
Tuning Spectral Element Preconditioners for Parallel Scalability on GPUs

Malachi Phillips∗ Stefan Kerkemeier† Paul Fischer∗†‡

Abstract

The Poisson pressure solve resulting from the spectral el-

ement discretization of the incompressible Navier-Stokes

equation requires fast, robust, and scalable preconditioning.

In the current work, a parallel scaling study of Chebyshev-

accelerated Schwarz and Jacobi preconditioning schemes is

presented, with special focus on GPU architectures, such as

OLCF’s Summit. Convergence properties of the Chebyshev-

accelerated schemes are compared with alternative methods,

such as low-order preconditioners combined with algebraic

multigrid. Performance and scalability results are presented

for a variety of preconditioner and solver settings. The

authors demonstrate that Chebyshev-accelerated-Schwarz

methods provide a robust and effective smoothing strategy

when using p-multigrid as a preconditioner in a Krylov-

subspace projector. The variety of cases to be addressed,

on a wide range of processor counts, suggests that perfor-

mance can be enhanced by automated run-time selection of

the preconditioner and associated parameters.

1 Introduction

In fluid flow simulations, the incompressibility con-
straint is often used to bypass fast acoustic waves and
thereby allow the solution to evolve on a convective
time-scale that is most relevant for many engineering
problems. This model leads to a Poisson problem for
the pressure that is invariably the stiffest substep in
time-advancement of the Navier-Stokes equations. For
large 3D problems, which mandate the use of iterative
methods, the pressure solve thus typically encompasses
the majority of the solution time.

For the spectral element (SE) discretization, the
Poisson system matrix contains O(Ep6) nonzeros for E
elements with a polynomial degree of p (i.e., approxi-
mately n ≈ Ep3 unknowns.) Through the use of tensor-
product-sum factorization, however, the SE matrix-
vector product can be effected in only ≈ 7E(p + 1)3

reads and 12E(p + 1)4 operations, even in the case

∗Department of Computer Science, University of Illinois at

Urbana-Champaign, Urbana IL 61801 (malachi2@illinois.edu).
†Mathematics and Computer Science, Argonne National Lab-

oratory, Lemont, IL 60439 (kerkemeier@anl.gov).
‡Department of Mechanical Science and Engineering, Uni-

versity of Illinois at Urbana-Champaign, Urbana IL 61801 (fis-
cherp@illinois.edu).

of complex geometries [8, 25]. Consequently, the key
to fast SE-based flow simulations is to find effective
preconditioners tailored to this discretization. Many
methods, including geometric p-multigrid approaches
with pointwise Jacobi and Chebyshev-accelerated Ja-
cobi smoothers [1, 17, 28], geometric p-multigrid with
overlapping Schwarz smoothers [19,20,27], and precon-
ditioning via low-order discretizations [3,5,24,25], have
been considered.

In this work, we explore the parallel performance
of these methods and extend the Schwarz-smoothing
based p-multigrid of [20] to support restrictive-additive
Schwarz ideas of Cai and Sarkis [7] as well as Chebyshev-
accelerated smoothing. In addition, we extend the
low-order preconditioning strategy of [3] to run on
GPU architectures through the use of AmgX [23] as
an algebraric multigrid (AMG) solver for the sparse
system. Numerical results are shown for the SE-
based pressure Poisson problem as well as for the
Navier-Stokes equation. All methods considered are
implemented by the authors in the scalable open-source
CFD code, nekRS [9]. nekRS started as a fork of
libParanumal [6] and uses highly optimized kernels
based on the Open Concurrent Compute Abstraction
(OCCA) [21]. Special focus is given to performance and
scalability on large-scale GPU-based platforms such as
OLCF’s Summit.

The structure of this paper is as follows. Section 2
outlines the spectral element formulation for the Poisson
problem in R3, as well as describe the various precondi-
tioners considered. A brief description of several model
probems of interest are presented in section 3. Numer-
ical results are highlighted in section 4. Finally, a brief
summary of the survey of solver techniques considered
is provided in section 6.

2 Background and Implementation

We introduce here basic aspects of the SE Poisson
discretization and associated preconditioners.

2.1 SE Poisson Discretization Consider the Pois-
son equation in R3,

−∇2u = f for u, f ∈ Ω ⊂ R3 7→ R.(2.1)

ar
X

iv
:2

11
0.

07
66

3v
2 

 [
m

at
h.

N
A

] 
 1

2 
D

ec
 2

02
1

mailto:malachi2@illinois.edu
mailto:kerkemeier@anl.gov
mailto:fischerp@illinois.edu
mailto:fischerp@illinois.edu


Boundary conditions for the pressure Poisson equation
are either periodic, Neumann, or Dirichlet, with the
latter typically applicable only on a small subset of the
domain boundary, ∂ΩD, correspondong to an outflow
condition. Consequently, Neumann conditions apply
over the majority (or all) of the domain boundary, which
makes the pressure problem more challenging than the
standard all-Dirichlet case.

The SE discretization of (2.1) is based on the weak
form: Find u ∈ Xp

0 such that,

(∇v,∇u)p = (v, f)p ∀v ∈ Xp
0 ,(2.2)

where Xp
0 is a finite-dimensional approximation com-

prising the basis functions used in the SE discretization,
φj(x), j = 1, . . . , n, that vanish on ∂ΩD and (·, ·)p rep-
resents the discrete L2 inner product based on Gauss-
Lobatto-Legendre quadrature in the reference element,
Ω̂ := [−1, 1]3. The basis functions allow us to represent
the solution, u, as u(x) =

∑
ujφj(x), leading to a linear

system of unknown basis coefficients,

Au = Bf,(2.3)

with respective mass- and stiffness-matrix entries,
Bij := (φi, φj)p, and Aij := (∇φi,∇φj)p.

Ω is tesellated into nonoverlapping hexahedral el-
ements, Ωe, for e = 1, . . . , E, with isoparametric
mappings from Ω̂ to Ωe provided by xe(r, s, t) =∑

i,j,k x
e
ijkhi(r)hj(s)hk(t), for i, j, k ∈ [0, p]. Each

h∗(ξ) is a pth-order Lagrange cardinal polynomial on
the Gauss-Lobatto-Legendre (GLL) qudrature points,
ξj ∈ [−1, 1]. Similarly, the test and trial func-
tions u, v are written in local form as ue(r, s, t) =∑

i,j,k u
e
ijkhi(r)hj(s)hk(t). Continuity is ensured across

the interface between adjacent elements by enforcing
ueijk = ue

îĵk̂
when xe

ijk = xe
îĵk̂

. From this, a global-to-

local degree-of-freedom mapping, u := {ul} −→ uL :=
{ueijk}, can be represented by a Boolean matrix Q, such
that uL = Qu. The assembled stiffness matrix is then
A = QTALQ, where AL = block-diag(Ae) comprises
the local stiffness matrices, Ae. Similarly, B = QTBLQ.
The SE formulation uses coincident GLL quadrature
and nodal points, such that Be is diagonal. Moreover,
Ae is never formed, as it would contain O(p6) nonzeros
in the general case. Rather, the tensor-product-sum fac-
torization [25] allows for Au to be evaluated in O(Ep4)
time with O(Ep3) storage, as described in detail in [8].

2.2 Preconditioners In the current study, all pre-
conditioners are applied in the context of restarted GM-
RES. Although A is symmetric positive definite (SPD),
many of the preconditioners are asymmetric. Further, a
recent study [11] has shown the benefits of projection-
based GMRES over flexible conjugate gradients (FCG)

because the effectiveness of the overall pressure solu-
tion strategy (which includes projection onto prior so-
lutions [12]) generally ensures a low enough iteration
count, k, such that the O(k2) costs in GMRES are not
overly onerous. We note, however, that FCG may yield
very low iteration counts in certain cases (e.g., 1–2 it-
erations per step, as in [9]), in which case we use FCG
rather than GMRES if it yields faster runtimes.

2.2.1 SEMFEM In [25], Orszag suggested that con-
structing a sparse preconditioner based on the low-order
discretizations with nodes coinciding with those of the
high-order discretization would yield bounded condi-
tion numbers and, under certain constraints, can yield
κ(M−1A) ∼ π2/4 for second-order Dirichlet problems.
This observation has led to the development of precon-
ditioning techniques based on solving the resulting low-
order system [3,5, 24].

In the current work, we employ the same low-order
discretization considered in [3]. Each of the vertices of
the hexahedral element is used to form one low-order,
tetrahedral element, resulting in a total of eight
low-order elements for each GLL sub-volume in each
of the high-order hexahedral elements. This low-order
discretization is then used to form the sparse operator,
AF . The so-called weak preconditioner, A−1

F , is used to
precondition the system. Algebraric multigrid (AMG),
implemented in CUDA in AmgX [23], is used with the
following setup to solve the low order system:

• PMIS coarsening

• 0.25 strength threshold

• Extended + i interpolation (pmax = 4)

• Damped Jacobi relaxation (0.9)

• One V-cycle for preconditioning

• Smoothing on the coarsest level

We denote this preconditioning strategy as SEMFEM.

2.2.2 p-multigrid, Schwarz Smoothers Another
preconditioning strategy for the SE-based Poisson prob-
lem is to use geometric p-multigrid (pMG). The classi-
cal single pass V-cycle is summarized in Algorithm 1.
In our application, we limit pMG preconditioning to a
single V-cycle pass. Alternative strategies, such as F-
or W-cycle multigrid are not considered.

The SE-based additive Schwarz method (ASM)
presented in [19, 20] solves local Poisson problems on
subdomains that are extensions of the spectral elements.
The formal definition of the ASM preconditioner (or
pMG smoother) is

s =

E∑
e=1

WeR
T
e Ā

−1
e Rer,(2.4)



Algorithm 1 Single pass multigrid V-cycle

x = x + M(b−Ax) // smooth
r = b−Ax // re-evaluate residual
rC = PT r // coarsen
eC = A−1

C rC // solve/re-apply V-cycle
e = PeC // prolongate
x = x + e // update solution
x = x + M(b−Ax) // post smoothing

(a) (b)

Figure 1: (a) Box-like approximation (b) overlapping do-
main

where Re is the restriction matrix that extracts nodal
values of the residual vector that correspond to each
overlapping domain, as indicated in Fig. 1b. To improve
the smoothing properties of the ASM, we introduce the
diagonal weight matrix, We, which scales each nodal
value by the inverse of the number of subdomains that
share that node. Although it compromises symmetry,
post-multiplication by We was found to yield superior

results to pre- and post-multiplication by W
1
2
e [20, 27].

In a standard Galerkin ASM formulation, one would
use Āe = ReAR

T
e , but such an approach would compro-

mise the O(p3) storage complexity of the SE method.
To construct fast inverses for Āe, we approximate each
deformed element as a simple box-like geometry, as
demonstrated in Fig. 1a. These boxes are then ex-
tended by a single degree-of-freedom in each spatial
dimension to form overlapping subdomains with p̄3 =
(p+3)3 interior degrees-of-freedom in each domain. (See
Fig. 1). The approximate box domain enables the use of
the fast diagonalization method (FDM) to solve for each
of the overlapping subdomains, which can be applied in
O(Ep4) time in R3 [20]. The extended-box Poisson op-
erator is separable, with the 3D form

(2.5) Ā = Bz⊗By⊗Ax+Bz⊗Ay⊗Bx+Az⊗By⊗Bx,

where each B∗, A∗ represents the extended 1D mass-
stiffness matrix pairs along the given dimension [20].
The FDM begins with a preprocessing step of solving a
series of small, p̄× p̄, generalized eigenvalue problems,

(2.6) A∗si = λiB∗si

and defining S∗ = (s1 . . . sp̄) and Λ∗ = diag(λi), to yield
the similarity transforms

(2.7) ST
∗ A∗S∗ = Λ∗, ST

∗ B∗S∗ = I.

From these, the inverse of the local Schwarz operator is

(2.8) Ā−1 = (Sz ⊗ Sy ⊗ Sx)D−1(ST
z ⊗ ST

y ⊗ ST
x ),

where

(2.9) D = I ⊗ I ⊗ Λx + I ⊗ Λy ⊗ I + Λz ⊗ I ⊗ I

is a diagonal matrix. This process is repeated for each
element, at each multigrid level save for the coarsest
one. Note that the per-element storage is only 3p̄2 for
the S∗ matrices and p̄3 for D. At each multigrid level,
the local subdomain solves are used as a smoother. On
the coarsest level (p = 1), however, BoomerAMG [13]
is used to solve the system with the same parameters
as the AmgX solver in section 2.2.1, except using
Chebyshev smoothing. Unless otherwise noted, all
pMG preconditioners use a single BoomerAMG V-cycle
iteration in the coarse-grid solve.

Presently, we also consider a restrictive additive
Schwarz (RAS) version of (2.4), wherein overlapping
values are not added after the action of the local FDM
solve, following [7]. RAS has the added benefit of
reducing the amount of communication required in the
smoother. (Formally, RAS can be implemented by
simply changing We.) Note that, in the case of ASM
and RAS smoothers without Chebyshev-acceleration,
an additive V-cycle with no post-smoothing is used to
avoid residual re-evaluation in Algorithm 1 [10].

2.2.3 Chebyshev Acceleration A notable im-
provement over standard Jacobi-smoothed multigrid is
to use Chebyshev-acceleration [1,28], as described in Al-
gorithm 2 for a given surrogate smoother, S. While S
is typically based on Jacobi smoothing (e.g., [17]), it is
also possible to consider the use of overlapping-Schwarz
(2.4) as the smoother, which is a new approach that we
explore here.

Algorithm 2 requires approximate spectral bounds,
(λmin, λmax), of the smoothed operator, SA. Using 10
rounds of Arnoldi iteration, we generate λ̃ as an ini-
tial proxy for λmax. The bounds employed in Algo-
rithm 2 are then determined through sensitivity anal-
ysis similar to that performed by Adams and cowork-
ers [1]. The analysis is conducted using a challenging
model problem, namely the Kershaw case of subsection
3.1, with ε = 0.3, E = 243, p = 7, and relative (2-norm)
residual tolerance of 10−8. A second-order Chebyshev-
accelerated ASM smoother is used in the p = 7, 3, 1



Algorithm 2 Chebyshev smoother

θ =
1

2
(λmax +λmin), δ =

1

2
(λmax−λmin), σ =

θ

δ
, ρ1 =

1

σ

r = S(b−Ax), d1 =
1

θ
r, x1 = 0

for k = 1, . . . , chebyshevOrder do
xk+1 = xk + dk
rk+1 = rk − SAdk
ρk+1 =

1

2σ − ρk
dk+1 = ρk+1ρkdk +

2ρk+1

δ
rk+1

end for
xk+1 = xk + dk
return xk+1

λmin\λmax 0.9λ̃ 0.95λ̃ 1.0λ̃ 1.1λ̃ 1.2λ̃ 1.3λ̃

0.0λ̃ - - - - - -

0.025λ̃ - - - 110 64 48

0.05λ̃ - - - 50 40 38

0.1λ̃ - - 124 40 38 38

0.2λ̃ 159 45 43 42 43 44

0.25λ̃ 47 45 44 44 45 46

Table 1: Iteration counts for the (λmin, λmax) sensitivity
study. Omitted entries failed to converge in 1000 iterations.

pMG V-cycle preconditioner, which we denote as the
current default preconditioner in nekRS.

The results of the sensitivity study are shown in
Table 1. The required iteration counts are seen to
be sensitive to underestimation of λmax, as also found
by Adams and coworkers [1]. On the other hand,
results are less sensitive to the minimum eigenvalue
estimate, provided λmin > 0, as this delimits between
the low frequencies that are handled by the coarse grid
correction and the high frequencies that are eliminated
by the action of the smoother. The choice of the
bounds (relative to λ̃) is not universal: (1/30,1.1) [1],
(0.3,1) [2], (0.25,1) [28], and (1/6,1) [32] have all been
considered. Based on the results of Table 1, we set
(λmin, λmax) = (0.1, 1.1)λ̃ as a conservative choice.

3 Test Cases

We describe four model problems that are used to test
the SE preconditioners. The first is a stand-alone
Poisson solve, using variations of the Kershaw mesh.
The others are modest-scale Navier-Stokes problems,
where the pressure Poisson problem is solved over
multiple timesteps. The problem sizes are listed in
Table 2 and range from relatively small (n=21M points)

Figure 2: Kershaw, E = 123, p = 1. ε = 1.0, 0.3, 0.05.

Case Name E p n

146 pebble (Fig. 3a) 62K 7 21M
1568 pebble (Fig. 3b) 524K 7 180M
67 pebble (Fig. 3c) 122K 7 42M

Speed bump (Fig. 3d) 885K 9 645M

Table 2: Problem discretization parameters.

to moderately large (n=645M).1

3.1 Poisson The Kershaw family of meshes [15, 16].
has been proposed as the basis for a high-order Poisson-
solver benchmark by Center for Efficient Exascale Dis-
cretization (CEED) within the DOE Exascale Comput-
ing Project (ECP). This family is parametrized by an
anisotropy measure, ε = εy = εz ∈ (0, 1], that deter-
mines the degree of deformation in the y and z direc-
tions. As ε decreases, the mesh deformation and as-
pect ratio increase along with it. The Kershaw mesh
is shown in Fig. 2 for several values of ε. The domain
Ω = [−1/2, 1/2]3 with Dirichlet boundary conditions on
∂Ω. The right hand side for (2.1) is set to

(3.10) f(x, y, z) = 3π2 sin (πx) sin (πy) sin (πz) + g,

where g(x, y, z) is a random, continous vector vanishing
on ∂Ω. The linear solver terminates after reaching a
relative residual reduction of 10−8. Since this test case
solves the Poisson equation, there is no timestepper
needed for the model problem.

3.2 Navier-Stokes For the pressure-Poisson tests,
four flow cases are considered, as depicted in Fig. 3.
The first three cases corresponds to turbulent flow
through a cylindrical packed-bed with 146, 1568, and
67 spherical pebbles. The 146 and 1568 pebble cases
are from Lan and coworkers [18]. The 67 pebble case
is constructed using a tet-to-hex meshing strategy by
Yuan and coworkers [31]. The first two bed flows are
at Reynolds number ReD = 5000, based on sphere
diameter, D, while the 67 pebble case is at Reynolds

1Larger cases for recent full-scale runs on Summit with n=51B
are reported in [11].



(a) (b)

(c)

(d)

Figure 3: Navier-Stokes cases: pebble-beds with (a) 146,
(b) 1568, and (c) 67 spheres; (d) Boeing speed bump.

number ReD = 1460. Time advancement is based
on a two-stage 2nd-order characteristics timestepper
with CFL=4 (∆t = 2 × 10−3 ∆t = 5 × 10−4, and
∆t = 5× 10−5 for the 146, 1568, and 67 pebble cases).
An absolute pressure solver tolerance of 10−4 is used. A
restart at t = 10, t = 20, and t = 10.6 convective time
units is used for the 146, 1568, and 67 pebble cases,
respectively, to provide an initially turbulent flow.

The fourth case, shown in Fig. 3d, is a direct
numerical simulation (DNS) of seperated turbulent flow
over a speed bump at Re = 106. This test case was
designed by Boeing to provide a flow that exhibits
separation. A DNS of the full 3D geometry, however,
remains difficult [26]. Therefore, this smaller example
proves a useful application for benchmarking solver
performance. This case uses a 2nd-order timestepper
with CFL=0.8 (∆t = 4.5 × 10−6) and an absolute
pressure-solve tolerance of 10−5. A restart at t = 5.6
convective time units is used for the initial condition.

In all cases, solver results are collected over 2000
timesteps. At each step, the solution is projected onto
a space of up to 10 prior solution vectors to generate
a high-quality initial guess, ū. Projection is standard
practice in nekRS as it can reduce the initial residual
by orders of magnitude at the cost of just one or two

matrix-vector products in A per step [12].
The perturbation solution, δu := u − ū, is typi-

cally devoid of slowly evolving low wave-number con-
tent. Moreover, the initial residual is oftentimes suffi-
ciently small that the solution converges in k < 5 it-
erations, such that the O(k2) overhead of GMRES is
small. Testing the preconditioners under these condi-
tions ensures that the conclusions drawn are relevant to
the application space.

4 Results

Here we consider the solver performance results for the
test cases of Section 3. We assign a single MPI rank to
each GPU and denote the number of ranks as P . All
runs are on Summit. Each node on Summit consists of
42 IBM Power9 CPUs and 6 NVIDIA V100 GPUs. We
use 6 GPUs per node unless P < 6. In the following, we
denote a pMG preconditioner using η-order Chebyshev-
accelerated ξ smoother with a multigrid schedule of
Π as Chebyξ(η),Π. A wide range of preconditioning
strategies is considered.

4.1 Kershaw Mesh The Kershaw study comprises
six tests. For each of two studies, we consider the
regular box case (ε = 1.0), a moderately skewed case
(ε = 0.3), and a highly skewed case (ε = 0.05). The
first study is a standard weak-scale test, where P and
E are increased, while the polynomial order is fixed at
p = 7 and the number of gridpoints per GPU is set to
n/P = 2.67M . The range of processors is P=6 to 384.
The second study is a test of the influence of polynomial
order on conditioning, with P = 24 and n/P = 2.88M
fixed, while p ranges from 3 to 10. Both cases use
GMRES(20).

The results of the weak-scaling study are shown in
Fig. 4. For all values of ε, the iteration count exhibits
a dependence on problem size, as seen in Fig. 4a,d,g,
especially in the highly skewed case (ε = 0.05). The
time-per-solve also increases with n, in part due to the
increase in iteration count, but also due to increased
communication overhead as P increases. This trend
is not necessarily monotonic, as shown in Fig. 4c,f.
In the case of ε = 0.3 Cheby-RAS(2),(7,3,1), a minor
fluctuation in the iteration count from the P = 6 to
P = 12 case causes the greater than unity parallel
efficiency. For ε = 1.0 Cheby-Jac(2),(7,5,3,1), the
effects of system noise on the P = 6 run causes the
greater than unity parallel efficiency for the P = 12
run.

Table 3 indicates the maximum number of of neigh-
boring processors for the assembly (QQT ) graph of A,
which increases with P . In addition, the number of
grid points per GPU (n/P = 2.67M) is relatively low.



Nodes 1 2 4 8 16 32 64
Max Neighbors 5 11 16 24 20 24 29

Table 3: Max neighbors, Kershaw.

These two factors cause an increased sensitivity of the
problem to the additional communication overhead as
the number of GPUs is initially increased. The num-
ber of neighbors, however, will saturate at larger (i.e.,
production-level) processor counts.

Lastly, the relative preconditioner performance de-
pends on ε. Fig. 4b, e, h show that, for the easy
ε = 1.0 case, a pMG scheme with a smoother that is
cheap to apply is best, such as Cheby-RAS(1),(7,3,1),
Cheby-Jac(2),(7,5,3,1), and ASM,(7,3,1). However, as ε
decreases, more robust pMG smoothers such as Cheby-
RAS(2),(7,3,1) and SEMFEM result in lower time to
solution. Once ε = 0.05 (Fig. 4h), the problem is suf-
ficiently challenging that SEMFEM overtakes the pMG
based preconditioning schemes. This indicates that, in
the highly skewed case in which the maximum element
aspect ratio increases, the pMG preconditioner is not as
effective as the SEMFEM preconditioner.

The influence of polynomial order is illustrated in
Fig. 5. For ε = 1.0, iteration counts are essentially p-
independent, as seen in Fig. 5a. For ε = 0.3, however, a
slight upward trend in the iteration count is observed for
SEMFEM and for the pMG preconditioners with ASM,
RAS, and Chebyshev-Jacobi smoothing (Fig. 5b). Sim-
ilarly, ε = 0.05 exhibits a dependence between the it-
eration count and the polynomial order for all precon-
ditioners (Fig. 5c). Figures 5d, e and f demonstrate
that the time per pressure solve is strongly dependent
polynomial order. For SEMFEM, there is an increase in
time as a result of increased overhead for the underlying
AMG solver. For the pMG-based methods, higher or-
ders are generally faster. This performance gain can be
attributed to surface-to-volume effects in the evaluation
of the operators and smoothers. Application of Ae and
(smoother) Se is highly vectorizable, whereas applica-
tion of QQT (assembly) involves a significant amount
of indirect addressing. The discrete surface to volume
ratio for a spectral element of order p = 7 is 296/512
≈ 60%. For lower p this value is larger. This situation
is exacerbated in the case of Schwarz-based smoothers,
where the overlap contributes substantially to the work
and communication for the small-element (i.e., low-p)
cases. In addition, nekRS [9] uses a single element per
thread block, which limits the amount of work avail-
able for a streaming multiprocessor for relatively small
polynomial orders.

4.2 Navier-Stokes Results We consider scalability
of nekRS for the cases of Fig. 3. All simulations ex-
cept one use GMRES(15) with an initial guess gen-
erated by A-conjugate projection onto 10 prior solu-
tions [12]. Due to memory constraints, the 1568-pebble
case with P = 24 uses GMRES(10) with only 5 solution-
projection vectors. For each case, two pMG schedules
are considered: (7, 5, 3, 1) and (7, 3, 1) for p = 7; and
(9, 7, 5, 1) and (9, 5, 1) for p = 9. Other parameters,
such as the Chebyshev order and the number of coarse
grid BoomerAMG V-cycles are also varied. Results are
shown in Figs. 6,7. The plots relate the effective work
rate per node, measured as the gridpoints n (as shown
in Table 2) solved per second per node, to the time-
to-solution. The y-axis notes the drop in the relative
work rate, which corresponds to a lower parallel effi-
ciency, as the strong scale limit is reached, while the
x-axis denotes the time-to-solution. Each node consists
of 6 GPUs, hence P = 6× nodes.

In all the performance tests conducted, the pMG
preconditioner with Chebyshev-Jacobi smoothing is
outperformed by the other preconditioners, whether us-
ing one or two V-cycle iterations in the AMG coarse-grid
solve. For each case, the fastest preconditioner scheme
varies. In the 146 pebble case (Fig. 7a), using Cheby-
RAS(2),(7,5,3,1) yields the smallest time per pressure
solve. However, in the 1568 pebble case (Fig. 7b), SEM-
FEM is a moderate improvement over the second best
preconditioner, Cheby-ASM(2),(7,5,3,1). pMG with a
(9, 5, 1) schedule and Chebyshev-RAS (of any order)
yield the best scalability and lowest time per pressure
solve for the Boeing speed bump case (Fig. 6). The
Chebyshev-accelerated Schwarz schemes are not always
the fastest, however. For the 67 pebble case (Fig.
7c), Cheby-Jac(2),(7,5,3,1) is comparable to Cheby-
RAS(2),(7,5,3,1) and are the two fastest pMG based
preconditioners. However, SEMFEM is significantly
faster than the other preconditioners for this case.

Also considered is a hyrbid two-level pMG/SEM-
FEM approach wherein SEMFEM is used as the solver
for the coarse level. For p = 7, a (7, 6) schedule with
2nd order Chebyshev-accelerated ASM smoothing on
the p = 7 level and SEMFEM solver on the p = 6 level,
denoted as Cheby-ASM(2),(7,6) + SEMFEM, is used.
Similarly, Cheb-ASM(2),(7,5) + SEMFEM and Cheb-
ASM(2),(7,3) + SEMFEM are considered. For p = 9,
a (9, 8), (9, 7), (9, 5), and (9, 3) hybrid pMG/SEMFEM
approach is considered, denoted as Cheb-ASM(2),(9,8)
+ SEMFEM, Cheb-ASM(2),(9,7) + SEMFEM, Cheb-
ASM(2),(9,5) + SEMFEM, and Cheb-ASM(2),(9,3) +
SEMFEM, respectively. In the pebble cases shown in
Fig. 7a,c, this hybrid approach performs somewhere
between the SEMFEM and Cheby-ASM(2),(7,3,1) pre-



Figure 4: Kershaw weak scaling, GMRES(20). n/P = 2.67M .

Figure 5: Kershaw order dependence, GMRES(20). n/P = 2.88M .



Figure 6: Strong scaling results on Summit for the Navier-
Stokes case of Fig. 3d.

conditioners. In the Boeing speed bump case, however,
Fig. 6 demonstrates that this approach is not as perfor-
mant as either the SEMFEM or Cheby-ASM(2),(9,5,1)
preconditioners.

Solver performance degrades whenever n/P is suffi-
ciently small, regardless of the solver considered. For
the various preconditioners considered, at 2 nodes
(n/P = 1.75M), the strong-scale limit of 80% efficiency
is far surpassed in the 146 pebble case. This leaves the
effective strong scale limit at 1-2 nodes (n/P = 3.5 to
1.75M). For the 1568 pebble case, 12 nodes (n/P =
2.5M) yields a parallel efficiency around 60-70%, de-
pending on the specific solver. The 67 pebble cases
reaches 70% effieciency on 3 nodes (n/P = 2.3M). The
parallel efficiency for the Boeing speed bump case for
the fastest time-to-solution preconditioners drops below
70% when using more than 48 nodes (n/P = 2.24M).

While the effect of mesh quality metrics, such as the
max aspect ratio and scaled Jacobian, on solver conver-
gence has been studied by Mittal et al. [22], predicting
the optimal preconditioner settings from mesh quality
metrics is not obvious. While the maximum aspect ratio
is an important metric for mesh quality, it alone cannot
explain the apparent poor performance of the pMG pre-
conditioners in the 67 pebble case, Fig. 7c. Consider,
for example, that the Boeing speed bump case has a
larger maximum aspect ratio (255) than the 67 pebble
case (204), but does not exhibit this poor performance
in the pMG preconditioners. The minimum scaled Jaco-
bian, however, is at least an order of magnitude smaller
in the 67 pebble case (5.97× 10−3) as compared to the
other cases (e.g., .996 for the Boeing speed bump case,
4.31 × 10−2 and 2.59 × 10−2 for the 146, 1568 pebble
cases, respectively). This may, in turn, explain why the
pMG preconditioners in the 67 pebble case were sign-
ficiantly suboptimal compared to the SEMFEM pre-

conditioner. This demonstrates, however, that a user
cannot simply rely on, e.g., the maximum aspect ratio
when deciding whether or not to use SEMFEM as a
preconditioner. This inability to correctly identify pre-
conditioner settings based on mesh quality metrics alone
motivates the introduction of an auto-tuner to choose
preconditioner parameters during runtime.

5 Auto-tuning for Production Simulations

The results of the preceding section provides a small
window into the varieties of performance behavior en-
countered in actual production cases, which span a large
range of problem sizes, domain topologies, mesh quali-
ties. Moreover, production simulations are solved across
a range of architectures having varying on-node and net-
work performance, interconnect topologies, and proces-
sor counts. One frequently encounters situations where
certain communication patterns might be slower under
a particular MPI version on one platform versus an-
other. Unless a developer has access to that platform,
it’s difficult to measure and quantify the communication
overhead. Processor count alone can be a major factor
in preconditioner selection: large processor counts have
relatively high coarse-grid solve costs that can be mit-
igated by doing more smoothing at the fine and inter-
mediate levels. How much more is the open question.
The enormity of parameter space, particularly “in the
field” (i.e., users working on unknown platforms) lim-
its the effectiveness of standard complexity analysis in
selecting the optimal preconditioner for a given user’s
application.

From the user’s perspective, there is only one ap-
plication (at a time, typically), and one processor
count of interest. Being able to provide optimized
performance—tuned to the application at hand, which
includes the processor count—is thus of paramount im-
portance. Auto-tuning provides an effective way to de-
liver this performance. Auto-tuning of preconditioners
has been considered in early work by Imakura at al. [14]
and more recently by Yamada at al. [30] and by Brown
et al. [4]. The latter work couples their auto-tuning with
local Fourier analysis to guide the tuning process.

In large-scale fluid mechanics applications, auto-
tuning overhead is typically amortized over 104–105

timesteps (i.e., pressure solves) per run (and more, over
an entire simulation campaign). Moreover, auto-tuning
is of particular importance for problems at large pro-
cessor counts because these cases often have long queue
times, which preclude making multiple job submissions
in order to tweak parameter settings. Failure to op-
timize, however, can result in significant opportunity
costs. For example, in [11] the authors realized a factor
of 2.8 speedup in time-per-step for a 352,000-pebble-



Figure 7: Strong scaling results on Summit for the Navier-Stokes cases of Fig. 3a,b,c. Iso-processor count line illustrated
in (c). A user running on a specified number of processors should use the lowest time-to-solution preconditioner along this
line.

Case Name GLL Spacing (min/max) Scaled Jacobian (min/max/avg) Aspect Ratio (min/max/avg)

146 pebble 1.01× 10−3 / .32 4.31× 10−2 / .977 / .419 1.07 / 56.9 / 7.14

1568 pebble 2.21× 10−4 / .3 2.59× 10−2 / .99 / .371 1.12 / 108 / 12.6
67 pebble 4.02× 10−5 / .145 5.97× 10−3 / .970 / .38 1.17 / 204 / 13.2

Boeing Speed Bump 8.34× 10−7 / 2.99× 10−3 .996 / 1 / 0.999 6.25 / 255 / 28.1

Table 4: Mesh quality metrics for cases from Fig. 3.

Figure 8: Same as Fig. 7c, pMG preconditioners only.

bed simulation (n=51B gridpoints) through a sequence
of tuning steps. Even if there were 100 configurations in
the preconditioner parameter space, an auto-tuner could
visit each of these in succession 5 times each within the
first 500 steps and have expended only a modest incre-
ment in overhead when compared to the cost of sub-
mitting many jobs (for tuning) or to the cost of 10,000
steps for a production run.

As a preliminary step, the authors consider con-
structing a small subset of the true search space
(which could include, e.g., other cycles, schedules, or
smoothers) for use in a nascent auto-tuner. Across all
cases, with exception to the 67 pebble case, pMG pre-

conditioning with Chebyshev-accelerated ASM or RAS
smoothing is the fastest solver or is comparable to
SEMFEM. The choice of Chebyshev order and multi-
grid schedule, moreover, contributes only a modest ≈
10-20% improvement to the overall time-to-solution in
most cases, all else being equal. This makes the de-
fault Cheby-ASM(2),(7,3,1) or Cheby-ASM(2),(9,5,1)
preconditioner reasonably performant. However, in or-
der to avoid the situation encountered in the 67 peb-
ble case, SEMFEM is added to the considered search
space. The parameters in Table 5 are chosen as they
include optimal or near-optimal preconditioner settings
for the results in Figs. 6, 7, while still restricting the
search space to something that is amenable to exhaus-
tive search. The authors note, however, that this pa-
rameter space may not reflect the various factors affect-
ing the performance of the preconditioners at especially
large P or on different machine architectures.

During the first timestep, our simple auto-tuner
performs an exhaustive search over the small parameter
space identified in Table 5. While this space is lim-
ited compared to the true search space, the resultant
preconditioners selected are effective. In the 146 peb-
ble case (Fig. 7a), Cheby-RAS(2),(7,3,1) is identified
as the preconditioner on each of the processor counts,
which was comparable in peformance to the best precon-
ditioner. The auto-tuner chose the optimal SEMFEM
for the 1568 pebble case (Fig. 7b). SEMFEM was iden-
tified at the preconditioner for the 67 pebble case on all



Parameters

Solver preconditioned GMRES

Preconditioner pMG, SEMFEM

pMG
p = 7: Cheby-ASM(2),(7,3,1), Cheby-RAS(2), (7,3,1), Cheby-Jac(2), (7,5,3,1)
p = 9: Cheby-ASM(2),(9,5,1), Cheby-RAS(2), (9,5,1), Cheby-Jac(2), (9,7,5,1)

Coarse grid single boomerAMG V-cycle
SEMFEM single AmgX V-cycle

Table 5: Solver parameter space considered in the auto-tuner. A pMG preconditioner using an η-order Chebyshev-
accelerated ξ smoother with a multigrid schedule of Π is denoted as Cheby-ξ(η),Π.

processor counts, which Fig. 7c confirms. In the Boeing
speed bump case (Fig. 6), the auto-tuner chose Cheby-
RAS(2),(9,5,1) across all processor counts, which was
either the optimal or near-optimal preconditioner for
the problem.

Note that the auto-tuner selects the fastest method
at a fixed-processor count (i.e., whatever the user has
selected). Consider, for example, the 67 pebble case
on P = 18 GPUs (dashed black line, Fig. 7c). The
goal of the auto-tuner is to select the preconditioner
with lowest time-to-solution along the user-specified iso-
processor count line. However, in the results discussed
above, there was no change with respect to a change in
the processor count. We note that our principal objec-
tive is not to squeeze out a few percent over a raft of
good choices, but rather to ensure that a case does not
run with an unfortunate set of parameters for which the
performance is significantly substandard. This primi-
tive auto-tuning technique proves effective at prevent-
ing the selection of highly suboptimal preconditioners.
We have implemented this for production use and will
continue to update and refine the strategy moving for-
ward.

6 Conclusions and Future Work

In this work, we introduce Chebyshev-accelerated ASM
and RAS smoothers for use in p-multigrid precondi-
tioners for the spectral element Poisson problem. Fur-
ther, we compare the performance of Schwarz-based
smoothers, Chebyshev-accelerated Jacobi smoothing,
and SEMFEM-based preconditioning for a suite of
challenging test problems. We conclude that the
Chebyshev-accelerated Schwarz smoothers with p-
multigrid, as well as the low-order SEMFEM precondi-
tioner solved with AmgX, are performant on GPU ma-
chines such as OLCF’s Summit. The authors propose a
runtime auto-tuner preconditioner strategy that, while
primitive, can choose reasonable solver parameters.

The authors plan on conducting similar parallel
scalability studies on other machines, such as OLCF’s
Spock, an AMD MI100 machine with similar hardware
and software as the upcoming Frontier system. Addi-
tional preconditioner options, such as varying the AMG

solver settings for the coarse grid solve as well as the
solver location (CPU/GPU), varying the Chebyshev or-
der and number of sweeps on each level of the multi-
grid heirarchy, and varying the Chebyshev eigenvalue
bounds, are avenues for future performance optimiza-
tion. Local Fourier analysis similar to that done by
Thompson et al. in [29] is further needed to understand
the smoothing properties of the Chebyshev-accelerated
Schwarz smoothers, allowing for robust optimization of
parameters, as in the work by Brown et al. [4].

7 Acknowledgements

This research is supported by the Exascale Comput-
ing Project (17-SC-20-SC), a collaborative effort of two
U.S. Department of Energy organizations (Office of Sci-
ence and the National Nuclear Security Administra-
tion) responsible for the planning and preparation of
a capable exascale ecosystem, including software, ap-
plications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s ex-
ascale computing imperative. This research also used
resources of the Oak Ridge Leadership Computing Fa-
cility at Oak Ridge National Laboratory, which is sup-
ported by the Office of Science of the U.S. Department
of Energy under Contract DE-AC05-00OR22725.

The authors thank YuHsiang Lan, Ramesh Balakr-
ishnan, David Alan Reger, and Haomin Yuan for pro-
viding visualizations and mesh files. The authors thank
the reviewers of this work for their insightful comments
and suggestions.



References

[1] M. Adams, M. Brezina, J. Hu, and R. Tu-
minaro, Parallel multigrid smoothing: poly-
nomial versus Gauss–Seidel, Journal of Com-
putational Physics, 188 (2003), pp. 593–610,
https://doi.org/10.1016/S0021-9991(03)00194-3,
https://linkinghub.elsevier.com/retrieve/pii/

S0021999103001943 (accessed 2021-09-09).
[2] A. H. Baker, R. D. Falgout, T. V. Kolev,

and U. M. Yang, Multigrid Smoothers for Ul-
traparallel Computing, SIAM Journal on Scien-
tific Computing, 33 (2011), pp. 2864–2887, https:

//doi.org/10.1137/100798806, http://epubs.siam.

org/doi/10.1137/100798806 (accessed 2020-09-05).
[3] P. D. Bello-Maldonado and P. F. Fischer,

Scalable Low-Order Finite Element Preconditioners
for High-Order Spectral Element Poisson Solvers,
SIAM Journal on Scientific Computing, 41 (2019),
pp. S2–S18, https://doi.org/10.1137/18M1194997,
https://epubs.siam.org/doi/10.1137/18M1194997

(accessed 2021-07-20).
[4] J. Brown, Y. He, S. MacLachlan, M. Menick-

elly, and S. M. Wild, Tuning Multigrid Methods
with Robust Optimization and Local Fourier Anal-
ysis, SIAM Journal on Scientific Computing, 43
(2021), pp. A109–A138, https://doi.org/10.1137/

19M1308669, https://epubs.siam.org/doi/10.1137/

19M1308669 (accessed 2021-10-21).
[5] C. Canuto, P. Gervasio, and A. Quarteroni,

Finite-Element Preconditioning of G-NI Spectral
Methods, SIAM Journal on Scientific Computing,
31 (2010), pp. 4422–4451, https://doi.org/10.

1137/090746367, https://epubs.siam.org/doi/abs/

10.1137/090746367 (accessed 2021-09-24). Publisher:
Society for Industrial and Applied Mathematics.

[6] N. Chalmers, A. Karakus, A. P. Austin,
K. Swirydowicz, and T. Warburton, lib-
Paranumal: a performance portable high-
order finite element library, 2020, https:

//doi.org/10.5281/zenodo.4004744, https:

//github.com/paranumal/libparanumal. Release
0.4.0.

[7] X. chuan Cai and M. Sarkis, A restricted additive
Schwarz preconditioner for general sparse linear sys-
tems, SIAM J. Sci. Comput, 21 (1999), pp. 792–797.

[8] M. O. Deville, P. F. Fischer, P. F. Fischer, and
E. Mund, High-order methods for incompressible fluid
flow, vol. 9, Cambridge university press, 2002.

[9] P. Fischer, S. Kerkemeier, M. Min, Y.-H.
Lan, M. Phillips, T. Rathnayake, E. Merzari,
A. Tomboulides, A. Karakus, N. Chalmers, and
T. Warburton, NekRS, a GPU-Accelerated Spectral
Element Navier-Stokes Solver, arXiv:2104.05829 [cs],
(2021), http://arxiv.org/abs/2104.05829 (accessed
2021-09-23). arXiv: 2104.05829.

[10] P. Fischer and J. Lottes, Hybrid Schwarz-multigrid
methods for the spectral element method: Extensions

to Navier-Stokes, in Domain Decomposition Meth-
ods in Science and Engineering Series, R. Kornhuber,
R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and
J. Xu, eds., Springer, Berlin, 2004.

[11] P. Fischer, E. Merzari, M. Min, S. Kerkemeier,
Y.-H. Lan, M. Phillips, T. Rathnayake, A. No-
vak, D. Gaston, N. Chalmers, and T. Warbur-
ton, Highly Optimized Full-Core Reactor Simulations
on Summit, arXiv:2110.01716 [physics], (2021), http:
//arxiv.org/abs/2110.01716 (accessed 2021-10-07).
arXiv: 2110.01716.

[12] P. F. Fischer, Projection techniques for iterative so-
lution of Ax= b with successive right-hand sides, Com-
puter methods in applied mechanics and engineering,
163 (1998), pp. 193–204. Publisher: Elsevier.

[13] V. E. Henson and U. M. Yang, BoomerAMG: A par-
allel algebraic multigrid solver and preconditioner, Ap-
plied Numerical Mathematics, 41 (2002), pp. 155–177,
https://doi.org/10.1016/S0168-9274(01)00115-5,
https://www.sciencedirect.com/science/article/

pii/S0168927401001155 (accessed 2021-09-23).
[14] A. Imakura, T. Sakurai, K. Sumiyoshi, and

H. Matsufuru, An Auto-Tuning Technique of the
Weighted Jacobi-Type Iteration Used for Precondition-
ers of Krylov Subspace Methods, in 2012 IEEE 6th In-
ternational Symposium on Embedded Multicore SoCs,
Sept. 2012, pp. 183–190, https://doi.org/10.1109/

MCSoC.2012.29.
[15] D. S. Kershaw, Differencing of the diffusion equation

in Lagrangian hydrodynamic codes, Journal of Compu-
tational Physics, 39 (1981), pp. 375–395. Publisher:
Elsevier.

[16] T. Kolev, P. Fischer, A. P. Austin, A. T.
Barker, N. Beams, J. Brown, J.-S. Camier,
N. Chalmers, V. Dobrev, Y. Dudouit, L. Ghaf-
fari, S. Kerkemeier, Y.-H. Lan, E. Merzari,
M. Min, W. Pazner, T. Ratnayaka, M. S. Shep-
hard, M. H. Siboni, C. W. Smith, J. L. Thompson,
S. Tomov, and T. Warburton, CEED ECP Mile-
stone Report: High-order algorithmic developments
and optimizations for large-scale GPU-accelerated sim-
ulations, tech. report, Zenodo, Mar. 2021, https://

doi.org/10.5281/zenodo.4672664, https://zenodo.

org/record/4672664 (accessed 2021-09-27).
[17] M. Kronbichler and K. Ljungkvist, Multigrid for

matrix-free high-order finite element computations on
graphics processors, ACM Transactions on Parallel
Computing, 6 (2019), pp. 1–32, https://doi.org/10.
1145/3322813.

[18] Y.-H. Lan, P. Fischer, E. Merzari, and M. Min,
All-Hex Meshing Strategies For Densely Packed
Spheres, Proceedings of the 29th International Meshing
Roundtable, (2021), pp. 293–305, https://doi.org/

10.5281/zenodo.5551173.
[19] S. Loisel, R. Nabben, D. B. Szyld, J. Lottes, and

P. Fischer, On Hybrid Multigrid-Schwarz Algorithms,
J Sci Comput, (2008), p. 11.

[20] J. W. Lottes and P. F. Fischer, Hybrid

https://doi.org/10.1016/S0021-9991(03)00194-3
https://linkinghub.elsevier.com/retrieve/pii/S0021999103001943
https://linkinghub.elsevier.com/retrieve/pii/S0021999103001943
https://doi.org/10.1137/100798806
https://doi.org/10.1137/100798806
http://epubs.siam.org/doi/10.1137/100798806
http://epubs.siam.org/doi/10.1137/100798806
https://doi.org/10.1137/18M1194997
https://epubs.siam.org/doi/10.1137/18M1194997
https://doi.org/10.1137/19M1308669
https://doi.org/10.1137/19M1308669
https://epubs.siam.org/doi/10.1137/19M1308669
https://epubs.siam.org/doi/10.1137/19M1308669
https://doi.org/10.1137/090746367
https://doi.org/10.1137/090746367
https://epubs.siam.org/doi/abs/10.1137/090746367
https://epubs.siam.org/doi/abs/10.1137/090746367
https://doi.org/10.5281/zenodo.4004744
https://doi.org/10.5281/zenodo.4004744
https://github.com/paranumal/libparanumal
https://github.com/paranumal/libparanumal
http://arxiv.org/abs/2104.05829
http://arxiv.org/abs/2110.01716
http://arxiv.org/abs/2110.01716
https://doi.org/10.1016/S0168-9274(01)00115-5
https://www.sciencedirect.com/science/article/pii/S0168927401001155
https://www.sciencedirect.com/science/article/pii/S0168927401001155
https://doi.org/10.1109/MCSoC.2012.29
https://doi.org/10.1109/MCSoC.2012.29
https://doi.org/10.5281/zenodo.4672664
https://doi.org/10.5281/zenodo.4672664
https://zenodo.org/record/4672664
https://zenodo.org/record/4672664
https://doi.org/10.1145/3322813
https://doi.org/10.1145/3322813
https://doi.org/10.5281/zenodo.5551173
https://doi.org/10.5281/zenodo.5551173


Multigrid/Schwarz Algorithms for the Spectral El-
ement Method, Journal of Scientific Computing,
24 (2005), pp. 45–78, https://doi.org/10.1007/

s10915-004-4787-3, http://link.springer.com/10.
1007/s10915-004-4787-3 (accessed 2021-07-20).

[21] D. S. Medina, A. St-Cyr, and T. Warburton,
Occa: A unified approach to multi-threading languages,
arXiv preprint arXiv:1403.0968, (2014).

[22] K. Mittal and P. Fischer, Mesh smoothing for the
spectral element method, Journal of Scientific Comput-
ing, 78 (2019), pp. 1152–1173.

[23] M. Naumov, M. Arsaev, P. Castonguay, J. Co-
hen, J. Demouth, J. Eaton, S. Layton,
N. Markovskiy, I. Reguly, N. Sakharnykh,
V. Sellappan, and R. Strzodka, AmgX: A Library
for GPU Accelerated Algebraic Multigrid and Precon-
ditioned Iterative Methods, SIAM Journal on Scien-
tific Computing, 37 (2015), pp. S602–S626, https://
doi.org/10.1137/140980260, https://epubs.siam.

org/doi/abs/10.1137/140980260 (accessed 2021-09-
23). Publisher: Society for Industrial and Applied
Mathematics.

[24] L. Olson, Algebraic Multigrid Preconditioning of
High-Order Spectral Elements for Elliptic Problems on
a Simplicial Mesh, SIAM Journal on Scientific Com-
puting, 29 (2007), pp. 2189–2209, https://doi.org/

10.1137/060663465, https://epubs.siam.org/doi/

abs/10.1137/060663465 (accessed 2021-09-24). Pub-
lisher: Society for Industrial and Applied Mathematics.

[25] S. A. Orszag, Spectral Methods for Problems in Com-
plex Geometrics, in Numerical Methods for Partial
Differential Equations, S. V. PARTER, ed., Academic
Press, 1979, pp. 273–305, https://doi.org/https:

//doi.org/10.1016/B978-0-12-546050-7.50014-9,
https://www.sciencedirect.com/science/article/

pii/B9780125460507500149.
[26] M. L. Shur, P. R. Spalart, M. K. Strelets, and

A. K. Travin, Direct numerical simulation of the two-
dimensional speed bump flow at increasing Reynolds
numbers, International Journal of Heat and Fluid Flow,
90 (2021), p. 108840. Publisher: Elsevier.

[27] J. Stiller, Nonuniformly Weighted Schwarz
Smoothers for Spectral Element Multigrid, Journal of
Scientific Computing, 72 (2017), pp. 81–96, https:

//doi.org/10.1007/s10915-016-0345-z, http:

//link.springer.com/10.1007/s10915-016-0345-z

(accessed 2020-05-07).
[28] H. Sundar, G. Stadler, and G. Biros, Com-

parison of multigrid algorithms for high-order
continuous finite element discretizations, Numeri-
cal Linear Algebra with Applications, 22 (2015),
pp. 664–680, https://doi.org/10.1002/nla.1979,
http://onlinelibrary.wiley.com/doi/abs/10.

1002/nla.1979 (accessed 2020-09-05). eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.1979.

[29] J. L. Thompson, J. Brown, and Y. He, Local fourier
analysis of p-multigrid for high-order finite element
operators, arXiv preprint arXiv:2108.01751, (2021).

[30] K. Yamada, T. Katagiri, H. Takizawa, K. Minami,
M. Yokokawa, T. Nagai, and M. Ogino, Precon-
ditioner auto-tuning using deep learning for sparse it-
erative algorithms, in 2018 Sixth International Sympo-
sium on Computing and Networking Workshops (CAN-
DARW), IEEE, 2018, pp. 257–262.

[31] H. Yuan, M. A. Yildiz, E. Merzari, Y. Yu, A. Ob-
abko, G. Botha, G. Busco, Y. A. Hassan, and
D. T. Nguyen, Spectral element applications in com-
plex nuclear reactor geometries: Tet-to-hex meshing,
Nuclear Engineering and design, 357 (2020), p. 110422.

[32] V. T. Zhukov, N. D. Novikova, and O. B.
Feodoritova, Multigrid method for anisotropic diffu-
sion equations based on adaptive Chebyshev smoothers,
Mathematical Models and Computer Simulations,
7 (2015), pp. 117–127, https://doi.org/10.1134/

S2070048215020118, http://link.springer.com/10.

1134/S2070048215020118 (accessed 2021-10-08).

https://doi.org/10.1007/s10915-004-4787-3
https://doi.org/10.1007/s10915-004-4787-3
http://link.springer.com/10.1007/s10915-004-4787-3
http://link.springer.com/10.1007/s10915-004-4787-3
https://doi.org/10.1137/140980260
https://doi.org/10.1137/140980260
https://epubs.siam.org/doi/abs/10.1137/140980260
https://epubs.siam.org/doi/abs/10.1137/140980260
https://doi.org/10.1137/060663465
https://doi.org/10.1137/060663465
https://epubs.siam.org/doi/abs/10.1137/060663465
https://epubs.siam.org/doi/abs/10.1137/060663465
https://doi.org/https://doi.org/10.1016/B978-0-12-546050-7.50014-9
https://doi.org/https://doi.org/10.1016/B978-0-12-546050-7.50014-9
https://www.sciencedirect.com/science/article/pii/B9780125460507500149
https://www.sciencedirect.com/science/article/pii/B9780125460507500149
https://doi.org/10.1007/s10915-016-0345-z
https://doi.org/10.1007/s10915-016-0345-z
http://link.springer.com/10.1007/s10915-016-0345-z
http://link.springer.com/10.1007/s10915-016-0345-z
https://doi.org/10.1002/nla.1979
http://onlinelibrary.wiley.com/doi/abs/10.1002/nla.1979
http://onlinelibrary.wiley.com/doi/abs/10.1002/nla.1979
https://doi.org/10.1134/S2070048215020118
https://doi.org/10.1134/S2070048215020118
http://link.springer.com/10.1134/S2070048215020118
http://link.springer.com/10.1134/S2070048215020118

	1 Introduction
	2 Background and Implementation
	2.1 SE Poisson Discretization
	2.2 Preconditioners
	2.2.1 SEMFEM
	2.2.2 p-multigrid, Schwarz Smoothers
	2.2.3 Chebyshev Acceleration


	3 Test Cases
	3.1 Poisson
	3.2 Navier-Stokes

	4 Results
	4.1 Kershaw Mesh
	4.2 Navier-Stokes Results

	5 Auto-tuning for Production Simulations
	6 Conclusions and Future Work
	7 Acknowledgements

