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Abstract

We consider the problem of approximating the arboricity of a graph G = (V, E), which we
denote by arb(G), in sublinear time, where the arboricity of a graph is the minimal number
of forests required to cover its edges. An algorithm for this problem may perform degree and
neighbor queries, and is allowed a small error probability. We design an algorithm that outputs
an estimate @&, such that with probability 1 — 1/poly(n), arb(G)/clog n < & < arb(G), where
n = |V| and ¢ is a constant. The expected query complexity and running time of the algorithm
are O(n/arb(G))-poly(logn), and this upper bound also holds with high probability. This bound
is optimal for such an approximation up to a poly(logn) factor.
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1 Introduction

The arboricity of a graph G, denoted arb(G), is a measure of its density “everywhere”. Formally,
it is defined as the minimum number of forests into which its edges can be partitioned, and it

holds [37, 42, 38| that arb(G) = maxgcy {['E(S)‘H, where F(S) denotes the set of edges in the

S1—1
subgraph of G induced by S.!

Arboricity is not only a basic measure, but also plays an important role in designing efficient
algorithms, including, but not limited to: listing subgraphs, e.g., [14, 11, 6, 25, 26, 9], graph
coloring, e.g., [5, 32, 39, 41, 24, 29], and maintaining small representations, e.g., [10, 33, 28].
Furthermore, several NP-hard problems such as CLIQUE, INDEPENDENT-SET and DOMINATING-
SET become fixed-parameter tractable in bounded arboricity graphs [1, 27, 22, 34, 4]).

In the sublinear-time regime, when arb(G) is bounded, there exist improved algorithms for ap-
proximating the number of cliques [19], approximating the moments of the degree distribution [18],
and sampling edges and cliques almost uniformly at random [16, 17]. All these algorithms require
receiving an upper bound on the arboricity as input in order to achieve the improved results.

The arboricity of a graph can be exactly computed in polynomial time [20, 40], where the fastest
algorithm is due to Gabow [23] and runs in time O(m?*?log(n?/m)), where n and m denote the
number of vertices and edges, respectively, in the graph. For a comprehensive list of results on
exactly computing the arboricity see [8]. Several O(n + m) time algorithms exist for computing a
2-factor approximation of the arboricity [21, 2, 13].2

A natural question is whether the arboricity can be approximated much more efficiently, and in
particular, in sublinear time. Specifically, we consider the incidence-list query model, which allows
for degree and neighbor queries.? For the closely related problem of finding the densest subgraph,
Bhattacharya et al. [7] showed that their 2-factor approximation 5(n)—spaee4 dynamic streaming
algorithm can be adapted to run in 6(71) time in the incidence-list model. In a follow up work,
McGregor et al. [35] improved the approximation factor to (1 + ¢), and it can be shown that their
algorithm can also be adapted to run in O(n) time in the incidence-list model. In [3], Bahmani
et al. proved a lower bound for the streaming variant of the problem. In [7], the authors adapted
this lower bound to the incidence-list model, and showed that for graphs with arboricity O(k), any
O(k)-factor approximation algorithm must perform Q(n/k?) queries.

In this work we ask:

Is it possible to go below time linear in n, when the arboricity is super-constant?

We present an algorithm, Estimate-Arboricity(G), that computes an O(log? n)-factor approxi-
mation of the arboricity of G in sublinear time.

Theorem 1.1. There exists an algorithm, Estimate-Arboricity(G), that with probability at least

Tt is also closely related to the degeneracy, degen(G), and maximum subgraph density, dens(G), of the graph.
The degeneracy of a graph G is the smallest integer k£ such that in every subgraph of GG there is vertex of degree at
most k, and the maximum subgraph density is maxsca{|E(S)|/|S|}. It holds that arb(G) < degen(G) < 2arb(G) — 1,
and dens(G) < arb(G) < dens(G) + 1.

2A k-factor approximation of the arboricity is a value & so that arb(G)/k < & < arb(G).

3A degree query on a vertex v returns the degree of v, deg(v), and a neighbor query on v with an index i < deg(v)
returns the " neighbor of v.

“Throughout the paper, we use O(-) and () to suppress poly(log n) factors.



1 — O(1/n?) returns a value @, such that
arb(G)/(2001log? n) < & < arb(Q).

The expected query complexity and running time of the algorithm are O(n log® n/arb(G)), and this
also holds with probability 1 — O(1/n?).

A different setting of the parameters in the lower bound construction that appears in the full
version [7] of [7], gives the following.

Proposition 1.2 (Adaptation of Theorem 7.3 in [7]). Any algorithm that, with probability at least
2/3 returns a k-factor approzimation of the arboricity of a graph G, must perform Q(n/(k-arb(G)))
queries.

Hence, our algorithm’s query complexity is optimal, up to poly(logn) factors.

Compared to the O(n)-time, (1 + ¢)-approximation algorithm of [36], our algorithm improves
the time complexity by a factor of O(arb(G)), at the cost of increasing the approximation factor
to O(log?(n)). A natural question is whether the O(log®n) approximation factor can be improved
with similar time complexity.

We note that the related problem of tolerant testing of bounded arboricity (in the incidence-list
model) was studied by Eden, Levi and Ron [15]: They proved that graphs that are y-close’ to having
arboricity at most «, can be distinguished from graphs that are 20v-far from having arboricity at

most 3a. The running of their algorithm is O (%7_ + (1/7)0(1°g(1/7))). They further showed

m
that their algorithm can be used to estimate what they refer to as the corrected arboricity of G,

a*(G) = ming{arb(G") | G’ is y-close to G}. Observe that this value might be much smaller than
arb(G).° In particular, the corrected value of the arboricity cannot be used in the aforementioned
sublinear algorithms [18, 16, 19] that rely on receiving an upper bound on the arboricity (whereas
the estimate output by our algorithm can).

Finally, we observe that our algorithm can be adapted to the streaming model, providing lower
space complexity compared to the state of the art [35], at the cost of increasing the approximation
factor as well as the number of passes. For further discussion on the relation between the results,
see Section 4.

Theorem 1.3. Given a lower bound o < arb(G), algorithm Estimate-Arboricity can be implemented
in the streaming model, using O(logn)-passes and O(n/a) space in expectation. With probability at
least 1 — O(1/n?), the algorithm outputs a 200log? n-factor approzimation of arb(G).

1.1 A high-level description of the algorithm

In what follows we consider the task of distinguishing between the case that arb(G) < « and the
case that arb(G) > pa, for a given arboricity parameter «, and a bounded approximation ratio p.
That is, if arb(G) < «, then it should output Yes, and if arb(G) > pa, then it should output No,
and it is allowed a small error probability. (If a < arb(G) < p(«a), then the algorithm may output
either Yes or No.) Once we design an algorithm for this promise problem, we can search for « using
standard techniques.

°In the incidence-list model, a graph G is said to be v-close to some property II, if there exists a graph G’ € II
such that we can get G’ from G by at most v|E(G)| edge deletions and insertions to G.

%To see that o* (G) might be much smaller than arb(G), consider a graph G consisting of a clique of size \/ym
and of a set of n — ,/ym vertices, each of degree (1 — y)m/n. Then G has arboricity ©(,/ym), but the corrected
arboricity is ©(m/n).



Vertex layering. Our starting point is the fact that if a graph G = (V, E) has arboricity at
most «, then V' can be partitioned into ¢ = O(logn) layers, Ly, ..., Ly, where each vertex in layer
L; has at most 3 neighbors” in layers Lj, j = i. This partition is due to Barenboim and Elkin [5],
and was part of their algorithm for computing a forest decomposition of a graph in the distributed
setting, which itself is used to obtain efficient coloring and Maximal Independent Set algorithms.

Such a partition can be obtained by what we refer to as a peeling process. First, all vertices
with degree at most 3« are put in Ly, and are removed (peeled) from the graph. Then, the updated
degree of all vertices is computed, and all the vertices with updated degree at most 3a are put in
L1, and peeled from G. The process continues, and it can be shown that in graphs with arboricity
at most «, in every iteration, at least a constant fraction of the vertices is peeled. Hence, the
process terminates after £ = O(log n) iterations (and each vertex belongs to some L;, i < £).

On the other hand, if arb(G) > pa for p = 3, then there exists a subset R € V, such that every
vertex in R has more than pa neighbors in R. This implies that no vertex in R will ever be peeled
(and added to a layer L;). Hence, the vertices of the set R are “witnesses” to the fact that G has
arboricity greater than pa, and in order to determine that arb(G) > pa, we will be interested in
detecting at least one vertex from the set R. We shall set p subsequently, but for now we assume
that it is sufficiently larger than 3.

Consider taking a sample X of O(n/a) vertices (uniformly at random). If arb(G) > pa, then we
expect the sample to contains at least one vertex from the aforementioned subset R. On the other
hand, if arb(G) < a, then every sampled vertex belongs to some L;, i < ¢. In order to distinguish
between the two cases, we would like to run an approrimate peeling procedure on each sampled
vertex. The intention is that if arb(G) < «, then this procedure determines for each vertex v that
it belongs to some L;, i < ¢, while if arb(G) > pa then for v € R, the procedure determines that v
does not belong to any L;, i < /.

An iterative + recursive peeling process. For each vertex v in the sample X, we would like
to decide whether v belongs to some L;, ¢ < £ or not. To this end we run in at most £+ 1 iterations,
indexed by j, starting from j = 0. In iteration j, we aim to determine which vertices in the sample
belong to L;. This is done by calling a (recursive approximate) peeling procedure on each v in
the sample that was not peeled in previous iterations, with the parameter j. For j = 0, this is an
easy task, as it only requires performing a degree query on v and peeling v (placing it in Lg) if
d(v) < 3a.

For j = 1, the procedure samples d(v)/a neighbors of v, and recursively invokes itself with
7 = 0 on each of the sampled neighbors. This results in a partial BFS tree of depth 1 rooted at v,
where for each sampled neighbor u of v, we know whether it belongs to Ly (and was hence peeled).
If the number of un-peeled sampled neighbors (children) of v is below a certain threshold 7 (that
will depend on a,p and j), then v is peeled (and deemed to belong to Lp). Observe that if v
indeed belongs to L1, then, since it has at most 3« neighbors that do not belong to Ly, we expect
to see only a constant number of such vertices among v’s sampled neighbors. In such a case, the
approximate peeling procedure peels v (so that v is detected as belonging to Li). On the other
hand, if v has a significantly larger number of neighbors that do not belong to Lg, then v is not
peeled.

In general, for j > 1, if v was not yet peeled in previous iterations, a partial BFS tree of depth

"One can replace the constant 3 by any constant bigger than 2 - for simplicity, we present the layering with the
constant 3.



j — 1 was already constructed for v.* Considering the children of v in the tree, some were peeled
(and deemed to belong to Lo, L1,...,Lj_2), and some are (yet) un-peeled. The procedure is now
invoked recursively on each of these un-peeled children of v with the parameter j — 1, to decide for
each of them whether it is deemed to belong to L;_; and hence should be peeled. If, after these
recursive calls, the number of yet un-peeled neighbors of v is sufficiently small (below the threshold
7), then v is peeled (and deemed to belong to L;).

By the above description, if arb(G) < «, then we expect that for every i < ¢ and every v € L;,
v will be peeled after j < i iterations. On the other hand, if arb(G) > 100 log?n - o, we expect that
at least one vertex in the sample X will not be peeled after all ¢ iterations.

Error probability and query complexity. One issue that needs to be addressed in the above
description, is bounding the error probability (due to sampling). This can be handled by standard
probabilistic analysis (where we set the peeling threshold 7 to O(logn), which implies that the
approximation factor p must be larger). This leaves us with the central issue of the query complexity
(and running time) of the algorithm. We would like to show that when arb(G) < «, we can bound,
with sufficiently high probability, the total number of queries performed until all sampled vertices
are peeled, by O(n/a). This will allow us to terminate the algorithm if the number of queries
exceeds this upper bound (as we have an indication that arb(G) > «).

To this end we shall actually modify the approximate peeling procedure, but before describing
this modification, we provide some more intuition. Our focus for now is on the case that arb(G) < a.
We later show that this modification (for the sake of upper bounding the complexity) does not
have a significant effect on the error probability. That is, it still holds that when arb(G) < «, every
sampled vertex is peeled (with high probability) in some iteration j < ¢, while when arb(G) > pa,
vertices in R will not be peeled (with high probability).

A special case (and some wishful thinking). Consider the following graph. The graph
vertices are partitioned into t = O(logn) subsets, Vp,...,V;. For each i, |V;| is roughly n/p’. All
vertices in Vj have degree «, and all other vertices have degree (p + 1)a. The edges in the graph
are all between consecutive subsets, V;, V;11, where, each vertex in V; has a neighbors in V; 1, and
the remaining neighbors in V;_; (for i > 0). By the definition of the peeling process, L; = V.

When taking a uniform sample of O(n/a) vertices, we expect to get O(n/(p'a)) vertices from
each V;. Suppose that, when sampling the d(u)/a = p neighbors of any vertex u ¢ Ly = V| as part
of the approximate peeling process, we always get neighbors that belong to the layer below. Then
the number of queries performed (including in recursive calls to the procedure) until a vertex v € V;
is peeled, is O(p’). We hence get a total of O <§ D # -pi) = O (n/a) queries. Unfortunately,
we cannot assume that our input graph has such a convenient layered structure. Furthermore,
we cannot rely on the (wishful-thinking) assumption that the samples of neighbors contain only
neighbors that belong to lower layers.

One main building block of our analysis is showing that for any graph G such that arb(G) < a,
if neighbors are sampled only from lower layers, then we can still get an upper bound of a(n/ a)
as in the special case of the graph described above. Here we shall not elaborate on the proof of
this claim, but rather focus on how to modify the approximate peeling procedure so as to obtain a
similar upper bound, without relying on this (wishful-thinking) assumption.

8If the same vertex is encountered more than once, then in terms of the tree structure, we maintain two (or more)



Figure 1 The invocation of the (modified) approximate peeling procedure on vertex v with indices
j =0 (top left), j =1 (top right), and j = 2 (bottom).

(a) For j = 0, a single degree query on v is per- (b) For j = 1, d(v)/« neighbors of v are sampled, and

formed. The returned degree, d(v), determines for each sampled neighbor w, the procedure is recursively

the 1-cost of v, which is d(v)/a. invoked on w with index j = 0. Once all the invocations
on the sampled neighbors are completed, v discards its
peeled vertices (in dotted gray), and prunes the costly
ones (in purple), namely those with highest 1-cost.

(c) For j = 2, v recursively calls the procedure on each of its remaining active vertices (those in
white in Subfigure 1b) with j = 1. In turn, each such u samples d(u)/a neighbors and recursively
invokes the procedure on its set of sampled neighbors with j = 0. Once these recursive calls return,
v discards its (newly) peeled neighbors (in striped gray) and prunes the (2-)costly neighbors (in
striped blue).

Modifying the approximate peeling procedure. As discussed above, when sampling neigh-
bors of a vertex v in the course of an invocation of the approximate peeling procedure, we would
have liked to be able to identify those sampled neighbors of v that belong to higher layers, so as
to avoid performing recursive calls on them. The reason is, that such calls may be too costly in
terms of the query complexity. But this implies that it is not really necessary to exactly identify
all such higher-layer neighbors of v, but rather only those for which the recursive invocation of the
approximate peeling procedure will have a high cost in terms of the query complexity. We shall
hence be interested in identifying such costly vertices and avoid performing recursive calls on them.
We refer to such a process as “pruning” and to vertices that are neither peeled nor pruned as active.

Fortunately, as we discuss shortly, when we call the procedure with a neighbor u of v and an

copies of the vertex.



index j — 1, assuming w is not peeled as a result of this call, we can already exactly compute the
“future” cost of invoking the recursive procedure on u with index j. We refer to this value as the
j-cost of u. This allows us to prune those 7 active neighbors of v that have highest j-costs, so
that the procedure will not be called recursively on them if it is invoked with v and j + 1. For an
illustration of the modified process, see Figure 1.

Computing the j-cost of a vertex. First observe that the 0-cost of any vertex is always 1,
since for j = 0, only a single degree query is performed. We next explain how the j-cost of a
vertex can be computed for j > 0, when the procedure is invoked on this vertex with parameter
j — 1. The complexity of invoking the procedure on a vertex u with j = 1 is determined by the
number of its sampled neighbors, d(u)/a. Hence, this number can already be computed once d(u)
is determined (when the procedure is invoked on w with j = 0), without actually identifying the
neighbors themselves (that is, without performing any neighbor queries).

For general j, the j-cost of u is computed as follows (when the procedure is invoked on u with
the index j — 1). First, the procedure is invoked recursively on the remaining active neighbors of
u. Once these calls return, the peeled and pruned (according to their (j — 1) costs) neighbors are
removed from the set of active neighbors of u, and the j-cost of u is set to be the sum of (j—1)-costs
over the updated set of active neighbors.

Wrapping things up. Consider first the case that arb(G) < . Then with high probability, for
every vertex on which the procedure is invoked, the number of its sampled neighbors from higher
levels is not much larger than 7. Conditioned on this event, the following holds. The total number
of queries performed by the modified procedure on the initially sampled O(n/«a) vertices, can be
upper bounded by the number of queries that would have been performed by the original procedure
when conditioning on sampled neighbors only belonging to lower levels. The algorithm outputs Yes
if all sampled vertices are peeled (by the modified approximate peeling procedure) after at most ¢
levels of recursion, and the total number of queries performed (when sampling random neighbors),
is not much larger than the aforementioned upper bound. Otherwise, it outputs No.

The correctness of the algorithm follows for the case that arb(G) < «, since the pruning per-
formed by the modified procedure can only increase the probability that a vertex v € L; will be
peeled in at most ¢ levels of recursion. Turning to the No instances, we set the approximation factor
p to O(log?n). Recall that the peeling and pruning threshold, 7, is O(logn), and the maximum
number of allowed recursion levels is £ = O(logn). Therefore, for such a setting of p, if arb(G) > pa,
and the algorithm samples some vertex v € R, then (with high probability) v will not be peeled in
¢ levels of recursion, so that the algorithm will output No, as required.

1.2 Comparing our algorithm to previous work
1.2.1 Related algorithms in other models of computation.

Elkin and Barenboim [5] design a distributed algorithm that computes the layering described in
Section 1.1 with a threshold of 2(1 + ). The round complexity of their algorithm is O(log; . n).
Bahmani, Kumar and Vassilvitskii [3] implement the same peeling algorithm in the streaming
model, and output a subgraph that preserves the maximum density in the graph, up to a factor of
2(1 4 ¢). Their algorithm performs O(log;_, n)-passes and uses O(n)-space.



The algorithm by Bhattacharya et al. [7], has the same output guarantees as the algorithm
of [3], while performing only a single pass over the stream. This comes at the cost of increasing
the space complexity to O(n - poly(log,,.n)). The algorithm uses the crucial observation, that
the densest subgraph remains densest even if each edge is sub-sampled with probability d. Hence,
by taking a sample of O(m/d) edges, one can implement the peeling procedure on the sampled
subgraph, and get a 2(1 + ¢)-approximation.

Our algorithm also has an element of edge sampling in the form of neighbor sampling. But as
opposed to [7] in which the neighbor sampling is performed on all vertices, in our algorithm it is
performed only on an initial set of O(n/arb(G)) vertices, and their sampled descendants. Our main
challenge is in showing how the peeling procedure can be modified in order to obtain an upper
bound of O(n/arb(G)) on the total number of queries performed.

The algorithm by McGregor et al. [35] relies on the same sub-sampling as in [7], but instead of
computing the layering, it directly computes the densest subgraph in G’ and prove that it preserves
the density up to a factor of (1 + ). We note that in both these results the main focus was on
achieving fast update time per each edge insertion/deletion, which is of less relevance to us.

1.2.2 Related algorithms in the incidence-list model

As noted previously, Bhattacharya et al. [7] also describe an adaption of their streaming algorithm
to the incidence-list model, where in order to implement the iid edge samples, O(n) degree queries
are performed, resulting in complexity 6(71)

Eden, Levi and Ron [15] present a tolerant testing algorithm for arboricity. In the course of
their algorithm, they too perform a certain kind of approximate peeling process based on neighbor
sampling. However, as their end result is quite different from ours, their algorithm, and its analysis,
differ as well. In particular, recall that in the context of testing, a graph is considered e-close to
having arboricity at most «, if it can be made to have arboricity a by removing at most an e-
fraction of its edges. This implies that for each vertex, it suffices to take a sample of size O(1/¢) of
its neighbors, independently of its degree. This in turn implies that the constructed “approximate
peeling trees” have degree and depth depend only on 1/¢ (indeed, this is the source of the term
(1/¢)@00e(1/2)) in the complexity of their algorithm).

2 Preliminaries

Let two integers i < j, let [i,j] denote the set of integers i < k < j. If i = 1, then we use the
shorthand [7] for [0, j].

We consider simple undirected graphs G = (V, E) where |V| = n and |E| = m. Let I'(v) denote
the set of neighbors of a vertex v, and d(v) = |I'(v)|. For a subset of vertices S, we use dg(v) to
denote the degree of v in the subgraph induced by S. We abuse notation and use set operations
to manipulate multisets, where cardinality of the set is the sum of multiplicities of its elements,
and other operations are the natural generalizations of the set operations. Where the distinction
between sets and multisets is not important, we might simply refer to multisets as sets.

Definition 2.1. The arboricity of a graph G = (V, E), denoted arb(G), is the minimum number of
forests into which E can be partitioned.



Theorem 2.1 (Multiplicative Chernoff Bound). Let x1,...,xx be independent random variables
in {0,1}. Let x = Zle Xi, and p = Ex[x]. Then

52 2u
Prix<(1—-d0)pu]<exp({—— ], 0<I<1 and Pr[x=(1+0)p] <exp|— , 0<90.
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The layering of vertices, defined next, is essentially the same as what was defined in the intro-
duction, except that we place in Lg all vertices with degree at most 100log?n - o, and not only all
those with degree at most 3a.

Definition 2.2 (Layering of V). For a graph G = (V,E) we define an a-layering of G as follows.
LY(G) ={veV : d(v) <100log®n - a},
and for every i > 0, let
LY (G) = {v eV :vé ;o LF(G) and T'(v) n ;. LF(G)| = d(v) — 3a} .

Whenever the graph G and the arboricity parameter o are clear from the context, we shall simply
use L; instead of L¥(G). We use Lo; as a shorthand for qu- Lj, and Lx; is defined analogously.

Definition 2.2 defines an iterative peeling process for constructing the layers Lg, Li,.... As
stated in the next theorem, if arb(G) < «, this process ends after at most logn iterations (with
each vertex v being placed in some layer L;).

Theorem 2.2 ([5], Theorem 3.5, restated). Let G = (V, E) be a graph for which arb(G) < . Then
V= Uf:o L; for £ =logsj,n, where L; is as defined in Definition 2.2.

Definition 2.3. The degeneracy of a graph G = (V,E), denoted degen(G), is the mai-
mum over all subgraphs of G, of the minimum degree in the subgraph. That is, degen(G) =
maxgcy {minges{ds(v)}}.

The following is a well known relation between the arboricity of a graph, and its degeneracy.

Theorem 2.3 (Arboricity and degeneracy relation, e.g., [21, 5]).
arb(G) < degen(G) < 2arb(G).

Corollary 2.4. If arb(G) = 3, then G contains a subset of vertices R?(G) of size at last 3, such
that dps(cy(v) = B for every v e RA(@G).

3 The algorithm

In this section we present the procedures that are the building blocks of our approximation algo-
rithm. The main procedure distinguishes between graphs with arboricity at most « and graphs
with arboricity greater than 100 log?n. We first show how this can be performed with small
(O(1/1og n)) error probability. The pseudo-code appears in the procedures Peel and Peel-Vertex (see
Figures 2 and 3, respectively). In Section 3.5 we reduce the error probability to 1/poly(n), and then
show how the resulting algorithm can be used to approximate the arboricity of a given graph, up



to a factor of 200log® n. The relevant pseudo-code appears in Procedures Peel-With-Reduced-Error
and Estimate-Arboricity (see Figures 4 and 5).

In the introduction we presented a high-level ideas behind the algorithm and its analysis. Here
we provide the full details, while referring to some notions that were introduced in the introduction
(and in particular the notions of peeled, pruned and active vertices). For the ease of readability,
we start by giving a verbal description of the procedures Peel and Peel-Vertex, followed by a “road
map” of their analysis. (The procedures Peel-With-Reduced-Error and Estimate-Arboricity and their
analysis are fairly standard.)

From this point on, unless there is any ambiguity, whenever we refer to a graph G such that
arb(G) < «, we shall use the shorthand L; for L(G) (as defined in Definition 2.2), and whenever
we refer to a graph G such that arb(G) > f8 for 8 = 100log? n - o, we shall use the shorthand R for
RA(G) (as defined in Corollary 2.4).

3.1 The procedures Peel and Peel-Vertex

The procedure Peel is given query access to a graph G and an arboricity parameter «. It starts
by selecting a sample of (roughly n/a) vertices, denoted Xy. It then works in ¢ + 1 iterations,
starting with 5 = 0, where in iteration j it peels a subset of the yet un-peeled sampled vertices,
denoted X;_; (roughly speaking, it peels those sampled vertices that belong to L;. The procedure
Peel also keeps track of the total number of queries performed. The peeling of a vertex, performed
by the procedure Peel-Vertex, is done by implementing what we referred to in the introduction as
the modified approximate peeling procedure, and we discuss this further shortly. If there are no
remaining un-peeled sampled vertices after iteration j = ¢ (and the total number of queries did not
exceed a certain threshold before reaching j = /), then Peel returns Yes. Otherwise, it returns No.

The procedure Peel-Vertex, which is called on a vertex v and a parameter j, maintains several
data structures that contain information obtained regarding the original sampled vertices (i.e.,
those belonging to the set Xj) as well as additional vertices that are encountered in its (recursive)
invocations (e.g., neighbors of vertices in X(). We next elaborate on how Peel-Vertex works.

When j = 0, Peel-Vertex(v, j) queries the degree of v and decides whether v € Ly based on the
outcome d(v). The procedure also increases the accumulated number of queries, @, by 1. If v does
not belong to Ly, so that it is not peeled, then the procedure sets ¢1(v) = d(v)/(6«) (if v is peeled,
then it sets g1(v) = 0). This is the 1-level cost associated with v (that is, the number of (neighbor)
queries that will be performed on v if Peel-Vertex(v, j) is invoked with j = 1).

Indeed, if Peel-Vertex(v, j) is invoked with j = 1, then the procedure performs d(v)/(6a) random
neighbor queries and lets the resulting (multi-)set of neighbors be denoted S(v). The procedure also
increases the accumulating number of queries, @, by |S(v)| = d(v)/(6c), and sets Ag(v) = S(v).
This is the initial set of active neighbors of v (before any are peeled or pruned).

For any j > 1, the procedure proceeds as follows. It recursively calls Peel-Vertex(u,j — 1) on
each neighbor v € A;_;(v), where A;_1(v) < S(v) is the set of active neighbors of v determined in
the course of the invocations of Peel-Vertex(v, ;') for 7/ = 0,...,j — 1. Each such call determines
whether u is peeled (in j — 1 levels of recursion), or remains active. In the latter case, ¢;(u), which
was computed in the invocation of Peel-Vertex(u, 7 — 1), holds the j-level cost associated with u. In
the former case, g;(u) = 0.

The procedure Peel-Vertex then considers those neighbors u € A;_1(v) that remained active
(following the recursive call to Peel-Vertex(u, j — 1)). It orders them according to their j-level cost
¢;(-), and those 4logn with the highest cost are pruned. The updated set of neighbors A;(v)



consists of those vertices in A;_;(v) that were neither peeled nor pruned. If the size of A;(v) is
sufficiently small (at most 8log?n — j - 4log n), then v is peeled, which is indicated by setting
gj+1(v) = 0. Otherwise, g;11(v) is set to be the sum, taken over all u € A;(v), of g;(u).

3.2 A road-map of the analysis

As described above, in the procedures Peel and Peel-Vertex, randomization comes into play in two
ways. The first is the choice of the initial set of random vertices, Xy (selected by Peel). The size
of Xj is such that if arb(G) > 100log?n - c, then with high probability, X, will contain at least
one vertex in R. The second is the choice of the random (multi-)sets of neighbors S(v), selected
by Peel-Vertex (when invoked on a vertex v with the parameter j = 1). The latter sets are selected
for the vertices in X as well as (some of) their descendants in the partial BFS trees that are
constructed by Peel-Vertex. However, for the sake of the analysis, it will be useful to consider,
as a thought experiment, selecting the sets S(v) for all vertices v € V, and establishing certain
properties that hold with high probability over the choice of all these sets. Note that once all these
sets are selected, the execution of Peel-Vertex(v, j) is determined for every vertex v and parameter
j. In particular, it is determined for each vertex v whether it is peeled by Peel-Vertex(v, j), and if
so, for which j.

The first building block of our analysis is Claim 3.1, which states useful properties of the sets,
{S(v)}vey that hold with high probability. Specifically, when arb(G) < «, we have that for every
i€ [0,¢] and v € L;, the number of neighbors in S(v) that belong to layers Lx; is not much larger
than the expected value. On the other hand, when arb(G) > 100 log?n - @, then for every vertex
v € R, the number of neighbors in S(v) that belong to R is not much smaller than the expected
value. When that the sets {S(v)},ey have the aforementioned properties, we denote this event by
Es.

Based on Claim 3.1 we show (in Claims 3.5 and 3.7, respectively), that the following holds
conditioned on the event &. If arb(G) < «, then for every v € V there is some j € [¢] such that
v is peeled by Peel-Vertex(v, j), while if arb(G) > 100 log?n - «, then for every v € R, there is
no j € [¢] such that v is peeled by Peel-Vertex(v, 7). These two claims are then used to establish
the correctness of Peel in the case that the total number of queries performed does not exceed
the allowed upper bound set by Peel(in addition to the condition that & holds) — see Claims 3.6
and 3.8.

The main thrust of the analysis is showing that if arb(G) < « and the event & holds, then
with sufficiently high probability, the total number of queries indeed does not exceed the allowed
upper bound. To this end we define an imaginary “wishful-thinking” procedure, which we refer to
as the downward-peeling procedure. This procedure is similar to Peel-Vertex, except that instead
of pruning costly neighbors of a given vertex v, it prunes all neighbors of v that belong to higher
layers. Namely, if v € L; (for ¢ € [1,£]), then it prunes every sampled neighbor w in S(v) that
belongs to Lx;.

We then prove two central claims. The first (Claim 3.16) is that if arb(G) < «, then conditioned
on the event &, for every vertex v € V, and j € [¢], the number of queries performed in the course
of the execution of Peel-Vertex(v, j) is upper bounded by the number of queries performed by the
downward peeling process on v and j (when the same sets of sampled neighbors are used). The
second (Claim 3.21) states that if arb(G) < a and we invoke the downward peeling process on all
vertices v € V and all j € [¢], then conditioned on the event &, the expected query cost (over the
choice of the vertex v) of invoking Peel-Vertex(v, j) for v and all j € [¢] is O(1).
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By combining all aforementioned claims, we get (see Claim 3.22) that Peel(G, «) distinguishes
between the case that arb(G) < a and the case that arb(G) > 100log?n - a with sufficiently high
probability.

Figure 2 The procedure Peel gets as input a value a and query access to a graph G. It distinguishes
between the case that arb(G) < « and arb(G) > 1001log®n - .

Peel(G, a)
1. Set Q@ =0.

2. Sample t = 10n/(alog n) vertices uniformly, independently at random and denote the set of
sampled vertices by Xp.

3. For j =0 to ¢ do:
(a) Initialize Xj11 = &
(b) For each x € X; do:
i. If j=1and Q+ gj(x) exceeds 400t, then Return No.

ii. Invoke Peel-Vertex(x, j).

iii. If gjy1(x) # 0, then let Xji1 = Xjy1 U {v}.
4. If Xp11 = &, then Return Yes.
5. Else Return No.

3.3 Correctness

In this subsection we prove the correctness of the procedure Peel conditioned on the number of
queries @@ not exceeding the allowed upper bound. In Section 3.4 we bound the probability that
Q@ exceeds this bound when arg(G) < a. We start by proving the following claim regarding the
random sets of neighbors S(v).

Claim 3.1. Consider (as a thought experiment) sampling a (multi-)set of neighbors S(v) for every
v eV, by performing d(v)/(6c) independent random neighbor queries. Then the following hold.

o If arb(G) < «, then with probability at least 1 — 1/n, for every v € V, if v € L;, then
|S(v) N Ls;| < 3logn.

e Ifarb(G) > 100log? n - o, then with probability at least 1 —1/n*, for everyv e R, |S(v) " R| >
8log?n.

Proof. Consider first the case that arb(G) < «a. Fix a vertex v and let s = d(v)/(6c). For each
r=1,...,s let x, be a Bernoulli random variable whose value is 1 if the r** sampled neighbor of
v belongs to Lx;. Let x = >°_; X¢, so that Ex[x] = 1/2 and |S(v) n Lx;| = x (recall that S(v) is
a multi-set and hence when we consider its intersection with Ls; we obtain a multi-set). By (the
second item of) the multiplicative Chernoff bound (Theorem 2.1), for § = 4logn,

62-1/2 161og? n/2 1
P 1441 1/2] < - < ——— )< =
rhe> (1+dlogn)-1/2] exp( 249 > exp( 2+4logn> n2
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Figure 3 The procedure gets as input a vertex v and an index j. It decides whether v should be
peeled, and if not, it computes v’s updated set of active neighbors, and its (j + 1)-cost.

Peel-Vertex(v, j)

1. If Peel-Vertex(v, j) was already called, then Return.
2. If j=0:

(a) Query d(v) and update @ = Q + 1.

(b) Set go(v) =1.

(c) If d(v) < 100log? n - a: > if v e Lo, peel it
set g1(v) = 0 and A;(v) = J. and Return
(d) Else set g1(v) = d(v)/(6c) and Return > o.w., set its 1-cost
3. 0fj=1:

(a) Select u.i.r. d(v)/(6c) indices in [d(v)] and perform a neighbor query on v and each
selected index. Denote the resulting (multi-)set of neighbors by S(v). > sample nbrs

(b) Update @ = Q +|S(v)].

(c) Let Ao(v) = S(v). [> initial set of active neighbors
4. For each ue Aj_1(v) do: > for each remaining active nbr do
(a) Invoke Peel-Vertex(u,j — 1), o> recursively invoke the procedure
(b) If gj(u) = 0, then place u in Pj(v). > u should be peeled
5. Let Bj(v) = Aj—1(v)\Pj(v) > remove (newly) peeled neighbors
6. Let H;(v) be the set of min{4logn, |B;j(v)|} vertices in B; with highest g; value
7. Let Aj(v) = Bj(v)\H;(v)). > Remove pruned (costly) nbrs
8. If |A;(v)| < 7(j) = 8log?n — j - 4log n: > peel v
set gj+1(v) =0and Aj11(v) = .
9. Else: gj+1(v) = ZueAj(v) qj(u). > compute (j + 1)-cost

Therefore, with probability at least 1 — 1/n?, |S(v) N Ls;| < 3logn. The first item of the claim
follows by taking a union bound over all vertices in G.

Now consider the case that arb(G) > 100log?n - o, and let v be some vertex in R. By Corol-
lary 2.4, |['(v) N R| > 100log®n - o, implying that Ex[|S(v) n R[] = 100log®n - o+ &&= > 16logn
(once again, recall that S(v) is a multi-set, and the same holds for S(v) n R). Therefore, by (the
first item of) the multiplicative Chernoff bound (Theorem 2.1),

1
Pr[|S(v) n R| < (1 —1/2) - 16log®n] < exp (16log2 n/8) < 5

Hence, for a fixed v, with probability at least 1 — 1/n°, |S(v) N R| = 8log®n. The second item of
the claim follows by taking a union bound over all vertices in R. O
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Definition 3.2 (Successful neighbor sampling). We refer to an event where the relevant item in
Claim 3.1 holds (i.e., the first item if arb(G) < a and the second item if arb(G) > 100log®n - «) as
success of the neighbor sampling process, and denote this event by Es.

Consider (again as a thought experiment) running Peel(v, j) on all vertices v € V for j = 0 to
at most ¢. For every fixed choice of S(V) = {S(v)}wev, all these executions are deterministic. In
what follows we analyze the correctness and expected query complexity of these invocations (that
is, for now we assume that Peel-Vertex is invoked for all vertices), where the probability is taken
over the choice of S(V').

We first introduce the following notation for the sets of vertices that are peeled in the different
iterations j.

Notation 3.3. For each j € [{], let
P; ={v : ¢j(v) >0 and gj+1 = 0},

denote the set of vertices that are peeled when Peel-Vertex(v, j) is invoked, and let P<j = Ujfgj P;.

The next observation follows directly from the description of Peel-Vertex.

Observation 3.4. For each j € [{] and for A;(-) and 7(j) as defined in Peel-Vertex,

. {LO j=0
T v s vg P & A0 <)} jel]

3.3.1 The case arb(G) < a.

We prove that, conditioned on the event &, for every v € V, if v € L;, then v is peeled by
Peel-Vertex(v, j) for some j < i.

Claim 3.5. Let G be a graph for which arb(G) < « and assume that event & holds. For every
i € [€] and v € L;, we have that v € Pg;.

Proof. We prove the claim by induction on i. For ¢ = 0, v € Lo, and it holds by Step 2c¢ that
q1(v) = 0, so that v € P.

We now assume that the claim holds for all / < i — 1, and prove it for 7. If an invocation
of Peel-Vertex(v,4') for i’ < i already set gy, 1(v) to 0, then v € Py & Pg;, and we are done.
Otherwise, consider the invocation of Peel-Vertex(v,i). By the induction hypothesis, for every
u€ Ai—1(v) n Le;, u € Po;. Therefore, B;(v) n Lo; = &, so that B;(v) € Ls;. Together with the
fact that Bj(v) < S(v) for every j, we get that B;(v) < (S(v) n Ls;). By the definition of the event
Es, it holds that [S(v) n Ls;| < 3logn, and so |B;(v)| < 3logn. Hence, due to Step 7, |A;(v)| =0,
and so by Step 8, ¢;+1(v) = 0, implying that v € Pg;. O

We use Claim 3.5 to prove the next claim.

Claim 3.6. Let G be a graph for which arb(G) < «, and assume that the event s holds. If Q does
not exceed 400t, then Peel(G, a) returns Yes.

Proof. Since arb(G) < «, and by the assumption that event & holds, by Claim 3.5, for every v € L;,
v € P<;. Hence, by Step 3(b)iii, for every j € [ + 1], X; n L.; = . Since arb(G) < «, every
v is in L; for some i € [¢], and therefore, X,.1 = (J, and if the algorithm reaches Step 4, then
it returns Yes. Hence, if @ does not exceed 400t (causing the Peel(G, ) to abort and return No),
then Peel(G, «) returns Yes. O
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3.3.2 The case arb(G) > 100log?n - a

Claim 3.7. Let G be a graph for which arb(G) > 100log®n - o, and assume that event £, holds.
Then for every ve R, v ¢ Pgy.

Proof. We prove the claim by induction on j. We shall actually prove a slightly stronger claim:
that for every j € [€], gj+1(v) > 0 and |A;(v) N R| = 8log?n — j - 4logn. Fix a vertex v € R. For
every v € R, d(v) = |T'(v) n R| > 1001log® n -, the condition in Step 2c in Peel-Vertex does not hold,
and therefore ¢;(v) = d(v)/(6c) > 0 (see Step 2d). By the assumption that the event £ holds, and
by the second item in Claim 3.1, for every v € R, |S(v) n R| = 8log?n. Since |Ag(v)| = |S(v)], it
holds that |Ag(v)| = 8log?n, as required.

Now assume the claim holds for 7 — 1, and we prove it for j. By the induction hypothesis,
|A;_1(v) " R| = 8log?n — (j — 1) - 4logn. For every u € A;_1(v) N R, since in particular u € R, by
the induction hypothesis, gj(u) > 0, and |A;_1(u) N R| = 8log?n — (j — 1) - 4logn > 0 (where the
last inequality is since j < logn). Hence, (A4;_1(v) [ R) () Pj(v) = &, so that A;_;(v) "R < Bj(v),
and it follows that A;(v) = B;(v)\H;(v) 2 (A;—1(v) (" R)\H,(v). Since |H;(v)| < 4logn,

|Aj(v) " R| = |Aj_1(v) n R| —4logn = 8log?n — j - 4logn > 0.

Therefore, |A;(v)| > 0, and since for every u € A;(v), gj(u) > 0 (as mentioned earlier, this is due
to Steps 4b and 5), it follows that ¢;(v) > 0, so that the induction claim holds. Hence, for every
Jjell, gi+1(v) > 0, and so v ¢ P<y. O

We next lower bound the probability that Peel(G, ) returns No when arb(G) > 100log? n - .

Claim 3.8. Let G be a graph for which arb(G) > 100log®n - o, and assume that event £, holds.
Then with probability at least 1 — 1/n*, Peel(G, a) returns No.

Proof. First we argue that with high probability, Xon R # ¢J. In a single vertex sampling attempt,
the probability that the vertex chosen to Xy is not in R is 1 — |R|/n. Hence, the probability that
in 10n/(a log n) attempts no vertex of R is chosen to X is (1 — |R|/n)'0(*1e™) < (1 —1001log?n -
a/n)t0/(@logn) — 1 /pt - Condition on this event.

By Claim 3.7, conditioned on the event &, for every u € S(v), if u € R, then g;(u) # 0 for every
je 1,0+ 1]. Since Xo(v) n R # &, it holds that X, # &J. Therefore, conditioned on the event &,
with probability at least 1 — 1/n%, Peel(G, ) returns No. O

3.4 Bounding the query complexity

Recall that we are still within the thought experiment by which all neighbor (multi-)sets S(v) were
selected in advance, and we invoke Peel-Vertex on every v € V for j = [¢] (more precisely, once
Peel-Vertex(v, j) peels v, i.e., sets gx(v) = 0 for every k € [j + 1, /], then no further invocations of
Peel-Vertex(v, j') for j' > j are performed).

For the sake of the analysis, it will be convenient to define the values g;(v) and sets A;(v) for
vertices that were already peeled in previous iterations.

Definition 3.9. For a vertex v € Pj, we let qp(v) = 0 and Ap(v) = & for all k € [j +2]. (Note
that the index k goes from j + 2 to ¢, since if v e Pj, gj+1(v) and Aj;1(v) are already defined.)

Claim 3.10. The number of queries performed during the execution of Peel-Vertex(v, j) (if invoked)
is at most 2¢;(v).
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Proof. We prove the claim by induction on j, starting with j = 0 and Peel-Vertex(v,0). The query
complexity is due to the degree query in Step 2a, and is hence 1. By Step 2b, go(v) is set to 1.

For j = 1, the query complexity of Peel-Vertex(v, 1) is due to the neighbor queries in Steps 3a
and the recursive invocations on the sampled neighbors in Step 4a. The query complexity of Step 3a
is d(v)/(6cx) and the equality ¢1(v) = d(v)/(6c) is by Step 2d. For each u € Ag(v) (where recall
that |Ag(v)| = |S(v)| = d(v)/(6c)), Peel-Vertex(u,0) is invoked. Since for every vertex u, the query
complexity of Peel-Vertex(u,0) is 1, the query complexity of the recursive invocations is d(v)/(6c).
Hence, the query complexity Peel-Vertex(v,1) is q1(v) + d(v)/(6a) = 2¢1(v).

For the induction step, assume that the claim holds for j — 1, and we shall prove it holds for j.
The only queries performed for j > 1 are due to the recursive invocations Peel-Vertex(u,j — 1) for
every u € A;j_; in Step 4a. By the induction hypothesis, for every u € A;_1(v), the query complexity
of Peel-Vertex(u,j — 1) is at most 2¢;_1(u). Hence, the query complexity of Peel-Vertex(v, j) is
ZueAj,l(v) 2¢j—1(u) = 2¢;(v), where the equality is by the setting of ¢;(v) in Step 9 during the
invocation of Peel-Vertex(v,j — 1). O

Since the query complexity of Peel-Vertex(v, j) is bounded by 2g;(v), we would like to bound
the expected value of ¢j(v). To this end we compare the process of Peel-Vertex with the following
“wishful-thinking” process that was mentioned in the introduction.

Definition 3.11 (Downward peeling procedure). The downward peeling procedure is identical to
Peel-Vertex, except that in an invocation on any vertex v € L;, all of the “upward” sampled neighbors
of v are pruned (i.e., its neighbors in layers Lx; ), rather than the costly ones. (To be precise, once
the upward pruning is performed the first time, for j = 1, no upward neighbors remain in the set
of sampled, and therefore no more pruning is performed.)

We denote by A/j (v) and §;(v) the sets and costs in the downward peeling procedure that are
analogous to Aj(v) and q;(v), respectively, from the procedure Peel-Vertex.

In order to bound the expected complexity of our peeling procedure, we first prove that it is
bounded by the complexity of the downward peeling procedure (for the same choice of S(V) =
{S(v)}vev ), and then continue to bound the expected complexity of the latter. Analogously to
Notation 3.3 and Observation 3.4:

Notation 3.12. For each j = [0,¢], let
P ={v : §;(v) >0 and ;11 = 0}
and let f’gj = Ujléj ﬁjl.

Observation 3.13. For each j € [0,¢] and for 12113() as defined for the downward peeling procedure
(and 7(j) as defined in Peel-Vertex),

-« Ly j=0
Fi=3{y . vep.. X N
vivg Pgo & |Ai(0) <7()y delL 4]
We prove the following relations (where B;(v) is as defined in Step 5 of Peel(v, j).

Claim 3.14. Conditioned on the event &, for every i,j € [£] and every v € L;\Pgj,
[A;() < [Bj(v) N Lail  and Yen, ) 6(W) < Ziep,(wynr, G(0) -
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Proof. Observe that for any j, Bj(v) < S(v). Hence, (W) L=i) € (S(v)()Lsi). By the
conditioning on the event &, [S(v)() Lxi| < 3logn. Therefore |Bj(v) () L<i| = max{0,|B;(v)| —
3logn}. Since in the pruning process (Steps 6 and 7), min{4logn,|B;(v)|} vertices are removed
from Bj(v), we have that |A;(v)| = max{0, |B;(v)|—4log n}. It follows that |A;(v) v) () L<il.

We now turn to the second part of the claim. If |Bj(v)| < 4logn, then by Step 5 A ( )=
and the claim holds (since g;(u) = 0 for every u and j). Hence, assume that |Bj(v)| > 4logn,
which implies that |H;(v)| = 4logn (where recall H;(v) is set in Step 6).

Since A;(v) = B;(v)\H;(v),

Do) = D glw - D gw).

ueA;(v) ueBj(v) ueH;(v)

Also,

dogw =) G- > g,

ueBj(v)nL<; ueBj(v) ueBj(v)NLx;

Recall that by Step 6, H;(v) is the set of highest g;(u) values in Bj(v). This together with the fact
that |Bj(v) () Lsi| < \S( (1 L=i| <3logn < 4logn = |H;(v)| implies that

dUogw) > D g,

ueHj(v) ueBj(v)NLx;
Therefore,
Y wlw< Y g(u),
ueA;(v) ueBj(v)nL<;
as claimed. O

Next we relate between the sets P<; and f’gj and between B (v) and Aj(v).

Claim 3.15. Condztzoned on the event &, for every j € [0,0], P<; < P<;, and for every i and
veL; and j € [0,4], ﬂLQCA()

Proof. We prove the two parts of the claim by induction on j. By Observations 3.4 and 3.13, for
j=0,P =Ly= P, and By(v) = |S(v)| = Ao( ). For j =1, Al( ) = (S(v)()L<i)[) L>o, and
v)(VL<i = (S(v)[)L<i)() L=o. Therefore, Bi(v ﬂL<Z = Al( ). Also by the aforementioned
observations, P, = {v : v¢ Py & |A1(v)| < 7(1)}, and P, = { cvg By & |A ()] <T(1)}. By
Claim 3.14, |A; (v)| < |B1(v) () L<;|. Hence, for every v, |4;(v)| < |41 (v)], implying that P 2 P,.
For the induction step, we assume both parts of the claim hold for j — 1 > 1 and prove each
part for j. By Step 4b,

Bj(v) = (Aj—1(v)\Pj-1)) = (Bj—1(v)\Pj-1)

Recall that by the definition of A/j(v), the pruning of the upward neighbors only happens once, for
j = 1. Therefore, for j > 2,

Ajw) = A1 (0)\Pyr.
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By the induction hypothesis, B;j_i(v)(L<; < Ej_l(v) and f’gj_l C P<j_1, and hence
B;j(v) () L<i  A;(v) follows.

By Observations 3.4 and 3.13, P; = {v:v¢P. & |Aj(v)|<7(j)}, and P; =
{v : v¢15<j & |121/](v)| < T(j)}. By Claim 3.14, |A;(v)| < |Bj(v)()L<i|. Since we have just
shown that Bj(v)(|L<; < Ej (v), we have that |A;(v)| < |/vlj(v)| Now consider a vertex v € ﬁgj.

Then either v € ]5<j and by the induction hypothesis, v € P.;, or \ﬁ] (v)| < 7(j), in which case
|A;(v)] < 7(j), and v € P;. This concludes the proof. O

We are now ready to prove that, conditioned on &, the cost of Peel-Vertex(v, 7) is bounded by
the cost of the downward procedure.

Claim 3.16. Let G be a graph for which arb(G) < . Conditioned on the event E, for everyv €'V,
and j € [¢ + 1],
gj(v) < gj(v).

Proof. We shall prove the claim by induction on j. For j = 0, ¢o(v) = §o(v) = 1, and so the claim
holds. For j =1, ¢i1(v) = |S(v)| = ¢i(v) . Now assume the claim holds for every 1 < j/ < j —1,
and we prove it for j. First, if v € ﬁgj, then by Claim 3.15, v € Pgj, implying that if @ (v) =0,
then so is ¢/(v) = 0. Otherwise, by Step 9, g;(v) = ZueAj,l(u) ¢j—1(u), and similarly, ¢;(v) =
Zueij,l(v) dj—1(u). Furthermore, by Claim 3.14,

Y a-i(u) < > g,

ueA;j_1(v) ueBj_1(v)nL<;

and by Claim 3.15 .
(ijl(’u) ﬂ L<Z‘) < Ajfl(v).

Putting everything together, we get

gw) = Y giaw) < > Gw) < D g < D G =) .

U‘EAjfl(v) UGijl(U)ﬂL<i uEAijl(U) UEAjfl(U)
This completes the proof. O

Notation 3.17. For u € Ly and i > k, let o;(u) = [{v € L; | w e Sw)}|. That is, o;(u) is
the number of vertices in layer L; that have chosen u to their (multi-)set S(v). For u € Ly,

o(u) = Zi;k oi(u).

Recall that in the downward peeling procedure, for any vertex w, if w € Lg, then ¢ (w) = 0
and Ay (w) = &, and if u € L; for i > 1, then §(w) = d(w)/(6c) and A;(u) = S(u) N L<;. This
implies that if we consider the partial BFS tree defined by the downward peeling procedure for a
vertex u € Ly, (the root of the tree) and index j (the depth of the tree), then all vertices in the tree
belong to L u {u}. This in turn leads to the next observation.

Observation 3.18. For every k € [0,£] and u € Ly, the following holds. For every j € [{ + 1], the
value §j(u) and the identity of vertices in the set Aj(u) only depend on the choices of the sets S(w)
forwe Loy u {u}.
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Claim 3.19. For every k € [{],u € Ly, for any j € [k, /],
Ex[o(u) - gj(u) | &] < Ex[o(u) [ &] - Ex[gj(u) | &]-

Proof. By Observation 3.18, the value of ¢j(u) only depends on the choice of random neighbors
of u and of vertices w in layers L; such that ¢ < k. This is in contrast to o(u) that depends on
the choices of subsets S(v) of neighbors v of w that belong to layers L; for i > k. Therefore, it
follows that ¢;(u) and o(u) depend on a disjoint sources of randomness. Hence, o(u) and ¢;(u) are
independent, and this holds also in the case that the event & occurs. O

Claim 3.20. Let G be a graph for which arb(G) < . For every u eV, Ex[o(u)] < 1/2.

Proof. Since arb(G) < «, by the definition of the layers in Definition 2.2, for every v € Ly,
v) () Lsk| < 3a. By Step 2d, it holds that Ex[o(u)] = [(T'(w) () L=k)|/(6c) < 1/2. O

Claim 3.21. Let G be a graph for which arb(G) < a. Then

EX[ZZZ% ‘5]

i=0veL; j

Proof. By Claim 3.5, conditioned on &, for every v € L;, v € Pg;, and therefore g (v) = 0 for every
ke [i + 1,¢]. Therefore, for v e L;, q;(v) # 0 only for j € [0,4], or alternatively, fixing an index j,
¢;(v) is only non-zero for vertices v in layers L; through L,. Hence, conditioned on &,

L

IS IIWIEED NI a)

1=0veL; j= 7j=0i=7 velL; 7j=0i=7 velL;

where the last inequality is due to Claim 3.16. Hence,

Exlzzz% )& | <

7j=0i=7 velL;

S POPRRl

and we shall be interested in bounding the RHS of the equation. Specifically we shall prove that
for every j,

EX[ZZ% ‘5] (3)

i=j veL

We prove this claim by induction on j. First, for j = 0, it holds that for every v € V, go(v) = 1.

Hence, for j = 0,
)4
D12 dow) = D) do(v) =
i=0 UELZ'

veV

Now consider the case j = 1. For every v € L>1, ¢'(v) = d(v)/(6a) (and this is independent of
the event &). Hence,

¢ ¢
Z Z (v) ‘59] = Z Z Ex[q1 (v Z d(v)/6a < < n/2,
i=1veL;

i=1veL, veV
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where the last inequality is due to the fact that for every graph with arboricity at most a, m < na.
We now assume that the claim holds for every 1 < j < j — 1, and prove that it holds for j. By
Definition 3.11, for j = 2, ¢;(v) = X 5. L) dj—1(u). Therefore,
i

Vi J4
LG =22 X G @)
i=j veL; i=jvel; uegj,l(v)

Recall that by Definition 3.17, for a vertex u € Ly, for every i > k, o3(u) = [{ve L; : ue S(v)},
and o(u) = Zf:k oi(u). Also recall that for j > 2 and a vertex v € L;, Aj(v) € L<;—1. Therefore,

l )4 i—1
D2 n Gaw=X3 Y X Gaw (5)

i=j vel; uef\l/jfl(v) 1=j7 veL; k=j—1ueﬁj 1(v)NLg
4
-3 (z )00 ©
k=j—1ueLy \i=k
4
= Z Z o(u) - gj—1(u) (7)
k=j—1ueLy

Hence, we shall bound the expected value of the expression in Equation (7), conditioned on the
event &. By Claim 3.19, Claim 3.20 and by the induction hypothesis,

14
Ex Z Z gj—1(u ‘5 < Z ZEX ‘5 Ex[qjl ‘5] (8)
k=j—1ueLy k=j—1ueLy
14
< Z Z—Ex[qjl ‘5] (9)
k=j—1ueLy
1
= _.E Es 10
2 § k;luékqj 1 ’ ( )
< n/20t, (11)

This completes the proof that for every j, Equation (3) holds. Summing over all j's, we get that
Y2 )4 n
Plugging the above into Equation (2) completes the proof. O

Claim 3.22. Consider an invocation of Peel(G,a). If arb(G) < «a, then with probability at least
2/3, the procedure returns Yes. If arb(G) > 100 log? n - v, then with probability at least 1 — 2/n4, the
procedure returns No.

Proof. By Claim 3.10, for every v € V and j € [¢], the query complexity of Peel-Vertex(v, j) is at
most 2¢;(v). Let ¢(v) = Zﬁ:o ¢;(v), and for a set Y, let ¢(Y) = > .y q(v). The query complexity
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of Peel(G, ) is bounded by >, .y, Eﬁzo qj(v) = Xiex, ¢(v) = q(Xo). We first consider the case
that arb(G) < a. By Claim 3.21,

Exg(y) [Z D) ] on

veV j=

Since the different ¢;(v) values are correlated, we can only use Markov’s inequality:

ZZ% ) > 20m | £, <% (12)

veV je[l

Denote the event that (¢(V) < 20n | &) by &. It holds that

L

qu(v)lé’sﬂﬁz]\ Zqu )| ENE <20

veV =0

Exyev

If follows that, condition on & () Es,the g(v) values are random variables with expected value at
most 20. Hence, Ex[q(Xy) | £s() 2] < 20| Xp|, and by Markov’s inequality,

Pr[q(Xo) > 200/ Xo| | £ &) < 15 - (13)

Denote the event that (¢(Xo) < 200 - |Xo| | £s[)€2) by &s. By Claim 3.1, Equations (12) and (13),
and the union bound, the event & (€2 () €3 occurs with probability at least 1 — % — 1—10 — % > 2/3.
Therefore, with probability at least 2/3, the event &[] E2() €3 holds, and by event &3, ¢(Xo) < 200t
so that by Claim 3.10, ) does no exceed 400¢. In such a case, by Claim 3.6, since event & holds,
the algorithm returns Yes in Step 4. Therefore, with probability at least 2/3, the procedure returns
Yes.

We now assume that arb(G) > 100 log?n - . If the number of allowed queries exceeds 400t,
then we are done. Otherwise, by Claim 3.1, with probability at least 1 — 1/n*, event & holds.
Condition on &, by Claim 3.8, with probability at least 1 —1/n*, the procedure returns No. Hence,
the procedure returns No with probability at least 1 — 2/n%. O

3.5 The Search Procedure

In this section we show how, given the procedure Peel, which distinguishes between graphs G
for which arb(G) < a and those for which arb(G) > pa for p = 100log®n, we can obtain a
2p = 200 log? n-factor approximation of arb(G).

We start with a simple procedure to amplify the success probability of Peel.

Figure 4 The procedure Peel-With-Reduced-Error is used to amplify the success probability of Peel.

Peel-With-Reduced-Error(G, «)

1. For r =1 to 10log n do:
(a) Invoke Peel(G, a), and if it returns Yes, then Return Yes.
2. Return No.
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Claim 3.23. If arb(G) < «, then, with probability at least 1 —1/n3, Peel-With-Reduced-Error (G, o)
returns Yes. If arb(G) > 100log®n - «, then with probability at least 1 — 20logn/n*,
Peel-With-Reduced-Error (G, ) returns No. The query complexity of the procedure is O(n/«).

Proof. Assume first that arb(G) < «a, and consider a fixed iteration r of the for loop of
Peel-With-Reduced-Error. By Claim 3.22, Peel(G, o) returns Yes with probability at least 2/3 There-
fore, the probability that it returns No in all 7 invocations is at most (1/3)1018" < 1/pn3.

If arb(G) > 100log?n - a, then by Claim 3.22, every invocation of Peel(G,a), returns No
with probability at least 1 — 2/n*. Hence, the probability that the procedure returns No in all r
invocations is at least 1 — 2r/n* > 1 — 201log n/n’.

Finally, since every invocation of Peel does not exceed 400t queries for ¢ = 10n/(alogn), and
Peel-With-Reduced-Error makes at most 10logn calls to Peel, the query complexity is O(n/«), as
claimed. O

Figure 5 The procedure gets query access to a graph G, and returns an estimate of arb(G).

Estimate-Arboricity(G)

1. Set & = n.
2. While & > 1 do:
(a) Invoke Peel-With-Reduced-Error(G, a). If the algorithm returns No, then return & = &.
Otherwise, let & = &/2.
3. Return & = 1.

We are finally ready to prove our main theorem, which we restate here for the sake of conve-
nience.

Theorem 1.1. There exists an algorithm, Estimate-Arboricity(G), that with probability at least
1 — O(1/n?) returns a value @, such that

arb(G)/(2001log? n) < & < arb(G).

The expected query complexity and running time of the algorithm are O(nlog®n/arb(G)), and this
also holds with probability 1 — O(1/n?).

Proof. By Claim 3.23, every invocation of Peel-With-Reduced-Error(G, &) with a value & such that
arb(G) < & returns Yes with probability at least 1 —1/n3. Since there are at most log(n/arb(G)) <
log n iterations with such & values, by the union bound, with probability at least 1 — logn/n3, all
such invocations will return Yes. Next, for any invocation of Peel-With-Reduced-Error(G, &) with
arb(G)/(1001log?n) < & < arb(@), the procedure may return either Yes or No. Once & goes below
arb(G)/1001og® n (so that arb(G) > 100log?na), by Claim 3.23, Peel-With-Reduced-Error(G, &)
returns Yes with probability at least 1 — 20log n/n*. Recall that the value of @ is decreased by a
multiplicative factor of 2 in each iteration of algorithm, and the algorithm returns @ = & for the
first (largest) value of & such that Peel-With-Reduced-Error(G, &) returns No. It follows that with
probability 1 — logn/n? — 20logn/n* > 1 — O(1/n?) the algorithm makes O(logn) invocations to
Peel-With-Reduced-Error (G, &), all with & > arb(G)/(2001og? n), and returns a value @ that satisfies

arb(G)/(2001og? n) < @ < arb(G) .
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By Claim 3.23, the query complexity of Peel-With-Reduced-Error(G,&) for values & >
arb(G)/(2001og? n) is O(n/a) = O(nlog? n/arb(G)). Hence, with probability at least 1 — O(1/n?),
the query complexity is O(n log®n/arb(G)).

If & reaches values smaller than arb(G)/(2001log? n), then we can bound the query complexity
and running time by O(n-&(G)). This is true since if the number of queries exceeds O(n&) then the
algorithm may abort, as it implies that & is too small (since the number of queries is always bounded
by 2m = O(narb(G))). If the algorithm aborts then it outputs & = 1. Also, there are at most
log(arb(G)) = O(logn) iterations with values & < arb(G). Therefore, the expected query complexity
of Estimate-Arboricity(G) is O(n log® n/arb(G)+(1/n?)-(n-arb(G))-log n)) = O(nlog® n/arb(G)). O

Finally, for the sake of completeness, we prove the proposition regarding the lower bound on
any algorithm for approximating the arboricity.

Proof of Proposition 1.2. Consider the following two families of graphs, where within each family
the graphs only differ by the labels of the vertices and edges. In the first family, there is a clique of
size a and the rest of the vertices are isolated. The graphs of the second family are identical, except
that the clique is of size a - 2k. Any algorithm that returns a k-multiplicative approximation of
arb(G) with probability at least 2/3 must be able to distinguish between these two families. Since
the probability of hitting a clique vertex is O(ak/n), a lower bound of Q(n/(ak)) = Q(n/(arb(G)-k))
follows. O

4 Adaptation to the Streaming Model

Our algorithm can be adapted to the streaming model using O(log n) passes. In general, it is known
that any sublinear-time algorithm in the incidence list query model with “adaptivity depth k” (see
definition below), can be implemented in the streaming model with 2k passes. The reason is that
all types of queries in the incidence list query model, can be computed using a single pass over
the stream: degree queries can be computed using a simple counter, and neighbor queries can be
simulated using ¢y samplers (e.g., that of [30]). Furthermore, the space requirement of the streaming
variant can be directly bounded by the running time of the simulated sublinear algorithm, up to
poly(log n) factors resulting from the ¢y samplers.

Definition 4.1 (Depth of adaptivity). We say that an algorithm A in the incidence list model has
adaptivity depth k if the following holds. For every execution of A, the set of queries Q performed
by it can be partition into k sets Qu,...,Qx, so that for every j € [1,k], the set of queries Q; can
be computed based solely on responses to queries Qp U ... U Q;_1.

For a thorough investigation of an adaptivity hierarchy in property testing see [12].
We claim that algorithm Peel has depth of adaptivity O(logn).

Claim 4.2. The adaptivity depth of Algorithm Peel is O(logn).

Proof. We describe how to partition the algorithm’s queries to O(logn) sets, where each set only
depends on previous ones: Let Qp be the set of degree queries performed on the vertices of Xg
(in order to determine Peel(v,0) for every v € Xg). For every v and j € [1,/], let Q,2; be the
set of neighbor queries performed during the invocation of Peel(v, ), and let Q, ;.1 be the set
of degree queries performed during the invocation of Peel(v, j). Let Qa; and Qaj41 be the set of
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neighbor and pair queries, respectively, required to compute Peel(v, j) on all vertices in X, so that
Qoj = {Qu2j}vex; and Qzj11 = {Qu2j+1}vex, By the design of our algorithm, it holds that for
every v, Qu,2; is determined by the queries and their responses {Q, j/};/<2;—1: indeed observe that
already at the end of the invocation of Peel-Vertex(v,j — 1), we know the set of vertices from which
we should perform neighbor queries in the case Peel(v,j) will be invoked (this is the reason we
can compute ¢;(v) already at the end of Peel(v,j —1)). The set of degree queries Q2541 is then
determined by the identity of the neighbors that are returned as answers to the set of queries Q, »;.
Hence, for every j’' € [1,2logn + 2], Q; only depends on the queries and responses to queries in
Q«j, and it follows that the adaptivity depth of Peel is 2logn + 2 = O(logn). O

We continue to describe how to adapt our algorithm to the streaming setting.

Adapting the procedures Peel-With-Reduced-Error and Estimate-Arboricity. We modify
the procedure Peel-With-Reduced-Error so that, given G and «, the r = 10logn invocations of
Peel(G, o) will take place in parallel, rather than sequentially. Thus, for every value of «, there are
10log n invocations of Peel(G, ) in parallel. If any of these invocations returns Yes, the (modified)
version of Peel-With-Reduced-Error returns YES, and otherwise it returns no.

We continue to explain how to adapt Estimate-Arboricity. Given a lower bound « on arb(G),
in order to get an estimate of arb(G), we proceed as follows. We invoke Peel(G,&) with
guesses @ = a,2q,...,n in parallel, and return @ = 2& for the smallest value & for which
Peel-With-Reduced-Error (G, &) returns Yes. An almost identical analysis to that of Theorem 1.1,
proves that with high probability, the returned value is an O(logQ)—approximation of arb(G). There-
fore, we obtain the following result.

Theorem 1.3. Given a lower bound o < arb(G), algorithm Estimate-Arboricity can be implemented
in the streaming model, using O(logn)-passes and O(n/a) space in expectation. With probability at
least 1 — O(1/n?), the algorithm outputs a 200log? n-factor approzimation of arb(G).

Comparison to existing streaming results. We would like to compare Theorem 1.3, to the
existing streaming algorithms for approximating the densest subgraph (as they can easily be al-
tered to approximate the arboricity). Recall that our algorithm works by iteratively considering
increasingly smaller guesses of the value of arb(G), starting from & = n, and halving the guess
at each step, where the minimum possible value of arb(G) is the average degree of G, dgywe(G). A
common challenge to one-pass streaming algorithms is that this “search process” must be done
simultaneously for all possible guesses of arb(G) during the single pass over the stream, resulting
in a space complexity of O(m/dswg) = O(n). Unfortunately, this state of affairs obscures the true
dependence on the parameter that the algorithm is trying to approximate. To address this chal-
lenge, various works on graph parameter estimation in the streaming model assume that they are
given a rough estimate on the parameter at question, and the goal is to achieve a more accurate
one (see, e.g., [36, 31, 43]). Indeed if such a lower bound « on arb(G) is given to the algorithms
of [7] and [35], then their space complexity is reduced to O(m/a).

Therefore, we compare our streaming variant with the state of the art streaming algorithms,
under the assumption that a lower bound « on arb(G) is given as input. In such setting our
algorithm is an O(log n)-passes, 6(71/ a)-space, O(log? n)-approximation algorithm, where the state
of the art by [35] is a 1-pass, O(m/a), (1 + ¢)-approximation algorithm. Hence, our algorithm
improves on the space complexity by factor of dyyg, at the cost of performing O(logn) passes over
the stream, and an O(log? n)-approximation factor.
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