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Abstract

We demonstrate that for expander graphs, for all ε > 0, there exists a data structure of size Õ(nε−1) which

can be used to return (1 + ε)-approximations to effective resistances in Õ(1) time per query. Short of storing

all effective resistances, previous best approaches could achieve Õ(nε−2) size and Õ(ε−2) time per query by

storing Johnson–Lindenstrauss vectors for each vertex, or Õ(nε−1) size and Õ(nε−1) time per query by storing
a spectral sketch.

Our construction is based on two key ideas: 1) ε−1-sparse, ε-additive approximations to σu for all u,
vectors similar to DL+1u, can be used to recover (1 + ε)-approximations to the effective resistances, 2) In

expander graphs, only Õ(ε−1) coordinates of σu are larger than ε. We give an efficient construction for such

a data structure in Õ(m + nε−2) time via random walks. This results in an algorithm on expander graphs

for computing (1 + ε)-approximate effective resistances for s vertex pairs that runs in Õ(m+ nε−2 + s) time,
improving over the previously best known running time of m1+o(1) + (n+ s)no(1)ε−1.5 for s = ω(nε−0.5).

We employ the above algorithm to compute a (1 + δ)-approximation to the number of spanning trees in an

expander graph, or equivalently, approximating the (pseudo)determinant of its Laplacian in Õ(m + n1.5δ−1)
time. This improves on the previously best known result of m1+o(1) + n1.875+o(1)δ−1.75 time, and matches the
best known size of determinant sparsifiers.
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1 Introduction

Estimating Laplacian Determinants. Given a graph G with n vertices and m edges, what is the running-
time complexity of estimating the number of spanning trees in G? In the 19th century, the celebrated matrix-tree
theorem of Kirchhoff [10] established that the number of spanning trees is equal to 1/n times the product of the
non-trivial eigenvalues of the graph Laplacian, or equivalently the (pseudo)determinant of the Laplacian.1. This
implies an O(nω) time algorithm for exactly computing the number of spanning trees in G.

This result naturally extends to estimating the total weight of all spanning trees for graphs with non-negative
weights w on the edges, where the weight of a tree w(T ) is defined as the product of the weights of the edges in
the tree

∏
e∈T w(e).

The first result to improve on the matrix multiplication time bound was by Durfee, Peebles, Peng, and Rao
[6], giving an Õ(n2δ−2) time2 algorithm for returning a (1+δ)-approximation to the Laplacian determinant. Chu,
Gao, Peng, Sachdeva, Sawlani, and Wang [4] improved the running time bound to m1+o(1) + n1.875+o(1)δ−1.75.

The current approaches to estimating the determinant are based on the construction of determinant
sparsifiers. A determinant sparsifier of a graph is a sparse (reweighted) subgraph that approximately preserves

the determinant. [6] showed how to construct (1 + δ)-determinant sparsifiers for general graphs with Õ(n1.5δ−1)
edges.3 Even considering random subgraphs of the complete graph Kn, the best construction of a determinant
sparsifier requires Ω(n1.5) edges [8]. This results in a natural lower bound of Ω(n1.5) for the running time of
current approaches to determinant estimation. That leads to the following question:

Can we compute an O(1)-approximation to the Laplacian determinant in Õ(n1.5) time?

Estimating Effective Resistances. As noted above, the current algorithms for estimating Laplacian
determinants are far from this Ω(n1.5) time bound. The bottleneck in the current approaches is the time
required for constructing determinant sparsifiers. This, in turn, requires estimating the effective resistances
of s = Ω(n1.5) edges within a multiplicative factor of (1 + ε) for ε = O(n−0.25). The effective resistance between
u, v ∈ V is denoted by R(u, v) or RG(u, v) and is defined as the equivalent effective resistance between the vertices
u, v if the graph is thought of as an electrical network with edge e having resistance 1/we. We can also write
R(u, v) = (1u − 1v)>L+(1u − 1v). This motivates the following question:

How efficiently can we compute (1 + ε)-approximations to effective resistances of s edges?

Table 1 summarizes the known algorithms for estimating effective resistances. The current best algorithm
estimates s effective resistances in m1+o(1) + (n+ s)no(1)ε−1.5 time [4], resulting in an m1+o(1) + n1.875+o(1) time
bound for estimating the determinant. Observe that any ε−1 factors on s will result in a running time worse than
O(n1.5) for estimating the determinant.

Data-Structure view. Say we’re allowed to preprocessG to build a data-structure that occupies small space.
After pre-processing, pairs of vertices arrive online and the data-structure must answer a (1 + ε)-approximate
effective resistance in G for each pair. The trivial approach is to compute and store all pairwise effective resistances
using O(n2) space, and answer each query in O(1) time.

The first non-trivial approach is to use Spielman and Srivastava [14] algorithm for estimating effective
resistances combining Johnson-Lindenstrauss dimension reduction with fast Laplacian solvers [15], resulting in a

data-structure that requires O(nε−2 log n) storage4. The data structure can be built in Õ(min{mε−2,m+nε−4})
time, and can answer each query efficiently in O(ε−2 log n) time. Another approach is to store a spectral sketch [7,
4], a sparse subgraph of G that approximately preserves effective resistances. Such a sketch can be computed in

Õ(m) time, and requires Õ(nε−1) space. However, the computation time now is much slower, requiring Õ(nε−1)
time. There is an immediate open question:

Can we design a data-structure that requires Õ(nε−1) space, and can answer effective resistance queries

efficiently, say Õ(ε−1) or O(1) time per query?

1The usual determinant for the Laplacian is 0 since it has a trivial eigenvalue of 0. In this paper, we overload the notation

Laplacian determinant to denote the pseudodeterminant, the product of all non-zero eigenvalues
2The Õ(·) notation hides poly(logn) factors.
3Theorem 1.1 in Durfee, Peebles, Peng, and Rao [6] states the number of edges required as O(n1.5δ−2). The same construction

with a better choice of parameters leads to determinant-sparsifiers with O(n1.5δ−1) edges.
4For convenience, we are counting the complexity in terms of words of O(logn) size, so the bit complexity is higher by a factor of

O(logn)



Citation Total running time Det. Running time Key ideas
[14] mε−2 + sε−2 m

√
n+ n2 JL + Lap. Solvers

m+ nε−4 + sε−2 n2 Spectral-sparsifiers + JL + Lap. Solvers
[7] n2ε−1 n2.25 Spectral-sketches + Lap. Solvers
[5] m+ nε−2 + sε−2 n2 Approx. Schur
[4] m+ nε−1.5 + sε−1.5 m+ n1.875 Spectral-sketches + Approx. Schur

This paper m+ nε−2 + s m+ n1.5 only for expanders, additive approx. to σu

Table 1: Known algorithms for approximating effective resistances of s vertex pairs to within (1 + ε) in a graph
with m edges and n vertices, and the implied running time for estimating determinants. The running times
expressed above hide mo(1) factors. JL refers to methods using the Johnson–Lindenstrauss lemma [9], and ”Lap.
Solvers” indicate using nearly-linear time Laplacian Solvers [15]. ”Approx. Schur” indicates using approximate
Schur complements [12].

We note that if we can build such a data-structure efficiently, it immediately implies an algorithm for estimating
effective resistances. However, building such a data-structure is a harder question than estimating effective
resistances.

1.1 Our Results We make progress on all aforementioned questions on expander graphs.

Theorem 1.1. For a graph G with expansion Ω̃(1), for any ε > 0, in time Õ(m + nε−2), we can compute a

data-structure with storage Õ(nε−1), that can answer (1 + ε)-approximations to the effective resistance between

any vertex pair with high probability in Õ(1) time. This gives an algorithm that with high probability returns

(1 + ε)-approximate effective resistances for s vertex pairs in G in Õ(m+ nε−2 + s) time.

This establishes for the first time the existence of a data-structure with Õ(nε−1) space that can answer

each query very efficiently – in Õ(1) time; the previous best running time with the same amount of space was

Ω̃(nε−1). Note that for ε = o(1), this is the first data-structure that can answer effective resistance queries in

Õ(1) time while only using o(m) space, i.e. without essentially storing them all. For most applications, including

graph sparsification and estimating Laplacian determinants, we have s ≥ Ω̃(m) or s ≥ Ω̃(nε−2), resulting in an
improvement of Ω(ε−1.5) in running time compared to the m1+o(1) + (n+ s)no(1)ε−1.5 bound from [4].

Building on this, we give an improved algorithm for estimating Laplacian determinants for expander graphs.

Theorem 1.2. For graphs G with Ω̃(1) expansion, for any δ > 0, there is an algorithm that returns a (1 + δ)-

approximation of the Laplacian determinant in Õ(m+ n1.5δ−1) with high probability.

This improves on the previous best running time of m1+o(1) + n1.875+o(1)δ−1.75 from [4]. Ours is the first
algorithm that matches the natural Ω(n1.5) lower bound on the size of determinant sparsifiers. Our algorithm
extends to estimating determinants of a symmetric (1 + α)-diagonally dominant (DD) matrices (a submatrix M
of any Laplacian that satisfies Muu ≥ (1 + α)

∑
v:v 6=u |Muv|).

Theorem 1.3. For any δ, α > 0, given a symmetric (1 + α)-DD matrix M ∈ Rn×n, with m non-zeroes, there is

an algorithm that returns a (1 + δ)-approximate determinant for M in Õ(m+ n1.5δ−1(1 + α−3)) time with high
probability.

This is significant since the current approach to estimating Laplacian determinants [6, 4] is based on recursing
onto two smaller matrices, each with roughly half the vertices, where one of them is 2-DD.

1.2 Technical overview Effective resistance is usually studied as an `22 norm of vectors. Specifically, the
approach from Spielman and Srivastava [14] is based on constructing vectors zu for every vertex u such that

R(u, v) = ‖zu − zv‖22 for every u, v. Applying Johnson-Lindenstrauss dimensionality reduction to these vectors

gives vectors z̃u in Õ(ε−2) dimensions such that R(u, v) = (1± ε)‖z̃u − z̃v‖22. It is known that the JL dimension

reduction strategy requires Ω̃(ε−2) dimensions [13].



Spectral sparsifiers [14, 2] and spectral sketches [7, 4] guarantee that there is a sparse graph H such that
for any fixed vector x ∈ RV , x>L+

Hx is the same as x>L+
Gx up to a (1 ± ε) factor with high probability.

Equivalently, the ”error”
∣∣x>L+

Hx − x>L+
Gx
∣∣ is bounded by εx>L+

Gx , which for expander graphs is Õ(ε‖x‖22).
Picking x = 1u − 1v implies that this guarantee is sufficient for approximating effective resistances. While the
notion of a spectral sketch is stronger than our goal of approximating all effective resistances, it is currently the
only known approach to achieve this goal while requiring only Õ(nε−1) space. Furthermore, it is known that

every spectral sketch requires Ω̃(nε−1) space [1].

We observe that for estimating effective resistances on expanders, a much weaker error guarantee of ε‖x‖21
suffices. This is because the `1 norm and `2 norm of 1u − 1v are within a constant factor, though for arbitrary
vectors x , ‖x‖21 could be larger than ‖x‖22 by a factor of n. Building on this observation, we prove that for
any graph, ε-additive approximations to {DL+Π1u} for all vertices u, are sufficient for recovering (1 + O(ε))-
approximations to effective resistances between any vertex pair, where Π is the projection orthogonal to the all
ones vector.

However, the vectors {DL+Π1u} do not have small enough `1 norm for us to obtain a sparsity guarantee
with ε-additive approximations, even on expanders. We instead show that there exist vectors {σu} which are
similar to {DL+Π1u} for which the previous argument still holds. Furthermore, in an expander graph, for every

vertex u, the vector σu can only have Õ(ε−1) coordinates larger than ε. The proof is based on interpreting these
vectors in terms of random walks starting at the vertex u, and exploiting that random walks in expanders mix in
Õ(1) steps. Thus, we only need Õ(nε−1) space to store ε-additive approximations to all vectors {σu}u∈V , and

can return (1 + ε)-approximations to each effective resistance query in Õ(1) time.
This proof also gives an algorithm for building such a data-structure. Starting from each vertex u, we will

take Õ(ε−2) random walks, each of length Õ(1). Standard concentration bounds guarantee that this is sufficient
to estimate each coordinate of the vector up to an additive ε error with high probability. We preprocess the graph
in O(m) time to be able to sample each random walk step in O(1) time. This results in a total preprocessing time

of Õ(m+ nε−2) and an algorithm for computing s pairs of effective resistances in total time Õ(m+ nε−2 + s).
In order to (1 + δ)-approximate the Laplacian determinant for expander graphs and (1 + α)-DD matrices,

we build on the algorithm from [6]. We modify their algorithm to ensure that every subgraph generated by the
algorithm, for which we need to estimate its Laplacian determinant, remains an expander. The runtime bottleneck
in our algorithm is the same as in [6], the time for estimating the effective resistance of s = Õ(n1.5δ−1) edges up to
a (1 + Θ(n−0.25δ−0.5)) multiplicative factor. Thus, with our modification ensuring expander graphs throughout,

we can use our new algorithm for estimating effective resistances, resulting in a running time of Õ(m+ n1.5δ−1).
For a (1 + α)-DD matrix M , by adding a new vertex and connecting it to all existing vertices, this matrix

can be extended to a Laplacian. Crucially, the pseudodeterminant of the new matrix is exactly n times the
determinant of M. If we eliminate this new vertex in the Schur complement, we obtain a graph with expansion
α/(1 + α) (as measured by the second eigenvalue of its normalized Laplacian). However, this new graph is dense
and hence cannot be written down explicitly. Instead, we exploit the fact that we can simulate random walks on
this graph by representing the clique implicitly. This allows us to implement our algorithm for estimating effective
resistances for expanders on the Schur complement, and hence estimate its determinant in Õ(m+n1.5δ−1(1+α−3))
time.

2 Preliminaries

We are given a graph G(V,E) with n vertices and m edges and edge weights bounded by W . Let A denote the
weighted adjacency matrix for G, and D denote the diagonal matrix of weighted degrees. Then, the Laplacian L
of G is a V by V matrix defined as L = D −A. The normalised Laplacian of G is D−1/2LD−1/2. The measure
of graph expansion we use is the spectral gap of the normalized Laplacian, or equivalently its second smallest
eigenvalue ν2 = λ2(D−1/2LD−1/2). We say that G is an expander if ν2 = Ω̃(1). By Cheeger’s inequality, this is

equivalent to G having Ω̃(1) conductance.
Given a symmetric matrix M ∈ Rn×n, we will express its spectral decomposition as M =

∑n
i=0 λiψiψ

>
i ,

where {ψi}i=1,...,n are orthonormal eigenvectors with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn respectively. We define its
pseudoinverse M+ to be: M+ =

∑
i:λi 6=0

1
λi
ψiψ

>
i .

In particular, for a connected graph G, its Laplacian L has kernel spanned exactly by 1, the all 1 vector. We
will write A � B or B � A iff B −A is positive semi-definite.



The effective resistance between two vertices u and v in a graph G is defined to be

R(u, v) = (1u − 1v)>L+(1u − 1v).

where 1u is defined to be the vector that is 1 on the u entry, and 0 everywhere else. We will use the following
fact about effective resistances, the proof of which is available in the appendix.

Fact 2.1. The effective resistance of any edge (u, v) is lower bounded by 1
2 ( 1
du

+ 1
dv

), where du and dv are the
degrees of u and v respectively.

The Schur complement of a symmetric matrix M =

[
F B
B> C

]
onto some submatrix C is defined to be

Sc(M ,C) = C −B>F−1B. In the context of Laplacians, we abuse notation to have Sc(G,V1), Sc(L, V1), and
Sc(L,C) all refer to the Schur complement of L onto the submatrix C on the vertex support V1. A useful fact
about Schur complements is that the Schur complement of a Laplacian is also a Laplacian. When convenient, we
may use Sc(G,V1) to refer to the graph of the Schur complement from G onto V1. Another important fact is that
Sc(G,V1) preserves the effective resistances of the original graph for pairs of vertices in V1.

Fact 2.2. Consider a graph G, and some arbitrary subset of vertices V1. For all u, v ∈ V1, we have that
RG(u, v) = RSc(G,V1)(u, v).

A (1 + α)-diagonally dominant matrix M is a symmetric matrix M with non-positive off diagonal entries
satisfying Muu ≥ (1 + α)

∑
v:v 6=u |Muv|. Given such a matrix M of size n, we can complete it into a Laplacian

LM by adding only a single column and row. Call the newly added vertex x. We have that:

(LM )ux = (LM )xu = −Muu +
∑
v:v 6=u

Muv,

(LM )xx = −
∑
u

(LM )xu.

We also refer to a subset V1 of a graph G as being (1 + α)-diagonally dominant if for each u ∈ V1, we have:∑
v∼u,v/∈V1

wuv ≥ α
∑

v∼u,v∈V1

wuv.

3 Effective Resistances

In this section, we demonstrate that for expanders, a sparse data structure exists, and can be efficiently computed,
from which we can query the effective resistances between any two vertices in Õ(1) time. The main result of this
section is a more precise statement of Theorem 1.1 as follows:

Theorem 3.1. Given a graph G such that the spectral gap of its normalised Laplacian is ν2, there exists an
algorithm EffectiveResistanceSketch that computes vectors {σ̃u}, in O(m + nε−2ν−32 log n log3 nW

ε ) total
time, such that:

1. The vectors {σ̃u} are O(ν−12 ε−1 log nW )-sparse.

2. For any vertex pair (u, v) EffectiveResistanceQuery can return an estimate of R(u, v) in Õ(1) time5

by querying the vectors σ̃u and σ̃v. This estimate is a (1+ε)-approximation to R(u, v) with high probability.

3.1 Effective Resistances on Expanders We first begin by proving the existence of these vectors:

Lemma 3.1. Suppose G is a graph such that the spectral gap of its normalised Laplacian is ν2. There exists
vectors {σ̃u} such that the following hold:

1. The vectors {σ̃u} are O(ν−12 ε−1 log nW )-sparse.

5The query time is equal to the time required to lookup a constant number of entries. A constant amortized time can be achieved
with a good hash function, or O(logn) time can be achieved through a sorted data set.



2. The effective resistance of an edge (u, v) can be (1+ε)-approximated by the vectors σ̃u and σ̃v in Õ(1) time.

For some intuition as to why we consider the vectors that we do, we first consider the set of vectors
DL+1u, u ∈ V . It is easy to see that we can query (1 + ε)-approximations to the effective resistances from
ε-additive approximations to these vectors, given the lower bound in Fact 2.1.

If each of these vectors were to have small `1 norm, on the order of Õ(ν−12 ), then we would be done, since we
could just round off these vectors to the nearest ε to obtain the sparse vectors. However, it is not in general true
for expanders that these vectors have small enough `1 norm, and in fact, for constant expanders, the `1 norm of
DL+1u can scale linearly with n.

Instead, we consider another set of vectors, constructed through writing L+ as a power series expansion. We
first begin with the power series expansion on L+:

Lemma 3.2. Given a graph G, with Laplacian L = D −A, projection matrix Π = I − 1
n11> and π = D1

1>D1
,

the stationary distribution of the random walk on G, we have:

L+(1u − π) =
1

2
ΠD−1

∞∑
t=0

(
(
1

2
I +

1

2
AD−1)t1u − π

)
.

Proof. Let X = 1
2I + 1

2AD
−1. We have:

1

2
(D −A)D−1

n∑
t=0

(
1

2
I +

1

2
AD−1)t = (I −X)

n∑
t=0

Xt = I −Xn+1.

Consider the action of this matrix on 1u −π. As n→∞, since X is the lazy random walk matrix, repeated
calls of it on 1u − π, a vector with entrywise sum 0, sends it to 0. As such, we have:

1

2
(D −A)D−1

∞∑
t=0

(
1

2
I +

1

2
AD−1)t(1u − π) = (I −X)

∞∑
t=0

Xt(1u − π) = 1u − π.

Thus, x = D−1
∑∞
t=0( 1

2I + 1
2AD

−1)t(1u − π) is a solution to the equation ( 1
2L)x = 1u − π. We know that

( 1
2L)+(1u − π) is the unique solution to this equation that is perpendicular to 1, so we have:

2L+(1u − π) = (
1

2
L)+(1u − π) = ΠD−1

∞∑
t=0

(
1

2
I +

1

2
AD−1)t(1u − π)

L+(1u − π) =
1

2
ΠD−1

∞∑
t=0

(
(
1

2
I +

1

2
AD−1)t1u − π

)
.

as desired.

Instead of considering DL+1u, we instead consider σu = 1
2

∑∞
t=0

(
( 1
2I + 1

2AD
−1)t1u − π

)
. This is similar

in spirit to DL+1u, since DL+(1u − π) = DΠD−1σu.
However, compared to DL+1u, it can be shown that σu each have small `1 norm, and can be used to

recover (1 + ε)-approximations to the effective resistances. We first begin with a by showing that ε-additive
approximations to this set of vectors suffices.

Lemma 3.3. Given an 1
4ε-additive approximation to the vectors {σu = 1

2

∑∞
t=0

(
( 1
2I + 1

2AD
−1)t1u − π

)
|u ∈ V },

we can obtain (1 + ε)-approximations to the effective resistances of the graph G corresponding to the Laplacian L.

Proof. Suppose we have ε-additive approximations {σ̃u} to {σu}. For a given edge (u, v), we have that:

R(u, v) = (1u − 1v)>L+(1u − 1v)

= (L+1u)u − (L+1v)u − (L+1u)v + (L+1v)v.



Since L+(1u−π) = ΠD−1σu from Lemma 3.2 and since the projection to the all 1s vector does not change
the difference between any two elements, we have:

(L+(1u − π))u − (L+(1u − π))v = (ΠD−1σu)u − (ΠD−1σu)v = (D−1σu)u − (D−1σu)v.

Next, since they are both offset by the same value (L+π)u, we have:

(L+1u)u − (L+1v)u = (L+(1u − π))u − (L+(1v − π))u,

which gives us:

R(u, v) = (L+1u)u − (L+1u)v − (L+1v)u + (L+1v)v

= (L+(1u − π))u − (L+(1u − π))v − (L+(1v − π))u + (L+(1v − π))v

= (D−1σu)u − (D−1σu)v − (D−1σv)u + (D−1σv)v.

Hence, we can approximate the effective resistance with:

1

du
(σ̃u)u −

1

dv
(σ̃u)v +

1

dv
(σ̃v)v −

1

du
(σ̃v)u.

The total error is upper bounded by 1
2 ( 1
du

+ 1
dv

)ε. Since by Fact 2.1, the effective resistance R(u, v) is lower

bounded by 1
2 ( 1
du

+ 1
dv

), this gives us a (1 + ε)-approximation to the effective resistances.

Next, we show that these vectors do indeed have small `1 norm.

Lemma 3.4. Given a graph G so that the spectral gap of its normalised Laplacian is ν2, the vectors {σu =
1
2

∑∞
t=0

(
( 1
2I + 1

2AD
−1)t1u − π

)
|u ∈ V } each have `1 norm bounded by O(ν−12 log nW ).

Proof. First, notice that this summation converges. 1
2I+ 1

2AD
−1 is the lazy random walk matrix. As such, when

applied to 1u, a vector with sum 1, this term goes to π, the stationary distribution. We explicitly bound the tail
terms of this summation, truncating it at t0. We have:

∞∑
t=0

(
(
1

2
I +

1

2
AD−1)t1u − π

)
=

t0−1∑
t=0

(
(
1

2
I +

1

2
AD−1)t1u − π

)
+

∞∑
t=t0

(
(
1

2
I +

1

2
AD−1)t1u − π

)
.

We first bound the total `1 norm of the second term. We begin with a well known result on the convergence of
random walks, the proof of which is available in the appendix.

Lemma 3.5. Given a graph G, and an initial distribution p, the `1 norm difference between the distribution of
the lazy random walk after t steps and the stationary distribution is bounded by:∥∥∥∥(

1

2
I +

1

2
AD−1)tp− π

∥∥∥∥
1

≤ e−tν2/2ndmax

dmin
.

where dmax and dmin are the largest and smallest weighted degrees respectively.

This bounds the `1 norm of the second term:∥∥∥∥∥
∞∑
t=t0

(
(
1

2
I +

1

2
AD−1)t1u − π

)∥∥∥∥∥
1

≤
∞∑
t=t0

∥∥∥∥((
1

2
I +

1

2
AD−1)t1u − π

)∥∥∥∥
1

≤ 2ndmax
dmin

∞∑
t=t0

e−tν2/2

=
2ndmax
dmin

e−
ν2t0

2

1− e−
ν2
2

.



We have that dmax
dmin

≤ W , and (1 − e−
ν2
2 ) ≥ ν2/4. We bound ν2 as follows. The conductance of any graph

is minimally 1
n2W . Cheeger’s inequality then tells us that ν2 ≥ ( 1

n2W )2/2. Hence, setting t0 = O(ν−12 log nW )
bounds the error by a constant. The first term can also easily be bounded by 2t0:∥∥∥∥∥

t0−1∑
t=0

(
(
1

2
I +

1

2
AD−1)t1u − π

)∥∥∥∥∥
1

≤
t0−1∑
t=0

∥∥∥∥(
1

2
I +

1

2
AD−1)t1u

∥∥∥∥
1

+ ‖π‖1

= 2t0,

since the random walk matrix preserves `1 norms for strictly positive vectors. Combining bounds the `1 norm of∑∞
t=0

(
( 1
2I + 1

2AD
−1)t1u − π

)
by O(ν−12 log nW ) as desired.

We now combine Lemma 3.3 and Lemma 3.4 to prove Lemma 3.1:

Proof. [Proof of Lemma 3.1]
We have from Lemma 3.4 that the `1 norm of σu =

∑∞
t=t0

(
( 1
2I + 1

2AD
−1)t1u − π

)
is bounded by

O(ν−12 log nW ). As such, there can be at most O(ν−12 ε−1 log nW ) entries in this vector that have absolute
value greater than ε/4. Consider the ε/4-additive approximation to this vector σ̃u where each entry that has
absolute value less than ε/4 is 0. This vector is O(ν−12 ε−1 log nW ) sparse.

By Lemma 3.3, we can use these ε/4-additive approximations to the vectors σu to obtain (1 + ε)-

approximations to the effective resistances in Õ(1) time for each query.

Finally, we demonstrate that these vectors can be efficiently calculated, proving Theorem 3.1. From the above
discussion, we’ve established that to obtain (1 + ε)-approximations to the effective resistances, we simply have to
produce the vectors {σ̃u}u∈V . We can view the algorithm as follows. The random walk starting at any position
mixes quickly, and quickly there is no significant difference between its probability distribution and the stationary
distribution. Most coordinates approach the stationary distribution quickly enough that even summing across
the first Õ(ν−12 ) steps their contributions are small and can be discarded, while the remaining Õ(ε−1) coordinates
have significant sums from which we can extract the effective resistances.

Proof. [Proof of Theorem 3.1] From our proof of Lemma 3.4, we have that the power series, truncated at
t0 = O(ν−12 log nW

ε ) gives us at most ε/8 additive error in each coordinate. As such, we only have to produce a
ε/8-approximation of:

t0−1∑
t=0

(
(
1

2
I +

1

2
AD−1)t1u − π

)
.

To do so, we simply perform lazy random walks. We calculate an ε/8-additive approximation to(∑t0−1
t=0 ( 1

2I + 1
2AD

−1)t1u

)
v

for all v ∈ V by performing s = O(ε−2t0 log n) random walks for each length l

from 0 to t0 starting at u. Fix some starting vertex u, and some end vertex v, and let Xuv
li be the random variable

that the i-th random walk of length l starting at u ends at v. Let Suv =
∑s
i=1

∑t0−1
l=0 Xuv

li .
By a Hoeffding bound, we have that:

Pr(|Suv − E[Suv]| ≥ sε/8) ≤ 2e−
2(sε/8)2

st0 .

This gives us that our approximation to
(∑t0−1

t=0 ( 1
2I + 1

2AD
−1)t1u

)
v
, namely 1

sSuv is an ε/8-additive approxima-

tion with high probability. Now union bounding over all the possible vertices gives us high probability guarantees
on all the errors being ε/8-additive approximations.

For each vertex, there are a total of s = O(ε−2t0 log n) random walks being performed for each length l from
0 to t0. We note here that there is a procedure UnsortedProportionalSampling[16, 3] with O(m) total
preprocessing time, from which we can query random walk edges in O(1) time each. A simpler approach using a
balanced binary search tree would also suffice, but with O(log n) overhead. This efficient sampling method allows
us to run these random walks in total time:

O(m+ nst20) = O(m+ nε−2ν−32 log n log3 nW

ε
).



Algorithm 1 EffectiveResistanceSketch(G, ε, ν2)

Input: Graph G, with spectral gap of its normalised Laplacian being ν2
Output O(ν−12 ε−1 log nW )-sparse vectors {σu} from which the effective resistances can be queried in O(1)
time.
S 1

n1 ← 0
for u ∈ V do
Su ← 0
for i = 1 to s = O(ε−2ν−12 log n log nW

ε ) do

for l = 0 to t0 − 1 = O(ν−12 log nW
ε ) do

Perform a length l random walk starting from u, ending at vertex v.
(Su)v ← (Su)v + 1

s

for u ∈ V do
σ̃u ← Su − t0πu
For each entry of σ̃u, if it smaller than ε in absolute value, set it to 0.

return {σ̃u}u∈V as sparse vectors

Algorithm 2 EffectiveResistanceQuery({σ̃u}, (x, y))

Input: The output of EffectiveResistanceSketch, {σ̃u}, and two vertices to be queried (x, y)
Output (1 + ε)-approximation of the effective resistance between x and y
return 1

du
(σ̃u)u − 1

dv
(σ̃u)v + 1

dv
(σ̃v)v − 1

du
(σ̃v)u.

Now, subtracting t0π from the vector yields a ε/8-additive approximation to
∑t0−1
t=0

(
( 1
2I + 1

2AD
−1)t1u − π

)
)

as desired.
The full algorithm to sketch these vectors can be seen in Algorithm 1, and the query algorithm in Algorithm 2.

3.2 Effective Resistances on (1 + α)-DD Matrices We prove an analogous statement for (1 + α)-DD
Matrices.

Given a 2-DD matrix M , we look at its completion into a Laplacian LM representing graph GM with new
added vertex x. On this new graph GM , we show that the effect resistances of every edge not involving x can be
calculated.

Lemma 3.6. Suppose M is a (1 + α)-DD matrix, and let LM represent its completion into a Laplacian,
and GM be the represented graph with new vertex x. There is an algorithm that builds a data-structure in
O(m + nε−2(1 + α−3) log n log3 nW

ε ) time, where where m is the number of edges in GM . This data-structure

allows us to query for to the effective resistances between any two original vertices in GM (not x) in Õ(1) time,
and with high probability, it returns a (1 + ε)-approximation.

To calculate the effective resistances between vertices in M , we can calculate the effective resistances in the
Schur complement of GM onto V \{x}. Since we are removing a single vertex x, we are adding a weighted clique
back onto the graph. We first show that the Schur complement produced is a ν2 expander.

Let GM [V \x] denote the subgraph of GM restricted to the vertices V \{x}. Let the degrees of each vertex
u in GM [V \x] be du, and the weight of the edge (u, x) be d′u. Since M is an (1 + α)-DD matrix, we have that
d′u ≥ αdu. Let dx =

∑
u d
′
u be the total degree of the new vertex x. It is well known6 that the weighted clique

added by the Schur complement has weights
d′ud

′
v

dx
for the edge (u, v).

LetD′ be the diagonal matrix withD′uu = d′u. Consider the Laplacian on just the weighted clique, normalised
by the degrees D′, D′−1/2(Sc(GM , V \{x}) − LGM [V \{x}])D

′−1/2. We have that if λ is an eigenvalue of this

6A proof is available in the preliminaries section of [12]



matrix, with eigenvector ψ, that for each u:

1√
d′u
d′u

1√
d′u
ψu −

1√
d′u

∑
v

d′ud
′
v

dx

1√
d′v
ψv = λψu,

−
∑
v

d′v
dx

1√
d′v
ψv = (λ− 1)

1√
d′u
ψu.

In particular, we have that (λ − 1) 1√
d′u
ψu = (λ − 1) 1√

d′v
ψv for any two u, v. This gives us an eigenvector

D′1/21, with eigenvalue 0, and any other vectors perpendicular to D′1/21 having eigenvalue 1. As such, we have:

D′−1/2(Sc(GM , V \{x})−LGM [V \{x}])D
′−1/2 � I − 1

1>D′1
D′1/21(D′1/21)>.

Let D be the diagonal with the degrees in Sc(GM , V \{x}), Du = du + d′u −
(d′u)

2

dx
. Since d′u ≥ αdu, we have that

each diagonal entry of D′D−1 is lower bounded by d′u/(du + d′u) ≥ α/(1 + α). We now have:

(Sc(GM , V \{x})−LGM [V \{x}]) �D′ −
1

1>D′1
D′1(D′1)>,

D−1/2(Sc(GM , V \{x})−LGM [V \{x}])D
−1/2 �D′D−1 −D−1/2 1

1>D′1
D′1(D′1)>D−1/2.

In particular, over any subspace perpendicular to D−1/2D′1, the eigenvalue of the weighted clique is at least
α/(1 + α). As such, since the Laplacian of GM [V \{x}] is positive semi definite, the second smallest normalised
eigenvalue of the Schur complement, λ2(D−1/2(Sc(GM , V \{x}))D−1/2) is at least α/(1 + α).

We now apply the same technique as in Theorem 3.1, additionally noting that since the Schur complement
adds a clique to the original edges, we cannot explicitly write down the whole graph to perform random walks.
We modify the random walk process by performing the random walks implicitly.

As a preprocessing step, we first calculate the total weights of each of the edges going to x. Let d′′u = d′u−
(d′u)

2

dx
be the part of the degree contributed by the Schur complement. We note that du+d′′u is the new degree of the vertex
u. While performing the random walk, at any vertex u, with probability du

du+d′′u
, we perform a random walk step

on the O(m)-sparse original graph GM [V \{x}] using UnsortedProportionalSampling. With the remaining

probability
d′′u

du+d′′u
we perform a random walk through the weighted clique added by the Schur complement. This

is easily achieved by sampling an outgoing edge proportional to the degrees d′v.
Now, since Schur complements preserve effective resistances, this gives us the effective resistance of all edges

not involving x.

4 Approximate Determinants on Expanders

Being able to more efficiently ε-approximate the effective resistances allows us to more efficiently approximate
spanning tree counts on expanders. We prove the following more precise version of Theorem 1.2 in this section:

Theorem 4.1. Given a graph G such that the spectral gap of its normalised Laplacian is ν2, we can calculate a
(1 + δ)-approximation to the number of spanning trees of G in Õ(m+ n1.5δ−1ν−32 ) time with high probability.

Proof. We follow the strategy as in [6]. We first begin with a description of the overall strategy as in [6].
We begin with a graph G. The determinant of a Laplacian is always 0, since it has a kernel 1. For the sake of

convenience, we abuse notation and refer to det+(LG), the determinant of the Laplacian LG with one of its rows
and columns removed when talking about the determinant of a Laplacian. To approximate the determinant of
LG, we find a (1 +α)-DD subset of vertices V2 using Lemma 3.5 of [11], and V1 = V \V2 and recursively calculate
the following:

det+(LG) = det(L[V2,V2]) · det+(Sc(L, V1)).

This decomposes into two parts, the determinant of a (1 + α)-DD matrix, and det+(Sc(L, V1)). The former
of these two terms is the submatrix of a Laplacian, and we can calculate it recursively by adding a new row and
column, completing it into a Laplacian.



The latter term is the determinant of a Schur complement. The Schur complement is also a Laplacian, so
ideally we would like to simply recurse on this half as well. However, taking Schur complements can result in
the number of edges blowing up to Θ(n2), so an explicit construction of the Schur complement would not be
fast enough. The authors of [6] get around this by implicitly constructing a determinant sparsifier of the Schur
complement.

In particular, they demonstrate that a (1+δ)-determinant sparsifier of a graph can be constructed by sampling
some s edges of G, proportional to their leverage scores with ε multiplicative error, and then reweighting each

edge by a factor of exp ( n2

2(n−1)s ). For the guarantees to hold, s and ε are picked so that they satisfy n2ε2

s , n
3

s2 ≤ δ
2.

For the best time complexity, we pick s = n1.5δ−1, ε = n−0.25δ0.5.
In fact, the bottleneck in this algorithm is precisely the time required to sample these n1.5ε−1 (1 + ε)-

approximate effective resistances, for ε = n−0.25δ−0.5. Chu, Gao, Peng, Sachdeva, Sawlani, and Wang [4] rewrites
the algorithm in [6], showing the following lemma:

Lemma 4.1. ([6, 4]) Let T (m,n, s, ε) be the time required to find s (1 + ε)-approximations to the effective resis-
tances of some query edges in a graph G with m edges and n vertices. There is an algorithm BetterSchurSparse
that takes a 2-DD subset of vertices V2, and constructs a (1 + δ)-determinant sparsifier of Sc(G,V1) with

Õ(n1.5δ−1) edges in time:

Õ(m+ T (m,n1.5δ−1, n−0.25δ−0.5)),

and that in fact the determinant approximation algorithm DetApprox has the same time complexity.

We adapt their algorithm to our effective resistance sampler that only works on (1 + α)-DD matrices or
expanders. For our approach to go through, we require that taking the Schur complement preserves expansion so
that our recursion holds. We first begin by proving this lemma.

Lemma 4.2. Given a graph G with Laplacian L such that the second smallest eigenvalue of its normalised
laplacian is ν2, for any set C of vertices, the Schur complement S = Sc(G,C) of G from F = V \C onto
C, normalised to the original degrees, also has second smallest eigenvalue at least ν2.

Proof. We adopt the strategy as in the proof of the eigenvalue interlacing theorem. Let L =

[
F B
B> C

]
, and

D
−1/2
F and D

−1/2
C be the degrees on F and C respectively. We have:[

D
−1/2
F 0

0 D
−1/2
C

][
F B
B> C

][
D
−1/2
F 0

0 D
−1/2
C

]
(4.1)

=

[
D
−1/2
F 0

0 D
−1/2
C

][
I 0

B>F−1 I

][
F 0

0 S

][
I F−1B

0 I

][
D
−1/2
F 0

0 D
−1/2
C

]
.(4.2)

Consider some vector v =

[
x

y

]
.

We have that: [
I F−1B
0 I

][
D
−1/2
F 0

0 D
−1/2
C

][
x
y

]
=

[
D
−1/2
F x + F−1BD

−1/2
C y

D
−1/2
C y

]
.

Now for any y, consider its extension into the whole space v(y) =

[
−D

1/2
F F−1BD

−1/2
C y

y

]
. Notice that

F−1,D
−1/2
C and D

−1/2
F are all well defined, since F is positive definite, while DC and DF are diagonal and

non-zero. We also have that

[
I F−1B
0 I

][
D
−1/2
F 0

0 D
−1/2
C

]
v(y) =

[
0

D
−1/2
C y

]
, which combined with equation

(2) gives us that v(y)>D−1/2LD−1/2v(y) = y>D
−1/2
C SD

−1/2
C y. This gives us a bijection from the quadratic

form of the normalised Laplacian D−1/2LD−1/2 to the quadratic form of the Schur complement D
−1/2
C SD

−1/2
C ,

normalised to the old degrees.

Now let v1 and v2 be the smallest two eigenvectors of D
−1/2
C SD

−1/2
C , and let W = span{v1,v2}. We have:

λ2(D
−1/2
C SD

−1/2
C ) = max

y∈W

y>D
−1/2
C SD

−1/2
C y

y>y



= max
y∈W

v(y)>D−1/2LD−1/2v(y)

y>y

≥ max
y∈W

v(y)>D−1/2LD−1/2v(y)

v(y)>v(y)
.

But if y is in the two dimensional subspace W , v(y) also lies in some two dimensional vector subspace
W ′ = v(W ). To see this, notice that W ′ is indeed a vector subspace since v(x+ y) = v(x) + v(y). Also, W ′ is
exactly 2-dimensional, since it can be spanned by v(w1), v(w2) and v(w1) 6= cv(w2), for any basis w1,w2 of W .

Hence, we have that:

λ2(D
−1/2
C SD

−1/2
C ) ≥ max

y∈W

v(y)>D−1/2LD−1/2v(y)

v(y)>v(y)

= max
v∈v(W )

v>D−1/2LD−1/2v

v>v

≥ min
dim(U)=2

max
v∈U

v>D−1/2LD−1/2v

v>v

= λ2(D−1/2LD−1/2).

A consequence of this lemma is that if G has second smallest normalised eigenvalue ν2, then the Schur
complement Sc(G,S), normalised to its new degrees also has second smallest normalised eigenvalue at least ν2.
Since the new degrees of the Schur complement, represented by say the matrix DS , are entrywise smaller than

DC , we have that λ2(D
−1/2
S SD

−1/2
S ) ≥ λ2(D

−1/2
C SD

−1/2
C ).

Let f(x) = D
1/2
C D

−1/2
S x. Notice that the map f forms a bijection between vector spaces of dimension 2,

since f(U) is 2-dimensional if U is 2-dimensional, and f is invertible. We also have that |f(x)| ≥ |x|, since it is
entrywise larger. Hence:

λ2(D
−1/2
S SD

−1/2
S ) = min

dim(U)=2
max
x∈U

x>D
−1/2
S SD

−1/2
S x

x>x

≥ min
dim(U)=2

max
x∈U

x>D
−1/2
S SD

−1/2
S x

f(x)>f(x)

= min
dim(U)=2

max
x∈U

f(x)>D
−1/2
C SD

−1/2
C f(x)

f(x)>f(x)

= λ2(D
−1/2
C SD

−1/2
C ).

The algorithm in [6] also constructs determinant sparsifiers. For our recursive guarantees to hold, we also
have to demonstrate that spectral gap of the normalised Laplacian can not change that much after the sketching
process.

Lemma 4.3. Consider a graph G so that the spectral gap of its normalised Laplacian is ν2. Let H be the graph
produced by determinant sparsifier DetSparsify in [6] with some s = n1.5δ−1 edges. Then, the spectral gap of
the normalised Laplacian for H is at least some (1−O(δ1/4))ν2.

Proof. Note that DetSparsify (Algorithm 2 of [6]) essentially samples s = n1.5δ−0.5 edges proportional to the edge

leverage scores, and rescaling by a factor of exp( n2

2(n−1)s ). As such, the graph constructed, with weights rescaled

back, ie exp(− n2

2(n−1)s )H is a δ1/4-spectral sparsifier of G (See Theorem 1 of [14]).

Let f(x) = D
1/2
G D

−1/2
H x. f is a mapping that forms a bijection between two dimensional subspaces

U → f(U). Since H is a δ1/4-spectral sparsifier of G, their degrees differ by a factor of at most 1 + δ1/4,
and as such f(x)>f(x) ≥ (1− 2δ1/4)x>x. We have:

λ2(D
−1/2
H HD

−1/2
H ) = min

dim(U)=2
max
x∈U

x>D
−1/2
H HD

−1/2
H x

x>x



= min
dim(U)=2

max
x∈U

f(x)>D
−1/2
G HD

−1/2
G f(x)

x>x

≥ (1− 2δ1/4) min
dim(U)=2

max
x∈U

f(x)>D
−1/2
G HD

−1/2
G f(x)

f(x)>f(x)

≥ (1− 3δ1/4) min
dim(U)=2

max
x∈U

f(x)>D
−1/2
G GD

−1/2
G f(x)

f(x)>f(x)

= λ2(D
−1/2
G GD

−1/2
G ).

We now demonstrate that we can solve determinants on expanders. We use the same recursive strategy as
in [6]. We begin with a graph G with spectral gap of the normalised Laplacian being ν2. To calculate the
determinant of LG, we find a 2-DD subset of vertices V2 using Lemma 3.5 of [11], and V1 = V \V2 and recursively
calculate the following:

det+(LG) = det(L[V2,V2]) · det+(Sc(L, V1)).

This decomposes into two parts, the determinant of a 2-DD matrix, and det+(Sc(L, V1)), defined to be the
determinant of the Schur complement onto the rest of the vertices with a row and column removed. The entirety of
the algorithm is the same, with the only difference being the subroutine used to approximate effective resistances.
This leads to the following differences:

1. In [6], det(L[V2,V2]) is calculated by simply completing L[V2,V2] into a Laplacian and recursing. Since our
algorithm involves expansion, for our recursion to hold, we have to demonstrate that this new graph, with
all of V1 being contracted to a single vertex, does not have ν2 that decreases by a large amount. Instead of
doing this, we slightly modify the recursion, and use Lemma 3.6.

2. In the second half of the recursion, det+(Sc(L, V1)) can potentially have too many edges if explicitly
represented, so the determinant is calculated by first constructing a determinant sparsifier, and then
recursing. If there were no sketches involved, Lemma 4.2 would tell us that taking Schur complements
can only increase ν2, allowing us to recurse. However, we have to demonstrate that the sketching process
does not reduce ν2 by too much.

4.1 2-DD matrix Let LV2 be the completion of L[V2,V2] into a Laplacian, and let the new vertex be x. By
removing the single vertex x, we have the following:

det(L[V2,V2]) = det+(LV2)

= deg(x) · det+(Sc(LV2 , V2)).

By Lemma 3.6, we have that we can calculate the effective resistances on all edges of the 2-DD matrix that
are not adjacent to the new vertex x, which gives us the effective resistances of the edges in Sc(LV2 , V2). This
allows us to construct a determinant preserving sparsifier of the Schur complement HV2 using SchurSparse as in
[6], taking total time Õ(m + nε−2) to calculate the effective resistances, and Õ(s) time to sample s edges. In

particular we require choices of s and ε such that n2ε2

s , n
3

s2 ≤ δ
2, for the guarantees of SchurSparse to hold, so we

pick s = n1.5δ−1, ε = n−0.25δ0.5, giving us total time Õ(s+ nε−2) = Õ(n1.5δ−1).
We now have a sketch HV2 of size n1.5δ−1. From Lemma 3.6, we know that Sc(LV2 , V2) is a graph with

expansion at least some constant. Lemma 4.3 then guarantees that after the sketching process, the ν2 decreases
by at most some (1−O(δ1/4)) factor. This guarantees that HV2 is also a graph with constant expansion, allowing
us to continue by recursing. We are essentially picking a specific 2-DD set to recurse on, so error guarantees still
hold through a similar argument as in [6]. We see below in Figure 1 the new recursive structure. [5] prove that the
total error in each layer is sufficiently small. We note that the fact that the choice of subset was not important in
the error analysis, so we have the same error guarantees. As a result of our recursion on the right half reducing
the problem size by only 1 as opposed to a factor of 2, our recursion will have twice the depth, but this also does
not affect error guarantees.



Figure 1: Recursive structure of DetApprox from [6], with overlaid changes

𝐺 on 𝑛 vertices with Laplacian 𝐿

𝐿(1) 𝐿(2)

SchurSparse(𝐿𝐺 , 𝑉1) AddRowColumn(𝐿[𝑉2,𝑉2]
𝐺 )

SchurSparse(𝐿(1), 𝑉1(1))
SchurSparse(𝐿(2), 𝑉1(2))

𝐿𝑉1(1) 𝐿𝑉2(1) 𝐿𝑉1(2) 𝐿𝑉2(2) 𝑑 𝑥

SchurSparse(𝐿(2), 𝑉2/{𝑥})

4.2 Schur Complement As in the case of [6], we do not have to calculate effective resistances on the Schur
complement. Since Schur complements preserve effective resistances, we can instead calculate the effective
resistances on L instead of Sc(LV2 , V1).

As such, the only difference is in maintaining expansion guarantees through the sketching process. Again,
just as in the 2-DD case, by Lemma 4.3, the determinant sparsifier produced HV2 is a rescaled spectral sparsifier
of Sc(LV2 , V1), and as such the sampled graph HV2 ’s second smallest normalised eigenvalue can decrease by at
most a factor of (1− 2δ1/4). Suppose the graph at the topmost level has spectral gap of the normalised Laplacian

ν2. The resulting graph also always has spectral gap at least some Õ(ν2), since its expansion drops by at mmost
a factor of 2δ1/4, or gets set back to a constant value in the case of it being generated from the 2-DD component.

Putting this all together, we see that at each level of our recursion, the costs are dominated by the time
required to produce the effective resistance estimates, taking Õ(s+ nε−2ν−32 ) = Õ(n1.5δ−1ν−32 ) time. Given that

there are only O(log n) layers, the total time complexity of the algorithm comes out to Õ(m+n1.5δ−1ν−32 ).

A corollary of the above method is that we can calculate the determinant of any (1 +α)-diagonally dominant
matrix M that is a submatrix of a Laplacian (Theorem 1.3).

Proof. (of Theorem 1.3) The proof of Lemma 3.6 gives us that the Schur complement of LM onto V \{x} has ν2
at least α/(1 + α). Using the same recursive step as in Section 4.2, we essentially work on a graph with ν2 at

least α/(1 + α), giving us a time complexity of Õ(m+ n1.5δ−1(1 + α−3)).
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A Deferred Proofs

We provide some proofs of relatively standard facts here. We first prove a lower bound on the effective resistances.

Fact 2.1. The effective resistance of any edge (u, v) is lower bounded by 1
2 ( 1
du

+ 1
dv

), where du and dv are the
degrees of u and v respectively.

Proof. For any vector x, we have that the quadratic form x>(D +A)x can be written as:

x>(D +A)x =
∑

(u,v)∈E

wuv(xu + xv)
2.

Thus, D +A � 0, and L = D −A � 2D . Hence, for vectors perpendicular to 1, we have 1
2D
−1 � L+. This

gives us:

R(u, v) = (1u − 1v)>L+(1u − 1v)

≥ (1u − 1v)>
1

2
D−1(1u − 1v)

=
1

2
(

1

du
+

1

dv
).

An alternative proof is as follows. By Rayleigh’s Monotonicity Law, the effective resistance between u and v
will only decrease if the resistances of edges are lowered. WLOG, let du < dv. Construct the graph G′ where we
decrease the resistance of every single edge not adjacent to u to 0, noting that by Rayleigh’s Monotonocity Law,
the resistance of u and v in this graph is a lower bound for the resistance between u and v in G. Notice now we
can collapse all vertices that are not u into a single vertex, since they are all connected by 0 resistance edges,
resulting in a circuit with parallel edges from u to v. This gives us that the effective resistance between u and v
is just 1

du
, lower bounding the effective resistance between any two vertices by max{ 1

du
, 1
dv
}.

Next we prove a result on the convergence of random walks.

Lemma 3.5. Given a graph G, and an initial distribution p, the `1 norm difference between the distribution of
the lazy random walk after t steps and the stationary distribution is bounded by:∥∥∥∥(

1

2
I +

1

2
AD−1)tp− π

∥∥∥∥
1

≤ e−tν2/2ndmax

dmin
.

where dmax and dmin are the largest and smallest weighted degrees respectively.

Proof. Let N = D−1/2LD−1/2 be the normalized Laplacian. Since this matrix is symmetric, it has an orthogonal
basis of eigenvectors. Let ψ1, . . . ,ψn denote an orthonormal eigenbasis for N with eigenvalues ν1 ≤ . . . ≤ νn
respectively. We have that:

1

2
I +

1

2
AD−1 = I − 1

2
D1/2ND−1/2,

which gives us that for each i if ,D1/2ψi is an eigenvector of 1
2I + 1

2AD
−1 with eigenvalue (1− 1

2νi). Given an

initial distribution p, we write D−1/2p as a linear combination of the orthogonal eigenvectors of N , i.e., for some
αi ∈ R, we have D−1/2p =

∑
i αiψi. Thus, p =

∑
i αiD

1/2ψi, and,

(
1

2
I +

1

2
AD−1)p =

∑
i

αi(1−
1

2
νi)D

1/2ψi.

In particular, we have that ν1 = 0 and ψ1 = 1
1>D1

D1/21. Thus, its coefficient α1 is

α1 = ψ>1
∑
i

αiψi = ψ>1D
−1/2p =

1

1>D1
1>p =

1

1>D1
,



We bound each individual term after t steps. Let π be the stationary distribution of the lazy random walk,
(π)u = du∑

u du
. Thus π = 1

1>D1
D1 = α1D

1/2ψ1. We have that the `1 distance between the stationary distribution

and the random walk distribution after t steps is bounded by:∥∥∥∥(
1

2
I +

1

2
AD−1)tp− π

∥∥∥∥
1

=

∥∥∥∥∥∑
i

αi(1−
1

2
νi)

tD1/2ψi − π

∥∥∥∥∥
1

=

∥∥∥∥∥∑
i>1

αi(1−
1

2
νi)

tD1/2ψi + α1D
1/2ψ1 − π

∥∥∥∥∥
1

=

∥∥∥∥∥∑
i>1

αi(1−
1

2
νi)

tD1/2ψi

∥∥∥∥∥
1

=

∥∥∥∥∥D1/2
∑
i>1

αi(1−
1

2
νi)

tψi

∥∥∥∥∥
1

Applying Cauchy-Schwarz, we have that this is bounded by,∥∥∥∥(
1

2
I +

1

2
AD−1)tp− π

∥∥∥∥
1

≤
∥∥∥D1/21

∥∥∥
2

∥∥∥∥∥∑
i>1

αi(1−
1

2
νi)

tψi

∥∥∥∥∥
2

≤
√

1>D1

√∑
i>1

α2
i (1−

1

2
νi)2t

≤ e−tν2/2
√

1>D1

√∑
i>1

α2
i

≤ e−tν2/2
√

1>D1

√
p>D−1p

≤ e−tν2/2ndmax

dmin
,

where the last two inequalities follow from
∑
i α

2
i = p>D−1p ≤ 1.
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