
Near-Linear Time Approximations for Cut Problems via Fair Cuts

Jason Li∗ Danupon Nanongkai† Debmalya Panigrahi‡ Thatchaphol Saranurak§

Abstract

We introduce the notion of fair cuts as an approach to leverage approximate (s, t)-mincut
(equivalently (s, t)-maxflow) algorithms in undirected graphs to obtain near-linear time approx-
imation algorithms for several cut problems. Informally, for any α ≥ 1, an α-fair (s, t)-cut is
an (s, t)-cut such that there exists an (s, t)-flow that uses 1/α fraction of the capacity of every
edge in the cut. (So, any α-fair cut is also an α-approximate mincut, but not vice-versa.) We
give an algorithm for (1 + ε)-fair (s, t)-cut in Õ(m)-time, thereby matching the best runtime for
(1 + ε)-approximate (s, t)-mincut [Peng, SODA ’16]. We then demonstrate the power of this
approach by showing that this result almost immediately leads to several applications:

• the first nearly-linear time (1+ε)-approximation algorithm that computes all-pairs maxflow
values (by constructing an approximate Gomory-Hu tree). Prior to our work, such a result
was not known even for the special case of Steiner mincut [Dinitz and Vainstein, STOC
’94; Cole and Hariharan, STOC ’03];

• the first almost-linear-work subpolynomial-depth parallel algorithms for computing (1+ε)-
approximations for all-pairs maxflow values (again via an approximate Gomory-Hu tree)
in unweighted graphs;

• the first near-linear time expander decomposition algorithm that works even when the ex-
pansion parameter is polynomially small; this subsumes previous incomparable algorithms
[Nanongkai and Saranurak, FOCS ’17; Wulff-Nilsen, FOCS ’17; Saranurak and Wang,
SODA ’19].

∗Simons Institute for Theory of Computing, UC Berkeley. Email: jmli@alumni.cmu.edu
†Max Planck Institute for Informatics & University of Copenhagen & KTH. Email: danupon@gmail.com
‡Department of Computer Science, Duke University. Email: debmalya@cs.duke.edu
§University of Michigan, Ann Arbor. Email: thsa@umich.edu

ar
X

iv
:2

20
3.

00
75

1v
2

 [
cs

.D
S]

 1
2

Ja
n

20
23

Contents

1 Introduction 1
1.1 Our contributions . 2
1.2 Applications . 3

2 Overview of Techniques 5
2.1 Computing Fair Cuts (Proof Idea of Theorem 1.3) 5
2.2 From Fair Cuts to Approximate Isolating Cuts . 6
2.3 From Approximate Isolating Cuts to Approximate GH-trees 6
2.4 From Fair Cuts to Near-linear time Expander Decomposition 7

3 Preliminaries 7

4 Almost Fair Cuts via Multiplicative Weight Updates 9
4.1 Algorithm . 10
4.2 Correctness . 11
4.3 Running Time . 14
4.4 Proof of Lemma 4.9 . 14

5 From Almost Fair Cuts to Fair Cuts 16
5.1 Algorithm . 16
5.2 Analysis . 17

6 Approximate Isolating Cuts and Steiner Cut 21
6.1 Approximate Minimum Isolating Cuts . 21
6.2 (1 + ε)-approximate Minimum Steiner Cut . 23

7 Approximate Gomory-Hu Tree Algorithm 24
7.1 Cut Threshold Step Algorithm . 25
7.2 The Algorithm for Approximating Gomory-Hu Steiner Tree 27
7.3 Running Time Bound . 27
7.4 Approximation . 32

8 Expander Decomposition 34
8.1 Algorithm overview . 35
8.2 Trimming step . 35
8.3 Cut-matching step . 37

A Parallel Algorithms 44
A.1 Congestion Approximators . 44
A.2 Fair Cuts . 45
A.3 Isolating Cuts and Gomory-Hu Tree . 46

B Proof of Uncrossing Property 46

1 Introduction

In the (s, t)-mincut problem, we are given an n-vertex m-edge graph G = (V,E) with integer edge
weights w : E → Z+ bounded by U . The goal is to minimize the sum of the weight of edges whose
removal make s unable to reach t. Unless stated otherwise, the input graphs are assumed to be
undirected throughout the paper.

The (s, t)-mincut problem and its dual—(s, t)-maxflow—are among the most fundamental tools
in graph algorithms and optimization. In particular, many reductions have been recently devel-
oped to show that if (s, t)-mincut (equivalently, (s, t)-maxflow) can be solved in almost or nearly
linear time, then so are a number of fundamental graph problems. These problems include vertex
connectivity [LNP+21] and Gomory-Hu tree [AKL+21] in unweighted graphs, deterministic global
mincut and Steiner mincut [LP20], edge connectivity augmentation and edge splitting-off [CLP22],
and hypergraph global mincut [CQ21a, MN21].

All these results require exact (s, t)-mincut algorithms. In other words, these reductions can-
not exploit approximate (s, t)-mincut algorithms which can offer many advantages. For example,
while the best randomized (1 + ε)-approximate (s, t)-mincut algorithm takes nearly-linear1 time on
weighted graphs [Pen16] (and almost-linear2 time for deterministic algorithms [She13, KLOS14]),

the fastest exact algorithms require Õ
(

min(m+ n3/2,m
3
2
− 1

328 ,m4/3+o(1)U1/3)
)

time [GLP21, LS20,

vdBLL+21, vdBLN+20]3 and are all inherently randomized.4

Moreover, in many popular models of computation such as parallel computing, distributed
computing, etc., computing exact (s, t)-mincut is still far from efficient, and using approximation
algorithms might be the only alternative. For example, it is known that the (1 + ε)-approximation
algorithm (implied by [CS19, She13]) on undirected unweighted graphs requires almost-linear work
and sub-polynomial depth in PRAM. In contrast, we are far from emulating this result for exact
algorithms. In fact, the first small step toward solving exact (s, t)-mincut with almost-linear work
and sub-polynomial depth would be doing so for the much simpler problem of (s, t)-reachability.
And, the latter would involve breaking a major Ω(

√
n) depth barrier.5 Another example is in

the distributed setting (the CONGEST model), where a nearly optimal algorithm for computing
(1 + ε)-approximate (s, t)-mincut exists [GKK+15] while no nontrival algorithm is known for the
exact version. These advantages of approximate (s, t)-mincuts motivate a natural question: Can
the existing reductions work with approximate (s, t)-mincut algorithms instead of the exact ones?

To answer the above question, let us discuss first why many reductions work only with exact
(s, t)-mincut. A crucial property of exact (s, t)-mincuts in undirected graphs that is used by these
reductions (e.g., for Gomory-Hu tree, deterministic global mincut, Steiner cut, edge connectivity
augmentation, and edge splitting-off) is the following uncrossing property:

(Uncrossing Property) For any vertices s and t, let X ⊂ V be an (s, t)-mincut. Then,

1By nearly-linear time, we mean a running time of Õ(m).
2By almost-linear time, we mean a running time of m1+o(1).
3Throughout, we use Õ to hide poly log(n).
4In an independent result [CKL+22], an almost-linear time randomized algorithm has been shown for the (s, t)-

mincut problem. Even when this independent result is taken into account, the best (1 + ε)-approximation algorithms
are still superior to the best exact algorithm with respect to time complexities and randomness requirements.

5This is due to the reduction from directed maxflow to undirected maxflow (see e.g. [Mad11]) which works in the
parallel setting. The reduction implies that if we can solve (s, t)-mincut exactly on undirected unweighted graphs in
O(W) work and O(D) depth, then we can solve (s, t)-mincut exactly on directed unweighted graphs with Õ(W) work
and Õ(D) depth. The latter captures the st-reachability problem as a special case.

1

for any u, v ∈ X, there exists Y ⊂ X that is a (u, v)-mincut.

The uncrossing property is very useful from an algorithmic perspective since it gives a natural
recursive tool – after finding an (s, t)-mincut, we can recurse on each side of the cut to find a
(u, v)-mincut for every pair of vertices (u, v) on the same side of the cut. Indeed, the uncrossing
property is more generally true for symmetric, submodular minimization problems and is at the
heart of most of the beautiful structure displayed by undirected graph cuts and other symmetric,
submodular functions. The uncrossing property, however, does not hold for (1 + ε)-approximate
mincuts in general. This is the main bottleneck that prevents these reductions from being robust to
approximation. As a result, for these problems, we fail to exploit the benefits of (1+ε)-approximate
(s, t)-mincut algorithms.

1.1 Our contributions

We subvert the above bottleneck by introducing a more robust notion of approximate mincuts
called fair cuts. Informally, an α-fair (s, t)-cut is an (s, t)-cut such that there exists an (s, t)-flow
f that uses 1/α fraction of the capacity of every edge in the cut. (The reader should think of α as
being close to 1.) Formally:

Definition 1.1 (Fair Cut). Let G = (V,E) be an undirected graph with edge capacities c ∈ RE>0.
Let s, t be two vertices in V . For any parameter α ≥ 1, we say that a cut (S, T) is a α-fair (s, t)-cut
if there exists a feasible (s, t)-flow f such that f(u, v) ≥ 1

α · c(u, v) for every (u, v) ∈ E(S, T) where
u ∈ S and v ∈ T .

Observe that a 1-fair (s, t)-cut is an exact (s, t)-mincut. Moreover, an α-fair (s, t)-cut is also an
α-approximate (s, t)-mincut. However, not all α-approximate (s, t)-mincuts are α-fair (s, t)-cuts.6

In other words, a set of α-fair cuts is a proper subset of α-approximate cuts and a superset of exact
(s, t)-mincuts.

We show that the notion of fair cuts allow us to combine the key features of both approximate
cuts and exact cuts. First, fair cuts admit a property for approximate cuts that is analogous to
uncrossing for exact mincuts, which we prove in Appendix B for completeness.

Lemma 1.2 (Approximate Uncrossing Property). For any vertices s and t, let (S, T) be an α-fair
(s, t)-mincut. Then, for any u, v ∈ S, there exists R ⊂ S such that (R, V \R) is an α-approximate
(u, v)-mincut.

Second, while computing a fair cut can be harder than an approximate mincut (since any fair cut
is an approximate mincut but not vice-versa), we give a nearly-linear time algorithm for computing
a (1 + ε)-fair (s, t)-mincut.

Theorem 1.3 (Fair Cut). Given a graph G = (V,E), two vertices s, t ∈ V , and ε ∈ (0, 1], we can
compute with high probability a (1 + ε)-fair (s, t)-cut in Õ(m/ε3) time.

6As a simple example, consider a path v − s − t on three vertices. Clearly, the cut {s} contains both edges and
is therefore a 2-approximate (s, t)-mincut. However, there is no (s, t)-flow that can saturate both edges to fraction
1
2
. To motivate our choice of terminology (fair cuts), note that if an (s, t)-cut is a α-approximate (s, t)-mincut, it

follows by flow-cut duality that any (s, t)-maxflow will cumulatively saturate the edges of the cut to a fraction ≥ 1
1+α

.
But, as we saw in the previous example, this saturation need not be fair in the sense that some edges might not
be saturated at all. In this context, a α-fair cut demands the additional property that each edge be saturated to a
fraction ≥ 1

α
(in the sense of “max-min” fairness).

2

We note that the only reason why our algorithm is randomized is because we use the congestion
approximator by [RST14, Pen16]. This can be made deterministic based on an algorithm by
[CGL+20], but the running time would be m1+o(1)/ε3 instead. Moreover, we remark that although
we will focus on (1 + ε)-fair (s, t)-cuts, the corresponding (s, t)-flow can be obtained from a fair
cut in Õ(m/ε) time using a standard application of a (1 + ε)-approximate max-flow algorithm of
Sherman [She17].

1.2 Applications

We demonstrate the power of fair cuts by using it to improve the time complexity of several
problems.

Gomory-Hu Tree. The Gomory-Hu (GH) tree is a compact representation of a (u, v)-mincut
(and therefore, (u, v)-maxflow values) between every pair of vertices (u, v) of a graph, and has a
large number of applications. It captures fundamental questions such as global, (s, t)−, and Steiner
mincuts as special cases. There has been much progress on exact and approximation algorithms
for this problem recently (e.g., [LP21, AKT20a, AKT20b, AKT21c, AKL+21, AKT21a, AKT21b,
LPS21, Zha21a, Zha21b]). The fastest among these is the (1+ε)-approximation algorithm by Li and
Panigrahi [LP21] whose time complexity is equal to poly-logarthmic calls to any exact (s, t)-mincut

algorithm, i.e. Õ
(

min(m+ n3/2,m
3
2
− 1

328 ,m4/3+o(1)U1/3)
)

.

By replacing the exact max-flow calls by our (1 + ε)-fair cut algorithm in [LP21], we get a
nearly-linear time algorithm for approximating the Gomory-Hu tree (which is equivalent to finding
all-pairs maxflow values by known reductions, e.g., [AKT20a]):

Theorem 1.4 (Nearly-linear time Gomory-Hu tree). For any ε > 0, there is a Õ(m · poly(1/ε))-
time randomized algorithm that constructs, with high probability, a (1+ ε)-approximate Gomory-Hu
tree in weighted undirected graphs.

Prior to our work, a nearly-linear time (approximation) algorithm was not known even for the
special case of the Steiner mincut problem. In this problem [DV94, CH03, HKP07, BHKP07, LP20],
we are interested in finding a cut of minimum value that disconnects a given set of terminal vertices.
For this problem, Li and Panigrahi [LP20] gave an exact algorithm using poly-logarithmic exact
max-flow calls. Before our work, no improvement in the running time was known if we allow
(1 + ε)-approximation instead of the exact Steiner mincut. Since the Steiner mincut problem is a
minimal generalization of global and (s, t)-mincuts, our paper is the first to obtain nearly-linear
time (approximation) algorithms for cut problems that go beyond these two problems.

Parallelization. Since the use of exact max-flow is the only bottlenect to parallelize the approximate
GH tree algorithm of [LP21], the following parallel algorithm also follows.

Theorem 1.5 (Parallel GH-tree). For any ε > 0, there is a Õ(m1+o(1)/poly(ε))-work (mo(1)/poly(ε))-
depth randomized algorithm that constructs, with high probability, a (1+ε)-approximate Gomory-Hu
tree in unweighted undirected graphs.

We are not aware of prior work on parallel GH algorithms (except some experiments, e.g.
[MCJ20, CRJ17]). This is likely because previous GH trees algorithms, even the approximate ones
[LP21], inherently require solving max-flow exactly, which is well beyond current techniques in the
parallel setting.

3

Expander Decomposition. In the last decade, numerous fast graph algorithms are based on
fast algorithms for computing an expander decomposition. For some examples of such applications,
see e.g. [ST04, KLOS14, She13, NSW17, CS19, BBG+20].

We say that a (weighted) graph G = (V,E) is a φ-expander if for every cut (S, V \ S), we have
that the cut size δ(S) ≥ min{vol(S), vol(V \ S)} where the volume of S is vol(S) =

∑
v∈S deg(v).

A (ε, φ)-expander decomposition of G is a partition {V1, . . . , Vk} of vertices such that each G[Vi] is
a φ-expander and

∑
i δ(Vi) ≤ ε · vol(V), i.e., the total weight of edges crossing the partition is at

most ε-fraction.
There are two incomparable fastest algorithms for computing expander decompositions. First,

[NS17, Wul17] gave m1+o(1)-time algorithms that computes a (φno(1), φ)-expander decomposition
for any φ > 0. These subpolynomial factors are sometimes undesirable. Second, [SW19] gave a
Õ(m/φ)-time algorithm that computes a (Õ(φ), φ)-expander decomposition for any φ > 0. This
algorithm is slower than the first one when φ < 1/n0.1. Using fair cuts, we obtain an algorithm
that subsumes both these sets of results and is optimal up to poly-logarithmic factors.

Theorem 1.6 (Near-linear expander decomposition). For any φ > 0, there is a randomized Õ(m)-
time algorithm that with high probability computes a (Õ(φ), φ)-expander in weighted undirected
graphs.

Open problems. We believe that our notion of fair cuts opens up many interesting directions
for future research. We mention some examples. (i) A natural goal is to extend our efficient
(1 + ε)-fair (s, t)-cut to other computational models, such as the distributed (CONGEST) setting,
where exact (s, t)-mincut algorithms are much slower/inefficient compared to approximate (s, t)-
mincut algorithms. This will lead to efficient algorithms for approximating, e.g., Gomory-Hu tree
and Steiner mincut in these models as well. (ii) The notion of fair vertex cuts can be defined in
a similar fashion to fair (edge) cuts defined in this paper. It would be interesting to design an
efficient algorithm for finding a fair vertex cut and use it to obtain nearly-linear time algorithms
for approximating the vertex connectivity and hypergraph global mincut. These results can also
be extended to other computational models. (iii) We also hope that the notion of fair cuts can be
extended to more general contexts such as the minimization of symmetric, submodular functions.
In turn, this will significantly improve our understanding of the approximation-efficiency tradeoff
in minimization problems defined for these function classes.

Independent result. Our result is obtained independently from the recently announced almost-
linear time bound for min-cost flow by Chen, Kyng, Liu, Peng, Gutenberg, and Sachdeva [CKL+22].
Plugging this result into existing reductions in [AKL+21, LNP+21, CQ21b, MN20] help solve prob-
lems such as GH tree and vertex connectivity in unweighted graphs, approximate GH tree in
weighted graphs, and hypergraph global mincut in m1+o(1) time. Even assuming this result, our
algorithms are faster in both randomized and deterministic settings; for the latter, our running time
is m1+o(1) whereas the best exact (s, t)-mincut algorithm takes Õ(mmin(

√
m,n2/3)) time [GR98].

Finally, our algorithms can be adapted to other models such as parallel computation whereas this
is well beyond existing techniques for exact (s, t)-mincut.

4

2 Overview of Techniques

2.1 Computing Fair Cuts (Proof Idea of Theorem 1.3)

Our key subroutine for computing fair cuts is called AlmostFair. Here, we describe at a high-level
what the AlmostFair subroutine does, how to use it for computing fair cuts, and finally how to
obtain the AlmostFair subroutine itself.

Say we are given an (s, t)-cut (S, T) which may be far from being fair. The AlmostFair
subroutine works on one side of the (s, t)-cut, say T , and returns a partition (Pt, T

′) of T such
that t ∈ T ′. We think of Pt as the part that we “prune” out of T . Our first guarantee is that
the remaining part T ′ is “almost fair” in the following sense: each boundary edge in E(S, T ′)
(i.e., those edges that are not in E(Pt, T

′)) can simultaneously send flow of value at least (1− β)-
fraction of its capacity to t, for a small parameter β that we can choose. This guarantee alone
would have been weak if the pruned set Pt is so big that there are few edges left in E(S, T ′).
However, the second guarantee of AlmostFair says that, if Pt is big, then (V \ T ′, T ′) is actually
a much smaller (s, t)-cut than the original cut (S, T) in terms of cut value. More formally, we have
δG(T ′) ≤ δG(T)−β · δG(S, Pt) meaning that the decrease in the cut size is at least β times the total
capacity of E(S, Pt).

With these two guarantees of AlmostFair, given any (s, t)-cut (S, T), we can iteratively im-
prove this cut to make it fair as follows. We call AlmostFair on both S and T and obtain (Ps, S

′)
and (Pt, T

′). Let’s consider two extremes. If both pruned sets Ps and Pt are tiny, then there is an
(s, t)-flow that almost fully saturates every edge in E(S′, T ′). This certifies (S, T) is very close to
being fair as Ps and Pt are tiny. However, if either Ps or Pt is very big, say Pt, then (S ∪ Pt, T ′) is
an (s, t)-cut of much smaller value than the original cut (S, T). Therefore, this is progress too and
we can recursively work on this new cut (S ∪ Pt, T ′). To make the intuition on these two extremes
work, we iteratively call AlmostFair using a parameter β that increases slightly in every round.
The full algorithm is presented in Section 5.

Now, let us sketch the AlmostFair subroutine itself. This subroutine is based on Sherman’s
algorithm for computing a (1 + ε)-approximate max-flow [She13] (for any ε > 0), which in turn
uses the multiplicative weight update (MWU) framework.7 Given the t-side T of an (s, t)-cut, if
we call Sherman’s algorithm where the demand is specified so that each boundary edge should
send flow at its full capacity to sink t, then the algorithm would either return a flow satisfying
this demand with congestion (1 + ε) or return a “violating” cut certifying that the demand is not
feasible. In the former case, this would satisfy the guarantee of AlmostFair where Pt = ∅ after
scaling down the flow by a (1 + ε) factor. Unfortunately, in the latter case, the algorithm does not
guarantee the existence of the flow that we want. The reason behind this problem is that whenever
the algorithm detects a violating cut, the algorithm is just terminated. In a more general context,
this holds for most (if not all) MWU-based algorithms for solving linear programs; in each round
of the MWU algorithm, whenever “the oracle” certifies that the linear program is infeasible, then
we just terminate the whole algorithm.

Interestingly, we fix this issue by “insisting on continuing” the MWU algorithm. Once we detect
a violating cut, we include it into the pruned set, cancel the demand inside this pruned set, and
continue updating weights in the MWU algorithm. After the last round, the flow constructed

7Sherman’s original presentation in [She13] does not explicitly use the MWU framework. Although this alternative
interpretation was already known to experts, our MWU-based presentation of his algorithm is arguably simpler and
more intuitive.

5

via MWU indeed sends flow from each remaining boundary edge that is not pruned out, which is
exactly our goal. The detailed algorithm is presented in Section 4.

2.2 From Fair Cuts to Approximate Isolating Cuts

We believe that the notion of fair cuts can be useful in many contexts since it offers a more robust
alternative to approximate mincuts. In this paper, we first use it to obtain an approximate isolating
cuts algorithm. We define the isolating cuts problem first.

Definition 2.1. Given a weighted, undirected graph G = (V,E) and a subset of terminals S =
{s1, s2, . . . , sk}, the goal of the isolating cuts problem is to find a set of disjoint sets S1, S2, . . . , Sk
such that for each i, the cut (Si, V \ Si) is a mincut that separates si ∈ Si from the remaining
terminals S \ {si} ⊆ V \Si. If Si is a (1 + ε)-approximate mincut separating si from the remaining
terminals, then the corresponding problem is called the (1+ ε)-approximate isolating cuts problem.

Using fair cuts, we obtain a near-linear time algorithm for approximate isolating cuts.

Theorem 2.2. There is an algorithm for finding (1 + ε)-approximate isolating cuts that takes
Õ(m · poly(1/ε)) time.

Li and Panigrahi [LP20] gave an algorithm for finding exact isolating cuts using O(log n) (s, t)-
max-flow/mincut computations that crucially relies on the uncrossing property of (s, t)-mincuts.
This property ensures that if we take a minimum isolating cut X containing a terminal vertex s
and a crossing mincut Y , then their intersection X ∩ Y or difference X \ Y (depending on which
set the terminal vertex s is in) is also a minimum isolating cut. This allows partitioning of the
graph by removing edges corresponding to a set of mincuts, such that each terminal is in one of
the components of this partition. For each terminal, the corresponding minimum isolating cut is
now obtained by simply contracting the rest of the components and running a max-flow algorithm
on this contracted graph. The advantage of this contraction is that the total size of all the graphs
on which we are running max-flows is only a constant times the size of the overall graph.

Unfortunately, approximate mincuts don’t satisfy this uncrossing property, which renders this
method unusable if we replace exact mincut subroutines with faster (1 + ε)-approximate mincuts.
But, if we instead used fair cuts, then we can show the following: if X is a (1 + ε)-approximate
minimum isolating cut containing terminal s and Y is a (1+α)-fair cut, then either X ∩Y or X \Y
(whichever set contains s) is a (1 + ε)(1 +α)-approximate minimum isolating cut. This allows us to
use the framework in [LP20]. Since the number of fair cuts we remove in forming the components
is only O(log n), the multiplicative growth in the approximation factor can be offset by scaling the
parameter in fair cuts by the same logarithmic factor. The advantage in using fair cuts over exact
mincuts is that the running time of the former is near-linear by Theorem 1.3, which helps establish
Theorem 2.2. The details of this algorithm are presented in Section 6.

2.3 From Approximate Isolating Cuts to Approximate GH-trees

Finally, we use approximate isolating cuts to obtain an approximate GH tree algorithm. [LP21]
gives a recursive algorithm for computing an approximate GH tree but using exact isolating cuts.
We observe that the latter can be replaced by approximate isolating cuts provided the approxima-
tion is one-sided in the following sense: the “large” recursive subproblem needs to preserve mincut
values exactly. But, in general, if we use the approximate isolating cuts subroutine as a black box,

6

this would not be the case. To alleviate this concern, we augment the approximate isolating cuts
procedure using an additional fairness condition for the isolating cuts returned by the algorithm.
This fairness condition ensures that although we do not have one-sided approximation, the approx-
imation factor in the “large” subproblem can be controlled using a much finer parameter than the
overall approximation factor of the algorithm, which then allows us to run the recursion correctly.
The details of the GH tree algorithm establishing Theorem 1.4 are presented in Section 7.

2.4 From Fair Cuts to Near-linear time Expander Decomposition

Via fair cuts, we will speed up the algorithm by [SW19] for computing a (Õ(φ), φ)-expander de-
composition in time Õ(m/φ) to Õ(m). There are two main steps in the algorithm by [SW19]:
the cut-matching step and the trimming step. The cut-matching step can be solved in Õ(m) time
simply by applying the near-linear-time approximate maxflow algorithm by [Pen16].8 The harder
step to speed up is the trimming step. However, we observe that the cut problem needed to be
solved in this step is actually a one-sided version of the fair cut problem, which is an easier problem.
By calling our fair cut algorithm, we immediately obtain a Õ(m)-time algorithm for the trimming
step. See details in Section 8.

3 Preliminaries

Given a undirected capacitated/weighted graph G = (V,E) with edge capacities/weights is c ∈ RE≥0

and an edge set E′ ⊆ E, we let c(E′) =
∑

e∈E′ c(e) be the total capacity of E′. For simplicity,
we assume that the ratio between the largest and lowest edge capacities or weights are poly(n).
For any disjoint sets S, T ⊆ V , we let δG(S) = c(E(S, V \ S)) denote the cut size of S and
δG(S, T) = c(E(S, T)) denote the total capacity of edges from S to T . For any distinct vertices s
and t, let λG(s, t) be the minimum-weight s-t cut. We sometimes omit G when it is clear from the
context.

Flow. A flow f : V × V → R satisfies f(u, v) = −f(v, u) and f(u, v) = 0 for {u, v} /∈ E.
The notation f(u, v) > 0 means that mass is routed in the direction from u to v, and vice versa.

The congestion of f is max{u,v}∈E
|f(u,v)|
c(e) . If the congestion is at most 1, we say that f respects

the capacity or f is feasible. For each vertex u ∈ V , the net flow out of vertex u, denoted by
f(u) =

∑
v∈V f(u, v), is the total mass going out of u minus the total mass coming into u. More

generally, for any vertex set S ⊆ V , we can define the net flow out of S as f(S) =
∑

u∈S f(u) =∑
u∈S,v∈V f(u, v). The net flow out from S to T is denoted by f(S, T) =

∑
u∈S,v∈T f(u, v). Observe

that we always have f(V) = 0.
A demand function ∆ : V → R is a function where

∑
v∈V ∆(v) = 0. We say that flow f satisfies

demand ∆ if f(v) = ∆(v) for all v ∈ V . For any S ⊆ V , let ∆(S) =
∑

v∈S ∆(v) be the total demand
on S. Observe ∆(V) = f(V) = 0. By the max-flow min-cut theorem, we have the following:

Fact 3.1. For any ε ≥ 0, |∆(S)| ≤ ε · δ(S) for all S ⊆ V iff there is a flow with congestion ε that
satisfies ∆.

8For reader who are familiar with [SW19], their algorithm applies the push-relabel flow algorithm that takes
Õ(m/φ) time, instead of using an Õ(m)-time approximate max flow algorithm, because the push-relabel algorithm
has fewer log factors in the running time.

7

For a flow f and a demand function ∆, define the excess ∆f as ∆f (v) = ∆(v) − f(v) for
every v ∈ V . We think of excess as a remaining demand function. We say that f ε-satisfies ∆ if
|∆f (S)| ≤ ε · δ(S) for all S ⊆ V . That is, by Fact 3.1, there exists a flow faug with congestion ε
where f + faug satisfies ∆. Note that f 0-satisfies ∆ iff f satisfies ∆.

For any two vertices s, t ∈ V , an (s, t)-cut (S, T) is a cut such that s ∈ S and t ∈ T . An
(s, t)-flow f obeys f(v) = 0 for all v 6= s, t. Similarly, an (s, t)-demand function ∆ obeys ∆(v) = 0
for all v 6= s, t. That is, an (s, t)-demand function is satisfied only by an (s, t)-flow.

Congestion Approximators. When we want to argue that flow f ε-satisfies a demand function
∆, it can be inconvenient to ensure that |∆f (S)| ≤ ε · δ(S) for all S ⊆ V because there are
exponentially many sets. Surprisingly, there is a collection S of linearly many sets of vertices,
where if |∆(S)| ≤ ε · δ(S) for each S ∈ S, then this is also true for all S ⊆ V with some polylog(n)
blow-up factor. Moreover, S can be computed in near-linear time.

Theorem 3.2 (Congestion approximator [RST14, Pen16]). There is a randomized algorithm that,
given a graph G = (V,E) with n vertices and m edges, constructs in Õ(m) time with high probability
a laminar family S of subsets of V such that

1. S contains at most 2n sets,

2. each vertex appears in O(log n) sets of S, and

3. for any demand function ∆ on V , if |∆(S)| ≤ δ(S) for all S ∈ S, then |∆(R)| ≤ γSδ(R) for
all R ⊆ V for a quality factor γS = O(log4 n).

Graphs with Boundary Vertices. Given a set U ⊆ V , let G{U} denote the following “induced
subgraph with boundary vertices”: start with induced subgraph G[U], and for each edge e = (u, v) ∈
E(U, V \U) with endpoint u in U , create a new vertex xe and add the edge (xe, u) to G{U} of the
same capacity as e. Let NG{U} be the vertex set of G{U} and define NG〈U〉 = NG{U} \ U . We
call vertices in NG〈U〉 boundary vertices. We simply write N{U} and N〈U〉 instead of NG{U} and
NG〈U〉 when the context is clear. Observe that the degree degG{U}(xe) of each boundary vertex
xe ∈ N〈U〉 in G{U} is simply the capacity c(e) of edge e. We will use this notation very often in
the paper.

Boundary Demand Functions. In our context, the sink node t ∈ U is usually given. The full
U -boundary demand function ∆U : V (G{U})→ R is defined such that

∆U (v) =


degG{U}(v) if v ∈ N〈U〉
0 if v ∈ U \ t
−∆(N〈U〉) if v = t.

That is, any flow satisfying ∆U sends flow from each boundary vertex of G{U} at full capacity to
t. We also write ∆U,t when it is not clear from the context what t is. More generally, given any
demand function ∆′ : V (G{U})→ R, we say that ∆′ is a U -boundary demand function if ∆′(v) = 0
for all v ∈ U \ t, ∆′(t) = −∆(N〈U〉). That is, ∆′ is completely determined once we specify the
demand values on boundary vertices N〈U〉.

8

One-Sided Fair Cut. Finally, the following “one-sided” version of a fair cut (Definition 1.1) will
be useful.

Definition 3.3 (One-sided Fair Cut). Let G = (V,E) be an undirected graph with edge capacities
c ∈ RE>0. Let s be a vertex in V . For any parameter α ≥ 1, we say that a cut (S, T) is an s-sided
α-fair cut if there exists a feasible flow f such that

1. f(v) = 0 for all v ∈ S \ {s}

2. f(u, v) ≥ 1
α · c(u, v) for every (u, v) ∈ E(S, T) where u ∈ S and v ∈ T .

In other words, the flow f sends flow from s to the boundary E(S, T) in a way that almost saturates
every edge in E(S, T), but we do not care about the behavior of f beyond E(S, T).

Clearly, an α-fair (s, t)-cut is an s-sided α-fair cut since we can take the same flow f that
witnesses the α-fair (s, t)-cut. However, we will only require the one-sided version in our isolating
cuts application in Section 6.

4 Almost Fair Cuts via Multiplicative Weight Updates

The key subroutine used for proving Theorem 1.3 is the algorithm below.

Theorem 4.1 (Almost Fair Cuts). There is an algorithm AlmostFair(G,U, t, ε, β) that, given a
graph G = (V,E) with a sink node t ∈ V , a set U ⊆ V where t ∈ U , and parameters β ≥ 0 and
ε > 0, returns a partition (P,U ′) of U where t ∈ U ′ with the following properties:

1. δG(U ′) ≤ δG(U)− βδG(P, V \ U) (equivalently, δG(P,U ′) ≤ (1− β)δG(P, V \ U)), and

2. There exists a flow f ′sat in G{U ′} with congestion (1 + ε) satisfying a U ′-boundary demand
function ∆′ such that

∆′(v) = (1− β) degG{U ′}(v) for all old boundary vertices v ∈ N〈U ′〉 ∩N〈U〉
|∆′(v)| ≤ (1 + ε) degG{U ′}(v) for all new boundary vertices v ∈ N〈U ′〉 \N〈U〉

The algorithm takes Õ(|E(G{U})|/ε2) time and is correct with high probability.9

The rest of this section is for proving Theorem 4.1. For convenience, we write H = G{U} and
let n and m denote the number of vertices and edges in H throughout this section. Let B be the
incidence matrix of H. Observe that, for any flow f on H, we have (Bf)v = f(v) is the net flow
out of v. We can view Bf as a vector in RV (H). Define

∆ = (1− β)∆U

as the full U -boundary demand function on G{U} after scaled down by (1 − β) factor. For any
U ′ ⊆ U , the restriction ∆|U ′ of ∆ is a U -boundary demand function obtained from ∆ by zeroing
out the entries on N 〈U〉 \N 〈U ′〉, i.e., the boundary vertices of U which are not boundaries of U ′,
and then setting the entry on t so that

∑
v∈V (H) ∆|U ′(v) = 0. Similarly, we view ∆ and also ∆|U ′

as vectors in RV (H).
9Note that the guarantee that |∆′(v)| ≤ (1 + ε) degG{U′}(v) for all new boundary vertices v ∈ N〈U ′〉 \ N〈U〉 in

fact follows from the guarantee that f ′sat has congestion (1 + ε). We state both guarantees explicitly for convenience.

9

4.1 Algorithm

Initialization. We start by computing a congestion approximator S of H with quality γS =
O(log4 n) using Theorem 3.2. For a technical reason, it is more convenient if no set in S contains
sink t. From now, we will assume this, which is justified by the following observation:

Proposition 4.2. Given the family S from Theorem 3.2 and a vertex t, there is a linear time
algorithm that returns another family S ′ with the same guarantee as in Theorem 3.2 but with
additional guarantee that each set S ∈ S ′ does not contains t.

Proof. Replace each set S ∈ S where t ∈ S with its complement V (H) \ S. Observe that S is now
a larminar family on V (H) \ t where |S| does not change, and the number of sets containing each
vertex may increase only by O(log n). Hence, the first and second properties of Theorem 3.2 still
hold. The third property still holds as well because |∆(S)| = |∆(V (H) \ S)| for all S.

Our algorithm is based on the Multiplicative Weight Update framework and so it works in
rounds. For round i, we maintain weights wiS,◦ ≥ 0 for each S ∈ S and ◦ ∈ {+,−} and define the

potential φi ∈ RV (H) where

φiv =
∑
S3v

1

δH(S)
(wiS,+ − wiS,−)

for each vertex v. As no set S ∈ S contains t, we will always have φit = 0 for all i. Initially, we set
w1
S,◦ = 1 for all S ∈ S, ◦ ∈ {+,−}.

The algorithm also maintains a decremental subset V i where t ∈ V i ⊆ V i−1 for all i. We
initialize V 0 as follows. First, set V 0 = V (H). While there exists S ∈ S where ∆|V 0(S) > δH(S),
which certifies that there is no feasible flow on H satisfying ∆|V 0 by Fact 3.1, we update V 0 ← V 0\S
(in particular, the function ∆|V 0 changes). Let D0 contain all the vertices we removed from V 0.
Now, we are ready to state the main algorithm.

Main Algorithm. For round i = 1, 2, . . . , T where T = Θ(log(n)/α2) and α = ε/γS , we do the
following:

1. Define f i on H such that for each edge (u, v), f i(u, v) flows from high potential to low
potential at maximum capacity. That is, for every edge (u, v) in H,

f i(u, v) =


c(u, v) if φiu > φiv
0 if φiu = φiv
−c(u, v) if φiu < φiv.

2. Using Lemma 4.9, compute a deletion set Di ⊆ V (H) \ t and set V i ← V i−1 \Di, where Di

satisfies the following:

if Di 6= ∅, then ∆|V i−1(Di) > δH(Di), and

〈φi,∆|V i〉 = 〈φi,∆|V i−1\Di〉 ≤ 〈φi, Bf i〉.

3. For each S ∈ S, let

riS =
(∆|V i)f

i
(S)

δH(S)
=

∆|V i(S)− f i(S)

δH(S)

be the relative total excess at S compared to the cut size in round i.

10

4. Update the weights

wi+1
S,+ = wiS,+ · eαr

i
S and wi+1

S,− = wiS,− · e−αr
i
S .

After T rounds, we compute the pruned set P = ∪Ti=0D
i and let U ′ = U \ P . Finally, we return

the partition (P,U ′).

4.2 Correctness

We prove that the partition (P,U ′) outputted by our algorithm satisfies the requirement in Theo-
rem 4.1. The first important thing to understand our algorithm is to formally see how it is captured
by the Multiplicative Weight Update (MWU) algorithm, which we recall below:

Theorem 4.3 (Multiplicative Weights Update [AHK12]). Let J be a set of indices, and let α ≤ 1
and ω > 0 be parameters. Consider the following algorithm:

1. Set w
(1)
j ← 1 for all j ∈ J

2. For i = 1, 2, . . . , T where T = O(ω2 log(|J |)/α2):

(a) The algorithm is given a “gain” vector gi ∈ RJ satisfying ‖gi‖∞ ≤ ω and 〈gi, wi〉 ≤ 0

(b) For each j ∈ J , set wij ← wi−1
j exp(αgij) = exp(α

∑
i′∈[i] g

i′
j)

At the end of the algorithm, we have 1
T

∑
i∈[T] g

i
j ≤ α for all j ∈ J .10

To apply Theorem 4.3 into our setting, we define J = S×{+,−}. That is, we work with indices
(S,+) and (S,−) for S ∈ S. We use the same weights wi and error parameter α as the algorithm,
and we set ω = 2. For each iteration i and S ∈ S, we define

giS,± = ±riS = ±∆|V i(S)− f i(S)

δH(S)
.

Observe that the weights wiS,± are updated in Step 4 exactly as wiS,± ← wi−1
S,± exp(αgiS,±). With this

setting, we show that our gain vector gi indeed satisfies the condition in Step 2a of Theorem 4.3.

Lemma 4.4. For each i, we have ‖gi‖∞ ≤ 2 and 〈gi, wi〉 ≤ 0.

Proof. To show ‖gi‖∞ ≤ 2, we have

|giS,±| =
∣∣∣∣∆|V i(S)− f i(S)

δH(S)

∣∣∣∣ ≤ ∣∣∣∣∆|V i(S)

δH(S)

∣∣∣∣+

∣∣∣∣ f i(S)

δH(S)

∣∣∣∣ ≤ 1 + 1,

To see why the last inequality holds, we have (1) ∆|V 0(S) ≤ δH(S) for all S ∈ S by the initialization
of V 0, (2) ∆|V i(S) ≥ 0 for all i because t /∈ S, and (3) ∆|V i(S) may only decrease as V i is a
decremental set. Also, we have |f i(S)| ≤δH(S) because each f i respects the capacity.

10More generally, for any value val, if we have 〈gi, wi〉 ≤ val for all i, the MWU algorithm guarantees that
1
T

∑
i∈[T] g

i
j ≤ val + α, for all j. Here, we use a special case when val = 0.

11

To show 〈gi, wi〉 ≤ 0, first observe that 〈gi, wi〉 = 〈φi,∆|V i〉 − 〈φi, Bf i〉 exactly.

〈gi, wi〉 =
∑
S∈S

(giS,+w
i
S,+ + giS,−w

i
S,−)

=
∑
S∈S

(wiS,+ − wiS,−)riS

=
∑
S∈S

wiS,+ − wiS,−
δH(S)

(
∆|V i(S)− f i(S)

)
=
∑
S∈S

wiS,+ − wiS,−
δH(S)

∑
v∈S

(
∆|V i(v)− (Bf i)v

)
=

∑
v∈V (H)

(
∆|V i(v)− (Bf i)v

)∑
S3v

wiS,+ − wiS,−
δH(S)

=
∑

v∈V (H)

(
∆|V i(v)− (Bf i)v

)
φiv

= 〈φi,∆|V i〉 − 〈φi, Bf i〉.

Since the deletion set Di from Step 2 is designed to guarantee that 〈φi,∆|V i〉 ≤ 〈φi, Bf i〉, we have
that 〈gi, wi〉 ≤ 0.

From the above, we have verified that our algorithm is indeed captured by the MWU algorithm.
Now, we derive the implication of this fact. Only for analysis, we define the average flow f̄ =
1
T

∑T
i=1 f

i ∈ RE(H) on H and the average U -boundary demand function ∆ = 1
T

∑T
i=1 ∆|V i ∈ RV (H)

on H.

Lemma 4.5. We have f̄ ε-satisfies ∆ in H.

Proof. Define r̄ = 1
T

∑T
i=1 r

i ∈ RS . First, we prove that |r̄S | ≤ α for all S ∈ S. This is because

±r̄S =
1

T

∑
i∈[T]

±riS =
1

T

∑
i∈[T]

giS,± ≤ α

where the last inequality is precisely the guarantee of the MWU algorithm from Theorem 4.3. Next
observe that the excess is

∆
f̄
(S) = ∆(S)− f̄(S) = r̄SδH(S).

Therefore, we have that |∆f̄
(S)| ≤ αδH(S) for all S ∈ S. Since S is a congestion approximator, it

follows by Theorem 3.2 that

|∆f̄
(S)| ≤ γSαδH(S) = εδH(S)

for all S ⊆ V (H). This precisely means that f̄ ε-satisfies ∆.

Now, we are ready to prove Item 2 of Theorem 4.1. By Lemma 4.5, there exists a flow f̄aug
in H with congestion ε such that f̄sat := f̄ + f̄aug satisfies ∆. We define f ′sat as the restriction of
f̄sat into G{U ′}. That is, for each new boundary vertex xe ∈ N 〈U ′〉 \N 〈U〉 where u is its unique
neighbor, we set f ′sat(xe, u) = f̄sat(e). For every other edge e ∈ E(G{U ′}), we set f ′sat(e) = f̄sat(e).
Let ∆′ be a U ′-boundary demand function where, for each U ′-boundary vertex v ∈ N 〈U ′〉, we set
∆′(v) = f ′sat(v) as the net flow out of v via f ′sat.

12

Lemma 4.6. We have

1. f ′sat is a flow in G{U ′} with congestion at most (1 + ε) that satisfies ∆′.

2. ∆′ is a U ′-boundary demand function where

∆′(v) = (1− β) degG{U ′}(v) for all old boundary vertices v ∈ N〈U ′〉 ∩N〈U〉
|∆′(v)| ≤ (1 + ε) degG{U ′}(v) for all new boundary vertices v ∈ N〈U ′〉 \N〈U〉

Proof. (1) As f ′sat is a restriction of f̄sat into G{U ′}, then the congestion of f ′sat is at most that of f̄sat
which is (1+ε). To see why f ′sat satisfies ∆′, we have that ∆′(v) = f ′sat(v) for all U ′-boundary vertex
v ∈ N 〈U ′〉 by construction. For non-boundary vertex v ∈ U ′\t, we have f ′sat(v) = f̄(v) = 0 = ∆′(v).
So f ′sat(v) = ∆′(v) for all v 6= t. This implies that f ′sat(t) = ∆′(t) too and so f ′sat satisfies ∆′.

(2) For each new boundary vertex v ∈ N〈U ′〉 \N〈U〉, we have ∆′(v) = f ′sat(v) and so |∆′(v)| ≤
(1 + ε) degG{U ′}(v) because f ′sat has congestion (1 + ε) in G{U ′}. For each old boundary vertex

v ∈ N〈U ′〉 ∩N〈U〉, we have ∆′(v) = f ′sat(v) = f̄sat(v). As f̄sat satisfies ∆, we have f̄sat(v) = ∆(v).
But ∆(v) = (1 − β) degG{U}(v) as, for every i, ∆|V i(v) = (1 − β) degG{U}(v) for every v /∈ P .
Therefore, ∆′(v) = (1− β) degG{U ′}(v).

This proves Item 2 of Theorem 4.1. It remains to prove Item 1 of Theorem 4.1.

Lemma 4.7. δG{U}(P) ≤ ∆(P).

Proof. First observe that δH(D0) ≤ ∆(D0) because every time we remove a set S from V 0, we have
δH(S) < ∆|V 0(S) and we can charge δH(S) to the decrease of ∆|V 0(S). Next, the sets Di for i ≥ 1
satisfy δH(Di) ≤ ∆|V i−1(Di), so

δG{U}(P) = δH(P) ≤
∑
i≥0

δH(Di) ≤ ∆(D0) +
∑
i≥1

∆|V i−1(Di) = ∆(P).

Corollary 4.8. δG(U ′) ≤ δG(U)− β · δG(P, V \ U).

Proof. We have δG{U}(P) = δG(P,U ′) and ∆(P) = (1− β)δG(V \ U,P). By adding δG(V \ U,U ′)
into both sides of the inequality of Lemma 4.7, we have

δG(V \ U,U ′) + δG(P,U ′) ≤ δG(V \ U,U ′) + δG(V \ U,P)− βδG(V \ U,P)

which concludes the proof because δG(U ′) = δG(V \ U,U ′) + δG(P,U ′) and δG(V \ U,U ′) + δG(V \
U,P) = δG(V \ U) = δG(U).

This proves the correctness of Theorem 4.1.

13

4.3 Running Time

Here, we explain some implementation details and analyze the total running time. Computing the
congestion approximator S takes Õ(m) by Theorem 3.2. The step which ensures that no set in S
contains t is at most O(n log n) time because t was contained in at most O(log n) sets S and the
complement of S has size at most n.

Next, we explain how to implement the initialization of V 0 efficiently. Observe that, for any
S ∈ S, if ∆|V 0(S) > δH(S), then we set V 0 ← V 0 \ S and then we have ∆|V 0(S) = 0. Otherwise,
if ∆|V 0(S) ≤ δH(S), then it remains so forever because ∆|V 0(S) is monotonically decreasing when
V 0 is a decremental set. In any case, for each S ∈ S, we only need to compare ∆|V 0(S) with δH(S)
once, which takes time at most O(|S|+ |EH(S, V (H))|). So the total time is O(m log n) because S
can be partitioned into O(log n) layers of disjoint subsets by the second property of Theorem 3.2.

In round i of the main algorithm, computing f i takes O(m) time. Using the fact that S is a
laminar family and S contains O(n) sets, we can compute riS for all S ∈ S in O(n) time, and so we
can compute the weights wi+1

S,◦ for all S ∈ S, ◦ ∈ {+,−} in O(n). The most technical step is Step
2 whose implementation details is shown at the end of the section.

Lemma 4.9. The “deletion set” Di ⊆ V (H) \ t from Step 2 can be computed in O(m + n log n)
time.

In total, the running time is Õ(m) + T · O(m + n log n) time. Recall that m = |E(H)| =
O(|E(G{U})|) where T is the number of rounds. So we conclude the running time analysis:

Lemma 4.10. The total running time of the algorithm for Theorem 4.1 is at most Õ(|E(G{U})|/ε2).

4.4 Proof of Lemma 4.9

In this section, we show how to construction Di ⊆ V (H) \ t where

if Di 6= ∅, then ∆|V i−1(Di) > δH(Di) (1)

〈φi,∆|V i〉 = 〈φi,∆|V i−1\Di〉 ≤ 〈φi, Bf i〉. (2)

If 〈φi,∆|V i−1〉 ≤ 〈φi, Bf i〉, then we simply set Di = ∅, which trivially fulfills both conditions. For
the remainder of the proof, we assume that 〈φi,∆|V i−1〉 > 〈φi, Bf i〉.

For real number x, define V>x = {v ∈ V (H) : φiv > x}. Fix some large number M > max
v∈N{U}

|φiv|.

We first prove the chain of relations∫ M

x=−M
∆|V i−1(V>x)dx = 〈φi,∆|V i−1〉 > 〈φi, Bf i〉 =

∫ M

x=−M
δH(V>x)dx. (3)

We start with ∫ M

x=−M
∆|V i−1(V>x)dx =

∫ M

x=−M

 ∑
v∈V (H)

∆|V i−1(v) · 1{φiv > x}

 dx

=
∑

v∈V (H)

∆|V i−1(v)

∫ M

x=−M
1{φiv > x}dx

=
∑

v∈V (H)

∆|V i−1(v)(φiv − (−M)).

14

Since
∑

v∈V (H) ∆|V i−1(v) = 0 by construction, this is equal to∑
v∈V (H)

∆|V i−1(v)φiv = 〈φi,∆|V i−1〉.

By definition of the flow f i,

〈φi, Bf i〉 =
∑

(u,v)∈E(H)

cH(u, v)|φiu − φiv|

=
∑

(u,v)∈E(H)

cH(u, v)

∫ M

x=−M
1{(u, v) ∈ ∂H(V>x)}dx

=

∫ M

x=−M

∑
(u,v)∈E(H)

cH(u, v)1{(u, v) ∈ ∂H(V>x)}dx

=

∫ M

x=−M
δH(V>x)dx.

Together with the assumption 〈φi,∆|V i−1〉 > 〈φi, Bf i〉, we obtain (3).
Let x∗ be the largest value such that∫ x∗

x=−M
∆|V i−1(V>x)dx =

∫ x∗

x=−M
δH(V>x)dx,

which must exist since x∗ = −M works. Next, we claim that we must have

∆|V i−1(V>x∗) > δH(V>x∗). (4)

Otherwise, for small enough ε > 0 we would have
∫ x∗+ε
x=−M ∆|V i−1(V>x)dx ≤

∫ x∗+ε
x=−M δH(V>x)dx, and

since
∫M
x=−M ∆|V i−1(V>x)dx >

∫M
x=−M δH(V>x)dx, there is another choice of x∗ between x∗ + ε and

M that achieves equality, a contradiction.
We now claim that t /∈ V>x∗ . Otherwise, since ∆|V i−1(V (H)) = 0 and ∆|V i−1(t) is the only

negative entry, we would have ∆|V i−1(V>x∗) ≤ 0 which would violate (4). Since t /∈ V>x∗ and
φit = 0, we conclude that x∗ ≥ 0.

Let φ
i

= min{φi, x∗} as φi truncated to a maximum of x∗. Then, similar to (3), we obtain

〈φi,∆|V i−1〉 =

∫ x∗

x=−M
∆|V i−1(V>x)dx =

∫ x∗

x=−M
δH(V>x)dx = 〈φi, Bf i〉. (5)

Define our deletion set as Di , V>x∗ , so t /∈ Di and Equation (1) follows from (4). We now prove
the chain of relations

〈φi,∆|V i−1\Di〉 = 〈φi,∆|V i−1\Di〉 ≤ 〈φ
i
,∆|V i−1〉 = 〈φi, Bf i〉 ≤ 〈φi, Bf i〉,

which would fulfill Equation (2). For the first relation, if φiv 6= φ
i
v then v ∈ Di, which means that

∆|V i−1\Di(v) = 0. For the second relation, we use φ
i
t = φit = 0 to obtain

〈φi,∆|V i−1\Di〉 =
∑

v∈V (H)\t

φ
i
(v)∆|V i−1\Di(v) =

∑
v∈V (H)\t

φ
i
(v)∆|V i−1(v)− x∗∆|V i−1(Di)

= 〈φi,∆|V i−1〉 − x∗∆|V i−1(Di)

15

which is at most 〈φi,∆|V i−1〉 since x∗ ≥ 0. The third relation follows from (5). For the last relation,
we have

〈φi, Bf i〉 =
∑

(u,v)∈E(H)

cH(u, v)|φiu − φ
i
v| ≤

∑
(u,v)∈E(H)

cH(u, v)|φiu − φiv| = 〈φi, Bf i〉.

This concludes Equation (2).
Finally, we claim the running time O(m + n log n). The only nontrivial step in the algorithm

is computing x∗. We first sort the values φiv in O(n log n) time. Then, by sweeping through the
sorted list, we can compute ∆|V i−1(V>x)− δH(V>x) for all x ∈ {φiv : v ∈ V (H)} in O(m) time. The
function ∆|V i−1(V>x) − δH(V>x) is linear between consecutive values of φiv, so we can locate the
largest value x∗ for which the function is 0.

5 From Almost Fair Cuts to Fair Cuts

In this section, we prove Theorem 1.3 using the AlmostFair subroutine.

5.1 Algorithm

Let (G, s, t, α) be the input and we want to compute a (1 + α)-fair (s, t)-cut in G. Let cmin =
mine c(e) and let C = c(E)/cmin be the ratio between total capacity and the minimum capacity.
Recall that we assume C = poly(n). We also assume α ≥ 1

poly(n) , otherwise we could solve the
problem using exact max flow algorithms.

Our algorithm runs in iterations where in iteration j we compute (Sj , T j , kj , def
j
) where (Sj , T j)

is an (s, t)-cut where s ∈ Sj and t ∈ T j , kj ∈ Z≥0, and def
j ∈ R≥0 represents an upper bound of

the deficit which will be explained in the analysis. Define β = Θ(α/ log n) and ε = β/16. Initially,

(S0, T 0) is an arbitrary (s, t)-cut, def
0

= δG(S0, T 0), and k0 = 0.

While def
j
> βcmin, do the following starting from j = 0, 1, 2, . . .

1. Compute

(P js , S
j \ P js) = AlmostFair(G,Sj , s, ε, (kj + 1)β), and

(P jt , S
j \ P jt) = AlmostFair(G,T j , t, ε, (kj + 1)β)

by calling Theorem 4.1.

2. If max{δG(P js , T j), δG(P jt , S
j)} ≤ def

j
/40, then we update

kj+1 = kj + 1, and

def
j+1

= def
j
/2.

Then, we set T j+1 = T j \ P jt and Sj+1 = V \ T j+1.11

11We could also symmetrically set Sj+1 = Sj \ P js and T j+1 = V \ Sj+1. This choice is arbitrary.

16

3. Else, if max{δG(P js , T j), δG(P jt , S
j)} > def

j
/40, then we update

kj+1 = kj , and

def
j+1

= (1− β/80)def
j

If δG(P js , T j) > def
j
/40, then, we set Sj+1 = Sj \ P js (and T j+1 = V \ Sj+1). Otherwise, we

set T j+1 = T j \ P jt (and Sj+1 = V \ T j+1).

After the while loop, we return (Sj , T j) as a (1 + α)-fair (s, t)-cut. As def
0 ≤ c(E) we have that

def
j ≤ (1−β/80)jc(E) for all j. So there are at most O(log(C/β)/β) iterations before def

j
< β ·cmin.

Therefore, the algorithm takes O(log(C/β)/β)× Õ(m/ε2) = Õ(m/α3) total time by Theorem 4.1.
It remains to show the correctness of the algorithm.

5.2 Analysis

For convenience, whenever we refer to an edge (a, b) ∈ E(A,B), we mean a ∈ A and b ∈ B. Only
for the analysis, we construct a feasible flow f j in G on each iteration j, and ensure that f j satisfies
the following two properties:

1. Define the deficit of flow f j as defj(f j) =
∑

(u,v)∈E(Sj ,T j) max{0, (1− kjβ)c(u, v)− f j(u, v)}.
We maintain an invariant that defj(f j) ≤ def

j
.

2. For all R ⊆ V \ {s, t}, we require that |f j(R)| ≤ εδG(R). Equivalently, f j ε-satisfies an
(s, t)-demand function in G.

In words, each cut edge (u, v) ∈ E(Sj , T j) contributes to the deficit of flow f j when the flow in f j

from u to v is less than (1− kjβ)-fraction of its capacity. With our definition of deficit in Property
1, we have that the cut is fair whenever the deficit is very small:

Proposition 5.1. If def
j
< βcmin, then (Sj , T j) is a (1 + α)-fair (s, t)-cut.

Proof. First we claim that kj = O(log n). This is because everytime kj increments, def is halved.

So at the end of the algorithm, we have βcmin
2 < def

j
< c(E)/2k

j
, which implies kj = O(log(C/β)) =

O(log n). Now, by the assumption and Property 1, for all (u, v) ∈ E(Sj , T j), we have (1 −
kjβ)c(u, v)− f j(u, v) < β · cmin and so

f j(u, v) > (1− (kj + 1)β)c(u, v) ≥ 1

(1 + α/2)
c(u, v)

where the last inequality is because kj = O(log n) and we can set the constant in β = Θ(α/ log n) to
be small enough. Since f j ε-satisfies an (s, t)-demand function, by the observation below Fact 3.1,
there exists faug with congestion ε such that f∗ = f j + faug is an (s, t)-flow. Now, we have that for
all (u, v) ∈ E(Sj , T j),

f∗(u, v) ≥ f j(u, v)− εc(u, v) ≥ 1

(1 + α)
c(u, v)

because ε = β/16 = Θ(α/ log n) and the constant in it is small enough. Therefore, f∗ certifies that
(Sj , T j) is a (1 + α)-fair (s, t)-cut.

17

Initially, we set f0 as the zero flow, which satisfies both properties since def
0

= δG(S0, T 0).
Property 2 will help us show the following inductive step, which would conclude the correctness of
Theorem 1.3.

Lemma 5.2. Suppose there exists a feasible flow f j satisfying Properties 1 and 2 for j. Then, we
can construct a feasible flow f j+1 satisfying Properties 1 and 2 for j + 1.

We analyze the two cases based on max{δG(P js , T j), δG(P jt , S
j)} in the subsections below.

Case 1: max{δG(P js , T j), δG(P jt , S
j)} ≤ def

j
/40

Let S′j = Sj \ P js . By the guarantees of AlmostFair(G,Sj , s, ε, (kj + 1)β), let ∆s be the S′j-
boundary demand function satisfied by a flow fs in G{S′j} with congestion (1+ε). As kj+1 = kj+1
in this case, by Theorem 4.1, we have fs(v) = ∆s(v) = (1−kj+1β) degG{Sj}(v) for all old boundary

vertices v ∈ N〈Sj〉 ∩ N〈S′j〉. Let T ′j ,∆t, ft be defined symmetrically. From fs and ft, we will
construct a new flow f j+1 in three steps.

Step 1: Concatenate. Get f̂ . Consider the “concatenation” of fs and ft, denoted by fst, where
we reverse the direction of fs so that the flow is sent out of s. The concatenated flow fst is on the
graph G{S′j}∪G{T ′j} where the two graphs share N〈S′j〉∩N〈T ′j〉 as common boundary vertices.
Now, we want to define a flow f̂ on G that corresponds to fst in a natural way. See Figure 1.

1. For each edge e ∈ E(G[S′j]) ∪ E(G[T ′j]) in the “interior” of S′j or T ′j , we set f̂(e) = fst(e).

2. For each common boundary vertex xe ∈ N〈S′j〉 ∩ N〈T ′j〉 where e = (u, v) ∈ E(S′j , T ′j), we
have fst(u, xe) = fst(xe, v) = (1− kj+1β)c(e) and so we set f̂(e) = (1− kj+1β)c(e).

3. For each new boundary vertex xe ∈ (N〈S′j〉 \N〈Sj〉) ∪ (N〈T ′j〉 \N〈T j〉) where e = (u, v) ∈
E(S′j , P js) ∪ E(T ′j , P jt), we set f̂(e) = fst(u, xe).

4. For each old boundary vertex xe ∈ N〈Sj〉 ∩ N〈T j〉 incident to the pruned set P js or P jt on
one side, i.e., e = (u, v) ∈ E(S′j , P jt) ∪ E(T ′j , P js), we set f̂(e) = fst(u, xe).

5. For each old boundary vertex xe ∈ N〈Sj〉 ∩ N〈T j〉 incident to the pruned set P js or P jt on
both sides, i.e., e = (u, v) ∈ E(P js , P

j
t), we set f̂(e) = 0.

6. For each edge in the “interior” of P js or P jt , we set f̂(e) = 0.

By construction, f̂ satisfies some demand function ∆̂ where ∆̂(v) = 0 for v /∈ {s, t}∪V (P js)∪V (P jt).

Step 2: Remove Flow Paths Through New Boundaries. Get f̂ ′. Take a path decomposi-
tion of f̂ in G, and then remove all paths starting or ending at vertices in V (P js) ∪ V (P jt); let the
resulting flow be f̂ ′, which satisfies some demand function that is only nonzero at s, t. That is, f̂ ′

is an (s, t)-flow. Note that f̂ ′ still has congestion at most (1 + ε).

Step 3: Truncate to a Feasible Flow. Get f j+1. Finally, for any edges congested by more
than 1 in f̂ ′, lower the flow along that edge to congestion exactly 1. We define f j+1 as the resulting
flow.

18

Figure 1: A diagram indicating the cases for defining f̂ from fst.

Proving Properties of f j+1. Since f j+1 is obtained from the (s, t)-flow f̂ ′ by removing a flow
of congestion at most ε, Property 2 is satisfied. Now, we prove Property 1. We write the deficit of
f j+1 as follows

defj+1(f j+1)

=
∑

e∈E(Sj+1,T j+1)

max{0, (1− kj+1β)c(e)− f j+1(e)}

≤
∑

e∈E(Sj+1,T j+1)

(
max{0, (1− kj+1β)c(e)− f̂(e)}+ |f̂(e)− f̂ ′(e)|+ |f̂ ′(e)− f j+1(e)|

)
=

∑
e∈E(Sj+1,T j+1)

max{0, (1− kj+1β)c(e)− f̂(e)}+

∑
e∈E(Sj+1,T j+1)

|f̂(e)− f̂ ′(e)|+
∑

e∈E(Sj+1,T j+1)

|f̂ ′(e)− f j+1(e)|

Now, we bound each of the three terms above. We use the fact T j+1 = T ′j and Sj+1 = S′j∪P js ∪P jt .
For the first term, we consider the concatenated flow f̂ . We have f̂(e) = (1 − kj+1β)c(e) for

each old boundary edge e ∈ E(S′j , T ′j). So, the first term is bounded by∑
e∈E(S′j∪P js∪P jt ,T ′j)

max{0, (1− kj+1β)c(e)− f̂(e)} ≤
∑

e∈E(P js∪P jt ,T ′j)

(1− kj+1β)c(e)− f̂(e)

≤ ((1− kj+1β) + (1 + ε)) · δ(P js ∪ P
j
t , T

′j)

≤ (2 + ε) · δ(P js ∪ P
j
t , T

′j)

where the second inequality is because f̂ has (1 + ε) congestion.
For the second term, consider the flow f̂ ′ obtained by the flow-path removal. We rewrite the

second term as ∑
e∈E(P js∪P jt ,T ′j)

|f̂(e)− f̂ ′(e)|+
∑

e∈E(S′j ,T ′j)

|f̂(e)− f̂ ′(e)|.

Trivially, we have ∑
e∈E(P js∪P jt ,T ′j)

|f̂(e)− f̂ ′(e)| ≤ (1 + ε)δ(P js ∪ P
j
t , T

′j)

19

because the flow has congestion (1 + ε). Now, we claim that∑
e∈E(S′j ,T ′j)

|f̂(e)− f̂ ′(e)| ≤
∑

e∈E(P js∪P jt ,S′j∪T ′j)

|f̂(e)− f̂ ′(e)| ≤ (1 + ε)δ(P js ∪ P
j
t , S

′j ∪ T ′j).

To see this, consider each flow-path P removed from f̂ to obtain f̂ ′. Observe that P cannot cross
directly from T ′j to S′j because, for every edge e ∈ E(S′j , T ′j), the flow is directed from S′j to
T ′j as f̂(e) = (1 − kj+1β)c(e). Thus, between any two consecutive times that P crosses from
S′j to T ′j , P must have crossed from T ′j to P js ∪ P jt . Also, note that the first edge of P is from
E(P js ∪P jt , S′j∪T ′j). Therefore, we can charge the flow changes in edges of E(S′j , T ′j) to the changes
in edges of E(P js ∪P jt , S′j ∪T ′j). So

∑
e∈E(S′j ,T ′j) |f̂(e)− f̂ ′(e)| ≤

∑
e∈E(P js∪P jt ,S′j∪T ′j)

|f̂(e)− f̂ ′(e)|
as claimed.

Finally, for the third term, we consider the truncated flow f j+1 with congestion at most 1 on all
edges. Again, we have f̂ ′(e)−f j+1(e) = 0 for all e ∈ E(S′j , T ′j) because 0 ≤ f̂ ′(e) ≤ (1−kj+1β)c(e).
In particular, the congestion on e was already less than 1. Also, we have |f̂ ′(e)− f j+1(e)| ≤ εc(e)
for any edges e as f̂ ′ has congestion 1 + ε. Hence, we have∑

e∈E(Sj+1,T j+1)

|f̂ ′(e)− f j+1(e)| ≤
∑

e∈E(P js∪P jt ,T ′j)

εc(e) = εδ(P js ∪ P
j
t , T

′j).

From the above bounds, we obtain

defj+1(f j+1) ≤ ((2 + ε) + (1 + ε) + (1 + ε) + ε)δ(P js ∪ P
j
t , S

′j ∪ T ′j).

Now, write δ(P js ∪ P jt , S′j ∪ T ′j) = δ(P js , S′j) + δ(P jt , S
′j) + δ(P js , T ′j) + δ(P jt , T

′j). Note that
δ(P jt , T

′j) ≤ δ(P jt , S
j) and δ(P js , S′j) ≤ δ(P js , T j) by the guarantee of AlmostFair. Trivially, we

also have δ(P jt , S
′j) ≤ δ(P jt , S

j) and δ(P js , T ′j) ≤ δ(P js , T j). But we have δ(P jt , S
j), δ(P js , T j) ≤

def
j
/40 by the assumption of this case. So we have, as ε ≤ 1/4,

defj+1(f j+1) ≤ (4 + 4ε) · 4 · def
j

40
≤ def

j
/2 = def

j+1

fulfilling Property 1.

Case 2: max{δG(P js , T j), δG(P jt , S
j)} > def

j
/40

In this case, we set f j+1 as the same old flow f j . So Property 2 of f j+1 trivially continues to hold.
For Property 1, assume without loss of generality the case δG(P jt , S

j) > defj/40, so T j+1 = T j \P jt .
(The case δG(P js , T j) > defj/40 is symmetric, so we omit it.) As f j+1 = f j and kj+1 = kj , we have

defj+1(f j+1)

=
∑

e∈E(Sj+1,T j+1)

max{0, (1− kjβ)c(e)− f j(e)}

= defj(f j)−
∑

e∈E(Sj ,P jt)

max{0, (1− kjβ)c(e)− f j(e)}+
∑

e∈E(P jt ,T
j+1)

max{0, (1− kjβ)c(e)− f j(e)}.

For the second term (without the minus sign), we can lower bound it as

20

≥
∑

e∈E(Sj ,P jt)

(1− kjβ)c(e)− f j(e) = (1− kjβ)δ(Sj , P jt)− f j(Sj , P jt).

For the third term, we can upper bound it as

≤
∑

e∈E(P jt ,T
j+1)

c(e)− f j(e) = δ(P jt , T
j+1)− f j(P jt , T j+1).

where the first inequality is because 0 ≤ c(e) − f j(e) as f j is feasible. Putting these together, we
have

defj+1(f j+1) ≤ defj(f j)−
(

(1− kjβ)δ(Sj , P jt)− δ(P jt , T j+1)
)

+
(
f j(Sj , P jt)− f j(P jt , T j+1)

)
.

That is, the increase in deficit can be upper bounded as follows. It will decrease proportional
to (1 − kjβ)δ(Sj , P jt) − δ(P jt , T

j+1) which is related cut size. It may increase proportional to
f(Sj , P jt)− f(P jt , T

j+1) which is related to flow.
For the decrease caused by cut size, AlmostFair(G,T j , t, ε, (kj+1)β) guarantees that δ(P jt , T

j+1) ≤
(1−(kj+1)β)δ(Sj , P jt). So the deficit must decrease by at least

(
(1− kjβ)− (1− (kj + 1)β)

)
δ(Sj , P jt) ≥

βδ(Sj , P jt). For the increase caused by flow, we have that f j(Sj , P jt)− f j(P jt , T j+1) = f j(Sj , P jt) +
f j(T j+1, P jt) = −f j(P jt) is exactly the net flow of f j into P jt . As |f j(P jt)| ≤ εδG(P jt) by Property 2
on P jt , we now have

defj+1(f j+1) ≤ defj(f j)− βδ(Sj , P jt) + εδG(P jt).

Observe that δG(P jt) = δG(Sj , P jt) + δG(P jt , T
j+1) but δ(P jt , T

j+1) ≤ δ(Sj , P jt) by AlmostFair
again. So εδG(P jt) ≤ 2εδG(Sj , P jt) ≤ β

2 δG(Sj , P jt) because ε ≤ β/4. Therefore,

defj+1(f j+1) ≤ defj(f j)− β

2
δ(Sj , P jt) ≤ (1− β

80
)defj(f j) = def

j+1

because δG(Sj , P jt) > defj/40 by our initial assumption.

6 Approximate Isolating Cuts and Steiner Cut

The focus of this section is to compute approximate isolating cuts and show its application in the
Steiner mincut problem.

6.1 Approximate Minimum Isolating Cuts

The approximate minimum isolating cuts problem is defined below.

Definition 6.1. Given an undirected graph G = (V,E) with non-negative edge weights and a set of
terminals T ⊆ V , a cut ∅ ⊂ S ⊂ V is said to be an isolating cut for a terminal t ∈ T if T ∩S = {t}.
A minimum isolating cut for t is a minimum value cut among all the isolating cuts for t. Similarly,
a (1 + ε)-approximate minimum isolating cut for t is an isolating cut for t whose value is at most
(1 + ε) times that of a minimum isolating cut for t.

21

Below is our main theorem. We state our result in general before plugging in the current best
runtime from Theorem 1.3.

Theorem 6.2. We can compute (1 + ε) approximate minimum isolating cuts in Õ(m) time.
More precisely, fix any ε < 1. Given an undirected graph G = (V,E) on m edges and n vertices

with non-negative edge weights and a set of terminals T ⊆ V , there is an algorithm that outputs
a (1 + ε)-approximate minimum isolating cut St for every terminal t ∈ T in O(m) time plus a set
of (1 + γ)-fair (s, t)-cut calls on undirected graphs that collectively contain O(m log |T |) edges and
O(n log |T |) vertices, where γ = ε

4dlg |T |e . Moreover, the sets St are disjoint, and for each t ∈ T , the

cut (St, V \ St) is a t-sided (1 + γ)-fair cut. Using Theorem 1.3 to compute (1 + γ)-fair (s, t)-cuts,
our algorithm for (1 + ε)-approximate minimum isolating cuts runs in Õ(m/ε3) time.

Algorithm 1 (1 + ε)-approximate Minimum Isolating Cuts Algorithm on terminal set T

1: Arbitrarily order the terminals in T = {t1, t2, . . . , t|T |}
2: Phase 1:
3: for i = 1 to dlg |T |e do
4: Xi ← {vj ∈ T : ith bit in j is 1}
5: Yi ← {vj ∈ T : ith bit in j is 0}
6: Use Theorem 1.3 to find a (1 + γ)-fair (Xi, Yi)-cut Si
7: end for
8: Phase 2:
9: for every terminal t ∈ T do

10: Let St be the connected component containing t in G \∪iδSi, i.e., the graph where we delete
all the edges in cuts δSi for all i.

11: Gt is obtained from G by contracting all vertices in V \ St into a single vertex s̄t. {To
implement this step efficiently, we construct a new graph that is identical to Gt instead of
contracting G.}

12: Find a (1 + β)-approximate minimum (t, s̄t)-cut in graph Gt; call this cut Ct
13: end for
14: Return the cuts {Ct : t ∈ T}

To establish Theorem 6.2, we describe Algorithm 1 for finding (1+ε)-approximate isolating cuts.
First, we establish correctness of the algorithm by showing that the cut Ct returned by Algorithm 1
for a terminal t ∈ T is indeed a (1 + ε)-approximate minimum isolating cut for T . The following
claim establishes an approximate version of the standard uncrossing property of minimum cuts,
and is crucial for the correctness of our algorithm.

Lemma 6.3. Let A be a (1 + α)-approximate minimum isolating cut for some terminal t and
let B be a (1 + γ)-fair (X,Y)-cut where X ∪ Y = T , t ∈ X, and X ⊆ B. Then, A ∩ B is a
(1 + α)(1 + γ)-approximate minimum isolating cut for t.

Proof. First, note that since A is an isolating cut for t and t ∈ X,X ⊆ B, it follows that A \ B
does not contain any terminal and A ∩B contains a single terminal t. Now, consider the two cuts
A and A ∩B. Using the notation] for disjoint union, we can write

E(A, V \A) = E(A ∩B, V \ (A ∪B))] E(A ∩B,B \A)] E(A \B, V \A)

E(A ∩B, V \ (A ∩B)) = E(A ∩B, V \ (A ∪B))] E(A ∩B,B \A)] E(A ∩B,A \B).

22

Since the first two sets are identical, we only need to compare the third sets E(A \ B, V \ A) and
E(A ∩ B,A \ B). Since B is a (1 + γ)-fair (X,Y)-cut, there is a feasible flow from X to Y that,
for each edge in E(B, V \ B), sends at least 1

1+γ times capacity in the direction from B to V \ B.
Now, consider the flow on the subset of edges E(A∩B,A \B) ⊆ E(B, V \B). Since the flow must
end at Y and since Y ∩ (A \B) = ∅, it follows that this flow must exit the set A \B on the edges
in E(A \B, V \ (A ∪B)). Thus,

δ(A ∩B,A \B) ≤ (1 + γ) · δ(A \B, V \ (A ∪B)) ≤ (1 + γ) · δ(A \B, V \A).

It follows that δ(A ∩B) ≤ (1 + γ) · δ(A), which proves the lemma.

Lemma 6.4. For γ = ε
4dlg |T |e and β = ε

4 , the cut Ct returned by Algorithm 1 is a (1+ε)-approximate
minimum isolating cut for every t ∈ T .

Proof. Lemma 6.3 implies that in Algorithm 1, the minimum isolating cut of t in graph Gt, i.e., the
minimum t− s̄t cut, is a (1+γ)dlg |T |e-approximate minimum isolating cut of t in the input graph G.
Since Ct is a (1 + β)-approximate minimum t− s̄t cut, it follows that Ct is a (1 + γ)dlg |T |e · (1 + β)-
approximate minimum isolating cut of t in the input graph G. Using the values of γ and β, we
have (

1 +
ε

4dlg |T |e

)dlg |T |e
·
(

1 +
ε

4

)
≤ eε/4 · eε/4 = eε/2 ≤ 1 + ε since ε < 1.

For the (1+β)-approximate mincut in Step 12, we can use Theorem 1.3 to compute a (1+γ)-fair
cut, which is also a (1 + β)-approximate mincut since γ ≤ β. This also guarantees that the cut Ct
is a t-sided (1 + γ)-fair cut. Finally, it is clear from the algorithm that all cuts Ct are disjoint.

The runtime analysis is identical to that in [LP20], so we omit it for brevity.

6.2 (1 + ε)-approximate Minimum Steiner Cut

As an immediate application of our isolating cut result, we can solve the Steiner cut problem below
efficiently.

Definition 6.5. Given an undirected graph G = (V,E) with non-negative edge weights and a set
of terminals T ⊆ V , a minimum Steiner cut is a cut of minimum value among all cuts ∅ ⊂ S ⊂ V
that satisfy ∅ ⊂ S ∩ T ⊂ T .

Using Theorem 6.2, we give the following algorithm for finding a (1 + ε)-approximate minimum
Steiner cut.

Theorem 6.6. Given an undirected graph G = (V,E) on m edges and n vertices and with non-
negative edge weights and a set of terminals T ⊆ V , Algorithm 2 computes a (1 + ε)-minimum
Steiner cut for T wuth probability at least 1− 1/n in Õ(m) time.

Proof. Fix a minimum Steiner cut for the terminal set T and let S denote the side of this cut such
that |T ∩ S| ≤ |T \ S|. Let i ∈ [dlg |T |e] such that 2i−1 ≤ |S ∩ T | < 2i. Then, Tij contains exactly
one vertex in T ∩ S with probability

|T ∩ S| · 1

2i
·
(

1− 1

2i

)|T∩S|−1

≥ 2i−1 · 1

2i
·
(

1− 1

2i

)2i

≥ 1

2
· 1

4
=

1

8
.

23

Algorithm 2 (1 + ε)-approximate minimum Steiner cut Algorithm on terminal set T

for i = 1 to dlg |T |e do
for j = 1 to dlog8/7 ne do

Tij is drawn i.i.d. from T where every vertex t ∈ T appears in Tij with probability 1/2i

Use Theorem 6.2 to find isolating cuts Sij = {St : t ∈ Tij} for the terminal set Tij
end for

end for
Return arg min{δ(S) : S ∈ Sij , i ∈ [dlg |T |e], j ∈ [dlog8/7 ne]}

This implies that the probability that there is no index j ∈ [dlog8/7 ne] such that Tij contains
exactly one terminal in T ∩S is at most 1/n, thereby establishing the correctness of the algorithm.

The running time bound follows from Theorem 6.2.

7 Approximate Gomory-Hu Tree Algorithm

The main result in this section is the near-linear time algorithm for computing an approximate
Gomory-Hu tree. In fact, our algorithm can solve a more general problem called approximate
Gomory-Hu Steiner tree defined below. (The definition is copied verbatim from [LP21].)

Definition 7.1 (Approximate Gomory-Hu Steiner tree). Given a graph G = (V,E) and a set of
terminals U ⊆ V , the (1 + ε)-approximate Gomory-Hu Steiner tree is a weighted tree T on the
vertices U , together with a function f : V → U , such that

• For all s, t ∈ U , consider the minimum-weight edge (u, v) on the unique s − t path in T .
Let U ′ be the vertices of the connected component of T − (u, v) containing s. Then, the set
f−1(U ′) ⊆ V is a (1 + ε)-approximate (s, t)-mincut, and its value is wT (u, v).

Our main result is stated below. Recall that we assume that the ratio between the largest and
lowest edge weights are poly(n).

Theorem 7.2. Let G be a weighted, undirected graph, and let U be a subset of vertices. There
is a randomized algorithm that w.h.p., outputs a (1 + ε)-approximate Gomory-Hu Steiner tree in
Õ(m · poly(1/ε)) time.

The algorithm and analysis are similar to those in [LP21], except we replace (exact) minimum
isolating cuts with an approximate version, which requires overcoming a few more technical issues.
For completeness, we redo all the proofs. We also restate Theorem 6.2 below in the form we
precisely need.

Theorem 7.3. Fix any ε < 1. Given an undirected graph G = (V,E) on m edges and n vertices
with non-negative edge weights and a set of terminals T ⊆ V , there is an algorithm that outputs
a (1 + ε)-approximate minimum isolating cut St ⊆ V for every terminal t ∈ T in Õ(m/εO(1))
time. Moreover, the sets St are disjoint, and for each t ∈ T , the set St is a t-sided (1 + γ)-fair
({t}, T \ {t})-cut.

24

7.1 Cut Threshold Step Algorithm

We begin with the following “Cut Threshold Step” subroutine from [LP21], described in Algorithm 3
below. Loosely speaking, the algorithm inputs a source vertex s and a threshold W , and aims to
find a large fraction of vertices whose mincut from s is approximately at most W .

Algorithm 3 (1 + γ)-approximate “Cut Threshold Step” on inputs (G,U,W, s)

1: Initialize D ← ∅
2: for independent iteration i ∈ {0, 1, 2, . . . , blg |U |c} do
3: Ri ← sample of U where each vertex in U \ {s} is sampled independently with probability

1/2i, and s is sampled with probability 1
4: Compute (1 + γ

2dlg |U |e)-approximate minimum isolating cuts {Siv : v ∈ Ri} on inputs G and

Ri with the additional guarantees of Theorem 7.3 (for large enough constant c > 0)
5: Let F i be the family of sets Siv satisfying δSiv ≤ (1 + γ)W , and let Di ←

⋃
Siv∈Fi S

i
v ∩ U

6: Let R̃i ⊆ Ri be the set of all v ∈ Ri satisfying δSiv ≤ (1 + γ)W
7: end for
8: Let imax be the index i maximizing |Di|
9: Return D ← Dimax , R← R̃imax , and F ← F imax

Lemma 7.4. For any i, each set Siv added to Di satisfies λ(s, v) ≤ (1 + γ)W .

Proof. For each v ∈ Di, the corresponding set Siv on line 5 contains v and not s, so λ(s, v) ≤ δSiv ≤
(1 + γ)W .

Lemma 7.5. Let D∗ be all vertices v ∈ U \ s for which there exists an (s, v)-cut in G of weight at
most W whose side containing v has at most |U |/2 vertices in U . Then, E[|D|] = Ω(|D∗|/ log |U |).

Proof. We will show that

E

blg |U |c∑
i=0

|Di|

 ≥ Ω(|D∗|), (6)

which is sufficient, since the largest Di will have at least 1/(blg |U |c+ 1) fraction of the total size.
Fix a vertex v ∈ D∗. For each 0 ≤ j ≤ dlg |U |e, define Cjv ⊆ V as the (s, v)-cut of weight at most
(1 + γ

2dlg |U |e)
jW that minimizes |Cjv ∩U |, which must exist since v ∈ D∗. By construction, |Cjv ∩U |

is decreasing in j.
We focus on a value j∗ (0 ≤ j∗ < dlg |U |e) satisfying |Cj

∗+1
v ∩ U | ≥ |Cj

∗
v ∩ U |/2, which is

guaranteed to exist. Consider sampling iteration i = blg |Cj
∗
v ∩U |c, where each vertex in U \ {s} is

sampled with probability 1/2i. With probability Ω(1/|Cj
∗
v ∩ U |), we have Cj

∗
v ∩ Ri = {v}, i.e., we

sampled v and nothing else in Cj
∗
v ∩ U . If this occurs, then Cj

∗
v is a valid isolating cut separating

v from Ri \ {v}. Since Siv is a (1 + γ
2dlg |U |e)-approximate minimum isolating cut, we have

δSiv ≤
(

1 +
γ

2dlg |U |e

)
δCj

∗
v ≤

(
1 +

γ

2dlg |U |e

)j∗+1

W ≤
(

1 +
γ

2dlg |U |e

)dlg |U |e
W ≤ eγ/2W ≤ (1+γ)W,

25

so Siv ∩ U is added to Di on line 5. By definition of Cj
∗+1
v , we have |Siv ∩ U | ≥ |C

j∗+1
v ∩ U |, which

is at least |Cj
∗
v ∩ U |/2 by our choice of j∗. In other words, if Cj

∗
v ∩ Ri = {v}, which occurs with

probability Ω(1/|Cj
∗
v ∩ U |), then v is “responsible” for adding at least |Cj

∗
v ∩ U |/2 vertices to Di.

Thus, each vertex v ∈ D∗ is responsible for adding Ω(1) vertices in expectation to someDi, which

increases E
[∑blg |U |c

i=0 |Di|
]

by Ω(1) in expectation. Finally, (6) follows by linearity of expectation

over all v ∈ D∗.

For our approximate Gomory-Hu tree algorithm, we actually need a bound on E[|D ∩ D∗|],
not E[|D|], since we want to remove D from U and claim that the size of the new D∗ drops by a
large enough factor. Unfortunately, it is possible that D is largely disjoint from D∗, so a bound
on E[|D|] does not directly translate to a bound on E[|D ∩D∗|]. Therefore, we wrap Algorithm 3
into another routine that achieves a good bound on E[|D ∩ D∗|]. We actually prove the stronger
guarantee that D∗ can be any subset of all vertices v ∈ U \s for which λ(s, v) ≤W , which is needed
in our Gomory-Hu tree algorithm.

Algorithm 4 (1 + γ)-approximate Gomory-Hu Steiner tree “step” on inputs (G,U0,W0, s)

Initialize U ← U0

for O(log3 n) sequential iterations do
for independent iteration j ∈ {0, 1, 2, . . . , dlg |U |e − 1} do

Call Algorithm 3 on parameter γ
2dlg |U |e and inputs (G,U, (1 + γ

2dlg |U |e)
jW0, s) and let

(Dj , Rj ,Fj) be the output
end for
Update U ← U \

⋃
j Dj for the values Dj computed on this sequential iteration

end for
Return an output (D,R,F) selected uniformly at random out of the O(log3 n log |U |) calls to
Algorithm 3.

Lemma 7.6. Each set S ∈ F in the output (D,R,F) of Algorithm 4 satisfies δS ≤ (1 + γ)W0.

Proof. By Lemma 7.4 applied to any j ∈ {0, 1, 2, . . . , dlg |U |e − 1}, each set S ∈ Fj satisfies

δS ≤
(

1 +
γ

2dlg |U |e

)
·
(

1 +
γ

2dlg |U |e

)j
W0 ≤

(
1 +

γ

2dlg |U |e

)dlg |U |e
W0 ≤ eγ/2W0 ≤ (1 + γ)W0.

So the same holds for the randomly chosen output (D,R,F).

Lemma 7.7. Let D∗ be an arbitrary set of vertices v ∈ U \ s satisfying λ(s, v) ≤ W0. The output
(D,R,F) satisfies E[D ∩D∗] ≥ Ω(|D∗|/ log4 n).

Proof. We claim that after O(log3 n) iterations of the main for loop, the set D∗ ∩ U becomes
empty. This would mean that D∗ is contained in the union of all O(log4 n) sets Dj computed over
all iterations, so a random set Dj must contain a Ω(1/ log4 n) fraction of D∗ in expectation. For
the rest of the proof, we prove this claim.

For each 0 ≤ j ≤ dlg |U |e, let D∗j be all vertices v ∈ U \ s for which λ(s, v) ≤ (1 + γ
2dlg |U |e)

jW0.

By construction, D∗ ⊆ D∗0 ⊆ D∗1 ⊆ · · · ⊆ D∗dlg |U |e. We track the sets D∗j ∩ U throughout

26

the algorithm. Consider the set U at the beginning of one of the O(log3 |U |) sequential iter-
ations. We focus on a value j∗ (0 ≤ j∗ < dlg |U |e) satisfying |D∗j∗ ∩ U | ≥ |D∗j∗+1|/2. Con-
sider iteration j∗ of the inner for loop. By Lemma 7.4, we have λ(s, v) ≤ (1 + γ

2dlg |U |e) · (1 +
γ

2dlg |U |e)
j∗W0 = (1 + γ

2dlg |U |e)
j∗+1W0, so in particular, Dj∗ ⊆ D∗j∗+1. By Lemma 7.5, we have

E[|Dj∗ |] ≥ Ω(|D∗j∗ |/ log |U |) ≥ Ω(|D∗j∗+1|/ log |U |). Therefore, once we delete
⋃
j Dj at the end of

this sequential iteration, the size of D∗j∗+1 drops by factor (1− Ω(1/ log |U |)) in expectation.
In other words, on each sequential iteration, there exists j∗ (1 ≤ j∗ ≤ dlg |U |e) for which the size

of D∗j ∩U drops by factor (1−Ω(1/ log |U |)) in expectation. Since the other sets D∗j′ ∩U can never

increase in size, the product
∏dlg |U |e
j=1 |D∗j ∩U | decreases by factor (1−Ω(1/ log |U |)) in expectation.

Since the product is at most |U |dlg |U |e ≤ 2O(log2 n) initially, it follows that after O(log3 n) sequential
iterations, the product becomes zero w.h.p. Therefore, at the end of the algorithm, there exists j
(1 ≤ j∗ ≤ dlg |U |e) with D∗j ∩ U = ∅. Since D∗ ⊆ D∗j , we also get D∗ ∩ U = ∅, which proves the
claim.

7.2 The Algorithm for Approximating Gomory-Hu Steiner Tree

We present our approximate Gomory-Hu tree algorithm in Algorithm 5. It uses Algorithm 4 as
a subroutine. See Figure 7.2 for a visual guide to the algorithm. Once again, the algorithm and
analysis closely follow those in [LP21].

We require the lemma below for both running time and approximation guarantee analysis.

Lemma 7.8. Each set S ∈ F satisfies δGS ≤ (1 + γ)(1 + 10ε)λ and |S ∩ U | ≤ 2|U |/3.

Proof. By Lemma 7.6 on the call to Algorithm 4 (line 6), each set S ∈ F satisfies δG′S ≤ (1 +
γ) · (1 + 10ε)λ, so δGS ≤ δG′S ≤ (1 + γ)(1 + 10ε)λ. We now prove the second statement. By
construction, the cut ∂G′S has |S ∩U | edges of weight 18ελ/|U | that were added to G′. Since ∂GS
is a valid Steiner cut in G and the Steiner mincut is at least (1 − ε)λ, the cut ∂G′S has at least
(1− ε)λ weight of edges from G. So δG′S ≥ (1− ε)λ+ |S ∩U | · 18ελ/|U |. Suppose for contradiction
that |S ∩ U | > 2|U |/3; then, this becomes δG′S > (1− ε)λ+ 12ελ = (1 + 11ε)λ, which contradicts
the earlier statement δG′S ≤ (1 + γ)(1 + 10ε)λ.

7.3 Running Time Bound

Let P (G,U,W) be the set of unordered pairs of distinct vertices whose mincut is at most W :

P (G,U,W) =

{
{u, v} ∈

(
U

2

)
: λG(u, v) ≤W

}
.

In particular, we will consider its size |P (G,U,W)|, and show the following expected reduction:

Lemma 7.9. For any W that is at most (1 + ε) times the Steiner mincut of G, we have

E[|P (Glarge, Ularge,W)|] ≤
(

1− Ω

(
1

log4 n

))
|P (G,U,W)|,

where the expectation is taken over the random selection of s and the randomness in Algorithm 4.

Before we prove Lemma 7.9, we show how it implies progress on the recursive call for Glarge.

27

Algorithm 5 (1 + ε)-approximate Gomory-Hu Steiner tree on inputs (G0, U). Assume ε < 1/100.

1: If |U | = 1, then return the trivial Gomory-Hu Steiner tree (T, f) where T is the empty tree on
the single vertex u ∈ U , and f(v) = u for all vertices v. Otherwise, if |U | > 1, then do the
steps below.

2: γ ← ε2/ log6 n
3: λ ← (1 + ε)-approximate global Steiner mincut of G with terminals U , so that the Steiner

mincut is in the range [(1− ε)λ, λ]
4: s← uniformly random vertex in U
5: Construct graph G′ by starting with G and adding an edge (s, u) of weight 18ελ/|U | for each
u ∈ U

6: Call Algorithm 4 on parameter γ and inputs (G′, U, (1 + 10ε)λ, s), and let (D,R,F) be the
output. Write F = {Sv : v ∈ R} where v ∈ Sv for all v ∈ R.

7: Phase 1: Construct recursive graphs and apply recursion
8: for each v ∈ R do
9: Let Gv be the graph G with vertices V \ Sv contracted to a single vertex xv

10: Let Uv ← Sv ∩ U
11: Recursively call (Gv, Uv) to obtain output (Tv, fv)
12: end for
13: Let Glarge be the graph G with (disjoint) vertex sets Sv contracted to single vertices yv for all

v ∈ R
14: Let Ularge ← U \

⋃
v∈R(Sv ∩ U)

15: Recursively call (Glarge, Ularge) to obtain (Tlarge, flarge)
16: Phase 2: Merge the recursive Gomory-Hu Steiner trees
17: Construct T by starting with the disjoint union Tlarge ∪

⋃
v∈R Tv and, for each v ∈ R, adding

an edge between fv(xv) ∈ Uv and flarge(yv) ∈ Ularge of weight w(∂GSv)
18: Construct f : V → U by f(v′) = flarge(v

′) if v′ ∈ Ularge and f(v′) = fv(v
′) if v′ ∈ Uv for some

v ∈ R
19: Return (T, f)

28

v1

Si
v1

Si
v2v2

Si
v3v3

xv2

xv1
xv3

fv2

fv3

fv1

Tv2

Tv3

Tv1

flarge

Tlarge

T

Gv2

Glarge

Gv3

Gv1

G

yv1

yv3

yv2

recursive graphs

Combine

Figure 2: Recursive construction of Glarge and Gv for v ∈ R. Here, R = {v1, v2, v3}, denoted by
red vertices on the top left. The dotted blue curves on the right mark the boundaries of the regions
f−1
vi (u) : u ∈ Uvi and f−1

vlarge
(u) : u ∈ Ularge. The light green edges on the bottom left are the edges

(fvi(xvi), flarge(yvi)) added on line 17.

29

Corollary 7.10. Let λ0 be the global Steiner mincut of G. W.h.p., after Ω(log5 n) recursive calls
along Glarge (replacing G ← Glarge each time), the global Steiner mincut of G is at least (1 + ε)λ0

(where λ0 is still the global Steiner mincut of the initial graph).

Proof. Let W = (1 + ε)λ0. Initially, we trivially have |P (G,U,W)| ≤
(|U |

2

)
. The global Steiner

mincut can only increase in the recursive calls, since Glarge is always a contraction of G, so W is
always at most (1+ε) times the current Steiner mincut of G. By Lemma 7.9, the value |P (G,U,W)|
drops by factor 1−Ω(1

log4 n
) in expectation on each recursive call, so after Ω(log5 n) calls, we have

E[|P (G,U,W)|] ≤
(
|U |
2

)
·
(

1− Ω

(
1

log4 n

))Ω(log5 n)

≤ 1

poly(n)
.

In other words, w.h.p., we have |P (G,U,W)| = 0 at the end, or equivalently, the Steiner mincut of
G is at least (1 + ε)λ0.

Combining both recursive measures of progress together, we obtain the following bound on the
recursion depth:

Lemma 7.11. W.h.p., each path down the recursion tree of Algorithm 5 has O(log n) calls on a
graph Gv, and between two consecutive such calls, there are O(ε−1 log6 n) calls on the graph Glarge.

Proof. For any Θ(log5 n) successive recursive calls down the recursion tree, either one call was on
a graph Gv, or all Θ(log5 n) of them were on the graph Glarge. In the former case, |U | drops by a
constant factor by Lemma 7.8, so it can happen O(log n) times total. In the latter case, by Corol-
lary 7.10, the global Steiner mincut increases by factor (1+ ε). Let wmin and wmax be the minimum
and maximum weights in G, so that ∆ = wmax/wmin, which we assume to be poly(n). Note that for
any recursive instance (G′, U ′) and any s, t ∈ U ′, we have wmin ≤ λG′(s, t) ≤ w(∂({s})) ≤ nwmax,
so the global Steiner mincut of (G′, U ′) is always in the range [wmin, nwmax]. It follows that the
global Steiner mincut can increase by factor (1+ε) at most O(ε−1 log(nwmax/wmin)) = O(ε−1 log n)
times. Therefore, there are at most O(ε−1 log6 n) consecutive calls on Glarge before a call on some
Gv must occur.

Lemma 7.12. For an unweighted/weighted graph G = (V,E), and terminals U ⊆ V , Algorithm 5
takes time Õ(mε−1) plus calls to Theorem 7.3 with parameter γ = ε2/ log6 n on unweighted/weighted
instances with a total of Õ(nε−1) vertices and Õ(mε−1) edges.

Proof. For a given recursion level, consider the instances {(Gi, Ui,Wi)} across that level. By con-
struction, the terminals Ui partition U . Moreover, the total number of vertices over all Gi is at
most n+ 2(|U | − 1) = O(n) since each branch creates 2 new vertices and there are at most |U | − 1
branches.

To bound the total number of edges, we consider the unweighted and weighted cases separately,
starting with the unweighted case. The total number of new edges created is at most the sum of
weights of the edges in the final (1 + ε)-approximate Gomory-Hu Steiner tree. For an unweighted
graph, this is O(m) by the following well-known argument. Root the Gomory-Hu Steiner tree T at
any vertex r ∈ U ; for any v ∈ U \ r with parent u, the cut ∂{v} in G is a (u, v)-cut of value deg(v),
so wT (u, v) ≤ (1 + ε)λG(u, v) ≤ (1 + ε) deg(v). Overall, the sum of the edge weights in T is at most
(1 + ε)

∑
v∈U deg(v) ≤ (1 + ε) · 2m.

30

For the weighted case, define a parent vertex in an instance as a vertex resulting from either
(1) contracting V \Sv in some previous recursive Gv call, or (2) contracting a component containing
a parent vertex in some previous recursive call. There are at most O(log n) parent vertices: at most
O(log n) can be created by (1) since each Gv call decreases |U | by a constant factor (Lemma 7.8),
and (2) cannot increase the number of parent vertices. Therefore, the total number of edges adjacent
to parent vertices is at most O(log n) times the number of vertices. Since there are O(n) vertices
in a given recursion level, the total number of edges adjacent to parent vertices is O(n log n) in this
level. Next, we bound the number of edges not adjacent to a parent vertex by m. To do so, we first
show that on each instance, the total number of these edges over all recursive calls produced by
this instance is at most the total number of such edges in this instance. Let P ⊆ V be the parent
vertices; then, each Gv call has exactly |E(G[Sv \P])| edges not adjacent to parent vertices (in the
recursive instance), and the Glarge call has at most |E(G[V \ P]) \

⋃
v∈RE(G[Sv \ P])|, and these

sum to |E(G[V \ P])|, as promised. This implies that the total number of edges not adjacent to a
parent vertex at the next level is at most the total number at the previous level. Since the total
number at the first level is m, the bound follows.

Therefore, there are O(n) vertices and Õ(m) edges in each recursion level. By Lemma 7.11,
there are O(ε−1 log6 n) levels, for a total of Õ(nε−1) vertices and Õ(mε−1) edges. In particular, the
instances to the max-flow calls have Õ(nε−1) vertices and Õ(mε−1) edges in total.

Finally, we prove Lemma 7.9, restated below.

Lemma 7.9. For any W that is at most (1 + ε) times the Steiner mincut of G, we have

E[|P (Glarge, Ularge,W)|] ≤
(

1− Ω

(
1

log4 n

))
|P (G,U,W)|,

where the expectation is taken over the random selection of s and the randomness in Algorithm 4.

Proof. Define D∗ as the set of vertices v ∈ U \ s for which there exists an (s, v)-cut in G of weight
at most W whose side containing v has at most |U |/2 vertices in U . Let Pordered(G,U,W) be the
set of ordered pairs (u, v) : u, v ∈ V for which there exists a (u, v)-mincut of weight at most W
with at most |U |/2 vertices in U on the side S(u, v) ⊆ V containing u. We now state and prove
the following four properties:

(a) For all u, v ∈ U , {u, v} ∈ P (G,U,W) if and only if either (u, v) ∈ Pordered(G,U,W) or
(v, u) ∈ Pordered(G,U,W) (or both).

(b) For each pair (u, v) ∈ Pordered(G,U,W), we have u ∈ D∗ with probability at least 1/2,

(c) For each u ∈ D∗, there are at least |U |/2 vertices v ∈ U for which (u, v) ∈ Pordered(G,U,W).

(d) Over the randomness in Algorithm 3 on (G,U, (1 + ε)λ), E[|D ∩D∗|] ≥ Ω(|D∗|/ log4 |U |).

Property (a) follows by definition. Property (b) follows from the fact that u ∈ D∗ whenever
s /∈ S(u, v), which happens with probability at least 1/2. Property (c) follows because any vertex
v ∈ U\S(u, v) satisfies (u, v) ∈ Pordered(G,U,W), of which there are at least |U |/2. For property (d),
observe by construction of G′ that for each vertex v ∈ D∗, the (s, v)-mincut has weight at most
W + |U |/2 ·18ελ/|U |. This is at most (1+ε)λ+9ελ = (1+10ε)λ since W is at most (1+ε) times the

31

Steiner mincut of G (which is at most λ). It follows that each v ∈ D∗ satisfies λG′(s, v) ≤ (1+10ε)λ.
Property (d) follows from Lemma 7.7 applied to input (G,U, (1 + 10ε)λ, s) and set D∗.

With properties (a) to (d) in hand, we now finish the proof of Lemma 7.9. For any vertex
u ∈ D, all pairs (u, v) ∈ Pordered(G,U,W) (over all v ∈ U) disappear from Pordered(G,U,W), which
is at least |U |/2 many by (c). In other words,

|Pordered(G,U,W) \ Pordered(Glarge, Ularge,W)| ≥ |U | · |D|
2

.

Taking expectations and applying (d),

E[|Pordered(G,U,W) \ Pordered(Glarge, Ularge,W)|] ≥ |U | · E[|D|]
2

≥ Ω

(
|U | · |D∗|
log4 |U |

)
.

Moreover,

|U | · |D∗| ≥ E
[∣∣{(u, v) : u ∈ D∗}

∣∣] ≥ 1

2
|Pordered(G,U,W)|,

where the second inequality follows by (b). Putting everything together, we obtain

E[|Pordered(G,U,W) \ Pordered(Glarge, Ularge,W)|] ≥ Ω

(
|Pordered(G,U,W)|

log4 |U |

)
.

Finally, applying (a) gives

E[|P (G,U,W) \ P (Glarge, Ularge,W)|] ≥ Ω

(
|P (G,U,W)|

log4 |U |

)
.

Finally, we have P (Glarge, Ularge,W) ⊆ P (G,U,W) since the (u, v)-mincut for u, v ∈ Ularge can only
increase in Glarge due to Glarge being a contraction of G. Therefore,

|P (G,U,W)| − |P (Glarge, Ularge,W)| = |P (G,U,W) \ P (Glarge, Ularge,W)|,

and combining with the bound on E[|P (G,U,W) \ P (Glarge, Ularge,W)|] concludes the proof.

7.4 Approximation

We first prove the two lemmas below before concluding the approximation guarantee.

Lemma 7.13. For any distinct vertices p, q ∈ Ularge, we have λG(p, q) ≤ λGlarge
(p, q) ≤ (1 +

γ)λG(p, q).

Proof. Since Glarge is a contraction of G, we have λG(p, q) ≤ λGlarge
(p, q). To show the other

inequality, fix any (p, q)-mincut (A,B) in G. We iteratively “uncross” the cut (A,B) with each set
Sv ∈ F (v ∈ R) as follows: if v ∈ A, then replace (A,B) with (A ∪ Sv, B \ Sv), and if v ∈ B, then
replace (A,B) with (A \ Sv, B ∪ Sv). By construction, the final cut is a (p, q)-cut that contains
each Sv on one side of the cut, so it survives upon contraction into Glarge and is a valid (p, q)-
cut in Glarge. We claim that the final cut has weight at most (1 + γ)λG(p, q), which would prove
λGlarge

(p, q) ≤ (1 + γ)λG(p, q).
Let (A,B) be the current cut in the iterative process, and let Sv be the next cut we wish to

uncross. Since Sv is a v-sided (1 + γ)-fair cut on G′, there is a feasible flow with no source/sink

32

in Sv \ {v} and which saturates ∂G′Sv up to factor 1
1+γ (in the direction from Sv to V \ Sv). By

ignoring the flow outside G′[Sv] ∪ ∂G′Sv, we can view it as a flow from v to the boundary ∂G′Sv
that saturates the boundary up to 1

1+γ factor. Decompose the flow into paths and ignore the paths

ending at edges in G′ − G (which are all in ∂G′Sv), obtaining a feasible flow from v to δGSv that
saturates ∂GSv to factor 1

1+γ .
Suppose first that v ∈ B. Further restrict the flow paths to only those ending at the edges in

the subset EG(A \ Sv, A ∩ Sv) of ∂GSv. Each of these paths must cross EG(A ∩ Sv, B ∩ Sv). There
is at least 1

1+γw(EG(A \ Sv, A ∩ Sv)) flow along these paths, and they must cross a total capacity

of w(EG(A∩Sv, B ∩Sv)). Since the flow is feasible, we conclude that 1
1+γw(EG(A \Sv, A∩Sv)) ≤

w(EG(A ∩ Sv, B ∩ Sv). In the operation that uncrosses Sv, the newly cut edges are precisely
EG(A \ Sv, A∩ Sv), and all edges in EG(A∩ Sv, B ∩ Sv) disappear. We charge the newly cut edges
EG(A \ Sv, A∩ Sv) to the deleted edges EG(A∩ Sv, B ∩ Sv) at a 1 + γ to 1 ratio. Finally, if v ∈ A,
then the argument is symmetric by replacing A and B, and the charging is identical.

Since the sets Sv : v ∈ R are disjoint, each edge is either charged to or charged from, but not
both. If the total weight of charged-to edges is W , then the total weight of newly cut edges is at
most (1 + γ)W , so the final cut has weight at most λG(p, q)−W + (1 + γ)W ≤ (1 + γ)λG(p, q), as
promised.

Lemma 7.14. For any v ∈ R and any distinct vertices p, q ∈ Uv, we have λG(p, q) ≤ λGv(p, q) ≤
(1 + 13ε)λG(p, q).

Proof. The lower bound λG(p, q) ≤ λGv(p, q) holds because Gv is a contraction of G, so we focus on
the upper bound. Fix any (p, q)-mincut in G, and let S be the side of the mincut not containing s
(recall that s ∈ U and s /∈ Sv). Since Sv ∪ S is a (p, s)-cut (and also a (q, s)-cut), it is in particular
a Steiner cut for terminals U , so δG(Sv ∪S) ≥ (1− ε)λ. Also, δGSv ≤ (1+γ)(1+10ε)λ ≤ (1+11ε)λ
by Lemma 7.8. Together with the submodularity of cuts, we obtain

(1 + 11ε)λ+ δGS ≥ δGSv + δGS ≥ δG(Sv ∪ S) + δG(Sv ∩ S) ≥ (1− ε)λ+ δG(Sv ∩ S),

The set Sv ∩ S stays intact under the contraction from G to Gv, so δGv(Sv ∩ S) = δG(Sv ∩ S).
Therefore,

λGv(p, q) ≤ δGv(Sv ∩ S) = δG(Sv ∩ S) ≤ δGS + 12ελ = λG(p, q) + 12ελ.

Finally, λG(p, q) is at least the Steiner mincut of G, which is at least (1 − ε)λ, so the above is at
most λG(p, q) + 12ε · λG(p, q)/(1− ε) ≤ (1 + 13ε)λG(p, q), as promised.

Combining the lemmas above, we can conclude the following.

Lemma 7.15. Algorithm 5 outputs a
(
(1+13ε)(1+γ)O(ε−1 log6 n)

)log1.5 |U |-approximate Gomory-Hu

Steiner tree. With γ = ε2/ log6 n, the approximation factor is (1 + ε)O(log |U |).

Proof. To avoid clutter, define α = Cε−1 log6 n for large enough constant C > 0. Consider the path
down the recursion tree leading up to the current recursive instance, and let k be the number of
consecutive recursive calls of type Glarge directly preceding the current instance. We apply induction
on |U | and k to prove an ((1 + 13ε)(1 +γ)α)log1.5 |U |(1 +γ)−k-approximation factor. By Lemma 7.8,
we have |Uv| ≤ 2|U |/3 for all v ∈ R, so by induction, the recursive outputs (Tv, fv) are Gomory-Hu
Steiner trees with approximation ((1 + 13ε)(1 + γ)α)log1.5 |Uv | ≤ ((1 + 13ε)(1 + γ)α)log1.5 |U |−1. By

33

definition, this means that for all s, t ∈ Uv and the minimum-weight edge (u, u′) on the s–t path
in Tv, letting U ′v ⊆ Uv be the vertices of the connected component of Tv − (u, u′) containing s,
we have that f−1

v (U ′v) is a ((1 + 13ε)(1 + γ)α)log1.5 |U |−1-approximate (s, t)-mincut in Gv with value
wT (u, u′). Define U ′ ⊆ U as the vertices of the connected component of T − (u, u′) containing s.
By construction of (T, f) (lines 17 and 18), the set f−1(U ′) is simply f−1

v (U ′v) with the vertex xv
replaced by V \ Sv in the case that xv ∈ f−1(U ′). Since Gv is simply G with all vertices V \ Sv
contracted to xv, we conclude that δGv(f

−1
v (U ′v)) = δG(f−1(U ′)). By Lemma 7.14, the values

λG(s, t) and λGv(s, t) are within factor (1 + 13ε) of each other, so δG(f−1(U ′)) approximates the
(s, t)-mincut in G to a factor (1 + 13ε) · ((1 + 13ε)(1 + γ)α)log1.5 |U |−1, which we want to show is at
most ((1 + 13ε)(1 +γ)α)log1.5 |U |(1 +γ)−k. This follows by Lemma 7.11 since w.h.p., we always have
k ≤ Cε−1 log6 n = α for large enough constant C > 0. Thus, the Gomory-Hu Steiner tree condition
for (T, f) is satisfied for all s, t ∈ Uv for some v ∈ R.

We now focus on the case s, t ∈ Ularge. By induction, the recursive output (Tlarge, flarge) is a
Gomory-Hu Steiner tree with approximation ((1+13ε)(1+γ)α)log1.5 |U |(1+γ)−(k+1). Again, consider
s, t ∈ Ularge and the minimum-weight edge (u, u′) on the s–t path in Tlarge, and let U ′large ⊆ Ularge

be the vertices of the connected component of Tlarge − (u, u′) containing s. Define U ′ ⊆ U as the
vertices of the connected component of T − (u, u′) containing s. By a similar argument, we have
δGlarge

(f−1
large(U

′
large)) = δG(f−1(U ′)). By Lemma 7.13, we also have λGlarge

(s, t) = (1 + γ)λG(s, t),

so δG(f−1(U ′)) is a
(
((1 + 13ε)(1 + γ)α)log1.5 |U |(1 + γ)−(k+1) · (1 + γ)

)
-approximate (s, t)-mincut in

G, fulfilling the Gomory-Hu Steiner tree condition for (T, f) in the case s, t ∈ Ularge.
There are two remaining cases: s ∈ Uv and t ∈ Uv′ for distinct v, v′ ∈ R, and s ∈ Uv and

t ∈ Ularge; we treat both cases simultaneously. Since G has Steiner mincut at least λ, each of
the contracted graphs Glarge and Gv also has Steiner mincut at least λ. Since all edges on the
approximate Gomory-Hu Steiner tree correspond to actual cuts in the graph, every edge in Tv and
Tlarge has weight at least λ. By construction, the s–t path in T has at least one edge of the form
(fv(xv), flarge(yv)), added on line 17; this edge has weight δGSv ≤ (1 + ε)(1 + γ)λ by Lemma 7.8.
Therefore, the minimum-weight edge on the s–t path in T has weight at least λ and at most
(1 + ε)(1 + γ)λ; in particular, it is a (1 + ε)(1 + γ)-approximation of λG(s, t), which fits the bound
since |U | ≥ 2. If the edge is of the form (fv(xv), flarge(yv)), then by construction, the relevant set
f−1(U ′) is exactly Sv, which is a (1 + ε)-approximate (s, t)-mincut in G. If the edge is in Tlarge or
Tv or Tv′ , then we can apply the same arguments used previously.

Finally, we can reset ε← Θ(ε/ log n) so that the (1 + ε)O(log |U |)-approximation becomes (1 + ε).
This concludes Theorem 7.2.

8 Expander Decomposition

In this section, we show how the fair cut algorithm implies a near-optimal expander decomposition
algorithm, following the framework of Saranurak and Wang [SW19]. We first begin with some
notation exclusive to this section. Define the volume of a set of vertices S as vol(S) =

∑
v∈S deg(v),

and let G{S} denote the subgraph G[S] with (weighted) self-loops added to vertices so that all
vertex degrees are preserved, i.e., degG(v) = degG{S}(v) for all v ∈ S. For a graph G, define its
conductance as

ΦG = min
∅(S(V

c(E(S, V \ S))

min{vol(S),vol(V \ S)}
.

34

We call G a φ-expander if ΦG ≥ φ.

Theorem 8.1 (Near-linear expander decomposition). Given a graph G = (V,E) and a parameter
φ, there is a randomized Õ(m)-time algorithm that with high probability finds a partitioning of V
into V1, . . . , Vk such that ΦG{Vi} ≥ φ for all i ∈ [k] and

∑
i δ(Vi) = Õ(φm).

Note that if G{Vi} is a φ-expander, then so is the induced subgraph G[Vi] (which is sometimes
more directly applicable). We also remark that [SW19] prove almost the exact same theorem,
except their running time is Õ(m/φ), and is therefore slower for small values of φ.

At a high level, we use the same high-level recursive approach, except we replace the flow
subroutines in their trimming and cut-matching steps of [SW19] with a fair cut computation.
We note that there are known black-box reductions from expander decomposition to computing
(approximately) most-balanced sparse cuts. But these reductions have some drawbacks and do not
lead to near-optimal algorithms as in Theorem 8.1. The first reduction is implicit by Spielman and
Teng [ST04]. However, they can only obtain a weak expander decomposition from most-balanced
sparse cut algorithms. It is weak in the sense that each part is only guaranteed to be contained
in some expanders, but may not induce an expander itself. Another reduction by Nanongkai and
Saranurak [NS17] suffers from an inherent no(1) factor loss in both quality and running time. By
refining the non-blackbox approach of [SW19] via fair cuts, we successfully obtain the first expander
decomposition algorithm that are optimal up to polylogarithmic factors.

8.1 Algorithm overview

We begin by describing the recursive algorithm of [SW19] at a high level. There are two main
subroutines, cut-matching and trimming, to be described later. On input graph G = (V,E) and
parameter φ, the algorithm Decomp(G,φ) outputs a partition of V as follows.

1. Call Cut-Matching(G,φ), which either certifies that ΦG ≥ φ or finds a cut (A,R)

2. If we certify ΦG ≥ φ, then return {V } (the trivial partition)

3. Else if we find a relatively balanced cut (A,R), where vol(A) and vol(R) are both Ω(vol(V)/ log2m):

(a) Return Decomp(G{A}, φ) ∪ Decomp(G{R}, φ)

4. Else, suppose that vol(R) ≤ O(vol(V)/ log2m):

(a) A′ = Trimming(G,A, φ)

(b) Return {A′} ∪Decomp(G{A′}, φ)

If Cut-Matching and Trimming run in T time, then the entire recursive algorithm takes Õ(T)
time. In [SW19], the two subroutines are solved in Õ(m/φ) time. In this section, we improve both
running times to Õ(m) by substituting their flow subroutines with fair cuts/flows.

8.2 Trimming step

To describe the trimming step formally, we need the concept of a nearly expander.

Definition 8.2 (nearly φ-expander). Given G = (V,E) and a set of vertices A ⊆ V , we say
that A is a nearly φ-expander in G if for all subsets S ⊆ A with vol(S) ≤ vol(A)/2, we have
c(E(S, V \ S)) ≥ φvol(S).

35

In the trimming step, we are given a set A ⊆ V such that A is a nearly φ-expander in G, and the
goal is to “trim” A to a subset A′ ⊆ A such that G{A′} is a φ/6-expander. The formal subroutine
is described in the theorem below, copied almost identically to Theorem 2.1 of [SW19] except for
the improved Õ(m) running time.

Theorem 8.3 (Trimming, Theorem 2.1 of [SW19]). Given graph G = (V,E) and A ⊆ V such that

1. A is a nearly φ-expander in G, and

2. c(E(A,A)) ≤ φvol(A)/10,

the trimming step finds A′ ⊆ A in time Õ(m) such that ΦG{A′} ≥ φ/6. Moreover, vol(A′) ≥
vol(A)− 4c(E(A,A))/φ and c(E(A′, A′)) ≤ 2c(E(A,A)).

Proof. Consider the following (s, t)-flow problem on a new graph H = (VH , EH). Start from G{A},
and contract V \ A into a single vertex and label it the source s. Next, multiply the capacity of
each edge by 3/φ. Finally, add a new sink vertex t and connect it to each vertex v ∈ A with an
edge of capacity degG{A}(v). Let α = 0.1, and compute a (1 + α)-fair cut (S, T). Let A′ = T \ {t},
which we now show satisfies the properties of the lemma.

First, suppose for contradiction that G{A′} is not a φ/6-expander. Then, there is a violating
set U ⊆ A′ satisfying

c(E(U,A′ \ U)) ≤ φ

6
vol(U).

Since A is a nearly φ-expander,

c(E(U, V \ U)) ≥ φvol(U).

Taking the difference of the two inequalities above,

c(E(U, V \A′)) = c(E(U, V \ U))− c(E(U,A′ \ U)) ≥ 5φ

6
vol(U).

Since (S, T) is a (1 + α)-fair cut, there is a feasible flow f that saturates each edge of EH(S, T)
to factor 1

1+α . Each edge (u, v) in E(U, V \ A′) corresponds to an edge in EH(S, T) of capacity
3
φcG{A}(u, v), and the flow f must send at least 1

1+α ·
3
φcG{A}(u, v) ≥ 2

φcG{A}(u, v) flow along that
edge (in the direction from S to T). In total, the amount of flow entering U in H is at least

2

φ
cG{A}(E(U, V \A′)) ≥ 2

φ
· 5φ

6
vol(U) =

5

3
vol(U).

On the other hand, at most vol(U) flow can leave U along the edges incident to t, and at most

3

φ
cG{A}(E(U,A′ \ U)) ≤ 3

φ
· φ

6
vol(U) =

1

2
vol(U)

flow can cross from U to A′ \U . This totals at most 3
2vol(U) flow that can exit U , which is strictly

less than the ≥ 5
3vol(U) flow that enters U , a contradiction. Thus, G{A′} is a φ/6-expander.

Finally, we show the properties vol(A′) ≥ vol(A)−4c(E(A,A))/φ and c(E(A′, A′)) ≤ 2c(E(A,A))
promised by the lemma. Since (S, T) is a (1 + α)-fair cut, it is in particular a (1 + α)-approximate
(s, t)-mincut. Since ({s}, VH \ {s}) is an (s, t)-cut of capacity 3

φc(E(A,A)), it follows that the cut

36

(S, T) has capacity at most (1 +α) · 3
φc(E(A,A)). To prove the first property above, note that each

vertex v ∈ A \A′ is on the S-side of the cut (S, T), and therefore contributes degG{A}(v) to the cut
(S, T) from the edge (v, t). Summing over all v ∈ A \A′, we obtain

vol(A \A′) ≤ cH(E(S, T)) ≤ (1 + α) · 3

φ
c(E(A,A)) ≤ 4

φ
c(E(A,A)),

which proves the first property. For the second property above, note that each edge (u, v) in
E(A′, A′) corresponds to an edge in E(S, T) with 3/φ times the capacity, so summing over all such
edges,

3

φ
c(E(A′, A′)) ≤ cH(E(S, T)) ≤ (1 + α) · 3

φ
c(E(A,A)),

which proves the second property.

8.3 Cut-matching step

In the cut-matching step, the goal is to either certify that the input graph is an expander, or find
a low-conductance cut with a special property: either it is balanced, or if not, we guarantee that
the larger side is a nearly expander. The name “cut-matching” comes from the cut-matching game
framework [KRV09] that this step uses, though its description is not required in this section.

The formal subroutine is described in the theorem below, copied almost identically to Theo-
rem 2.2 of [SW19] except for the improved Õ(m) running time.

Theorem 8.4 (Cut-Matching, Theorem 2.2 of [SW19]). Given a graph G = (V,E) and a parameter
φ, the cut-matching step takes Õ(m) time and must end with one of the three cases:

1. We certify G has conductance ΦG ≥ φ.

2. We find a cut (A,A) in G of conductance ΦG(A) = O(φ2m), and vol(A),vol(A) are both
Ω(m/ log2m), i.e., we find a relatively balanced low conductance cut.

3. We find a cut (A,A) with ΦG(A) ≤ c0φ log2m for some constant c0, and vol(A) ≤ m/(10c0 log2m),
and A is a nearly φ-expander.

We will not present the entire proof of this theorem, since most of the steps remain unchanged
from [SW19]. The only step that takes Õ(m/φ) time in [SW19] is their subroutine Lemma B.6, so
it suffices to describe it and improve its running time to Õ(m).

First, we introduce some notation from [SW19]. Given a graph G = (V,E) and a subset
of vertices A ⊆ V , denote by G{S} the induced subgraph G[S] but with self-loops added to
vertices so that any vertex in S has the same degree as its degree in G. Given a multi-graph
G = (V,E), its subdivision graph GE = (V ′, E′) is the graph where we put a split node xe on
each edge e ∈ E (including the self-loops). Formally, V ′ = V ∪ XE where XE = {xe | e ∈ E},
and E′ = {(u, xe), (v, xe) | e = (u, v) ∈ E}. While [SW19] only defines the subdivision graph
for unweighted graphs, we can extend the definition to weighted graphs by assigning the edges
(u, xe), (v, xe) ro have capacity c(e) for each edge e = (u, v) ∈ E. For a split node x(u,v), we abuse
notation and define its capacity c(x(u,v)) to be the capacity c(u, v) of the edge (u, v) in G. For a
set of split nodes S, its total capacity c(S) is the sum of the capacities of the split nodes in S.

The input to the subroutine of Lemma B.6 is

37

1. A set of vertices A ⊆ V ′,

2. A set of source split nodes Al ⊆ A ∩XE of total capacity at most cG{A}(A ∩XE)/8, and

3. A set of target split nodes Ar ⊆ A ∩XE of total capacity at least cG{A}(A ∩XE)/2.

For any graph H and positive number U , let HU be the graph where each edge has its capacity
multiplied by U . Let U = 1/(φ log2m), and consider a flow problem on (GE{A})U where each split
node x(u,v) ∈ Al is a source of c(u, v) units of mass (where c(u, v) is the original capacity in GE ,
not multiplied by U) and each split node x(u,v) ∈ Ar is a sink with capacity c(u, v). The task is to
either find

1. A feasible flow f for the above problem, or

2. A cut S where ΦG{A}(S) = O(φ log2m) and a feasible flow for the above flow problem when

only split nodes x(u,v) in Al \ S are sources of c(u, v) units.

Lemma B.6 of [SW19] uses a push-relabel or blocking-flow algorithm that runs in O(m/(φ logm))
time. Using fair cuts, we improve the running time to Õ(m), independent of φ, in the lemma below.

Lemma 8.5. We can solve the task above in Õ(m) time.

Proof. Let α = 0.1, and consider the flow problem on the graph H = (GE{A})U/(1+α) instead.
First, convert it to an (s, t)-flow problem by adding a source vertex s, connected to each x(u,v) ∈
Al with capacity cG{A}(u, v), and a sink vertex t, connected to each x(u,v) ∈ Ar with capacity
cG{A}(u, v)/(1 + α). Next, we compute a (1 + α)-fair cut (S, T) and corresponding feasible flow f ′

in Õ(m) time. There are two cases below:

1. S = {s}. In this case, by definition of fair cuts, the flow f ′ sends at least cG{A}(u, v)/(1 + α)
flow out of each edge from s. By computing a path decomposition and removing paths
accordingly, we can modify f ′ to a new feasible flow f ′′ that sends exactly cG{A}(u, v)/(1 +
α) flow along each edge out of s, and at most cG{A}(u, v)/(1 + α) flow along each edge
into t. Finally, we let flow f be f ′′ multiplied by (1 + α), and then restricted to graph
(GE{A})U . Since f ′′ is feasible on the edges in (GE{A})U/(1+α), we conclude that f is
feasible on (GE{A})U .

2. S 6= {s}. In this case, let Es ⊆ EH(S, T) be the edges of the cut incident to s, let Et ⊆
EH(S, T) be those incident to t, and let Em = EH(S, T) \ (Es ∪ Et) be the remaining cut
edges. Recall that edges in Es and Et retain their original capacity from GE{A}, while edges
in Em have their capacity scaled by U/(1 + α). Also, note that Em is, up to this scaling
factor, exactly the cut E(S \ {s}, T \ {t}) in the original graph G{A}.12 In other words,

cG{A}(E(S \ {s}, T \ {t})) =
1 + α

U
· cH(Em). (7)

Let Es be the edges incident to s that are not in Es. Since (S, T) is a (1 + α)-fair cut, there
is a flow f from s to t that saturates each edge in EH(S, T) to fraction at least 1

1+α . In

particular, this means that the sub-flow from s starting from edges Es must saturate edges in

12We show later that the degenerate case T = {t} cannot happen.

38

EH(S, T)\Es to fraction at least 1
1+α . This implies that cH(EH(S, T)\Es) ≤ (1 +α)cH(Es).

Moreover, for each edge (s, xe) ∈ Es, the split node xe is on the S \ {s} side of the cut
E(S \ {s}, T \ {t}) in G{A}, so

volG{A}(S \ {s}) ≥
∑

(s,xe)∈Es

degG{A}(xe) = 2cH(Es) ≥
2

1 + α
cH(EH(S, T) \ Es) ≥

2

1 + α
cH(Em).

(8)

Putting (7) and (8) together, we obtain

volG{A}(S \ {s}) ≥
2U

(1 + α)2
cG{A}(E(S \ {s}, T \ {t})), (9)

so we would be done as long as we show that volG{A}(S \ {s}) ≤ O(volG{A}(T \ {t})).
Consider now the edges Et. Their capacities are scaled down by 1/(1 + α), so their total
original capacity is at most (1 +α)2cG{A}(A

l), which is at most (1 + α)2cG{A}(A∩XE)/8 by
property (2). On the other hand, the total capacity of edges incident to t is cG{A}(A

r)/(1+α),
which is at least cG{A}(A ∩XE)/(2(1 + α)) by property (3). It follows that at least

cG{A}(A ∩XE)/(2(1 + α))− (1 + α)2cG{A}(A ∩XE)/8 ≥ Ω(cG{A}(A ∩XE))

total capacity of edges incident to t are not in Et. In other words, their corresponding split
nodes are on the T \{t} side of the cut E(S\{s}, T \{t}), which means that volG{A}(T \{t}) ≥
Ω(cG{A}(A∩XE)). Now observe that cG{A}(A∩XE) is a constant fraction of the total volume
of the graph G{A}, so volG{A}(T \ {t}) ≥ Ω(volG{A}(A)). Together with (9), we obtain the
desired

ΦG{A}(S \ {s}) =
cG{A}(S \ {s}, T \ {t})

min{volG{A}(S \ {s}),volG{A}(T \ {t})}
≤ O(1/U) = O(φ log2m).

Acknowledgements

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement No 715672.
Danupon Nanongkai was also supported by the Swedish Research Council (Reg. No. 2019-05622).
Debmalya Panigrahi was supported in part by NSF grants CCF-1750140 (CAREER Award) and
CCF-1955703.

References

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing, 8(1):121–164,
2012. 11

39

[AKL+21] Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol
Saranurak, and Ohad Trabelsi. Gomory-hu tree in subcubic time. CoRR,
abs/2111.04958, 2021. 1, 3, 4

[AKT20a] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Cut-equivalent trees are
optimal for min-cut queries. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
105–118. IEEE, 2020. 3

[AKT20b] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. New algorithms and lower
bounds for all-pairs max-flow in undirected graphs. In Shuchi Chawla, editor, Pro-
ceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,
Salt Lake City, UT, USA, January 5-8, 2020, pages 48–61. SIAM, 2020. 3

[AKT21a] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. APMF < apsp? gomory-hu
tree for unweighted graphs in almost-quadratic time. In 62nd IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February
7-10, 2022, pages 1135–1146. IEEE, 2021. 3

[AKT21b] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Friendly cut sparsifiers and
faster gomory-hu trees. CoRR, abs/2110.15891, 2021. 3

[AKT21c] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Subcubic algorithms for
gomory-hu tree in unweighted graphs. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021, pages 1725–1737. ACM, 2021. 3

[BBG+20] Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon
Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-dynamic graph
sparsifiers against an adaptive adversary. arXiv preprint arXiv:2004.08432, 2020. 4

[BHKP07] Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi.
An Õ(mn) Gomory-Hu tree construction algorithm for unweighted graphs. In 39th
Annual ACM Symposium on Theory of Computing, STOC’07, pages 605–614, 2007.
3

[CGL+20] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. A deterministic algorithm for balanced cut with applications
to dynamic connectivity, flows, and beyond. In 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS), pages 1158–1167. IEEE, 2020. 3

[CH03] Richard Cole and Ramesh Hariharan. A fast algorithm for computing steiner edge
connectivity. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings
of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San
Diego, CA, USA, pages 167–176. ACM, 2003. 3

[CKL+22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time.
March 2022. 1, 4

40

[CLP22] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Augmenting edge connectivity via
isolating cuts. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2022. 1

[CQ21a] Chandra Chekuri and Kent Quanrud. Isolating cuts, (bi-)submodularity, and faster
algorithms for connectivity. In Nikhil Bansal, Emanuela Merelli, and James Worrell,
editors, 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198
of LIPIcs, pages 50:1–50:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
1

[CQ21b] Chandra Chekuri and Kent Quanrud. Isolating cuts, (bi-)submodularity, and faster al-
gorithms for connectivity. In ICALP, volume 198 of LIPIcs, pages 50:1–50:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 4

[CRJ17] Jaime Cohen, Luiz A. Rodrigues, and Elias P. Duarte Jr. Parallel cut tree algorithms.
J. Parallel Distributed Comput., 109:1–14, 2017. 3

[CS19] Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decom-
position and nearly optimal triangle enumeration. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, pages 66–73, 2019. 1, 4, 44

[DV94] Yefim Dinitz and Alek Vainshtein. The connectivity carcass of a vertex subset in a
graph and its incremental maintenance. In Frank Thomson Leighton and Michael T.
Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM Symposium on The-
ory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 716–725. ACM,
1994. 3

[GG18] Barbara Geissmann and Lukas Gianinazzi. Parallel minimum cuts in near-linear work
and low depth. In Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures, pages 1–11, 2018. 45

[GKK+15] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz
Patt-Shamir. Near-optimal distributed maximum flow. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, pages 81–90, 2015. 1

[GLP21] Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse
maxflow faster than goldberg-rao. FOCS, 2021. 1

[GR98] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J.
ACM, 45(5):783–797, 1998. 4

[GRST21] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The ex-
pander hierarchy and its applications to dynamic graph algorithms. In Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2212–2228.
SIAM, 2021. 44

[HKP07] Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. Efficient algorithms
for computing all low s-t edge connectivities and related problems. In Proceedings of

41

the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007,
New Orleans, Louisiana, USA, January 7-9, 2007, pages 127–136, 2007. 3

[Kar00] David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM),
47(1):46–76, 2000. 45

[KLOS14] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-
linear-time algorithm for approximate max flow in undirected graphs, and its mul-
ticommodity generalizations. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 217–226. SIAM, 2014. 1, 4

[KRV09] Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single
commodity flows. Journal of the ACM (JACM), 56(4):1–15, 2009. 37

[LF80] Richard E Ladner and Michael J Fischer. Parallel prefix computation. Journal of the
ACM (JACM), 27(4):831–838, 1980. 45

[LNP+21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and
Sorrachai Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-
flows. In STOC, pages 317–329. ACM, 2021. 1, 4

[LP20] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-
flows. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020. IEEE Computer Society, 2020. 1, 3, 6, 23

[LP21] Jason Li and Debmalya Panigrahi. Approximate Gomory-Hu tree is faster than n− 1
max-flows. In Proceedings of the 53rd Annual ACM Symposium on Theory of Com-
puting, 2021. 3, 6, 24, 25, 27

[LPS21] Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. A nearly optimal all-
pairs min-cuts algorithm in simple graphs. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10,
2022, pages 1124–1134. IEEE, 2021. 3

[LS20] Yang P. Liu and Aaron Sidford. Faster energy maximization for faster maximum
flow. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Ka-
math, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020, pages 803–814. ACM, 2020. 1

[Mad11] Aleksander Madry. From graphs to matrices, and back: new techniques for graph
algorithms. PhD thesis, Massachusetts Institute of Technology, 2011. 1

[MCJ20] Charles Maske, Jaime Cohen, and Elias P. Duarte Jr. Speeding up the gomory-hu
parallel cut tree algorithm with efficient graph contractions. Algorithmica, 82(6):1601–
1615, 2020. 3

[MN20] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-
query, and streaming algorithms. In STOC, pages 496–509. ACM, 2020. 4

42

[MN21] Sagnik Mukhopadhyay and Danupon Nanongkai. A note on isolating cut lemma for
submodular function minimization. CoRR, abs/2103.15724, 2021. 1

[NS17] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with

worst-case update time: adaptive, las vegas, and o(n1/2 - ε)-time. In STOC, pages
1122–1129. ACM, 2017. 4, 35

[NSW17] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic
minimum spanning forest with subpolynomial worst-case update time. In FOCS,
pages 950–961. IEEE Computer Society, 2017. 4

[Pen16] Richard Peng. Approximate undirected maximum flows in o (m polylog (n)) time.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete al-
gorithms, pages 1862–1867. SIAM, 2016. 1, 3, 7, 8

[RST14] Harald Räcke, Chintan Shah, and Hanjo Täubig. Computing cut-based hierarchical
decompositions in almost linear time. In Proceedings of the twenty-fifth annual ACM-
SIAM symposium on Discrete algorithms, pages 227–238. SIAM, 2014. 3, 8

[She13] Jonah Sherman. Nearly maximum flows in nearly linear time. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science, pages 263–269. IEEE, 2013.
1, 4, 5

[She17] Jonah Sherman. Area-convexity, l∞ regularization, and undirected multicommodity
flow. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 452–460, 2017. 3

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Proceedings of the
36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June
13-16, 2004, pages 81–90, 2004. 4, 35

[SW19] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. 2019. To appear in SODA’19. 4, 7, 34, 35, 36, 37, 38

[vdBLL+21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and `1-regression in nearly
linear time for dense instances. 2021. arXiv:2101.05719. 1

[vdBLN+20] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-
linear time on moderately dense graphs. In FOCS, pages 919–930. IEEE, 2020. 1

[Wul17] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-
case update time. In STOC, pages 1130–1143. ACM, 2017. 4

[Zha21a] Tianyi Zhang. Faster cut-equivalent trees in simple graphs. CoRR, abs/2106.03305,
2021. 3

[Zha21b] Tianyi Zhang. Gomory-hu trees in quadratic time. CoRR, abs/2112.01042, 2021. 3

43

A Parallel Algorithms

The goal of this section to prove Theorem 1.5. Along the way, we will show that all algorithmic
components we use and develop can be parallelized.

A.1 Congestion Approximators

The first thing we need is a parallel construction of congestion approximators (see Theorem 3.2).

Theorem A.1 (Parallel Congestion approximator). There is a randomized algorithm that, given
an unweighted graph G = (V,E) with n vertices and m edges, constructs in m1+o(1) work and mo(1)

depth with high probability same laminar as in Theorem 3.2 except that γS = no(1).

We only state the result for unweighted graphs as it follows quite easily from [CS19, GRST21].
We believe that known techniques also imply the same for weighted graphs. Below, we sketch the
proof of Theorem A.1.

First, we need a definition of boundary-linked expander decomposition introduced in [GRST21].
For any graph G = (V,E) and any set S ⊂ V , let G[S] denote the subgraph of G induced by S.
For any w ≥ 0, let G[S]w be obtained from G[S] by adding w self-loops to each vertex v ∈ S for
every boundary edge (v, x), x /∈ S.

Definition A.2. For any graph G = (V,E) with m edges, a (ε, φ, α)-boundary-linked expander
decomposition is partition U = (U1, . . . , Uk) of vertex set V such that

∑
i |E(Ui, V \ Ui)| ≤ εm and

G[Ui]
α/φ is a φ-expander for all i.

Note that (ε, φ, 0)-boundary-linked expander decomposition is the standard (ε, φ)-expander de-
composition. A parallel algorithm for computing an expander decomposition of an unweighted
graph was explicitly shown in [CS19]. In fact, the algorithm works even in the distributed model
called CONGEST.

Theorem A.3 ([CS19]). For any positive integer k, ε ∈ (0, 1), and φ ≥ (ε/ log n)2O(k)
, there is an

algorithm for computing an (ε, φ)-expander decomposition of an unweighted graph in CONGEST in
O(n2/kpoly(1/φ, log n)) rounds w.h.p. In fact, this algorithm has n1/O(log log logn)-depth and m1+o(1)

work.

We will choose k = log log log n from now on. This algorithm can be easily extended to compute
a (ε, φ, ε)-boundary-linked expander decomposition. The idea is as follows: whenever we find a φ-
sparse cut, for each cut edge (u, v), we add (α/φ) self-loops on both u and v before recursing
on both sides. The largest boundary-linked parameter α we can get can be derived by setting
ε = 1/O(log n) and see the largest value of φ we can get. In this case, it is 1/2Θ(log logn)2) when
ε = 1/O(log n) and k = log log log n. From this, it implies the following:

Theorem A.4. When ε = 1/2Θ(
√

logn), φ ≥ (ε/ log n)2O(log log log) ≥ 1/2Θ(
√

logn·log logn), and α ≥
1/2Θ(log logn)2), there is an algorithm that w.h.p. computes a (ε, φ, α)-boundary-linked expander
decomposition in n1/O(log log logn)-depth and m1+o(1) work. (In fact, the algorithm is implementable
in CONGEST in n1/O(log log logn) rounds.)

In [GRST21], it is shown that constructing congestion approximators can be reduced to com-
puting boundary-linked expander decomposition a few times, which is summarized as follows:

44

Lemma A.5. By calling an algorithm for computing a (ε, φ, α)-boundary-linked expander de-
composition for O(log(1/ε)m) times, one can construct a congestion approximator S with quality

γS = O((1/φ) · (1/α)log(1/ε)m).

Plugging Theorem A.4 into the above lemma, this implies an algorithm for Theorem A.1 where
n1/O(log log logn) depth and m1+o(1) work that computes a congestion approximator S with quality
γS = 2Θ(

√
logn·(log logn)2) = no(1).

A.2 Fair Cuts

Given the above parallel construction for congestion approximator, we can obtain the following
parallel fair cut algorithm:

Theorem A.6 (Parallel Fair Cut). Given an unweighted graph G = (V,E), two vertices s, t ∈ V ,
and ε ∈ (0, 1], we can compute with high probability a (1 + ε)-fair (s, t)-cut in no(1)/poly(ε) depth
and m1+o(1)/poly(ε) work.

Before proving the above theorem, we first argue how to obtain a parallel version of the
AlmostFair algorithm.

See the running time analysis of AlmostFair in Section 4.3. We can parallelize it as follows.
We initialize by computing a congestion approximator S with quality γS = no(1) via Theorem A.1.
The other initialization steps consist of elementary operations which can be parallelized in Õ(1)
depth and Õ(m) work.

For each round of the multiplicative weight update algorithm, the only non-trivial step is to a
compute the “deletion set” Di via a sweep cut (Lemma 4.9).

We will prove the below claim at the end.

Claim A.7. Lemma 4.9 admits a parallel implementation with Õ(1) depth and Õ(m) work.

Since our multiplicative weight update algorithm consists of T = O(log(n)/α2) = mo(1)/poly(ε)
rounds (recall that α = ε/γS), we can implement the AlmostFair algorithm from Theorem 4.1 in
mo(1)/poly(ε) depth and m1+o(1)/poly(ε) work.

Given the parallel implementation of the AlmostFair algorithm, we are almost done. The
algorithm for computing fair cuts in Section 5.1 simply calls the AlmostFair subroutine for
O(log(C/β)/β) times where we set β = Θ(α/ log n). Therefore, the algorithm require mo(1)/poly(ε)
depth and m1+o(1)/poly(ε) work. This concludes Theorem A.6.

Proof of Claim A.7. Recall that the problem is to compute x∗ which is the largest x such that
∆|V i−1(V>x)− δH(V>x) > 0 where V>x = {v ∈ V (H) : φiv > x}.

We start by parallel sorting vertices v according to their potential φiv in decreasing order. Let
v1, . . . , vn be the vertices after sorting. Let Sk = {v1, . . . , vk}. We can compute the list of values
of ∆|V i−1(Sk) for all k ∈ [n] in O(log n) depth and O(n) work using a classic parallel prefix sum
algorithm [LF80].

Observe that our goal is equivalent to finding the largest k where δH(Sk)−∆|V i−1(Sk) < 0. By
binary search, we can reduce the problem to checking if there is k where δH(Sk)−∆|V i−1(Sk) < 0.

Now, this problem can be solved using a parallel 1-respecting mincut algorithm by Karger
[Kar00] (see also Lemma 11 of [GG18]) with O(log n) depth and O(m) work. The reduction is as
follows. Let H ′ be the graph obtained from H by inserting the tree P = (v1, . . . , vn), which is a

45

path. Let M be a big number such that M −∆|V i−1(Sk) > 0. Each tree edge (vk, vk+1) ∈ P , we
set its weight to be M −∆|V i−1(Sk). By computing a mincut in H ′ that 1-respect the tree P , we
will obtain k such that δH′(Sk) is minimized. Since δH′(Sk) = δH(Sk) + M −∆|V i−1(Sk), we can
just check if δH′(Sk)−M < 0.

A.3 Isolating Cuts and Gomory-Hu Tree

Here, we finally prove Theorem 1.5. We first briefly explain how the approximate isolating cuts
algorithm (Algorithm 1) and Gomory-Hu tree algorithm (Algorithm 5) can be parallelized to run
in Õ(m) work and polylog(n) parallel time.

For approximate isolating cuts, Phase 1 of Algorithm 1 requires O(log n) many calls to (1 + γ)-
fair cut, which has a parallel algorithm by Theorem A.6. For Phase 2, the sets St and graphs Gt can
be constructed independently for different t in parallel, and for the (1 + β)-approximate minimum
cut computation, we can use the parallel (1 + β)-fair cut algorithm of Theorem A.6, which is also
a (1 + β)-approximate minimum cut.

For Gomory-Hu tree, there are a few additional algorithms that need to be investigated. For
the “Cut Threshold Step” algorithm (Algorithm 3), the O(log n) independent iterations can be
executed in parallel, so the entire algorithm can as well. The (1 + γ)-approximate Gomory-Hu
Steiner tree “step” (Algorithm 4) makes O(log3 n) (sequential) calls to Algorithm 3, so it can also
be parallelized. The Gomory-Hu tree algorithm itself (Algorithm 5) makes one call to Algorithm 4
and, aside from the recursive call on line 11, consists of elementary operations that can directly be
parallelized. For the recursive calls, we use Lemma 7.11 to argue that the recursion tree has depth
polylog(n) w.h.p., so the recursive calls can be parallelized as well. (We stop the recursion after a
large enough polylog(n) many recursive calls, which is all we need w.h.p.)

B Proof of Uncrossing Property

Here, we prove the uncrossing property (Lemma 1.2), restated below. We remark that the proof
follows the same outline as the proof of Lemma 6.3 for approximate isolating cuts.

Lemma 1.2 (Approximate Uncrossing Property). For any vertices s and t, let (S, T) be an α-fair
(s, t)-mincut. Then, for any u, v ∈ S, there exists R ⊂ S such that (R, V \R) is an α-approximate
(u, v)-mincut.

Proof. Let (U, V \U) be a (u, v)-mincut. Without loss of generality, assume that t /∈ U . (Otherwise,
we can swap u and v and use V \U in place of U .) Our goal is to show that U∩S is an α-approximate
(u, v)-mincut contained in S, so that setting R = U ∩ S proves the lemma. Equivalently, we want
to show that δ(U ∩ S) ≤ α · δ(U).

Using the notation] for disjoint union, we can write

E(U, V \ U) = E(U ∩ S, V \ (U ∪ S))] E(U ∩ S, S \ U)] E(U \ S, V \ U)

E(U ∩ S, V \ (U ∩ S)) = E(U ∩ S, V \ (U ∪ S))] E(U ∩ S, S \ U)] E(U ∩ S,U \ S).

Since the first two sets are identical, we only need to compare the third sets E(U \ S, V \ U) and
E(U ∩S,U \S). Since (S, T) is an α-fair (s, t)-cut, there is a feasible flow from s to t that, for each
edge in E(S, T), sends at least 1/α times capacity in the direction from S to T . Now, consider the

46

flow on the subset of edges E(U ∩ S,U \ S) ⊆ E(S, T). This flow must reach t eventually, and it
must exit U \ S along the edges in E(U \ S, V \ (U ∪ S)). Thus,

δ(U ∩ S,U \ S) ≤ α · δ(U \ S, V \ (U ∪ S)) ≤ α · δ(U \ S, V \ U).

It follows that δ(U ∩ S) ≤ α · δ(U), which proves the lemma.

47

	1 Introduction
	1.1 Our contributions
	1.2 Applications

	2 Overview of Techniques
	2.1 Computing Fair Cuts (Proof Idea of thm:fair)
	2.2 From Fair Cuts to Approximate Isolating Cuts
	2.3 From Approximate Isolating Cuts to Approximate GH-trees
	2.4 From Fair Cuts to Near-linear time Expander Decomposition

	3 Preliminaries
	4 Almost Fair Cuts via Multiplicative Weight Updates
	4.1 Algorithm
	4.2 Correctness
	4.3 Running Time
	4.4 Proof of lem:1

	5 From Almost Fair Cuts to Fair Cuts
	5.1 Algorithm
	5.2 Analysis

	6 Approximate Isolating Cuts and Steiner Cut
	6.1 Approximate Minimum Isolating Cuts
	6.2 (1+)-approximate Minimum Steiner Cut

	7 Approximate Gomory-Hu Tree Algorithm
	7.1 Cut Threshold Step Algorithm
	7.2 The Algorithm for Approximating Gomory-Hu Steiner Tree
	7.3 Running Time Bound
	7.4 Approximation

	8 Expander Decomposition
	8.1 Algorithm overview
	8.2 Trimming step
	8.3 Cut-matching step

	A Parallel Algorithms
	A.1 Congestion Approximators
	A.2 Fair Cuts
	A.3 Isolating Cuts and Gomory-Hu Tree

	B Proof of Uncrossing Property

