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Abstract

How can we effectively find the best structures in tree

models? Tree models have been favored over complex black

box models in domains where interpretability is crucial

for making irreversible decisions. However, searching for

a tree structure that gives the best balance between the

performance and the interpretability remains a challenging

task. In this paper, we propose Tart (Transition Matrix

Representation with Transposed Convolutions), our novel

generalized tree representation for optimal structural search.

Tart represents a tree model with a series of transposed

convolutions that boost the speed of inference by avoiding

the creation of transition matrices. As a result, Tart allows

one to search for the best tree structure with a few design

parameters, achieving higher classification accuracy than

those of baseline models in feature-based datasets.

1 Introduction

Tree models [1] have been favored over complex black-
box models in domains where interpretability is a crucial
factor for making reliable decisions, such as in biologi-
cal and medical fields [4, 13], where decisions make irre-
versible effects. The main advantage of tree models over
other classifiers is that their decision processes are un-
derstandable without post-processing methods [22, 24]
that explain approximate reasons for decisions.

Recent works improve the performance of tree mod-
els by adopting complex decision functions [9, 31, 32] or
utilize tree-structured decisions as a component of large
black-box models to gain in interpretability [15, 23, 25].
However, although these approaches have fundamental
similarities in dealing with trees, there is no unified way
to generalize and represent them by a single framework.
This makes one resort to manually search for the best
tree structure only among a few feasible choices, losing
the opportunity to improve in performance.

In this work, we propose Tart (Transition Matrix
Representation with Transposed Convolutions), a novel
framework for generalizing tree models with a unifying
view. Tart characterizes a tree model as a sequence of
linear transformations whose transition matrices are de-
termined by input features. The unified representation
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of trees allows us a) to effectively characterize and cat-
egorize existing models and b) to perform a systematic
search over possible tree structures. Tart also utilizes
transposed convolutions to avoid the generation of large
transition matrices during inference. This optimization
improves the speed of training and inference especially
in trees with large depth.

We perform extensive experiments on 121 feature-
based datasets and show that Tart outperforms exist-
ing classifiers with reasonable choices of the tree struc-
ture. We also provide detailed guidelines on the design
choices of Tart by thorough comparisons between dif-
ferent combinations of parameters.

Our contributions are summarized as follows:

• General representation. We propose Tart, a
general and efficient tree representation that gives
a unifying view of existing tree models.

• Categorization and characterization. We an-
alyze existing tree and non-tree classifiers based on
the generalizability of Tart.

• Ablation study. We undergo extensive ablation
study on 121 tabular datasets to analyze the effects
of the design parameters of Tart.

• Efficiency. Tart speeds up the inference of tree
models up to 36.3 times based on the utilization of
transposed convolution operations.

The rest of this paper is organized as follows. We
review related works in Section 2 and propose Tart in
Section 3. We discuss how Tart generalizes existing
classifiers in Section 4. We present experimental results
in Section 5 and conclude at Section 6. Symbols used
in this paper are summarized as Table 1. Our code is
available at https://github.com/leesael/TART.

2 Related Works

Decision trees (DT) propagate input data from the root
to the leaf nodes through tree-structured layers without
updating their representations [1]. This process is con-
sidered inherently interpretable, but typical DTs often
show poor performance due to the low generalizability
to unseen test data. We list three types of related works
that focus on improving the accuracy of DTs.

Tree models with linear decisions. Soft decision
trees (SDT) [12] are characteristic in that the internal
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(a) A traditional view of a tree model. (b) A Tart view of a tree model.

Figure 1: The illustration of a binary tree model by (a) the traditional node-and-branch view and (b) the view
of our Tart utilizing transition matrices. The traditional view treats the prediction ŷ as a sequence of decisions
δ0, δ1, δ4, and δ9, while the view taken by our Tart treats the model as a series of linear transformations where
each matrix Td represents the transition at each depth d ∈ {0, 1, 2, 3} from the root to the leaf nodes.

Table 1: Symbols frequently used in this paper.

Symbol Description

Td Transition matrix at layer d
pd Assignment vector at layer d
f Internal decision function
g Leaf classifier function
h Leaf-combining function

D Tree depth
W Window size of convolutions
S Stride of convolutions
H Number of layers in f
L Number of layers in g

decisions are made by logistic classifiers that utilize all
elements of each feature vector. The logistic classifiers
allow differentiable updates of the parameters in SDTs
through backpropagation. SDTs have been studied and
used widely due to their simplicity and generalizability
[9, 11, 17, 31]. Deep neural decision trees [30] extend
DTs into multi-branched trees by splitting each exam-
ple directly into multiple bins using a set of learnable
thresholds. These models have an interpretable nature
due to the linearity of decision and leaf functions.

Tree models on learned representations. Recent
works have utilized deep neural networks to provide
the ability of representation learning to tree models.
They first learn a better representation of each example
using a complex black-box model and use the learned
representation as input to tree models instead of the
raw features. One popular approach is to use abstract
representations generated from convolutional neural
networks [26, 25, 29] or multilayer perceptrons [3]. Such
approaches make higher accuracy than those of linear

tree models, however, they provide interpretability only
on top of the abstract representations. Thus, the direct
relationship between the raw features and predictions
is unclear due to the nonlinear feature extraction.

Tree models for data categorization. Another ap-
proach to combine DTs with deep neural networks is
to categorize raw examples by hierarchical decisions be-
fore feeding them into black-box classifiers [20]. Recent
works improve the accuracy of deep neural networks by
inserting hierarchical decisions as differentiable opera-
tions into a deep neural network, instead of building a
complete tree model [19, 18, 2, 28]. These approaches
take advantage of DTs with respect to data clustering,
rather than focusing on making interpretable decisions,
to improve the decision boundaries learned by black-box
learners while minimizing the complexity.

In this work, we focus on generalizing and improv-
ing complete tree structures that do not change the in-
put features, which often have associated context infor-
mation that is useful for interpretation.

3 Proposed Method

We propose Tart (Transition Matrix Representation
with Transposed Convolutions), a unified approach to
represent tree models with a series of transition matrices
efficiently with transposed convolutions. Figure 1 shows
the transition matrix view of a binary tree, on which our
Tart is based. Algorithm 1 summarizes the decision
process of Tart for an input feature vector x, which we
explain in detail in Section 3.3.

3.1 Transition Matrix Representation We intro-
duce the transition matrix representation of a tree. We
first define a transition matrix in Definition 1 and de-
scribe its properties in Lemmas 3.1 and 3.2.
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Algorithm 1 Tart

Input: Feature vector x
Output: Prediction ŷ
Parameter: Tree depth D, internal decision function

f , leaf classifier g, and leaf-combining function h
1: for each d ∈ [0, D) do
2: Nd ← Get the number of nodes at layer d
3: Bd ← Stack({f(x; θdi) | i ∈ [1, Nd]})
4: end for
5: p0 ← 1 . Vector of length 1
6: pD ← BD ∗ (BD−1 ∗ · · · ∗ (B1 ∗ p0)) . Alg. 2
7: ŷ← h(pD, {g(x; θi)}i=1,··· ,ND

) . Eq. (3.4) or (3.5)

Definition 1. A rectangular matrix T is a transition
matrix if T ≥ 0 and

∑
i Tij = 1 for all j. We represent

the set of all possible transition matrices as P.

Following from Definition 1, every probability vector p
such that p ≥ 0 and

∑
i pi = 1 satisfies p ∈ P, since it

can be thought of as a matrix of size |p| × 1.

Lemma 3.1. Given a matrix T ∈ P of size l ×m and
a vector p ∈ P of length m, Tp ∈ P.

Proof. Let q = Tp. Then, the following holds:∑
i

qi =
∑
i

∑
j

Tijpj =
∑
j

pj
∑
i

Tij = 1.

Thus, the resulting q is a probability vector.

Lemma 3.2. Given two matrices T ∈ P and U ∈ P of
sizes l ×m and m× n, respectively, TU ∈ P.

Proof. Let V = TU. Then, for every j,∑
i

Vij =
∑
i

∑
k

TikUkj =
∑
k

Ukj

∑
i

Tik = 1.

Thus, the resulting V is a transition matrix.

Given an input feature x, the soft down spread of
x from the root to leaves is represented as a set {pd}d
of assignment vectors, where pd ∈ P is for each layer d.
Each node in a layer d computes a decision probability
for passing x to its child node k based on a decision
function f(x)k that sums to one over all ks. This process
can be understood as the multiplication of a transition
matrix Td ∈ P and the assignment vector pd, where Td

is generated from applying f to all nodes in layer d and
combining their outputs. Based on this, we define the
transition matrix representation as Definition 2.

Definition 2. The transition matrix representation of
a tree classifier M is given as

(3.1) M(x) = TD · · ·T1T0p0,

Algorithm 2 TConv

Input: Local transition matrix Bd of size W ×Nd and
arrival probability pd at layer d

Output: Arrival probability pd+1 of layer d+ 1
Parameter: Stride S
1: pd+1 ← 0 . Initialize the output
2: j ← 0 . Starting index of an output node
3: for each i ∈ [1, Nd] do
4: pd+1,j:j+W ← pd+1,j:j+W + pd,ibd,i

5: j ← j + S
6: end for

where p0 = 1 is the arrival probability to the root node,
and D is the tree depth. Td ∈ P is the transition matrix
at layer d, generated by a decision function f as

(3.2) Tdji = f(x; θdi)j ,

where Tdji refers to the (j, i)-th element of Td, and θdi
is the set of parameters for node i at layer d.

Lemma 3.3. M(x) ∈ P for any x.

Proof. M is a series of liner transformations done with
transition matrices. Since p0 ∈ P in Equation (3.1), the
lemma is proved due to Lemma 3.1.

Figure 1 visualizes a binary tree by the traditional
view and by the transition matrix representation. Fig-
ure 1a treats the model as a series of independent deci-
sions following the path of x, while Figure 1b represents
the model as a series of linear transformations. We de-
note the decision function of the last layer by g, since it
is defined differently from the internal decision function
f in many tree models. For example, in decision trees,
g is a fixed one-hot vector, while f is a decision function
that takes x as an input. TD ∈ P is still satisfied with
a different g if we assume a classification task.

The figure also indicates that the nonzero elements
of each transition matrix determine the tree shape. For
example, the transition matrices of a binary tree (shown
in Figure 1b) have nonzero values at the block-diagonal
positions. Any tree structure can be represented based
on the positions of the nonzero elements in transition
matrices that derive from diverse decision function f .
We present in Section 4 the structural generalization of
Tart for representing existing classifiers.

3.2 Optimization by Transposed Convolutions
The transition matrices allow Tart to represent general
tree structures. However, generating the transition ma-
trix Td for every layer d requires a heavy computation,
e.g., size for Td is 2d+1×2d in a binary tree model. The
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(a) TConv (W = S = 2) (b) TConv (W = 3, S = 1)

Figure 2: Comparison between tree structures deter-
mined by the values of W and S. Intersections between
adjacent decisions occur when S < W .

overall complexity is O(22D−1) in a binary tree of depth
D, which is infeasible with large D.

We propose to utilize transposed convolutions [8] in
the formation of tree structures to avoid the generation
of complete transition matrices in Tart. A transposed
convolution maps each input node into multiple output
nodes by sliding a small kernel. Thus, the transposed
convolution can be applied to spread input data to child
nodes in a tree structure. In the rest of this paper, we
denote a transposed convolution as TConv for brevity.

Specifically, TConv is utilized in Tart as follows.
We are given the arrival probability pd of layer d and a
decision function f . Then, we create a local transition
matrix Bd ∈ RW×Nd by stacking the outputs of f for all
nodes in layer d, where Nd is the number of nodes and
W is the number of children that each node connects to.
Bd is then spread out to the assignment vector pd+1 of
the next layer by the transposed convolution. In typical
n-way trees, Bd is nd−1 times smaller than Td, allowing
us to save extensive time and space in computation.

TConv is then applied to Bd as described in Algo-
rithm 2. It generates the new arrival probability pd+1

without explicitly generating Td, given two parameters
W and S that determine the shape of the tree. The ker-
nel slides from the leftmost node in pd to the rightmost
one, generating pd+1, which is ∈ P by Lemma 3.1, since
Bd is a transition matrix generated from f .

The window size W and the stride S of convolutions
are two parameters that determine the shape of a tree.
The window size W determines the branching factor of
trees, e.g., W = 2 in binary trees. Large W increases
the complexity of the decision function f but decreases
the tree depth required to make the same number of leaf
nodes. Thus, the value of W makes a tradeoff between
the width and depth, and its optimal value depends on
the property of f and the characteristic of the dataset.
The stride S determines the number of nodes that are
skipped between convolution operations. Branches have
no shared children if S = W , since a node slides by the

Input probability
Slide

Input probability

Figure 3: TConv at work between depth 2 and 3 in the
tree of Figure 2b. The kernel has the width W = 3 and
slides by S = 1 from the left to the right.

width of the previous decision. If S < W , a node slides
less than the width of the previous decision, making a
child node take inputs from multiple parents.

Figure 2 compares two structures of trees based on
the values of W and S. Figure 2a depicts the structure
of a typical binary tree, where each node is connected to
two child nodes without intersections. Figure 2b shows
a 3-way tree, where each node has three children. There
are two child nodes shared between adjacent decisions
since W −S = 2. Figure 3 is an illustration of TConv in
the tree of Figure 2b, when a convolution kernel slides
from node 1 to node 2 at layer 2.

3.3 Training and Inference We describe how to
train Tart and how to make its predictions. We train
Tart in an end-to-end fashion, updating all parameters
by gradient-based optimization. The objective function
is defined as the sum of all loss values from leaf nodes
weighted by the arrival probability pD:

(3.3) L(x,y) =

ND∑
u=1

pD(u)l(g(x; θu),y),

where g is the leaf classifier parameterized with θu,
pD(u) is the arrival probability for u, and l(ŷ,y) is
the cross entropy function. The cross entropy l(ŷ,y)
is defined as −

∑
v∈S y(v) log ŷ(v), where S is the set

of target classes, ŷ is the prediction, and y is the true
one-hot label vector.

There are two ways to make a decision after Tart
is trained: a) making a weighted average of predictions
from the leaf nodes by pD, and b) choosing the leaf node
that gives the largest arrival probability. We call these
two choices multi-leaf selection and single-leaf selection,
respectively. The multi-node selection produces higher
accuracy in general, resembling ensemble learning, while
the single-leaf selection is better for interpretability as
a single leaf node participates in each prediction.

Multi-leaf selection. The prediction with the multi-
leaf selection is defined as follows:

(3.4) M(xi) =

ND∑
u=1

pD(u)g(xi; θu).
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Table 2: Representation of existing binary tree models
as Tart. f and g refer to the internal and leaf decision
function, respectively. Details are in Section 4.1.

Model f(x; θi) g(x; θj)

DT [1] I(si(1>i x− bi) > 0) Onehot(θj)
SDT [12] σ(w>i x + bi) Categorical(θj)

NDF [3] MLPi(rand(x)) Categorical(θj)
DNDF [15] CNN(x; i) Categorical(θj)
NRF [23] CNN(x; i,depth(i)) Gaussian(θj)

In this way, a decision process resembles the weighted
ensemble of weak classifiers, which are the leaf nodes in
our case. A model can make accurate predictions even
though the representation power of each classifier is not
sufficient, due to the effect of ensemble learning.

Single-leaf selection. The prediction with the single-
leaf selection is defined as follows:

(3.5) M(xi) = g(xi; θu∗),

where u∗ = arg maxu pD(u) is the leaf node that makes
the largest arrival probability among all leaves. In this
way, the ability to split examples to proper leaves plays
a crucial role for achieving high accuracy.

Overall algorithm. The decision process of Tart is
summarized as Algorithm 1. In lines 1 to 4, it runs the
decision for every internal node and stacks the results
of decisions at each layer. The local transition matrix
Bd of each layer d is used to run inference through the
transposed convolution operations in line 6, where ∗ is
the TConv function of Algorithm 2. The predictions of
leaf nodes are combined in line 7 by the leaf-combining
function h, based on the arrival probability pD.

4 Further Analysis

We characterize and categorize existing classifiers based
on the generalized representation of Tart. We also
present three promising combinations of design param-
eters of Tart that have different advantages.

4.1 Generalizability We study the generalizability
of Tart in binary trees and general classifiers.

Representation of binary trees. Existing tree mod-
els have different characteristics but share a similar tree
structure. Such models differ in the choice of decision
functions f and g working at the internal layers and the
leaf layer, respectively. We show in Table 2 how Tart
represents different tree models with the choice of f and
g. We set the structural parameters W and S to 2, since
all these models have the binary tree structure.

Decision trees (DT) select a single element of each
input feature x by a one-hot vector 1i and compare it

Table 3: Classifier models represented by Tart with
three design parameters: tree depth D, the number H
of layers in f , and the number L of layers in g.

Models D H L

Logistic regression D = 0 - L = 1
Multilayer perceptrons [21] D = 0 - L > 1

Simple ensembles of experts D > 0 H = 0 Any L

Trees of type 1 [1, 12] D > 0 H = 1 L = 0
Trees of type 2 [15, 23] D > 0 H > 1 L = 1
Trees of type 3 [19, 20] D > 0 H = 1 L > 1

Table 4: Promising tree structures of Tart that have
different properties. Details are in Section 4.2.

Model W S D H L Property

Tart-A 2 2 6 1 1 Strong in small data
Tart-B 2 2 2 1 4 Strong in large data
Tart-C 3 2 3 1 2 Best balance

with a learned threshold bi at each internal node i. Soft
decision trees (SDT) improve DTs by performing a soft
decision at each branch, which uses all elements of x as
a linear separator using the logistic sigmoid function σ.
The weight vector wi is learned for each node i. Their
decision processes are naturally interpretable, since the
decision functions are linear with respect to x.

The remaining models use nonlinear decision func-
tions. Neural decision forests (NDF) utilize a random-
ized multilayer perceptron (MLP) as a decision function.
Deep neural decision forests (DNDF) use a single convo-
lutional neural network (CNN) for all decisions, chang-
ing only the last fully-connected layer. Neural regression
forests (NRF) and their variants use hierarchical CNNs
having different numbers of convolutions [25, 26]. All of
these models use deep neural networks as their decision
functions to improve representation power.

Categorization of general classifiers. We utilize the
framework of Tart to categorize and characterize ex-
isting classifiers. We assume that deep neural networks
having a nonlinear activation function are used for both
f and g. Then, we introduce three design parameters of
Tart as the main variables: tree depth D, the number
H of layers in f , and the number L of layers in g. The
result of categorization is given as Table 3.

A classifier is a single expert having no tree struc-
ture if D = 0. In this case, logistic regression (LR) and
MLPs are distinguished by the value of L. If H = 0, no
internal decisions are made even with D > 1, meaning
that all examples are equally split into all leaf nodes. In
this case, a classifier makes a prediction by computing
the simple average of predictions as an ensemble model.

Copyright © 2022 by SIAM
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Table 5: The information of 121 datasets divided into
three groups by the number of examples, which include
9, 37, and 75 datasets, respectively.1

Group
Examples Features Labels
Min Max Avg ± Std Avg ± Std

Large 10,992 130,064 19.0 ± 15.8 8.2 ± 8.5
Mid 1,000 8,124 40.2 ± 48.4 12.2 ± 26.6
Small 10 990 24.4 ± 37.9 4.1 ± 3.7

All 10 130,064 28.8 ± 40.8 6.9 ± 15.5

1 http://persoal.citius.usc.es/manuel.fernandez.delgado/

papers/jmlr

A classifier splits given examples by learnable decisions
only if D > 0 and H > 0, becoming a tree model whose
structure represents a decision path.

The characteristic of a tree classifier is determined
by the values of H and L. Models having H = 1 and
L = 0 split given examples by linear decisions into leaf
classifiers that return fixed predictions. Thus, they are
the simplest tree models that focus on interpretability.
Models withH > 1 focus on the ability to split examples
by utilizing a nonlinear decision function at the internal
nodes, while those with H = 1 and L > 1 use a simple
decision rule but focus on the leaf classifiers.

4.2 Promising Tree Structures Based on the cat-
egorization of existing models, we propose three promis-
ing structures of Tart consisting of different values of
parameters. Table 4 summarizes the structures, which
we call Tart-A, Tart-B, and Tart-C, respectively. We
assume decision functions f and g as multilayer percep-
trons with H and L layers, respectively, as in Table 3.
We set H = 1 in this case, because we have found that
H > 1 makes a tree model easily overfit to training data
without a clear advantage in our datasets.

Linear leaves ( Tart-A). A tree model with linear
decision functions gives clear interpretability. Tart-A
is characterized by an abundant number of leaf nodes
each of which makes a linear decision boundary for the
examples that have arrived through internal decisions.
Tart-A performs the best in small datasets, where the
nonlinearity is not essential for acquiring high accuracy.
On the other hand, the linearity of Tart-A allows one
to avoid overfitting in such small datasets, resulting in
improving accuracy in unseen test data.

Nonlinear leaves ( Tart-B). The linearity requires
us to use a sufficient number of leaf nodes to make high
accuracy. On the other hand, we can bound the number
of leaves if we increase the capacity of each leaf node.
This turns our model into a small ensemble of nonlinear
classifiers, where any leaf selection scheme can be used

Table 6: Classification accuracy of Tart and baseline
models. MLP-l represents an MLP having l layers. Our
three Tart models show the best accuracy in different
groups of datasets, based on their characteristics.

Model Large Medium Small

DT 88.3±0.1 76.3±0.2 71.9±0.7
LR 79.1±0.1 80.8±0.2 75.8±0.3
SVM-lin 77.7±0.1 79.0±0.2 74.9±0.5
SVM-rbf 87.6±0.0 81.1±0.1 77.0±0.2

MLP-1 78.7±0.1 78.9±0.3 73.4±0.4
MLP-2 87.8±0.1 83.0±0.4 76.5±0.4
MLP-4 91.8±0.1 83.0±0.2 76.8±0.2
MLP-8 91.5±0.1 82.5±0.3 76.0±0.5
MLP-16 85.3±0.9 78.3±0.2 75.1±0.6

Tart-A 88.2±0.2 82.6±0.2 77.0±0.6
Tart-B 92.1±0.1 82.7±0.4 76.0±0.3
Tart-C 89.6±0.4 83.1±0.2 76.3±0.1

with a different advantage: the single-leaf selection has
better interpretability of decisions, while the multi-leaf
selection improves performance. Still, we focus on only
the single-leaf selection, as our primary goal of utilizing
tree models is to make clear interpretability.

Three-way decisions ( Tart-C). Tart-C focuses on
the balance between Tart-A and Tart-B. Three-way
branches with W = 3 make each internal decision richer
than in binary trees. Still, it makes the width of a tree
increases much faster with the tree depth than in binary
trees. Thus, we make intersections between decisions by
setting S = 2 to bound the tree width while utilizing the
rich decisions. The choices of other parameters such as
D and L are in between those of Tart-A and Tart-B.
The chosen structure is similar to Figure 2b, except that
Tart-C slides the kernel by two instead of one.

5 Experiments

We compare our Tart with existing tree and non-tree
classifiers by experiments on feature-based data, where
tree models have been adopted actively.

Datasets. We use 121 feature-based datasets taken
from UCI Machine Learning Repository [7], which were
used as a benchmark in [6, 21]. Table 5 summarizes the
information of our datasets, which are categorized into
three groups by the number of examples. We follow the
experimental setup of [21] including the data split and
feature preprocessing. In all experiments, we run each
model four times with different random seeds and report
the average and standard deviation.

Baselines. We include the following baseline classi-
fiers in our experiments, which have been used widely
for feature-based datasets: logistic regression (LR), de-
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Table 7: Accuracy of Tart when the linear leaf nodes
are adopted. Models with multi-leaf selection perform
better than single-leaf models in most cases, and both
models show higher accuracy with larger D.

Leaves D L Large Medium Small

Multi 2 1 84.6±0.2 81.4±0.3 75.3±0.5
Multi 4 1 86.7±0.1 82.1±0.3 76.2±0.2
Multi 6 1 88.2±0.2 82.6±0.2 77.0±0.6
Multi 8 1 89.1±0.1 82.9±0.4 76.5±0.6

Single 2 1 84.4±0.2 81.1±0.3 74.7±0.5
Single 4 1 86.4±0.1 81.6±0.4 75.1±0.4
Single 6 1 87.8±0.2 82.0±0.3 75.7±0.6
Single 8 1 88.6±0.1 82.2±0.3 74.6±0.6

cision trees (DT), and support vector machines (SVM)
with the linear and RBF kernels. We also include multi-
layer perceptrons (MLP) as a strong competitor, whose
structure is taken from a previous work that studied our
UCI datasets [21]: 100 units at each hidden layer, the
ELU activation function [5], He-initialization [10], and
dropout of probability 0.15 [27]. The training of MLPs
follows the same process as our Tart.

Hyperparameters. We adopt an MLP with the same
ELU activation and dropout of probability 0.15 as the
decision functions f and g of Tart. We train Tart and
MLPs based on the Adam optimizer [14] with the initial
learning rate 0.005. The batch size is set to 1024, which
is large enough to load most datasets by a single batch.
We ran all of our experiments on a workstation having
GTX 1080 Ti, based on PyTorch. We use classification
accuracy as a metric to evaluate all classifiers.

5.1 Classification Accuracy We compare the accu-
racy of Tart and baseline models in Table 6. Our Tart
models show the highest accuracy in general, with their
strengths in different groups of datasets.

DTs show the lowest accuracy in the medium and
small datasets, since they easily overfit to training data.
MLPs and SVM with the RBF kernel perform the best
among the baselines due to the nonlinearity of decisions.
MLP-1 works in a similar way to LR, but its accuracy
is lower than those of LR and SVM-lin. This is because
the stochastic training of MLPs does not guarantee the
global optimum of parameters. The accuracy of MLPs
depends heavily on the number of layers, indicating the
sensitivity to the choice of hyperparameters.

Our three Tart models show the best accuracy in
different groups of datasets. Tart-A works the best in
small datasets since it consists of linear leaf nodes each
of which has a limited capacity, minimizing the risk of
overfitting. Tart-B achieves the best accuracy in large

Table 8: Accuracy of Tart when nonlinear leaf nodes
are adopted. They are specialized for large datasets and
achieve higher accuracy than those of MLPs (Table 6)
or Tart models with linear leaves (Table 7).

Leaves D L Large Medium Small

Single 2 2 87.4±0.1 82.7±0.3 76.0±0.2
Single 4 2 89.0±0.1 82.6±0.5 76.1±0.4
Single 6 2 90.0±0.1 82.6±0.4 76.0±0.4
Single 8 2 90.7±0.0 82.6±0.4 75.4±0.3

Single 2 4 92.1±0.1 82.7±0.6 76.0±0.3
Single 4 4 92.3±0.1 82.2±0.4 75.7±0.3
Single 6 4 92.1±0.1 81.9±0.1 75.6±0.4
Single 8 4 91.9±0.1 82.0±0.2 75.4±0.3

datasets by combining multiple nonlinear leaves based
on tree decisions, each of which has the same structure
as MLP-4. Tart-C is a balance between Tart-A and
Tart-B, resulting in the best accuracy for medium-sized
datasets among all Tart models and baselines.

5.2 Structural Search The flexibility of our Tart
allows us to easily search for a suitable structure by the
choice of its design parameters. We categorize possible
options of parameters into three groups that correspond
to Tart-A, Tart-B, and Tart-C, respectively.

Linear leaves ( Tart-A). Table 7 performs an ab-
lation study for Tart-A by changing the depth D and
the leaf selection function h. All these models use linear
leaf nodes to maximize the interpretability, which is the
main strength of Tart-A. Multi-leaf models perform
better than single-leaf models in general, because they
make up for the limited capacity of leaf nodes by com-
bining multiple nodes for each prediction. Still, single-
leaf models work better than the linear baselines such
as LR or SVM-lin, since they choose a suitable classifier
for each example following the tree structure. It is also
notable that both multi- and single-leaf models perform
better with larger D, without showing a significant drop
of its accuracy unlike MLPs of Table 6.

Nonlinear leaves ( Tart-B). Adopting nonlinear
leaf nodes requires us to choose the single-leaf selection
scheme for interpretability. Table 8 compares the per-
formance of Tart when L > 1, changing the tree depth
D from 2 to 8, as an ablation study for Tart-B. Trees
with D ≥ 4 and L = 4 achieve the best accuracy in the
large datasets compared to MLPs (in Table 6) and trees
with linear leaf nodes (in Table 7). Models with L = 2
work well in the medium and small datasets but show
limited performance in the large datasets.

The result implies that the representation power of
each leaf classifier is an important factor for achieving
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Table 9: Accuracy of Tart with multi-way decisions
and the single-leaf selection. These models show similar
accuracy with the choice of parameters.

D W L Large Medium Small

1 3 2 88.5±0.1 83.1±0.3 76.5±0.7
3 3 2 89.6±0.1 83.1±0.4 76.3±0.4
5 3 2 90.7±0.1 82.9±0.3 76.2±0.1
7 3 2 91.2±0.1 82.8±0.4 75.8±0.3

1 3 2 88.9±0.2 83.3±0.1 75.7±0.9
1 7 2 89.5±0.1 83.3±0.2 75.6±0.5
1 15 2 90.1±0.1 83.1±0.3 75.4±0.9
1 31 2 90.4±0.1 83.2±0.3 75.5±0.4

high accuracy in large datasets. At the same time, the
split of data examples through tree-structured decisions
is effective for improving the performance of classifica-
tion avoiding overfitting. This is shown well in Table 6,
where a significant drop of accuracy is observed when a
large number of layers are adopted for MLPs.

Multi-way decisions ( Tart-C). Table 9 performs
an ablation study for Tart-C, comparing models with
multi-way decisions. We set the stride S of transposed
convolutions to 2 while changing the tree depth D and
the window size W . If W = 3, the number of leaves at
each model of depth D is 2D+1− 1. Thus, the first four
models in Table 9 have the same number of leaf nodes
as the last four models in the table, respectively.

We observe the effect of branching intersections by
comparing the models in Tables 8 and 9. The first four
models in Table 9 work better than the first four models
in Table 8, even though they have fewer leaves, taking
advantage of intersecting branches. On the other hand,
it is observed from the last four models of Table 9 that
the ability to split data to the leaf nodes is limited when
D = 1, even with large W , due to the limited capacity
that a single decision function can have.

5.3 Efficiency A notable advantage of Tart is the
speedup from existing implementations of tree models
due to the efficient computation of transposed convolu-
tions. We compare Tart with three public implementa-
tions of soft decision trees (SDT) [9], which is a special
case of Tart with H = 1, L = 0, W = S = 2, and the
single-leaf selection. We call the baselines SDT-K, SDT-
X, and SDT-E, respectively, following the first letters of
their repository names.123 Tart and the all baselines
are implemented based on the PyTorch framework.

We make all methods have the same structure and

1https://github.com/kimhc6028/soft-decision-tree
2https://github.com/xuyxu/Soft-Decision-Tree
3https://github.com/endymion64/SoftDecisionTree

TART (proposed) SDT-K SDT-X SDT-E

(a) D = 8. (b) D = 10. (c) D = 12.

Figure 4: Training time of soft decision trees (SDT) by
different implementations. Tart achieves the shortest
training time due to its efficiency.

TART (proposed) SDT-K SDT-X SDT-E

(a) D = 8. (b) D = 10. (c) D = 12.

Figure 5: Inference time of soft decision trees (SDT) by
different implementations. Tart achieves the shortest
inference time due to its efficiency.

decision function, changing the tree depth D from 8 to
12. We use the MNIST dataset [16] in this experiment
to be on par with other baselines methods. We consider
each 28× 28 image as a 768-dimensional vector with no
structural information [9]. The training set has 60,000
examples, while the test set has 10,000 examples. We
use a single GPU of GTX 1080 Ti and set the batch size
to 1024 as in the other experiments.

Figure 4 compares the training time of methods for
a single epoch, while Figure 5 shows the inference time
in the test data. In both experiments, our Tart consis-
tently improves the speed of existing implementations.
Tart achieves the speedup of up to 36.3× and 5.1× in
the training and inference, respectively, compared to the
best competitors. This is because the baselines treat a
tree model as a set of independent decisions, while Tart
treats it as a sequence of linear transformations with the
efficiency of transposed convolutions.

6 Conclusion

We propose Tart (Transition Matrix Representation
with Transposed Convolutions), our novel approach to
represent tree models as a series of stochastic decisions
efficiently with transposed convolutions. Tart general-
izes the structures of different tree models only with a
few design parameters. The generalized representation
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allows us to systematically search for the best structure
for each dataset. We also present three promising com-
binations of structural parameters that can be applied
to small, medium, and large datasets, respectively. Our
extensive experiments on 121 datasets show that Tart
achieves the highest accuracy compared to existing clas-
sifiers. At the same time, the optimization with trans-
posed convolutions improves the speed of training and
inference up to 36.3 and 5.1 times, respectively.
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