contradiction that |U | > |Z|. Then |E(G)| ≥ 1
2 |U |2dH = dH |U |. Hence,∑

v∈V (G)

degG(v) = 2|E(G)| ≥ 2dH |U | > dHV (G)

which is a contradiction to Theorem 2.1.

Now, let us fix an H-minor-free graph G, a partition V1, . . . , V` of the vertex set V (G), and an unknown
solution set Z ⊆ V (G) of size |Z| = k. Also, let (T, γ) denote the (rooted) decomposition into 2-connected
components of G− Z.

Lemma 4.5. Let I1, I2 be two distinct segments. Then B(I1) ∩B(I2) = ∅.

Proof. Suppose t ∈ B(I1) and let s be the parent node of t. Then s ∈ B(I1)∪ {r(I1)}. Let v ∈ γ(t)∩ γ(s). Since
G[I1] is connected it holds that v ∈ I1. So v /∈ I2 since I1 ∩ I2 = ∅. Hence, t /∈ B(I2).

Let I be a segment. We define val(I) to be the maximum number of paths from B̂(I) to Z in the graph

G[Ŵ (I) ∪ Z] that are pairwise disjoint except on B̂(I). Observe that val(I) = 0 whenever B(I) = ∅.

Lemma 4.6. Suppose G is H-minor-free. Then there is a constant cH such that∑
I∈I

max(val(I)− cH , 0) ≤ cH · |Z|.
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Proof. We define cH := 6dH . Let I∗ := {I ∈ I | val(I) > cH}. We first partition I∗ into three sets I0, I1 and I2

such that, for all µ ∈ {0, 1, 2} and all I, I ′ ∈ Iµ it holds that

r(I) /∈ B(I ′)

and
r(I) 6= r(I ′) ⇒ ET(B(I) ∪ {r(I)}, B(I ′) ∪ {r(I ′)}) = ∅.

Actually, let us remark that the first condition is implied by the second one, but we still state it explicitly for
later reference.

The partition can be computed inductively as follows. Throughout the induction we maintain the property
that segments I with the same root bag r(I) are assigned to the same partition class. For each I ∈ I define
the height of I to be the distance from r(I) to the root of the corresponding connected component of T. First,
we assign all segments of height 0 to the class I0. Clearly, this meets the above requirements. Now suppose all
segments up to height h have been partitioned and let I be a segment of height h + 1. Let t := r(I) and let s
be the parent of t. First suppose t ∈ B(I ′) for some segment I ′ of height at most h. By Lemma 4.5 there is a
unique I ′ of height at most h such that t ∈ B(I ′). Note that s ∈ B(I ′) ∪ {r(I ′)}. Suppose I ′ ∈ Iµ′ . Moreover,
by Lemma 4.5, there is at most one I ′′ such that s ∈ B(I ′′). Assume I ′′ ∈ Bµ′′ (if it exists). We assign I to a
partition class Iµ for some µ ∈ {0, 1, 2} \ {µ′, µ′′}. Moreover, we assign all segments with the same root bag t to
the same partition class. It can be easily checked that the requirements are satisfied.

In the following we argue that
∑
I∈Iµ(val(I)− cH) ≤ cH

3 · |Z| for all µ ∈ {0, 1, 2} which implies the lemma.

Without loss of generality assume µ = 0. For each I ∈ I0 we associate a subset U(I) of V (G) \ Z as follows.

In the first step, all elements from I ∪ B̂(I) are added to U(I). Note that all sets U(I) are connected and pairwise

disjoint. Let X be those vertices that are not assigned so far. Next, all vertices from Ŵ (I)∩X that are reachable

from B̂(I) in the graph G[X ∪ B̂(I)] are added to U(I). Observe that all sets U(I) remain connected and pairwise
disjoint.

Now consider the following graph F with vertex set V (F ) := I0 ] Z and edge set

E(F ) := {II ′ | I 6= I ′ ∈ I0, EG(U(I), U(I ′)) 6= ∅} ∪ {Iz | I ∈ I0, z ∈ Z,EG(U(I), {z}) 6= ∅}

(F is not a multigraph, i.e., there is for only a single edge between I and I ′ (resp. I and z) even if E(U(I), U(I ′))
(resp. E(U(I), {z})) contains more than one element). Note that F is a minor of G.

We claim that val(I) ≤ degF (I) for all I ∈ I0. Let us first complete the proof assuming the claim holds true.
Then |I0| ≤ |Z| by Lemma 4.4. This means that∑

I∈I0

(val(I)− cH) ≤
∑

v∈V (F )

degF (v) ≤ dH |V (F )| ≤ 2dH |Z| ≤
cH
3
|Z|.

To complete the proof it remains show that val(I) ≤ degF (I) for all I ∈ I0. Let us fix some I ∈ I0 and a

set of paths P I1 , . . . , P
I
val(I) from B̂(I) to Z in the graph G[Ŵ (I) ∪ Z] that are pairwise disjoint except on B̂(I).

Without loss of generality assume that no internal vertex of a path P Ii is contained in Z. Also define Z(I) ⊆ Z to
be set of all endpoints of the paths P I1 , . . . , P

I
val(I). For z ∈ Z(I) we also write P Iz for the unique path P Ii which

ends in z.
We say that z ∈ Z(I) is directly reachable from I if P Iz does not visit any of the sets U(I ′) for I 6= I ′ ∈ I0.

Let Z∗(I) ⊆ Z(I) be those vertices directly reachable from I. Let z ∈ Z∗(I). By definition, all internal vertices
from P Iz are contained in the set U(I). Hence, Iz ∈ E(F ). On the other hand, for z ∈ Z(I) \ Z∗(I), consider
the first vertex wz on P Iz that is not contained in U(I). Then wz ∈ Iz for some I 6= Iz ∈ I0. Hence, wz ∈ U(Iz)
and IIz ∈ E(F ). It remains to argue that, for a second z 6= z′ ∈ Z(I) \ Z∗(I), we have that Iz 6= Iz′ . Suppose
otherwise. Clearly, r(I) 6= r(Iz). By the properties of the set I0, it holds that r(Iz) /∈ B(I). Since P Iz and P Iz′

are vertex-disjoint except on B̂(I) we have that wz 6= wz′ . Moreover, wz ∈ Iz ∩ r̂(Iz) and wz′ ∈ Iz′ ∩ r̂(Iz′).
Since P Iz and P Iz′ are vertex-disjoint except on B̂(I) this is only possible if r(Iz) is a child of some node t ∈ B(I).
Hence, ET ({r(Iz)}, B(I)) 6= ∅ which contradicts the second property of the set I0. Hence, Iz 6= Iz′ for all distinct
z, z′ ∈ Z(I) \ Z∗(I).

Together, this means that degF (I) ≥ |Z(I)| for all I ∈ I0 which completes the proof of the lemma.
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For i ∈ [`] we define

val∗(Vi) :=
∑

I is i-segment

max(val(I)− cH , 0).

We claim there exists some i ∈ [`] such that

1. |Vi ∩ Z| ≤ 2k` , and

2. val∗(Vi) ≤ 2cH
k
` .

Let A1 := {i ∈ [`] | |Vi ∩ Z| > 2k` } be the set of indices that violate the first condition. Then k = |Z| > |A1| · 2k`
which means that |A1| < `

2 .

Similarly, let A2 := {i ∈ [`] | val∗(Vi) > 2cH
k
` } be the set of indices that violate the second condition. By the

lemma

cHk = cH |Z| ≥
∑
i∈A2

val∗(Vi) > |A2|2cH
k

`

which implies that |A2| < `
2 . Hence, there is some i ∈ [`] such that neither i ∈ A1 nor i ∈ A2. Let j := |Vi ∩ Z|

and define {s1, . . . , sj} = Vi ∩ Z (the vertices are enumerated arbitrarily).

Now let I be an i-segment and consider the graph G[Ŵ (I) ∪ Z]. In this graph, there are at most val(I)

many paths from B̂(I) to Z that are pairwise disjoint except on B̂(I). Hence, by Menger’s theorem, there is a

set SI ⊆ Ŵ (I) ∪ Z of size |SI | = val(I) such that SI ∩ B̂(I) = ∅ and every path from B̂(I) to Z in the graph

G[Ŵ (I) ∪ Z] visits some vertex from SI . Suppose that SI = {wI1 , . . . , wIval(I)}.
We define

{sj+1. . . . , sr} = {wIcH+1, . . . , w
I
val(I) | I is i segment with val(I) > cH}.

Note that r ≤ |Vi ∩ Z|+ val∗(Vi) ≤ 3(cH + 1)k` . This completes the description of the sequence s̄ = (s1, . . . , sr).
Clearly, Property (I) of Theorem 4.4 is satisfied. Hence, in order to complete the proof of Theorem 4.4 it

remains to verify Property (II), i.e., we have to argue how to compute the families F(I) for all i-segments I.
Clearly, given access to G,V1, . . . , V`, i, s̄, j we can compute the set of all i-segments in polynomial time. So fix I
to be an i-segment. The algorithm first guesses val(I) by iterating through all possible values.

If val(I) ≤ cH the algorithm iterates through all subsets S ⊆ V (G) \ I of size val(I) and computes the
decomposition (TS , γS) into 2-connected components of the graph G − S. Also, given a subset S ⊆ V (G) \ I of
size val(I), the algorithm guesses a root node tS0 for the connected component of (TS , γS) that contains I. Finally,
let rS(I) denote the unique node t ∈ V (TS) which is closest to the root node tS0 and for which I ∩ γS(t) 6= ∅.
Also, let BS(I) := {t ∈ V (TS) \ {rS(I)} | I ∩ γS(t) 6= ∅}. Finally, we add the pair( ⋃

t∈BS(I)

γS(t), γS(rS(I)) ∩ I
)

to the family F(I). For S = SI together with a suitable choice of tS0 we get that B̂(I) =
⋃
t∈BS(I) γS(t).

For val(I) > cH the algorithm first guesses LI = {wIcH+1, . . . , w
I
val(I)}. By appropriately ordering the sequence

s̄ and marking certain elements (for example, by repeating the element), this adds a multiplicative factor of at
most n. Having guessed LI the algorithm again iterates through all subsets of S ⊆ V (G) \ I of size cH and
computes the decomposition (TS , γS) into 2-connected components of the graph G− (S∪LI). Now the algorithm
proceeds as in the previous case by guessing a root of (TS , γS) and adding the pair( ⋃

t∈BS(I)

γS(t), γS(rS(I)) ∩ I
)

to the family F(I). Again, for S = SI \LI together with a suitable choice of tS0 we get that B̂(I) =
⋃
t∈BS(I) β(t).

This completes the proof of Theorem 4.4.
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4.3 Obtaining Segmented Graphs with Body Sets Having proved Theorems 4.2 and 4.4, we can now
combine both results to prove Lemma 1.1. Actually, we shall use a different formulation of Lemma 1.1 which is
slightly more convenient due to technical reasons. We leave it as an exercise for the reader to derive Lemma 1.1
from Corollary 4.2 below (all algorithms making use of this result do so via Corollary 4.2). Towards this end, we
first need to introduce some additional notation on segments that is also heavily used in the next section.

A segmented graph is a pair (G, I) where G is a graph and I = {I1, . . . , I`} is a set of pairwise disjoint,
connected subsets of V (G). Moreover, we generally assume that each segment I ∈ I is equipped with a linear
order <I . We refer to the sets I1, . . . , I` as the segments of (G, I). Also, define V (I) :=

⋃
I∈I I as the set of

vertices appearing in some segment. We define G/I to be the graph obtained from G by contracting each segment
to a single vertex. Note that G/I is a minor of G since all sets I ∈ I are connected. We always use vI to denote
the vertex of G/I that corresponds to segment I. Also, VI := {vI | I ∈ I}. For U ⊆ V (G) we use shr(U) to
denote the set of all vertices v ∈ V (G/I) that correspond to some u ∈ U . In particular, vI ∈ shr(U) if U ∩ I 6= ∅.
In the other direction, for U ⊆ V (G/I), we use ext(U) to denote the set of all vertices v ∈ V (G) that correspond
to some u ∈ U . In particular, if vI ∈ U then I ⊆ ext(U). If U = {u} consists of a single vertex, then we also
write shr(u) and ext(u) instead of shr({u}) and ext({u}).

Corollary 4.2. There is a polynomial-time algorithm that, given a planar graph G, an integer k, and a sequence
of vertices (v1, . . . , vr) ∈ (V (G))r, computes a set of pairwise vertex-disjoint segments I and a function F mapping
every I ∈ I to a set F(I) ⊆ 2V (G) × 2V (G) of size |F(I)| = nO(1) such that the following property is satisfied:

For every Z ⊆ V (G) of size |Z| ≤ k there is some sequence (v1, . . . , vr) ∈ (V (G))r of length r ∈ O(
√
k) such

that, if (I,F) is the output of the algorithm on input (G, k, (v1, . . . , vr)), then

1. V (I) ∩ Z = ∅,

2. tw(G/I) = O(
√
k), and

3. (B̂Z(I), r̂Z(I) ∩ I) ∈ F(I) for every I ∈ I.

Proof. Let (G, k, (v1, . . . , vr)) be the input to the algorithm. The algorithm first fixes an arbitrary numbering
of the vertices of G, i.e., V (G) = {u1, . . . , un}. Let ` := d

√
ke. The algorithm applies Theorem 4.2 and otains

a partition V1, . . . , V` of V (G). Let i ∈ [`] be the unique index such that v1 ∈ Vi. Also, let j ∈ {0, . . . , n − 1}
such that v2 = uj+1. We define Zi := {v3, . . . , vj+2} and compute I as the set of connected components of
G[Vi \ Zi]. Also, we define s̄ := (v3, . . . , vr). Finally, the algorithm computes the function F using the algorithm
from Theorem 4.4, Item (II) on input (G,V1, . . . , V`, i, s̄, j). Clearly, this algorithm runs in polynomial time.

So let Z ⊆ V (G) of size |Z| ≤ k. We need to argue about the existence of a sequence (v1, . . . , vr) ∈ (V (G))r

of length r ∈ O(
√
k) satisfying the properties stated in the corollary. By Theorem 4.4 there is some i ∈ [`], a

sequence s̄ = (s1, . . . , sr) ∈ (V (G))r for r ∈ O(
√
k), and an integer j ∈ [r] such that Vi∩Z = {s1, . . . , sj}. We pick

v1 ∈ Vi arbitrarily, v2 := uj+1, and vp+2 := sp for all p ∈ [r]. Let (I,F) denote the output of the above algorithm

on input (G, k, (v1, . . . , vr)). Clearly, V (I) ∩ Z = ∅ by definition. Also, tw(G/I) = O(` + |Vi ∩ Z|) = O(
√
k).

Finally, (B̂Z(I), r̂Z(I) ∩ I) ∈ F(I) for every I ∈ I by Theorem 4.4, Property (II).

For later reference, we also formulate a version of the last corollary for H-minor-free graphs assuming
Conjecture 1.1 holds.

Corollary 4.3. Assuming Conjecture 1.1, there is an algorithm that, given an H-minor-free graph G, an integer
k, and a sequence of vertices (v1, . . . , vr) ∈ (V (G))r, computes a set of pairwise vertex-disjoint segments I and
a function F mapping every I ∈ I to a set F(I) ⊆ 2V (G) × 2V (G) of size |F(I)| = ncH for some constant cH
depending only on H such that the following property is satisfied:

For every Z ⊆ V (G) of size |Z| ≤ k there is some sequence (v1, . . . , vr) ∈ (V (G))r of length r ∈ O(cH
√
k)

such that, if (I,F) is the output of the algorithm on input (G, k, (v1, . . . , vr)), then

1. V (I) ∩ Z = ∅,

2. tw(G/I) = O(
√
k), and

3. (B̂Z(I), r̂Z(I) ∩ I) ∈ F(I) for every I ∈ I.
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Moreover, the algorithm runs in time nO(cH).

Proof. The proof is analogous to the proof of Corollary 4.2 replacing the application of Theorem 4.2 with
Conjecture 1.1.

5 Algorithms for CSP Deletion Problems on Planar Graphs

In this section, we disucss the proofs of Theorems 3.1, 3.2 and 3.3. All proofs follow essentially the same high-level
strategy. First, we use the Contraction Decomposition Theorem to partition the vertex or edge set of the input
constraint graph (depending on the problem in question). Then, we guess some partition class that has small
intersection with the solution as well as the intersection of the solution with said partition class. This gives rise
to a segmented graph (G, I) where the segments are the connected components of the chosen partition class after
removing all solution vertices. Now, we translate the initial Permutation-CSP-instance (with constraint graph G)
to an equivalent binary CSP-instance with constraint graph G/I. For 2Conn Perm CSP Vertex Deletion
with Size Constraints, this translation also builds on Theorem 4.4 to guess the body sets of the segments.
Finally, we use dynamic programming to solve the constructed binary CSP-instance over constraint graph G/I
exploiting that G/I has small treewidth.

We remark that the algorithms presented in Sections 5.1 - 5.3 are standard algorithms, and the corresponding
results should not be surprising to a reader familiar with the concept of contraction decompositions as well as
algorithmic approaches to CSPs. Indeed, the main algorithmic contribution of this section is the subexponential
algorithm for 2Conn Perm CSP Vertex Deletion with Size Constraints which is presented in Section
5.4.

5.1 CSPs with Size Constraints on Graphs of Bounded Treewidth We start by implementing
the last step, i.e., we provide an algorithm deciding satisfiability of binary CSPs Γ = (X,D, C) in time
|D|O(tw(G(Γ)))|X|O(1). It is well-known that such an algorithm can be obtained via a simple dynamic programming
strategy along a tree decomposition of G. However, for Theorems 3.2 and 3.3, we also need to able to take size
constraints into account. Here, our strategy is similar, i.e., we translate the size constraints on G to suitable size
constraints over G/I. To able to use the same subroutine for both Theorem 3.2 and 3.3, the size constraints that
we allow on the contracted graph need to be fairly general. In the following, we define suitable size constraints
and provide a dynamic programming algorithm for input instances of small treewidth. We remark that the size
constraints we introduce may look somewhat unnatural at first glance, but they are designed primarily to fit our
needs when proving Theorems 3.2 and 3.3.

Let Γ = (X,D, C) be a binary CSP instance. A global size constraint is a triple (w, q, op) where w : X×D → N
is a weight function, q ∈ N and op ∈ {≤,≥}. An assignment α : X → D satisfies (w, q) if(∑

v∈X
w(v, α(v)), q

)
∈ op.

Let F ⊆ D2 such that F is symmetric (i.e., (a, b) ∈ F if and only if (b, a) ∈ F for all a, b ∈ D) and let D be
a partition of D. An (F,D)-local size constraint is a tuple (w,wD, q, op) where w : X ×D → N and wD : D → N
are weight functions, q ∈ N and op ∈ {≤,≥}. Let α : X → D be an assignment. Let G := G(Γ) be the constraint
graph. We define Hα to be the subgraph of G with vertex set V (Hα) := V (G) and edge set

E(Hα) := {vw ∈ E(G) | α(v)α(w) ∈ F}.

Let C1, . . . , C` denote the connected components of H. We say that α : X → D satisfies (w,wD, q, op) if, for every
i ∈ [`], there is some Di ∈ D such that

α(v) ∈ Di

for every v ∈ Ci and (
wD(Di) +

∑
v∈Ci

w(v, α(v)), q
)
∈ op.

Let Sglobal be a set of global size constraints and Slocal be a set of (F,D)-local size constraints. We say
that (Γ,Sglobal,Slocal) is satisfiable if there is an assignment α : X → D that satisfies Γ, all global constraints
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(w, q, op) ∈ Sglobal and all (F,D)-local size constraints (w, q, op) ∈ Slocal. We define

‖Sglobal‖ :=
∏

(w,q,op)∈Sglobal

(2 + q)

and similarly,

‖Slocal‖ :=
∏

(w,wD,q,op)∈Slocal

(2 + q).

Theorem 5.1. Let Γ = (X,D, C) be a binary CSP instance and let F ⊆
(
D
2

)
and D be a partition of D. Also,

let Sglobal be a set of global size constraints and Slocal be a set of (F,D)-local size constraints. Moreover, let
k := tw(G(Γ)). Then there is an algorithm which decides whether (Γ,Sglobal,Slocal) is satisfiable and runs in time

(|D|+ k + ‖Sglobal‖+ ‖Slocal‖)O(k)|X|O(1).

We also need a second result for binary CSPs on graphs of bounded treewidth. Let Γ = (X,D, C) be a binary
CSP and let α : X → D be an assignment. Also, let w : X2 ×D2 → N such that w(x, y, a, b) = w(y, x, b, a) for all
x, y ∈ X and a, b ∈ D. We define the cost of α as

costΓ(α) :=
∑

x,y∈X : α violates some constraint ((x,y),R)∈C

w(x, y, α(x), α(y)).

We remark that the sum also covers unary constraints by setting x = y.

Theorem 5.2. Let Γ = (X,D, C) be a binary CSP instance, w : X2×D2 → N such that w(x, y, a, b) = w(y, x, b, a)
for all x, y ∈ X and a, b ∈ D, and m ≥ 0. Also define k := tw(G(Γ)). Then there is an algorithm which decides
whether there is an assignment α : X → D of cost costΓ(α) ≤ m in time

|D|O(k)|X|O(1).

5.2 Permutation CSP Edge Deletion Now, we are ready to prove the main algorithmic results from Section
3. In this subsection, we start by proving Theorem 3.1. We restate the problem as well as the main result.

Perm CSP Edge Deletion Parameter: k
Input: A Permutation-CSP-instance Γ = (X,D, C), a set of undeletable edges U ⊆ E(G(Γ)), and an integer
k
Question: Is there a set Z ⊆ E(G(Γ)) \ U such that |Z| ≤ k and Γ− Z := (X,D, C − Z) is satisfiable?

Theorem 5.3. There is an algorithm solving H-Minor-Free Perm CSP Edge Deletion in time (|X| +
|D|)O(cH

√
k) where cH is a constant depending only on H.

Proof. Let Γ = (X,D, C) be a Permutation-CSP-instance and let G := G(Γ). By combining constraints over
the same variables, we may assume without loss of generality that, for every uv ∈ E(G), there is at most one
constraint over variables u and v. Also suppose Z ⊆ E(G)\U is a solution, i.e., |Z| ≤ k and Γ−Z = (X,D, C−Z)

is satisfiable. Let ` :=
⌈√

k
⌉
. Let E1, . . . , E` be the partition of the edge E(G) computed by Corollary 4.1. Then

there is some i ∈ [`] such that |Ei∩Z| ≤
√
k. Hence, at an additional multiplicative cost of `|E(G)|

√
k = |X|O(

√
k),

the algorithm can guess i as well as the set Ei ∩ Z. We set Γ′ := (X,D, C − (Ei ∩ Z)) and k′ := k − |Ei ∩ Z|.
Hence, it suffices to determine whether (Γ′, k′) is a Yes-instance.

Let I1, . . . , Im denote the connected components of G[Ei \Z] and let I := {I1, . . . , Im}. Also, for each I ∈ I,
we fix an arbitrary linear order <I on the set I. This gives rise to a segmented graph (G, I). We have that
tw(G/I) ≤ cH

√
k by Corollary 4.1 for some constant cH that only depends on H. Now, the central idea is to

translate Γ′ to a binary CSP instance over the graph G/I.
Let Γ∗ := (X∗, D, C∗) where X∗ := V (G/I), and a set of constraints C∗ defined as follows. For a ∈ D and

I ∈ I, we define αI,a : I → D to be a satisfying assignment such that
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• αI,a(v) = a where v denotes the minimal element of I with respect to <I , and

• αI,a satisfies all constraints ((u, v), R) ∈ C for which u, v ∈ I and u = v or uv ∈ (Ei \ Z) ∪ U .

If such an assignment exists, we say that a is valid for I. Observe that, if a is valid for I, then the assignment αI,a
is unique since Γ is a Permutation-CSP-instance. To bound the number of violated constraints, we also define a
weight function w : X2 ×D2 → N.

For every I ∈ I, we introduce a unary constraint (vI , RI) to C∗ where

RI = {a ∈ D | a is valid for I}.

For every a ∈ RI we define w(vI , vI , a, a) to be the number of edges which correspond to some constraint that is
violated by αa,I on Γ[I].

For every v ∈ X \
(⋃

I∈I I
)

and unary constraint (v,R) ∈ C, the constraint (v,R) is added to C∗. Also,
we set w(v, v, a, a) := k′ + 1 (indicating that this constraint can not be violated). Now, let ((u, v), R) ∈ C be a
binary constraint. If u, v ∈ X \

(⋃
I∈I I

)
then we add the constraint ((u, v), R) to C∗. If uv ∈ U then we set

w(u, v, a, b) := k′ + 1 for all a, b ∈ D. Otherwise, w(u, v, a, b) := 1. If u ∈ X \
(⋃

I∈I I
)

and v ∈ I for some I ∈ I
then we add the constraint (

(u, vI), {(a, a′) | a ∈ D, a′ ∈ RI , (a, αa′,I(v)) ∈ R}
)
.

Also, w(u, vI , a, b) denotes the number of such constraints over variables u and vI that are violated when assigning a
with u and b to vI . If some undeletable constraint is violated, then we set w(u, vI , a, b) := k′+1. If v ∈ X\

(⋃
I∈I I

)
and u ∈ I we proceed analogously. Finally, if u ∈ I and v ∈ I ′ for some distinct I, I ′ ∈ I then we add the constraint(

(vI , vI′), {(a, a′) | a ∈ RI , a′ ∈ RI′ , (αa,I(v), αa′,I′(w)) ∈ R}
)
.

Again, w(u, vI , a, b) denotes the number of such constraints over variables u and vI that are violated when assigning
a with u and b to vI . If some undeletable constraint is violated, then we set w(u, vI , a, b) := k′ + 1.

Now, it is easy to see that (Γ′, k′) is a Yes-instance if and only if there is an assignment α∗ : X∗ → D of cost

costΓ∗(α
∗) ≤ k′. By Theorem 5.2, the latter can be checked in time |D|O(tw(G/I))|X|O(1) = |D|O(cH

√
k)|X|O(1).

In total, this gives a running time of

|X|O(
√
k) · |D|O(cH

√
k)|X|O(1) = (|X|+ |D|)O(cH

√
k).

5.3 Permutation CSP Deletion with Size Constraints Next, we turn to the proof of Theorem 3.2. Again,
we start by restating the problem and the main result. Also, we provide a variant of Theorem 3.2 for H-minor-free
graphs assuming Conjecture 1.1 holds.

Let Γ = (X,D, C) be a binary CSP instance. A 1cc-size constraint is a triple (w, q, op) where w : X ×D → N
is a weight function, q ∈ N, and op ∈ {≤,≥}. An assignment α : X → D satisfies (w, q, op) on Γ if(∑

v∈C
w(v, α(v)), q

)
∈ op

for every connected component C of G(Γ).
A Permutation-CSP-instance with 1cc-size constraints is a pair (Γ,S) where Γ = (X,D, C) is a Permutation-

CSP-instance and S is a set of 1cc-size constraints. We say that (Γ,S) is satisfiable if there is an assignment
α : X → D which satisfies Γ as well as every constraint (w, q, op) ∈ S on Γ. Also, we define

‖S‖ :=
∏

(w,q,op)∈S

(2 + q).

Perm CSP Vertex Deletion with Size Constraints Parameter: k
Input: A Permutation-CSP-instance with 1cc-size constraints (Γ,S) with Γ = (X,D, C), a set of undeletable
variables U ⊆ X, and an integer k.
Question: Is there a set Z ⊆ X \ U such that |Z| ≤ k and (Γ[X \ Z],S) is satisfiable?
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Theorem 5.4. There is an algorithm solving Planar Perm CSP Vertex Deletion with Size Constraints

in time (|X|+ |D|+ ‖S‖)O(
√
k).

Moreover, assuming Conjecture 1.1, there is an algorithm solving H-Minor-Free Perm CSP Vertex

Deletion with Size Constraints in time (|X|+ |D|+ ‖S‖)O(cH
√
k) where cH is a constant that only depends

on H.

Proof. We focus on the first statement. Let G = G(Γ) be the constraint graph and let ` :=
⌈√

k
⌉
. Also suppose

Z ⊆ V (G) \ U = X \ U is a solution, i.e., |Z| ≤ k and (Γ[X \ Z],S) is satisfiable. Let V1, . . . , V` be the partition
of the vertex set V (G) computed by Theorem 4.2. Then there is some i ∈ [`] such that

|Z ∩ Vi| ≤
k

`
≤
√
k.

Let Zi := Z ∩ Vi. The algorithm first guesses i ∈ [`] as well as the set Zi by iterating over all possible choices.

Observe that the guessing only increases the running time by a factor of |X|(k/`)+1 = |X|O(
√
k) which does not

pose any problems. So for the remainder of the proof, suppose that i and Zi are fixed.
Let I1, . . . , Im be the connected components of G[Vi \ Zi] and define I := {I1, . . . , Im}. Also, for each I ∈ I,

we fix an arbitrary linear order <I on the set I. Overall, this gives rise to the segmented graph (G, I). Now, the
central idea is to translate the instance (Γ,S) to a binary CSP instance with global and local size constraints over
the graph G/I.

Let Γ∗ := (X∗, D∗, C∗) where X∗ := V (G/I), D∗ := D ] {sol}, and a set of constraints C∗ defined as follows.
For I ∈ I and a ∈ D, we define αI,a : I → D to be an assignment such that

• αI,a(v) = a where v denotes the minimal element of I with respect to <I ,

• αI,a satisfies all unary constraints (v,R) ∈ C for which v ∈ I, and

• αI,a satisfies all binary constraints ((v, w), R) ∈ C for which v, w ∈ I and vw ∈ E(G).

If such an assignment exists, we say that a is valid for I. Observe that, if a is valid for I, then the assignment
αI,a is unique since Γ is a Permutation-CSP-instance and G[I] is connected.

For every I ∈ I, we introduce a unary constraint (vI , RI) to C∗ where

RI = {a ∈ D | a is valid for I}.

For every v ∈ X \
(
Zi ∪

⋃
I∈I I

)
and unary constraint (v,R) ∈ C, the constraint (v,R∪{sol}) is added to C∗. For

every v ∈ Zi, we introduce the unary constraint (v, {sol}) to C∗. Also, for every v ∈ U \
(⋃

I∈I I
)
, we introduce

the unary constraint (v,D) to C∗. Now, let ((v, w), R) ∈ C be a binary constraint. If v, w ∈ X \
(⋃

I∈I I
)

then
we add the constraint (

(v, w), R ∪ (D × {sol}) ∪ ({sol} ×D) ∪ ({sol} × {sol})
)

to C∗. If v ∈ X \
(⋃

I∈I I
)

and w ∈ I for some I ∈ I then we add the constraint(
(v, vI), {(a, a′) | a ∈ D, a′ ∈ RI , (a, αa′,I(w)) ∈ R} ∪ ({sol} ×RI)

)
If w ∈ X \

(⋃
I∈I I

)
and v ∈ I we proceed analogously. Finally, if v ∈ I and w ∈ I ′ for some distinct I, I ′ ∈ I

then we add the constraint(
(vI , vI′), {(a, a′) | a ∈ RI , a′ ∈ RI′ , (αa,I(v), αa′,I′(w)) ∈ R}

)
.

Next, we define the size constraints for Γ∗. First, we add a global size constraint to force that at most
k variables x ∈ X∗ are assigned the value sol. More precisely, we define Sglobal := {(wsol, k,≤)} where
wsol : X

∗ × D∗ → N is defined via wsol(v, sol) = 1 and wsol(v, a) = 0 for every a ∈ D and v ∈ X∗. For the
local constraints, we define F := {dd′ | d, d′ ∈ D} ⊆ (D∗)2 and D := {D∗}. Also, we define 0D to denote the
function with domain D = {D∗} that maps D∗ to value 0.

We translate every 1cc-size constraint (w, q, op) ∈ S into an F -local constraint (w∗, 0D, q, op) ∈ Slocal as
follows. We set
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• w∗(v, sol) :=

{
q if op =≥
0 if op =≤

for all v ∈ X∗,

• w∗(v, a) := w(v, a) for all a ∈ D and v ∈ X∗ \ VI , and

• w∗(vI , a) :=

{∑
u∈I w(u, αa,I(u)) if a is valid for I

0 otherwise
for all a ∈ D and vI ∈ VI .

Claim 5.1. (Γ,S, U, k) is a Yes-instance if and only if (Γ∗,Sglobal,Slocal) is satisfiable.

Proof. First suppose (Γ,S, U, k) is a Yes-instance, i.e., there is a set Z ⊆ X \U of size |Z| ≤ k and an assignment
α : X \ Z → D that satisfies Γ[X \ Z] as well as every 1cc-size constraint (w, q, op) ∈ S on Γ[X \ Z]. Moreover,
by the above assumptions, Z ∩ Vi = Zi. We construct an assignment α∗ : X∗ → D∗ defined via

• α∗(vI) := α(v) where v is the minimal element of I with respect to <I ,

• α∗(v) := sol for every v ∈ Z, and

• α∗(v) := α(v) for all every v ∈ X \ (Z ∪
⋃
I∈I I).

We claim that α∗ satisfies (Γ∗,Sglobal,Slocal). First of all, for every I ∈ I, α(v) is valid for I where v is the minimal
element of I with respect to <I . In particular, the unary constraint (vI , RI) is satisfied. Moreover,

αα(v),I(w) = α(w)

for every w ∈ I. This implies that α∗ satisfies all constraints in the set C∗. Hence, it remains to consider the
size constraints. Clearly, the global size constraint is satisfied (wsol, k,≤) is satisfied since |Z| ≤ k. So consider
some constraint (w, q, op) ∈ S and its corresponding (F,D)-local constraint (w∗, 0D, q, op). Let G∗ := G(Γ∗) be
the constraint graph of Γ∗ and define H∗ to be the graph with V (H∗) := V (G∗) = X∗ and

E(H∗) := {vw | α∗(v)α∗(w) ∈ F}

Let C∗1 , . . . , C
∗
` denote the connected components of H∗. Fix i ∈ [`]. Since D = {D∗} there is clearly some Di ∈ D

such that α∗(v) ∈ Di for every v ∈ C∗i . So we need to show that

(5.3)
( ∑
v∈C∗i

w∗(v, α∗(v)), q
)
∈ op.

If there is some v ∈ Ci such that α∗(v) = sol then Ci = {v} by definition of the set F . In particular, Equation
(5.3) is satisfied by definition of w∗. Otherwise, let Ci := ext(C∗i ) be the corresponding set of vertices in G.
Observe that Ci is a connected component of G−Z. Also, for I ∈ I, define aI ∈ D such that α∗(vI) = aI . Hence,∑

v∈C∗i

w∗(v, α∗(v)) =
( ∑
vI∈C∗i ∩VI

∑
u∈I

w(u, αaI ,I(u))
)

+
∑

v∈C∗i \VI

w(v, α(v))

=
( ∑
vI∈C∗i ∩VI

∑
u∈I

w(u, α(u))
)

+
∑

v∈C∗i \VI

w(v, α(v))

=
∑
v∈Ci

w(v, α(v)).

So Equation (5.3) is satisfied since α satisfies the 1cc-size constraint (w, q, op) on Γ[X \ Z].

For the other direction, let α∗ : X∗ → D∗ be a satisfying assignment for (Γ∗,Sglobal,Slocal). Let Z := {v ∈
X∗ | α∗(v) = sol}. First observe that Z ⊆ X since segment vertices can not be assigned the value sol due to the
unary constraints. Also, Z ∩ Vi = Zi and Z ∩ U = ∅ again by the unary constraints. Moreover, |Z| ≤ k by the
global size constraint (wsol, k,≤).

We construct an assignment α : X \ Z → D via
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• α(v) := α∗(v) for every v ∈ X \
(
Z ∪

⋃
I∈I I

)
, and

• α(v) := αaI ,I(v) for every I ∈ I and v ∈ I where aI := α∗(vI).

It is not difficult to check that α satisfies Γ[X \Z]. So let (w, q, op) ∈ S and C a connected component of G−Z.
Also, let C∗ := shr(C) be the corresponding set in G/I. Observe that Z ∩ I = ∅ for every I ∈ I and hence, I ⊆ C
for every I ∈ I for which C ∩ I 6= ∅. As before, let G∗ := G(Γ∗) be the constraint graph of Γ∗ and define H∗ to
be the graph with V (H∗) := V (G∗) = X∗ and

E(H∗) := {vw | α∗(v)α∗(w) ∈ F}

Then C∗ is a connected component of H∗. Using the same calculations as above, it follows that(∑
v∈C

w(v, α(v)), q
)
∈ op

because ( ∑
v∈C∗

w∗(v, α∗(v)), q
)
∈ op

due to the fact that α∗ satisfies the (F,D)-local constraint (w∗, 0D, q, op).

By the previous claim, we can now use the algorithm from Theorem 5.1 to decide whether (Γ,S, U, k)
is a Yes-instance. This completes the description of the algorithm. It only remains to analyze its running
time. Clearly, the instance (Γ∗,Sglobal,Slocal) can be computed in polynomial time given (Γ,S, U, k, i, Zi). Also,

tw(G/I) = O(`+ |Zi|) = O(
√
k) by Theorem 4.2. So the algorithm from Theorem 5.1 runs in time

(|D∗|+O(
√
k) + k + ‖S‖)O(

√
k)|X∗|O(1) = (|D|+ k + ‖S‖)O(

√
k)|X|O(1).

Overall, this result in a running time of

|X|O(
√
k) · (|D|+ k + ‖S‖)O(

√
k)|X|O(1) = (|X|+ |D|+ ‖S‖)O(

√
k).

For the second statement of the theorem, the algorithm is essentially identical, but it relies on Conjecture
1.1 instead of Theorem 4.2. In this case tw(G/I) = O(cH(` + |Zi|)) = O(cH

√
k). Hence, the algorithm from

Theorem 5.1 runs in time

(|D|+ cHk + ‖S‖)O(cH
√
k)|X|O(1) = (|D|+ k + ‖S‖)O(c′H

√
k)|X|O(1)

for some suitable constant c′H that only depends on cH .

The next theorem provides a variant of the last theorem where we partition the vertex set into k + 1 classes.
This result may also be of interest.

Theorem 5.5. There is an algorithm solving Planar Perm CSP Vertex Deletion with Size Constraints
in time (|D|+ k + ‖S‖)O(k)|X|O(1).

Moreover, assuming Conjecture 1.1, there is an algorithm solving H-Minor-Free Perm CSP Vertex
Deletion with Size Constraints in time (|D| + k + ‖S‖)O(cHk)|X|O(1) where cH is a constant that only
depends on H.

Proof. The algorithm is exactly the same as in the previous theorem, but it computes a partition V1, . . . , V` into
` := k + 1 blocks. This implies there is some i ∈ [`] such that Z ∩ Vi = ∅, and the entire algorithm runs in time
(|D|+ k + ‖S‖)O(k)|X|O(1).

Again, the same analysis provides the statement for H-minor-free graphs assuming Conjecture 1.1 holds.
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5.4 Permutation CSP on Two-Connected Components Finally, we turn to the proof of Theorem 3.3.
The proof of this theorem is the most complicated one of this section since we need to incorporate the guessing of
the bodies of the segments and we need to verify that all guesses are consistent. As before, we start by recalling
the problem at hand.

Let Γ = (X,D, C) be a binary CSP instance. A 2cc-size constraint is a pair (w, q) where w : X ×D → N is a
weight function, and q ∈ N. Let W ⊆ X. An assignment α : W → D satisfies (w, q) on W if∑

v∈W
w(v, α(v)) ≤ q.

Observe that, in comparison to 1cc-size constraints, we only allow to check for upper bounds on the weighted size
of a set W ⊆ X.

A Permutation-CSP-instance with 2cc-size constraints is a pair (Γ,S) where Γ = (X,D, C) is a Permutation-
CSP-instance and S is a set of 2cc-size constraints. For W ⊆ X, we say that (Γ,S) is satisfiable on W if there is
an assignment α : W → D that satisfies Γ[W ] as well as all 2cc-size constraints (w, q) ∈ S on W . As before, we
define

‖S‖ :=
∏

(w,q,op)∈S

(2 + q).

2Conn Perm CSP Vertex Deletion with Size Constraints Parameter: k
Input: A Permutation-CSP-instance with 2cc-size constraints (Γ,S) with Γ = (X,D, C), a set of undeletable
variables U ⊆ X, and an integer k.
Question: Is there a set Z ⊆ X \ U such that |Z| ≤ k and (Γ,S) is satisfiable on W for every 2-connected
component W of the graph G(Γ[X \ Z]).

To prove Theorem 3.3, we need to build an algorithm solving Planar 2Conn Perm CSP Vertex Deletion

with Size Constraints and which runs in time (|X|+ |D|+ ‖S‖)O(
√
k). For this, we build on similar ides as in

the previous subsection, but we need to incorporate information about the bodies of segments I ∈ I as obtained
in Theorem 4.4. Let us start by recalling some notation.

Let (G, I) be a segmented graph. We define V (I) :=
⋃
I∈I I as the set of vertices appearing in some segment.

We always use vI to denote the vertex of G/I that corresponds to segment I. Also, VI := {vI | I ∈ I}. For
U ⊆ V (G) we use shr(U) to denote the set of all vertices v ∈ V (G/I) that correspond to some u ∈ U . In
particular, vI ∈ shr(U) if U ∩ I 6= ∅. In the other direction, for U ⊆ V (G/I), we use ext(U) to denote the set
of all vertices v ∈ V (G) that correspond to some u ∈ U . In particular, if vI ∈ U then I ⊆ ext(U). If U = {u}
consists of a single vertex, then we also write shr(u) and ext(u) instead of shr({u}) and ext({u}).

Next, let Z ⊆ V (G) \ V (I) denote a “solution set”. Let (T, γ) be the decomposition into the 2-connected
components of G − Z. Recall that T is a forest where each connected component is equipped with a root node.
For t ∈ V (T) we dente by Desc(t) the set of descendants of t, including t itself.

We recall the following objects defined for every segment I ∈ I. We have that rZ(I) denote the unique node
t ∈ V (T) which is closest to a root node t0 and for which I∩γ(t) 6= ∅. Also, BZ(I) := {t ∈ V (T)\{r(I)} | I∩γ(t) 6=
∅} denotes the body of I. Observe that rZ(I) /∈ BZ(I). Moreover, r̂Z(I) := γ(rZ(I)) and B̂Z(I) :=

⋃
t∈RZ(I) γ(t)

denote the corresponding sets of vertices in the graph G. To simplify notation, we usually omit the index Z if it
is clear from context.

To obtain the information on the bodies of segments I ∈ I we build on Corollary 4.2 which provides suitable
segments and their bodies after guessing O(

√
k) many vertices. Hence, we may assume that this information is

additionally given to algorithm. This is formulated by the following intermediate problem.

2Conn Perm CSP Vertex Deletion with Bodies Parameter: tw(G/I) + ‖F‖
Input: A Permutation-CSP-instance with 2cc-size constraints (Γ,S) with Γ = (X,D, C), a set of undeletable
variables U ⊆ X, a set of segments I of the graph G(Γ), a function F on domain I, and an integer k.
Question: Is there a set Z ⊆ X \ (V (I)∪U) such that |Z| ≤ k and, for (T, γ) being a rooted decomposition
into 2-connected components of G(Γ)− Z, (Γ,S) is satisfiable on γ(t) for all t ∈ V (T).
Guarantee: If (Γ,S, U, I,F , k) is a Yes-instance, then there is a solution such that additionally

(B̂Z(I), r̂Z(I) ∩ I) ∈ F(I) for all I ∈ I.
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Here, we define ‖F‖ :=
∑
I∈I |F(I)|. To be able to use an algorithm for this problem as a subroutine later

on, let us clarify the behavior in case the guarantee is not satisfied. If (Γ,S, U, k) is a Yes-instance, an algorithm
may output either answer if the guarantee does not hold. However, if (Γ,S, U, k) is a No-instance, an algorithm
may never output Yes independent of whether the guarantee is satisfied or not.

Theorem 5.6. There is an algorithm solving 2Conn Perm CSP Vertex Deletion with Bodies in time

(|X|+ |D|+ ‖S‖+ ‖F‖)O(tw(G/I)).

Proof Idea. We give a polynomial-time algorithm that translates an instance of the problem above into an
equivalent CSP-instance Γ∗ = (X∗, D∗, C∗) with global size constraints Sglobal and (F ∗,D∗)-local size constraints
Slocal (for some suitable choice of (F ∗,D∗)) such that G(Γ∗) = (G(Γ))/I and

|D∗| = (|X|+ |D|+ ‖F‖)O(1).

Let G := G(Γ). Towards this end, we describe a solution to (Γ,S, U, k) by a series of functions defined on
X∗ := V (G/I).

Let I ∈ I be a segment and let (B, J) ∈ F(I). We say that (B, J) is valid if

(I) (Γ,S) is satisfiable on C for every 2-connected component C of G[B],

(II) I ⊆ B ∪ J ,

(III) every vertex v ∈ B ∩ J is a cut vertex in G[B ∪ J ],

(IV) G[J ] is connected, and

(V) B ∩ I 6= ∅ and G[B ∪ I] is connected.

We start by removing all elements (B, J) from F(I) that are not valid. Observe that this can be done in polynomial
time.

Now let F̃ :=
⋃
I∈I{I} × F(I). We describe a solution to the input instance by the following functions:

• α : X∗ → D ] {sol} ] F̃ such that α(vI) 6= sol for every I ∈ I, and α(v) 6= sol for every v ∈ U \ V (I),

• α+ : X∗ → D,

• h : X∗ → [0, |X|],

• cut : X∗ → X ∪ {>},

• ρ : I →
⋃
I∈I F(I) such that ρ(I) ∈ F(I) for all I ∈ I,

These functions correspond to a satisfying assignment for Γ∗. Consequently, we set

|D∗| := (D ] {sol} ∪ F̃)×D × [0, |X|]× (X ∪ {>})×
( ⋃
I∈I
F(I)

)
.

This allows us to associate every tuple of functions (α, α+, h, cut, ρ) with some assignment α∗ : X∗ → D∗, and
vice versa. Here, we can interpret I (the domain of the function ρ) as a subset of X∗ in the natural way, and
view ρ as a function with domain X∗ where vertices v ∈ V (G/I) \ VI are assigned arbitrary values.

Now, let us first describe how to translate a solution Z ⊆ V (G) \ (V (I) ∪ U) for (Γ,S, U, k) into a satisfying
assignment (α, α+, h, cut, ρ) for (Γ∗,Sglobal,Slocal). (The construction of the instance (Γ∗,Sglobal,Slocal) is completed
afterwards in such a way that (α, α+, h, cut, ρ) indeed provides a satisfying assignment.)

Suppose Z ⊆ V (G) \ (V (I)∪U) is a solution for (Γ,S, U, k) such that (B̂Z(I), r̂Z(I)∩ I) ∈ F(I) for all I ∈ I.
Also, let (T, γ) denote the corresponding rooted decomposition into 2-connected components of G−Z. First, we
fix α(v) := sol for every v ∈ Z and define α+(v) arbitrarily, h(v) = 0 and cut(v) = >. For all other vertices, the
functions (α, α+, h, cut, ρ) are defined as follows (see Figure 6 for an example).
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B

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

vertex α α+ h cut ρ
v1 4 1 4 v3 –
v2 1 2 4 v3 –
v3 4 1 3 v4 –
v4 (I,B, J) – 2 v6 –
v7 1 – 0 > –
vI 3 1 1 v7 (B, J)
v9 (I,B, J) – 2 v8 –
v11 (I,B, J) – 2 v10 –
v12 0 2 3 v11 –

Figure 6: A permutation CSP instance remaining after removing variables Z, where each 2-connected component
is satisfiable. The domain is D = {0, 1, 2, 3, 4}. Each directed edge x → y represents the relation y = x + 1
(mod 5). Each yellow vertex appears in a unary constraint forcing it to 0. Thus each 2-connected component has
a unique satisfying assignment (note that these assignments do not agree on the cut vertices). Set B is shown in
gray, segment I is red, and set J is highlighted in light red. We assume that v6 is the minimal element of J on
I. The table show the values of certain vertices in a consistent tuple (α, α+, h, cut, ρ).

ρ: We first define ρ(I) := (B̂Z(I), r̂Z(I)∩ I) for every I ∈ I. It is easy to see that (B̂Z(I), r̂Z(I)∩ I) is valid for
every I ∈ I.

h: For every v ∈ V (G/I)\Z we define r(v) := t for the unique highest node t ∈ V (T) such that γ(t)∩ext(v) 6= ∅.
Let t0, . . . , t` = r(v) denote the unique path from a root of T to r(v). For every I ∈ I it holds that
{t0, . . . , t`} ∩ BZ(I) = {ti, ti+1, . . . , tj} for some i, j, i.e., the intersection forms a subpath of t0, . . . , t`. Let
t′0, . . . , t

′
h denote the path obtained from t0, . . . , t` by contradicting all these subpaths to single vertices for

every segment I ∈ I. We define h(v) := h.

(Intuitively speaking, h(v) is the height of t = r(v) in the tree T. However, for technical reasons, h(v) is
defined slightly differently where single body sets are viewed as a single 2-connected component to determine
the height; see Figure 6).

cut: If h(v) = 0 we define cut(v) := >. Otherwise, cut(v) is set to be the cut vertex to the parent of r(v), i.e.,
cut(v) := x where x ∈ γ(t) ∩ γ(s) is the unique element for t = r(v) and s being the parent of t in T.
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α and α+: Fix some t ∈ V (T). We distinguish two cases. First suppose that t ∈ BZ(I) for some segment

I ∈ I. For every v ∈ V (G/I) such that r(v) = t we set α(v) := (I, B̂Z(I), r̂Z(I)∩ I). Also, we define α+(v)
arbitrarily.

In the other case, there is no I ∈ I such that t ∈ BZ(I). Let αt : γ(t)→ D denote a satisfying assignment
for (Γ,S) on γ(t). Let v ∈ V (G/I) such that r(v) = t. If v /∈ VI then we define α(v) := αt(v). If v = vI ∈ VI
then I ∩ γ(t) = r̂Z(I) ∩ I =: J by definition. Let v′ denote the minimal element contained in J according
to the linear order on I. We define α(vI) := αt(v

′). Observe that cut(v) /∈ I for every I ∈ I (as otherwise
t ∈ BZ(I)). We define α+(v) := αt(cut(v)) (if cut(v) = > then α+(v) is defined arbitrarily).

This completes the description of the tuple (α, α+, h, cut, ρ).

Now, let us complete the construction of (Γ∗,Sglobal,Slocal). Here, the basic idea is that every solution Z for
the input problem should provide a satisfying assignment (α, α+, h, cut, ρ) as described above, and every satisfying
assignment (α, α+, h, cut, ρ) gives raise to a solution Z := α−1(sol). We need to introduce the following additional
notation. Let I ∈ I. Observe that ρ(I) = (B, J) for some B ⊆ V (G) and J ⊆ I. We denote by ρ1(I) = B the
first component of ρ(I), and ρ2(I) = J denotes the second component of ρ(I).

Next, let J ⊆ I such that G[J ] is connected and let a ∈ D. We define αJ,a : J → D to the unique assignment
for which αJ,a(v) = a where v denotes the minimal element of J (where elements of J are ordered according to
the linear order on I), and such that αJ,a is a satisfying assignment of Γ[J ]. If there is no such assignment, we
say that a is invalid for J and αJ,a may be defined in an arbitrary manner.

Now, we describe a series of conditions that enforces any tuple (α, α+, h, cut, ρ) of function to have the
intended meaning described above. In particular, the tuple of functions constructed from a solution set Z as
above satisfies all these conditions. We say that (α, α+, h, cut, ρ) is consistent if the following conditions are
satisfied. For every v ∈ V (G/I) such that α(v) 6= sol it holds that

1. h(v) = 0 if and only if cut(v) = >,

2. if α(v) ∈ D and v /∈ VI then α(v) ∈ R for unary every constraint (v,R) ∈ C,

3. if α(v) ∈ D and v = vI ∈ VI then α(v) is valid for ρ2(I),

4. α+(v) ∈ R for every unary constraint (cut(v), R) ∈ C (if cut(v) = >, this condition is ignored),

5. if α(v) = (I,B, J) then cut(v) ∈ B ∩ J ,

6. if cut(v) /∈ I for every I ∈ I, then α(v) ∈ D,

7. if cut(v) ∈ I, then α(v) = (I,B, J) for some (B, J) ∈ F(I),

8. if α(v) = (I,B, J) and v /∈ VI then v ∈ B,

9. if α(v) = (I,B, J) and v = vI′ ∈ VI then I 6= I ′ and ρ2(I ′) = B ∩ I ′,

10. cut(v) /∈ ext(v).

Also, for every vw ∈ E(G/I) such that α(v) 6= sol it holds that

11. if v = vI ∈ VI , w /∈ VI , ρ(I) = (B, J) and w ∈ B then α(w) = (I,B, J) and h(w) = h(v) + 1,

12. if v = vI ∈ VI , w = vI′ ∈ VI , ρ(I) = (B, J) and I ′ ∩B 6= ∅ then α(w) = (I,B, J) and h(w) = h(v) + 1,

13. if α(v) = (I,B, J), w /∈ VI and w ∈ B then α(w) = (I,B, J) and h(w) = h(v),

14. if α(v) = (I,B, J), w = vI′ ∈ VI , I 6= I ′ and I ′ ∩B 6= ∅ then α(w) = (I,B, J) and h(w) = h(v),

15. if α(w) = (I,B, J) and v = vI then ρ(I) = (B, J).

(Intuitively speaking, these constraints enforce that, if ρ(I) = (B, J), then the set of vertices v that set
α(v) := (I,B′, J ′) corresponds to B, and α(v) := (I,B, J) for all such vertices. In other words, the constraints
enforce that bodies are assigned consistently.) And finally, for every vw ∈ E(G/I) such that α(v) 6= sol and
α(w) 6= sol it holds that
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16. h(v) ∈ {h(w) + 1, h(w), h(w)− 1},

17. if h(v) = h(w) then

(a) cut(v) = cut(w) and α+(v) = α+(w),

(b) if v = vI ∈ VI and ρ(I) = (B, J) then N(ext(w)) ∩ I ⊆ J ,

(c) if α(v) ∈ F̃ then α(w) = α(v)

(d) if α(v) ∈ D and v, w /∈ VI then (α(v), α(w)) satisfies all constraints ((v, w), R) ∈ C,
(e) if α(v) ∈ D and v = vI ∈ VI , w /∈ VI then a := α(v) is valid for ρ2(I), and (αa,ρ2(I)(v

′), α(w)) satisfies
all constraints ((v′, w), R) ∈ C where v′ ∈ ρ2(I),

(f) if α(v) ∈ D and v = vI ∈ VI , w = wI′ ∈ VI then a := α(v) is valid for ρ2(I), a′ := α(w) is valid for
ρ2(I ′), and (αa,ρ2(I)(v

′), αa′,ρ2(I′)(w
′)) satisfies all constraints ((v′, w′), R) ∈ C where v′ ∈ ρ2(I) and

w′ ∈ ρ2(I ′),

18. if h(w) = h(v) + 1 then

(a) cut(w) ∈ ext(v),

(b) if w = vI ∈ VI and ρ(I) = (B, J) then N(ext(v)) ∩ I ⊆ J ,

(c) if v, w /∈ VI , then (α+(w), α(w)) satisfies all constraints ((v, w), R) ∈ C,
(d) if v /∈ VI and w = vI ∈ VI , then a := α(w) is valid for ρ2(I), and (α+(w), αa,ρ2(I)(w

′)) satisfies all
constraints ((v, w′), R) ∈ C where w′ ∈ ρ2(I).

(Here, we mostly ensure that all binary constraints are satisfied, and the root part J for ρ(I) = (B, J) interacts
with the rest of graph in a consistent way, see 17b and 18b.)

Now, the existence of a consistent tuple can be formulated as a binary CSP-instance Γ∗ = (X∗, D∗, C∗) such
that G(Γ∗) = (G(Γ))/I and

|D∗| = (D ] {sol} ∪ F̃)×D × [0, |X|]× (X ∪ {>})×
( ⋃
I∈I
F(I)

)
.

It remains to define the global and local size constraints. Since we need to define weight function on X∗×D∗,
we interpret elements ā ∈ D∗ as vectors of dimension 5, and use āi to denote the i-th entry. In this sense,
ā1 corresponds to the function α, ā2 corresponds to the function α+, ā3 corresponds to the function h, ā4

corresponds to the function cut, and ā5 corresponds to the function ρ. First, we add a global size constraint to
force that at most k variables x ∈ X∗ are assigned the value sol (under the function α). More precisely, we define
Sglobal := {(wsol, k,≤)} where wsol : X

∗ ×D∗ → N is defined via

wsol(v, ā) =

{
1 if ā1 = sol

0 otherwise

for every ā ∈ D∗ and v ∈ X∗, where āi denotes the i-th component of ā.
Next, we turn to the local size constraints. We define

F ∗ =
{

(ā, ā′) ∈ (D∗)2
∣∣∣ ā1 ∈ D, ā′1 ∈ D, ā3 = ā′3

}
.

Also, we define the partition D∗ of D∗ in such a way that two elements ā, ā′ ∈ D∗ end up in the same partition
class of D∗ if and only if

ā2 = ā′2 ∧ ā3 = ā′3 ∧ ā4 = ā′4.

Now, consider a 2cc-size constraint (w, q) ∈ S. We translate (w, q) into a (F ∗,D∗)-local size constraint
(w∗, w∗D, q,≤) ∈ Slocal as follows. For D′ ∈ D∗ there are a ∈ D, h ∈ [0, |X|], and v ∈ (X ∪ {>}) such that ā2 = a,
ā3 = h, and ā4 = v for all ā ∈ D′. We define

w∗D(D′) :=

{
0 if v = >
w(v, a) otherwise

.
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Next, we define the function w∗. Let v ∈ X∗ = V (G/I) and ā ∈ D∗. If v /∈ VI we define

w∗(v, ā) :=

{
w(v, ā1) if ā1 ∈ D
0 otherwise

.

Also, if v = vI ∈ VI we define

w∗(v, ā) :=

{∑
u∈J w(u, αJ,ā1(u)) if ā1 ∈ D, ā5 = (B, J), ā1 is valid for J

0 otherwise
.

This completes the description of the instance (Γ∗,Sglobal,Slocal).

First observe that it can be computed in time (|D| + |X| + |S| + ‖F‖)O(1). Also, |X∗| ≤ |X|, ‖Sglobal‖ = k,
‖Slocal‖ = ‖S‖, and

|D∗| = (|X|+ |D|+ ‖F‖)O(1).

Now, we claim that the instance (Γ∗,Sglobal,Slocal) is equivalent to the input instance. More precisely, it is
possible to prove the following two statements:

(E.1) If (Γ∗,Sglobal,Slocal) is satisfiable with a consistent tuple (α, α+, h, cut, ρ) then Z := α−1(sol) is a solution
for the instance (Γ,S, U, k).

(E.2) If Z ⊆ V (G) \ (V (I) ∪ U) is a solution for (Γ,S, U, k) such that (B̂Z(I), r̂Z(I) ∩ I) ∈ F(I) for all I ∈ I,
then (Γ∗,Sglobal,Slocal) is satisfiable.

Hence, it suffices to check whether (Γ∗,Sglobal,Slocal) is satisfiable. By Theorem 5.1 this can be done in time

(|D∗|+ tw(G/I) + ‖Sglobal‖+ ‖Slocal‖)O(tw(G/I))|X∗|O(1) = (|X|+ |D|+ ‖S‖+ ‖F‖)O(tw(G/I)).

Now, we can combine the previous theorem with Corollary 4.2 to obtain an algorithm for Planar 2Conn
Perm CSP Vertex Deletion with Size Constraints.

Theorem 5.7. There is an algorithm solving Planar 2Conn Perm CSP Vertex Deletion with Size

Constraints in time (|X|+ |D|+ ‖S‖)O(
√
k).

Moreover, assuming Conjecture 1.1, there is an algorithm solving H-Minor-Free 2Conn Perm CSP

Vertex Deletion with Size Constraints in time (|X| + |D| + ‖S‖)O(cH
√
k) for some constant cH that

only depends on H.

Proof. Consider the first part of the theorem. Let (Γ,S, U, k) be the input instance. Also, let G := G(Γ) be the
constraint graph. We choose r = O(

√
k) according to Lemma 4.2 and iterate over all tuples (v1, . . . , vr) ∈ (V (G))r.

For (v1, . . . , vr) ∈ (V (G))r, we compute a set of segments I and a function F using the algorithm from 4.2. If
tw(G/I) = ω(

√
k), the algorithm moves to the next tuple. Otherwise, we apply Theorem 5.6 to the input

(Γ,S, U, I,F , k). If the algorithm returns Yes then we also output Yes. Otherwise, we move to the next tuple
(v1, . . . , vr) ∈ (V (G))r. If we never outputs Yes for any tuple (v1, . . . , vr) ∈ (V (G))r, then we return No.

Let us first analyse the running time of the algorithm. Clearly, in each iteration, |I| ≤ |X| and |F| = |X|O(1)

by Corollary 4.2. Also, the computation of (I,F) requires time |X|O(1). Also, we can determine whether

tw(G/I) = O(
√
k) in time 2O(

√
k)|X|O(1). Next, the algorithm from Theorem 5.6 runs in time

(|X|+ |D|+ ‖S‖+ ‖F‖)O(tw(G/I)) = (|X|+ |D|+ ‖S‖)O(
√
k).

Overall, this gives a running time of

|X|r
(
|X|O(1) + 2O(

√
k)|X|O(1) + (|X|+ |D|+ ‖S‖)O(

√
k)
)

= (|X|+ |D|+ ‖S‖)O(
√
k).

For the correctness of the algorithm, first observe that we only output Yes if (Γ,S, U, k) is indeed a Yes-
instance. So suppose that (Γ,S, U, k) is a Yes-instance and let Z ⊆ X = V (G) be a solution. Observe that
|Z| ≤ k. By Corollary 4.2, there is some tuple (v1, . . . , vr) ∈ (V (G))r such that
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1. V (I) ∩ Z = ∅,

2. tw(G/I) = O(
√
k), and

3. (B̂Z(I), r̂Z(I) ∩ I) ∈ F(I) for every I ∈ I.

where (I,F) denotes the output of the algorithm from Corollary 4.2 on input (G, (v1, . . . , vr)). For this tuple,
the algorithm from Theorem 5.6 outputs Yes.

For the second part of the theorem, we proceed in the same way, but we replace the application of Corollary
4.2 with Corollary 4.3.

In particular, the last theorem implies Theorem 3.3. We complete this section by considering the edge deletion
version of the problem above.

2Conn Perm CSP Edge Deletion with Size Constraints Parameter: k
Input: A Permutation-CSP-instance with 2cc-size constraints (Γ,S) with Γ = (X,D, C), a set of undeletable
edges U ⊆ E(G(Γ)), and an integer k.
Question: Is there a set Z ⊆ E(G(Γ)) \ U such that |Z| ≤ k and ((X,D, C − Z),S) is satisfiable on W for
every 2-connected component W of the graph G(Γ)− Z.

By reducing this problem to the corresponding vertex deletion version, we obtain the following theorem.

Theorem 5.8. There is an algorithm solving Planar 2Conn Perm CSP Edge Deletion with Size

Constraints in time (|X|+ |D|+ ‖S‖)O(
√
k).

Moreover, assuming Conjecture 1.1, there is an algorithm solving H-Minor-Free 2Conn Perm CSP Edge

Deletion with Size Constraints in time (|X|+ |D|+ ‖S‖)O(cH
√
k) for some constant cH that only depends

on H.
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